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RuCl3 was likely the first ever deliberately synthesized ruthenium compound, following the dis-
covery of the 44Ru element in 1844. For a long time it was known as an oxidation catalyst, with
its physical properties being discrepant and confusing, until a decade ago when its allotropic form
α-RuCl3 rose to exceptional prominence. This “re-discovery” of α-RuCl3 has not only reshaped the
hunt for a material manifestation of the Kitaev spin liquid, but it has opened the floodgates of the-
oretical and experimental research in the many unusual phases and excitations that the anisotropic-
exchange magnets as a class of compounds have to offer. Given its importance for the field of Kitaev
materials, it is astonishing that the low-energy spin model that describes this compound and its
possible proximity to the much-desired spin-liquid state is still a subject of significant debate ten
years later. In the present study, we argue that the existing key phenomenological observations
put strong natural constraints on the effective microscopic spin model of α-RuCl3, and specifically
on its spin-orbit-induced anisotropic-exchange parameters that are responsible for the non-trivial
physical properties of this material. These constraints allow one to focus on the relevant region of
the multi-dimensional phase diagram of the α-RuCl3 model, suggest an intuitive description of it via
a different parametrization of the exchange matrix, offer a unifying view on the earlier assessments
of its parameters, and bring closer together several approaches to the derivation of anisotropic-
exchange models. We explore extended phase diagrams relevant to the α-RuCl3 parameter space
using quasi-classical, Luttinger-Tisza, exact diagonalization, and density-matrix renormalization
group methods, demonstrating a remarkably close quantitative accord between them on the general
structure and hierarchy of the phases, with the zigzag, ferromagnetic, and incommensurate phases
that are proximate to each other. One of the highlights is the detailed agreement on the nature of
the incommensurate phases that realize two distinct counter-rotating helical states.

I. INTRODUCTION

As every story needs a hero [1], every condensed matter
field needs a champion material, be it silicon for semi-
conductors [2], yttrium-iron garnet for spintronics [3],
or graphene for 2D materials [4]. With its 50-year-long
quest for a spin-liquid compound, the field of quantum
magnetism is, arguably, still on the search for one [5, 6].

For some time, the mineral herbertsmithite, a copper-
zinc hydroxychloride with its five-element composition
and elaborate crystal structure, seemed to be destined for
that title [7]. Made of kagomé layers of corner-sharing tri-
angles of nearly isotropically coupled spin- 12 Cu2+ ions—
a motif that provides maximum frustration of magnetic
orders and promotes spin-singlets—it was fitting all the-
oretical stereotypes for the leading spin-liquid paradigm,
suggesting a true realization of the singlet-soup state of
resonating valence bonds [8]. That is, until the issues
of site disorder mimicking spin-liquid features rendered
this hope fruitless, although efforts continue to find its
cleaner incarnation [7, 9].

But then something happened that the archetypal con-
struct of the isotropic spin models on triangular-motif
lattices did not anticipate. The fallen champion’s ti-
tle was picked up by one of the most unlikely materials
imaginable. Also a chloride, but a mere binary com-

pound with a geometrically unfrustrated bipartite ar-
rangement of magnetic ions in stacked honeycomb-lattice
sheets. When Karl Ernst Claus, a 19th century chemist
at Kazan University, synthesized ruthenium trichloride
in 1845 [10], little did he know that nearly two hundred
years later physicists and material scientists alike would
pin their hopes on his humble creation as being a close
realization of an exotic state of matter—a Kitaev spin
liquid—that could shape the fortunes of not just quan-
tum magnetism, but the broader fields of quantum ma-
terials and topological quantum computing [11].

Historically, α-RuCl3 has always been puzzling [12].
With its layered honeycomb-lattice composition of edge-
sharing RuCl6 octahedra [13], the actual space group
symmetry, amount of the octahedral distortion, and
propensity toward interlayer stacking faults have all been
the subject of debate [14]. Its electronic characterization
has evolved from being a small-gap magnetic semiconduc-
tor to a narrow-band Mott-Hubbard insulator that com-
bines spin-orbit coupling and electronic correlations [15–
18]. By analogy with other halides of transition met-
als [19], it was initially suggested to have ferromagnetic
Ru-planes ordered antiferromagnetically [13, 20], but this
was proven incorrect later [21, 22].

This was the state of understanding of α-RuCl3 about
ten years ago, when the search for the Kitaev spin liq-
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uid in the initially more promising 5d iridium-oxide com-
pounds was waning [14]. The focus of that search has
moved to the structurally similar materials of the 4d ele-
ments with spin-orbit coupling, in which α-RuCl3 stood
out because of its supposed nearly ideal edge-sharing oc-
tahedral structure in the honeycomb-lattice planes and
uncertain electronic and magnetic properties [18].

α-RuCl3’s ascent to fame was not without theo-
retical input. The celebrated spin-liquid solution of
the compass-like [23] honeycomb-lattice model by Ki-
taev [11], featuring topological fermionic excitations,
was initially perceived as a largely theoretical construct.
It was propelled to the domain of physical reality by
the seminal microscopic insight of Jackeli and Khali-
ullin [24, 25], which laid out that Mott insulators of tran-
sition metal ions in the edge-sharing octahedral environ-
ment of ligands can lead to that very model in the limit of
strong spin-orbit coupling. The anticipated nearly per-
fect edge-sharing RuCl6 octahedra, weak magnetic or-
dering, subsequent convincing evidence of continuum-like
excitations [21, 26–31], and observations of a significant
and potentially anomalous thermal Hall effect [32–38]
have all fueled hopes for α-RuCl3’s singular place in his-
tory as the key material realizing this model.

While inspiring an enormous amount of theoretical and
experimental research [39–45], the initial expectations of
becoming a Rosetta stone for the Kitaev spin liquid have
likely not played out for α-RuCl3. The longer-range
exchanges and other significant interactions in its low-
energy spin model have arguably moved it away from
the pure-Kitaev limit and its phenomenology [14]. Var-
ious spectroscopic signatures of the broad continuum,
combined with the sharper excitations at lower energies,
have received a more natural explanation as a combina-
tion of strongly coupled magnons and their multi-magnon
states [46–48], while substantial contribution of phonons
has not left much room for exotic explanations of the
field-induced thermal transport in α-RuCl3 [49–56].
Nevertheless, the research effort devoted to this ma-

terial has already laid a prominent keystone in revealing
exceptional richness of phenomena offered by anisotropic-
exchange magnets on the honeycomb and other lattices.
Thus, it is rather remarkable that the agreement on the
low-energy model describing this compound has not yet
been reached, its place in the phase diagram of that
model has not yet been settled, and relevant proximate
phases have not yet been uniquely identified.

In the following few pages, we provide a brief digest
describing the origin of the problem, suggesting a path
to its resolution, and giving an overview of such an ap-
proach, with the detailed exposé of the results and their
cross-examination presented in the main text.

A. Overall Summary

While the problem of finding a definitive set of param-
eters for an effective model is common to many materials,
it has been particularly difficult for α-RuCl3 because of

its fluctuating ground and field-induced states and com-
plicated interactions in its low-energy description. The
main result of this work is a systematic path to a nar-
rower parameter space for the α-RuCl3 effective model.
The key message is the approach itself. It consists

of breaking the problem into stages. First is the task
of identifying experimental observables that would not
occur without the anisotropic-exchange parameters of
the model, which originate from spin-orbit interaction.
Such observables can be shown to work as effective phe-
nomenological constraints for the most challenging pa-
rameters of the model. Then, any set of remaining pa-
rameters that are not fixed at this stage from such a par-
tially restricted manifold is expected to meet the imposed
constraints. The remaining, more traditional isotropic
exchanges can be either fixed with additional constraints,
or left for further adjustment. We demonstrate the suc-
cess of such a staged approach in systematically narrow-
ing the allowed parameter space of α-RuCl3.
Another important general message of our study is the

deep insight provided by the use of an alternative crys-
tallographic parameterization of the effective model of
α-RuCl3. It offers a unifying view of most prior efforts
to determine its underlying model and also gives a fresh
perspective on it as a member of a coherent group of
other materials and models.
The numerical approaches, such as exact diagonal-

ization (ED) and density-matrix renormalization group
(DMRG), allow us to verify that this entire approach,
which involves quasiclassical approximations, actually
holds up quantitatively. The other main utility of numer-
ical explorations, specifically using DMRG, is the study
of incommensurate phases. These phases are consistently
found to be proximate to the relevant parameter space of
α-RuCl3, but very little research has been done on their
nature. The present study closes this gap by demonstrat-
ing detailed quantitative agreement on their structure,
which corresponds to counter-rotating helical states.

B. Parameters’ drama

Generally, the anisotropic-exchange Hamiltonians lack
spin-rotational symmetries. For the effective low-energy
spin-orbit-coupled spin degrees of freedom, it is the dis-
crete symmetry of the honeycomb lattice of magnetic ions
with edge-sharing octahedral ligand environment that al-
lows four terms in the nearest-neighbor exchange ma-
trix [14]. In a parametrization within the reference
frame of the cubic axes of the idealized ligand bonds,
see Fig. 1(a) and 1(b), these four are Kitaev, Heisenberg,
and off-diagonal Γ and Γ′ exchanges [57, 58], with three
anisotropic terms stemming from the spin-orbit coupling
within the electronic states of Ru3+ ions.
Arguably, deviations from the ideal Kitaev-only model

are unavoidable in any realistic material [46], with all
these four terms present in α-RuCl3 for any reasonable
choice of electronic parameters [14]. An important role
is also played by the third-neighbor, more isotropic J3
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FIG. 1. (a) Ru3+ ions in the octahedral cages of Cl− and
the nearest-neighbor bonds. (b) {X,Y,Z} bonds with the cu-
bic {x, y, z} and crystallographic {x, y, z} axes. (c) A and
B sublattices, nearest- and third-nearest-neighbor primitive

vectors, δα and δ
(3)
α , and the Brillouin zone (BZ) of the hon-

eycomb lattice with the high-symmetry points.

exchange [14], which, altogether, yield the minimal effec-
tive spin Seff =

1
2 model of the magnetic two-dimensional

(2D) honeycomb-lattice planes of α-RuCl3

Ĥ = Ĥ1 + Ĥ3 =
∑
⟨ij⟩

ST
i ĴijSj + J3

∑
⟨ij⟩3

Si · Sj , (1)

where ST
i =(Sx

i , S
y
i , S

z
i ) and the nearest-neighbor part of

the model in the cubic-axes parametrization is

H1 =
∑
⟨ij⟩γ

[
JSi · Sj +KSγ

i S
γ
j + Γ

(
Sα
i S

β
j + Sβ

i S
α
j

)
+ Γ′(Sγ

i S
α
j + Sγ

i S
β
j + Sα

i S
γ
j + Sβ

i S
γ
j

)]
, (2)

where the spin indices {α, β, γ} follow the {X,Y,Z}
bonds according to Fig. 1(b): {y, z, x} for the X, {z, x, y}
for the Y, and {x, y, z} for the Z bond, respectively.
There is a broad consensus that this generalized

Kitaev-Heisenberg (KH), or effective KJΓΓ′–J3 model
is the minimal microscopic model of α-RuCl3 which in-
corporates further-neighbor exchanges into the fewer pa-
rameters. However, even the parameters of this minimal
model have received very wide ranges of estimates, see
Ref. [46] for the earlier overview and Sec. II below.

Because of the initial optimism regarding the near-
proximity of α-RuCl3 to the ideal Kitaev case [26–29],
early strategies have involved adding other symmetry-
allowed terms to the pure Kitaev model in small quanti-
ties, with a hope for a reasonable phenomenology [59–61].
Nonetheless, significant systematic efforts have also been
made to restrict parameters of the more complete ver-
sions of the generalized KH model using first-principles
approaches, perturbative orbital model derivations, exact
diagonalization, spin-wave calculations, and other meth-
ods, many in combination with the symmetry analysis
and with the goal to match various experimental obser-
vations [62–92]. However, in spite of its importance for
the field of Kitaev materials, this significant effort has
not yet yielded an agreement on the parameters of the

α-RuCl3 model, nor are there sets of them that success-
fully describe the full set of experimental observations.
One objective reason for the difficulty with the conver-

gence on the physical set of parameters for α-RuCl3 can
be attributed to the model’s multi-dimensional parame-
ter space, which generally complicates the search for a
unique set of strong microscopic constraints [14, 93]. It
can also be argued that the natural instinct to reduce the
dimensions of this space by neglecting some of the param-
eters only exacerbates the problem of convergence. This
is not only due to artificial restrictions on the parameter
space, possibly affecting one’s ability to describe physical
phenomena, but also because this reductionist approach
suffers from the lack of intuition regarding the outcomes
of individual terms in the standard KJΓΓ′ parametriza-
tion of the exchange matrix. In a sense, the model’s own
complexity is a problem that has been calling for a better,
more intuitive parametrization.
Another objective obstacle on the path to convergence

to an ultimate parameter set are strong quantum fluc-
tuations in both ordered and nominally polarized field-
induced paramagnetic phases of α-RuCl3, the situation
common to anisotropic-exchange magnets [94, 95]. These
fluctuations limit the access to the regime of the truly po-
larized state with quenched quantum fluctuations, where
a direct determination of the “bare” model parameters
can be made using spectroscopic measurements of spin
excitations, as is successfully done in the other, more for-
tunate quantum magnets [96–103]. This limitation leaves
most of the phenomenological analyses of α-RuCl3 deal-
ing with the observables that can be strongly affected by
quantum effects. To extract model parameters from such
observables in a meaningful part of the parameter space
requires a prohibitively demanding numerical effort. Al-
ternatively, they are extracted using semi-classical ap-
proximations, resulting in the parameters that are them-
selves renormalized from the bare ones, making uncertain
their use for the other phenomenologies and complicating
their comparison with the other suggested sets [46, 82].

C. The solution

In the present study, we propose to have reached, if
not the final scene of the α-RuCl3 parameters’ drama,
but perhaps its final act.

1. Anisotropic strategy

We argue that it is precisely the spin-orbit-induced
anisotropic-exchange components of the effective spin
model of α-RuCl3 that can be strongly constrained by
the existing phenomenologies. The crucial ideological
steps are to identify phenomena that (i) would not have
occurred if such terms were absent, (ii) provide orthog-
onal, i.e., not redundant, constraints that restrict differ-
ent combinations of anisotropic exchanges, and (iii) have
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and J3 > 0 obtained by the LT approach at fixed “Point B”
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the color bars indicating ranges of their ordering vectors, and

the constraints from the critical field H
(a)
c are highlighted.

minimal effects of quantum fluctuations in them. Thus,
the strategy is to focus on the bounds on theK, Γ, and Γ′

terms of the generalized KH model, leaving the isotropic
ones, J and J3, to further phenomenological constraints
and explorations of the resultant lower-dimensional phase
diagram in the restricted parameter subspace.

We claim to have identified three nearly orthogo-
nal phenomenological constraints that can fulfill such
a mission: (a) The out-of-plane tilt angle α of the or-
dered moments in the zero-field zigzag state of α-RuCl3
[21, 22, 26, 81, 104], (b) the energy offset ∆Eg of the
lowest single-spin-flip excitation in the Raman, terahertz
(THz), and electron spin resonance (ESR) spectra at high
fields [29, 80, 105], referred below as to the “ESR gap,”
and (c) the difference of the critical fields ∆Hc for the
transition to the paramagnetic phase in the two princi-
pal orthogonal in-plane directions [67, 68, 105]. Each of
these quantities is thoroughly discussed in Sec. II.

By imposing physical bounds that are guided by phe-
nomenologies on the theoretical expressions for these
quantities, we can infer the bounds on the three
anisotropic terms of the model (2). To illustrate the re-
sult of this approach in very broad strokes, the small
critical-field difference ∆Hc strongly ties Γ′ to Γ, with Γ′

necessarily positive and significant [46]. The physical lim-
its on the ESR gap provide tight bounds for Γ. Lastly,
the out-of-plane tilt angle α binds Kitaev K-term in a
significantly narrower range than the prior estimates, see
Sec. II for further details.

In this context, two recent works suggest a promising
convergence of very different approaches on the parame-
ter space relevant to α-RuCl3 of the same effective model.

The first is Ref. [90], which has used the extensive per-
turbative orbital model derivation in the spirit of the
original work by Jackeli and Khaliullin [24]. By consid-
ering octahedral distortion pertinent to α-RuCl3 and us-
ing an exhaustive set of hopping channels for all relevant
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FIG. 3. Same as Fig. 2 by ED.

orbitals, their systematic microscopic derivation of the
nearest-neighbor exchange parameters has yielded quali-
tative and quantitative trends which are very similar to
our purely phenomenological results, perhaps aside from
the overall rescaling, and specifically pointed to a posi-
tive and sizable Γ′ term. Other close similarities between
our results will be further highlighted below.

The second is Ref. [89], which has extracted interaction
parameters of α-RuCl3 from the neutron-scattering data
using machine learning, but restricted itself to an artifi-
cially abbreviated model with no Γ′ term, underutilizing
its parameter space. Despite this restriction, their resul-
tant model is able to satisfy, even if for the wrong reasons,
two of the phenomenological constraints suggested in this
work, while failing the more stringent one, as we show be-
low. Our analysis suggests that a redo of the same effort
with no artificial restrictions in the model and with an
additional experimental input may open the full poten-
tial of this approach and lead to a convergence of our
parameter sets.

With the proposed constraints, one is able to focus
on the relevant region of the multi-dimensional phase
diagram of this model. In Figure 2, we provide a rep-
resentative example of such a phase diagram, in which
{K,Γ,Γ′} anisotropic terms are fixed to a set of values
referred below as the “Point B” that belongs to a narrow
3D region bounded by the constraints, while the remain-
ing “free” isotropic parameters of the model (1) are varied
in the relevant region of the J–J3 plane. The Point B se-
lection, Luttinger-Tisza (LT) method [106–110], which is
used for obtaining Fig. 2, and specific features of the spin
configurations in the individual phases are all thoroughly
described in Secs. II and III below. Here, we point out
two ubiquitous features of this phase diagram.

First, the zigzag (ZZ) and ferromagnetic (FM) phases
are prominently present in the relevant phase space of α-
RuCl3, in agreement with several prior works [65, 70, 75,
83], and are separated by a layer of two incommensurate
(IC) phases with varying ordering vectors [46, 91].
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Second, while the difference of the critical fields for the
transition to the paramagnetic phase ∆Hc, already uti-
lized as a constraint for the anisotropic terms, does not
depend on the isotropic J and J3 exchanges, the values
of these critical fields themselves are strongly dependent
on a linear combination of J and J3, providing another
strong constraint on the α-RuCl3 parameters [46]. While
the critical fields can be strongly renormalized by quan-
tum fluctuations, Fig. 2 demonstrates the narrow strip of
the J–J3 space that is carved by such a constraint, show-
ing the boundaries that correspond to the bare value of

one of the critical fields H
(a)
c ≈ 7 T [26, 65, 67], and

the value twice as high, allowing for its strong quan-
tum renormalization. The acceptable range of |J | is also
broadly restricted from below by α-RuCl3 being in the
zigzag phase and from above by the overall widths of the
magnetic excitation spectra [46].

We also demonstrate that the chosen strategy allows
us to rein in on the otherwise prohibitively demanding
numerical exploration of the α-RuCl3 parameter space.
With the phase diagram in Fig. 2 obtained by a quasi-
classical Luttinger-Tisza approach [106–110], one may be
skeptical of its applicability to the quantum S=1/2 limit
of the model (1). In Figure 3, we present such a quantum
phase diagram obtained by ED, see Sec. III for further
details. While the nature of the intermediate phases be-
tween the ZZ and FM cannot be fully characterized in
the ED approach, hence the “non-commensurate” (NCO)
nomenclature, the close quantitative accord between the
two diagrams in Fig. 2 and Fig. 3 on the general structure
and hierarchy of the proximate phases is rather remark-
able. These numerical explorations are also furthered by
the DMRG approach, which yields unambiguous insights
into the nature of the incommensurate phases and pro-
vides various selfconsistency checks on our phenomeno-
logical constraints, see Sec. IV.

2. Alternative parametrization

Generally, the exchange matrix Ĵij in the model (1)
is not invariant under axes transformations if anisotropic
terms are present. While the choice of the cubic axes
in Fig. 1(b) is designed to make explicit the Kitaev-like
structure of the model (2) which may not be obvious
otherwise, this may not be the optimal choice when other
significant terms are present.

The most natural physical alternative is the crystal-
lographic reference frame associated with the planes of
magnetic ions, with x and y axes corresponding to the
principal in-plane directions of the honeycomb lattice
and z axis pointing out of this plane, see Figs. 1(b) and
1(c). Several virtues of this reference frame, which in-
clude making explicit the symmetries of the model and
bond directionality of interactions while also elucidating
some of the enigmatic duality relations of the cubic-axis
representation of the model (2), have been discussed in
the past [46, 58, 90, 111, 112].

With the nomenclature for the {x, y, z} frame inher-

ited from the related spin-ice models [95, 99, 113, 114],
the nearest-neighbor Hamiltonian (2) is recast into the
XXZ–J±±–Jz± form

H1 =
∑
⟨ij⟩

{
J1
(
Sx
i S

x
j + Sy

i S
y
j +∆Sz

i S
z
j

)
(3)

+2J±±
((

Sx
i S

x
j −Sy

i S
y
j

)
c̃α−

(
Sx
i S

y
j +Sy

i S
x
j

)
s̃α

)
+Jz±

((
Sx
i S

z
j +Sz

i S
x
j

)
s̃α−

(
Sy
i S

z
j +Sz

i S
y
j

)
c̃α

)}
,

where we use the shorthand notations c̃α = cos φ̃α and
s̃α = sin φ̃α, with the phases φ̃α = {0, 2π/3,−2π/3} for
the {Z,X,Y} bonds in Fig. 1 being the bond angles of
the primitive vectors δα with the x axis.
The matrix of the transformation from the cubic

{x, y, z} to the crystallographic {x, y, z} reference frame,

Scryst = R̂cScubic, is given in Appendix A together
with the translation of the parameters of the general-
ized KH model in the form (2) to that of (3) and back:
{J,K,Γ,Γ′}⇔ {J1,∆J1, J±±, Jz±}. The isotropic third-
neighbor H3 in (1) is unchanged by this transformation.
One immediate advantage of the crystallographic form

of the model (3) is in having fewer bond-dependent terms,
with its first line being a conventional XXZ Hamilto-
nian. As we argue in Sec. II, the XXZ–J±±–Jz± model
(3) also provides a much more intuitive understanding of
the outcomes of its individual terms, allowing one to tie
them directly to specific observables. One such example
is the out-of-plane tilt angle α discussed above, which
can only be caused by the Jz±-term, the sole term in the
model that connects the in-plane and the out-of-plane
spin components. Another example is the ESR gap ∆Eg

that depends on an uninformative combination of Γ and
Γ′ in the KJΓΓ′ language (2), but corresponds to a sim-
ple XXZ anisotropy, J1(1−∆), upon translation to the
crystallographic frame (3), see Sec. II.

Moreover, significant additional progress in under-
standing α-RuCl3 can be made by reforging phenomeno-
logical constraints on the anisotropic parameters of the
generalized KH model (2) {K,Γ,Γ′} into similar con-
straints on the {J1(1−∆), J±±, Jz±} terms of the model
(3). This conversion results in a clear hierarchy of the
parameters of this model and, ultimately, in a simpler
and more intuitive version of it.

For the advocated parameter ranges of α-RuCl3, the
nearest-neighbor part of the spin model in the crystallo-
graphic language can be shown to have two leading terms,
J1 and Jz±, and two secondary ones, the XXZ parame-
ter ∆ and one of the bond-dependent anisotropic terms,
J±±. This hierarchy is also in very close accord with
the results of the orbital model expansion of Ref. [90]
discussed above, and is in broader agreement with the
majority of the earlier assessments of the α-RuCl3 pa-
rameters, offering a unifying view of them as all pointing
in a similar direction, although often in a limited way.

It transpires that the resultant minimal model that
closely describes α-RuCl3 is dominated by the XY (∆≈
0) ferromagnetic J1 and sizable anisotropic Jz± terms,
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boundary are projections of prior α-RuCl3 parameter searches
onto the ∆=J±±=0 plane, see Sec. III B for details.

which are complemented by the isotropic antiferromag-
netic J3 exchange. The neglected ∆ and J±± can be
verified as playing only secondary roles in the physical
outcomes compared to the leading terms.

Needless to say, this revelation suggests a considerable
simplification of the α-RuCl3 parameter problem, as it al-
lows a significantly more focused and detailed exploration
of the relevant and physically justified three-dimensional
parameter space of the resultant JXY

1 –Jz±–J3 model.
In Figure 4, we provide an example of such an explo-

ration in the form of its polar phase diagram, with details
given in Sec. III. In this phase diagram, obtained by the
same LT method as Fig. 2, J1 and J3 encode the polar
coordinate and Jz± is the radial one, as indicated in the
legend. While covering the entire parameter space of the
JXY
1 –Jz±–J3 model, which contains additional antiferro-
magnetic (AFM) and stripe phases, the relevant segment
of it is populated by the zigzag and ferromagnetic phases,
separated by the incommensurate phase. This proximity
is already familiar from the Cartesian phase diagrams of
Figs. 2 and 3, which offer a different slice through the
same higher-dimensional parameter space. In addition,
the small symbols in Fig. 4 are the projections of the
majority of the previously proposed α-RuCl3 parameter
sets onto the ∆ = J±± = 0 plane of the phase diagram,
demonstrating the commonality of the trends and phe-
nomenologies that all of them were trying to capture.

It is also important to point out that the model in the
crystallographic frame (3) and its abbreviated J1–Jz±–J3
version offer a direct connection to the broader spectrum

of the paradigmatic models in frustrated magnetism. In
fact, the circumference of the phase diagram in Fig. 4
corresponds to the J1–J3 FM-AFM model that has been
studied since long ago [115] and has attracted significant
attention very recently in the context of the other mate-
rial candidates of the Kitaev model realization [116–119].
This model and its ubiquitous characteristic sequence of
the FM, ZZ, and intermediate phases also provide a wider
context to the studies of α-RuCl3.

D. The plan

With the brief synopsis of our findings given in the pre-
vious pages, the rest of the paper is organized as follows.

The empirical constraints and representation of them
in the cubic and crystallographic reference frames, the
outline of the advocated parameter space, and selected
representative choices of the anisotropic exchanges are
discussed in Section II together with the systematic anal-
ysis of the prior efforts at the α-RuCl3 parameters in the
context of the proposed phenomenologies.

In Section III, we provide a detailed discussion of
the phase diagrams for the relevant region of the multi-
dimensional parameter space of the α-RuCl3 model, such
as the ones in Figs. 2 and 3 in the generalized KH, and
in Fig. 4 in the crystallographic axes. Here we also elab-
orate on the technical details of the approaches that are
used for their derivation.

A comparative analysis uncovering the nature of the
incommensurate phases in these phase diagrams using
DMRG is presented in Section IV. Further insights and
selfconsistency checks from the unbiased numerical meth-
ods on the phenomenological constraints and other as-
sumptions of our approach are also provided.

We discuss possible future directions as an outlook in
Section V and present a summary in Section VI. Techni-
cal details are delegated to Appendices.

II. CONSTRAINTS AND PARAMETERS

In this Section, we demonstrate that the available phe-
nomenologies are powerful enough to significantly re-
strict the physically reasonable parameter space of the
generalized KH model (1) for α-RuCl3. With the help
of the translation of the model using the alternative
parametrization described in Sec. I C 2, we also em-
phasize important physical insights and intuition asso-
ciated with the crystallographic reference frame. The
3D boundaries of the proposed parameter space in both
parametrizations are shown, the representative choices
of the model parameters that are used for the phase di-
agrams in Secs. III, IV, and IC 1 are suggested, and a
comparison of the α-RuCl3 parameter sets with recent
works is highlighted.
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A. Constraints

According to our discussion in Sec. I C 1, the observ-
ables that are effective in restricting anisotropic terms of
the spin model of α-RuCl3 are the ones that (i) should
occur only if such terms are present, (ii) should prefer-
ably depend on a distinct set of such terms to avoid re-
dundancy of the empirical constraints, and (iii) should
contain minimal or controllable quantum effects.

We identify three phenomenological constraints that
can fulfill such a mission and provide a thorough dis-
cussion of them. In the end of Section II, Table I
offers a comprehensive compilation of the previously
proposed parameter sets for the anisotropic exchanges
{K,Γ,Γ′} of α-RuCl3 [69–90], with the only general re-
striction of K<0, which is consistently demonstrated by
the first-principles guidance and spectroscopic measure-
ments [70, 81]. Table I also shows the ability of these
parameter sets to match the proposed phenomenological
constraints. Since the number of entries in this compila-
tion is significant, we also use histogram distributions of
the data in these sets to showcase the proposed physical
limits on the observables and the effect of the constraints
on the possible ranges of the model parameters.

1. Tilt angle

The first proposed phenomenological constraint is the
substantial tilt of the ordered moments out of the crystal-
lographic plane of magnetic ions in the low-temperature
zigzag state of α-RuCl3 [21, 22], see inset of Fig. 5. This
tilt angle has been measured by the neutron and res-
onant elastic x-ray scattering spectroscopies, which put
its value to α≈35◦ and α≈32◦, respectively [26, 81, 104].
The sign of this angle was also important for the determi-
nation of the sign of the Kitaev K-term in α-RuCl3 [81].
Needless to say, the isotropic exchanges cannot be re-

sponsible for the tilt, with the classical energy minimiza-
tion connecting the tilt angle to a rather non-intuitive
mix of all three anisotropic-exchange terms of the gener-
alized KH model (2) [46, 64, 111]

tan 2α = 4
√
2 · Γ−K − Γ′

7Γ + 2K + 2Γ′ . (4)

In the crystallographic notations of the model (3), this
expression becomes significantly more telling

tan 2α =
4Jz±

J1
(
1−∆

)
+ 4J±±

, (5)

showing plainly that the tilt can only be induced by the
term that explicitly connects the in-plane and the out-
of-plane spin components, Jz±.
One can question the use of the classical expressions

for the tilt angle to match the actual observations in α-
RuCl3. According to Ref. [64], there are also possible

differences between the calculated direction of the pseu-
dospin in (4) and the experimentally measured direction
of the magnetic moment.
For the first concern, prior comparisons to exact diag-

onalization for several representative sets of parameters
have shown only insignificant quantum corrections to the
tilt angle [64]. Similarly small deviation from the classi-
cal value of the out-of-plane tilt of the magnetic moments
was recently observed in a strongly-fluctuating ground
state of a related anisotropic-exchange model of the 1D
compound CoNb2O6, where it was rationalized as due to
a natural compensation of the contributions of different
terms [120]. The conclusive DMRG check of the numer-
ical correspondence of the tilt angle in the quantum and
classical models for the parameters proposed in this work
will be given in Sec. IV.
In order to account for these effects, and instead of

fixing α to a particular value, we take a relatively broad
span of 30◦ ≤α≤ 37◦ as the physically allowed range of
the tilt angle.

2. ESR gap

While the tilt angle criterion has been previously dis-
cussed [64], the second phenomenological constraint has
received less attention, despite its clear advantages and
being close in spirit to the standard approach to the
problem of determining parameters in fluctuating mag-
nets [46]. As was mentioned earlier, significant quan-
tum fluctuations in the nominally polarized paramag-
netic phase of α-RuCl3 limit the insights that one can
draw from such a state, compared to the case when fluc-
tuations are fully quenched by the field [96–103].
Although limiting, they do not completely prohibit

such insights, because some spectroscopies can be uti-
lized in the fields that are much higher than the ones
available to neutron scattering. Specifically, the field-
dependence of the lowest-energy spin excitation at k=0
has been probed up to the high fields of 35 T using Ra-
man and THz spectroscopies [80], with the ESR results
essentially coinciding with them up to its feasibility range
of 17 T [29], see Fig. 5. For the fields ≳ 20 T, quantum
fluctuations in α-RuCl3 are substantially quenched, lead-
ing to ≲20% suppression of the ordered moment [22, 65],
the number that can be used to gauge their overall effect.
All three techniques are consistent with each other and

in their interpretation of the lowest excitation in their
spectra as that of the single magnon-like spin-flip in the
partially polarized ferromagnetic background [80, 105],
to which we will refer to as the lowest “ESR mode.” The
behavior of this mode differs markedly from the Zeeman-
like linear field-dependence, typical of the isotropic mag-
nets, with the high-field asymptote of E0 vs H having a
large positive shift. The latter follows straightforwardly
from the quasiclassical result [46]

E0 =
√
h
(
h+∆Eg

)
, (6)
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FIG. 5. ESR [29] and THz [80] data for the magnon energy,
E0, at k=0 vs field in the a-direction. Results from Eq. (6)
for Γtot from Refs. [89] and [75] and for 8 meV and 10 meV.
Arrows emphasize the downward renormalization by quan-
tum fluctuations. Insets: sketches of the zigzag and polarized
states and in-plane a and b directions.

with h=gµBH and the “ESR gap” ∆Eg

∆Eg = 3S
(
Γ + 2Γ′) = −3SJ1(1−∆), (7)

that depends on a subset of terms of the model (1), un-
derscoring its utility as of the “orthogonal” constraint.

The ESR gap depends on a simple, but uninforma-
tive combination of Γ and Γ′ in the generalized KH
parametrization (2). In contrast, its explicit relation
to the departure of the XXZ part of the model in the
crystallographic frame (3) from the isotropic Heisenberg
limit, (1 − ∆), is not only simple, but also explains the
physical origin and generic character of the positive shift
of the ESR mode. Given the large observed value of ∆Eg,
it provides the most direct evidence of the strong devia-
tion of the KH model of α-RuCl3 from the Kitaev limit
and a compelling argument for its natural description as
an easy-plane J1–J3 ferro-antiferromagnet.
In Fig. 5, we reproduce the data for the energy of the

lowest ESR mode from Refs. [29, 80] for the in-plane field
perpendicular to the bond (a-direction), varying from the

critical field H
(a)
c ≈7 T to about 35 T, with the data for

the b-direction, along the bond, being very similar. The
high-field expansion of Eq. (6), E0≈h+a0+a1/h provides
the fit to the data. In this study, we use ga=gb=2.5, in
accord with the earlier estimates [62, 65, 121].

Qualitatively, quantum fluctuations should produce a
downward shift of the “bare” quasiclassical mode in (6)
due to a repulsion from the two-magnon states, which
are also observed in Refs. [29, 80]. This effect is nat-
urally stronger near the critical field, as is emphasized
schematically in Fig. 5, where these states may overlap,
according to the analysis of Ref. [80]. The downward
renormalization has also been confirmed by exact diago-

nalization and selfconsistent spin-wave theory for repre-
sentative parameter sets [46, 65].
This downward trend implies a logical lower limit on

the value of the “bare” ESR gap, or Γtot = Γ + 2Γ′, as
the unrenormalized theory result in (6) must be at least
above the experimental curve in order to be able to reach
it upon a downward renormalization.
To demonstrate the power of this criterion as a test for

the existing parameter sets from Table I, we use Fig. 5
to show E0 vs H from Eq. (6) for two representative
Γtot=Γ+ 2Γ′, with the lowest dashed line from Ref. [89]
of the machine-learning approach and the second low-
est from Refs. [75, 77], which is successful in describing
the low-field phenomenology of α-RuCl3. Both miss the
high-field results by a significant margin, with the data
suggesting substantially larger values of ∆Eg and the cor-
responding combination of Γ and Γ′. With the residual
quantum fluctuations still present up to 35 T, our anal-
ysis suggests that Γtot cannot be less than ≈7.5 meV.

Importantly, quantum fluctuations are reduced in
higher fields, which also puts a logical upper limit on
∆Eg and Γtot. As is made clear in Fig. 5 with the help
of the quasiclassical results for E0 vs H curves for Γtot=8
and 10 meV, with quantum effects in magnetization be-
ing ≲20%, it would be very hard to justify Γtot to be
larger than ≈ 10 meV, as this would imply unphysically
large fluctuations in a strongly gapped high-field state.

Altogether, the high-field results for the ESR gap pro-
vide the lower and the upper bounds of the physically
allowed range directly to the linear combination of the
model parameters, 7.5 meV≤ Γ + 2Γ′ ≤ 10 meV, which
are used in our analysis below. The quantitative veri-
fication of the downward-renormalization effects in the
field-dependence of the ESR gap is presented in Sec. IV,
using ED for the quantum model with one of the repre-
sentative parameter sets proposed in this work. This also
serves as a validation of our strategy for constraining the
anisotropic terms of the α-RuCl3 effective model.

3. Critical fields

The third phenomenological constraint is counterintu-
itive. If the bond-dependent terms in the generalized KH
model of α-RuCl3 are significant, it is natural to inquire
why the experimentally observed in-plane critical fields
for the transition to the partially polarized paramagnetic
phase in the two principal field directions are so close,

∆Hexp
c = H

(b)
c −H

(a)
c ≈ 0.8 T [67, 68, 105]; both fields

are indicated in Fig. 5. Such a small difference would be
natural for the nearly isotropic Heisenberg or pure KH
models, but with the ESR gap suggesting substantial Γ
and Γ′ terms, small ∆Hc condition should be able to bind
them in a way that is distinct from the other constraints.

One can use the quasiclassical expressions for the crit-
ical fields given below to calculate such ∆Hc for the pa-
rameter sets proposed in prior works, most of which put
strong emphasis on the anisotropic terms in α-RuCl3.
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It is intriguing that all but one of them yield values of
these quasiclassical estimates of ∆Hc that are not just
larger, but typically an order of magnitude larger than

the observed value—of the same magnitude as the H
(b)
c

and H
(a)
c critical fields themselves, see Table I. The one

exception, Ref. [89], fails the ESR gap criterion as it sug-
gests a model which is close to the pure KH limit.

One concern for the critical fields being a phenomeno-
logical constraint is their expected strong quantum ef-
fects. However, while quantum fluctuations should con-
siderably suppress the critical fields from their classical
values [122], it would be very unnatural for their differ-
ence to change drastically [46]. This suggested lack of
quantum effects in ∆Hc can be taken as a falsifiable pre-
diction of our strategy, with the representative parameter
sets proposed in this work given a numerical verification
by DMRG in Sec. IV.

The transition from the field-induced paramagnetic to
the zigzag phase corresponds to a closing of a magnon gap
at the ordering vector associated with zigzag order [78,
86, 123]. This condition yields quasiclassical expressions
for the transition fields in the two principal directions,
H ∥ a and H ∥ b [46], perpendicular and parallel to the
nearest-neighbor bond, respectively, see Fig. 1(b)

h(a)
c = J + 3J3 +

1

12

(
5K − 5Γ− 16Γ′)+ 1

12
Ra, (8)

Ra =

√(
K + 5Γ + 4Γ′)2 + 24

(
K − Γ + Γ′)2,

h(b)
c = J + 3J3 +

1

4

(
2K − Γ− 6Γ′)+ 1

12
Rb, (9)

Rb =

√(
2K + 7Γ + 2Γ′)2 + 32

(
K − Γ + Γ′)2,

where h
(α)
c = gαµBH

(α)
c . Consistent with our proposed

anisotropic strategy, the difference of the critical fields in
(8) and (9) is a function of only anisotropic terms of the
model, {K,Γ,Γ′}. Although not leading to significant
new insights, rewriting the critical fields in the crystallo-
graphic language yields more compact expressions

h(a)
c = J1 + 3J3 +

1

4
J1(1−∆)− 1

2
J±± +

1

4
Ra, (10)

Ra =

√(
J1(1−∆) + 2J±±

)2
+ 12Jz±

2,

h(b)
c = J1 + 3J3 +

1

4
J1(1−∆)− J±± +

1

4
Rb, (11)

Rb =

√(
J1(1−∆) + 4J±±

)2
+ 16Jz±

2,

suggesting that some subtle near-cancellation of the
anisotropic terms is needed to yield ∆Hc≈0.

Aside from the quantum fluctuations suppressing H
(a)
c

and H
(b)
c from their quasiclassical values, the interplane

3D couplings in α-RuCl3 should also alter them, as dis-
cussed in Ref. [86]. However, since these 3D couplings
are mostly isotropic [86], they are not expected to mod-
ify the functional expression for the field difference ∆Hc,
thus, effectively, redefining only the combination of the

-10 -5
K (meV)

3

4

5

Γ
 (

m
eV

)

α
α Γ+2Γ′ =7.5 meV

α=30o

ΔHc =0 T

α=37o

ΔHc =1.5 T

Γ+2Γ′ =10 meV

A

0

B

FIG. 6. The projection of the {K,Γ,Γ′} parameter space on
the K–Γ plane. The colored region is the subspace bounded
by the phenomenological constraints for α-RuCl3. Boundaries
due to tilt angle α (4), critical fields difference ∆Hc (8) and
(8), and Γ + 2Γ′ from the ESR gap (7), and representative
parameter sets, Points 0, A, and B, are indicated.

isotropic exchanges of the 2D model (1), J + 3J3 in
Eqs. (8) and (9) or J1+3J3 in Eqs. (10) and (11), and can
be absorbed into them. These couplings may also play
an additional role in stabilizing the zigzag phase [86].

In α-RuCl3, the in-plane critical fieldH
(a)
c for the tran-

sition from the zigzag to the paramagnetic state found

experimentally is ≈ 7T and H
(b)
c ≈ 7.8T [26, 65, 67], see

Fig. 5. There is an additional transition forH ∥a at ≈6T,
which has been identified with an interplane ordering of
the zigzag planes [47, 67, 86] that is unrelated to the 2D
physics of α-RuCl3 discussed in this work. In the fol-
lowing analysis, the physical range of 0≤∆Hc≤ 1.5T is
assumed to allow for modest quantum effects.

B. Parameter space

We now turn to restricting the three anisotropic terms
of the generalized KH model (2) by applying phenomeno-
logical constraints proposed in Sec. II A. Our Figures 6
and 7 show the 2D projections of the 3D {K,Γ,Γ′} pa-
rameter space on the K–Γ and Γ–Γ′ planes, respectively,
with the colored region corresponding to the physical
subspace of α-RuCl3 that is bounded by the constraints.
In the figures, we also indicate the ranges of the physical
observables responsible for the specific boundaries of this
subspace, with the out-of-plane tilt angle α from Eq. (4)
and the field difference ∆Hc from Eqs. (8) and (9). For
the ESR gap ∆Eg in Eq. (7), we apply the constraint
directly to the Γ + 2Γ′ combination.
The constraints can be seen as sufficiently, if not nearly

“orthogonal,” in the sense of being nonredundant and
resulting in a closed compact physical region in the 3D
parameter space. While all three constraints are essential
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FIG. 7. Same as Fig. 6 with the projection on the Γ–Γ′ plane.

for the physical bounds on all three parameters of the
model, the rough account of their roles, summarized in
Sec. I C 1, can be recounted here. The main role of the
∆Hc constraint can be seen in strongly tying Γ′ to Γ, with
the resultant overall parameter range 0.45≲Γ′/Γ≲0.66,
followed by the ESR gap strongly limiting the physical
values of Γ to the 3.2 meV≲ Γ ≲ 5.0 meV range. The
tilt angle can be seen as responsible for binding K to the
range of 4.5 meV≲ |K|≲10 meV. Obviously, these limits
do not do the full justice to the picture as the constrained
space is not orthorhombic, so fixing one of the parameters
would narrow the allowed ranges for the others.

1. Representative parameters

In Figs. 6 and 7, one can see three points within the col-
ored region. These are projections of the representative
{K,Γ,Γ′} sets from the advocated physical parameter
subspace, chosen to span it along its longer axis.

These sets will be referred to as Point 0, roughly at
the center of the physical subspace, and Point A and
Point B, located toward the opposite ends of it, respec-
tively. Their {K,Γ,Γ′} coordinates and the values of the
observables, α, Γtot, and ∆Hc, to which these parameter
sets correspond, are given by

{K, Γ, Γ′ } α Γtot ∆Hc

Point 0: {-7.567, 4.276, 2.362} 35◦ 9.0 0.8 T
Point A: {-5.427, 3.647, 2.176} 32◦ 8.0 0.5 T
Point B: {-8.733, 4.714, 2.393} 36◦ 9.5 1.3 T

All parameters are in meV unless indicated otherwise.
The phase diagrams for Points 0 and A in the remain-

ing J–J3 parameter space of the model (1), such as the
ones shown in Sec. I C 1 for Point B, will be explored in
detail In Sec. III, with their similarities and differences
highlighted. The stability of the quasiclassical values of
the observables to quantum effects for the Point 0 is ver-
ified by DMRG in Sec. IVB.
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FIG. 8. Same as Figs. 6 and 7 for the crystallographic
parametrization of the model (3): the J1(1 − ∆)–Jz± plane
(left axis) and the J±±–Jz± plane (right axis) are shown.

2. Alternative space

Our Figure 8 presents projections of the physical pa-
rameter space of α-RuCl3 in the alternative crystallo-
graphic parametrization of the XXZ–J±±–Jz± model
(3). The corresponding anisotropic parameter space is
also three-dimensional, with the {J1(1 − ∆), J±±, Jz±}
coordinates. Fig. 8 shows projections of this 3D space on
the J1(1−∆)–Jz± and J±±–Jz± planes.
Given the discussion in Sec. II A, some of the phe-

nomenological constraints proposed in this work have
much more direct and instructive relation to the parame-
ters of the model in the crystallographic reference frame.
For the ESR gap, Eq. (7), the XXZ anisotropy parame-
ter, J1(1−∆), is constrained directly, hence the horizon-
tal boundaries of the respective region in Fig. 8. Since
the tilt angle, Eq. (5), is induced by the coupling of the
in-plane to the out-of-plane spin components from the
Jz± term, its physical range is largely dictated by the
constraints on the angle. In turn, while somewhat more
complicated, the critical field difference ∆Hc is responsi-
ble for the bounds on J±±.
An important insight provided by the crystallographic

form of the model is the clear hierarchy in the magni-
tude of the physical parameters in this alternative space,
which is seen in the representative Points 0, A, and B,

{J1(1−∆), J±±, Jz± } α Γtot ∆Hc

Point 0: {-9.0, 0.623, -4.469} 35◦ 9.0 0.8 T
Point A: {-8.0, 0.414, -3.252} 32◦ 8.0 0.5 T
Point B: {-9.5, 0.682, -5.211} 36◦ 9.5 1.3 T

Specifically, the largest is the (negative) J1(1 − ∆), fol-
lowed by Jz±, see Fig. 8. On the other hand, the physical
range of J±± is nearly an order of magnitude smaller than
that of the leading terms. While its small positive values
will be important for the details of the incommensurate
phases in the phase diagrams discussed in Sec. III, one
expects a secondary role of this term to that of Jz± [113].
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A less obvious, but arguably more dramatic element
of this hierarchy is the strongly easy-plane character of
the model (3) in the physical space of α-RuCl3. Since
J1(1−∆) is the largest parameter, it already implies that
the XXZ term cannot be close to the Heisenberg limit
(∆=1) for any physically reasonable values of J1.
In order to determine a plausible range of ∆, one can

rely on the broad expectations for the isotropic term J
in the KH representation to be negative and not to ex-
ceed |K| [46, 70, 83]. Using relations between the crys-
tallographic and KH frames in Appendix A and taking
|K| ≈ Γtot for the α-RuCl3 range of parameters from
Sec. II B, one can find that ∆ should vary from about
−0.5 at J = 0 to 1 for J → −∞, crossing zero at
J ≈ −Γtot/3. These trends are verified for the Points
0, A, and B in Fig. 9. One can see that for the val-
ues of J relevant to α-RuCl3 (shaded region), the XXZ
anisotropy parameter ∆ varies between -0.1 and 0.3.

Having J±± and ∆ near zero suggests a simpler and
more intuitive description of α-RuCl3 by the easy-plane
JXY
1 –J3 FM-AFM model with strong bond-dependent
Jz± term, the perspective further explored below.

3. Comparison with Ref. [90]

Here we discuss in more detail recent results of
Ref. [90], which has obtained nearest-neighbor exchanges
for the α-RuCl3 model from a completely different view-
point from the phenomenological approach of our work.
Their systematic perturbative derivation of the KH ex-
changes using microscopic treatment of the orbital model
in the spirit of the original work by Jackeli and Khal-
iullin [24] has included the most relevant orbitals and
their hoppings together with the octahedral distortion
of the ligand environment. Their results are reproduced
in our Fig. 10(a). The horizontal axis is the dimension-
less parametrization of the octahedral distortion and the
shaded region marks the range relevant to α-RuCl3.

One can see a close accord of the hierarchy of the
{K,Γ,Γ′} terms in the shaded region of Fig. 10(a) with
our suggested ranges in Sec. II B 1: the leadingK-term, Γ
close next, and, specifically, positive and sizable Γ′ term,
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FIG. 10. (a) J,K,Γ, and Γ′ from Ref. [90], δ is the octahedral
distortion, shaded region is relevant to α-RuCl3. (b) and
inset: same data in the crystallographic parametrization (3).

originally proposed in Ref. [46]. Here and in Fig. 10(b),
t2eff/U is the overall energy scale of the model parameters
in this perturbative approach, see Ref. [90].
However, the most remarkable results are shown in

Fig. 10(b). It is the same data from Ref. [90], but in the
crystallographic parametrization of the XXZ–J±±–Jz±
model (3). One can see all the aspects of the physical pa-
rameter space of α-RuCl3 that are discussed in Sec. II B 2
above: leading J1(1−∆) that is followed by Jz±, a sub-
leading J±± for all distortion values, with its ratio of
J±±/|Jz±| ≈ 0.1 matching nicely the physical space in
Fig. 8, and, most importantly, the value of ∆ varying
from -0.1 to 0.2 in the relevant region of Fig. 10(b).
Needless to say, such a close agreement on the quali-

tative and quantitative trends of the two very different
approaches to the same problem is rather remarkable.
It also provides a sign of the promising convergence on
the physical parameter space of α-RuCl3 for the effective
KJΓΓ′–J3 model.

4. Compilation of prior results

Our Table I presents a comprehensive compilation of
the previously proposed {K,Γ,Γ′} parameter sets of the
generalized KH model (1) for α-RuCl3, which are based
on density-functional theory (DFT) [69–73] and vari-
ous phenomenological, analytical, and numerical analy-
ses [74–90]. Entries with the positive K values, which
contradict broad phenomenologies [26, 81], are omitted.
The reference is in the first and the abbreviated details
of the approach are in the second column; all parameters
are in meV unless indicated otherwise. For the few cases
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Reference Method K (< 0) Γ (> 0) Γ′ α (◦) Γ+2Γ′ ∆Hc (T)

Kim et al. [69]
DFT+t/U , P3 -6.55 5.25 -0.95 36.6 3.35 9.64

DFT+SOC+t/U -8.21 4.16 -0.93 40.9 2.3 7.03

same+fixed lattice -3.55 7.08 -0.54 28.4 6.01 14.4

Winter et al. [70] DFT+ED, C2 -6.67 6.6 -0.87 34.4 4.87 12.2

DFT+t/U , U=2.5eV -14.4 6.43 41.1 6.43 7.96

Hou et al. [71] same, U=3.0eV -12.2 4.83 42.2 4.83 5.74

same, U=3.5eV -10.7 3.8 43.2 3.8 4.36

Wang et al. [72]
DFT+t/U , P3 -10.9 6.1 38.9 6.1 8.15

same, C2 -5.5 7.6 30.2 7.6 13.3

Eichstaedt et al. [73] DFT+Wannier+t/U -14.3 9.8 -2.23 38.3 5.33 18.1

Ran et al. [74] LSWT, INS fit -6.8 9.5 30.1 9.5 16.6

Winter et al. [75] Ab initio+INS fit -5.0 2.5 40.0 2.5 3.22

Suzuki et al. [76] ED, Cp fit -24.4 5.25 -0.95 47.3 3.35 6.76

Cookmeyer et al. [77] thermal Hall fit -5.0 2.5 40.0 2.5 3.22

Wu et al. [78] LSWT, THz fit -2.8 2.4 34.6 2.4 3.68

Ozel et al. [79] same -3.5 2.35 37.0 2.35 3.34

Sahasrabudhe et al. [80] ED, Raman fit -10.0 3.75 42.7 3.75 4.38

Sears et al. [81] Magnetization fit
-10.0 10.6 -0.9 33.4 8.8 19.0

-10.0 8.8 34.3 8.8 13.6

Laurell et al. [82] ED, Cp fit -15.1 10.1 -0.12 37.2 9.86 14.6

Suzuki et al. [83] RIXS -5.0 2.5 +0.1 39.8 2.7 3.03

Kaib et al. [84] GGA+U -10.1 9.35 -0.73 34.5 7.89 16.0

Andrade et al. [85] χ -6.6 6.6 33.1 6.6 10.6

Janssen et al. [86] LSWT+3D -10.0 5.0 40.0 5.0 6.43

Li et al. [87] Cm, χ -25.0 7.5 -0.5 44.8 6.5 9.03

Ran et al. [88] polarized INS -7.2 5.6 35.6 5.6 8.33

Samarakoon et al. [89] Machine learning, INS -5.3 0.15 36.4 0.15 0.11

Liu et al. [90] downfolding -5.0 2.8 +0.7 37.3 4.2 2.37

This work

realistic range [-10.0,-4.4] [3.2,5.0] [1.8,2.85] [30.0,37.0] [7.5,10.0] [0.0,1.5]

point 0 -7.57 4.28 2.36 35.0 9.0 0.8

point A -5.43 3.65 2.18 32.0 8.0 0.5

point B -8.73 4.71 2.39 36.0 9.5 1.3

TABLE I. The proposed sets of {K,Γ,Γ′} parameters for α-RuCl3 and values of the angle α, Γ+2Γ′, and ∆Hc that follow from
them according to Eqs. (4), (7), and (8) and (9), respectively. For all the results, only the nearest-neighbor anisotropic exchanges
from the proposed parameter sets were used. The acronyms are linear spin-wave theory (LSWT), spin-orbit coupling (SOC),
inelastic neutron scattering (INS), resonant inelastic x-ray scattering (RIXS); “P3” and “C2” refer to the lattice symmetry.
Representative sets of Points 0, A, and B, and proposed ranges are from Sec. II B 1, see the text.

of the lower symmetry of the model, the bond-averaged
values of the exchange parameters were used.

The last three columns of the Table I list the values
of the key physical observables, tilt angle α, the Γ + 2Γ′

combination for the ESR gap ∆Eg, and critical field dif-
ference ∆Hc, which follow from the proposed {K,Γ,Γ′}
sets according to Eqs. (4), (7), and (8) and (9), respec-
tively. These values are highlighted in bold in cases where
they fall within, or come close to the suggested realistic
ranges. The latter are listed at the bottom of the table
together with the physical bounds for {K,Γ,Γ′} from
Figs. 6 and 7 and representative sets of Point 0, A, and

B discussed above, see Sec. II A and Sec. II B.
We note here again that the KJΓΓ′–J3 model consid-

ered in this work is an effective one, with the nearest-
neighbor exchange matrix encapsulating all anisotropic
terms, while some of the microscopic studies listed in
Table I also allow such terms in the more extended ex-
changes [70–75]. This may account for the lack of the sig-
nificant nearest-neighbor Γ′ term in such models and lead
to a better agreement with the proposed phenomenolog-
ical constraints if the additional exchanges are included.
To provide a graphical presentation of the variation of

the entries in the data compilation of Table I (28 entries,
excluding our own), we use the histograms in Figures 11,
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FIG. 11. Histograms of the observables from Table I, exclud-
ing present work. Shaded regions are physical limits (see text)
and vertical dashed are for the data from Ref. [89].

12, and 13 to show the wide distribution of the prior
attempts at the model parameters, highlight the physi-
cal limits on the observables proposed in our work, and
emphasize the resultant effect of the constraints on the
possible ranges of the model parameters. The physical
limits discussed above are shown by shaded regions and
vertical dashed lines correspond to a representative set of
this compilation from the second to last entry, Ref. [89],
elaborated on below in more detail.

As one can see in both Table I and Fig. 11(a), about
half of the entries correspond to the tilt angle range
close to the physical one. However, for the ESR gap
in Fig. 11(b) and in the second to last column of Table I,
only about 20% of them hit within the physical bounds.
For the last column and Fig. 11(c), only one parame-
ter set matches the range of the empirical critical field
difference, and, arguably, for a wrong reason.

This set is from Ref. [89] that extracted effective model
parameters of α-RuCl3 from the INS data using machine
learning. It has neglected Γ′ and their resultant param-
eter set has near-zero Γ. Because of that, this set fails
the ESR gap criterion, which requires a large Γ + 2Γ′

combination, while satisfying the remaining two of the
phenomenological constraints put forward in our work.
Its ability to match ∆Hc range is because the pure K–J
model always yields ∆Hc≡0, see Eqs. (8) and (9).
One can argue that a redo of the same analysis with

no artificial restrictions in the model and with additional
experimental input, which can improve the lack of or-
thogonality in their phenomenological constraints, may
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FIG. 12. Same as in Fig. 11 for {K,Γ,Γ′} from Table I.

open the full potential of this approach and lead to a
convergence of our parameter sets.

The rest of the entries in Table I that match the phys-
ical ranges of both tilt angle and ESR gap, fail at the
remaining criterion, all yielding ∆Hc in excess of 13 T.

Lastly, the orbital model expansion study of Ref. [90],
highlighted in Sec. II B 3 as showing great similarity to
our results, suggested a representative set (the last entry
in Table I) that has likely suffered from the choices of
the smaller overall t2/U scale for their parameters and a
somewhat conservative value of the octahedral distortion
δ, leading to a positive, but insufficiently large Γ′. A
reasonable adjustment in both should produce a set not
far from the ones proposed in this work.

Following our discussions in Sec. II B, the proposed
constraints on the physical observables lead to impor-
tant bounds on the model parameters. In Fig. 12, we
highlight these bounds with the backdrop of the distri-
butions of K, Γ, and Γ′ from Table I. Needless to say, the
phenomenological constraints lead to a significantly nar-
rower physical parameter space, also visualized in Figs. 6
and 7. Our Fig. 12 reinforces the statements that are
already made above. For an adequate description of the
α-RuCl3 phenomenology within the effective model, a
positive Γ′-term is unavoidable, a significant Γ-term is
necessary, and fairly tight limits on all three anisotropic
exchanges can be established.

In Fig. 13, the same parameter sets from Table I are
recast into the alternative crystallographic parametriza-
tion, with the actual values of the {J1(1−∆), J±±, Jz±}
parameters of the model (3) given in Table II in Ap-
pendix A. Although not listed in Table I, the values of
the J-term of the KH model (2) were used to obtain the
histogram of the XXZ anisotropy ∆, see inset.

Aside from demonstrating the effect of phenomeno-
logical constraints that lead to a significantly narrower
physical parameter space in these alternative axes, the
crystallographic language underscores important com-
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FIG. 13. Same as in Fig. 12 for the {J1(1−∆), J±±, Jz±} pa-
rameters of the model (1) in the crystallographic parametriza-
tion (3), see also Table II in Appendix A.

mon trends in most of the prior attempts at the α-RuCl3
parameters. Whether they match the proposed physical
parameter space or not, the majority of them respects
the hierarchy of terms proposed in this work: the two
leading ones, J1(1−∆) and Jz±, and a subleading J±±.
Especially notable is another trend. As is laid plain in

Fig. 13, all prior works with no exception suggest an easy-
plane character of the ferromagnetic nearest-neighbor ex-
change in their α-RuCl3 modeling, showing |∆|< 1. In
retrospect, the strongly easy-plane character of the model
(3) is one of the most direct arguments that the param-
eter space of α-RuCl3 is far away from the Kitaev limit.
In a sense, the crystallographic representation of the

model offers a lens that allows one to see the common-
ality of all earlier assessments of α-RuCl3 phenomenolo-
gies, suggesting a broader agreement between them as all
pointing in a similar direction.

C. Summary on physical parameters

In this Section, we have demonstrated that the avail-
able phenomenologies should allow one to overcome the
uncertainty in the model parameters for α-RuCl3 using
observables that are induced by the anisotropic terms, see
Sec. II A. The outline of the advocated parameter space
and selected representative choices of the anisotropic ex-
changes, which will be used in the next Section, have
been proposed, see Sec. II B 1. A systematic analysis of
the prior attempts at the α-RuCl3 parameters in the con-
text of the proposed phenomenologies has been provided,
see Secs. II B 3 and IIB 4.

Important physical insights and intuition associated
with the alternative crystallographic reference frame
parametrization have been highlighted in Secs. II B 2 and
IIB 4. They will be expanded upon below within the dis-

cussion of the phase diagrams relevant to α-RuCl3 pa-
rameter space, also offering a connection to the broader
class of paradigmatic models in frustrated magnetism,
thus providing a wider context to the studies of α-RuCl3.

III. PHASE DIAGRAMS

The purpose of the next two Sections is twofold. The
first is to explore the remaining parameter space of the
model (1) for the representative anisotropic parameter
sets suggested above in order to pinpoint the ultimate
parameter region for α-RuCl3 and to identify proximate
phases that can be relevant to its properties. The second
is to provide a better understanding of such phases and
to characterize them with the help of numerical methods.
We also use the opportunity to highlight the close agree-
ment of various approaches to the derivation of these
phase diagrams and to demonstrate that our anisotropic
strategy outlined in Sec. I C 1 allows one to reign in on
the otherwise prohibitively costly numerical exploration
of the α-RuCl3 model parameter space.

A. J–J3 phase diagrams of the KH model (1)

With the logic for fixing anisotropic exchanges artic-
ulated in Sec. I C 1 and executed in Sec. II above, the
remaining two parameters of the effective model (1) of
α-RuCl3 in the generalized KH representation are the
isotropic J and J3 exchanges. As highlighted in Sec. I C 1
for the representative set of {K,Γ,Γ′} for Point B from
Sec. II B 1 and Table I, the relevant region of the param-
eter space resides in the J <0 and J3>0 quadrant of the
2D J–J3 phase diagram of the model, conforming to the
general expectations [46, 70, 75, 82].

1. Phase diagrams by LT and ED methods

Here, we provide a detailed analysis of such phase
diagrams and elaborate on the technical details of the
approaches that are used for their derivation. Setting
{K,Γ,Γ′} to Point 0, we show the phase diagram in the
J–J3 plane in Figure 14, and for Point A in Figure 15.
Both of these phase diagrams have regions consistent
with the phenomenology of α-RuCl3.
In Fig. 14(a) and Fig. 15(a), the J–J3 phase dia-

grams are obtained by the quasiclassical Luttinger-Tisza
(LT) approach, which allows us to find spin arrange-
ments of the classical spins that minimize their energy.
The modern version of the original LT approach [106–
109] involves diagonalization of the exchange matrix of
the classical model in the momentum space, and the
lowest eigenenergy, corresponding ordering vector, and
associated types of spin arrangement are identified by
a scan through reciprocal space and a Fourier trans-
form back into the real space. It has been widely



15

8 7 6 5 4 3 2 1 0
0

1

2

3

4

5

−4 −10 −3 −2−5

4

3

2

1

J (meV)

J 3
(m

eV
)

5

0−8 −7 −6

0.3 0.2 0.1 0 −0.1 −0.3 −0.5

FM

ZZ

NCO2

Δ

H (a)c =7 T

H (a)c =14 T

NCO1

α-RuCl3

Γ
M

K
K /2

yz

x y

z

x

z-
A
FM

8 7 6 5 4 3 2 1 0
0

1

2

3

4

5

−4 −10 −3 −2−5

4

3

2

1

J (meV)

J 3
(m

eV
)

5

0−8 −7 −6

0.3 0.2 0.1 0 −0.1 −0.3 −0.5

FM

ZZ

IC2

Δ

H (a)c =7 T

H (a)c =14 T

Г

M

}

KГ M

}

IC1
α-RuCl3

Γ
M
K Γ K M

z-
A
FM

(a) (b)

FIG. 14. The J–J3 phase diagram of the model (1) for the Point 0 parameter set, see Sec. II B 1 and Table I, in the J <0 and
J3>0 quadrant: (a) by the LT and (b) by ED. The ZZ, FM, AFM, IC, and NCO phases are designated and sketched using the
xy plane for the lattice and the yz plane for the spin orientation. The upper horizontal axis is the XXZ parameter ∆ in the
crystallographic axes (3). Slanted dashed lines mark the boundaries of the parameter region for α-RuCl3 from the constraints

on H
(a)
c from Eq. (8), the star symbol in (b) is a representative point from that region, see Sec. III A 2. Vertical solid and

dashed arrows in (b) show the extent of the DMRG scans discussed in Sec. IVA. Squares and diamonds are representative
points in the IC phases for (a) LT and (b) DMRG non-scans, see Sec. IVA. Insets: (a) color-coded bars for the ordering vector
in the IC phases and the first BZ with the high-symmetry points, (b) allowed momenta of the ED cluster in the first BZ.

used in the studies of the anisotropic-exchange mod-
els [61, 110, 112, 113, 124, 125], in which classical ground-
state spin configurations are often not obvious. The im-
plementation of the LT method is computationally cheap
and straightforward (see Appendix B), with the area
shown in Fig. 14(a) and Fig. 15(a) containing a grid of
several hundreds points in both the J and J3 directions.
In Figs. 14(b) and 15(b) we show similar phase dia-

grams obtained from ED. The reduction of the param-
eter space is essential in making this feasible. To re-
duce the effort of mapping out the phase diagrams, sets
of 1D sweeps along various lines through the plane are
performed [43, 65, 118, 125, 126]. At individual points
along a line, an ED using a 24-site cluster with all space-
group symmetries of the lattice is performed. The second
derivative of the ground-state energy with the sweep pa-
rameter, ∂2E0/∂J

2
(3), is used to find phase boundaries,

and the static spin structure factor, S(q), is analyzed to
identify ordered states, see App. C for details.

The FM, AFM, and ZZ phases were identified by the
dominant peak of S(q) at the corresponding ordering vec-
tor, with the insets in Figs. 14(b) and 15(b) showing the
allowed momenta of the 24-site cluster in the first Bril-
louin zone. In the cases with no definite dominance of a
specific q-point in S(q), the states received the “non-
commensurate” (NCO) designation. Peaks in the en-
ergy derivatives ∂2E0/∂J

2
(3) are associated with the phase

boundaries and their relative sharpness can be suggestive
of the order of the phase transition [125, 126].

The vertical dashed and solid lines in Figs. 14(b) and
15(b) show the direction and extent of the 1D DMRG
“scans,” which will be discussed in Sec. IV together with
the analysis of the IC phases at the representative points,
marked by the squares and diamonds.

The resultant side-by-side comparison of the LT and
ED phase diagrams in Fig. 14 and Fig. 15 is revealing.
Very different methods, having very different limitations,
one is classical and the other constrained by the finite-size
effects, both point to a very similar structure of the phase
diagram with a rather remarkably close quantitative cor-
respondence of their boundaries and arrangements.
In broad strokes, large sectors of the phase diagrams

are occupied by the ZZ and FM phases, both discussed
as prominently present in the relevant phase space of α-
RuCl3 by prior analyses [65, 70, 75, 83].
The z-AFM phase at low values of |J | has Néel or-

der with spins pointing along the z axis, not unlike the
Ising-z phase discussed recently for the J1–J3 FM-AFM
model [43, 116, 117], where it is stabilized by strong quan-
tum fluctuations due to frustrating in-plane interactions.
However, here its origin is simpler, as the out-of-plane
order is also promoted by ∆<0, as can be seen from the
upper horizontal axis in Figs. 14 and 15. This means that
the out-of-plane nearest-neighbor exchange in the crys-
tallographic parametrization (3) is antiferromagnetic, co-
operating with the J3 term. As we discuss below, this re-
gion is likely irrelevant to α-RuCl3 for different reasons.
According to the LT phase diagrams in Figs. 14(a)

and 15(a), the FM and ZZ phases are separated by the
sequence of two incommensurate phases, IC2 and IC1.
While the IC phases are regularly found in the extended
KH model [46, 57, 58, 91], they are rarely analyzed. In
our case, the ordering in the IC2 and IC1 phases corre-
spond to two variants of the deformed counter-rotating
spin-helices, discussed in detail in Sec. IV, with the Q-
vectors and corresponding periodicities varying according
to the color maps shown in the insets.
For the IC2 phase, the Q-vector is along the ΓK di-
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FIG. 15. The J–J3 phase diagrams, same as in Fig. 14, for the Point A set, see Sec. II B 1 and Table I.

rection and it evolves from a value that is imperceptibly
close to the Γ point, suggesting a smooth evolution from
the FM state, followed by a jump to the ΓM direction
when crossing to the IC1 phase, but with nearly the same
value of |Q|. In fact, according to LT, the two phases at
that transition correspond to very shallow energy minima
and are close to the other IC states with the intermediate
Q directions. The transition from the IC1 to ZZ is by a
finite jump in Q to the ordering vector of the ZZ phase at
the M-point and is significantly first order. Although the
finite-size effects in ED do not allow it to contribute de-
cisively to the discussion of the nature of the IC phases,
the widths of the peaks in the second derivative of ED en-
ergy at the FM-NCO1 and NCO1-ZZ boundaries are not
inconsistent with the former being second and the latter
being first order. Further verifications of these traits are
provided by DMRG in Sec. IV.

As has been noted in the past, the LT method may fail
to satisfy its own selfconsistency constraints for some of
the phases, specifically the spin length, see Appendix B,
formally finding groundstates that are deemed unphys-
ical. Such “failures” have been interpreted as the sign
of the more complicated multi-Q phases [113, 124], can-
didate spin-liquid regions [110], and other states [127].
In our case, LT constraints are satisfied for all phases
with the commensurate ordering vectors, the FM, ZZ,
and AFM in Figs. 14, 15, and 2, and for the stripe phase
in Figs. 4 and 16. But the IC phases obtained by the
LT approach do violate the spin-length constraint and
formally fall under the “unphysical” category.

However, the ability of the LT method to consistently
produce states that are lower in energy than the com-
peting classical ones at the cost of not preserving spin
length can be seen as a blessing in disguise instead of be-
ing unphysical. This is because it may allow it to mimic
quantum effects of the fluctuating states that are not
conserving the length of the ordered moments either; a
similar sentiment has also been expressed in Ref. [128].

This conjecture will receive rather spectacular support
from the analysis of the character of the IC counter-

rotating helical phases, with their periods, mutual ori-
entations of the Q-vectors with the planes of spin rota-
tions, and even phase shifts of the spirals, all being in
close quantitative accord between the LT predictions and
that of the DMRG results discussed below in Sec. IV,
yielding additional remarkable agreements and insights.

2. Where is α-RuCl3?

Last, but not least, is the study of additional con-
straints on the α-RuCl3 parameters in the J–J3 plane.
At the quasiclassical level, the out-of-plane tilt angles

(4) that closely match magnetic order in α-RuCl3 should
be the same throughout the ZZ regions of Figs. 14(a)
and 15(a), fixed by the choices of anisotropic parameters
of Point 0 and Point A, respectively. Other phases that
are present in the phase diagrams can only constrain the
values of |J | and J3 from below.
However, as we argue here, one can devise a much

stronger constraint on a combination of the two remain-
ing isotropic parameters using phenomenologies that
have already been introduced. Although the difference
of the critical fields for the transition to the paramag-
netic phase ∆Hc has been utilized as a constraint for
anisotropic exchanges, the values of the critical fields
themselves have not been exploited yet. As one can see

in Eqs. (8) and (9), both H
(a)
c and H

(b)
c fields depend on

the same linear combination of J +3J3, making it a nat-
ural variable [46] for another strong empirical constraint
that binds J and J3 terms via the experimental value of
one of the critical fields.
Each of the panels in Figs. 14 and 15 shows a straight

dashed line with a constant slope of J3 = −J/3. They
correspond to the solutions of Eq. (8) with the experi-

mental value of H
(a)
c = 7 T [26, 65, 67]. Another line

with the same slope is for the value of H
(a)
c that is twice

as high. The second line is introduced because the critical
fields are expected to be suppressed by quantum fluctu-
ations, with the theoretical calculations of that effect for
the KH models suggesting it potentially reaching a factor
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of two [65, 122]. One can see that the lines in Figs. 14 and
15 carve a narrow strip of the J–J3 space, altogether sug-
gesting very effective additional bounds on the physical
parameters of α-RuCl3.
One may wonder why this strip is so narrow despite the

doubling of the “bare,” unrenormalized critical field from
7 T to 14 T. This is because a relatively small change of
J3 by 0.4 meV in the J+3J3 combination readily modifies
Hc in Eq. (8) by about 7 T.
In the phase diagrams in Figs. 14 and 15, the accept-

able range of |J | is also restricted from below by the com-
peting phases. It is also rather unlikely for |J | to exceed
the value of |K|, restricting it from above [46, 70].
Altogether, the “complete” sets of the prospective α-

RuCl3 parameters for the model (1) should be chosen
from the narrow ranges that are marked by the elongated
ellipses in the J–J3 planes in Fig. 14, Fig. 15, and Figs. 2
and 3, for the Point 0, A, and B anisotropic parameter
sets, respectively.

One of such choices is marked by the star symbol in
Fig. 14(b). It corresponds to the following complete set
of the model (1) parameters, all in meV,

{ K, Γ, Γ′, J, J3 }
Point⋆ : {−7.567, 4.276, 2.362, −4.75, 3.4} , (12)

which is, of course, a combination of the anisotropic pa-
rameter set of Point 0, see Sec. II B 1, and the choice of
the {J, J3} pair from the middle of the allowed region.

By fixing the isotropic exchanges, the parameter set
for α-RuCl3 is complete. It is not a unique choice, as
both J and J3 can be adjusted according to the allowed
range, and so can be anisotropic parameters, in a co-
ordinated fashion, see Sec. II B. Nevertheless, these ad-
justments may not be significant and are not expected
to lead to drastically different physical outcomes, as the
comparison between phase diagrams for the Point 0, A,
and B sets in Figs. 14, 15, 2, and 3 indicates.

Moreover, the complete Point⋆ parameter set (12)
can be used to test predictions and assumptions of the
present study, as well as the other phenomenologies.
Specifically, using Eqs. (8) and (9), this parameter set

yields the “bare” critical fields H
(a)
c =11.7 T and H

(b)
c =

12.5 T, maintaining their difference at the physical 0.8 T.
One of the key hypotheses of our anisotropic strategy is
that this difference does not change drastically, while the
fields themselves get suppressed considerably by quan-
tum effects, see Sec. IIA. We will provide a full vindica-
tion of both expectations using DMRG in Sec. IVB.

Another test is the verification by DMRG of the same
out-of-plane tilt angle of spins throughout the ZZ phase
for a given choice of {K,Γ,Γ′} in Figs. 14 and 15, which is
also expected to stay within the physically allowed range
for α-RuCl3 in the quantum limit. These selfconsistency
checks of our anisotropic strategy for the quantum model
will also be presented in Sec. IVB.

Since we return to the discussion of the model (1) in
the crystallographic parametrization (3) in the next Sec-
tion, it is useful to reflect on one more common thread

that is exposed in the phase diagrams in Figs. 14 and 15.
Using the upper horizontal axis for the XXZ anisotropy
parameter ∆, one can see that the relevant region for
the α-RuCl3 parameters resides solidly in the range of
−0.1 < ∆ < 0.3, in agreement with the discussions in
Secs. II B 2, II B 3, and IIB 4.
It is also useful to rewrite the representative Point⋆

parameter set (12) in these axes (in meV except for ∆)

{ J1, J±±, Jz±, ∆, J3 }
Point⋆ : {−10.272, 0.623, −4.469, 0.124, 3.4} , (13)

to emphasize this feature. Here, the J±± term is sec-
ondary as before, with J1 and Jz± dominating.

Lastly, we remark on the implications of the easy-
plane, ∆≈ 0 XXZ character of the α-RuCl3 parameter
space. As one can easily obtain from the relations be-
tween different parametrizations in App. A, the pure K–
J model, together with its Kitaev-only points, must re-
side in the plane of ∆=1, which places α-RuCl3 far away
from that plane from the outset. This simple understand-
ing, together with a straightforward phenomenology that
allows one to detect significant XXZ anisotropy in the
material suspects, see Sec. II A 2, may serve as important
guidance for the studies of the other Kitaev candidates.

B. JXY
1 –Jz±–J3 phase diagram

As repeatedly argued above, the crystallographic-axes
parametrization (3) not only helps with a better descrip-
tion of α-RuCl3, it can also offer a transparent and in-
tuitive perspective to the studies of anisotropic-exchange
systems in general. It allows one to take a broader con-
ceptual view on the studies of the generalized KH and
other anisotropic-exchange models, placing them in a
more tangible context within studies in frustrated mag-
netism.

For α-RuCl3, we have made it clear that its model
description favors the dominant XY -like (∆ ≈ 0) ferro-
magnetic J1 combined with a sizable anisotropic bond-
dependent Jz±, complemented by the isotropic antifer-
romagnetic J3, see Secs. I C 2, II B 2, II B 3, II B 4, and
IIIA 2. The residual XXZ anisotropy ∆ and J±± can
be treated as secondary in their physical outcomes and
studied as quantitative additions to the main model.

Here, we analyze the phase diagram of this simplified
and physically justified JXY

1 –Jz±–J3 model. Because of
the three-dimensional parameter space, and given the
redundancy of the sign of the Jz± term [113], one can
explore the entirety of its parameter space with the
help of the polar parametrization, shown in the inset of
Fig. 16(a), with the {J1, J3} pair parameterizing polar
variable and Jz± the radial one in units of J21+J2z±+J2

3 =1.

1. LT polar phase diagram and other details

Our Figure 16(a) presents the phase diagram obtained
by the LT method as in Figs. 14(a) and 15(a) above. In
addition to the ZZ, FM, and IC phases, this phase dia-
gram features AFM and stripe phases. The former occurs
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FIG. 16. Polar phase diagrams of the model (3) for ∆=0. In (a) and (b) J±±=0, in (c) J±±=0.05, in units of J21 +J2z±+J2
3 =1.

(a) and (c) are obtained by LT and (b) by ED methods, respectively. J1 and J3 encode polar and Jz± radial coordinates, see
inset in (a). Other details include sketches of the phases, color-bars for the Q-vectors in the IC phases, projections of the data
sets from the prior works, representative Point ⋆, and DMRG scan path from Fig. 14(b), see the text.

for the antiferromagnetic sign of J1 and the latter mirrors
the ZZ phase. The incommensurate phase sandwiched
between them, in turn, mirrors the IC1 phase separating
FM and ZZ, already familiar from the Cartesian phase
diagrams in Sec. IIIA.

The incommensurate phase in the center of the circle
has a Q-vector that is continuously evolving along the
ΓK line, normal to the bond of the honeycomb lattice,
and then along the KM BZ boundary, as is shown in
the color-coded bar. It is labeled as IC2 as it belongs
to the same phase as the IC2 phase in Figs. 14(a) and
15(a), with both of them corresponding to the same type
of the counter-rotated, deformed, and slightly tilted helix
(spiral), as will be further discussed in Sec. IV.

While the Q-vector in the IC2 phase evolves within
the limits marked on the color bar, similar to the finite
spans for both IC1 and IC2 in Figs. 14(a) and 15(a), the
IC1 phase and its AFM-stripe mirror in Fig. 16(a) span
the entire range between the Γ and M points. This is
due to the Jz± =0 circumference of this phase diagram,
which corresponds to the pure J1–J3 model. In this limit,
the classical IC1 is a coplanar, co-rotating spiral continu-
ously interpolating FM and ZZ [115, 116]. Away from the
boundary, the IC1 phase turns into a deformed counter-
rotated helix with a finite range of the Q-vector that is
parallel to the bond of the honeycomb lattice, see Sec. IV.

The inset in Figs. 16(a) and 16(b) provides sketches of
the phases and emphasizes the differences between the
propagation vectors in the IC1 and IC2 phases.

There are small circles in Fig. 16, which represent pro-
jections of all individual α-RuCl3 parameter sets listed
in Table I onto the ∆= J±± =0 plane of the phase dia-
gram. While some of the parameters that are necessary
to obtain the coordinates for such projections are made
available in Table II in App. A, we do not list J and J3
values of these individual sets in this work.

The small square with a darker shading corresponds
to the machine-learning effort of Ref. [89], discussed in
Secs. IIA 2 and IIB 4. The group of three diamonds are
the sets listed in Table III in App. D that were proposed
in Ref. [46], which has used some of the same types of
phenomenological constraints on the α-RuCl3 parame-
ters as the ones used in the present work. These sets
were deliberately not included in Table I for the sake of
not skewing independent distribution of parameters from
the prior literature. The projection of the representative
Point ⋆ set from Fig. 14(b) and Sec. III A 2 is shown by
the star symbol. Although it appears close to one of the
sets from Table III in App. D, the parameters in the sets
are rather different.

An important benefit of this comparison and the clear
advantage of the bird’s-eye view of the polar phase dia-
grams demonstrated in Fig. 16 is in making apparent the
commonality of the trends among the prior, although not
always successful, hunts for the adequate description of
α-RuCl3 and its phenomenologies.

In addition to Point ⋆ from the Cartesian phase di-
agram in Fig. 14(b), one additional correspondence is
brought into the polar field of view of Fig. 16 by the
red line with the arrow that traverses FM, IC1, and ZZ
phases at a fixed radius. It is a projection of the DMRG
scan path at J = 3 in Fig. 14(b), which closely corre-
sponds to the XXZ anisotropy value of ∆ = 0, see the
upper axis. As all anisotropic terms in Fig. 14(b) are
at Point 0, by fixing J (and ∆) the scan changes only
J3. For the polar representation in Fig. 16, changing J3
corresponds to varying the ratio of J3/J1 and traveling
along the radial path. Altogether, this reference scan
helps to relate the view provided by the Cartesian phase
diagrams in Sec. III A and the polar phase diagrams in
Sec. III B as offering different slices through the same
higher-dimensional parameter space.
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2. ED polar phase diagram

Our Fig. 16(b) offers another demonstration of the
power of the numerical tour-de-force exploration of the
2D parameter space using ED in the 24-site cluster.

With the technical description of the approach pro-
vided in Sec. IIIA 1 and App. C, the phase diagram in
Fig. 16(b) is based on the combination of the 1D ra-
dial and polar sweeps, 1000 points each. For the radial
sweeps, the variable θ was varied from 0 to π/2 for fixed
polar angles φ. For the polar sweeps, φ angle was swept
from 0 to 2π at fixed θ. In addition, two spiral sweeps
were performed, in which both θ and φ variables changed,
making four full rotations in φ while varying θ from 0 to
π/2 and from 0 to π/5, see App. C. Additional polar
sweeps were performed for the FM-ZZ boundary with
the higher discretization. To determine phase bound-
aries, the second derivatives of the ground-state energy
along the sweeps were taken with respect to φ and θ.

As in the case of the phase diagrams in Sec. IIIA 1,
the agreement between the LT and ED phase diagrams
in Figs. 16(a) and 16(b) is spectacularly quantitative, es-
pecially in the J1<0, J3>0 sector relevant to α-RuCl3,
where the NCO analog of the IC1 phase appears in be-
tween the FM and ZZ phases, with their boundaries in
close correspondence. We stress here again that the two
side-by-side diagrams are not only obtained in two differ-
ent limits, classical and quantum, and by the two meth-
ods with different limitations, but in the case of Fig. 16
they also span the entire parameter space of the model.
Yet, the phases they contain and their compositions are
in a remarkably close quantitative agreement.
The LT phase diagram in Fig. 16(a), being classical in

nature, shows a complete symmetry between FM and
AFM and ZZ and stripe phases, respectively. In the
quantum S = 1/2 case in Fig. 16(b), this symmetry is
lost, and there is no discernible intermediate phase be-
tween the AFM and stripe phases. As we discuss below,
the symmetry of the LT phase diagram in Fig. 16(a) is
only a property of the J1–Jz±–J3 model, with the finite
J±± also inducing asymmetries in the phase diagram,
similarly to the quantum effects.

In the ED case, the ZZ-AFM boundary, which con-
cerns the region of small J1, is somewhat problematic.
This problem is due to the finite-size effects specific to
the 24-site cluster, which splits into three independent
clusters containing only 8 sites connected by the same J3
network at J1 = 0. Because of that, that sector of the
phase diagram was clarified by DMRG.

3. Finite J±± phase diagram and other trends

Although not elaborated on in detail in the present
study, the evolution of the phase diagram in Fig. 16 with
∆ away from the ∆=0 limit is the following. For nega-
tive ∆, the IC1 and its mirror regions expand somewhat,
while the rest of the boundaries shift only mildly. At
about ∆ =−0.4, the z-AFM and z-FM regions open at

the outer edges of the ZZ and stripe sectors and con-
tinue to expand for ∆<−0.4. This is in agreement with
Figs. 14 and 15 where this range of ∆ is associated with
the smaller |J |. For positive ∆, the shift of most of the
boundaries is less perceptible all the way to the Heisen-
berg limit ∆ = 1, with the only significant effect being
a nearly complete disappearance of the intermediate IC1
phase away from the outer boundary for finite Jz±.
The evolution with J±± is more drastic and also more

relevant to the discussed physical space of α-RuCl3, fea-
turing an asymmetry of the phase diagram mentioned
above and the nucleation of another region of the IC2
phase from the FM-IC1 boundary at J±±>0. Upon the
further increase of J±± to about 0.15, the two IC2 regions
merge, while IC1 diminishes.
The effect of J±± is shown in Fig. 16(c) for J±±=0.05

in units of J21+J2z±+J2
3 =1, which closely corresponds to

its relative value for the representative Points 0, A, and B
from the physical region for α-RuCl3. With the full phase
diagram for that choice of J±± shown in App. D, where
one can observe the asymmetry of the previously sym-
metric phases, the cutout from it with the FM-ZZ region
shown in Fig. 16(c) allows one to observe the emerging
IC2 region within the IC1 phase. This is an important
feature for the α-RuCl3-related region of the phase di-
agram. The relatively small, but essential addition of
J±± brings the polar phase diagrams in Fig. 16 to a close
agreement with the Cartesian ones in Figs. 14 and 15,
which show not one, but two intermediate IC phases.
Altogether, the consideration of the phase diagram

of the KH model in the crystallographic frame (3) in
Sec. III B highlights the benefits of the alternative per-
spective on the parameter space of the anisotropic-
exchange models. The value of this perspective is also
in the organic connection of the considered parameter
space to the other models that are of wide interest in
frustrated magnetism.
For instance, the circumference of the phase diagrams

in Fig. 16 corresponds to the J1–J3 FM-AFM model.
The classical phase diagram of this model, known since
the end of the 1970s [115], has been recently revisited for
the quantum case because of the other Kitaev-candidate
magnets [116–119]. It was found that the IC spiral state
between FM and ZZ is completely replaced by the en-
tirely unexpected phases, such as double-zigzag and z-
AFM Néel phase [116], stabilized by quantum fluctua-
tions. Not only does this consideration suggest a wider
context to the studies of α-RuCl3, but it also underscores
the importance and the urgency of understanding of its
proximate incommensurate phases, provided next.

IV. NATURE OF INCOMMENSURATE PHASES

As was made abundantly clear in the preceding pages,
the only phases that occur in the vicinity of the ZZ
region of the advocated α-RuCl3 parameter space are
the FM and incommensurate IC1 and IC2 phases. Al-
though the FM state has been noted as relevant in the
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are studied below, see Figs. 18 and 19. (b) and (c) ⟨Sα
i ⟩ components and nearest-neighbor correlators ⟨Si·Si+x(y)⟩, respectively,

averaged over the circumference of the cylinder, vs J3. Transitions between phases and error bars are indicated, see text.

past [65, 75, 83], the IC phases have not been closely
scrutinized. Given the close proximity to where α-RuCl3
may reside, exploring their nature is imperative.

This exploration is done using DMRG calculations pre-
sented below. Technically, we have employed a combina-
tion of two approaches, referred to as the DMRG “scans”
and “non-scans,” using the ITensor library [129]. Both
approaches utilized the Lx×Ly-site honeycomb-lattice
open cylinders of width Ly=12 (6 honeycomb cells). For
the “scans,” we have used longer cylinders of Lx=32 and
had the J3 parameter varied along their length for the
representative 1D cuts that are shown in the phase dia-
grams in Figs. 14(b) and 15(b) by red arrows. The “non-
scans” were done for the select parameter choices, with
all parameters fixed, marked by diamonds and squares
on the same 1D cuts in these figures. For the non-scans,
we used more symmetric 12×12 cylinders with the as-
pect ratio that has been demonstrated to closely approx-
imate the 2D thermodynamic limit [130]. The non-scans
were performed on the so-called X-cylinders (XC) [131],
in which one of the nearest-neighbor bond is horizontal,
and on the Y-cylinders (YC), with these bonds being ver-
tical, to study different orientations of orders. All scans
were performed on the XC clusters.

This combination of approaches has been success-
fully employed in the past for the studies of the multi-
dimensional phase diagrams of a variety of models and
lattices [116, 131–136]. Scans give direct snapshots of
the phases along their 1D cuts [131, 132], help to identify
phase boundaries [133–135], distinguish first- and second-
order transitions [136], and uncover hidden phases [116].
The non-scans allow one to study the given parameter
set in finer detail.

We performed a sufficient number of DMRG sweeps
to reach a maximum bond dimension of m ∼ 1600 and
to ensure good convergence with a truncation error of
O(10−5). Generally, there is no spin-rotational symme-
try to utilize in an anisotropic-exchange model (1), with
the DMRG ground states typically breaking any remain-
ing lattice or emergent spin symmetries. We find the
local magnetic order in these states changes little with
increasing bond dimension, a signature of mimicking the
thermodynamic limit in 2D [137], enabling us to measure
the local ordered moment ⟨Si⟩ directly.

With the nature of the incommensurate phases uncov-
ered in Sec. IVA, the selfconsistency of our anisotropic
strategy is also verified using DMRG in Sec. IVB.

A. IC1 and IC2: Deformed counter-rotating helices

Our main representative results are shown in Figs. 17,
18, and 19. In Fig. 17(a), we show the long-cylinder
scan for the Point 0 set of {K,Γ,Γ′} with J3 varying
from 0 to 4.0 meV for fixed J = −3.0 meV, the path
corresponding to the solid red line in the Cartesian phase
diagram in Fig. 14(b). The arrows represent the local
ordered moments ⟨Si⟩ projected onto the yz plane. The
honeycomb lattice is in the xy plane. Spins with positive
and negative ⟨Sy

i ⟩ are shown in red and blue, respectively.
This 1D cut through the phase diagram as a function of

J3 provides a direct visualization of the FM phase, an in-
termediate phase marked as IC(?) although it is not iden-
tified within the scan, and the ZZ phase. Fig. 17(b) shows
the evolution of the three components of the on-site or-
dered moment, ⟨Sα

i ⟩, averaged over the vertical direction
(circumference of the cylinder), vs J3. Fig. 17(c) shows
the same for the nearest-neighbor correlators ⟨Si ·Si+x⟩
and ⟨Si ·Si+y⟩ averaged the same way.
The transition points and their error bars are deter-

mined from the inflection points in the ordered moment
curves and the widths of the transition regions, respec-
tively. One can see that the transition region is narrower
and sharper on the IC-ZZ side, consistent with both ED
and LT approaches indicating the first-order character
of that transition. This transition point at J3 ≈ 3 meV
is also in a very close agreement with the ED results of
Fig. 14(b) discussed in Sec. III A 1. The FM-IC transi-
tion is “softer” by all indicators shown in Fig. 17, again in
agreement with both ED and LT that suggested a nearly
second-order type of it. The DMRG scan also shows the
FM-IC transition at J3 ≈ 1.2 meV, a somewhat lower
value than the one found by ED in Fig. 14(b).
From the ordered moment curves in Fig. 17(b), one

may also find an indication of a transition within the IC
region at about J3 ≈ 2.0 meV, suggesting two different
IC phases in the scan, with this suggestion certainly re-
quiring a less speedy look. Such a look is provided below
in Figs. 18 and 19 by the two non-scans within the IC
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phases at J3 = 2.7 meV and J3 = 1.5 meV, respectively.
They are marked by the square and the diamond (with
arrows) in Fig. 17(a), corresponding to the symbols used
for these points in the phase diagram in Fig. 14(b).

1. IC1

Starting from J3=2.7 meV, which is closer to the ZZ
phase, Fig. 18(a) shows the 12×12 XC cylinder with all
parameters fixed as discussed. To facilitate the visual
perception of its real-space spin configuration, the local
ordered moments are colored in red and blue according
to their sublattices of the honeycomb lattice, A and B,
respectively, with the unit cell marked by the green oval.
Spins are shown in the yz plane and the honeycomb lat-
tice is in the xy plane, as before.

Focusing on the spins in the vertical zigzag columns
in Fig. 18(a), such as the one marked by the rounded
rectangle, and following their evolution along the cylin-
der length, it is apparent that spins in the two sublat-
tices form counter-rotating spirals, with red spins rotat-
ing clockwise and blue spins counterclockwise.

Fig. 18(b) complements these real-space observations.
It shows a proxy of the static structure factor, |⟨Sy

B,q⟩|2=
|∑i∈B Sy

i e
iqri |2, the square of the norm of the Fourier

transform of one of the spin components from one sublat-
tice, highlighting its periodicity. The peaks correspond to
the propagation vector ±Q of the spiral, with the dashed
hexagon showing the Brillouin zone of the honeycomb
lattice. Since the Q vector is directed along the ΓM
line, parallel to the horizontal nearest-neighbor bonds,
the spin state realized in the DMRG cluster in Fig. 18(a)
identifies closely with the IC1 state of the LT approach
in Fig. 14(a), discussed in Sec. IIIA 1.

Figs. 18(c) and 18(d) quantify this IC1 state of the two-
sublattice counter-rotating spirals in more detail. To be
precise, these spirals will be referred to as the deformed
spin helices. The first panel of Fig. 18(c) explicates that
the helices rotate entirely in the yz plane, that is, in
a screw-like fashion, normal to the propagation vector

Q||x of the helix. For clarity, only the results for the
A-sublattice (red spins) are shown, with the ones for the
B-sublattice being very similar.
The second panel of Fig. 18(c) demonstrates the phase

offset between the A and B helices. Fig. 18(d) provides
the parametric plot of the ⟨Sz

i ⟩ vs ⟨Sy
i ⟩ in both sublat-

tices, which is also the cross-sectional view of the he-
lices along the x-axis. The spins on the edges are ex-
cluded, straight arrows show the ordered moments from
the rounded black rectangle in Fig. 18(a), and curved
arrows show the direction of the rotation of the helices
along the propagation vector Q.
In Figs. 18(c) and 18(d), the symbols are the DMRG

data for the ordered moments averaged over the vertical
zigzag columns and plotted vs the x-coordinate of the
cylinder in units of the interatomic distance a. The solid
curves are given by the spiral ansatz with Q∥ x̂

⟨S⟩i,γ = ŷ⟨Sy⟩ cos θi,γ ± ẑ⟨Sz⟩ sin θi,γ , (14)

where ŷ and ẑ are the unit vectors for the y and z axes,
± is for γ=A(B), and the phases are θi,γ=Qri + φγ .
The in-plane and the out-of-plane ordered moments in

Figs. 18(c) and 18(d) are ⟨Sy⟩ = 0.28 and ⟨Sz⟩ = 0.22,
and the phase offset between the A and B helices is
∆φAB=43.2◦. One can read the pitch of the helix from
Fig. 18(c) as ℓ≈7.85a, which corresponds to the incom-
mensurate |Q| ≈ 0.19 r.l.u. [reciprocal lattice vector is
G=(4π/3a, 0)].
Before moving on to the next non-scan, we note, for

the record, that the DMRG non-scan in the XC cylinder
in Fig. 18(a) realizes an incommensurate spiral state.

2. IC2

For J3 = 1.5 meV, the point in the proximity of the
FM-IC phase boundary, see Fig. 17(a), a different state is
realized, for which we found the “rotated” YC orientation
of the cylinders to be optimal. In Fig. 19(a), the 6×24
YC cylinder is shown, with the same color-coding for the
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FIG. 19. Same as Fig. 18 for the 6×24 YC-cylinder at J3=1.5 meV and Sy⇒Sx. In the second panel of (c), the B-sublattice
data are shifted to emphasize zero phase offset.

spins according to their sublattices as in Fig. 18(a), but
spin are now shown in the zx plane, while the lattice axes
are maintained as xy for consistency.

With the evidence presented in Figs. 19(a), 19(b),
19(c) and 19(d), following the same exposition as in
Fig. 18, it is easy to see that the state presented here iden-
tifies with the IC2 state of the LT approach in Fig. 14(a),
also discussed in Sec. III A 1. It is also composed of the
two deformed counter-rotating helices in the two sub-
lattices, with the spin plane normal to the propagation
vector of the helices, but now with the Q vector directed
perpendicular to the nearest-neighbor bonds of the hon-
eycomb lattice, Q∥ ŷ, which is parallel to ΓK line

⟨S⟩i,γ = x̂⟨Sx⟩ cos θi,γ ± ẑ⟨Sz⟩ sin θi,γ , (15)

Apart from the different direction of the ordering vector
in the IC2 phase compared to that of the IC1, the qual-
itative difference is also in the lack of the phase offset
between the A and B helices, meaning that in the spiral
ansatz in Eq. (15), ∆φAB is zero, as is demonstrated in
the second panel of Fig. 19(c).

Quantitatively, the in-plane and the out-of-plane or-
dered moments in the spiral ansatz (15) for the solid lines
in Fig. 19(d) are ⟨Sx⟩=0.25 and ⟨Sz⟩=0.14, exhibiting a
stronger deformation of the helices than in the IC1 state
of Fig. 18(d). The pitch of the helix in Fig. 19(c) is also
longer, ℓ ≈ 10.39a, corresponding to |Q| ≈ 0.144 r.l.u.,
translating to the the nearly commensurate periodicity
of six hexagons along the YC cylinder, as one can ob-
serve in Fig. 19(a).

3. Comparison with LT and classical spiral ansatz

The IC phases were found as potentially proximate to
the α-RuCl3 parameter space using the LT approach and
verified with ED and DMRG.

In order to show the almost unnatural closeness of
the agreement of the LT and DMRG results, we per-
formed additional checks of the IC states within the
LT approach for the representative choices of parame-
ters for the Point 0 selection of the anisotropic terms
and two choices of the {J, J3} pair: J =−3.5 meV and
J3 =2.4 meV for the IC1 phase and J =−2.0 meV and
J3 =1.8 meV for the IC2 phase, shown by the diamond
and the square, respectively, in the Cartesian LT phase
diagram in Fig. 14(a).

The IC1 representative choice in the LT calculations
yielded the phase offset between the A and B helices as
∆φAB = 41◦ and the pitch of the helix as ℓ ≈ 7.805a,
both nearly coincidental with the corresponding num-
bers in the DMRG results in Sec. IVA1 above. For
the IC2 choice, the LT gives zero phase offset ∆φAB ,
in a complete accord with the same DMRG answer in
Sec. IVA2. The pitch of the helix is somewhat shorter
than the DMRG counterpart, ℓ≈8.03a, but not by much.
The purely classical spiral solution suggests no depen-

dence of the spiral’s pitch on the isotropic exchanges for
the fixed anisotropic ones, see App. E. This is in a broad
agreement with all non-scans for the IC states that we
have studied by DMRG, all showing similar values of
their |Q|. The LT results are less constraining, but the
windows for Q for both IC1 and IC2 are narrow.
Here is the summary of the rather amazing agreement

of the LT and DMRG results on the IC phases.

◦ Two distinct states are realized in both approaches,
IC1 and IC2, with the ordering vectors Q di-
rected along ΓM and ΓK of the honeycomb-lattice
BZ, respectively, parallel and perpendicular to the
nearest-neighbor bonds, with IC1 bordering the ZZ
phase and IC2 the FM phase.

◦ Despite the different orientation of the ordering
vectors, there is no sign of a significantly sharp
transition between these two ICs in either of the
methods, suggesting a weak first-order transition in
the thermodynamic limit. They are nearly degen-
erate in LT and classical calculations and DMRG
scans shows only minor signs of a transition. For
some of the parameters, DMRG non-scans in XC vs
YC cylinders showed different Q orientations and
dependence on the initial state also hinted at a close
degeneracy of the different IC states.

◦ All approaches show a remarkable consistency re-
garding the first-order like transition at the ZZ-
IC1 boundary and the second-order or weakly first-
order transition for the FM-IC2 boundary.

◦ Both LT and DMRG identify IC states as the
screw-like spirals, or helices, with the plane of spin
rotation orthogonal to the propagation vector Q
(nearly orthogonal for IC2 in the LT case).

◦ Both LT and DMRG identify IC states as the
counter-rotating helices of spins in the two sublat-
tices of the honeycomb structure.
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for J3=1.2 meV and J3=2.2 meV, respectively, same as in Figs. 19(a) and 19(b).

◦ The phase offset between the IC2 helices is zero in
both LT and DMRG, and it is finite for IC1, with
values that are close between the two techniques.

◦ The pitch of the helices is independent of J and
J3, i.e., fully defined by the {K,Γ,Γ′} choice in the
classical calculations of App. E, which is in a broad
agreement with all non-scans probed by DMRG.

This rather astonishing accord between the classical
LT and purely quantum DMRG techniques reinforces the
sentiment expressed earlier in Sec. III A 1 on the ability
of the LT method to mimic quantum effects of the fluc-
tuating states that are not conserving the length of the
ordered moments [128], as it allows one to “squish” the
helices in the IC phases, thus lowering the energy and
letting LT to guess the states correctly.

We would be remiss if we did not mention the earlier
discovery and detailed analysis of the counter-rotating
spirals in the lithium-iridate compounds, described by
a similar model on related honeycomb-based structures
and rationalized as a sign of their significant bond-
dependent Kitaev-like exchanges, see Refs. [138–142].

4. Point A, more phases, more helices

Here we provide some additional DMRG analysis of
the phase diagram for the Point A anisotropic parameter
set in order to reinforce the earlier findings, expose addi-
tional phases, and verify the ubiquity of the IC states.

Our Figures 20(a) and 20(b) provide the 1D scans
through the phase diagram for the Point A in Fig. 15(b)
along the two vertical red lines, at J = −0.5 meV and
J = −3.0 meV, respectively, vs J3. Notations, color-
coding, and analysis are the same as for Fig. 17(a) above.

One can see that in both cases, the agreement for
the upper transition boundary with the ED results in
Fig. 15(b) is very close, while the lower boundary with
the FM phase is shifted down significantly compared to
ED, the trend already noted in Sec. IVA above. This
is also in agreement with the “softer” character of that

transition. In Fig. 20(a) the FM phase is simply ab-
sent, and the upper boundary is with the z-AFM Néel
phase that has spins pointing along the z axis, promoted
by the antiferromagnetic out-of-plane nearest-neighbor
exchange in the crystallographic parametrization of the
model (3) and the J3 term, as discussed in Sec. III A 1.
In Figs. 20(c) and 20(d), the IC states, corresponding

to the choices of {J, J3}={−0.5, 1.2} meV and {J, J3}=
{−3.0, 2.2} meV, respectively, and marked by the arrows
in Figs. 20(a) and 20(b), are exposed in the same fashion
as in Figs. 18(a), 18(b) and 19(a), 19(b) above.
In Figs. 20(c) and 20(d), we use the 24×6 YC cylinders,

with the spins shown in the zx plane and the square of
the norm of the Fourier transform of |⟨Sx

B,q⟩|2 shown in
the second panels. By following the same analysis as in
Figs. 18(c) and 19(c), both states are identified as the
representatives of the IC2 phase. As for the IC2 state
in Fig. 19, they are described by the two-sublattice, de-
formed counter-rotating helices with the spin plane nor-
mal to the propagation vector of the helices and with the
Q vector directed along the ΓK line.
One notable feature of all DMRG non-scans of the IC

states analyzed in our study is the close lengths of their
Q vectors, suggesting the pitches of their helices to be
roughly independent of the isotropic exchanges J and J3,
in agreement with the classical consideration of App. E.

5. IC summary

The puzzling incommensurate phases in the phase di-
agram of α-RuCl3 are enigmas no more.
The IC1 and IC2 phases were identified in Sec. III as

proximate to the parameter space relevant to α-RuCl3,
see Figs. 14, 15, and 16. They were discussed as vitally
important to the understanding of their possible effects
onto the α-RuCl3 properties. They are now fully exposed
and understood as constituting two types of the counter-
rotated helices with different directions of their propaga-
tion vectors as is thoroughly demonstrated above.
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FIG. 21. The 32×12 XC long-cylinder scans for the Point ⋆ parameter set (12) vs field (a) parallel to the bond, b(x)-direction,
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The IC1 phase, bordering the immediate region of the
ZZ phase pertinent to α-RuCl3, is separated from it by a
first-order transition, suggesting limited direct effects of
the IC phases on the phenomenology of this material.

If anything, this consideration also dispels the un-
founded, but persistent misconception that the standard
DMRG approach is incapable of identifying spiral phases,
especially incommensurate ones, and would always select
a different ground-state instead. Figures 17, 18, 19, and
20 and the detailed analysis provided above shatter that
belief.

B. DMRG and ED verifications

We now look all the way back at the initial assump-
tions of the present study. Our strategy of restricting
anisotropic terms of the model for α-RuCl3 by using se-
lect physical observables that occur only because of such
terms hinges on our ability to calculate these observables,
which, in turn, assumes they have small or controlled
quantum effects, see Secs. I C 1 and IIA.

For one of them, the ESR gap in Sec. IIA 2, this logic
is justified as it is deeply rooted in the more general ap-
proach of the field-induced quenching of quantum fluctu-
ations. However, for the other two observables that we
have chosen as the physical constraints, an a posteriori
proof of the validity of such assumptions is needed.

For the out-of-plane tilt angle α, see Sec. IIA 1, we
had some prior circumstantial evidence that the effects
of quantum fluctuations in α are small [64]. For the ob-
served small difference of the in-plane critical fields ∆Hc,
Sec. II A 3, the argument was that although the criti-
cal fields themselves should renormalize strongly, they
should do it in sync. This requires such a difference to
be small already at the “bare” quasiclassical level, be-
fore accounting for quantum effects. We posed this as a
falsifiable prediction of our strategy, see Sec. IIA 3.

1. Selfconsistency checks

Here we present a complete validation of both assump-
tions, and more.

As one can observe already in the DMRG scans in
Figs. 17 and 20(b), the tilt angle of the spins in the ZZ
phase shown in the yz-plane is significant and is consis-
tent with the “bare” 30◦-to-37◦ physical range proposed
in Sec. II A 1. It is also independent or only weakly de-
pendent on the isotropic exchanges J and J3, in accord
with the classical energy minimization result in Eq. (4).

A more precise evaluations from the numerical values
of the spin projections for Point 0 and Point A sets of
parameters give the renormalized angles 33.7◦ and 29.4◦

against their bare values of 35◦ and 32◦, respectively,
see Sec. II B 1. Thus, the renormalization effect on α
is small, leaving it safely within the physical range and
fully justifying the use of its bare expression in Eq. (4)
for restricting model parameters.

The most challenging assumption is the use of ∆Hc as
a phenomenological constraint. To verify this, we chose
the representative set of the Point ⋆, see Sec. IIIA 2
and Eq. (12), which is Point 0 of the anisotropic set of
{K,Γ,Γ′} with the isotropic pair {J, J3} fixed in the plau-
sible region for α-RuCl3, as is described in Sec. IIIA 2.
One can use Eqs. (8) and (9) for the Point⋆ set to obtain

the bare values ofH
(b)
c,0 =12.51 T andH

(a)
c,0 =11.71 T, with

their bare difference ∆Hc,0=0.8 T corresponding to how
the selection of the Point 0 set was made, see Sec. II B 1.
Recall that the experimental values are ∆Hexp

c ≈ 0.8 T,

H
(b)
c,exp≈7.8 T, and H

(a)
c,exp≈7.0 T.

We performed DMRG scans vs field in the two princi-
pal in-plane directions, a and b, perpendicular and paral-
lel to the bond, respectively, for the Point ⋆ parameter
set. The results are presented in Fig. 21, with the presen-
tation mirroring that of Fig. 17, with the key difference
being the spin-projection plane now being xy in order to
emphasize the polarizing effect of the field.
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set, experimental ESR [29] and THz [80] data for the lowest-
energy spin excitation energy from Fig. 5, and LSWT results
from Eq. (6) for Γtot=9.0 meV for the Point ⋆ set.

In Fig. 21(b), to compare the results for the two field
directions fairly, we kept the same XC cylinder for H(a),
but used a tilted direction of the field to have it perpen-
dicular to the bond, with the spin axes tilted accordingly.
Because of the tilt, the averaging of the spin components
⟨Sα

i ⟩ and correlators ⟨Si ·Si+x⟩ and ⟨Si ·Si+y⟩ was done
over the two nearest vertical zigzag columns to minimize
the oscillatory trends in these quantities.

The data in the second and third panels in Figs. 21(a)
and 21(b) together with the scans themselves show clear
transitions from the ZZ to polarized FM states, with their
positions determined from the inflection points of the
data, as before. The DMRG results do indeed confirm
that the downward renormalization of the critical fields is
quite significant in both directions, reaching some 60%-
70% of their bare values, in agreement with the expecta-
tions laid out above.

Quite remarkably, the critical fields are renormalized
down from their classical values by about the same fac-
tor, maintaining close proximity to each other and pro-
viding strong support to the suggested constraint. Their
resultant values are also astonishingly close to the ex-

perimental ones, H
(b)
c ≈ 7.8(5) T and H

(a)
c ≈ 7.0(5) T,

effectively maintaining the original value of the critical
field difference of ∆Hc≈0.8(5) T.

While such a close agreement with the experimental
data for the chosen representative set of parameters may
be somewhat fortuitous, the demonstrated confirmation
of the original logic of our approach is simply spectacular,
providing a very strong support to the validity of our
strategy, approach, and their results.

For completeness, we also provide a verification of the
ESR gap criterion for the Point ⋆ set using an ED cal-
culation of the excitation spectrum on a 24-site cluster.

In Figure 22, the intensity map of the q=0 dynamical
spin-spin correlation function, Sbb(0, ω), obtained by ED
is shown versus the field in the a-direction. Also shown
are the experimental data presented in Fig. 5 and the
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FIG. 23. Upper curve is the ordered moment extracted from
the M(H) results for α-RuCl3 in the in-plane field, Ref. [22],
symbols are DMRG results, and the lower curve is the exper-
imental data with the Van Vleck contribution subtracted, see
text. Inset: same for the smaller range of fields.

“bare” LSWT magnon energy E0 from Eq. (6) for Γtot=
Γ+2Γ′=9.0 meV, which corresponds to the Point 0 (and
Point ⋆) set. The g-factor in ED is the same as in Fig. 5.
The ED calculations were carried out using the Lanc-

zos algorithm [143], employing the continued fraction
method [144] to obtain the dynamical correlation func-
tions. A Krylov dimension of 150 and a Lorentzian
broadening of 0.5 meV were used; see also App. C 3.
The downward-renormalization effects of quantum

fluctuations on the ESR gap, emphasized in Sec. II A 2
and Fig. 5 as necessary arguments for the large value of
Γ + 2Γ′, are clear from the difference between its quasi-
classical and ED values. Although not providing an ideal
fit to the experimental data, the lowest-energy excita-
tion in the ED spectrum provides a quantitative agree-
ment that is much closer than that of the other param-
eter sets for which similar calculations have been per-
formed [65, 80].
All three successful comparisons serve as a direct a

posteriori validation of our strategy for constraining the
anisotropic terms of the effective model.

2. Magnetization curve

As a corollary of this study, our Figure 23 shows a
comparison of the DMRG and experimental results for
the ordered moment along the field vs the in-plane field.
DMRG is for the Point ⋆ parameter set (12) and the
low-temperature magnetization results are from Ref. [22],
which provided M(H) data for α-RuCl3 for the fields up
to 60 T.
The DMRG results, shown by the symbols, are from

the two 32×12 XC long-cylinder scans for the field along
the b-direction. The first one is from 0 T to 12.5 T (cir-
cles), also shown in the second panel of Fig. 21(a), and
the second scan is from 14 T to 65 T (diamonds). The up-
per curve is the original experimental data from Ref. [22].
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As one can see, even at the highest field the or-
dered moment in DMRG is not fully saturated and re-
tains some residual field dependence. Thus, to subtract
the Van Vleck contribution from the experimental curve
more consistently, we extract the linear slope in the high-
field range of ≳ 40 T from both the experimental and
DMRG data. Then the linear contribution with the dif-
ference of these slopes is subtracted from the upper curve
to obtain the lower one for all H. In this study, we also
used a slightly smaller gb=2.3 to match the value quoted
in Ref. [22].

Needless to say, the agreement demonstrated in Fig. 23
is rather close. The DMRG results also naturally re-
produce the low value of the saturated moment in the

nominally polarized phase just above H
(b)
c , the slow ap-

proach of M to the saturation, and its unusual behavior
showing an inflection point in the lower fields, see inset.
This is not to claim that the Point ⋆ parameter choice
in Eq. (12) is unique in describing α-RuCl3, but it cer-
tainly makes the case that the region from where this
representative set was extracted has a lot to do with this
materials’ phenomenology.

V. OUTLOOK

With the progress in finding a definitive set of param-
eters for an effective model of α-RuCl3 described above,
is this truly the end of the α-RuCl3 parameters’ drama?
Yes and no.

It is an unequivocal “’yes” in the sense of much better
clarity on the overall strategy for finding such parame-
ters, on where the parameters of the effective model lie,
and what phases are proximate to that region.

It is a more cautious “no,” or “maybe,” for the follow-
ing reasons.

First, there is a technical issue of evaluating a wide
range of physical observables for α-RuCl3 using param-
eters from the physical regions proposed in this work.
Preferably, such calculations should be performed using
unbiased numerical methods, with the goal of possibly
identifying a more precise set of these parameters. A
more complex reason is that the description of some ex-
periments may require further “dressing” of the α-RuCl3
effective model with additional exchanges.

There are subleading, but potentially important, 3D
couplings between the honeycomb planes of α-RuCl3,
with estimates in the range of 0.5 meV compared to 5–
10 meV for the parameters of the 2D plane model con-
sidered in this work [47]. However, they cannot be sim-
ply added on top of the 2D parameters discussed here,
as the parameters for that modified 3D model need to
be re-evaluated to meet the same phenomenological con-
straints. This may or may not be a trivial rescaling of
some subset of existing 2D terms, as discussed above,
depending on how isotropic these 3D couplings are [86].

There is also a possibility of lower symmetry within
the α-RuCl3 honeycomb planes, reducing it to C2 and
making exchanges on two nearest-neighbor bonds dif-

fer from those on the third [14]. Certainly, this would
modify and complicate the implementation of our pro-
posed constraints. Whether such a change can or cannot
be accounted for without modifying the effective five-
parameter model discussed in this work has not been
investigated. The answer may also depend on which spe-
cific experiments are to be described.

A major direction that is not pursued in this work
and left for future studies is the quantitative description
of inelastic neutron scattering (INS) results for α-RuCl3
using parameters from the physical ranges proposed here.
INS measurements have clearly indicated non-negligible
3D couplings in α-RuCl3 [47], so the model needs to be
modified accordingly before pursuing such a study.

Another specific issue with such studies is the use of the
linear spin-wave theory (LSWT) for anisotropic-exchange
models in general and for the suggested ranges of the ef-
fective α-RuCl3 model in particular, both in the zigzag
state and in the nominally polarized paramagnetic one.
The problem is strong quantum effects in the spectrum.
For instance, one can verify for any parameter sets pro-
posed in this work, or from their broad vicinity, that the
predicted zero-field LSWT single-magnon spectrum will
have an unreasonably large width and a vanishingly small
gap for the lowest excitation at the accidental M-points,
not affiliated with the ordering vector.

For the problem of large width, one can technically
mitigate this effect by considering strong mixing with
two-magnon continua. This should also eliminate much
of the coherent spectrum at higher energies [46, 48, 75],
bringing the results for that part of the spectrum into
broad accord with experimental observations. For the
vanishing gap, the observed lowest-energy experimental
mode is at the same q-vector, but the gap is not zero. The
technical solution to the problem requires a rather in-
volved calculation that includes fluctuation-induced cor-
rections selfconsistently [145], making any näıve compar-
ison of the LSWT spectra with the experimental ones in
the fluctuating regime somewhat meaningless.

Another approach is to model the INS spectrum us-
ing numerical methods. In App. C 3, we present results
for one such calculation of the dynamic spin correlation
function that can be used as a proxy for the INS dynam-
ical structure factor. The calculations are for zero field
and for the parameter set suggested in this work. While
a more detailed analysis is needed to compare these re-
sults with the available INS data, certain improvements
relative to similar comparisons can be pointed out, such
as a better quantitative matching of the lowest-energy
excitations, in accord with experimental expectations.

One may also envision a re-investigation of the theoret-
ical calculations of field-induced thermal transport phe-
nomena in α-RuCl3 using the parameter sets proposed in
this work [55, 77]. However, given the emergent consen-
sus on the substantial contribution of phonons to such
effects, this research direction is more tenuous.

Thus, the saga of α-RuCl3 continues.
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VI. CONCLUSIONS

In this paper, we have offered a historical overview
of the searches for the best effective model of α-RuCl3,
which are complicated by the material’s strongly fluc-
tuating ground and field-induced states and the com-
plex structure of its low-energy description. We have
outlined an “anisotropic strategy” for constraining the
most important spin-orbit-induced anisotropic-exchange
model parameters using existing phenomenology and
demonstrated its success for α-RuCl3 using a combina-
tion of quasiclassical analysis and unbiased numerical ap-
proaches. The same strategy can be applied to other
anisotropic-exchange materials with complex models.

The resulting constrained parameter space allowed
us to focus on a much narrower region of the multi-
dimensional phase diagram of the α-RuCl3 model. The
selected representative choices of anisotropic exchanges
enabled a detailed study of the remaining dimensions of
its parameter space.

Not only has this approach systematically led us to
the definitive parameter region of α-RuCl3 in the phase
diagram, but it has also facilitated an otherwise pro-
hibitively costly numerical exploration of its parameter
space. This exploration, with both semi-classical and
quantum methods, has demonstrated remarkable agree-
ment on the structure, properties, and hierarchy of the
phases, demystifying relevant proximate phases of α-
RuCl3. Specifically, the enigmatic nature of the incom-
mensurate phases has been resolved in the present study,
identifying them as counter-rotating helical states.

Moreover, a verification of our proposed general
anisotropic strategy and our specific choices of phe-
nomenological constraints has been performed using
DMRG and ED, confirming the selfconsistency of our
assumptions and results, showing a notable accord be-
tween experiments and theory, and further justifying the
validity of our strategy and proposed parameters.

In addition to a systematic analysis of prior at-
tempts at determining α-RuCl3 parameters and bring-
ing closer together several approaches to the derivation
of anisotropic-exchange models, our work has suggested
an intuitive description of its model via a different crys-
tallographic parametrization of the exchange matrix, of-
fering a unifying view of the earlier assessments of its pa-
rameters and yielding important physical insights. This
parametrization has also provided a connection to a
broader class of relevant paradigmatic models in frus-
trated magnetism, thus expanding the context of studies
of α-RuCl3.
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Appendix A: Details

The transformation matrix R̂c from the cubic to crys-
tallographic reference frame in Fig. 1(b) is

R̂c =


− 1√

2
1√
2

0

− 1√
6

− 1√
6

√
2
3

1√
3

1√
3

1√
3

 , (A1)

The form of the Hamiltonian (1) in the crystallographic
{x, y, z} axes of the honeycomb plane is given by Eq. (3).
Its parameters are related to that of the generalized KH
model in the cubic axes (1) via

J1 = J +
1

3

(
K − Γ− 2Γ′),(

1−∆
)
J1 = −

(
Γ + 2Γ′),

J±± = −1

6

(
K + 2Γ− 2Γ′), (A2)

Jz± =

√
2

3

(
K − Γ + Γ′).

The inverse relation is

J =
1

3

(
2J1 +∆J1 + 2J±± −

√
2Jz±

)
,

K = −2J±± +
√
2Jz±, (A3)

Γ =
1

3

(
−J1 +∆J1 − 4J±± −

√
2Jz±

)
,

Γ′ =
1

6

(
−2J1 + 2∆J1 + 4J±± +

√
2Jz±

)
.

Using Eq. (A2), one can convert the comprehensive com-
pilation of the {K,Γ,Γ′} parameter sets of the general-
ized KH model (2) in Table I, which were previously pro-
posed for α-RuCl3, to the {J1(1−∆), J±±, Jz±} parame-
ters of the model in the crystallographic parametrization
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Reference Method K Γ Γ′ J±± Jz± J1(1−∆)

Kim et al. [69]
DFT+t/U , P3 -6.55 5.25 -0.95 -0.98 -6.01 -3.35

DFT+SOC+t/U -8.21 4.16 -0.93 -0.33 -6.26 -2.3

same+fixed lattice -3.55 7.08 -0.54 -1.95 -5.27 -6.01

Winter et al. [70] DFT+ED, C2 -6.67 6.6 -0.87 -1.38 -6.66 -4.87

DFT+t/U , U=2.5eV -14.43 6.43 0.26 -9.84 -6.43

Hou et al. [71] same, U=3.0eV -12.23 4.83 0.43 -8.05 -4.83

same, U=3.5eV -10.67 3.8 0.51 -6.82 -3.80

Wang et al. [72]
DFT+t/U , P3 -10.9 6.1 -0.22 -8.01 -6.1

same, C2 -5.5 7.6 -1.62 -6.18 -7.6

Eichstaedt et al. [73] DFT+Wannier+t/U -14.3 9.8 -2.23 -1.63 -12.41 -5.33

Ran et al. [74] LSWT, INS fit -6.8 9.5 -2.03 -7.68 -9.5

Winter et al. [75] Ab initio+INS fit -5.0 2.5 0.0 -3.54 -2.5

Suzuki et al. [76] ED, Cp fit -24.41 5.25 -0.95 2.0 -14.43 -3.35

Cookmeyer et al. [77] thermal Hall fit -5.0 2.5 0.0 -3.54 -2.5

Wu et al. [78] LSWT, THz fit -2.8 2.4 -0.33 -2.45 -2.4

Ozel et al. [79] same -3.5 2.35 -0.2 -2.76 -2.35

Sahasrabudhe et al. [80] ED, Raman fit -10.0 3.75 0.42 -6.48 -3.75

Sears et al. [81] Magnetization fit
-10.0 10.6 -0.9 -2.17 -10.14 -8.8

-10.0 8.8 -1.27 -8.86 -8.80

Laurell et al. [82] ED, Cp fit -15.1 10.1 -0.12 -0.89 -11.94 -9.86

Suzuki et al. [83] RIXS -5.0 2.5 +0.1 0.03 -3.49 -2.7

Kaib et al. [84] GGA+U -10.12 9.35 -0.73 -1.67 -9.52 -7.89

Andrade et al. [85] χ -6.6 6.6 -1.1 -6.22 -6.6

Janssen et al. [86] LSWT+3D -10.0 5.0 0.0 -7.07 -5.0

Li et al. [87] Cm, χ -25.0 7.5 -0.5 1.5 -15.56 -6.5

Ran et al. [88] polarized INS -7.2 5.6 -0.67 -6.03 -5.6

Samarakoon et al. [89] Machine learning, INS -5.3 0.15 0.83 -2.57 -0.15

Liu et al. [90] downfolding -5.0 2.8 +0.7 0.13 -3.35 -4.2

This work

realistic range [-10.0,-4.4] [3.2,5.0] [1.8,2.85] [0.16,1.0] [-5.9,-2.6] [-10.0,-7.5]

point 0 -7.57 4.28 2.36 0.62 -4.47 -9.0

point A -5.43 3.65 2.18 0.414 -3.25 -8.0

point B -8.73 4.71 2.39 0.68 -5.21 -9.5

TABLE II. Same as Table I with the {J1(1 − ∆), J±±, Jz±} parameters of the model in the crystallographic parametrization
(3) converted from the generalized KH model (2) using Eq. (A2), see Secs I C 2 and IIB.

(3). The result of such a conversion is presented in our
Table II, see also Secs IC 2 and IIB.

Appendix B: LT Details

The phase diagrams in Fig. 2, Fig. 4, Fig. 14(a),
Fig. 15(a), Figs. 16(a) and (c), and Fig. 27 are obtained
using the Luttinger-Tisza (LT) method [106–109]. Here
we briefly outline its basics.

The goal of the LT method is to find the spin arrange-
ment of the classical spins Si, interacting via binary inter-
actions, that minimizes their energy under the following
“strong” condition on the spin length(

Si

)2
= S2

i , (B1)

where Si is the spin length on the site i. Since, in prac-
tice, that would require a macroscopic number of La-
grange multipliers, Luttinger and Tisza introduced the
so-called “weak” condition∑

i

(
Si

)2
=

∑
i

S2
i , (B2)

replacing the strong local condition on the spin magni-
tude by the global constraint on the average spin length.
The weak condition is a necessary, but not sufficient

condition for the spin arrangement to satisfy the strong
condition. If a solution obtained by enforcing the weak
condition also fulfills the strong condition, the original
problem is solved. Modifications of the LT method using
alternative weak conditions have also been proposed, see
Refs. [107, 146, 147].
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The numerical method typically carried out today un-
der the name of Luttinger-Tisza is simplified and involves
diagonalization of the Fourier transform of the exchange
matrix [61, 110, 112, 113, 124, 125, 148, 149] and finds
the lower limit of the energy by applying the weak condi-
tion. In the LT approach, the lowest eigenenergy of the
exchange matrix in the momentum space and the corre-
sponding ordering vector are identified by a scan through
the reciprocal space. The associated spin arrangement is
found by the Fourier transform back into the real space.
The implementation of the LT method is computation-
ally straightforward.

1. LT formalism

The most general lattice Hamiltonian with binary in-
teractions of the classical spins is given by

H =
∑
⟨ij⟩

ST
i ĴijSj , (B3)

where the lattice indices i and j run over all sites of the
lattice, ⟨ij⟩ denotes the corresponding bonds, and the
3×3 exchange matrix depends only on ri−rj because of
the translational invariance. To capitalize on the latter,
it is convenient to rewrite the coordinates of the spins as
ri=Rℓ+ρα, where Rℓ is the unit cell coordinate and ρα

is the the coordinate of the spin α sublattice within the
unit cell. Then, the model (B3) can be rewritten as

H =
1

2

∑
ℓ,ℓ′

∑
α,β

ST
ℓ,αĴ

αβ
ℓℓ′Sℓ′,β , (B4)

separating summation over i = {ℓ, α} into the ones over
the unit cells and sublattices.

The Fourier transform of the 3D vectors Sℓ,α

Sℓ,α =
1√
N

∑
q

Sαq e
iq(Rℓ+ρα) , (B5)

where N is the number of unit cells, with Rℓ and ρα

defined above, allows one to rewrite the model in (B4) in
the reciprocal space, using Sα−q=S∗

αq, as

H =
∑
q

∑
αβ

S†
αqĴαβ(q)Sβq , (B6)

with the exchange matrix Ĵαβ(q) in the momentum space

Ĵαβ(q) =
1

2

∑
∆Rℓℓ′

Ĵαβ
ℓℓ′ eiq(∆Rℓℓ′+ρβ−ρα), (B7)

where ∆Rℓℓ′ =Rℓ′ −Rℓ.
The form in (B6) allows for a more compact writing

using the “combined” vector of the spins in all sublattices

S̃†(q) =
(
S†
1q,S

†
2q, . . . ,S

†
αq, . . . ,S

†
Nsq

)
, where Ns is the

number of sublattices, resulting in

H =
∑
q

S̃†(q)J̃(q)S̃(q), (B8)

with the 3Ns × 3Ns matrix J̃(q) built from the 3 × 3

blocks of Ĵαβ(q) matrices.

Since the exchange matrix J̃(q) is hermitian, there ex-
ist unitary matrices U(q) that diagonalize it

U(q)J̃(q)U†(q) = λ̂(q), (B9)

where λ̂(q) is a diagonal 3Ns × 3Ns matrix for all q.
Straightforwardly, the Hamiltonian (B8) is diagonal in

the basis of the “rotated” spin vectors, S̄(q)=U S̃(q),

H =
∑
q

S̄†(q)λ̂(q)S̄(q) =
∑
q,α

λαq

∣∣S̄αq

∣∣2, (B10)

with λαq being the eigenvalue of the exchange matrix

J̃(q) in the α-sublattice sector for a given q.
If there is a momentum Q at which these eigenvalues

achieve the minimal λQ, such that λαq≥λQ for all q and
α, it means that the spin configuration minimizing the
classical energy has been identified, because

H ≥ λQ

∑
q,α

∣∣Sαq

∣∣2 = λQNNsS
2 , (B11)

where the assumption on spin length being the same for
all sublattices, Si = S, has been made for simplicity.

The connection to the LT method is in the last equa-
tion, as it corresponds to applying the weak condition in
Eq. (B2),∑

q,α

∣∣Sαq

∣∣2 =
∑
ℓ,α

(
Sℓ,α

)2
=

∑
i

(
Si

)2
= NNsS

2. (B12)

One must note that the same result can be obtained by
minimizing the classical energy in Eq. (B8) using the La-
grange multiplier for the weak constraint in (B2), the
procedure that yields the eigenvalue problem directly for
λQ [61], much in the spirit of the original LT approach.

The spin eigenstates corresponding to the minimal
eigenvalues λQ found within the LT approach usually
are the so-called single-Q structures, for which S(±Q)
must be kept to determine the type of the spin arrange-
ment, although the generalizations to the multi-Q states
are also possible, see, e.g., Ref. [124]. In many cases, the
commensurate ordering vectors Q already give a clear
idea of the type of spin ordering.

If the LT eigenstate also satisfies the strong con-
straint (B1), then LT method gives the correct classical
ground state. In our case, the strong constraint is satis-
fied for the FM, ZZ, AFM, and stripy phases. Otherwise,
it formally breaks down, see, however, the discussions in
Secs. IVA3 and IIIA 1.

Below, we list explicit expressions for the elements of
the exchange matrices that were used to create the LT
phase diagrams in Fig. 2, Fig. 4, Fig. 14(a), Fig. 15(a),
Figs. 16(a) and (c), and Fig. 27.
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2. Application to the J1–∆–J±±–Jz±–J3 and
K–J–Γ–Γ′–J3 honeycomb lattice models

The honeycomb lattice considered in this work is bipar-
tite with the same spin length on each site. The couplings
that are of interest for the model (1) concern the first-
and the third-nearest neighbors, providing connections
only between the A and B sublattices, see Fig. 1.

With that, using the primitive vectors from Fig. 1(c),

δ1 = a(1, 0) and δ2(3) = a(−1/2,±
√
3/2), with a being

the lattice spacing, and δ
(3)
α = −2δα, one can straight-

forwardly derive the elements of the Fourier transformed
3× 3 exchange matrix ĴAB(q).

For the model (3) in the J1–∆–J±±–Jz±–J3 represen-
tation they are

Jxx
AB = J1γq + 2J±±γ

′
q + J3γ

(3)
q ,

Jyy
AB = J1γq − 2J±±γ

′
q + J3γ

(3)
q ,

Jzz
AB = ∆J1γq + J3γ

(3)
q , (B13)

Jxy
AB = Jyx

AB = −2J±±γ
′′
q ,

Jxz
AB = Jzx

AB = Jz±γ
′′
q ,

Jyz
AB = Jzy

AB = −Jz±γ
′
q,

where the hopping amplitudes are

γq =
∑
α

eiqδα , γ(3)
q =

∑
α

eiqδ
(3)
α , (B14)

γ′
q =

∑
α

cos φ̃αe
iqδα , γ′′

q =
∑
α

sin φ̃αe
iqδα ,

and the bond-dependent phases φ̃α = {0, 2π/3,−2π/3}
for the α= {1, 2, 3} bonds in Fig. 1 are the bond angles
of the primitive vectors δα with the x axis, as before.
Obviously, since the real-space exchanges are real, the
ĴAB(q) matrix is symmetric.

The matrix elements of ĴAB(q) in the K–J–Γ–Γ′–J3
parameterization (2) are

Jxx
AB = Jγq +Keiqδ2 + J3γ

(3)
q ,

Jyy
AB = Jγq +Keiqδ3 + J3γ

(3)
q ,

Jzz
AB = Jγq +Keiqδ1 + J3γ

(3)
q , (B15)

Jxy
AB = Jyx

AB = Γeiqδ1 + Γ′ (eiqδ2 + eiqδ3
)
,

Jxz
AB = Jzx

AB = Γeiqδ3 + Γ′ (eiqδ1 + eiqδ2
)
,

Jyz
AB = Jzy

AB = Γeiqδ2 + Γ′ (eiqδ1 + eiqδ3
)
.

Using ĴBA = Ĵ†
AB , numerical diagonalization together

with the scan of the reciprocal space provide the ground
state and the ordering vectorQ for the given choice of the
model parameters. Further analysis of the spin arrange-
ment can be done using the inverse Fourier transform of
the spin eigenvectors.

Appendix C: ED Details

The exact diagonalization (ED) calculations for the
phase diagrams in Figs. 3, 14(b), 15(b), and 16(b) were

performed on the high-symmetry 24-site honeycomb-
lattice cluster with periodic boundary conditions, shown
in Fig. 24(a). It respects all space-group symmetries of
the lattice. The allowed momenta of the reciprocal space
in the first three Brillouin zones are shown in Fig. 24(b)
together with the high symmetry points.
The ED phase diagrams are obtained by one-

dimensional sweeps along various paths through the pa-
rameter space, with the quantum model solved to find
its ground state at each point of the sweep along the
varying parameter X [43, 65, 118, 125, 126]. The phase
boundaries are identified with the positions of the max-
ima in the (negative) second derivative of the ground
state energy with respect to the sweeping parameter,
−∂2E0/∂X

2. The momentum q from the set of the al-
lowed momenta of the cluster with the maximal static
spin-structure factor

S(q)= 1

N2

∑
α

∑
r,r′

⟨Sα
r S

α
r′⟩eiq(r−r′),

provides a candidate for the ordering vector of the state
in the thermodynamic limit. If no obvious dominant can-
didate can be found, hinting at either an incommensurate
or more complicated form of ordering, the corresponding
segment of the sweep is labeled as NCO for the non-
commensurate order.

1. Cartesian ED phase diagrams

To obtain the phase diagrams for the Point 0, A, and B
sets in Figs. 14(b), 15(b), and 3, respectively, ED sweeps
where carried out in the horizontal (fixed J3, varying J)
and vertical (fixed J , varying J3) directions, with a dis-
cretization step of 0.01 meV within the depicted range of
the phase diagrams. In Fig. 24(c), positions of the max-
ima of the −∂2E0/∂J

2
(3) are shown as dots with the color

labeling the sweep direction. The phase boundaries are
then drawn by linearly interpolating these dots. Depend-
ing on the clarity of the course of the phase boundary,
the distance between the sweeps was chosen to be 0.25
or 0.5 meV, with each sweep containing 500 points.
To demonstrate the process of obtaining the phase

boundaries in more detail, we discuss a representative ex-
ample of such an ED sweep of the phase diagram for the
Point 0 parameter set in Fig. 14(b), shown in Figs. 24(d)
and 24(e). It is a vertical sweep with J3 as a varied pa-
rameter for the fixed J = −1.25 meV, which is shown
in Fig. 24(c) by the vertical arrow. In Fig. 24(d), the
ED ground state energy per site and its negative sec-
ond derivative are shown. Fig. 24(e) shows the values
of the static structure factor S(q) at the color-coded
high-symmetry points along the sweep, with the iden-
tified phases indicated.
In the energy derivative, one can see four peaks, with

the two sharp inner ones, marked as #1 and #2, and
two outer ones for the smaller and larger values of J3,
marked as #0 and #3, respectively, being considerably
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FM

NCO1

NC
O2

ZZ

FIG. 24. (a) The 24-site cluster used in the ED calculations; the outer bonds visualize its periodicity. (b) The allowed momenta
in the reciprocal space with the high-symmetry points. (c) Dots mark maxima in −∂2E0/∂J

2
(3) in the vertical and horizontal

sweeps for the Point 0 parameter set, see Figs. 14(b). (d) ED ground state energy per site and its second derivative vs J3 for
J1=−1.25 meV and Point 0 parameters. (e) Structure factor S(q) at the high-symmetry points for the same sweep.

broader. The sharp peaks can be taken as a signature of
the singularities already in the first order derivatives of
energy, implying first-order transitions, while the latter
is suggestive of the more continuous phase transitions in
the thermodynamic limit [150].

From the analysis of the structure factor in Fig. 24(e),
the small J3 region of the sweep spans the FM, while the
large J3 region of it belongs to the ZZ phase. The three
intermediate regions have no dominant indicators of the
ordering vector aside from the proximities to the FM and
ZZ transitions in the two sectors marked as NCO1. They
are considered as belonging to the same phase because
of their continuity that is obvious from Fig. 24(c). The
NCO2 phase is distinct and is carving itself a separate
area of the phase diagram.

While the small size of the ED cluster should not be
able to accommodate the IC1 and IC2 spiral phases dis-
cussed in Sec. IV, it is curious that it is still able to detect
sharp transitions between some phases that must be rem-
iniscent of them. It is also notable that the ED results
clearly indicate a prominent intermediate region between
the FM and ZZ phases, which is also in a close qualitative
agreement with the LT and DMRG results.

2. Polar ED phase diagram

The polar ED phase diagram of the JXY
1 –Jz±–J3 model

discussed in Sec. III B is shown in Fig. 16(b). It is ob-
tained using the grid of the radial, polar, and spiral
sweeps, with the summary of them shown in Fig. 25(a).
Each dot corresponds to a maximum in the Gaussian or
Lorentzian fit of the −∂2E0/∂X

2, with X = {θ, φ} and
the color labeling the sweep direction, as before.

The polar sweeps covered the entire range, 0≤φ<2π,
of the polar angle, encoding the relative values of

the J1 and J3 terms, for the circles of different ra-
dius, which is controlled by the angle 0 ≤ θ ≤ π/2,
encoding the Jz± term. The radii were fixed at θ/π =
{1/80, 1/32, 1/16, 3/40, 7/80, 1/8, 1/5, 1/4, 3/8, 1/2}
with the φ step of π/500, i.e., 1000 points in a circle.
In order to closely explore the region near the ZZ-FM
boundary, which is of most interest, additional polar
sweeps have been performed for the smaller range
of φ, 3π/4 ≤ φ < 5π/4, for a finer mesh of radii,
θ/π = {0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5},
and also with the higher discretization of π/2000,
corresponding to 1000 points for the sweep range.

The radial sweeps with θ were done along the radial
lines of fixed φ={0, π/2, π, 3π/2} with a step of π/1000
for the entire range of 0≤θ≤π/2. In addition, two spiral
sweeps, which had both θ and φ varying along the sweep,
have been performed. Both had four full rotations in φ,
0≤ φ< 8π, with the first varying θ from 0 to π/2, and
the second from 0 to π/5, aimed at a closer investigation
of the central region of the phase diagram. Both spiral
sweeps had 1000 points.

Generally, because of the finite size of the ED cluster,
the indicators of the transitions between different phases
provided by the peaks in the energy derivative often have
a finite width. This feature requires additional analysis
in the cases of the two transitions coming close and peaks
overlapping, such as the case shown in Fig. 25(b) and dis-
cussed below. The simple criterion for the transition as
the derivative’s maximum fails in these cases, while the
finer step of the sweep cannot help with increasing the
resolution as the width of the peak is the ED cluster prop-
erty. The solution is to fit the more complicated struc-
tures in the energy derivatives by a pair of the Gaussian
or Lorentzian peaks, identifying their individual maxima
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FIG. 25. (a) Same as Fig. 24(c) obtained by the polar, radial, and spiral sweeps. The Gaussian and Lorentzian fits of the close
phase boundaries and the areas affected by the finite-size effects of the ED cluster, marked in gray, are discussed in text. (b)
and (c) Same as Figs. 24(d) and 24(e), respectively, for θ=π/2, see text for details.

with the phase boundaries.

The fitting procedure by the two overlapping peaks
using FindFit routine in Wolfram Mathematica [151] re-
produces the ED energy derivatives very well, but it leads
to slightly different positions of the phase boundaries in
the FM-ZZ region for the Gaussian and Lorentzian fits,
see Fig. 25(a). For the phase diagram in Fig. 16, the
Lorentzian border has been chosen.

In Figs. 25(b) and 25(c), we present the results for the
representative polar sweep that corresponds to the cir-
cumference of the circle in Fig. 25(a), θ=π/2, for which
Jz± term vanishes and the model reduces to the simpler
JXY
1 –J3 model, much studied recently [116]. Notations
are the same as in Figs. 24(d) and 24(e), respectively.

We first discuss the asymmetric peak #1 in the energy
derivative in Fig. 25(b), which corresponds to the prox-
imity of the FM-ZZ boundary and is indicative of the
two transitions, not one. Moreover, the structure factor
in Fig. 25(c) also shows a combination of the contribu-
tions from the AFM Γ′ and K/2 points in this region,
suggesting an intermediate NCO phase. Applying the
analysis of the overlapping peaks discussed above pro-
duces a clear intermediate region between the FM and
ZZ phases. Its existence is also supported by a continu-
ity argument with the Jz±>0 sweeps, for which the two
peaks for the transitions into the NCO phase from the
neighboring FM and ZZ phases become distinct. This
scenario is also in a close accord with the LT phase dia-
gram in Fig. 16(a).

Two additional features of the sweep in Figs. 25(b) and
25(c) and of the ED phase diagram in Fig. 25(a) should
be noted. Both concern the regions of the dominant J3,
i.e., proximities of the φ=π/2 and φ=3π/2 points with
J1=0, for which the 24-site cluster splits into three inde-
pendent clusters containing only 8 sites each connected

by the sparse J3 network.
Because of this finite-size effects, various artificial de-

generacies emerge. The energy of the pure AFM J1
model, shown in Fig. 25(b) by the cross, should be equal
to that of the pure J3 model (φ=π/2) in the thermody-
namic limit, demonstrating strong finite-size effects for
this region of φ. The affected regions are marked with
gray color and the AFM-ZZ sector of the phase diagram
was clarified by DMRG.
For the ferromagnetic J3 limit (φ=3π/2), the FM state

is purely classical. The abrupt transition between the FM
and stripe phases is also clearly reflected in the jump of
the ordering vector associated with the two phases.
Altogether, the analysis provided here underscores a

close quantitative unity of the results between the ED,
LT, and DMRG approaches.

3. Dynamical spin-spin correlation function

The dynamical spin-spin correlation function

Sµν(q, ω) =
1

2π

∫ ∞

−∞
eiωt⟨Sµ

−q(t)S
ν
q(0)⟩ dt , (C1)

can be related to various forms of dynamical structure
factors, which are the subjects of ESR and INS spectro-
scopic experiments.
The correlation functions (C1) can be calculated nu-

merically using ED in finite clusters, such as the one dis-
cussed in this work; see also Refs. [65, 75, 103]. ESR
measures the q=0 sector of the dynamical structure fac-
tor, and for the results discussed in Sec. IVB, the com-
ponents perpendicular to the applied field are of interest.
For a field in the a-direction, the in-plane Sbb(0, ω) com-
ponent was used in Fig. 22 as a proxy for the true ESR
structure factor.



33

En
er

gy
 (m

eV
) Intensity (arb. units)

X K Γ Y Γ′ M K XΓ
FIG. 26. The intensity map of S(q, ω) from Eq. (C2) for the
Point ⋆ parameter set in zero field along the q-path shown
in the inset.

In Figure 26 we provide an intensity plot of the sum
of the diagonal components of the spin-spin correlation
function from (C1)

S(q, ω) =
∑
µ

Sµµ(q, ω), (C2)

for the Point ⋆ parameter set of model (1) in zero field.
It can serve as a rough proxy for the INS dynamical struc-
ture factor [152]. Because the C3 symmetry of the spin
ground state is maintained in the ED calculations, the
results in Fig. 26 also correspond to an effective averag-
ing over the three distinct zigzag domains [75] for the
Point ⋆ set ground state.
As in the ESR comparison in Sec. IVB, the ED calcu-

lations for Fig. 26 used the Lanczos algorithm [143] and
the continued fraction method [144], with a Krylov di-
mension of 150 and a Lorentzian broadening of 0.5 meV.
As described in Sec. V, these preliminary results re-

quire a more detailed analysis to be compared with the
available INS data. However, certain improvements rel-
ative to similar comparisons using different parameter
sets [75, 80] can be pointed out, such as a better quan-
titative matching of the lowest-energy excitations at the
M- and Γ-points and a wider spectral weight distribution
in the magnetic spectrum across the BZ, in accord with
experimental expectations.

Appendix D: LT polar phase diagram with J±±>0

Our Figure 27 shows the effect of J±± in the full po-
lar phase diagram obtained by the LT method, with the
cutout of the FM-ZZ region from it shown in the main
text in Fig. 16(c). The phase diagram is of the model
(3) for the XY limit of the XXZ term, ∆=0, and for a
small J±±=0.05, with J1 and J3 encoding the polar and
Jz± the radial coordinates in units of J21+J2z±+J2

3 =1, as
before. The choice of J±±=0.05 is motivated by its rela-
tive value for the physical region of α-RuCl3 parameters
discussed in Sec. II B 2.

Compared to the LT phase diagram in Fig. 16(a) for
J±±=0, which shows a complete symmetry between FM
and AFM and ZZ and stripe phases, respectively, such a
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FIG. 27. Polar phase diagram of the model (3) for ∆ = 0,
J±± = 0.05, with J1 and J3 encoding the polar and Jz± the
radial coordinates in units of J21+J2z±+J2

3 =1. The box shows
the cutout shown in Fig. 16(c). For details, see Sec. III.

symmetry is lost in Fig. 27, suggesting a similarity be-
tween the effects of the finite J±± to the quantum effects
observed in ED phase diagram in Fig. 16(b).
Another important effect of the finite and positive J±±

is the protrusion of the IC2 region in the IC1 phase within
the FM-ZZ quadrant, bringing a consistency of the polar
phase diagram consideration with that of the Cartesian
phase diagrams in the generalized KH parametrization
(2) in Figs. 14 and 15, which feature both IC phases
prominently. It is also relevant to the consideration of
these IC phases, which are proximate to the physical pa-
rameter space of α-RuCl3, given in Sec. IV.
In addition to the symbols representing projections of

all individual α-RuCl3 parameter sets listed in Table I
onto the ∆=0 plane of the phase diagram, Fig. 27 shows
the group of three diamonds, which are the sets listed
in Table III that were proposed in Ref. [46]. They were
put forward using phenomenological constraints on the
α-RuCl3 parameters, but were deliberately not included
in Table I for the sake of not skewing independent distri-
bution of parameters from the prior literature, exposed
and discussed in Sec. II B 4.

Appendix E: Classical helix ansatz

One can study incommensurate spiral phases using the
general classical spin-helix ansatz, which, unlike the LT
method, respects the spins’ length

Si,γ = u cos θi,γ + v sin θi,γ , (E1)

where vectors u and v of length |u|= |v|=S define the
plane of spins’ rotation, γ is the sublattice index, and
phases are θi,γ=Qγri +φγ , with the propagation vector
of the spiral Qγ and its phase shift φγ .
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Reference Method K Γ Γ′ J J3 J±± Jz± J1(1−∆)

Maksimov et al. [46]
point 1 -4.8 4.08 2.5 -2.56 2.42 0.3 -3.0 9.08

point 2 -10.8 5.2 2.9 -4.0 3.26 1.0 -6.2 11.0

point 3 -14.8 6.12 3.28 -4.48 3.66 1.5 -8.3 12.7

TABLE III. Same as Table II for the sets in Ref. [46], also showing J and J3.

For instance, the y-z and x-z helical states, such as
the ones associated with, respectively, the IC1 and IC2
phases of the main text, are given by

Si,γ = ŷS cos θi,γ + ẑS sin θi,γ , (E2)

Si,γ = x̂S cos θi,γ + ẑS sin θi,γ , (E3)

see Eqs. (14) and (15) for comparison.

In addition to the spiral states, the form in Eq. (E1)
can also describe all commensurate-Q states that are dis-
cussed in this work, such as the ferromagnetic, antiferro-
magnetic Néel, stripe, and zigzag collinear orders.

Specifically, the choice of Q= 0 with φA = φB corre-
sponds to a FM state, while an AFM state is associated
with the same Q and phases φA = φB + π. The zigzag
and stripe states correspond toQ=G/2=M-point, where
G is the nearest-neighbor reciprocal-lattice vector. The
phases are φA =φB for the stripe and φA =φB + π for
zigzag states. The values of φA(B) phases are determined
from the energy minimization and define the direction of
the ordered moments in the u–v plane.

Using Eq. (E2) and crystallographic parametrization
of the model (3), after some algebra, one can obtain the
energies of the FM, AFM-z, and zigzag states, per the
honeycomb-lattice unit cell and in units of S2, as

EFM = 3J1 + 3J3

EAFM-z = −3∆J1 − 3J3 (E4)

Ezz =
1

2

[
J1 +∆J1 − 6J3 + 4J±±+

(J1 −∆J1 + 4J±±) cos 2φA + 4Jz± sin 2φA

]
,

where φA=α is the out-of-plane tilt angle of the spins in
Eq. (5).

Motivated by the results analyzed in Sec. IVA, we
have studied the incommensurate single-Q helical states
with the co-rotating, QB = QA, and counter-rotating,
QB=−QA (φB⇒−φB), helices defined by Eq. (E1). In
addition to the y-z and x-z helical states defined above,
Eqs. (E2) and (E3), we have also considered the ener-
getics of the x-y spirals that are coplanar with the Q
vector.

Of the considered states, the energies of the y-z and x-z
counter-rotating helical states, which are close analogues
of the IC1 and IC2 states discussed in Sec. IVA, are of

FM
IC1

z-
A

F
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J (meV)
J 3

 (
m
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)
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FIG. 28. Phase diagram of the model (1) using the classical
helical ansatz (E1) for the Point 0 set, c.f., Fig. 14.

most interest. They are given by

Eyz =
∑
δα

{(J1
2
(1−∆)− J±±c̃α

)
cos (Qδα +∆φAB)

− Jz±c̃α sin (Qδα +∆φAB)
}
, (E5)

Exz =
∑
δα

{(J1
2
(1−∆) + J±±c̃α

)
cos (Qδα +∆φAB)

− Jz±s̃α sin (Qδα +∆φAB)
}
, (E6)

in the crystallographic parametrization of the model (3),
per the honeycomb-lattice unit cell, and in units of S2,
with ∆φAB=φA−φB and δα being the nearest-neighbor
vectors of the honeycomb lattice. An important feature
of the results in Eqs. (E5) and (E6) is their indepen-
dence of the isotropic terms of the model (1). That is,
if rewritten in the generalized KH parametrization, the
energies of the counter-rotating spirals depend only on
the {K,Γ,Γ′} parameter sets, the feature noticed in the
discussion of such states in Sec. IVA.
Minimizing Eqs. (E5) and (E6) with respect to Q and

∆φAB , doing the same for the similar expressions for the
energies of the helical states with different spin planes
and co-rotating configurations, and comparing them to
the energies of the commensurate states in Eq. (E4) al-
lows one to obtain the purely classical phase diagrams of
the model (1).
Our Fig. 28 shows a representative phase diagram for

the Point 0 parameter set in the Cartesian J–J3 axes of
the KH parametrization, to be compared with the LT
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and ED phase diagrams in Fig. 14 for the same param-
eters. One can see that while identical to LT regarding
the commensurate FM, ZZ, and AFM phases, of the clas-
sical helical states considered here it is only IC1 (y-z)
counter-rotating state that is stabilized. It is also stable
in a smaller region of J and J3. These results underscore
the importance of quantum fluctuations in stabilizing IC
phases in a significantly extended parameter space.

However, we note that the classical solutions for the
y-z and x-z counter-rotating helical states exhibit great

similarities to the findings presented in Sec. IVA. First
of all, in both cases, the propagation vector of the helix is
found to be orthogonal to the plane of spins, Q∥ x̂∥ΓM
line for the y-z (IC1) and Q ∥ ŷ ∥ ΓK line for the x-z
(IC2) helices. Then, the phase differences are found in
a complete accord with the LT and DMRG results in
Sec. IVA, with ∆φAB being zero for the IC2 state and
close to 41◦ for the representative Point 0 parameter set
in the IC1 state. Last, but not the least are close values
of the IC1 and IC2 pitches of the spirals, discussed in the
main text.
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