UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

A computer mouse-based throwing task to study perceptual-motor skill learning in humans and machines

Permalink

https://escholarship.org/uc/item/99w5444t

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors

Nalepka, Patrick Schell, Georgina Patil, Gaurav et al.

Publication Date

2022

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

A computer mouse-based throwing task to study perceptual-motor skill learning in humans and machines

Patrick Nalepka

Macquarie University, Sydney, NSW, Australia

Georgina Schell

Macquarie University, Sydney, NSW, Australia

Gaurav Patil

Macquarie University, Sydney, NSW, Australia

Michael Richardson

Macquarie University, Sydney, NSW, Australia

Abstract

Perceptual-motor tasks offer redundant solutions to achieve a goal. However, not all solutions are equally robust to error-producing noise or variability and thus, skill learning can be viewed as a search process to identify behaviors that are error-tolerant. Throwing a ball to hit a target is one such example of a complex perceptual-motor skill that has been studied in the laboratory via the virtual "skittles" task, a simplified 2D task involving throwing a tetherball around a pole to hit a target. We implemented the task as a Unity3D environment (code here: https://github.com/ShortFox/SkittlesTaskEnvironment/) which enables participants to complete the task with a computer mouse and replicated key findings from previous research. Our implementation allows for remote data collection and can serve as a pedagogical tool to teach concepts in skill acquisition. Future work will use this task to explore human versus machine skill acquisition by leveraging Unity's MLAgents reinforcement learning package.