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Abstract

Reducing energy consumption for urban water management may yield economic and environmental
benefits. Few studies provide comprehensive assessments of energy needs for urban water sectors that
include both utility operations and household use. Here, we evaluate the energy needs for urban water
management in metropolitan Los Angeles (LA) County. Using planning scenarios that include both
water conservation and alternative supply options, we estimate energy requirements of water imports,
groundwater pumping, distribution in pipes, water and wastewater treatment, and residential water
heating across more than one hundred regional water agencies covering over 9 million people. Results
show that combining water conservation with alternative local supplies such as stormwater capture
and water reuse (nonpotable or indirect potable) can reduce the energy consumption and intensity of
water management in LA. Further advanced water treatment for direct potable reuse could increase
energy needs. In aggregate, water heating represents a major source of regional energy consumption.
The heating factor associated with grid-supplied electricity drives the relative contribution of energy-
for-water by utilities and households. For most scenarios of grid operations, energy for household
water heating significantly outweighs utility energy consumption. The study demonstrates how
publicly available and detailed data for energy and water use supports sustainability planning. The
method is applicable to cities everywhere.

1. Introduction

Energy and water resources are highly connected in cities (Kenway et al 2011, 2015, Liu et al 2016, Lam et al
2017b). Urban water agencies use energy to acquire, extract, pump, treat, and discharge water supplies to end-
users, while residents and businesses need energy to heat water in buildings (Escriva-Bou et al 2015, Kenway et al
2015, Spangand Loge 2015, Chini et al 2016, Wakeel and Chen 2016, Lam et al 2017a, 2017b, Yu et al 2018).
Investigating relationships between energy and water consumption can reveal strategies to reduce operational
costs and greenhouse gas (GHG) emissions associated with urban water sectors, both within cities and across

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Estimating energy use throughout utility systems and households (top), and procedures for integrating data and models,
including input data (dashed boxes), models (orange/green/blue boxes), output data (black line boxes), and results (red boxes).

broader regions connected by common infrastructure systems. Actions that reduce these energy needs may yield
social and economic benefits (Stokes and Horvath 2009, Rothausen and Conway 2011, Bartos and Chester 2014,
Mo etal 2014, Malinowski et al 2015, Chini et al 2016).

Better quantifying energy use for urban water management by utilities and end-uses can provide insights that
inform targeted policy interventions (Mo et al 2010, Zhou et al 2013, Escriva-Bou et al 2018). In comparing the
relative contribution of energy use for water management by utilities and end-users, planning models have shown
that residential in-home water heating needs exceed utility operations in cities (Escriva-Bou et al 2015, 2018). Yet,
few studies offer comprehensive empirical examples of the relative contribution of utility and household energy
use in a metropolitan region. Multiple factors make detailed regional analyses a challenging task, including varied
jurisdictional boundaries and sparse available data for infrastructure operations, energy supplies, and end-user
consumption (Perrone et al 2011). Two questions are important. First, what is the energy intensity of existing and
alternative urban water supply operations that characterize the multi-step procedures for acquiring, conveying,
treating and distributing water and sewage throughout a system (Mo et al 2014, Porse et al 2018b)? Second, in case
study cities, what are the relative contributions of utility and end-use energy consumption for water management
in cities across diverse climate and geographic regions? Simultaneously evaluating these through a comparable
quantitative framework can build on existing research and quantify the relative energy used for water management
by utilities in buildings (Kenway et al 2015, Sanders and Webber 2015, Raghavan et al 2017, Kenway et al 2019).

In this paper, we present an analysis to quantify the energy needed for urban water management in
metropolitan Los Angeles (LA). We develop novel modeling methods and combine multiple unique and large-
scale data sets to evaluate energy needs for urban water use across various stages of utility management
(acquisition, pumping, water and sewage treatment, distribution, and disposal) as well as in homes. In addition,
we evaluate opportunities to reduce system-wide energy use for water management through better use of
alternative supply sources such as stormwater capture and water reuse. We quantify the electricity intensity (EI)
of various urban water ‘supply trains’ (Porse et al 2018b), including a novel approach for estimating distribution
energy within a local urban water supply pipe network. The methods and results are widely relevant for regional
and national policies focused on the important task of reducing energy use and associated greenhouse gas
emissions of urban water systems.

2. Methods

To consider energy use for water management in LA County, the study combined several large models and data
sets, including: (1) a model of water resources management simulating demand and supply scenarios for over
one hundred cities and water agencies, (2) property-level energy use billing records; and (3) and modeling of
energy for in-home residential hot water heating (4) electric grid operations data (figure 1).

The approach summed the estimated total for utility water management and residential use across each step of
the urban water cycle, based on integrating available data inputs, models, and actions to compare outputs (figure 1).
Data inputs and outputs for the modeling were integrated through a spatially-explicit, bottom-up procedure that
normalized geographic and temporal differences in data availability to the greatest extent possible (figure 2).

The supplemental information section for this article extensively describes the methods, contributing
models, formulation for the simulation and optimization procedures, data sets (including spatial and temporal
resolution), and data integration methods.
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Figure 2. [llustrating the data integration and modeling approach to evaluate energy consumption for urban water management in
utilities and households. Dashed boxes indicate input data, solid black boxes indicate intermediary data outputs, and colored boxes
indicate tools and models integrated through the procedure. The comparable outputs are noted on the right side of the schematic
(inred).

2.1. Study region

The study evaluated energy use for water management for nearly 10 million people in metropolitan LA County.
A diverse and fragmented network of water agencies is responsible for providing and disposing of water supply
(figure S1 in supporting information is available online at stacks.iop.org/ERC/2/015003 /mmedia)

(Ostrom 1962, DeShazo and McCann 2015, Pincetl et al 2016). The majority of residents and businesses are
served by a hundred sizeable water supply agencies (>3000 connections) that report water supply and demand,
while additional agencies provide wastewater, flood control, and stormwater management services (Porse et al
2017).

The current system relies on imported water for a majority of supply from three main sources: the Colorado
River Aqueduct (CRA), the California Aqueduct through the State Water Project (SWP), and the Los Angeles
Aqueduct to the Owens Valley. While all the sources convey water over significant distances, two of them (CRA
and SWP) require significant energy to get water over high elevations into the LA Basin, causing the electricity
intensity to exceed that of many other urban areas (Garrison et al 2009, Sanders 2016, Sokolow et al 2016, Sowby
and Burian 2017, Stokes-Draut et al 2017, Mika et al 2018) (see Supporting Information).

In 2017, LA County used approximately 1,840 million cubic meters (1.5 million acre-feet) of water from
groundwater, imported, recycled, and surface water sources. Nearly 59% of countywide water demands were
met by imported water, with local groundwater and recycled water supplies providing 41%. The LA region is a
Mediterranean climate with warm-to-hot summers (Kottek et al 2006). Regional precipitation averages across
parts of LA County range from 12-20 inches annually in winter months, with higher totals falling in surrounding
mountains (LA County 2011, NOAA 2018). Municipalities use this precipitation to recharge groundwater basins
asasource of supply. Groundwater recharge operations largely rely on stormwater capture and recycled water
(CB/WCB Amended Judgment 2013, ULARA Watermaster 2012, LADWP 2015).

2.2. Water management modeling

A network flow model with simulation and optimization was used to evaluate effects of regional water
management decisions on energy use, both system wide and for individual water agencies (Porse et al 2017). The
model incorporates sociologic, environmental, hydrologic, and economic parameters to evaluate the benefits
and drawbacks of management options. The network model includes over 100 management agencies,
groundwater basins and sub-basins, river and stream segments, hydrologic zones (47) corresponding to key
environmental and infrastructure components that were aggregated from over 2,000 sub-watersheds in an
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underlying urban hydrology model (LACDPW 2013), wastewater treatment plants, stormwater capture basins,
and regional dams and reservoirs that are part of water supply infrastructure. It simulates and optimizes water
management decisions at a monthly time step across 15-25 years of operation. It includes 25 years of calibrated
monthly rainfall and runoff estimates. The model has previously been used to assess multiple aspects of water
supply and demand management in the region (Porse et al 2018a, 2018b, Pincetl et al 2019). A full description of
the formulation, data, and assumptions used in developing the model are available in previous studies and the
Supporting Information for this article.

We used a hydroeconomic modeling framework that minimizes system wide costs to meet demands with
available supplies. Flow decisions within the optimization are routed based on least cost allocations to meet
demands given available supplies, allocation agreements, groundwater pumping rights, and flow capacities:

MinZ=(C+1L)—B 1)

In the equation above, Z is the difference between the sum of costs and benefits to move flows across the entire
system. Unit costs for moving a volume of water are based on annualizing retail costs of water management from
reported sources that include capital and operational costs, or where necessary, unit costs derived from physical
modeling. The total costs include costs of water supply (C) and the sum of estimated economic losses from
reduced demands (L) that are associated with reductions in outdoor water use. The dollar value is equal to the
weighted sum of flows, based on the flow volume between two points in the network and the specified unit cost.

The economic value of losses associated with each water supplier is assessed using a demand function
procedure with estimated water prices and elasticities of demand derived from existing sources (Jenkins et al
2003, Buck et al 2016, Porse et al 2018b). The model formulation includes constraints that emphasize minimum
deliveries of water to districts for health and safety (in-home residential) and commercial and industrial needs.
Outdoor water use is targeted for cost-effective conservation. Benefits (B) are limited to benefits published in
previous work associated with large-scale stormwater capture, which monetize the recreational values of new
stormwater capture facilities.

We ran the model with successive scenarios of available imported water supply to evaluate the energy use and
electricity intensity effects of reducing imports. Model runs varied the amount of available imported water
supply from 0% to 100% of historic deliveries (1986-2010). The range of available imported water does not
represent the range of likely outcomes, but rather a full scope of potential outcomes. Variation in model outputs
for electricity intensity, resultant per capita use, and water utility supply portfolios between scenarios result from
the flow allocation procedure associated in the low-cost formulation.

2.3. Electricity intensity data

Each link within the network flow model received a value of electricity intensity, which is electricity use divided
by the unit volume of water (kilowatt-hours per acre-foot or kilowatt-hours per kiloliters, kWh/AF or kWh/m?,
respectively). We assigned electricity intensities to links based on the characteristics of flow and technology
(table 1). For instance, for alink between a groundwater basin and a water supply agency that simulates
groundwater pumping allocations, the EI was based on the electricity needed to pump and treat groundwater
from a given well and then convey it to a central point in the retailer’s system. For a link between a water supply
agency node and wastewater treatment (reclamation) plant that receives sewage, the EI represents consumption
from conveying water to the plant and then treating it according to the treatment train associated with that plant.
Reported data from utilities, physical modeling, and existing peer-reviewed published data were all applied to
the links. The supporting information has a full description of data sources and modeling methods used to
identify El values.

2.4. Electricity intensity for urban water ‘supply trains’

Another approach to examining electricity intensity of water management calculates El across ‘supply trains’
that comprise the multiple steps of water provision from source to disposal. This includes importing, pumping,
treating, conveying, and distributing water to end-users, then collecting and treating sewage. Traditionally,
supply chains were linear, moving from the source (alocal stream, a distant watershed, or alocal groundwater
basin) to end users through pipes, and finally to sewage treatment plants and disposal. Emerging supply trains
are more circular, with some percentage of treated wastewater being reused through advanced treatment
processes for non-potable reuse, indirect potable reuse (IPR), or even direct potable reuse (DPR). DPR is not
currently available for public water supply agencies in California, but will likely be part of future water portfolios
pending ongoing regulatory decisions.

To estimate electricity intensity across these full cycles of urban water management, we first evaluated ranges
of potential electricity intensity for each of eight processes: imported water for potable supply, imported water
for groundwater recharge, groundwater pumping, existing centralized stormwater capture, IPR, non-potable
reuse, and DPR. The approach summed estimated values from table 1 together associated with a supply train.
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Table 1. Electricity intensity of water supply and treatment, by source and
technology, in units ofin kWh m . The electricity intensity of State Water
Project imports includes values with and without system hydropower
generation. An equivalent table with values reported in units of kWh/AF

is provided in the supporting information (Sources: Compiled from Mika
etal (2018), WateReuse Foundation 2015, and correspondence with the
California Department of Water Resources).

Electricity intensity (kWh m ™)
Technology/Water Source

Low High

Groundwater

Pumping’ 0.21 0.50

Water and wastewater treatment processes

Conventional water treatment 0.08 0.11

Disinfection (chlorine or ozone) 0.02 0.04

Membrane-based water 0.26 0.40
treatment

Secondary treatment without 0.28 0.36
nutrient removal

Tertiary treatment (nutrient 0.42 0.51
removal and filtration)

Membrane bioreactor (MBR) 0.60 2.29

Brackish water desalination 0.81 1.64

Advanced water treatment” 0.86 1.05¢

Imported Water

Colorado river aqueduct impor- 1.62 1.94
ted water

State water project imported 2.09(2.52) € 2.62(3.66)
water

Los angeles aqueduct imported —1.82¢ —1.82¢
water

Distribution (within a retailer Ranges from 0-1.13
system)

QOcean desalination 2.51 3.89

* Derived from local studies from cities in Los Angeles County and
agricultural pumping well values reported through the California
Agricultural Water Electrical Requirements.

® Not used in this study, but provided for reference. Values basin on the
Advanced Water Treatment system from the Orange County Water
District beyond secondary treatment, including treatment technology
includes filter screens, membrane filtration, cartridge filtration, reverse
osmosis, advanced oxidation, decarbonation, and lime stabilization
(WateReuse Foundation 2015, p 11).

¢ Net and gross electricity intensity values (gross El in parenthesis). Net
electricity intensity values include electricity produced within the system
from hydropower, while gross electricity does not include these offsets to
consumed electricity.

4 While the Los Angeles Aqueduct produces energy through hydropower,
itis sold to the electric grid outside of the LA Basin. Thus, we considered
its energy intensity to be 0 kWh m ™ in evaluating energy-for-water of
Los Angeles.

¢ The City of Santa Monica operates a facility that treats urban runoff
through advanced treatment with microfiltration and UV disinfection for
irrigation and non-potable use. The reported EI of the facility is

4.26 kKWh m >, which is a high outlier and only applied in the modeling
for that specific link.

E Porse etal

The electricity intensity of a supply train is unique to a given retailer and its supply sources. We then calculated

the total energy intensity along paths within the network using a matrix approach with network analysis metrics.

The total EI was estimated by applying a weighting factor to a link equal to the link’s EI and summing values

throughout the network by calculating path distances, which are the number of links (steps) between any two

nodes in a network topology. The EI-weighted path distance was estimated for identified supply trains using

network analysis software.
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2.5. Energy use for residential hot water heating

In California, nearly 60% of water used for indoor residential needs is heated (DeOreo et al 2011). This water
heating comprises 20%-25% of residential energy use and nearly 90% of water heaters are run by natural gas and
propane (US EIA 2009, DeOreo et al 2011). Previous research outlined a method for estimating energy use from
in-home water heating based on an existing approach, the Water Heater Analysis Model (WHAM) (Lutz et al
1998), which was adopted for systems modeling (Escriva-Bou et al 2015). We applied the WHAM method here
to estimate energy to heat water for indoor potable uses. We collected data for residential water use and
appliances, retailer-specific demands, daily temperatures (2018), electric grid operations, and assumptions for
appliance operation and penetration of natural gas water heaters. LA County has distinct climate regions, with
cooler regions along the coast and hotter inland regions. Average daily temperature data was collected using data
from the California Irrigation Management System (CIMIS). Across California, approximately 90% of
residential water heaters are fueled by natural gas, with remaining water heaters fueled by electricity or propane
(USEIA 2009). We similarly assumed that in LA County, 89% of water heaters were driven by natural gas
(recovery efficiency = 0.76) and the remaining 11% were fueled by electricity (recovery efficiency = 0.55
assuming older units), where recovery efficiency is the percentage of heat produced by the energy source that
goes towards heating water.

Natural gas is a primary fuel source, while grid-supplied electricity is a secondary energy source. To compare
energy for water heating and grid-supplied electricity used by utilities, we converted the estimated amount of
electricity needed by water utilities to an equivalent amount of energy using a heating loss factor (in BTUs/
kWh). The heating loss factor rate estimates the efficiency of electricity production associated with power plants
on the grid. Heating loss factors for grid-supplied electricity are a complex metric to calculate (Marnay et al 2002,
Weber et al 2010). We estimated comparable electricity use (in kWh-thermal equivalent) from utility operations
and in-home water heating based on a range of heating loss factors from 3,000-12,000 BTUs/kWh. The upper
end of this range represents heating losses in scenarios for grid-supplied electricity with a high percentage of
thermal plants, while the lower end represents scenarios of an electric grid primarily fueled by renewable sources
such as solar, wind, and hydroelectric generation. A full description and data sources are available in the
Supporting Information.

2.6. Sensitivity analysis

For estimated outputs that relied on assumed parameter values rather than reported data, we performed an
analysis to characterize the effects of uncertain input parameters using Monte Carlo Analysis or single-factor
analysis. This applied to estimates of energy use for residential water heating through the WHAM approach,
along with estimates of energy for oumping in distribution systems. For each calculation, contributing
parameters were varied by specified percentages from the assumed values to assess the resultant effects. In
estimating residential water heating, the single factor method was used to evaluate a range of outputs associated
with varying each of four parameters by up to 10%. In evaluating energy in distribution systems, a Monte Carlo
approach estimated how retailer-specific energy intensity for pumping varied between assumed and
randomized parameter inputs. Combinations of input factors were randomly selected based on a range of
+/—50% from the assumed value, and statistics for resultant energy intensity values were used to quantify the
resultant change in EI for distribution and pumping.

3. Results

Results indicate that promoting water conservation and reducing imported water supplies reduces energy use
across the water management system, but households use more water-related energy than utilities. Results are
presented below by topic.

3.1. Energy use by water utilities

We estimated electricity use for water operations as both gross and net consumption, which can have
implications for the overall emissions associated with water management (table 2). Gross electricity use is the
total amount consumed at any point within the system, while net electricity use considers electricity produced
within the system as part of its operations (see Supplemental Information). Reducing imported water, which is
typically the most energy-intensive source of LA County’s current water supply, also reduces the energy needed
for managing the region’s urban water. Modeling results show that when imported water supply availability is
equal to 100% of historic allocations, the average annual total gross electricity use across water utility operations
is equal to 4,100 Gigawatt Hours (GWh). Net energy use, which accounts for upstream electricity production
from hydropower in the imported water systems, is 3,200 GWh.
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Table 2. Energy use for modeled operations across LA water agencies by scenarios of imported water availability. An equivalent table in
standard units is presented in the Supporting Information section (GWh = gigawatt hours, Ipd = liters per person per day, MCM = Million
Cubic Meters).

Scenario: Avg. total Annual gross Annual net Per capita
Imported Water Modeled % from Supply Sources"” water electricity electricity water
Availability supply (MCM) use (GWh) use (GWh) use (Ipd)
% Recycled
% Imported % Groundwater Water

100% 61% 30% 8% 1.361 4,130 3,230 389
70% 45% 44% 10% 1,294 3,230 2,600 370
50% 38% 49% 12% 1,193 2,600 2,150 344
30% 26% 59% 14% 1,076 1,930 1,690 310
0%* 5% 76% 17% 892 1,030 970 257

* % imported water used in this scenario is from initial available storage.
" Does not report surface water use, which is approximately 1%.

In contrast, in a scenario without available imported water that induces water use reductions from present
(2018-19) values across many retailers, the average annual total gross electricity use drops to 1,000 GWh. This
value assumes that local agencies take no action to boost in-basin water supplies such as recycled water, but
instead rely on conservation alone through existing mechanisms such as pricing, water efficiency rebates for turf
and appliance replacement, and municipal irrigation cutbacks. This is not a likely scenario, but the range of
values offer alower and upper boundary on system wide electricity use. More likely, agencies would seek
alternative sources such as reuse to replace imported water, which could be equally energy intensive. Detailed
modeling of this source substitution was outside the scope of this study, but tradeoffs are discussed further in the
Discussion section.

For the scenario with 100% available imported water supply, per capita use is approximately 390 liters per
person per day (Ipd, or 103 gallons per person per day, gpd). This per capita value is near consumption values in
some of the region’s cities following the severe 2011-16 California drought. It represents ‘cost-effective’ per
capita water use when using the cost-minimizing formulation with retail prices as a marker of the economic
value of conservation for outdoor water use. For the lower boundary, without any available imported water
supplies and no supply replacement, total per capita use is limited to 257 Ipd (68 gpd), which is only
representative of current values in few coastal LA communities. For most of the county, this value is a highly
aggressive target based on current land use patterns and landscape conversion efforts, likely only achievable in
cooler communities with limited tourism and industrial uses.

The results illustrate a close relationship between water conservation and energy use reductions, which also
holds true in comparing net energy use across scenarios. In the scenario with 100% imported water, average
annual water supply from all sources is 1.1 million AF with an average annual net energy use of 3,230 GWh. In
the scenario with no available imported water, average annual consumption is 888 MCM (720,000 AF), while
average annual net electricity intensity is 970 GWh. Thus, a 35% reduction in water consumption yields a 75%
reduction in energy consumption for water management.

Seasonal differences in energy consumption for water by utilities are also apparent, primarily due to changes
in water supply (figure 3). Net energy use is higher in summer months, owing to increased volume of deliveries
for outdoor irrigation. For the scenario with fully available imported water supplies, average monthly electricity
consumption ranges from 700 MWh in February to 950 MWh in July and August. Promoting outdoor water
conservation - a continued target for future policies - would reduce the energy use most in warmer summer
months. In California’s Mediterranean climate with little summer and fall precipitation, irrigation is used
prominently to maintain lawns, shrubs, and trees.

Model results allow for estimating energy by both geographic region and process, including imports,
groundwater pumping, treatment, distribution and collection, and sewage treatment, in each scenario of
imported water availability. Importing water accounts for the largest amount of energy across all regions
(table 3). Differences in jurisdictional boundaries across water supply, wastewater, and stormwater agencies in
Los Angeles, however, makes it difficult to fully compare energy use by sector across geographic regions at the
sub-county level.

Across modeled scenarios of imported water availability, while total energy use decreases significantly with
reductions in imported water, imports are still the largest contributor to system wide energy use until only 10%
of historic levels are available (figure 4). The total electricity intensity of the system also decreases with reduced
imports and water demand. As noted, these model results include indirect and non-potable reuse from existing
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Figure 3. Monthly gross and net energy use for water management across metropolitan LA. Modeled energy use is higher in summer
months due to higher consumption for outdoor irrigation.

and modest new capacity that comprises no more than 20% of total supplies in any scenario (see Supplemental
Information).

3.2. Energy use trends across water agencies

The energy needed to supply, treat, and dispose water varies across agencies in LA County. Depending on the
sources of supply, differences in elevation across distribution networks, and wastewater treatment operations,
system wide electricity intensity for a given utility ranges from nearly 0 kWh m > up to 4.13 kWh m >
(05,100 kWh A~ 'F~ ") across retailers. The average value is 1.30 kWh m > (st. dev. = 0.96 kWh m ) and the
median valueis 0.93 kWh m > (1,150 kWh A~ 'F ).

The estimates of distribution energy for pumping water within an agency’s water supply pipe system yielded
significant geographic differences in EI. For most agencies, electricity intensity for local distribution ranged from
0kWhm™3 up to 0.97 kWh m > (0-1,200 kWh A™'F™"). The distribution is positively skewed, with 72% of
systems having electricity intensity of less than 0.34 kWh m > (420 kWh A~ 'F~"). The average EI for
distribution system conveyance was 0.18 kWh m > (225 kWh A~ 'F !, standard deviation of 278 kWh A"'F ™).
Mapping the data showed that systems with high EI were predominantly located at the northern and eastern
periphery of the county, where elevation changes are greater (figures 5(a), S2 in Supporting Information).
Sensitivity analysis based on randomized selection of inputs from the parameter range yielded an average
increase of 25% to a retailer’s energy intensity for pumping. Thus, with parameter uncertainty, the estimates of
energy for distribution could be modestly larger.

Considering the hierarchical network of water governance in LA is also important when calculating
electricity intensity. When all electricity use for water supply provision is attributed to local retailers, the EI for
each retailer area increases (figures 5(b), S3 in supporting information). Doing so allows for comparing results
here with other studies. For instance, in the City of LA, modeled values from this analysis (1.44—1.51 kWh m >
or 1,785-1,860 kWh A~ 'F~") are comparable to a previously reported assessment using a different approach
(1.67 kWh m ™ or 2,071 kWh A~ 'F~ ") with slightly higher water use (Lam et al 2017b).

Yet, organizational hierarchy is still important. Water retailer agencies in the region predominantly use
energy to distribute, and in some cases treat, water within their systems. For most retailers that rely on imported
water, the majority of energy use is incurred by the regional water importer agency, the Metropolitan Water
District of Southern California (MWD). Water retailers are directly responsible for energy use to distribute and
collect water in their systems, along with any local water treatment plants. Sanitation districts incur expenses
associated with wastewater treatment. Within a fragmented water governance system such as Los Angeles,
evaluating opportunities to reduce the electricity intensity of water supply and treatment requires recognizing
the source-to-use pathways and their attendant energy inputs across agencies.




Table 3. Energy use for utility water management by regions and urban water sectors (GWh = Gigawatt-hours). Figure S2 in the Supplemental Information section illustrates boundaries for water supply and sanitation agencies.

Average Annual Electricity Use (GWh)

Sector Region
Imported Groundwater Pumping Water Treatment & Reuse Distribution Sum
San Gabriel Valley 226 55 7 94 382
Central /West Coast Basins 0 55 39 149 243
Malibu/Las Virgenes 0 0 0 1 1
Supply, Acquisition, & Treatment Los Angeles City 102 37 25 185 348
San Fernando Valley 0 5 3 30 38
Santa Monica Basin 0 2 2 4 8
Regional Supply Agencies 1,807 0 0 116 1,924
LA City Wastewater Treatment & Reuse 0 0 128 31 32
LA County Wastewater Treatment & Reuse 0 0 98 4 13
Wastewater Treatment & Reuse Central/West Coast Basin Water Reuse 0 0 12 5 17
Recharge Operations 0 0 0 0 0
Not Assigned” 0 4 0 0 220
Totals 2,135 157 314 619 3,225

*Not Assigned consists of energy associated with pumping or discharging to drainage in local streams and the channelized stream network for the scenario with 100% available imported water supply.
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Figure 4. Average annual gross and net energy use for water supply and treatment by utilities, broken down by operations. Across
scenarios, demand stays the same but the availability of supply to meet that demand decreases. The dashed lines indicate per capita use,
showing how, without replacing imported supplies with other potentially energy intensive sources, consumption drops significantly.
Current per capita use in some agencies is at or below the 390 Ipd mark associated with the 100% imported supply scenario.
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Figure 5. (a) Modeled electricity intensity (EI) for water distribution in urban retailer systems across agencies in LA. Most systems
(72%) have average EI of less than 0.34 kWh m ™ (420 kWh A~ 'F™ "), while areas in the periphery of the region with elevation changes
have the highest EI for water distribution; (b) Gross EI of LA water retailers for August with 100% available imported water supply,
when the total energy, including imports from regional agencies, is attributed to retailers. (c) Electricity intensity ranges (min, max) for
water management ‘supply trains’ in LA County. The analysis only considers existing infrastructure for stormwater capture and
recycled water (non-potable use or indirect potable use as specified by Title 22 of the CA Code of Regulations).
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Table 4. Comparing estimated annual energy consumption for residential water heating and utility water management across scenarios of
heating loss rates associated with the electric grid. (GWh = gigawatt hours, TrBTU = Trillions of British Thermal Units).

Heating Loss Rate Energy for Residential Water Energy for Utility Water Management
(BTU/kWh) Heating (TrBTU)
Secondary Gross Electricity Primary Energy Use Equivalent based on
Use (GWh) Heating Loss Rate (TrBTU)

3,500 14

6,000 43 4,100 25

8,500 35

10,000 41

3.3. Energy use across water management ‘supply trains’

Summing electricity intensities across processes for water and wastewater management in the supply chain
yields ranges of electricity intensities (figure 5(c)). Supply trains with existing stormwater capture that include
eventual pumping and treatment as groundwater tend to have the lowest electricity intensity. The highest peak
values are associated with supply trains for imported water, including both direct use and water imports that
supply groundwater recharge operations. This is primarily due to the electricity intensity of the two largest
supply sources for MWD (Colorado River Aqueduct and State Water Project). While pumping and treating
groundwater alone typically lowers electricity intensity for a supply source, the range of electricity intensities
across groundwater pumping supply trains is closer to indirect and non-potable reuse supply. The additional
steps to pump groundwater and convey it to the treatment plant are equivalent to the energy needed for some
portion of the treatment processes within reuse supply chains. Table S4 in the Supplemental Data lists the
potential ranges of EI values for supply trains in LA County.

3.4. Energy use for water in households

The minimum volume of residential water demands in the modeled scenarios, evaluated as the volume of water
needed to supply health needs for in-home indoor uses, was estimated to be 1,014 million liters per day (268
million gallons per day) based on a 189 1pd (50 gpd) standard. The method for calculating this amount is
described in previous research (Porse et al 2018b).

Using the WHAM approach for in-home water heating, the total primary energy use for indoor hot water is
nearly 44 trillion British Thermal Units (TrBTUs) per year. This value assumed that for the 90% of water heaters
fueled by natural gas and propane, indoor water use was 189 Ipd based on regulatory limits, and approximately
60% of the total volume of indoor water use goes to end-uses that require heating (US EIA 2009, DeOreo et al
2011, Porse et al 2018b). This energy consumption estimate is specific to indoor water use, which is held constant
in the water management modeling. Varying input parameters by +/— 10% through a sensitivity analysis
resulted in a range of values from 39.6—48.8 TrBTU.

To put this value of energy consumption for in-home hot water heating in context, utility billing records
from the database of 9.8 million residents in LA County report that in 2016, annual average natural gas deliveries
to residential properties were 105 TrBTUs. This includes both primary energy from natural gas and secondary
energy from delivered electricity consumed in homes. Thus, when compared to utility billing records, energy for
heating water in homes comprised over 40% of total natural gas used in homes.

Compared to utilities, the energy-for-water use in homes (44 TrBTU) is nearly 2.5 times the modeled gross
electricity used across all urban water management operations (imports, pumping, distribution, and treatment)
by utilities for LA County (4,100 GWh) in the scenario of 100% available imported water that most closely
resembles current operations. This ratio assumes upstream generation efficiency using eGRID values (4,400
BTU/kWh). If the electric grid draws on more thermal generation sources, the ratio decreases, while as the
percentage of renewable generation increases, the ratio increases (table 4).

4. Discussion

Evaluating energy use by a large metropolitan water management system with varied agency jurisdictions
requires setting boundary conditions. Another way to categorize energy use would be in-basin and out-of-basin
uses. In-basin energy use for water refers to energy used by water utilities and consumption in buildings. Out-of-
basin energy use is energy expended by water utilities outside of the metropolitan area to manage, treat, or
import water for the city. Translating results to this categorization scheme, in-basin household use significantly
more energy to heat water than the combination of in-basin and out-of-basin consumption for utility water
management. Boundary conditions raise important questions about tradeoffs. If agencies in LA significantly
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reduce imported water and replace it through a mix of local sources and conservation that lowers the overall
electricity intensity of the metropolitan water system, it may not reduce overall energy use across the state. For
example, if the imported water from the SWP or Colorado River typically sent to LA is instead diverted to other
communities in Southern California, then energy use could remain steady or increase.

Alternative supplies that replace imported water and support more consumption have different constraints
and energy use consequences. Replacing imported water through groundwater recharge with stormwater
capture has low energy intensity, but is limited by precipitation and infiltration capacity. For recycled water, in
Southern California’s coastal cities, the EI of current water imports means that replacing such sources with
indirect potable and nonpotable reuse would be at least energy-neutral or result in energy savings. IPR and
nonpotable supplies consumed or recharged near the production source would have the best opportunity to
augment supplies and retain energy savings. The geographic distribution of energy consumption, however,
would change significantly. More electricity would be consumed within the LA metropolitan area, which could
have implications for electricity management and grid operations. If LA water agencies increase investments in
local sources such as recycled water, while overall energy may decrease, in-basin energy consumption would
likely increase. This could affect local transmission and distribution grid circuits, which will be increasingly
strained during future extreme heat days due to current capacity of electric grid circuits (Burillo e al 2018).
Additionally, new reuse capacity with advanced water treatment could equal or exceed the EI of current
imported sources, especially if pumped over long distances.

The results have policy implications for the water and energy sectors. Reducing energy use for water
management and supply in cities requires policies that target both utilities and homes. In August 2019, the
California Public Utilities Commission (CPUC) eased restrictions on electrification of natural gas appliances,
which some see as a critical step in reducing carbon emissions (CPUC 2019). In developing policies to support
energy use reductions by water utilities, California regulators must recognize that curbing energy use and
greenhouse gas emissions are not primary missions for water utilities. Research must identify mechanisms to
incentivize water and energy conservation across both utilities and end-users.

The analysis is subject to limitations. The geographic and spatial resolution of the modeling associated with
available data is coarse. The analysis accounts for seasonal changes in water and energy use, but it does not
incorporate how the underlying electricity intensity of operations, such as static versus variable speed pumps,
influences system wide electricity intensity over time. The lack of detailed distribution pipe dataled to the
analysis approach based on pumping energy using Bernoulli’s equation, elevation changes, and assumed system
operations. Future work could further validate and refine the approach by comparing to real-world water
network operations. Finally, the underlying water resource model using simulation and optimization is subject
to limitations that have been outlined previously (Porse eral 2017, 2018b).

5. Conclusions

In this paper, we analyzed energy use for water management across the Los Angeles metropolitan region of 10
million people to understand the relative contributions of energy for water management operations and
residential use. Using a model of over one hundred water management agencies in LA that simulates
infrastructure operations, hydrology, and water demands, results indicated that reducing imported water use- a
stated goal of several agencies in the region- would likely reduce the overall energy use and intensity of water
management operations. Even using a mix of both water conservation to reduce demand and enhanced supplies
through new water indirect and nonpotable reuse facilities, reducing water imports from Northern California
and the Colorado River would have an overall effect of reducing energy use. Water conservation and stormwater
capture are effective strategies for reducing energy use for water. The energy saved by replacing imported water
with reuse depends on the treatment train of the new recycled water.

Yet, energy consumed by water utilities is significantly smaller than the energy consumed through natural
gas water heaters in residences. Thus, to target energy use reductions for urban water management, policy
strategies must think systematically to ensure that targeted actions in one or more sectors actually conserve
energy overall, and that all possible actions are being taken concurrently. The analysis provides one of the largest
and most comprehensive case studies of energy-for-water in a large metropolitan area available and offers a
template with new modeling approaches and data that other cities can replicate and adapt.
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