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Connectionist Semantic Systematicity in Language Production
Jesús Calvillo (jesusc@coli.uni-saarland.de)

Harm Brouwer (brouwer@coli.uni-saarland.de)

Matthew W. Crocker (crocker@coli.uni-saarland.de)
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Abstract

A novel connectionist model of sentence production is pre-
sented, which employs rich situation model representations
originally proposed for modeling systematicity in comprehen-
sion (Frank, Haselager, & van Rooij, 2009). The high overall
performance of our model demonstrates that such represen-
tations are not only suitable for comprehension, but also for
modeling language production. Further, the model is able to
produce novel encodings (active vs. passive) for a particular
semantics, as well as generate such encodings for previously
unseen situations, thus demonstrating both syntactic and se-
mantic systematicity. Our results provide yet further evidence
that such connectionist approaches can achieve systematicity,
in production as well as comprehension.
Keywords: systematicity; sentence production; connectionist;
semantics; syntax; neural networks

Introduction
A defining characteristic of human language is systematicity:
“the ability to produce/understand some sentences is intrin-
sically connected to the ability to produce/understand certain
others” (Fodor & Pylyshyn, 1988, p. 37). Further, Fodor
and Pylyshyn (1988) argue that connectionist models are not
able to display systematicity without implementing a classi-
cal symbol system.

The connectionist comprehension model developed by
Frank et al. (2009), however, challenges this highly debated
assertion, by developing a connectionist model of compre-
hension which is argued to achieve relevant levels of system-
aticity. Their model constructs a a situation model (see Zwaan
and Radvansky (1998)) of the state-of-affairs described by a
sentence that also incorporates world knowledge-driven in-
ferences. When the model processes a sentence like ‘a boy
plays soccer’, for instance, it not only recovers the explicit,
literal propositional content, but also constructs a more com-
plete situation model in which a boy is likely playing outside
on a field, with a ball, with others, and so forth. In this way it
differs from other connectionist models of language compre-
hension and production, that typically employ simpler mean-
ing representations, such as case-roles (Chang, Dell, & Bock,
2006; Mayberry, Crocker, & Knoeferle, 2009; Brouwer,
2014, among others). Crucially, Frank et al. (2009)’s model
generalizes to both sentences and situations that it has not
seen during training, exhibiting different levels of semantic
systematicity and is argued to provide an important step in
the direction of psychologically plausible models of language
comprehension.

In the present paper, we examine whether the approach
developed by Frank et al. (2009), is equally well suited to

language production, and present a connectionist production
model that generates sentences from these rich situation mod-
els. We show that our model successfully learns to produce
sentences from these rich meaning representations. Crucially,
we demonstrate that this model is able to describe unseen
situations, demonstrating semantic systematicity similar to
Frank et al. (2009), as well as produce alternative encodings
(e.g. active/passive) for a given situation, that were not seen
during training and thus demonstrate syntactic systematicity.

Method
We employ an extended Simple Recurrent Neural Network
architecture (SRN) (Elman, 1990) to generate sentences from
rich semantic representations, called Distributed Situation
Space (DSS) vectors. The DSS model (Frank, Koppen, No-
ordman, & Vonk, 2003; Frank et al., 2009) is a distributed
scheme for meaning, in which the meaning of a situation—a
state of affairs—is represented as a situation vector in a high-
dimensional “situation-state space”.

This section is organized as follows: first, we introduce
the Distributed Situation Space as described by Frank et al.
(2003, 2009); then, we explain the vectors that we use as well
as the architecture of the model; afterwards the training and
evaluation schema is presented; and finally we present the
results obtained from the evaluation.

Distributed Situation Space
The DSS model defines a microworld in terms of a fi-
nite set of basic events (e.g., play(charlie,chess) and
place(heidi,bedroom))—the smallest meaning-discerning
units of propositional meaning in that world. While these
basic events can be defined in several ways, we adopt the
microworld presented by Frank et al. (2009). Situations
in a microworld are represented in terms of these basic
events, which can be conjoined to form complex events (e.g.,
play(charlie,chess)∧win(charlie)). Not all conjunctions of
basic events are, however, possible or equally likely. That
is, world knowledge can pose both hard (e.g., physical)
and probabilistic (e.g., preferential) constraints on event co-
occurrence. A situation-state space is a large set of m situa-
tions defined in terms of n basic events, effectively yielding
an m×n matrix (see Table 1). Each of the m situations in this
matrix is encoded by setting basic events that are the case
in a given situation to 1 (True) and those that are not to 0
(False). A situation-state space matrix is constructed by sam-
pling m situations (using a non-deterministic sampling proce-
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Table 1: Situation-state space.
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situation1 1 0 0 . . . 1
situation2 0 1 1 . . . 1
situation3 1 1 0 . . . 0
. . . . . . . . . .
situationm 0 1 0 . . . 0

dure) such that no situation violates any hard world knowl-
edge constraints, and such that the m situations approximate
the probabilistic nature of the microworld in terms of the (co-
)occurrence probability of the n basic events. The resulting
situation-state space matrix is then effectively one big truth
table, in which each column represents the situation vector
for an individual basic event; that is, each column of the
matrix encodes the meaning of a basic event in terms of its
co-occurrence with all other basic events. The situation vec-
tors of complex events (combinations of basic events) can be
found through propositional logic, allowing to capture phe-
nomena such as negation, conjunction and disjunction; con-
versely, complex events also allow us to capture aspects of
modality and quantification.

This situation-state space encodes all knowledge about the
microworld, and situation vectors capture dependencies be-
tween situations in this space, thereby allowing for ‘world
knowledge’-driven inference.

DSS representations have been successfully used in a con-
nectionist comprehension model (Frank et al., 2009). That
is, Frank et al. (2009) defined a small microworld (see sec-
tion two of their paper), consisting of 44 basic events, cen-
tred around three people, and a few games, toys, and places.
They constructed a situation-state space by sampling 25,000
situations in this microworld, and reduced the dimensional-
ity of the resulting 25k-dimensional situation vectors to 150-
dimensions using a competitive layer algorithm. Using these
reduced vectors, they show that their model is not only able
to comprehend sentences that it has seen during training, but
that is also able to comprehend sentences and situations that it
has never seen before (i.e., it shows semantic systematicity).

The vectors that we use for production are slightly differ-
ent. Namely, the dimensionality of the situation-space was
not reduced, since its reduction involves some loss of infor-
mation. Rather, for each 25k-dimensional situation vector as-
sociated to a particular sentence, which in turn is associated
to a (complex) event; we compute a belief situation vector,
whose dimensionality is equal to the number of basic events
in the microworld (44 in this case) and the value of each di-
mension is equal to the conditional probability of the corre-
sponding basic event, given the (complex) event associated

to the sentence.1 In other words, each dimension represents
how likely each basic event is to be true, given the situation
that is expressed by the sentence.

The Model
Our model architecture, as we can see in Figure 1, is broadly
similar to the one used by Frank et al. (2009), with the main
difference being that the inputs and outputs are reversed; it
maps DSS representations onto sequences of localist word
representations. Similar to Frank et al. (2009), we stress that
it is not intended to model human language development.

The model consists of a 45-unit input layer, a 120-unit re-
current hidden (tanh) layer, and a 43 unit (softmax) output
layer. The dimensionality of the input layer corresponds to
the 44 basic events in the microworld, plus one extra binary
unit that indicates whether the model must output an active
sentence (1), or a passive one (0). The dimensionality of the
output layer matches the number of available words in the
grammar (42), plus the end-of-sentence marker.

Time in the model is discrete. At each time-step t, acti-
vation propagates forward following the trajectory: input→
hidden→ output. The activation of the output layer yields a
probability distribution over the available words. We define
the word produced at time-step t as the one with highest prob-
ability (highest activation). The model stops producing words
when an end-of-sentence marker has been produced.

The hidden layer also receives a copy of its own activation
pattern at the previous time-step t−1, through a 120-unit con-
text layer, which is set to zero at the beginning of each sen-
tence. These units help to preserve some memory of what has
been produced expanding several time steps in the past, and
allow the model to generate sentences of variable length.

In addition, the hidden layer receives the identity of the
word that was produced at time-step t − 1 (zeros at t = 0)
through monitoring units that connect the output layer to the
hidden layer, where only the output unit corresponding to the
produced word at time-step t−1 is activated (set to 1), while
all other units are set to 0.

Finally, the hidden and output layers also receive input
from a bias unit (with a constant activation value of 1).

Examples Set
The examples set consists of a set of pairs
{(DSS1,ϕ1), . . . ,(DSSn,ϕn))} where each DSSi ∈ [0,1]45

corresponds to a DSS representation plus an extra bit indi-
cating whether the system must produce an active sentence
(1) or a passive one (0); and ϕi = {sent1, . . . ,sentk} where
sent j is a sentence, a sequence of words word1, . . . ,wordn,
expressing the information contained in DSSi. Each set
ϕi represents all the possible sentences that express the

1This vector is computed by calculating the dot product between
the situation-state matrix and the original 25k-dimensional situation
vector, and then normalizing each dimension of the resulting vec-
tor by the sum over the dimensions of the original 25k-dimensional
situation vector.
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Figure 1: Model architecture.

information contained in the corresponding DSSi and in the
expected voice.

The sentences that we use are those generated by the mi-
crolanguage defined by Frank et al. (2009) (see their Tables
5–8). This microlanguage consists of 40 words that can be
combined into 13556 sentences according to its grammar. We
minimally modified this grammar. First, we introduced the
determiners that were missing (a, the); and second, we added
an end-of-sentence marker (a period) to the sentences. Leav-
ing a total of 43 words that were encoded at the output layer
as localist vectors.

Sentences that expressed unlawful situations according to
the microworld rules, and therefore whose DSS belief vec-
tors were empty, were discarded; leaving a total of 8201 law-
ful sentences. From these, 6782 sentences were in active
voice and 1419 in passive. Note that this set contains sen-
tences with simple semantics (e.g., “charlie plays chess .” →
play(charlie,chess)), as well as sentences with complex se-
mantics (e.g., “a girl plays chess .” → play(heidi,chess)∨
play(sophia,chess)).

There were a total of 782 unique DSS representations,
from which 424 were related to both passive and active sen-
tences. The rest (358) corresponded to situations that could
only be expressed by active sentences according to the gram-
mar. More concretely, the grammar presented in Frank et al.
(2009) does not define passive sentences for situations where
the object of the action is either a person (e.g. “Heidi beats
Charlie.”) or undefined (e.g. “Charlie plays.”).

Training and Evaluation
In order to asses the performance of the model in terms of
accuracy and generalization, we employed a 10-fold cross-
validation schema. First, we divided the DSS representations
into two sets: the first one (setAP) corresponding to those
associated to both active and passive sentences and the second
one (setA) corresponding to DSS representations that were
related only to active sentences.

The first set (setAP) allowed for three different testing con-
ditions:

• Condition 1: Situations for which the model has seen only
active sentences, and a passive is queried.

• Condition 2: Situations for which the model has seen only
passive sentences, and an active is queried.

• Condition 3: Completely new situations (not seen during
training), passive and active sentences are queried.

The second set (setA) allowed for two different testing con-
ditions:

• Condition 4: Situations for which the model has seen only
active sentences, and a passive is queried.

• Condition 5: Completely new situations (not seen during
training), passive and active sentences are queried.

These conditions represent different levels of generaliza-
tion or systematicity. In all cases, the queried sentence type
has never been seen by the model. For conditions 1, 2 and 4
the model has seen the situation but not in the queried voice.
Importantly, for conditions 3 and 5, the model has never seen
the situation itself. Finally, for conditions 4 and 5, where pas-
sives are queried, not only the system has not seen the passive
sentences, but also they are not defined by the grammar.

SetAP was randomly shuffled and split into 10 folds of
90% training and 10% testing DSS representations, meaning
per fold 382 training and 42 testing situations. For each fold,
the testing DSS representations were further split into the 3
conditions, rendering 14 different testing DSS representations
per condition, per fold.

SetA was also shuffled and split into 10 folds, but in order
to preserve uniformity, for each fold and for testing, 14 DSS
representations were drawn per condition; meaning that each
fold contained 28 testing and 330 training DSS representa-
tions.

Finally, for condition 1 the DSS representations were cou-
pled with their corresponding active sentences and incorpo-
rated into the training set (while the passive sentences re-
mained in the testing set); vice-versa for condition 2. Sim-
ilarly, for condition 4 the active sentences were incorporated
into the training set, while during testing the system will be
queried for a passive construction, even though there is none
according to the grammar.

Training Procedure We trained the model using cross-
entropy backpropagation (Rumelhart, Hinton, & Williams,
1986) with weight updates after each word in the sentence
of each training item. Prior to training, all weights on the
projections between layers were initialized with random val-
ues drawn from a normal distribution N (0,0.1). The weights
on the bias projections were initially set to zero.

During training, the monitoring units were set at time t to
what the model was supposed to produce at time t − 1 (ze-
ros for t = 0). This reflects the notion that during training
the word contained in the training sentence at time-step t−1
should be the one informing the next time step, regardless of
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Table 2: Similarity scores for each test condition.

Cond. Query Similarity (%) PerfectMatch (%)
1 pas 97.66 87.86
2 act 97.58 92.86
3 act 98.35 93.57
3 pas 96.79 83.57
5 act 95.08 85.0

the previously produced (and possibly different) word. Dur-
ing testing, the monitoring units are set to 1.0 for the word
that was actually produced and 0.0 everywhere else.

The model was trained for a maximum of 200 epochs, each
epoch consisting of a full presentation of the training set,
which was randomized before each epoch. Note that each
item of this set consisted of a DSSi paired with one of the pos-
sible sentence realizations describing the state of affairs rep-
resented in DSSi. Hence, during each epoch, the model saw
all the possible realizations of DSSi contained in the training
set for a given fold. We employed an initial learning rate of
0.124 which was halved each time there was no improvement
of performance on the training set during 15 epochs. No mo-
mentum was used. Training halted if the maximum number
of epochs was reached or if there was no performance im-
provement on the training set over a 40-epoch interval.

Sentence Level Evaluation For a given DSS representa-
tion DSSi, the model produces a sequence of words ŝi con-
stituting a sentence describing the state-of-affairs represented
in DSSi. Because a DSSi can be described by one or more
sentence(s), we assume that the output of the model is perfect
if the sentence produced ŝi is part of the set ϕi of all possible
realizations of DSSi in the queried voice.

However, sometimes the output of the model ŝi for a DSSi
does not perfectly match any of the sentences in ϕi. As such,
we also compute the similarity between the output of the
model ŝi, and each sentence in ϕi. This similarity is derived
from their Levenshtein distance (Levenshtein, 1966); which
is the number of insertions, deletions or substitutions that are
needed in order to transform one string into another. More
formally, Levenshtein similarity sim(s1,s2) between two sen-
tences s1 and s2 is defined as:

sim(s1,s2) = 1− distance(s1,s2)

max(length(s1), length(s2))
(1)

where distance is the Levenshtein distance. This similarity
measure is 0 when the sentences are completely different and
1 when they are the same. Thus, for each item i in the training
and test set, we obtain a similarity value:

sim(ŝi) = max
s∈ϕi

sim(ŝi,s) (2)

Results
We trained 10 instances of the model, corresponding to each
fold as described above. Each instance was initialized with a

different set of weight matrices. The scores reported below
are averaged over these instances.

On the training set, the model achieved an average simi-
larity score of 99.43% (and 98,23% perfect matches). This
shows that the model is able to learn to transform a DSS situ-
ation vector into a sequence of words describing the state-of-
affairs that the vector represents.

Regarding the test conditions, Table 2 shows the average
similarity scores for each of them. For conditions 4 and 5,
where passives are queried but there are no example sentences
given by the grammar, no similarity scores can be computed
and in exchange a qualitative analysis will be presented.

We can notice a slight drop of similarity scores for con-
dition 5. This could be explained because setA in general
contained fewer sentences per DSS, and thus fewer training
items.

The average similarity score across all conditions is of
97.1%, with 88.57% of perfect matches. This translates into
roughly one to three mistakes per condition and per fold. The
nature of these mistakes is addressed in the next section, how-
ever we can observe that the performance in terms of similar-
ity is very high and almost perfect in several cases.

Qualitative Analysis Although the performance is quite
high, the model elicits a number of systematic mistakes that
provides us with some insight into the internal mechanism
that is implemented by the network. Examples of these are
shown in Table 3.

Taking a qualitative look into the produced sentences, it
is evident that, with literally a couple of exceptions, all the
sentences produced are syntactically correct and semantically
felicitous. The vast majority of the elicited mistakes oc-
cur when the model produces a sentence that is semantically
highly similar to the one expected. This pattern can be seen
already during training, where the mistakes correspond to sit-
uations that are closely related, so the model is unable to
distinguish them, even though it has already seen the situa-
tions/sentences (examples 1-3 in Table 3).

For the conditions shown in Table 2, the errors elicited dur-
ing 5 folds were manually inspected in order to see their regu-
larities. The errors observed (38 in total) can be classified into
2 main categories: the first one (63.2%) being errors concern-
ing over and underspecification, and the second one (31.6%)
corresponding to situations that because of the design of the
microworld are remarkably similar, differing only in one as-
pect.

Concerning the first category, the errors can be further split
into location under- (21.05%) and over- (7.9%) specification
(examples 4-5 in Table 3), subject under- (15.8%) and over-
(10.5%) specification (examples 6-7 in Table 3), and object
under- (2.6%) and over- (5.2%) specification (examples 8-9
in Table 3).

The errors contained in the second category (examples 10-
12 in Table 3) correspond to sentences that at first glance
seem correct, it is only after taking a deep look into the mi-
croworld that one can see the mistake. First, according to this
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Table 3: Examples of representative output errors.

Output Expected
1 someone plays with a ball outside . a girl plays with a ball outside .
2 someone loses in the bedroom . someone wins in the bedroom .
3 a girl loses to someone in the bedroom . someone beats a girl at a game in the bedroom .
4 Sophia beats Heidi with ease at hide and seek . Sophia beats Heidi with ease at hide and seek in the bedroom .
5 Sophia wins with ease at a game in the street . Sophia wins with ease at a game outside .
6 a girl plays with a doll inside . Heidi plays with a doll inside .
7 a game is won with ease by a girl in the bathroom . a game is won with ease by someone in the bathroom .
8 someone plays . someone plays with a toy .
9 Charlie plays a game in the street . Charlie plays in the street .
10 someone wins in the bedroom at hide and seek . someone loses in the bedroom at hide and seek .
11 Heidi loses to someone in the bedroom at hide and seek . someone beats Heidi in the bedroom at hide and seek .
12 Sophia beats someone at hide and seek in the bedroom . someone loses to Sophia at hide and seek in the bedroom .

microworld, whenever there is a winner, there is also a loser,
which means that sentences that are apparently contradictory
(“someone loses.” vs “someone wins.”) actually have the
same implications within the microworld and therefore are
semantically identical. Second, in general whenever there is
a winner/loser, the loser is usually situated in the same loca-
tion as the winner. However, only for the game hide and seek
and when the participants are inside, the loser can be in the
bedroom, while the winner could be in the bathroom, or vice-
versa. Finally, whenever there is a prepositional phrase (“in
the bedroom”), it is attached to the subject of the sentence
according to the grammar, which means that in “Heidi beats
Sophie in the bedroom”, Heidi is in the bedroom while So-
phie could be in either the bedroom or the bathroom, while in
“Sophie loses to Heidi in the bedroom”, it is Sophie who stays
in the bedroom while Heidi could also be in the bathroom.
Apart from this detail, the situations are almost identical.

According to the errors so far analyzed, we can conclude
that the nature of these is primarily related to situations that
are highly similar.

With regard to the test conditions 4 and 5 where a passive
sentence is queried but the grammar does not properly define
its characterization, Table 4 presents examples of output sen-
tences and the situations that they were supposed to portray.
As mentioned before, these situations can be of two types:
the first one involving a winning/losing situation where both
actors are explicitly mentioned, and the second type being sit-
uations where the object of the action is not defined. We took
also a closer look into the output of the model for these condi-
tions by manually making an analysis of the output of 3 folds
(84 situations), whose results we will now present.

Even though in condition 4 the model has not seen the type
sentences that are queried, and that in condition 5 the model
has no experience with the queried situations, the sentences
produced by the model are mostly correct and coherent with
the semantic information that is given to it. One can see that
some information is omitted, however, this is expected since
the grammar itself does not contain rules that allow to fully
encode these situations.

In general, the model learns during training that passive
sentences always start by mentioning the object of the action,

and that this object is never a person. Therefore, for each
situation it tries first to find this object and then it tries to
describe the rest of the situation.

Concerning winning/losing situations (examples 1-2 in Ta-
ble 4), which conform 92.9% of the analyzed situations, the
object is always a game because in the microworld win-
ning/losing can only happen while playing a game. Thus,
the model produces the specific name of the game when it is
known (e.g. “soccer is...”), otherwise the sentence starts with
“a game is...”. Then one of the players is mentioned (one
omitted) and the rest of the situation is portrayed.

For the case of situations with an underspecified object
(7.1%, examples 3-4 in Table 4), it is unknown whether the
subject is playing a game or with a toy, so the model is forced
to choose one. In all cases the model chooses a toy, which
seems reasonable because mostly the DSS representations of
the underspecified sentences are more similar to situations
where a toy is played with. For example, the DSS representa-
tion of “someone plays.” is more similar to the one of “some-
one plays with a toy.” (99.36% cosine similarity) than to the
representation of “someone plays a game.” (97.73% cosine
similarity).

Similar to the other conditions, errors regarding over and
underspecification occur in conditions 4 and 5, but are rare
(example 5 in Table 4). And finally one type of error that ap-
pears only for these situations corresponds to the interchange
of the winner/loser in game situations (example 6 in Table 4).

In sum, one can see from the output that the model is able
to take the linguistic elements learned during training in or-
der to characterize situations for which it has no experience,
while being as informative as possible. The only difficulty
appears to be the distinction of situations that are highly sim-
ilar. However, the performance of the model is very high in
general and even for the sentences that do present a mistake,
the output is largely correct.

Discussion
The model learns to generate sentences from rich situation
representations, and furthermore, it generalizes to novel sen-
tences and situations.

We can see that the model is able to learn the syntactic
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Table 4: Examples of passive output sentences for situations with no passive examples.

Output Active Sentence
1 hide and seek is won with ease by Heidi in the playground . Heidi beats Sophia with ease in the playground at hide and seek .
2 a game is won with ease by Sophia . Sophia beats Charlie with ease .
3 a toy is played with . someone plays .
4 a toy is played with in the playground by Sophia . Sophia plays in the playground .
5 a game is lost with difficulty by Charlie . a girl beats Charlie with difficulty in the street .
6 chess is lost by Heidi in the bedroom . the boy loses to Heidi at chess in the bedroom .

patterns of the microworld and does not just memorize sen-
tences, thus showing syntactic generalization. This was ob-
served in all test conditions, where the model was capable
of producing sentences that it had never seen before. This
means that the model is able to generate new combinations
of words in such a way that the new combinations are in or-
der with the syntactic rules of the grammar associated to the
microworld, while at the same time being coherent with the
semantic structures to which they are related.

Crucially, the model also generalizes semantically, as
demonstrated in test conditions 3 and 5, since the semantic
representations given to the model are completely novel to
it, so any correct output can be regarded as arising from the
regularities within the microworld from which the DSS rep-
resentations are derived—cf. the comprehension results by
Frank et al. (2009).

We hypothesize that the fact that the model has difficul-
ties with highly similar situations means that the model is
able to roughly reconstruct the topography of the microworld
semantic space, putting together situations that are semanti-
cally related. At the same time, the model assigns linguistic
structures to each area in this semantic space such that se-
mantically similar situations are assigned linguistically simi-
lar realizations. Given that in practice the semantic space is a
continuous 44-dimensional space, in theory the model should
be able to generate sentences for unseen areas as long as it is
given enough information during training in order to recon-
struct the semantic space and the mapping between semantics
and linguistic realizations, as proposed by Frank et al. (2009).

The results of the test conditions show that it is indeed the
case. Conditions 3 and 5 demonstrated that the model is able
to generate sentences for unseen areas in the semantic space,
therefore showing semantic systematicity. Conditions 1 and
2 demonstrated that the model is able to generate sentences
for semantically known situations but with a different voice
(active/passive), showing syntactic systematicity. Conditions
4 and 5, where passive sentences are queried, demonstrated
that it is able to produce coherent sentences even if the gram-
mar that was used to construct the training/testing sets does
not associate passive constructions with these situations.

As it is now, the semantic space related to the microworld
that we use is finite, however we were able to show different
levels of systematicity for unknown areas of this space, which
was our main objective. In principle, the microworld can be
extended by adding elements to the set of basic events, and
words to its vocabulary.

Conclusion
We presented a novel connectionist model of sentence pro-
duction that uses the rich semantic representations described
in Frank et al. (2009). This model is able to take such repre-
sentations and produce sentences that accurately describe the
associated situations. The model is also able to produce al-
ternative encodings (e.g. active vs. passive) for a particular
semantics, showing an overall high performance and demon-
strating that these semantic representations are not only suit-
able for comprehension, but also for modeling language pro-
duction. And furthermore, the model is able to generate novel
sentences for previously unseen situations, thus demonstrat-
ing syntactic and semantic systematicity.

References
Brouwer, H. (2014). The electrophysiology of language com-

prehension: A neurocomputational model. Unpublished
doctoral dissertation, University of Groningen.

Chang, F., Dell, G., & Bock, K. (2006). Becoming syntactic.
Psychological review, 113(2), 234.

Elman, J. L. (1990). Finding structure in time. Cognitive
Science, 14(2), 179–211.

Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and
cognitive architecture: A critical analysis. Cognition, 28(1-
2), 3–71.

Frank, S. L., Haselager, W. F. G., & van Rooij, I. (2009).
Connectionist semantic systematicity. Cognition, 110(3),
358–379.

Frank, S. L., Koppen, M., Noordman, L. G. M., & Vonk,
W. (2003). Modeling knowledge-based inferences in story
comprehension. Cognitive Science, 27(6), 875–910.

Levenshtein, V. I. (1966). Binary codes capable of correct-
ing deletions, insertions, and reversals. In Soviet physics
doklady (Vol. 10, pp. 707–710).

Mayberry, M. R., Crocker, M. W., & Knoeferle, P. (2009).
Learning to attend: A connectionist model of situated lan-
guage comprehension. Cognitive Science, 33(3), 449–496.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986).
Learning representations by back-propagating errors. Na-
ture, 323(6088), 533–536.

Zwaan, R. A., & Radvansky, G. A. (1998). Situation models
in language comprehension and memory. Psychological
Bulletin, 123(2), 162–185.

2560




