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Abstract

New Directions in Correlated Electronic Systems

by

Kelly Ann Pawlak

Despite great theoretical effort since the conception of manybody physics to elucidate

the nature of interacting fermions — in a precise and quantitative manner — the phase

diagrams of many correlated electronic systems remain impenetrable to even the most

rigorous and skilled approaches. In this manuscript I detail the new techniques, mod-

els, and solid-state materials that lie along the contemporary boundaries of scientific

understanding in strongly correlated materials. In particular, I discuss the fundamental

obstacles of manybody electronic systems and discuss how these issues are exemplified

by the various results reviewed. The work presented in Chapters 2-4 are representative

of my time at UCSB, and reflect the collaborations and publications of my Ph.D.
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Chapter 1

Introduction

Despite great theoretical effort since the conception of manybody physics to elucidate

the nature of interacting fermions — in a precise and quantitative manner — the phase

diagrams of many correlated electronic systems remain impenetrable to even the most

rigorous and skilled approaches. The difficulty in understanding correlated electronic

systems are two-fold, and this manuscript aims to stress the following essential points:

1. Manybody physics is generically difficult in the presence of interactions

2. Fermionic degrees of freedom adjoin additional complexity due to the Pauli-exclusion

principle and anti-symmetry.

This thesis is structured as follows: The remainder of Chapter 1 is dedicated to the dis-

cussion of the essential theoretical aspects manybody physics, approaches to interacting

theories, the unique properties of fermions and ramifications of these from a theoreti-

cal standpoint. It has been written with the intention of providing a broad conceptual
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overview of physics the author considers foundational in approaching the issues described.

Following this discussion, we detail work done on three systems. Chapter 2 is a recount

of a 2015 publication [78], in which we study a continuum theory that demonstrates

the emergence of strongly correlated behavior in an system with an arbitrarily weak

coupling. This work demonstrates the failure of mean field theory to accurately predict

macroscopic phenomenology of a relatively simple system, highlighting the importance of

rigorously treating correlations in manybody systems. We find that the failure of mean

field theory hinges upon a high degree of symmetry in the underlying theory, where

multiple symmetry breaking terms become “intertwined” under renormalization, leading

to unconventional and topological orders.

In Chapter 3, we move to focus on strongly-coupled systems and their emergent

properties. Here we review the Sachdev-Ye-Kitaev (SYK) model, an exactly solvable

model of strong correlations that gives rare insights into exotic quantum critical fermionic

phases and their instabilities. After summarizing the basic features of the model, we

discuss the work presented in Ref. [7], which demonstrated the first known instabilities

of the SYK Non-Fermi liquid Phase.

Finally, in Chapter 4, we give a detailed overview of a fresh experimental platform,

Magic Angle Moire Systems, that can tune between the weakly and strongly coupled

regimes. This new material class has a high fabrication yield, low disorder and can be

tuned non-destructively by gate voltages — allowing experimentalists to traverse the en-

tire phase diagram for each sample, in contrast to conventional materials which must be,
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e.g., chemically doped. This tunability promises unprecedented potential to reform both

our fundamental understanding of correlated systems as well as our theoretical approach.

After a review of the material properties and prominent models, we move on to review

two specific models. We first consider a work [115] that proposes an explanation for the

observed Ferromagnetic correlated insulating states and superconductivity in some sys-

tems. Following this, we move on to discuss the peculiar features of superconductivity in

some of these systems, and a possible origin of the phenomenology published in Ref. [116]

1.1 Manybody Physics: Interaction, Correlation, Emer-

gence

As theorists advancing the bleeding edge of correlated physics, we must unambiguously

define the barriers that have limited our success. Precise, contextual characterization of

these problems should lead to clever improvisation — and hopefully fresh solutions.

There exists a perennial misrepresentation of the fundamental difficulty in manybody

physics, namely, that the sheer number of degrees of freedom (DOFs) — whether these

are N = 1026 electrons in a crystal or N = 104 microbes in a swarm – is the singular

crux of the theorist’s agenda. Quite contrarily, for the physicist interested in the statis-

tical, macroscopic, quantities characterizing the collective state of such a system – the

observables which are typically useful, and physically accessible by experiment — this

multitude presents itself, decisively, as a benefit.
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In fundamentally stochastic systems, a large-N number of identical constituents often

implies heavily damped fluctuations about mean behavior, in a fashion akin to the Central

Limit Theorem — as any student of statistics might tell you, in this thermodynamic

limit, macroscopic observables representing averaged behavior become highly predictive,

else deterministically related by state equations. The parameter dependence of such

observables charts out a phase diagram — a paradigm of manybody theory, meaningful

only in the large-N— which categorizes qualitative behavior of the system as parameter

regions delineated by phase transitions and cross-overs. The most trivial example of

a “Large-N” theory is the free Ising model in an external field h, who’s energy and

evolution is calculated via the many-body Hamiltonian over all sites:

HI = −
sites∑
i

h · σi (1.1)

Statistical behavior of the system at a given temperature is contained in the partition

function, which by virtue of site independence, can be exactly computed for arbitrarily

large systems:

Z[β] =
∑
σi=±1

e−β
∑
i h·σi = (2 cosh(βh))N (1.2)

as can the mean magnetization, M = 1
N

∑
i σi, and its fluctuations about the mean

behavior, δM̄ :

M̄ ≡ 〈M〉 = tanh(βh)

δM̄ ≡
√
〈M2〉 − M̄2 =

sech(βh)√
N

4



The reader should notice that in the above expression, the fluctuations about the mean

vansh with increasing N as expected for a well-behaved statistical system. Indeed as

N grows towards infinity, our mean-field solution becomes increasingly accurate. This

can be understood in the context of statistics, since the partition function factorizes

into a product of independent systems, Z[β] =
∏

i (Zi[β]), so that we can define the

characteristic function over the entire system as

ϕ ≡ 〈ei
∑
i σixi〉 =

N∏
i

〈eiσixi〉 =
N∏
i

ϕi (1.3)

By the Central limit theorem, it can be shown that the product of the characteristic

functions of a number of density functions tends to the characteristic function of the

normal density as the number of density functions increases without bound, implying

that the resultant distribution for any simple macroscopic quantity should limit to a

Gaussian. Our ability to reduce the problem to this form hinges upon the factorization

of the partition function into a Large-N product — a process that is ambiguous, if not

impossible, in most manybody problems of interest.

If large-N works to our advantage, we must carefully reconsider our intuition: The

difficulty in manybody physics — and the connecting theme between the otherwise dis-

tinct systems reviewed in this manuscript — arises from the interactions between the N

microscopic constituents. In a free theory, defined by the absence of interaction, DOFs

maintain complete independence — one simply solves for the single particle behavior and

computes observables with respect to N ensembles. Interactions, from a statistical view-

point, induce correlation, which generally requires simultaneous solutions involving large
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sets of — if not all — relevant DOFs within a system. In this sense, a correlated system

of a large N number of constituents is, in the worst case, more accurately described as

a N = 1 system of extreme complexity involving N variables, hence leaving the laws of

statistics helpless.

This perspective is perhaps best captured in the quenched-disorder Edward-Anderson

Spin Glass model:

H =
∑
〈ij〉

Jijσiσj, (1.4)

where we imagine a classical spin system with randomly chosen couplings between all

neighbors. The problem of characterizing the low-energy states for an arbitrary realiza-

tion of the couplings is hard in the literally sense — the problem has been shown to be

NP-Hard [4]. However, this model validates our nuanced understanding of large-N in a

satisfying way: partial solubility occurs when theorists make large-N even larger. Indeed,

the few macroscopic characteristics we are actually able to compute hinge upon applying,

typically via the Replica Trick, a disorder average over the couplings Jij, — in essence

making a parametrically large number of fictitious interacting copies of this system —

to enable the use of statistics. Even with these tools, this problem is still difficult, and

further simplifications, such as all-to-all couplings, must be made, as well as elaborate

accounting for the interactions of replicas themselves, as first pointed out by Mezard et.

al. [67].

We should understand that, unlike free theories, there is no sense in which the model

of Eq 1.4 results in a Z[β] that factorizes, even approximately. However, we see that the
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partition function of the system, following the replica trick, can be written as product of

Nr copies, ∼ (Z[β])Nr , and the correlations of observables between copies are sufficiently

weak for most analyses. We conclude that a truly large-N system is hence one that may

be written, or well-approximated, by Z = (Zs)N . In the case that such a description

does not exist, the large-N adage takes shape in a meaningful form: when our system is

indivisible, we must somehow understand the behavior of a single system of exceptional

functional complexity by building upon the equations which govern its N correlated mov-

ing parts. Our problem becomes determining the extent to which correlation obfuscates

independence and, hence, the degree to which statistics can rescue our efforts.

While the spin glass model may appear pathological due to the extensive number

of couplings — and hence lack of symmetry – quite generally, interacting problems are

not solvable, even in ideal statistical limits. This is evidenced by a profound dearth

of exact solutions for even the most simply articulated systems. This complexity is

further escalated in the case of mobile particles, whose free theory contains transport

terms that rouse non-local correlations across the system in a manner that is sensitive

to dimensionality, symmetry and the mathematical structure of any interaction terms.

Arguably, the combination of transport and interaction accounts for the most damning

explosions of complexity, usually only approachable using sophisticated field-theoretic

techniques and speculative approximations.

The nature of transport and the role of dimensionality in the orchestration of com-

plexity in a manybody system warrants a short discussion for intuition. Consider a simple
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model of a diffusive random walk on a d-dimensional isometric lattice, where the parti-

cles of the system have an equal probability of moving onto any neighboring site. In the

absence of interactions, it can be shown that in dimensions d ≤ 2, the probability of two

particles meeting in space at some point in time tends to unity as t→∞, even when the

particles are infinitesimally small [102]. In the presence of local interactions, the reentrant

behavior of the low dimensional system greatly increases the frequency of these events.

In higher dimensions, however, interactions play a weaker perturbative role, ultimately

having little to no effect on the macroscopic behavior unless the particles are designated

with a finite size. We find that this actually leads to dramatic results, and that in some

cases, interactions may never be neglected regardless of how weak they are [103].

The final topic to consider in this section is how one actually approaches these prob-

lems. For a system of interest, a mathematical prognosis can be developed by asking

a series of insightful questions. The following list is a non-exhaustive, but frequently

reference list of questions typically asked, and reflect the main tactics represented in this

thesis:

Can we neglect or approximate interactions permissibly?

As a first approach, one usually takes two historically defensible limits that permit ap-

proximate treatment. These are the weak and strong coupling limits, and represent

hopeful regimes where we separately focus on the constituents and the whole, respec-

tively. In the former, one presupposes that the free, single particle, theory dominates

equilibrium, and calculates perturbative corrections to observables with respect to a small
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coupling constant. In the latter, the free theory is treated as a perturbation to a new

problem defined by the interactions alone, when analytical progress is possible.

The intuition behind these approaches is somewhat obvious: we might expect that

the low energy states of a given system should look like the low energy states of the

most important term in the model. This approach has success in theories that don’t

suffer from intermediate couplings, multiple particle species, high degrees of symmetry,

low dimensional physics or other origins of correlated error. Ultimately, the implicit con-

notation that perturbative treatments beget small deviations in macroscopic observables

is wholly misleading at best; in fact, these limits are always far from trivial in interesting

systems, and a naive application of such approaches should inevitably produce incorrect

answers.

What this approach does help with, however, is the identification of phase transitions:

If the two limits of an interacting theory have distinct low energy phases, there must be at

least one phase transition or crossover between them. Moreover, the symmetry properties

of the two limiting phases can offer clues to deduce the kind of transition that occurs,

especially in T = 0 quantum phase transitions.

Can we identify collections of variables whose behavior is essentially uncor-

related?

Another useful tool is to make a change of variables. For example, in an interacting bose

gas, a common canonical transformation is to separate fields the atomic fields into their

9



amplitude (
√
ρ) and phase (φ), resulting in an action∫

dτddr

[
1

g
(∂τφ)2 +

ρ

m
(∇φ)2 + gρ2

]
+ S0[ρ]. (1.5)

Such a transformation makes apparent the fact that the interactions are most important

to the amplitude dynamics which govern the local density of the gas. The phase DOF of

the bosons, however, is well approximated by a massless free theory for ρ held constant,

allowing us to partially solve the theory. As it turns out, the phase dynamics are the most

important aspect of this theory, and describe a large swath of superfluid phenomenology

at low energies, where the amplitude degrees of freedom are “frozen out” due to the mass

term. This tool is a common prescription across many systems, especially those with

charge-spin separation, containing particles or quasi-particles whose single-particle phase

space can be modeled as the direct product of a rotor and scalar degree of freedom.

Can we reduce complexity by sifting out the physics which dominates macro-

scopic behavior?

Often it is found that the microscopic details of a theory play little to no role in the

emergent macroscopic description we seek. In such cases — when we are interested in

the long-time, large scale leading functional behavior of order parameters — we can

approach a theory by the process of renormalization. In the way that the central limit

theorem tells us that the distribution of sample means (from PDFs with well defined

first and second moments) approaches a gaussian, renormalization applies local averages

over DOF to generate a limiting scale-invariant theory. Such theories define universality
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classes, characterized by critical exponents governing correlation functions, to which

many distinct microscopic models may belong to. We consider these theories to be

emergent since they arise from the correlations of many DOF rather than the microscopic

description of the model.

In the most exotic cases, emergence can lead to continuum theories that emulate fa-

mous gauge theories of the Standard Model, a hallmark of frustrated magnetic systems.

Many interacting electronic theories on symmetric lattices, such as those to be discussed,

have emergent superconducting phases despite their microscopic theory lacking the con-

ventional BCS terms– or attractive interactions at all. Emergence is, of course, not

limited to quantum mechanical systems: perhaps most astounding is that even classi-

cal ecology problems, governed by stochastic Lotka-Voleterra equations under rigorous

treatment, have effective descriptions given by the Reggeon Theory of QCD [102].

Summarily, the correlations between variables, and not their multiplicity, is what

makes manybody physics famously difficult. It is also what makes the field so interest-

ing — these perceived analytical failures are symptomatic of a grander phenomenon that

only occurs in interacting systems at large-N : emergence, which indicates the existence of

an effective analytical description of a system, usually over large spatio-temporal scales,

which is qualitatively distinct from the underlying microscopic theory. Here the appro-

priate description of the system is not based on the original particles, but rather effective

excitations capturing the essential qualities of the low-energy physics, which may have

distinct states and symmetries, whose interactions and transport often retain no sem-
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blance to those of the former. Theories that lead to emergent physics are intrinsically

interesting. They also tend to have practical engineering value as in high temperature

superconductivity, and especially in the emerging field of quantum computation and

information science.

1.1.1 Manybody Fermions: An Overview

The counter-intuitive nature of fermions and the novelty of their manybody phases may

be entirely traced back to two properties which, to the best of our knowledge, must be

defined axiomatically based on empirical evidence. The first is their the mutual exclusion:

for half-odd-integer spin particles, it is only possible for a single particle to occupy a given

state. This result is known to quantum physics as the Pauli-Exclusion principle, but it

is not necessarily unique to fermions — hardcore bosons and other classical DOF can

exhibit “effective” mutual exclusion, especially in a local basis. For systems amenable to

an occupation-basis (i.e. second quantized) description – including many classical non-

equilibrium systems– exclusion leads to a local anti-commutation relation
{
an, a

†
n

}
= 1.

The second property is global exchange anti-symmetry, which appears to be unique to

elementary fermions. Given a manybody wavefunction, anti-symmetry implies that the

exchange of any two identical particles results in a multiplicative phase: |Ψ(f1, f2, . . . )〉 =

−|Ψ(f2, f1, . . . )〉. It should be understood that this is a completely non-local effect.

In a second quantized form, this generalizes the previous anti-commutation relations

to
{
an, a

†
m

}
= δnm and {an, am} =

{
a†n, a

†
m

}
= 0. In this form, it’s clear that Pauli

12



exclusion can, in a sense, be seen as a consequence of anti-symmetry; however, given

the appearance of exclusion in beyond elementary fermions, this attribution may be

misguided. Mathematically, it is possible to define various kinds of mutual exclusion (see

para-statistics, quons, etc and their applications) as well as various phase relations under

exchange (e.g. anyons) that generalize the boson and fermion statistics; ultimately these

need not be explicitly related, and their effects on manybody physics are distinct.

With these properties in hand, we must now understand how and to what extent

our manybody calculations should be affected. We begin our discussion in the absence

of interactions. For a free theory, wherein one only needs to consider N ensembles of

a single particle state, exclusion becomes a passive variety of interaction: the system

can no longer be a product of N identical single-particle states – each successive particle

must instead occupy the lowest energy (E) state available, leading to the filling of an

energy band. It is then clear that, for fermionic particles, the precise functional form of

the Density of States (DoS, g(E)), even at low temperatures (T ), plays dominant role in

the macroscopic physics.

To demonstrate how exclusion alters the statistical nature of our solutions, we begin

with a simple non-interacting gas of fermions. The partition function, however, now only

runs over singly occupied states

Z =
∑

{nk}=0,1

e−β
∑
k(εk−µ)nk

(1.6)

where εk is the momentum-dependent energy level and µ the chemical potential. The

above partition function leads to the most important equation for fermion systems,
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namely the Fermi-Dirac (FD) distribution:

〈nk〉 =
1

1 + eβ(εk−µ)
(1.7)

which traces out a steep sigmoid curve at low temperatures. The variance in occupation

at any finite is given by var(nε) = 〈nε〉(1 + nε), and gives an intuition for the smearing

of occupancies in thermal systems.

The FD distribution ultimately sets our first approximations for the properties of

real materials if we assume that we can apply an independent electron approximation.

Contrary to classical and bose particles, each fermion in a free system has a mean equipar-

tition energy E
N

= 3
5
kbT , leading to drastic changes in the various macroscopic order pa-

rameters that govern thermodynamic systems. Most notable of these is the suppression

of the specific heat, cV = ∂
∂T

( 2
V

∑
k εk〈nk〉) = π2

2

nk2bT

εf
, accounting for the lack of obvious

electron contribution at room temperature in many real materials. The FD distribution

also gives us an approximation for other quantities such as T 2 temperature dependence on

resistivity at low temperatures and B2 magneto resistance scaling, which have remarkable

agreement with empirical studies in many systems. In the next section we will explain

why the independent electron approximation seems to apply to systems that naturally

contain interactions, despite the previous lengthy discussion about correlations.

1.1.2 Fermi Liquid Theory

Much of our progress in Condensed Matter physics has relied on the unprecedented

reliability of the independent electron approximation. The explanation for this is the
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domain of Landau’s Fermi Liquid (FL) theory, which posits that the fundamental physics

which governs single electron states — i.e. exclusion and band filling — is applicable

to many interacting theories, and is wholly responsible for the observed macroscopic

behavior. In short, FL theory asserts that many interactions do not fundamentally alter

the basic statistical analysis of manybody fermions, and that a “redressing” of constants

in an interacting theory will reveal that the macroscopic behavior is still captured by

a Hilbertspace constructed from N independent fermionic DOF, even if these “quasi

particles” are not necessarily the same fundamental DOF of the microscopic theory.

The construction of FL theory relies on a thought experiment such that imagine a

continuous, adiabatic, process where we slowly turn on an interaction starting in a free

theory, leading to two important effects

1. The energies of single-fermion states are modified in some continuous way

2. The introduction of the interaction now permits the scattering of fermions into and

out of energy levels above the fermi-surface at T = 0.

The first point is trivial in the sense that, depending on the nature of the introduce

interaction, we would expect a shift in occupation energies corresponding to states which

maximize or minimize this new energetic constraint. The second point is more nuanced

— what is hidden here is the breaking of a local conservation principle, namely, that in

a free fermion theory the number of fermions occupying a given state, nε(~k ), is conserved.

One interactions are turned on, however, there is no guarantee that these continue to

represent “good” quantum numbers.
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To make the this point explicit, we can look at how interactions change the possi-

ble transitions of a fermi gas by inspection of the Hamiltonian, containing a two-body

interaction V (~x 1 − ~x 2), in matrix form:

H = H0 +Hint

=
∑
~k

ε(~k )|~k 〉〈~k |+
∑
{~k}

δ2π(~k )V (~k 1, ..., ~k 4)|~k 1, ~k 2〉〈~k 3
~k 4| (1.8)

where δ2π(~k ) = δ~k 1 + ~k 2 − ~k 3 − ~k 4 + n2π enforces conservation of momentum in a

clean lattice. We see that the effect of V is to mix the free eigenstates by electron-

electron scattering in momentum space. This reorganizes the partition function as

Z =
∑
n

(−β)n

n!
Tr ((H0 +Hint)

n)

=
∑
n

(−β)n

n!
Tr

(
Hn

0 +
∑
m

Hn−m
0 HintH

m−1
0 + · · ·Hn

int

) (1.9)

where it is clear that the Boltzmann weights for states are now scrambled by transitions

under the action of Hint.

The validity of FL theory depends on the extent to which these scatterings alter the

low energy behavior of the macroscopic system. One way to evaluate the “goodness” of

the single electron states is to calculate their lifetime, or relaxation time τ , in the presence

of an interaction. This is a measure of how quickly single particle states decay into other

excitations. In a free fermion system, the lifetime of particle excitations at T = 0 is

always infinite, as required by mathematics — as eigenstates of the Hamiltonian, they

may only incur a phase rotation in their amplitude. Turning on interactions, however,

these states develop a finite half-life due to the transitions.

The structure of Eq. 1.8 becomes useful for determining the validity of FL theory. Due
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to energy conservation, scattering events must satisfy the constraint ε(k1)+ε(k2) = ε(k3)+

ε(k4). Furthermore, the Pauli exclusion principle dictates that fermions with ε(k1), ε(k2)

must be scattered into unoccupied states at ε(k3), ε(k4) . Given these constraints, we can

employ the adiabatic argument alluded to in the beginning of the section: As we turn

on infinitesimal interactions around T = 0, Hint cannot act non-trivially on fermions

at the fermi surface, ε(kf ), since it is not possible to simultaneously satisfy momentum

conservation and the Pauli exclusion principle unless all ε(~k ) are identical— there are no

available states for an electron to scatter into, since one of them would need to scatter

into a state below the filled fermi-surface. This implies that the particle lifetime near the

fermi-surface is infinite at T = 0.

If Hint acts on a fermion just above the fermi-surface, then the space of solutions has

a finite measure. In this case, the width of the shell dictating the constraints is of the

order W = |ε(k1)−εf |, leading to a lifetime proportional to W−2. Once we allow for finite

temperature, we then have to consider g(E), where state occupancy is smeared around

around the fermi-surface by a thermal width εf ±kbT , which by a similar argument gives

τ ∝ 1
(kbT )2

If the half-life is large enough, which by the above arguments can be made by ap-

proaching low enough energies and temperatures, we can likely ignore the contributions

without consequence, leading to a new FL description of the interacting theory made

by renormalizing the energies and parameters due to 2nd order and higher perturbative

contributions from Hint . Here we are free to continue using the independent electron

17



approximation, and the system can be considered a veritable Large-N statistical prob-

lem, which, as we have belabored previously, is the idealistic scenario in a many-body

problem.

Conversely, in cases that interactions cause frequent scatterings or induce the for-

mation of bound states, our macroscopic theory can no longer be described by a naive

independent electron picture: strongly correlated principles take effect and we must pro-

ceed with caution, attempting to find a set of variables that may be utilized for an

adequate description of the system. In particular, FL theory fails in the presence of

additional excitations — such as phonons, photons or other effective gapless or bosonic

modes, possibly due to symmetries — can mediate electron dynamics. In these cases, the

above construction of FL theory fails, since the energy conservation ceases to restrict the

scattering phase space of the excited electrons. We will also see that FL theory requires a

finite fermi-surface, and that the above arguments have no domain over systems tuned to

band-touching points such that the fermi-surface becomes approximated by single point.

1.1.3 Other Fermionic Phases

While the FL theory of the above, along with band theory, offers insights into the na-

ture of metals, semi-conductors, band insulators, gasses and some semi-metals, it fails

to account for the qualitative behavior of many electron systems with strong interac-

tions, low dimensions, high-degrees of symmetry, topological band structures or phonon

interactions. We give a brief review of some of these systems.
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Mott Insulators: When interaction strengths are strong, Hint can dominate the low

energy phase description. Our approach to FL theory is then reversed, starting from

the fully localized electron eigenstates, and slowly turning on transport. Particularly in

crystalline materials at integer fillings, coulomb interactions can stifle electronic trans-

port, such that the leading order terms, like exchange interactions, become effective spin

(and valley) couplings of the localized electrons. In these circumstances, the theory can

be well approximated by one of many interacting spin models that describe magnetic

systems, such as the Heisenberg model. Depending on the symmetries of these models,

the low lying excitations can be particle-like such as magnons, or gapless excitations over

a continuous symmetry group. The breadth of these works is beyond the scope of the

present discussion, but is discussed in nearly any solid state or condensed matter text

book.

Topological Insulators: Another insulating phase occurs, counter-intuitively, for

some free and weakly coupled fermion systems on finite lattices that are invariant under

time reversal and have a topologically protected gap in the bulk. These systems are

hallmarked by their conducting surface states described by gapless Dirac fermions, which

propagate along the boundaries of the material. Carriers in these surface states have

their spin locked at a right-angle to their momentum. At a given energy the only other

available electronic states have different spin, so back-scattering scattering is strongly

suppressed and conduction on the surface is highly metallic. Non-interacting topological

insulators are characterized by integer a topological invariant derived from the Brillouin
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zone of the relevant band structure, which cannot be changed in the absence of impurities

or removal of the bulk gap. The behavior of these systems is superficially similar to 2D

electron gasses in strong magnetic fields.

Topological order: Magnetic systems with high degrees of frustration can give rise

to emergent quasi-particles that don’t obey either bose or fermi statistics. The most fa-

mous example it Kitaev’s exactly solvable Toric code [51], with more recent work focusing

on frustrated itinerant magnetic systems. These theories have the celebrated feature of

giving rise to emergent gauge theories, including those with similarity to QED and QCD,

which ultimately stem from invariance of order parameters under many symmetry trans-

formations. Some such systems feature novel critical deconfinement transitions where

the quasi-particles, otherwise in strong bound states, transition into a asymptotically

free phase with only weak coupling. In this phase, the unique mutual statistics of these

particles allow for fault-tolerant quantum computation, making them a popular subject

of study in condensed matter physics.

Superconductivity: On the other hand, we also find that interacting fermion sys-

tems give rise to transport-dominated orders distinct from FL. For example, when coupled

to phonon modes of a lattice, the effective interaction between electrons can become at-

tractive, leading to strong pairing in low dimensional systems. These Cooper-pairs of

Bardeen–Cooper–Schrieffer (BCS) theory result in effective bosonic quasi-particles which

can undergo bose-einstein condensation. The resulting band structure of the bosonic the-

ory typically features a gap about the original fermi-surface of size ∆ ∼ kbTc
√

1− T/Tc
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that suppresses the breaking of pair wavefucntions. In this low-energy bound state, BCS

theory predicts the expulsion of a magnetic field from the superconductor and the vari-

ation of the penetration depth with temperature. It also describes the variation of the

critical magnetic field with temperature relating the T = 0 critical field to the value of

the transition temperature and the density of states at the Fermi level. Most famously,

the local U(1) symmetry of the bound-state permits the existence of the persistent,

resistance-free, currents known to superconductivity.

One of the greatest mysteries in correlated electronic systems is the occurrence of

High Temperature Superconductivity, which cannot be explained by the otherwise highly

successful BCS model with a theoretical limit of Tc ∼ 30K. The main class of high-

temperature superconductors are the cuperates, distinguished for their 2D copper-oxide

planes thought to play the largest role in conduction, with upper Tc’s in the range of

150K. With extremely complicated substructures stemming from their complex lattices,

as well as doping and stoichiometric disorder, the origin of HTSC in these compounds, as

well as many of their intermediate temperature phases, is poorly understood. In addition

to these, iron-based compounds are intensively studied, and despite a nearly identical

phase diagram, their unconventional superconducting physics seems to be governed by

an alternate “heavy fermion” phenomenology.

Non-Fermi-Liquids: Many of the mentioned low-temperature phases discussed, es-

pecially high temperature superconductors, share a unique fate in the finite temperature

regime in the vicinity of their critical point. In this quantum-critical regime, the tense
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Figure 1.1: A typical phase diagram of correlated electron systems

competition between ordering and scattering processes seems to appears to lead to a uni-

versal phase that has no quasi-particle description. Also refereed to as “Strange Metals”,

Non-Fermi Liquids (NFL) represent a strong deviation from the ordinary description

of fermonic theories, most notably producing a linear T dependence on resistivity and

plankian dissipation. Despite the ubiquity of this phase in many correlated systems,

little is known about its phenomenology or instabilities to ordered phases. We review

and discuss the aspects of these systems in great depth throughout Chapter 3.

1.1.4 In Conclusion

In this chapter we covered some of the essential aspects of correlated systems that lead

to high degrees of complexity and frustration in theoretical work. Despite the largeness

of N in these systems, correlation between DOF often render blunt statistical analyses
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useless. In order to make progress in our understanding, we must make use of clever and

creative techniques, and limit our ambitions to approachable questions. In the case of

fermionic systems, the Pauli exclusion principle along with exchange symmetries leads

to new diverse behavior. We found that in some cases the net effect of these phenomena

were actually beneficial from a discussion of FL theory— revealing that free approxima-

tions have a wider range of applicability than one might expect. However, the properties

of fermions often increase mathematical complexity in the most interesting systems, es-

pecially those with itinerent electrons, frustration or a large degree of symmetry. In the

remainder of this thesis we explore such systems and the recent progress.
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Chapter 2

Intertwined Orders

Building on the perspectives presented in the introduction, we now discuss a model which

explicitly demonstrates the precarious nature of manybody electronic systems. Specifi-

cally, we will show that a free fermion system with an arbitrarily weak repulsive interac-

tion experiences a complete breakdown of its mean-field solutions, in stark contrast with

the intuition we gained from Landau Fermi-Liquid theory. Moreover, we will demonstrate

that the complexity of the emerging phase diagram is highly sensitive to perturbations

— in some cases even realizing superconducting phases despite the repulsive nature of

the bare interaction.

The work presented here considers an electronic system with a symmetry-protected

band crossing point. Two-dimensional quadratic band crossing (QBC) systems, in which

two parabolically dispersing bands meet at a single point in momentum space, have

emerged as an attractive venue in which to study multi-criticality and competing orders.
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At certain fillings, rather than a fermi-surface, such systems have a single fermi point

in momentum space. In contrast to systems with Dirac points in two spatial dimen-

sions, which are robust to weak short-range electron-electron interactions, analogously

constructed QBC systems are prone to instabilities even at weak coupling: despite the

point-like surface, the quadratic dispersion guarantees a finite DOS — and hence the

possibility of critical fluctuations — in its vicinity. These instabilities become apparent

by a simple scaling analysis: since the quadratic dispersion imbues electron fields with a

scaling dimension of dψ = 1/2 (z = 1), all local two-body interactions are marginal.

As we will show, arbitrarily weak interactions in QBC systems protected by a high

degree of symmetry can lead to a complex phase diagram consisting of many symmetry-

broken phases. Furthermore, the leading emergent order can be missed by a mean-field

analysis, which only probes the relative strengths of the various order parameters in

the microscopic theory. This failure can be attributed to the fact that such a compari-

son between symmetry breaking orders represents a flat caricature of the otherwise rich

phenomenology — it is misleading in the way that

We find that instead of a straightforward a nonlinear relationship between order pa-

rameter strengths at different scales. Even if the order parameter amplitudes are small

in the microscopic theory, their fluctuations may couple channels in a nonlinear fashion.

Integration of fluctuations down to the fermi-surface reveal that macroscopic order can

be driven by short-range symmetry breaking across all channels simultaneously. Surpris-

ingly, some exotic phases in this study only emerge in the presence of order parameters
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that are otherwise unrelated to the macroscopic phase in question. The nonlinear in-

terdependence of the strength of these fluctuations is best described as “intertwined”

orders.

2.1 A QBC Hubbard model

As first demonstrated by Haldane [39], band crossing point carries quantized Berry

flux as required by time-reversal symmetry. This flux is computed as a closed inte-

gral along a path in the Brillouin Zone (BZ), Γ, enclosing the band crossing point:

−i
∮

Γ
dk · 〈ψ(k)|∇k|ψ(k)〉 = nπ, where the integral is computed over the appropriate

band wavefunction ψ(k) and n is an integer. For a Dirac point, the Berry flux is ±π. In-

stead, the Berry flux at a QBC is either 0 or ±2π [100]. A zero flux QBC is an accidental

band crossing, which can be removed by infinitesimal band mixing without breaking any

symmetries. In contrast, a QBC with ±2π flux must be split into two Dirac points with

equal ±π flux, and may therefore be protected from collapse by underlying symmetries.

Motivated by the unique properties of QBCs, and their susceptibility to instabilities,

our goal is to construct a model with a crossing point that is robust to perturbations in

the non-interacting theory. In general, there are two ways to remove a QBC: by splitting

it into several Dirac points while preserving the total Berry flux or by breaking time-

reversal (or similar) symmetry to open a gap. In the former case, consider that a QBC

with flux 2π can be split into two separate Dirac points each with flux π, or three Dirac

points with flux π and one additional Dirac point with −π. The first scheme breaks the
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point group symmetry leaving, at most, a two-fold rotational symmetry unbroken. The

latter case can take place while preserving a three-fold rotational symmetry, such as the

case of bilayer graphene [73, 75]. For a QBCP with a fourfold or sixfold symmetry axis,

the split into Dirac points cannot occur without breaking that symmetry. Thus, for a

QBC (with Berry flux ±2π) to be stable without fine tuning, we require a model with

C4 or C6 rotational symmetry in addition to preservation of time-reversal.

While there are numerous models that produce QBCs, we restrict our attention to

the simplest possible toy model that captures the essential ingredients. We are interested

in a 2D theory with a QBC which is protected — that may not be split into two Dirac

points– and is invariant under time-reversal. Two simple lattices that have this property

are the Cv4 symmetric checkerboard lattice — a bipartite sum of two square lattices,

describing numerous common materials including the copper-oxide planes of cuperate

high-temperature superconductors (HtSC) — exhibiting a QBC at half filling and Cv6

symmetric lattices such as the well-known 3-band kagomè lattice systems with a QBC at

1/3 filling.

Both models may be described by the same two-band Hamiltonian by interpolat-

ing the hopping parameters. We use the following low-energy effective Hamiltonian to

describe such a QBC system : [101]

H = H0 +Hint, (2.1)

where
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Figure 2.1: (a) Checkerboard lattice, with nearest neighbor (t) and next-nearest neighbor (t′, t′′) hoppings
shown. (b) Kagome lattice, with nearest neighbor hopping t. (c) Energy bands near a 2D quadratic band
touching point in the rotationally invariant and particle-hole symmetric limit, with chemical potential
µ. (d) For η = 1.3π4 6= π

4 , the dispersion has only 4-fold rotational symmetry. (e) For λ = 0.4 6= 0, the
bands become particle-hole asymmetric.

H0 =
∑
|k|<Λ

∑
α=↑↓

ψ†kαH0(k)ψkα,

H0(k) = tIk
21 + 2txkxkyσ1 + tz(k

2
x − k2

y)σ3

=
k2

√
2m

[λ12 + sin η sin 2θkσ1 + cos η cos 2θkσ3] ,

(2.2)

where Λ is an ultraviolet momentum cutoff, σi are the usual Pauli matrices with i = 0

to be understood as the 2 × 2 identity, 1/
√

2m =
√
t2x + t2z, λ = tI/

√
t2x + t2z describes

particle-hole anisotropy, and tan η = tx/tz describes rotational anisotropy. The corre-

sponding dispersion is

ε±(k) =
k2

2m

[√
2λ±

√
1 + cos(2η) cos(4θk)

]
. (2.3)

For |tI | < min(|tx|, |tz|), the model has two parabolic bands meeting at k = 0, with
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Interaction g0 g1 g2 g3

Forward scattering g 0 0 0
(checkerboard or kagome)

Hubbard (checkerboard) 1
2
U 0 0 1

2
U

Hubbard (kagome) 2
3
U 1

3
U 0 1

3
U

Table 2.1: Bare interactions gi(0) appearing in (2.4) for longer-range (forward scattering) and short-range
(Hubbard) interactions, as determined by deriving the low-energy effective theory from a microscopic
model on the checkerboard or kagome lattice.

one band dispersing upward and the other downward as one moves away from this point,

as shown in Figure 2.1.

As written, the Hamiltonian (2.1) is invariant under the symmetries of the C4v point

group, and may arise as a low-energy effective theory for electrons on the checkerboard

lattice at half filling, with the parameters in (2.2) related to the lattice hopping param-

eters shown in Figure 2.1 as tx = t/2, tz = (t′ − t′′)/2, and tI = (t′ + t′′)/2.[101] It can

also describe a system having C6v symmetry if one takes tx = tz = t and g1 = g3. In this

case the low-energy theory has full rotational symmetry, since any other possible terms

consistent with six-fold rotational symmetry would contain higher powers of momentum

and hence would be irrelevant. Such an effective theory may arise from electrons on a

kagome lattice at 2
3

filling[101]. In either case, the QBC point is robust to perturbations

which do not break time reversal or point group symmetries. In the absence of exter-

nal symmetry-breaking fields, only a spontaneous symmetry-breaking instability to an

ordered phase can alter the QBC point. The group representations for the C4v and C6v

cases together with the corresponding symmetry-allowed interaction terms are shown in

Table 2.2.
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2.1.1 Previous Analyses

As mentioned, previous studies have detailed the phase diagram of this model using

various approaches. In the work of Sun et. al., [101] a mean field analysis was applied to

investigate both spinless and spin-1/2 fermion systems.

In the spinless case, a Hamiltonian of the form of Eq. 2.2 was studied, consid-

ering only a nearest neighbor interaction term between distinct lattice sites Hint ∼

g
∫
d2x|ψ†(x)σxψ(x)|2. A scaling argument demonstrates that such an interaction repre-

sents a marginally relevant perturbation for any finite repulsive coupling. To investigate

the leading order in the resultant strong coupling theory, they constructed order param-

eters for the three possible symmetry broken phases: the QAH which breaks T and two

nematic parameters which break lattice symmetry down to C2 by splitting the QBC into

two Dirac points with equivalent flux. The strength of these order parameters were then

compared in the weak coupling microscopic theory. They found that in the case of spin-

less fermions, a Quantum anomalous hall phase with topologically protected edge states

was the dominant instability at weak coupling, with a crossover into a nematic phase at

intermediate strengths.

In the spin-1/2 model described by Eq. 2.2, they considered contributions from the

four shortest-range interactions: a) an on-site repulsive Hubbard U , b) a nearest neighbor

repulsion V , c) a nearest neighbor exchange interaction J , and d) a pair-hopping term

W . These correspond to linear combinations of our couplings as given by Table 2.1. The

evaluation of these perturbations lead to six marginally-relevant terms by scaling. In
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the mean-field limit, the phase diagram obtained for the parameter regime U > V > 0

at T = 0: For U > 2V > 0, the system is in the NSN phase at low temperatures for

2V > U > 0; the QAH phase for J > 0; the QSH phase for J < 0. For U → ∞ (and

J = 0), there is a NSN state, while V →∞ stabilizes a nematic phase.

Another study by Uebelacker and Honerkamp [105] used a functional renormalization

(fRG) approach to study the QBC system of Eq. 2.2. In an fRG approach, numerical

evaluation of the flow is accomplished by assuming that the quadratic part of the action

is dependent upon a cutoff parameter, such that the propagator is restricted to acting

within the high-energy Hilbert space. Perturbative corrections are then computed and

summed from some UV cutoff Λ0 down to the desired scale low-energy scale Λ. The

emergence of a strong coupling phase is indicated by a divergence at some critical scale

Λc > Λ, and a comparison of Λc between interactions reveals the leading instability of

the system. Using this method, they similarly found NSN as the leading instability.

2.2 A Renormalization Group Approach

An analysis based on a mean-field calculations may not be reliable in cases where there

are competing instabilities with diverging susceptibilities in multiple channels. As we will

demonstrate in the next sections, the existence of multiple orders can lead to surprising

nonlinear effects: fluctuations in one channel, even if it is not the leading order, may

couple to the flow of another, altering the IR behavior and even changing the sign of the

interaction.
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In order to simplify the approach, we will focus our efforts on the simplest parameter

choice in Eq. 2.2 , following the work published by two of us previously [72]. Analysis

of the generalized model may be found in the Appendix A. We choose the rotationally

invariant and particle-hole symmetric limit, where η = π/4 and λ = 0. The band

structure takes the simple form ε(~k ) = ± k2

2m
. The interaction term appearing in (2.1) is

defined to be

Hint =
2π

m

3∑
i=0

gi

∫
d2x

(∑
α=↑↓

ψ†α(x)σiψα(x)

)2

, (2.4)

which contains all marginal symmetry-allowed couplings. The low-energy effective Hamil-

tonian used to describe the system is given by H = H0 +Hint, where the non-interacting

part introduced by Sun et al. is given by [101] We employ a Wilsonian RG procedure

[106, 108, 107] in order to study the effects of interactions and instabilities to ordered

phases at low energy scales. It is useful to define the following action:

S =

∫
dτ

∑
|k|<Λ

∑
σ

ψ†kσ(∂τ +H0(k))ψkσ +Hint

 , (2.5)

where the Grassmann fields ψkσ now depend on imaginary time τ . The RG step is then

performed by eliminating states within the momentum shell Λ(1 − d`) < |k| < Λ while

integrating over all frequencies. By including all one-loop diagrams and rescaling the

couplings after each RG step, one obtains the following flow equations:
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dgi
d`

=
3∑

j,k=0

Aijkgjgk. (2.6)

These coefficients, Aijk, are calculated from the five 1-loop diagrams that contribute at

second-order, and are explicitly given in Appendix A. It can be shown that the parameters

λ and η do not flow at this order, preserving the topology and symmetry of the bands.

From (2.6), one sees that the couplings are marginally relevant and generally flow to

infinite values for sufficiently large `. The ratios of these couplings, however, approach

fixed finite values, with each of these fixed ratios corresponding to a particular ordered

phase. Due to the perturbative nature of this approach, the flow equations remain valid

only at weak coupling and break down at RG scales where gi(`) & 1.

It is convenient to define a set of new couplings by a linear transformation in the

valley-singlet channels: g± = (g3 ± g1)/2. Remaining in the limit of a rotationally

invariant (η = π/4), particle-hole symmetric (λ = 0) system, the flow equations (2.6) in

this new basis take on the following relatively simple form:

ġ0 = −4g0g+

ġ+ = −(g0 − g+)2 − (g2 − g+)2 − 6g2
+

ġ2 = 4(g0g2 − g2
2 − g2

− + g2
+ − 3g2g+)

ġ− = 2g−(g0 − 3g2 − 2g+).

(2.7)

From this equation we see that g− will not be generated if it vanishes initially, which

indeed must be the case when the system has C6 rotational symmetry. One also sees

from (2.7) that ġ+ ≤ 0, indicating that g+(`) decreases under RG flow. Apart from

certain fine-tuned initial conditions from which the coupling ratios flow toward one of
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g+ g�
g+

g2

g+

Figure 2.2: Renormalization group flows of the coupling ratios, with g± = (g3 ± g1)/2, with fermion
dispersion taken to be rotationally invariant (η = π/4) and particle-hole symmetric (λ = 0). The three
stable fixed ratios are shown in red, with the upper two corresponding to a QAH phase, while the stable
fixed ratio with g2/g+ < 0 corresponds to a QSH phase. The trajectories corresponding to Hubbard
and forward scattering interaction are shown as bold red and blue lines, respectively. In the Hubbard
case, the flow begins with g0/g+ > 0 and then reappears in the opposite quadrant when g+(`) passes
through zero. Apart from the unstable Gaussian fixed point, all flows terminate in the g0/g+ = 0 plane
as g+ → −∞. For the black arrows, the flow direction corresponds to g+ < 0. If g+ > 0 initially, the
couplings first flow opposite to the direction shown (as shown for the Hubbard case) until g+ changes
sign and the trajectories follow the arrows shown.

the mixed-stability fixed ratios in the g0 = 0 plane shown in Figure 2.2, one finds in all

cases that g+(`) passes through 0 and eventually flows toward large negative values. AS

done in Ref. [108], using the monotonic decrease of g+(`) allows one to reparameterize

the flow equations in terms of the flow of this coupling, so that the new flow equations

are of the form d(gi/g+)/dg+ = Φi({gj/g+}).

As shown in Figure 2.2, which illustrates the RG flows of the reparametrized coupling

ratios, there are three stable fixed values. All of the fixed ratios lie in the plane g0/g+ = 0.

In order to identify these phases, one can analyze the susceptibilities of various symmetry-

braking order parameters by introducing the following source terms into the action:
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Rep. (C4v) gi M
(c)
i Phase (c) M

(s)
i Phase (s) M

(pp)
i g̃i Phase (pp)

A1 g0 14 – 1~s FM 1s2 g̃0 s
A2 g2 σ21 QAH σ2~s QSH σ2(is2~s) g̃2 p
B1 g3 σ31 Nem. (site) σ3~s NSN (site) σ3s2 g̃3 d

x2−y2

B2 g1 σ11 Nem. (bond) σ1~s NSN (bond) σ1s2 g̃1 dxy

Rep. (C6v)
A1 g0 14 – 1~s FM 1s2 g̃0 s
A2 g2 σ21 QAH σ2~s QSH σ2(is2~s) g̃2 p
E2 (g1, g3) (σ31, σ11) Nem. (σ3~s, σ1~s) NSN (σ3s2, σ1s2) (g̃3, g̃1) (d

x2−y2 , dxy)

Table 2.2: Fermionic couplings gi, together with the representation of C4v or C6v under which they
transform, the matrices appearing in the source term bilinears (2.8), and the phases associated with
each bilinear. The possible excitonic phases are ferromagnet (FM), quantum anomalous Hall (QAH),
quantum spin Hall (QSH), charge nematic on sites or bonds, and nematic-spin-nematic (NSN) on sites
or bonds. The last three columns show the matrices appearing in the particle-particle bilinears in
(2.8), the transformed couplings from (2.13), and the corresponding superconducting phases (s-wave,
p-wave, and d-wave). In the left most columns the pair couplings g̃i are given with their corresponding
superconducting phases.

S∆ =

∫
dτ

∫
d2x

{ 4∑
i=1

[
∆

(c)
i ψ

†M (c)
i ψ + ~∆

(s)
i · ψ†M(s)

i ψ

]

+
1

2

[ 3∑
i=1

∆
(pp)
i ψ†M (pp)

i ψ∗ + ~∆
(pp)
4 · ψ†M(pp)

4 ψ∗ +H.c.

]}
.

(2.8)

The matrices that define the various fermion bilinears in charge (c), spin (s), and particle-

particle (pp) channels are given in Table 2.2.

The source terms in (2.8) flow under RG as follows:

d ln ∆
(c,s,pp)
i

d`
= 2 +

3∑
j=0

B
(c,s,pp)
ij gj, (2.9)

where the coefficients Bc,s,pp
ij are provided in the SI. It is then possible to compute sus-

ceptibilities by taking derivatives of the free energy with respect to these source terms:

χi = −∂2f/∂∆i∂∆∗i . The full expressions for χi are given in the SI. One finds that

they exhibit power law behavior near the RG scale `∗ where the couplings gi(`) diverge,

i.e. χi ∼ (`∗ − `)−λ. These exponents are given by
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Figure 2.3: Critical exponents of divergent susceptibilities as a function of anisotropy (η = π/4 corre-
sponds to the rotationally invariant case). Left panels correspond to long-ranged interaction (g0(0) > 0
only); right panels correspond to Hubbard interaction (g0(0) = g3(0) > 0). Upper panels are calculated
with particle-hole symmetry; lower panels are calculated with particle-hole asymmetry λ 6= 0.

γ(c,s,pp)
m =

2
∑

j B
(c,s,pp)
mn ρn∑

ijk Aijkρiρjρk
, (2.10)

where ρi = lim`→`∗ gi(`)/
√∑

j g
2
j (`). The susceptibility exponents are shown for various

values of rotational anisotropy and particle-hole asymmetry in Figure 2.3. In the case

of long-ranged interaction, one can see from the figures that QSH is the leading insta-

bility, with subleading instabilities to charge nematic phases. For Hubbard interaction,

the leading instability is to the QAH phase, with subleading instabilities to either charge

nematic along bonds or nematic spin nematic (NSN) on sites. The susceptibilities them-

selves for both types of interaction are shown in the Appendix, from which we see that

the results for the leading instabilities match those from Figure 2.3.

Ultimately, this procedure reveals that two of the three stable fixed points correspond

to the QAH phase, while the third corresponds to QSH. We thus conclude that all possible
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instabilities of the system at weak coupling are to topologically ordered phases, and that

these instabilities are realized for arbitrarily weak values of the couplings gi.

For density-density interactions, the only nonzero bare couplings are g0 and g3, with

the other couplings generated upon running the RG. For on-site Hubbard interaction

on the checkerboard lattice, g0(` = 0) = g3(` = 0), while for the case of long-ranged

forward scattering interaction, only g0 is nonzero initially. The spatial range of the

interaction can then be adjusted by interpolating between these two limits. For all

sufficiently short-ranged interactions satisfying g3(0)/g0(0) > 0.26, the couplings flow to

the fixed ratios at (g0, g−, g2) = (0,−3.73, 7.46)g+, corresponding to the QAH phase.

For g3(` = 0)/g0(` = 0) < 0.26, on the other hand, the couplings flow to (g0, g−, g2) =

(0, 0,−1.09)g+, corresponding to QSH. Although we have focused on the symmetric case

with η = π/4 and λ = 0, the results remain qualitatively similar away from the particle-

hole symmetric and rotationally invariant limit.

2.2.1 Fluctuation Driven Intertwined Orders

The following point is stressed: The realization of the QAH phase depends crucially

on the coupling g2 that is generated by fluctuations — these fluctuations are clearly

captured in the RG approach, but sorely missing in the mean-field analysis. As such, the

realization of the QAH phase for the Hubbard interaction is in apparent contrast with

the previously discussed results of Refs. [101] and [105], both of which found NSN as the

leading instability. The NSN phase preserves rotational symmetry in the charge channel
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while breaking it in the spin channel [76]. The analysis of Ref. [101] was based on a mean-

field analysis, which may not be reliable in cases where there are competing instabilities

with diverging susceptibilities in multiple channels. Indeed, since the Hubbard interaction

does not couple neighboring sites on opposite sublattices, it is clear that the QAH order

parameter 〈ψ†(σ21)ψ〉 will not be favored at mean-field level.

On the other hand, while the fRG study of Ref. [105] does include such fluctuations,

that method is restricted to strong or intermediate couplings U & t, and so complements

the analysis of weak-coupling instabilities. That a NSN phase is realized at strong cou-

pling is not surprising, as this corresponds to a Ne~e l state in which spins anti-align with

their nearest neighbors. Such a state is not favored at weak coupling, however, due to

its gapless excitation spectrum, which can be expected to gain less condensation energy

than the fully gapped QAH phase. As pointed out previously [101], in the charge (spin)

nematic phases, the quadratic band touching splits into two (four) Dirac cones, so that

the excitation spectrum remains gapless in each of these cases. As the magnitude of the

order parameter grows, these cones move further apart. In a theory that takes the full

lattice into account, the cones eventually annihilate far from the original band touching

points, and the spectrum becomes fully gapped for sufficiently strong interactions. At

weak coupling, however, this cannot occur, and one expects the fully gapped spectra of

the QAH or QSH phases to be favored in this case, which is indeed what is found.
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2.3 Emergent order in Doped QBCs

We now extend these results [72] by investigating the single-valley QBC system away

from half filling, showing that d-wave and conventional s-wave superconducting order

can be realized at nonzero doping for repulsive short-range and longer-range interactions,

respectively. The contents of this section closely follow our 2014 publication [78].

We return to the normalization analysis under the flow of Eqn. 2.5 , where we now

include a finite chemical potential by the substitution H0 → H0 − µ. The chemical

potential scales as µ → µe2` at T=0 [107, 71]. Again, one sees that the couplings are

marginally relevant and generally flow to infinite values for sufficiently large `, though

their ratios approach fixed finite value. A reevaluation of our diagrams reveal that, away

from half-filling, only particle-particle scattering leads to chemical potential dependence

in the flow equations. This is somewhat intuitive — the effect of chemical potential on

our system is to modulate the density, so one would expect that the particle-particle scat-

tering channel should be sensitive to its presence at 2nd order. Moreover, reconstructing

the flow coefficients of 2.6 for the finite µ case, the new contribution only appears in the

particle-hole fluctuation, corresponding to coefficients A5:

A5
ijk(µ`) =

(
1

1− µ2
`

)
A5
ijk(0), (2.11)

where we have defined µ` ≡ µe2`/ Λ2

2m
= µ̂e2`. This can be understood by consider-
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ing that a renormalized particle-particle interaction rate naturally leads to a change in

particle-hole densities, since these events scatter fermions near the fermi-surface.

Using the new coefficients, we may rewrite the flow equations such that the µ-

dependent terms are separate, in order to make use of the previously established results:

dgi
d`

=
3∑

j,k=0

(
Aijk(0) +

(
µ2
`

1− µ2
`

)
A5
ijk(0)

)
gjgk

= ġi(`, µ = 0) +

(
µ2
`

1− µ2
`

) 3∑
j,k=0

A5
ijk(0)gjgk.

(2.12)

Further insight can be gained by using the so-called Fierz identities [107] to recast the

interaction term as a combination of pairing interactions of the general form

Sint =

∫
dτ

∫
d2r

[ ∑
j=singlet

g̃jS
†
jSj +

∑
j=triplet

g̃j ~T
†
j · ~Tj

]
, (2.13)

where

Sj = ψT (r, τ)σjs2ψ(r, τ), for j = 0, 1, 3

~Tj = ψT (r, τ)σ2~sψ(r, τ), for j = 2.
(2.14)

Here ~s is a vector of Pauli matrices corresponding to electron spin. Recasting the problem

in this equivalent way and making use of the Fierz identities gives us the following relation

among the ordinary and Cooper gauge couplings:

g̃i(`, µ) =
∑
j

Fijgj(`, µ) (2.15)
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where the Fierz matrix F is

F ≡ 1

4



1 1 −1 1

1 1 1 −1

1 −1 −1 −1

1 −1 1 1


(2.16)

The importance of this transformation is that the flow equations are written in a way

that clearly separates µ dependence

dg̃i
d`

= − αi
1− µ2

`

g̃i
2 +

∑
j,k

Ãijkg̃j, g̃k (2.17)

where αi ≥ 0, and the coefficients Ãijk are non-singular as µ` → 1.

2.3.1 Flow equation solutions in the Isotropic Limit

Again, analyzing the flow equations in the simplest case of particle-hole symmetry (λ = 0)

and rotational invariance (η = π
4
), the coupled equations (2.12) are given by 2.7 as

previously shown. In the case of C6v symmetry, we have g− = 0, reducing the system

to one with only three couplings. The µ-dependent contributions to the flow equations
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come from the last term in (2.12) and are given by

3∑
j,k=0

A5
0jk(0)gjgk

= g2
0 + g2

2 + 2
(
g2

+ + g2
− + g+(g0 − g2)

)
,

3∑
j,k=0

1

2
[A5

3jk(0) + A5
1jk(0)]gjgk = (g0 − g2 + 2g+)2,

3∑
j,k=0

A5
2jk(0)gjgk = 2

(
g2
− + (g2 − g+)(g0 + g+)

)
,

3∑
j,k=0

1

2
[A5

3jk(0)− A5
1jk(0)]gjgk = 4g− (g0 + g2) .

(2.18)

It is straightforward to obtain the flows of the transformed couplings g̃i(`) using the

transformation (2.15). In Figure 2.6 we show the flow of the superconducting Fierzed

couplings g̃i as plotted parametrically against a variable t defined as [107]

t =
1

2
ln

(
1− µ̂
e−2` − µ̂

)
, (2.19)

which vanishes at ` = 0 and increases without bound as the Fermi surface is approached,

thus better showing the behavior of the quickly diverging coupling flows as `→ `FS. At

half filling, the couplings diverge to both positive and negative values, as shown in Figure

2.6.

Including a nonzero chemical potential gives an advantage to the attractive couplings,

as is apparent from (2.17), so that these diverge while the repulsive couplings saturate as

the UV cutoff approaches the Fermi level. For forward scattering, in which case all initial

couplings g̃i(0) are positive, running RG with optimal chemical potential and coupling
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strength causes the Fierz coupling associated with conventional s-wave SC to diverge

to large negative values. In the case of the short-range Hubbard interaction two Fierz

couplings start out at zero – one of which, corresponding to a dxy SC state, diverges to

large negative values under RG.

As shown in Figure 2.4, the instabilities at and near half-filling [72] are to quantum

anomalous Hall[38, 13] (QAH) and quantum spin Hall[47, 5, 52] (QSH) phases, both of

which are topological in nature and feature charge or spin edge currents. (In the QSH

case, edge spin currents will not in general be conserved in the presence of disorder.)

For larger µ, the only susceptibilities that show divergent behavior for sufficiently large

µ are those in the particle-particle channels, and in this case s-wave and d-wave super-

conducting phases are the leading instabilities of the doped system. The appearance of

s-wave superconductivity driven by repulsive interaction is unusual, and comes about in

this case due to the fact that (i) all couplings g̃i(0) are initially equal for longer-range

interactions, so that no channel is initially disfavored; and (ii) the s-wave phase is fully

gapped, making it favorable due to the increased gain in condensation energy. This is

analogous to the pair density wave (PDW) instability previously found for repulsively

interacting electrons on the honeycomb lattice.[107, 71] The PDW is also fully gapped,

though in that case the Cooper pairs have nonzero total momentum 2K due to the fact

that pairing occurs within a Fermi pocket centered at wavevector K.
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g0 = 0.05

g0 = g3 = 0.1
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µ̂ = 1.5 ⇥ 10�5 µ̂ = 1.5 ⇥ 10�5

Figure 2.4: RG flows of susceptibilities for various instabilities in particle-hole and particle-particle
channels with finite chemical potential. Top row: With forward scattering interaction, susceptibilities in
spin and charge channels saturate at finite values (left), while the susceptibility in the s-wave particle-
particle channel diverges (right). Bottom row: With Hubbard interaction (on the checkerboard lattice),
susceptibilities in spin and charge channels saturate at finite values (left), while the susceptibility in the
d-wave particle-particle channel diverges (right).
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Figure 2.5: Variation of the susceptibility exponent γ
(c,s,pp)
m with increasing dimensionless chemical

potential µ̂. Moving away from half-filling causes the susceptibilities of the leading particle-hole instabil-
ities to saturate, while those of the particle-hole channels diverge. Top: forward scattering interaction,
with g0(0) = 0.05 and g1,2,3(0) = 0. Bottom: Hubbard interaction (on checkerboard lattice), with
g0(0) = g3(0) = 0.1 and g1(0) = g2(0) = 0.
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2.3.2 Proof of Guaranteed Superconductivity

It is apparent that for µ` ≈ 1 the equations will become essentially decoupled. In this

regime, if a pair coupling is attractive, it will diverge to negative infinity while the

repulsive couplings saturate. Following the arguments given in Ref. [107], one can show

that for arbitrarily weak couplings an appropriate µ̂ can always be chosen to accomplish

this. First consider the case at half filling: at some `1 one of the couplings becomes

attractive. This behavior is approximately preserved as one moves away from half filling

so long as µ`1 � 1. On the other hand, we need to choose µ̂ sufficiently large such that

the attractive coupling diverges at `FS defined by µ`FS = 1 while saturating the repulsive

couplings. If at half-filling, the repulsive couplings diverge at `∗, then having µ`FS � µ`∗

would satisfy this. Combining these conditions produces the following inequality:

Λ2

2m
e−2`∗ � µ� Λ2

2m
e−2`1 . (2.20)

In order to show that this relationship may always be satisfied, we defer to the follow-

ing argument. Consider that the µ = 0 flow equations are invariant under the following

transformation:

gi → bgi, `→ `/b. (2.21)

Then we can say that there are constants C1 and C∗ such that `1 = C1/g and `∗ = C∗/g,
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Figure 2.6: Top row: Flows of couplings for Hubbard interaction (on the checkerboard lattice), with
µ̂ = 0 (left), and µ̂ = 1.5 × 10−5 (right). Bottom row: RG flows of couplings at half filling for forward
scattering interaction with µ̂ = 0 (left) and at µ̂ = 10−6 (right). In both cases, a sufficiently large
chemical potential for a given interaction strength causes all repulsive couplings to saturate, while
attractive couplings diverge.
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for g ≡
√∑

i g
2
i (0). Therefore, we have that

Λ2

2m
e−2C∗

g � µ� Λ2

2m
e−2

C1
g (2.22)

It is clear that as long as the couplings can be arbitrarily weak, the relationship can

be satisfied. We use the above relation to determine the coupling strength and Fermi

level appropriate to obtain a superconducting phase. For example, in the case of forward

scattering at half filling, we find that C1 ≈ 0.26 and C∗ ≈ 0.40 (see Figure 2.6). Choosing

the coupling to be g0(0) = 0.05, we find that µ̂ = 10−6 entirely satisfies our constraint

(2.22).

2.4 Conclusions

While the appearance of superconductivity adjacent to various forms of particle-hole

order has been observed in many families of strongly correlated materials, the precise

mechanism for such behavior is still a matter of controversy. The fact that such phases

tend to appear together appears to be at odds with the naive expectations of mean-

field theory, from which one would expect such phases to compete, so that what is

good for superconductivity is bad for particle-hole order and vice versa. The results

of the preceding section suggest that these phases may be more usefully thought of as

“intertwined” rather than competing,[29] as it is the enhanced logarithmic RG flows due

to the fluctuations in particle-hole channels that ultimately lead to superconductivity. Of
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particular interest in the single-valley QBC model studied here is the unusual appearance

of s-wave superconductivity driven by repulsive interactions, as well as the appearance

of superconductivity adjacent to topological phases of matter, as shown in Figures 2.5

and A.5. Our work raises the possibility that there may exist a quantum critical point

separating these phases, although one cannot rule out the possibility of, e.g., a first-order

phase transition using the present approach. More broadly, the QBC model studied here

thus provides a relatively simple and well-controlled arena in which to better understand

the behavior of intertwined orders in 2D.
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Chapter 3

Strongly Correlated Phases

Strongly correlated electron systems can result in macroscopic behavior that deviates

from a conventional fermi-liquids (FL). As discussed in the introduction, FLs are defined

by the nature of their low-lying excitations — while single electron-hole pairs may no

longer account for these states in the presence of interactions, there exists an adiabatic

transformation into quasi-particle states that preserve the fundamental description of a

Fermi-gas, up to a “redressing” of parameters.

Most importantly, these quasi-particles are long-lived (τ ∼ EF
T 2 ) particle-like excita-

tions that retain a sharp spectrum in the vicinity of the fermi-surface— the qualitative

structure of the system’s density of states is locally conserved, permitting the applica-

tion of perturbative approaches. This means that these quasi-particles, when describing

a real material system, will have a the canonical properties of ordinary metals, including:

T 2 temperature dependence on resistivity at low temperatures, a linear T relationship
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with heat capacity and B2 magneto resistance scaling. However, in certain systems —

including many novel materials of interest and High Temperature Super Conductors—

this ceases to be true: interactions lead to the complete destruction of the original fermi-

surface, replacing the sharp particle-like spectrum with a broad distribution of energy

levels that indicate a the presence of relevant complex, combinatorially terse, multi-

particle interactions.

Compared with more common fermionic phases, little is know about these so-called

Non-Fermi Liquid (NFL) phases, which frequently occur at quantum critical points of

itinerant electron systems [40, 68, 60]. The strong correlations and quantum critical fluc-

tuation often make it challenging to study the non-fermi liquids through the standard

diagrammatic approach, and various expansion methods have been developed for that

purpose [55, 70, 65, 66, 19]. Despite this, there have been few tractable models exhibit-

ing the NFL phase. Barring Luttinger liquids, whose 1D phase transitions and ground

states cannot be generalized to higher dimensions, there have been few widely accepted,

generalizable results pertaining to these systems.

In this chapter we will discuss new results on the NFL phase, which followed a dra-

matic resurgence of the so-called “SYK model” (Sachdev-Ye-Kitaev Model) in 2015.

Originally posed by Sachdev and Ye in 1993 [86], the (0 + 1)d model is characterized

by a random all-to-all SU(N) Heisenberg interaction and a solvable low-energy theory

described by the NFL phase. This model was later reintroduced by Kitaev [43] in 2015

using a majorana fermion model, conjectured to be platform for understanding holo-
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graphic duality.

Perhaps more important that characterizations of the NFL phase alone, are its in-

stabilities and phase transitions to more conventional orders. Given the vast number

of real material systems who’s low energy phases are expected to be described by NFL

physics, a full understanding of the fermionic phase diagram in the vicinity of an NFL

is of critical importance. To this goal, the work reviewed in this chapter presents the

first known instabilities of a NFL. Surprisingly, the destabilizing interactions investigated

have a superficial appearance to superconducting pair instabilities, deepening the nearly

100 year old mystery the quantum critical regime in High Temperature Superconductors.

3.1 From Random Magnetism in Alloys To Black

Holes

The origin of the SYK model can be traced back to the theory of spin glasses which

emerged in the 1970’s– a time when many physicists were pondering the properties of

metal alloys, such as Cu/Mg and Au/Fe. These alloys displayed competing ferro- and

antiferro-magnetic interactions, leading to irregular spin alignments beyond the reach of

the standard Ising paradigm. In 1975, Edwards and Anderson developed a Ising magnet

to describe the new phase; it featured nearest-neighbor interactions with fully random

couplings drawn from a Gaussian distribution. While this paper set the stage for spin-

glass theory, the model was notoriously difficult to analyze, and its results remain highly
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contentious.

Soon after the publication of this theory, Sherrington and Kirkpatrick published their

own interpretations of this model. Dropping the nearest-neighbor interactions in favor

of all-to-all long range couplings, the theory lead to what is now known as the SK model

of spin glasses. While the model is arguably less realistic than its predecessor, this single

modification permits an “exact” solution, as briefly discussed in the Introduction. Ex-

actly solvable models, irrespective of physically questionable assumptions, are invaluable

to physics– they provide concrete cornerstones upon which more complex and realistic

theories may be built.

A renewed interest in quantum mechanical generalizations of these models emerged in

the 1990’s. Most notably, Sachdev and Ye, following the ideas of SK, proposed a number

of models which sought to elucidate the nature of random quantum magnets, eventually

leading to the SY model: an all-to-all Heisenberg model of SU(M) spins over N sites

[87], given as

H =
1√
NM

N∑
i>j

∑
a

JijS
a
i S

a
j (3.1)

Where the operator Sai on site i is the a th generator of the SU(M) group acting on

local states belonging to a Spin representation labeled by nb (e.g. for M = 2, S = 1
2
,

these are the Pauli Matrices, with nb = 1). As before, the Jij are independent parameters

up to symmetry, drawn from a real Gaussian distribution with zero mean and variance
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J 2 . Using the replica trick, they discovered that there existed a “Quantum Spin Fluid

Phase” whose properties were distinct from the classical spin glass. The vital parameters

in this theory are the representation and group labels. nb,M . Sachdev and Ye found

three interesting limits: nb →∞ yeilding the the magnetically ordered spin-glass phase;

M →∞ taking the model deep into the spin-fluid phase;

M,nb →∞, holding the ratio nb/M = κ fixed: whereby varying κ one can interpolate

between the spin-glass and spin-fluid phases, indicating the presence of a phase-transition

at some critical κc.

This novel “Spin Fluid” phase was found to have exciting properties. It harbors finite

entropy at T = 0 due to a large manifold of symmetry related gapless states, and a

self-energy who’s imaginary part scales as Im(Σ(iω)) ∼ √ω. As was later recognized,

the latter property is interesting: in a fermionic representation, this form indicates the

presence of NFL behavior — the spectrum of the theory is necessarily broad near the

fermi-surface since Im(Σ(iω)) does not fall off sufficiently fast to have a sharp quasi-

particle description.

3.2 The Fermionic SYK Model

In 2016, the SY model was recast into its now popular form involving fermionic degrees

of freedom rather than spins. Here we will discuss its solution and important properties

following Sachdev’s version of the SYK model due to its availability online [85]. In

addition to this, the complex fermion construction has a direct semblance to the original
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SY term under the slave fermion representation Ŝa → Saαβc
†
αcβ.

The Hamiltonian of the complex SYK model is given by:

H =
1

(2N)3/2

∑
ijkl

Jijklc
†
ic
†
jckcl − µ

∑
i

c†ici (3.2)

where Jijkl = J∗klij = −Jjikl = −Jijlk is drawn from a Gaussian distribution characterized

by

〈O(J)〉 =

∫
DJ O(J) e−

∑ |Jijkl|
J 2 , (3.3)

where 〈Jijkl〉 = 0, 〈|Jijkl|2〉 = J 2. This theory can be converted to the following coherent

state path integral over Grassmann valued fields c†(τ), c(τ):

S =

∫ β

0

dτ

[∑
i

c†i (∂τ − µ)ci −
1

(2N)3/2

∑
ijkl

Jijklc
†
ic
†
jckcl

]
(3.4)

In order to make theoretical progress toward a solution, we must deal with the dis-

order in the couplings. There are multiple approaches, typically involving a disorder

average, taken by various authors. The two most popular methods — directly disorder

averaging the partition function Z (Sachdev) and disorder averaging the correlation func-

tions appearing in the Dyson Equation (Kitaev) — turn out to be formally equivalent.

Due to its relative simplicity we follow the former, which is accomplished by the replica

trick. A full discussion of the method is beyond the scope of this thesis but, in summary,
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the partition function lacks self-averaging properties. Similarly directly integrating over

the disorder during the evaluation of expectation vales for potentially good observable

introduces complications – it becomes unclear how to perform a gaussian average over

the denominator Z0 =
∫
D(c†, c)eS[J ]. To circumvent this, we imagine preparing a large

number N of identical ensembles of this system, each realizing a different random con-

figuration of the Jijkl couplings, and use the following identity for some function of the

couplings A:

ln(A) = lim
N→0

AN − 1

N
(3.5)

such that the statistical average of the logarithm is given by

〈 ln(A)〉J = lim
N→0

〈AN 〉J − 1

N
(3.6)

The function of interest is the partition function of our theory, Z, and it can be shown

that lnZ, the free energy, is indeed a self averaging quantity. We are then free to proceed

with caution, with the intention of taking the eventual N → 0 limit. Prior to taking this

limit we may work with the replicated action by immediately carrying out the average

over the Jijkl:

〈ZN 〉J =

∫
DJe−|J |2/J 2

e
∑N
a Sa[J ] (3.7)

with replica index a, resulting in the replicated theory:

SJ =

∫
dτ c†ia(∂τ − µ)cia −

J 2

4N3

N∑
aa′

∫
dτdτ ′

∣∣∣∣∣
N∑
i

c†ia(τ)c†ia′(τ
′)

∣∣∣∣∣
4

(3.8)

Following Sachdev’s original paper, the model may be recast by applying a series
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of Hubbard-Stratonivich transformations to reduce the order of the action. Two such

transformations, introducing fields Q,P results in:

S =
∑
ia

∫ β

0

c†ia (∂τ − µ) cia +
N∑
ab

∫ β

0

dτdτ ′
{ N

4J 2
|Qab(τ, τ

′)|2

+
N

2
Qab|Pab(τ, τ ′)|2 −Qab(τ, τ

′)Pba(τ
′, τ)

∑
i

c†ia(τ)cib(τ
′)
} (3.9)

We see that this process has resulted in a theory that is quadratic in the fermion fields,

allowing us to integrate them out. The action obtained from integration has a large N

prefactor, allowing us to safely apply a saddle-point approximation in the N →∞ limit:

Pab(τ, τ
′) = Gab(τ, τ ′) = 〈c†a(τ)cb(τ

′)〉
Qab(τ, τ

′) = J 2|Pab(τ, τ ′)|
(3.10)

The saddle point equations let us identify the field Pab with the fermion Greens

function. Given the previous work of Sachdev and Ye [87], we don’t expect that the low

energy states in the limit of interest are in the Spin Glass phase, and therefore we can

argue that we only need to consider the replica diagonal solutions, allowing us to drop

the replica indices all together. Doing so allows us to identify Pab(τ, τ
′) = δabG(τ, τ ′).

Combining the equations of the saddle point solution and solving in terms of G we find:

G(iωn) =
1

iωn + µ− iΣ(iωn)
, Σ(τ) = −J 2G(τ)G(τ)G(−τ) (3.11)
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3.2.1 Low energy physics and solutions

Before investigating the symmetries at low energies, we first make a simplification to

Eq. 3.11. In the low energy limit, we expect that the contribution of iω → 0 to be

small. Furthermore the scaling dimension of the chemical potential µ similarly makes it

irrelevant in the low energy limit. We can then approximate our relation, strictly in the

low energy limit, to be

G(iωn) = − 1

Σ(iωn)

As an integral equation, we then find that the above algebraic equation gives us the

identity ∫
dτ2G(τ1, τ2)Σ(τ2, τ3) = −δ(τ1 − τ2) (3.12)

This identity is critical to the solution of the model. Upon inspection, one finds a

large symmetry associated with conformal maps via time reparametrizations τ → f(σ)

for arbitrary functions f, g .

G(τ1, τ2) = [f ′(σ1)f ′(σ2)]
−1/4 g(σ1)

g(σ2)
G(σ1, σ2)

Σ(τ1, τ2) = [f ′(σ1)f ′(σ2)]
−3/4 g(σ1)

g(σ2)
Σ(σ1, σ2)

(3.13)

The implication of the arbitrary g factors is that there exists an emergent U(1) gauge

symmetry at low energies which is not present in the microscopic theory described by 3.2

By assuming a power law dependence on complex frequency z = ωr + iω, one can
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Figure 3.1: Illustration of the Greens function G(ω) for the complex fermion SYK model.

show that the solution to the above equations can be given by

G(z) = C
e−i(π/4+θ)

√
z

, Im(z) > 0, |z| � J , T = 0 (3.14)

where C is an unimportant constant and θ is a parameter that characterizes the particle-

hole asymmetry.

3.2.2 Notable Features

The most important observation about the Greens function of Eq. 3.14 is that it describes

NFL behavior. This solution very clearly demonstrates that the spectrum of the SYK

model is gapless at low temperatures. Similarly, an immediate consequence of the scaling

form of G is that Σ(ıω) ∼
√
iω, so that the self energy of the fermions is slowly vanishing

in the vicinity of the fermi surface (here, a “fermi-point”), absent of any sharp poles

characteristic of FL phases.

The entropy at T = 0 can be extracted by using the usual thermodynamic relations.

Investigating the model in the high temperature UV limit, where µ is a relevant param-
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eter, one can make an expansion of G to second order in 1/iωn. An inversion of this

approximation allows one to show that at fixed total charge,

∂S

∂Q

∣∣∣
T

= − ∂µ
∂T

∣∣∣
Q

= 2πE , T → 0 (3.15)

From this we infer that the T = 0 ground state has a finite entropy density, which can

be demonstrated by asserting gthat the Q = 0 state of the SYK model necessarily has

S = 0.

3.3 Generalizing the SYK model

In Kitaev’s version construction, the SYK model is a (0 + 1)d system that consists of

N Majorana (real), rather than complex, fermions, with random all-to-all 4-fermion

interactions. The couplings are necessarily drawn from a real Gaussian distribution in

this case. The use of majorana DOFs rather than complex fermions has no significant

effects on the qualitative characteristics of the solution or underlying phase of the T → 0

model. This model was later generalized by Maldecena and Stanford to the SYKq model,

which replaces the 4-fermion interaction term with a q-fermion term [122]:

H SYKq = (i)
q
2

∑
i1<···<iq

Ji1...iqχi1 . . . χiq

〈J2
i1···q〉 =

2q−1

q

J 2(q − 1)!

N q−1

(3.16)

where χin are Majorana fermion operators with index in = 1 · · ·N , and Ji1...iq is a fully

anti-symmetric tensor whose each entry is drawn from a Gaussian distribution with zero

mean and variance as given in Eq. 3.16
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When q = 2, the model is simply N Majorana fermions with only random hopping

terms, which can be solved completely using the random matrix theory. The q = 4

SYK model (hereafter labeled as SYK4 model) is most thoroughly studied. We write the

Hamiltonian, with a rescaling of the J ′s for convenience, as

HSYK4 =
∑
ijkl

Jijkl
4!

χiχjχkχl, (3.17)

where Jijkl is drawn from a Gaussian distribution with a variance of J2
ijkl = 3!J2

4/N
3.

As demosntrated for the complex fermion version previously, in the limit of large N

and low temperature, the SYK4 model can be solved exactly via saddle point equations

and exhibits an emergent conformal symmetry. The scaling dimension of the Fermion

operator is identically ∆f = 1/4, which suggests a non-Fermi liquid behavior without

quasi-particle excitations [43, 122].

Furthermore, the exact solution also suggests that the SYK4 model is maximally

chaotic, in the sense that its Lyapunov exponent [43, 122], a measure of quantum chaos,

saturates the universal upper bound established in Ref. [99]. The saturation of the uni-

versal upper bound is also a feature of black holes. In fact, the exact solution also

indicates that the SYK4 model should indeed be holographically dual to a gravity the-

ory [84, 33, 80, 44, 26, 122, 34]. When q > 2, all SYKq models share the properties

such as maximally chaotic non-Fermi liquid ground states, and an approximate emergent

conformal symmetry at large-N .

Many other aspects of the SYK model, including the numerical simulations, general-

izations to models with higher symmetry, and higher dimensions, have been investigated
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recently [25, 123, 34, 2, 35, 33, 32, 37, 3, 113, 104, 77, 36, 54].

One peculiar feature of the SYKq model with q > 2 is that, in the large N limit,

the chaotic non-Fermi liquids all have finite entropy density even when the temperature

approaches zero [25, 33, 43, 122]. One might conjecture directly that the system has

instabilities towards states with lower (or zero) zero-temperature entropy density upon

perturbations. Indeed, in experimental systems, the non-Fermi liquid state at a quantum

critical point is usually buried in a dome of ordered phase with spontaneous symmetry

breaking at low temperature [64]. One usual scenario is the emergence of a supercon-

ducting dome around the quantum critical point, which occurs in cuprates, pnictides

superconductors, and also some heavy fermion systems. Thus it is meaningful to ask

whether the SYKq model, especially the SYK4 model is unstable against spontaneous

symmetry breaking. Or in other words, the SYK4 model could be the parent state of

ordered phases at the infrared 1.

3.4 Charting a map of the NFL phase: A Novel Pair-

ing Instability

We now move to study a class of perturbations on the SYKq models, in the hopes of

understanding the relationship the NFL phase has with neighboring ordered states. Of

particular interest to us is that the scaling dimension of the Majorana Fermion operator

1Here we use the standard Landau-Ginzburg’s definition of an ordered phase: an order means some
symmetry of the system is spontaneously broken, or in other words, an order parameter that transforms
non-trivially under the symmetry acquires a long range correlation.
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becomes ∆f = 1/q in the SYKq model. Simple a simple tree-level scaling analysis then

shows that any SYKq model is inherently unstable to perturbation by a SYKp term for

p < q; in fact, under renormalization, a SYKq model will, in the absence of fine-tuning,

generate such terms generically.

Given this, the non-Fermi liquid at the SYK4 fixed point should be unstable to any

SYK2 perturbation. However, the SYK4 has a time-reversal symmetry, under which all

fermion bilinears are odd; hence, the time-reversal symmetry T forbids the generation

of these perturbations. By tuning the system to ensure that the SYK2 terms are absent

from the bare action, we may restrict our attention to the four-fermion terms which are

symmetric under T . As we will show, the non-Fermi liquid SYK4 model is unstable

against a series of four-fermion interactions that preserve all the symmetries, and the

system flows to a state with spontaneous breaking of T .

A similar analysis can be generalized to the SYKq non-Fermi liquid with q > 4

perturbed by the four-Fermion interactions we design. Interestingly, the four fermion

interactions can drive the SYKq model to a series of new stable fixed points with conformal

symmetry.

3.5 A perturbed q = 4 SYK model

Following the above discussion, one finds that the following symmetry-allowed perturba-

tion is marginally relevant:

H =
Jijkl
4!

χiχjχkχl +
u

2
CijCklχiχjχkχl (3.18)
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Figure 3.2: The phase diagram of Eq. 3.18.

Both Jijkl and Cij are anti-symmetric random tensors drawn from a gaussian distri-

bution. We choose the following normalization for Jijkl and Cij:

Jijkl = 0, N3J2
ijkl = 3!J2

4

Cij = 0, N2CijCkl = J2(δikδjl − δilδjk). (3.19)

Note that J4 has the dimension of energy, while J has the dimension of (energy)1/2. The

results of this section is summarized in phase diagram Fig. 3.2.

The two terms in Eq. 3.18 have the same symmetry: the time-reversal symmetry T

which acts as χj → χj, i → −i (it is the same time-reversal symmetry of the boundary

states of the topological superconductor in the BDI class [50, 88, 82]), and a statistical

O(N) symmetry. We will demonstrate that, by tuning u from negative to positive, the

system goes through a continuous phase transition from a chaotic phase to a non-chaotic

phase. The critical properties of this transition are analogous to that of the Kosterlitz-

Thouless transition, with exponent ν = +∞.
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3.5.1 The u−term

Before we study Eq. 3.18, let us start with the Hamiltonian with only the second term:

H ′ =
u

2
CijCklχiχjχkχl. (3.20)

This Hamiltonian can be written as H ′ = −ub̂2/2, with b̂ = iCjkχjχk. Since b̂ commutes

with H ′, it is a conserved quantity. Thus every eigenstate of H ′ is an eigenstate of b̂ with

eigenvalue b. When u > 0, the ground state of H ′ has the maximum eigenvalue of b̂.

Now we can view b̂ as a quadratic fermion Hamiltonian with random hopping. To

maximize b̂, the system fills all the negative (or positive) eigenvalues of the single fermion

energy level εl, and Max[|b|] = |∑ εl| with εl < 0.

The single particle energy levels εl are the eigenvalues of the random Hermitian matrix

iC. Based on the semi-circle law, the average number of eigenvalues of iC in (ε, ε + dε)

is given by ρ(ε)dε with

ρ(ε) =
N2

2πJ2

√
4J2

N
− ε2. (3.21)

Then we can obtain the average value of Max[|b|] as

Max[|b|] =

∣∣∣∣∣
∫
ε<0

dεερ(ε)

∣∣∣∣∣ =
4JN

1
2

3π
. (3.22)

Therefore, the average ground state energy of H ′ is E0(H ′) = −16uJ2N
9π2 . Thus just like

the ordinary SYK model, H ′ normalized as in Eq. 3.19 is an order-N term.

For u < 0, all states with b = 0 are ground states, and b = 0 is a very “loose”

condition. We will argue that H ′ with u < 0 behaves like a completely free system with
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zero Hamiltonian. The (many-body) spectrum of b̂ is given by b =
∑

εl>0 εlnl, where the

occupation number nl = ±1. This expression of b is similar to an N
2

-step random walk

centered around 0. The distribution of b should therefore be Gaussian. The standard

deviation σb of this “random walk” is given by

σ2
b =

∑
εl>0

ε2
l =

1

2
Tr
(
(iC)†(iC)

)
=
∑
i<j

|Cij|2 =
N − 1

2N
J2. (3.23)

The (many-body) density of states of b̂ can be then approximated by

ρ(b) = 2
N
2

√
N

π(N − 1)J2
e
− Nb2

(N−1)J2 , (3.24)

namely the number of eigenvalues of b̂ in (b, b + db) is given by ρ(b)db. The expression

ρ(b) of the density of states b̂ is most accurate near b = 0, which is exactly the region of

interest when u < 0. We can now calculate the partition function

Z =

∫
dbρ(b)eβub

2

= 2
N
2

1√
1 + β|u|N−1

N
J2

. (3.25)

The entropy density S can be written as S = 1
N

(
logZ − β ∂

∂β
logZ

)
. Interestingly, we

notice that, for any fixed β,

lim
N→∞

S =
1

2
log 2. (3.26)

Therefore, if we take the large N limit first before we take β →∞, we will conclude that

the “ground state” entropy density is given by 1
2

log 2. Such an entropy density is exactly

the same as the system with zero Hamiltonian. Therefore, we argue that the system with

u < 0 behaves like a completely free system with zero Hamiltonian. Using the partition
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Figure 3.3: (a), (b), (c), the diagrams that we consider for the leading order RG for the coupling constant
u in Eq. 3.18. Only diagram (a) contributes in the large−N limit. (d), the leading order RG for u in
Eq. 3.33, which is equivalent to (a), the solid and dashed lines are fermion and boson Green’s functions.

function, we can also calculate the specific heat of H ′ with u < 0:

cv = −βdS
dβ

=
1

2N

(
N−1
N
|u|J2β

1 + N−1
N
|u|J2β

)2

. (3.27)

3.5.2 Renormalization Group of u

When u is treated as a perturbation in Eq. 3.18, power counting indicates that it is a

marginal perturbation at the SYK4 fixed point. Now we perform a perturbative renor-

malization group calculation for u. We evaluate the fermion Green’s function at the

SYK4 fixed point:

G(τ) =

(
1

4π

)1/4
sgn(τ)

|J4τ |1/2
, G(iω) = π1/4 isgn(ω)

|J4ω|1/2
. (3.28)

The diagram Fig. 4.46a leads to the following beta function for u:
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β(u) =
du

d ln l
=

2√
π

1

J4

∑
i,j

|Cij|2u2 =
2J2

√
πJ4

u2. (3.29)

Here we have replaced
∑

i,j |Cij|2 by J2, which is consistent with the distribution of Cij,

in the large N limit.

Diagrams Fig. 4.46b and c will contribute at the sub-leading order of 1/N . For

example, Fig. 4.46b will generate a term ∼ ∑m,nCimCmnCnjCklu
2χiχjχkχl. This term

is sub-leading in 1/N counting after disorder average.

The beta function indicates that the H ′ perturbation with u > 0 (u < 0) is marginally

relevant (marginally irrelevant) at the SYK4 fixed point. If we start with a small pertur-

bation u > 0, the RG equation implies that it will become order 1 at the energy scale Λ̃

where

Λ̃ ∼ Λ exp

(
−
√
πJ4

2J2u

)
. (3.30)

Λ is the UV cut-off of the RG that we can roughly take as Λ ∼ J4. The standard scaling

relation between the energy scale (mass gap) and the tuning parameter r away from a

critical point rc is Λ̃ ∼ |r−rc|ν , thus the quantum phase transition led by tuning u across

zero has exponent ν = +∞, which is analogous to the Kosterlitz-Thouless transition [53].

This RG analysis predicts that the SYK model, although describes a non-Fermi liquid

state, actually has similar instabilities as the ordinary Fermi liquid: there exists symmetry

allowed four fermion terms that are marginally relevant/irreleavant depending on their

sign. When u is marginally relevant, our mean field solution in the next subsection (and
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the analysis of H ′ in the previous subsection) suggests that the fate of the SYK model

is also similar to the ordinary Fermi liquid: the system develops long range correlation

〈b̂(0) b̂(τ)〉, where b̂ is the fermion-bilinear operator defined in the previous subsection.

The physics here is analogous to the condensation of Cooper pair of the ordinary Fermi

liquid theory.

The effective action of Eq. 3.18 after a Hubbard-Stratonovich transformation reads

Seff =

∫
dτ

1

2

∑
i

χi∂τχi +
∑
ijkl

{
Jijkl
4!

χiχjχkχl +
u

2
CijCklχiχjχkχl

}
(3.31)

=

∫
dτ

(
1

2
χi∂τχi +

u

2
b2 − iuCjkbχjχk

)
+
Jijkl
4!

χiχjχkχl (3.32)

The Hubbard-Stratonovich field b is a real field. Einstein summation convention is as-

sumed in all the equations. The indices are summed from 1 to N with the constraint

that different indices cannot take the same value. Now we can perform disorder average

on Jijkl and Cjk with the distribution Eq. 3.19. Assuming everything is replica diagonal

(justification of this assumption will be given in section IV), the disorder-averaged action

is equivalent to the following form:

Seff =

∫
dτ

1

2
χi∂τχi +

u

2
b2 − u2 J

2

N2

∫
dτ1dτ2 (b(τ1) b(τ2))(χj(τ1)χj(τ2))2

− J2
4

8N3

∫
dτ1dτ2 (χi(τ1)χi(τ2))4. (3.33)

This disorder-averaged action has an explicit O(N) symmetry, the fermion carries a

vector representation of the O(N). The beta function for u can also be computed based

on Eq. 3.33. Fig. 4.46d based on Eq. 3.33 makes the same contribution to the beta
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Figure 3.4: The fermion wave function renormalization based on Eq. 3.18 and Eq. 3.33 respectively.
These diagrams correspond to a u3 term in the beta function, and it carries a factor of 1/N .

function as Fig. 4.46a. In the large−N limit, the beta function Eq. 3.29 is actually

exact. The higher order terms of the beta function can be ignored in the large−N limit

even when u grows beyond order-1 (and hence becomes dominant) under the RG flow.

For example the fermion wave function renormalization in Fig. 3.4 corresponds to a u3

term in the beta function, and it carries a coefficient 1/N . Other diagrams, such as the

ladder diagrams for the four-point functions computed in Ref. [122], also contribute at

the sub-leading 1/N order compared with Fig. 4.46a,d.

3.5.3 Mean field solution

We can introduce fermion Green’s function and Self-energy function G and Σ by inserting

the following integral in the action (G and Σ are real fields):∫
DΣDG exp

{
−N

2
Σ(τ1, τ2)

(
G(τ1, τ2)− 1

N

∑
i

χi(τ1)χi(τ2)

)}
(3.34)

Then the action Seff is equivalent to:
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Seff = −N log Pf (∂τ − Σ) +

∫
dτ

u

2
b2 − u2J2

∫
dτ1dτ2 (b(τ1)b(τ2))(G(τ1, τ2))2

−N J2
4

8

∫
dτ1dτ2 (G(τ1, τ2))4 +N

∫
dτ1dτ2

1

2
Σ(τ1, τ2)G(τ1, τ2) (3.35)

Since the H ′ term itself has long range correlation of b̂, we expect that the phase with

relevant u perturbation also develops the long range correlation of b(τ). Since the ground

state of H ′ has b ∼ N1/2, let us assume 〈b(τ1)b(τ2)〉 = Nw2, where w takes order-1 value

with no time dependence. Then we can derive the mean field equation for the Green’s

function, the self-energy, and also w:

G(iωn)−1 = −iωn − Σ(iωn) (3.36)

Σ(τ) = J2
4G(τ)3 + 4u2J2w2G(τ) (3.37)

∫
dτ

(
uJ2G(τ)2 − 1

2
δ(τ)

)
uw = 0 (3.38)

The saddle point Eq. 3.38 has two possible solutions: w = 0 or∫
dτ G(τ)2 =

1

2uJ2
. (3.39)

For the w = 0 saddle point, these equations return to the saddle point equations for the

pure q = 4 SYK model. The system is in the chaotic non-Fermi liquid phase. However,

when w 6= 0, in the low energy, the second term in Eq. 3.37 becomes dominant, and

the system is effectively described by a random two fermion interaction and it is in a

non-chaotic phase 2. In this phase, G(τ) will depend on the values of w, and we can

2The random four-fermion interaction, though irrelevant with the presence of a random two-body
interaction, still has perturbative effect, and may lead to non-maximal chaos at finite temperature. This
effect was discussed in Ref. [77]. Here we still call this phase as non-chaotic phase, for conciseness.
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self-consistently determine w from Eq. 3.39. The chaotic-nonchaotic transition happens

when u is tuned from negative to positive through 0. When u is negative, Eq. 3.39 has

no solution and w has to be 0. For any positive u, at zero temperature there is always

a solution with finite w. The state with long range correlation 〈b(0)b(τ)〉 spontaneously

breaks the time-reversal symmetry T : χj → χj.

3.5.4 Estimation of w as function of model parameters

There are two time scales in our problem, τUV2 ∼ (uwJ)−1 and τUV4 ∼ J−1
4 . In the small

u limit, namely τUV2 � τUV4 , the contribution of the integral in Eq. 3.39 mainly comes

from the region τ ∈ [τUV4 , τUV2 ], and in this region G(τ) takes the form of the ordinary

SYK model: ∫
dτ G(τ)2 '

∫ τUV2

τUV4

dτ
2√
π

1

J4τ
=

2√
πJ4

log(
J4

uwJ
) (3.40)

Together with Eq. 3.39, we have

w ' J4

uJ
exp

(
−
√
πJ4

4uJ2

)
. (3.41)

This result is consistent with the observation that a positive u is only marginally relevant.

The size of the condensate is analogous to the superconductor gap of the BCS theory.

At finite u, the scale Λ̃ in Eq. 3.30 can be viewed as the critical temperature Tc below

which the system develops nonzero w and hence spontaneously breaks time-reversal T .

Our numerical solution of the mean field equations Eq. 3.36,3.37,3.38 confirms the scaling

between Tc and u (Fig. 4.25). In the numerical solution we have taken J2/J4 = 1. Our

RG Eq. 3.30 predicts that Tc ∼ exp(−
√
π

2
1
u
) = exp(−0.886/u), and our mean field solution
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Figure 3.5: Transition temperature Tc as a function of u by numerically solving the mean field equations
(3.36-3.38). This confirms the scaling relation in Eq. 3.30.

gives Tc ∼ exp(−0.897/u).

3.5.5 Further generalized perturbations

Now let us consider a series of generalized Hamiltonians:

H = SYKq +H ′, H ′ =
u

2

M∑
a=1

Ca
ijC

a
klχiχjχkχl, (3.42)

withM ∼ NA. SYKq is the generalized SYK model with a random q−fermion interaction,

and A ≥ 0. We first choose the following normalization of Ca
ij

N2 Ca
ijC

b
kl = J2δab(δikδjl − δilδjk). (3.43)

We still start with the beta function of u. If we evaluate the Green’s functions at the

SYKq fixed point, the beta function of u reads

β(u) =
du

d ln l
= (1− 4

q
)u+ Cu2 + c̃3

M

N
u3 + · · · (3.44)
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where C > 0 is an order-1 constant.

Cases with A < 1

For A < 1, we can keep just the linear and quadratic terms of the beta function, as

all the higher order terms vanish in the large−N limit, when u is order-1 or smaller.

For A < 1 and u > 0, u is relevant at the SYK fixed point for q > 4, and marginally

relevant for q = 4. We expect the system to behave similarly as the case with M = 1 and

q = 4, namely the relevant u perturbation drives the system into a nonchaotic phase with

spontaneous T breaking: limτ→∞
∑

a〈ba(0) ba(τ)〉 6= 0, where b̂a = iCa
jkχjχk. The same

set of equations as Eq. 3.36,3.37,3.38 can be derived, and in this case
∑M

a=1〈ba(0) ba(τ)〉 =

Nw2, and w is given by Eq. 3.41.

Exact diagonalization of the H ′ term in this case confirms our expectations. To detect

the long range correlation of 〈ba(0)ba(τ)〉, we measure the zero-frequency component of

the boson spectral function. The spectral function is defined as

D(ω) =
1

M

M∑
a=1

∑
n

∣∣〈0|b̂a|n〉∣∣2δ(ω − En + E0), (3.45)

where En and |n〉 are eigenenergies and corresponding eigenstates of the Hamiltonian H ′,

obtained from the exact diagonalization H ′|n〉 = En|n〉 (n = 0, 1, 2, · · · ). n = 0 labels

the ground state. The Ca
ij normalization in Eq. 3.43 ensures that b̂a†b̂a = 1 (the identity

matrix) in the large N limit, so that D(ω) has a well-defined thermodynamic limit. If

the static correlation D(ω = 0) remains finite in the thermodynamic limit N → ∞,
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then the system will develop long range correlation and spontaneously break T . The

Fig. 3.6 shows the result of the static correlation D(ω = 0) (in logarithmic scale) for

different N at A = 0.2 and u > 0. lnD(0) oscillates with N in an eight-fold period due

to the systematic change of random-matrix ensemble of H ′ as discussed in Ref. [123].

Apart from the oscillation, D(ω = 0) remains at and converges to a finite level (roughly

indicated by the dashed line in Fig. 3.6). Therefore our finite-sized calculation indeed

supports a nonchaotic phase with spontaneous T breaking for the A < 1 and u > 0 case.

By contrast, for either A > 1, or A < 1 while u < 0, ED shows D(0) decreases rapidly

with increasing N (Fig. 3.7).

Figure 3.6: The logarithmic static correlation lnD(0) v.s. the fermion number N for the case of u > 0 and
A = 0.2. The error bar shows the statistical deviation over different random realizations of the coefficient
Caij . When N mod 8 = 0, D(ω = 0) vanishes exactly, so we use the finite frequency extrapolation to
obtain the static correlation D(0) = limω→0D(ω) in these cases.

For A < 1 and u < 0, the u term flows to a stable fixed point u∗ ∼ −(1 − 4/q)/C.

At this fixed point, since u∗ is an order-1 number, the fermion self-energy correction

Fig. 3.4 is at the M/N order, which vanishes in the large−N limit for A < 1. Thus

the fermion scaling dimension remains the same as the SYKq model: ∆f = 1/q. But

at this stable fixed point, the boson field ba ∼ iCa
jkχjχk acquires a correction, and has
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Figure 3.7: The logarithmic static correlation lnD(0) v.s. the fermion number N for the case of A = 0.2,
u < 0 (left), and A = 2, u > 0 (right). Neither case shows long range correlation of the bosonic field ba.
Both D(ω = 0) (red) and limω→0D(ω) (blue) are plotted in the figures.

scaling dimension ∆b = 1− 2/q in the large−N limit. Starting with a SYKq model with

q > 4, changing the sign of u will drive a chaotic-nonchaotic transition with exponent

ν = q/(q − 4).

Cases with A > 1

For A > 1, the RG equation is uncontrolled because the higher order terms in the beta

function dominate in the large−N limit. However, we can understand the model by

taking the limit M → +∞ first. One intuitive way to think about this case is that

according to the central limit theorem
∑M

a=1 C
a
ijC

a
kl with M → +∞ follows the Gaussian

distribution. So for either sign of u, Eq. 3.42 should behave the same as the q = 4 SYK

model. In order to explicitly demonstrate this statement, it is more convenient to use a

different normalization of Ca
ij:

N (3+A)/2 Ca
ijC

b
kl = J2δab(δikδjl − δilδjk). (3.46)
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We can perform the disorder average and integrating out Ca
ij, the leading order term in

the large−N limit is an eight-fermion interaction term ∼ u2J4

N3

∫ ∫
dτdτ ′(χi(τ)χi(τ

′))4,

just like the disorder averaged q = 4 SYK model, while all higher order 8n-fermion

interaction terms S(8n) are suppressed ∼ (u2J4)n

N3n+A(n−1)

(∫ ∫
dτdτ ′(χi(τ)χi(τ

′))4
)n

. Thus for

A > 1, the u−term actually behaves the same as the SYK model in the large−N limit.

This conclusion is consistent with the previous study of a similar generalization of the

SYK model [20].

3.5.6 The H ′ term with A = 1

A = 1 is the critical situation, and the H ′ term itself (equivalent to taking q = +∞ in

Eq. 3.42) is already interesting enough when A = 1. With the H ′ term only, we numeri-

cally solve the following coupled Schwinger-Dyson equations with the normalization from

Eq. 3.46:

G̃f (iωn)−1 = −iωn − Σ̃f (iωn), Σf (τ) = 4

√
M

N
u2J2Gb(τ)Gf (τ) (3.47)

G̃b(iωn)−1 = u− Σ̃b(iωn), Σb(τ) = 2

√
N

M
u2J2G2

f (τ) (3.48)

Alternatively, by assuming that Gb(τ) ∼ B/|τ |2∆b and Gf (τ) ∼ F sgn(τ)/|τ |2∆f in

the infrared limit, Eq. 3.47,3.48 reduce to the following equation for ∆b for each ratio

M/N :

M

N
=

(
1− 2∆f

1− 4∆f

)
1

cot(π∆f )2 − 1
. (3.49)
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Figure 3.8: The numerical solution of Eq. 3.47,3.48, for u = −1, J = 1, β = 300 with different
M/N , without assuming a conformal solution from the beginning. Both the boson and fermion Green’s
functions have nice power-law scaling with the frequency, whose scaling dimensions depend on M/N .

Figure 3.9: We numerically solve the Schwinger-Dyson equations (3.47-3.48) for u = −1, J = 1, β = 300
and fit the low frequency part as a power law. The scaling dimensions are continuous function of M/N ,
and for all the data points, the relation 2∆f + ∆b = 1 is held. The solid curves plot the solution of
the scaling dimensions based on Eq. 3.49. In particular, for M/N = 1 (the dashed line), the scaling
dimensions obtained from both the numerical and analytical solutions match with the prediction from
the SUSY SYK model. [32]
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∆b can be determined by ∆b = 1 − 2∆f . In particular, for M/N = 1, our solution

matches with the result of the SUSY SYK model [32], where the model also has M/N = 1

and u < 0. The numerical solutions of Eq. 3.47,3.48 and analytical solution of Eq. 3.49

are both plotted in Fig. 3.9. With small M/N , ∆f is approximately ∆f ∼ 1/π
√
M/N .

3.5.7 Discussion of Instabilities

We have demonstrated, through various methods, that the non-Fermi liquid fixed point of

the SYK4 model is unstable to a class of marginally relevant four fermion perturbations,

and these perturbations drive the system into a non-chaotic state with zero ground state

entropy, and spontaneous time-reversal symmetry breaking. Because these perturbations

are only marginally relevant, this effect occurs at exponentially low energy scale for a

fixed strength of the perturbation. Spontaneous time-reversal symmetry breaking in

experimental systems can be probed through Kerr rotation, which has been successfully

applied to various condensed matter systems [49, 98, 97, 117]. Similar perturbations

(with an opposite sign) can drive the SYKq model with q > 4 to a series of fixed points

with continuously varying scaling dimensions.

So far we have ignored the replica index, for instance in Eq. 3.33. We will provide

a self-consistent justification for this procedure. The usual argument for ignoring the

replica index after disorder averaging the SYK interaction Jijkl is that, the replica off-

diagonal terms are subleading in 1/N expansion [37]. Here we will investigate the replica

index introduced after disorder averaging Ca
jk, and we only need to consider the case with
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A ≤ 1, since as we have argued before, the case with A > 1 is equivalent to the SYK4

model.

Starting with the boson-fermion interaction term, −iuCa
jkbaχjχk, reinstating the

replica index after disorder-average will lead to the following term

∼ −u
2J2

N2

∑
α,β

∫
dτ

∫
dτ ′

M∑
a=1

baα(τ)baβ(τ ′)
(
χαj (τ)χβj (τ ′)

)2

. (3.50)

In the phase where baα does not condense (corresponds to u < 0 in our case), the usual

perturbation argument like Ref. [37] will conclude that the replica off-diagonal terms

will always make subleading contribution to the partition function compared with the

diagonal terms. In the phase with ba condenses (A < 1, u > 0), the mean field solution

tells us that
∑M

a=1〈baα(τ)baβ(τ ′)〉 in Eq. 3.50 is at order of N . Then the perturbation

argument will tell us when u > 0 and A < 1, the contribution from the replica off-diagonal

terms is still subleading. Thus for all the main conclusions of this work, we can always

make the replica diagonal assumption, and hence ignore the replica index. However, it

should be noted that recent work by Ish and Srednicki [42] has provided strong evidence

that this argument may not hold for the fermion Greens function. However, even with

replica symmetry breaking, they find a spin-glass order that agrees with the predicted

properties of our broken T phase at finite positive u.
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3.6 Closing Comments

To summarize, in this chapter we explored the SYK model of a NFL — one of the

few solvable models of a NFL phase. We were able to derive and identify numerous

interesting features which may generalize to realistic materials. Furthermore, we review

the important work published in our paper [7] on the NFL instabilities. Because of the

tractability of the SYK model, we were able to identify specific instabilities to broken

T phases at low temperature in the presence of interactions which resemble BCS pair-

instabilities. Our work supports the growing set of evidence that some of the exotic

and poorly understood characteristics of HTSC are captured by NFL, and potentially

SYK-like, physics.

Beyond the details presented in this chapter, we note that the SYK model has lead to

multiple interesting theoretical works, exploring constructions of more “realistic” Hamil-

tonians that aim to embed the features of the NFL phase into finite dimensional, trans-

lationally invariant systems. One such class of models are the “Cluster Models”, which

consider d−dimensional lattices whose sites have interacting SYK models. In a work by

Song et. al., it was found that a lattice theory of complex fermion SYK models con-

nected by a hopping term resulted in an incoherent metal exhibiting linear temperature

resistivity [95] — a defining and theoretically contentious feature of HTSC. Similarly, a

Majorana SYK cluster model by Jian et. al. [45] found that the translation ally invari-

ant lattice u−perturbed model with inter-site interactions lead to a continuous metal to

insulator transition under breaking of T symmetry.
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There have also been a number of works focusing on theoretical exposès of the SYK

model, especially on the topic of holography in high energy physics. One interesting result

relevant to the breadth of this thesis is the characterization Chaos in the SYK model. It

was shown by Maldecena et. al [62] that the SYK model saturates the theoretical upper

bound of the quantum lypanov exponent λ ≤ 2πknT/~. The physical interpretation of

this result is that SYK-like models are perfect “thermalizers”, hence experiencing the

fastest possible decoherence at any finite temperature. This result echos the intuition

we have about real NFL materials — for example, the strongly dissipative dynamics of

HTSCs above the superconducting transition in the strange metal regime.

The insights offered by the SYK model have been enriching for the strongly correlated

matter community. It is likely that future work on this model will produce interesting

directions of research across a number of disciplines, similar to the seminal and universally

acclaimed SK model in classical spin systems.
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Chapter 4

Tunable Emergence

So far, we have covered two examples corresponding to special limits of toy correlated

fermionic systems — transport and interaction dominated microscopic theories — where,

in these cases, small perturbations have lead to phase instabilities of various complexity.

The trouble with theory is that small variations in methodological rigor may lead to

diverging results, and overlooked details can entirely invalidate applicability. Without

verification, a theory has no physical importance. In essence, well-developed quantitative

fields of science must have continual feedback between mathematical models that cap-

ture the significant aspects of a phenomenon and high-quality experimental data which

can differentiate between them. As physicists working in the testable regime of material

properties, the importance of experiments cannot be understated– the existence of exper-

iments allows for phenomenology; rather than chase mathematical rigor, an extremely

difficult and often fruitless way to work, we can instead make evidence-based guesses
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about the mathematical description of a phenomenon and verify our intuition in actual

systems.

With this as motivation, in this chapter we will explore the physics of an exciting new

class of materials, Magic-Angle Moire Materials (MAMM’s), which allow for the probing

of strongly correlated fermionic systems to unprecedented depth. Succinctly, MAMMs are

van der Waals heterostructures – comprised of two or more vertically stacked monolayers

– with relative in-plane twist angles, resulting in a large-scale Moire Pattern. In the

regime of small angles and low energy the approximate periodic structure of the Moire

superlattice modifies the original band structure by a folding of the Brillouin Zone into

minibands, which, at and around a material-dependent “magic-angle”, θM , become nearly

flat. In a simplistic tight-binding picture the bandwidth is roughly proportional to the

hopping strength, and therefore these magic-angles correspond to weak transport; hence,

such devices exhibit interaction-dominated physics.

In practice, what distinguishes MAMM’s from other materials is their tunability: by

varying gate voltages, a single sample’s phase diagram may be probed across a large

region of its parameter space non-destructively. Moreover, as we will discuss, the recent

advancement of fabrication techniques for these materials not only allow for the creation

of “clean” samples – as confirmed by high carrier mobilities– but also modularity, so that

any number of potential components can be assembled into a multilayered system using

the same technique. Since phenomenology has proved to be similar across these devices,

it becomes possible distinguish material specific effects from universal behavior by sheer
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variety.

4.1 A Brief History

Twisted Bilayer Graphene (tBLG) was the first MAMM of wide interest to the correlated

electron community. Following the 2004 discovery that graphene monolayers can be ob-

tained from adhesive peeling — first popularized in the use of “scotch tape” on graphite,

which later earned the 2010 Nobel prize — a surge of interest in the material lead to

experimental and theoretical work on the properties of its monolayered, bilayered, and

multilayered derivatives. Exploration of twisted layers first appeared in the literature

around 2007; A notable paper by Santos et. al [24], motivated by the empirical obser-

vation that Bernal-stacked fabrication methods often resulted in a slightly twisted top

layer, gave the first prediction of a reduced fermi-velocity at small twist angles. In 2011

Rafi Bistritzer and Allan MacDonald of University of Texas at Austin published the first

theoretical work detailing the plausible existence of flat bands at the charge neutrality

point in a small parameter regime of tBLG[8]. Their results were obtained using simple

arguments and a continuum model, and they were largely ignored until experimental

verification in 2017 by Cao et. al. [11]Since then, there has been an explosion of activity

into MAMM’s both theoretically and experimentally, with over 500 papers on arXiv on

the topic.

85



4.2 Material Details

Twisted Bilayer Graphene was found to be a single material in a class systems, Magic-

Angle Moire Materials (MAMM), which share a similar phenomenology: Twisted Bilayer

Graphene (TBG), Twisted Double Bilayer Graphene (TDBG), and Trilayer Graphene

aligned on one side to hexagonal Boron Nitride (TG/hBN). These materials, and the vari-

ations to be discussed, have excellent fabrication yield and tunability. Typical MAMM’s

are constructed from multiple layers of high-quality graphene monolayers stacked in par-

allel, capped on one or both ends by flakes of hexagonal Boron Nitride (hBN). The use

of hBN is relatively new, being favored for its demonstrated increase in carrier mobility

compared to traditional substrates such as silicon dioxide (SiO2) whose disordering ten-

dencies impact transport via structural inhomogeneity. Unlike typical epitaxially grown

crystals, monolayers of MAMM’s are held together by weak van der Waals (vdW) forces

rather than chemical or ionic bonds. Hence, in practice, experimentalists have direct

analogue control over structure and orientation, which is often determined by compet-

ing thermodynamic processes over long time-scales in the former. Similarly, during each

step of the fabrication process, sample selection and verification by spectroscopic analysis

provides a route to stringent quality control as compared to other solid-state material

synthesis pathways of complex materials, such as electrochemical crystallization used in

organic or high-temperature direct reactions of pressed powder pellets in ceramics and

low-dimensional metal oxides.

While MAMM’s represent a pinnacle of experimental achievement, it remains impor-
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tant to understand the subtleties and limitations of these materials from a conceptual

standpoint. For this reason, the remainder of the section will review and summarize

seemingly important aspects of MAMM fabrication, structure and probing. Through-

out the rest of this section, we will identify possible device imperfections of theoretical

interest with an emphasis on details suspect to the literature.

4.2.1 Fabrication Overview

The current standard procedure for fabrication is referred to in the literature as the “dry

transfer method”, and allows for the creation of clean, precisely aligned multi-layered

materials from quality monolayered flakes. For graphene-based structures, the process

begins with micro-cleavage by the mechanical exfoliation of graphite and hBN crystals

onto SiO2 substrates. The resulting flakes, which are typically far less than 100µm in

length, are evaluated and selected optically for quality: flake thickness(monolayered),

lattice regularity and flake area are the most important factors for selection. Following

identification, a commensurately sized non-newtonian polymer stamp attached to a glass

base is used to flay hBN flakes from the substrate by vdW forces. After adhering to the

surface of the polymer stamp, these are then positioned directly onto the graphene flakes

in the desired orientation by a variety of techniques of varying accuracy and scalability.

A contact force is applied onto the graphene flake to strengthen the inter-layer vdW

adhesion between hBN and graphene. When there is no risk of angular relaxation,

the system is heated during this process. Once set, the graphene flake can be peeled
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Figure 4.1: Rotations in the BZ mirror the realspace lattice rotations. The result in the case of TBG
(above) is that the hybridized bands become flattened in the vicinity of the band crossing points. At
magic angles, the band structure becomes almost perfectly flat

from the substrate and the process is repeated as desired. In this way, graphene flakes

remain contamination free – they never contact the polymer, thereby limiting the major

source of systemic disorder – ultimately allowing for the fabrication of exceptionally

clean samples. Once the intended geometry and layer composition has been achieved,

additional layers of hBN and/or graphite may be added. The graphite layers not only

screen environmental disorder, but also function as a gate electrode to tune electronic

densities and displacement fields. The completed stack is then deposited onto a SiO2

wafer where acid and plasma etching is utilized to shape the sample into a Hall Bar and,

if graphite is not applied, expose graphene edges for metal deposition.

The orientation of graphene flakes can be difficult to determine optically– it relies on

the identification of typically jagged flake edges as either arm-chair or zigzag. To avoid

this issue a further augmentation of this process to aid in precise angular alignments, the

so-called ”Tear-and-Stack” technique, is now commonly used by many groups. In this

version of the procedure, a large, regular, graphene flake is identified after exfoliation.

The hBN/polymer stack is then used to tear a region of the flake, while keeping the
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relative orientation fixed. Once removed, assuming the stack and original flake have

the same orientation, rotating the stack by the desired angle and repeating the process

should allow for precise control over relative angles between the monolayers. This angle

is verified against theoretical calculations which predict that, at the magic angle, there

should be an induced charge density of 4 electrons per moire unit cell [121]

The Hall Bar geometry for the final device is chosen to allow for gate doping of

the chemical potential. The four-lead geometry allows for the independent variation of

both chemical potential and external displacement field, via the relative strengths of the

transverse and in-plane bias volatages, without damaging material integrity.

4.2.2 Twist Angle: Structure and Electronic Properties

When aligned by a relative twist angle θ, two hexagonal lattices can form a periodic

Moire superlattice if the twist represents a commensurate rotation. Such angles satisfy

the relation

cos(θ) =
n2 + 4nm+m2

2 (n2 + nm+m2)
(4.1)

for any integers n,m. The resultant superlattice is described by its superlattice vectors

~t 1 = n~a 1 + m~a 2 and ~t 2 = −m~a 1 + (n + m)~a 2, where the ~a n are the original lattice

vectors. The emergent length scale is hence characterized by the wavelength λM , is given

by the general expression

λM =
a(1 + δ)√

2(1 + δ)(1− cos θ) + δ2
(4.2)
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Figure 4.2: Rotations in the BZ mirror the realspace lattice rotations. The result in the case of TBG
(above) is that the hybridized bands become flattened in the vicinity of the band crossing points. At
magic angles, the band structure becomes almost perfectly flat

where δ is the magnitude of lattice mismatch (= 0 for two identical monolayers) and a is

the lattice constant of one monolayer, typically chosen to be graphene’s [121]. In the case

of TBG, λM ≈ 14 nm. The periodicity of the superlattice results in minibands that allow

for scattering processes between Moire unit cells. More precisely, the Moiré wavevector

folds the original wavevectors into the superlattice BZ, resulting in hybridized orbitals

as shown in Fig. 4.2. Near the magic angle, the hybridized bands become extremely flat

and isolated from the remaining band structure by gaps of approximately 30 meV. In all

materials except for TBG, a small gap on the order of a few eV opens between these flat

bands.
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4.2.3 Known Materials and Properties

We we now attempt to summarize some of the important experimental results in MAMM

devices. In this section we will discuss the three most prominent materials in terms of

their band structures and their empirically observed phases. A summary of these results

is given in Fig 4.3

4.2.4 Twisted Bilayer Graphene (TBG)

Twisted Bilayer Graphene (TBG) was the first MAMM discovered, and thus has the

most complete characterization. The band structure of TBG involves the participation

of hybridized Dirac cones near the symmetry point of the emergent superlattice, leading

to a pair of weakly flat bands near charge neutrality. These bands, while exhibiting no

mutal gap, are isolated from the rest of the spectrum by a large gap of approximately 30

meV.

The topology of TBG has been investaged both theoretically as well as experimentally.

It has been found that the band topology is trivial in both upper and lower flat bands

in ordinary TBG. More recent studies have shown that when TBG is aligned to hBN on

one side, thus breaking the out-of-plane mirror symmetry, these bands pick up equal and

opposite Chern number C = ±1 [126]

Experimental studies have provided evidence for multiple strongly correlated phases

at various tunings. About charge neutrality, the presence of Mott insulating phases is

revealed for fractional filling δf = ±1
2
. More Mott states can be found at δf = +1

4
,−3

4
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Figure 4.3: A Summary of Notable results in MAMM systems. Despite differences in the geometry,
symmetry and construction of each device, we see similar phenomenology across the phase diagrams.
All three material classes have correlated insulator phases that have low temperature instabilities to
Superconductivity and other exotic correlated states. All three devices share the common feature of
exceptionally flat bands about charge neutrality which are separated from the remainder of the band
structure by large gaps.

under the application of pressure to TBG [120]. Interestingly, these insulating phases

seem to neighbor unconventional superconducting orders at low temperatures, with such

transitions happening near the fractional fillings δf = ±1
2
± ε,+1

4
− ε,−1

4
+ ε for ε a

small perturbation of the chemical potential. Similarly, aligned TBG/hBN has additional
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phases including an apparent Quantum Anomalous Hall at δf = +3
4

[92]

4.2.5 Twisted Double Bilayer Graphene (TDBG)

Twisted Double Bilayer Graphene (TDBG) typically involves a two Bernal-stacked bilayer

graphene layers rotated by a relative angle. Since these systems have a quadratic band

crossing point, their hybridized band structure results in much flatter bands without

fine tuning. They also have an additional dependence on external displacement field,

which biases the relative doping between upper and lower flat bands. These devices are

characterized by flat isolated bands around charge neutrality, with a small, displacement

dependent mutual gap on the order of 1-5 eV. Furthermore, it is unclear if the upper and

lower bands carry a finite Chern number, which is expected to depend on the size of the

applied displacement field.

Evidence of spin-triplet pairing (predicted previously [118] in a model to be reviewed

in section 4.3) was found in TDBG [74, 58]. The insulating phase appearing near δf =

+1
2

appears to be a ferromagnetic correlated insulator at half filling away from charge

neutrality was discovered in the same system [93].

In TDBG, besides clear ferromagnetism signature observed at the 1/2-filling insu-

lator [74, 93, 58], it was also observed that correlated insulators at 1/4 and 3/4 fillings

emerge under in-plane magnetic field [58], whose main effect is likely a spin-polarizing Zee-

man effect. This observation implies that the TDBG at 1/4 and 3/4 filling is rather close

to a ferromagnetic correlated insulator, and a Zeeman field would drive a metal-insulator
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transition. Near the Mott insulating phase, superconducting order was discovered at

δf = +1
2

+ ε, with the strange property of being enhanced, rather than suppressed by

an in-plane magnetic field. This observation support the previous evidence of a FM in-

sulator at half-filling, and prompts immediate investigation into the possible mechanism

leading to this highly unconventional pairing.

4.2.6 Trilayer Graphene on hBN (TTG)

Unlike the previously mentioned materials in this section, Trilayer graphene on hBN

(TLG/hBN) is not a “twisted” material, but exhibits many of the same properties as TBG

and TDBG — namely, flat band physics giving rise to a series of correlated insulator states

neighboring low-temperature transport dominated orders. TLG/hBN’s bandstructure, in

addition to the large isolating gap, features a mutual gap of approximately 1 meV about

charge-neutrality. Due to the hBN, it does not retain the out-of-plane mirror symmetry,

and the emergent physics depends on the sign of the external displacement field applied.

The correlated insulator phases are found in the hole-doped band below charge neu-

trality, where unidentified Mott insulating phases have been found at δf = −1
4
,−1

2
under

a negative signed displacement field. When the direction of the displacement field is

reversed, there has been evidence that the correlated insulator found at δf = −1
4

is again

a Quantum Anomalous Hall, similar to the reported findings of TBG/hBN above. These

observations appear to match theoretical predictions of band topology, which have sug-

gested that under a positive-signed displacement the lower band develops a nontrivial
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C = 2 [15].

4.2.7 Possible Issues

We now make some cautionary comments about the nature of these materials prior to

theoretical discussion. Despite the exellent mobility and yeild of the fabrication method,

there are a number of effects that should be, in the very least, considered when con-

structing models to understand the growing collection of data about these devices.

In the case of TBG, when the sublattice symmetry of the underlying graphene lattice

is not broken, naive analysis results in additional secondary Dirac points in the conduc-

tion and valence bands at E = 2π~vf/
√

3λM . However, especially in hetero-structures

containing hBN layers, it has been reported that sublattice symmetry is in fact broken

by structural relaxation, such as trigonal warping. Such out-of-plane straining ultimately

opens band gaps at the primary and secondary Dirac Points in the valence band (with

reported values at the primary Dirac Point up to 40meV). Additionally, broken mirror

symmetry due to hBN on one side leads to complex dependence on external displacement

fields, as observed TBG/hBN and TLG/hBN.

Furthermore, the “twist angle” is not an exact quantity — it is a spatially averaged

representation of the relative angle of the two layers at all points in space. It has been

argued in a theoretical work that as little as 10% twist angle disorder can fill the isolating

gap [112], hence reducing the strength of the insulating phase (it increases miniband

width t). Similar accounts of this disorder have appeared in numerous experimental

95



works where it was found that the superconducting transition had an onset similar to

a disorder induced percolation transition [120], as well as resistance which scales with

temperature following a variable-ranged hopping law R ∼ A exp(kT−1/3)

Ignoring disorder, the macroscopic twist angle itself is difficult to verify spectroscopi-

cally. Indirect verification of this angle are model dependent, typically relying on charge

density measurements. This issue is amplified in materials where there are nearby rota-

tional configurations, such as a Bernal Stacked geometry, which are thermodynamically

preferred.

4.3 A Minimal Theory

Even in the ideal limit of a disorder and strain free lattice, a first principles deriva-

tion of MAMM band structures are incredibly difficult. As mentioned, the Moire unit

cell contains on the order of 108 electrons, with spatially varying inter-layer coupling

constants. That MacDonald’s phenomenological calculation was able to reveal the ex-

istence of flat bands in the small twist angle regime, with a precision of ±0.05deg is

ubiquitously considered miraculous. This calculation, however, which analyzes only only

electronic transport properties of TBG in a continuum model cannot be easily extended

to treat the interactions that become increasingly important as the miniband-width ∼ t

shrinks near θM . In order to develop a more complete theory of MAMM’s, models must

be developed that allow for electron-electron interactions which respect the important

properties of these systems. While there are numerous papers which have approached a
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first-principles construction of appropriate Wannier orbitals for advanced theory, we will

not discuss their details and direct the interested reader to these publications.

To circumvent complexity, it is easier to concentrate on the mesoscopic physics using

phenomenology derived from empirical observations about MAMMs. In early exper-

iments on TBG, it was shown that electron density localizes about the AA stacking

regions, which represent a triangular super-sublattice on the scale of λM(θM). Interested

primarily in the band-enhanced interactions, we note that they will be most significant in

spatial regions of high electron density. Furthermore, given the empirically observed lo-

calization, the weak transport terms must become most important at these AA regions.

It then seems reasonable to assume that the interesting physics likely arises from the

scattering and interaction of charge carriers between these regions. Using this intuition,

one can consider a phenomenological effective model on the triangular lattice that is

appropriate near θM and charge-neutrality.

Such an effective theory was proposed by Xu and Balents [118], and it will represent

the starting point of the remaining works presented. In their construction, they made

three further assumptions:

1. Valley mixing is prohibited, which is expected given their large momentum sepa-

ration in comparison to inter-site scattering.

2. At very low temperatures, the relevant bandwidth is very small and it is appropriate

to represent each region by a single ”site”. Given the weakness of the transport,

in the absence of inter-band mixing, a tight binding model need only consider
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nearest-neighbor hopping between distant AA regions. In this regime valley sym-

metry is preserved, as can be shown by combinations of reflection and time-reversal

symmetries in the mini-Brillouin Zone (mBZ).

3. Hopping and interaction have a four-fold flavor degeneracy with respect to single-

particle states– these flavors arise from a two-fold valley degeneracy from the hy-

bridization of the bilayer cones and a spin degeneracy enforced by spin-rotation

invariance.

Their proposed model is an SU(4) invariant Hubbard Model on the triangular sublattice

of tBLG:

H = −t
∑
〈ij〉

c†iαciα + U
∑
i

(
4∑
α

niα

)2

(4.3)

where t is the hopping strength, U the Hubbard repulsion and the greek subscripts

sum over the 4 fermion flavors(2 spin and 2 valley degrees of freedom) Like the SU(2)

case, we expect that at large U/t and fractional filling, the system should become a Mott

insulator. In this limit, one may use standard perturbation theory in powers of t/U to

derive an effective SU(4) Heisenberg Hamiltonian:

HJ = J
∑
〈ij〉

15∑
a=1

T̂ ai T̂
a
j (4.4)

where we have employed the SU(N) spin representation of fermions,T̂ ai = c†iαT̂
a
αβciβ

, detailed in Chapter 2. The matrix generators of SU(4), T a, have the normalization

TrT aT b = 4δab. Following the same reasoning presented in Chapter 3, we will again
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rewrite this model in terms of particle-particle channels using Fierz Transformations:

HJ = J
∑
〈ij〉

[
−5

4

(
~∆ ij

)†
· ~∆ ij +

3

4

(
∆−ij
)† ·∆−ij] (4.5)

The Feirz transformation results in two vector order parameters which can be classified

by their symmetry under site exchange. The symmetric ~∆ ij = ~∆ ji is a 6-component

vector is of the form:

~∆ ij = cti(σ
3τ 2, iσ0τ 2, σ1τ 2, iσ2τ 3, σ2τ 0, iσ2τ 1)cj. (4.6)

We see that three terms correspond to valley-singlet spin-triplet pairings, and the re-

maining three valley-triplet spin-singlet. The anti-symmetric ~∆ −
ij = −~∆ −

ij are 10 compo-

nent vectors which may be ignored for our concerns; the form of (4.5) favors condensation

of ~∆ ij, so that the symmetric fields should strongly control the physics near half-filling.

In this form, we see that the SU(4) symmetry is broken down to SU(2)× SU(2) in the

valley and spin subspaces. We now consider a physically relevant perturbation which

will further reduce the effective symmetry of the model. Let us write down the simplest

Hund’s coupling interaction in the system, which acts between two AA sites:

Hh = −V
∑
j

(
~S j

)2

(4.7)

One may check that this term favors the spin-triplet pairing fields. Given the reduced

model, one can now analyze the properties of the superconducting phase. Within the

BCS framework, we may write down a general ansatz for the order parameter:

~∆ k =
(
uk~Φ 1 + vk~Φ 2

)
· iσ2~σ τ 2 (4.8)
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uk = cos(kx)− cos(kx/2) cos(
√

3
2
ky) and vk =

√
3 sin(kx/2) sin(

√
3

2
ky)

A : ~Φ 2 = i~Φ 1 = iφeiθ

B : ~Φ 1 = φ1e
iθ, ~Φ 2 = φ2e

iθ
(4.9)

It can be shown that both type A and B superconductors are topological. Type

A results in a T broken half-vortex excitation and carries a quantized magnetic flux

Φ0 = hc
4e

, undergoing an order-to-disorder transition — via vortex unbinding — at any

finite temperature due to the Mermin-Wagner theorem. Because of this, the phase has

no true long-range order, and is instead characterized by powerlaw correlations of a spin-

singlet charge 4 − e quasiparticle. When comparing the relative strengths of the these

order parameters, they found that spin-triplet superconductivity was favored. Type B

preserves T and is also disordered by any finite temperature, with the ordered phase

leading to four counter-propagating non-chiral Majorana edge states. These channels

imply the lack of a thermal Hall effect and a low-temperature spin-triplet d±id topological

superconducting state. By mean-field analysis, it was argued that the type B order

parameter, and hence, a spin-triplet superconducting state, would be favored. This was

later evidenced by multiple experiments in TDBG, and is the topic of the next section.

4.4 Ferromagnetism and Spin-Valley Liquids

Continuing the discussion on experimental results, in 2019 multiple experiments on

TDBG found evidence of a ferromagnetic correlated insulator at half-filling away from
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charge neutrality. Under an in-plane magnetic field, signatures of correlated insulator

physics where also observed at 1/4 and 3/4 filling. Similar signatures of ferromagnetism

were found in Trilayer Graphene earlier that year. Moreover, the superconducting state

of TDBG was found ot be enhanced by a perpendicular field, indicating the possibility

that the SC state is spin-triplet itself, as predicted by the model of Balents and Xu.

Motivated by these experiments, in this work we investigate a quantum spin-valley

model on the triangular lattice with one fermion per site, which corresponds to either

1/4 filling or 3/4 filling on the Moir~e superlattice. The Hamiltonian of this model reads

H =
∑
<i,j>

3∑
a,b=1

JT abi T
ab
j + Jsσai σ

a
j + Jvτ bi τ

b
j , (4.10)

where σa and τ b are Pauli operators in the spin and valley spaces, and T ab = σa ⊗ τ b.

When Js = Jv = J , this model becomes the SU(4) quantum antiferromagnetic model

with fundamental representation on each site. The SU(4) symmetry is broken by the

Hund’s coupling [118], which in general makes Jv > J > Js, if we choose the standard

sign of the Hund’s coupling which favors large spin on each site. But we assume that

the SU(4) breaking effect is not strong enough to change the sign of Js, Jv and J ,

namely we keep all three coupling constants positive, i.e. antiferromagnetic. Indeed,

since the Hund’s coupling originates from the exchange coupling which involves overlap

between wave functions at the two valleys, the Hund’s coupling should be a relatively

weak effect since the inter-valley wave function overlap is expected to be small because

large momentum transfer between the two valleys is suppressed by the long wavelength
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modulation of the Moir~e superlattice. For simplicity we ignore other mechanisms that

break the SU(4) symmetry, such as valley-dependent hopping [79], hence in the spin-

valley model Eq. 4.10 the valley space has its own SU(2)v symmetry.

A consensus of the mechanism for the observed insulator and superconductor has not

yet been reached. The minimal two-orbital extended Hubbard model on the triangular

lattice reviewed above Ref. [118], at least describes the trilayer graphene and hexagonal

BN heterostructure (TLG/h-BN) [14, 16], as well as the twisted double bilayer graphene

(TDBG) [74, 93, 58] with certain twisted angle and out-of-plane electric field (displace-

ment field), since in these cases there is no symmetry protected band touching below the

fermi energy, and the isolated narrow band has trivial quantum valley topological num-

ber [79, 125, 127, 17, 59, 57]. This minimal model would then naturally predict either a

spin-triplet [118] or spin-singlet [23] d+ id topological superconductor, depending on the

sign of the on-site Hund’s coupling.

4.4.1 The Spin-Valley model

A reasonable question to ask is how a microscopic Hamiltonian with fully anti-ferromagnetic

couplings may give rise to ferromagnetism, a phenomenon which is surprising rare in real

materials. To investigate the possible origin, we may start from the model detailed in

section 4.3, where it was shown that Hund’s coupling should favor a spin-triplet pairing

by general arguments. To strengthen the proposed scheme, we can perform pertubation

theory in t with full consideration of this Hund’s term. Hence, we now study the full
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Hamiltonian:

H tot = −t
∑
〈ij〉

c†iαciα + U
∑
i

(
4∑
α

niα

)2

− V
∑
j

[(
c†j~σ cj

)
·
(
c†j~σ cj

)]2

−
[(
c†j~τ cj

)
·
(
c†j~τ cj

)]2
(4.11)

We follow the standard approach of degenerate perturbation theory. At quarter-

filling, the ground state of HU +HV has precisely one electron per site, and the projection

operator to the ground state manifold reads

P =
∏
j

(−1)
1

6
nj (nj − 2) (nj − 3) (nj − 4) . (4.12)

Considering any pair of nearest neighbor sites on the Moir~e superlattice, the ground state

manifold can be further divided into four sectors which correspond to spin-singlet/triplet

and valley-singlet/triplet states. We can write

P = Pss + Pst + Pts + Ptt, (4.13)

where (for example) Pst means the projection to spin-single/valley-triplet states. The

effective Hamiltonian can be calculated as

Heff = PHt
1

E0 −HU −HV

HtP , (4.14)

where E0 is the ground state energy for the two-site problem. A detailed analysis of the

intermediate states considering the virtual hopping process can be found in Ref. [118].

We find that only Pst and Pts contribute to the effective Hamiltonian which takes a
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diagonal form in this basis

Heff = − 2t2

U + 4V
Pst −

2t2

U − 4V
Pts. (4.15)

Rewritten in terms of the SU(4) generators on the nearest neighbor sites, the effective

Hamiltonian is equivalent to the spin-valley model Eq. 4.10 with the coupling constants

given by

Js = J − t2

U

(
2V

U
+O

(
V

U

)2
)
,

Jv = J +
t2

U

(
2V

U
+O

(
V

U

)2
)
,

J =
t2

4U

(
1 +O

(
V

U

)2
)
. (4.16)

There is a Z2 symmetry regarding the sign of the Hund’s coupling. The coupling constants

transform as Js/J ↔ Jv/J when we change V ↔ −V , as is naturally expected from the

form of the Hund’s coupling.

The final result gives

H =
∑
〈ij〉

JT abi T
ab
j + Jsσai σ

a
j + Jvτai τ

a
j (4.17)

with

J =
t2

4U

[
1 +O

(
V 2

U2

)]
Js =

t2

4U

[
1− 8V

U
+O

(
V 2

U2

)]
Jv =

t2

4U

[
1 +

8V

U
+O

(
V 2

U2

)] (4.18)
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4.4.2 The FM⊗ 120◦ state

The above derivation should be considered a proof of principle for the form of the Hamil-

tonian rather than a rigorous derivation. The model of section 4.3 is itself a phenomeno-

logical one, who’s coupling constants and interaction form is not immediately related to

the underlying microscopic theory. In fact, many simplifying assumptions, including the

importance of further hopping terms, are still unresolved. Similarly, in this model, it is

best to forget the symbolic origins of Js and Jv, since in a real material system many

factors could contribute to their values. This derivation serves only to point out that

given the basic ingredients of a Hubbard-like model and a symmetry breaking Hund’s

term that favors triplet formation, this effective model can be justified.

Having stated our priors, we now treat Jv, Js and J as quasi-independent, only

noticing that Hund’s coupling favors a weaker spin interaction and a stronger valley

interaction. Under the stronger assumption that Jv � J � Js, it is simple to argue that

the ground state should be a FM ⊗ 120 state. At least in certain limit, i.e. Jv � J �

Js > 0, it is fairly easy to see why ferromagnetism would emerge in model Eq. 4.10 with

all antiferromagnetic coupling constants. First of all, the following state will always be

an eigenstate of the Hamlitonian:

|ΨFM〉 =

(∏
i

|σzi = +1〉
)
⊗ |AF of ~τ{i} 〉. (4.19)
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This state is a direct product of two parts: the first part is a fully-polarized ferromagnetic

state of the spin ~σi space; the second part is the ground state of the nearest-neighbor

antiferromagnetic quantum Heisenberg model on the triangular lattice in the ~τi space.

Although we cannot write down the explicit form of the exact microscopic wave-function

|AF of ~τ{i} 〉, we do know that this state has a 120◦ antiferromagnetic order with reduced

moment due to quantum fluctuation and geometric frustration. This state Eq. 4.19 is

always the eigenstate of Eq. 4.10 because a fully polarized ferromagnetic spin state is the

eigenstate of operator ~σi ·~σj on every link < i, j >. Then in the limit of Jv � J � Js > 0,

this eigenstate |ΨFM〉 is also the ground state, because intuitively on every link the spin

~σi will see a background “effective” ferromagnetic coupling

Jeff = Js + J〈~τi · ~τj〉. (4.20)

Because 〈~τi·~τj〉 < 0 for the 120◦ state of ~τi, for large enough J the spins will see an effective

ferromagnetic coupling, even though in the original model Eq. 4.10 all the couplings are

antiferromagnetic.

With a fixed large Jv, while increasing Js, eventually J〈~τi·~τj〉 will not be strong enough

to overcome the antiferromagnetic coupling Js, hence we expect to see a transition from

the “FM ⊗ 120◦” state to another state without ferromagnetic order. Numerically [6],

〈~τi · ~τj〉 is found to be ∼ −0.73 for the triangular lattice quantum antiferromagnet. If we

evaluate the energy of |ΨFM〉 in Eq. 4.19, while increasing Js/J , this state is no longer

the ground state when Js/J > 0.73. Hence the intuitive argument gives an upper bound

for the transition point of Js/J .
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Figure 4.4: Phase boundary of the FM ⊗ 120◦ state obtained using DMRG on infinite cylinders with
circumference Ly = 6. The inset shows the energy per site obtained for Jv/J = 7 as function of Js/J .
Green squares (orange circles) indicate the energies obtained using iDMRG when the spins are initialized
in a FM (AFM) product state. The solid blue line indicates the energy expected for the FM ⊗ 120◦

state.
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4.4.3 DMRG simulation of the spin-valley model

We now provide numerical evidence for the fact that the FM⊗ 120◦ state is the ground

state in the Jv � J � Js limit and obtain the phase boundary of this state. To this end

we use the density matrix renormalization group (DMRG) method [111, 89]. We note

that in finite systems, boundaries can introduce strong oscillations in the expectation

value of 〈~τi · ~τj〉 on nearest-neighbor bonds (which are expected to be uniform when the

valley degree of freedom is in the 120◦ state), and thus affect the effective coupling seen

by the spins. To avoid such boundary effects we use infinite DMRG [63]. To observe

uniform bond expectation values when the valley degree of freedom is in the 120◦ state

wide enough cylinders have to be considered. We perform our analysis on cylinders of

circumference Ly = 6, for which we obtain mean bond expectation value 〈~τi ·~τj〉 ≈ −0.74,

consistent with Ref. [6], with spatial variations below one percent.

For our numerical simulations we use the ITensor library [1]. We assume a 3-site unit

cell along the cylinder to allow for the formation of a 120◦ state in the valley and/or spin

degrees of freedom. The valley degree of freedom is initialized in the total τ z = 0 sector

and τ z quantum number conservation is used. The spin degree of freedom is initialized

either in the fully polarized state, or a classical anti-ferromagnetic state with total σz = 0.

The maximal bond dimension in our simulations is M = 1000.

We find that at large Jv and small Js, the system indeed converges to a fully polarized

spin-FM and a 120◦-valley ordered state, independent of the initial conditions. At larger

Js we observe a state without any net magnetization. At this stage we cannot conclude as

108



to the nature of the entire region with zero magnetization (with larger Js and Js < J , for

the total σz = 0 sector and going to bond dimensions of up to 4000 we have not identified

a clear order for the spin degree of freedom), but in the next section we will propose some

possible interesting liquid states and topological orders for this region of phase diagram.

The ground state energy obtained using iDMRG for a fixed Jv/J = 7 as function of Js,

for the two initial states, is shown in the inset of Fig. 4.4. The solid blue line on the same

plot indicates the energy expected for the FM ⊗ 120◦ state, calculated using a uniform

bond expectation value 〈~τi · ~τj〉 ≈ −0.74 that we obtain for the 120◦ state on infinite

cylinders of circumference Ly = 6 as mentioned above. We estimate the position of the

phase boundary for each Jv/J to be at the Js/J for which the lowest energy obtained

using iDMRG drops below the one expected for the FM⊗120◦ state. The resulting phase

boundary as function of Jv/J and Js/J is shown in the main Fig. 4.4. Our results for

the ground state energy and the magnetization across the phase boundary both suggest

that the transition between the ferromagnetic order and the paramagnet is a first order

level-crossing.

4.4.4 Schwinger boson analysis

We can also construct the FM ⊗ 120◦ state using the Schwinger boson formalism. We

first define a four component Schwinger boson bj,α on every site which forms fundamental

representation under both the spin and valley SU(2) symmetry, and also a fundamental

representation of the enlarged SU(4) symmetry. The Schwinger boson Hilbert space is
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subject to a local constraint

4∑
α=1

b†j,αbj,α = κ. (4.21)

Physically κ = 1, but in the Schwinger boson mean field calculation κ is often treated

as a tuning parameter. The Hamiltonian Eq. 4.10 can be reorganized into the following

form:

H = Jts

(
~∆ts†
ij · ~∆ts

ij

)
+ Jss

(
∆ss†
ij ∆ss

ij

)
+ Jst

(
~∆st†
ij · ~∆st

ij

)
+ Jtttr

(
∆tt†
ij ·∆tt

ij

)
. (4.22)

The operator ~∆ts
ij and ~∆st

ij are the spin-triplet/valley-singlet, and spin-singlet/valley-

triplet pairing operator between Schwinger boson bα on site i, j:

(
~∆ts
ij ,
~∆st
ij

)
= bti

(
iσ32, σ02, iσ12, σ23, iσ20, σ21

)
bj, (4.23)

where σab = σa ⊗ τ b, σ0 = τ 0 = 12×2. Then ∆ss and ∆tt are the singlet/singlet, and

triplet/triplet pairing respectively, for example ∆ss
ij = btiσ

22bj.

In Eq. 4.22,

Jts = −1

4
(3Jv + 3J − Js), Jst = −1

4
(3J + 3Js − Jv),

Jss =
3

4
(3J − Js − Jv), Jtt =

1

4
(J + Js + Jv). (4.24)

With the most natural parameter region Jv > J > Js > 0, Jts is always negative, and it

corresponds to the strongest mean field channel, while none of the other parameters are

guaranteed to be negative (for example Jtt is always positive). Thus for the purpose of
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mean field analysis, we will just keep the first term of Eq. 4.22, and ignore all the rest

three terms of Eq. 4.22. The mean field Hamiltonian reads

HMF =
∑
ij

Jts

(
~φ · ~∆ts

ij +H.c.
)
− Jts|~φ|2

+
∑
j

µ(
4∑

α=1

b†j,αbj,α − κ), (4.25)

where ~φ is a complex vector under SU(2)s. Here we choose a uniform ansatz of ~φ on

the entire lattice, and all the links i, j are included in the sum with the convention

j = i+ê with ê = (1, 0), (−1/2,±
√

3/2), i.e. the mean field ansatz explicitly preserves the

translation and rotation by 2π/3 symmetry of the triangular lattice, while all the crystal

symmetries are preserved as projected symmetry group (PSG). µ is another variational

parameter of the mean field calculation which guarantees that the filling of Schwinger

boson is fixed at κ on every site.

The FM⊗ 120◦ ordered state corresponds to the mean field ansatz with ~φ = ~φ1 + i~φ2,

and the real vectors ~φ1 and ~φ2 orthogonal with each other. For example, when ~φ =

φ(1, i, 0), only the spin-up (σ3 = +1) Schwinger bosons participate in this mean field

analysis. The ferromagnetic order parameter corresponds to the following gauge invariant

quantity:

~M ∼ i~φ× ~φ∗ ∼ ~φ1 × ~φ2. (4.26)

With only spin-up Schwinger bosons, the mean field calculation reduces precisely

to the SU(2) spin-1/2 Heisenberg model on the triangular lattice [83] with Heisenberg
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coupling Jij = −4Jts (The Sp(N) Heisenberg model defined in Ref. [83] has Hamiltonian

H =
∑

i,j − 1
2N
Jij∆

†
ij∆ij where ∆ij is the Sp(N) singlet pairing between Schwinger bosons

on sites i, j):

HMF =
∑
ij

Jts
(
2φ bt↑,iiτ

2bj,↑ +H.c.
)
− 2Jtsφ

2

+
∑
j

µ(
2∑

α=1

b†j,↑,αbj,↑,α − κ). (4.27)

Because the spin-down Schwinger bosons do not contribute to the mean field decompo-

sition when ~φ ∼ (1, i, 0), we replace the constraint in Eq. 4.21 by
∑2

α=1 b
†
j,↑,αbj,↑,α = κ in

Eq. 4.27. Now technically the mean field theory Eq. 4.27 corresponds to the “zero-flux

state” in Ref. [110], which has lower mean field energy than other mean field ansatz [110]

for this nearest neighbor model, and it makes the minima of the Schwinger boson band

structure locate at the corner of the Brillouin zone ~Q = (±4π/3, 0). The mean field

solution gives µ > 0, which is consistent with the fact that we set
∑2

α=1 b
†
j,↓,αbj,↓,α = 0.

And at the mean field level, when the filling of the Schwinger boson κ is greater than

0.34 [83], bα condenses, which leads to a fully polarized FM in the spin space, and also

120◦ state in the valley space.

If the mean field value of ~φ is real (or equivalently if ~φ1 is parallel to ~φ2, for example,

~φ ∼ φ(0, 0, 1), both spin-up and spin-down Schwinger bosons participate in the mean

field analysis, and the mean field analysis is technically equivalent to the calculations

in Ref. [83] for the Sp(2) ∼ SO(5) antiferromagnet on the triangular lattice also with

Heisenberg coupling Jij = −4Jts, because
(
~∆ts
ij , ~∆

st
ij

)
together form a SO(6) vector, and
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condensing each component of the vector breaks the SO(6) down to SO(5) ∼ Sp(2). Each

component of ~∆ts can be viewed as the Sp(2) singlet introduced in Ref. [83]:

HMF =
∑
ij

Jts
(
φ btiiσ

12bj +H.c.
)
− Jtsφ2

+
∑
j

µ(
4∑

α=1

b†j,αbj,α − κ), (4.28)

Quoting the results in Ref. [83], the FM⊗ 120◦ state with the previous mean field ansatz

with φ1 ⊥ φ2 has a lower mean field ground state energy density, which is consistent with

our analytical observation and also numerical simulation.

4.4.5 Zeeman field driven Metal-Insulator transition

Since the insulator has a fully polarized ferromagnetic order, its energy can be tuned

by an external Zeeman field. An inplane magnetic field, whose main effect is the Zee-

man coupling can drive a first order metal-insulator transition (a level-crossing) between

the unpolarized metal and the fully polarized ferromagnetic insulator, as was observed

experimentally at the 1/4 and 3/4 filling of TDBG [74, 58].

There is another possible mechanism of metal-insulator transition driven by a Zeeman

field. At the metalic side at the transition, the system is likely described by a t − J

model with a similar J, Js, Jv terms as Eq. 4.10. The Zeeman field tends to polarize

the spin, which effectively increases the antiferromagnetic coupling in the valley space

Jveff = Jv + J〈~σi · ~σj〉. Thus at certain temperature, the magnitude of the 120◦ order in

the valley space is tunable and enhanced by an external Zeeman field. If the insulating
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behavior of the system is a consequence of the finite momentum valley order which folds

the Brillouin zone and partially gaps out the Fermi surface, an increasing magnitude of the

120◦ order in the valley space can gap out larger portion of the Fermi surface, decrease the

charge carrier density, and hence eventually drive a continuous metal insulator transition.

4.4.6 Liquids and topological phases

When Jv ∼ Js ∼ J , it would be rather difficult for the system to form any semiclassi-

cal order due to “double frustration”: the Js and Jv term of Eq. 4.10 are both already

frustrated due to the geometry of the triangular lattice, while the J term further frus-

trates/disfavors the simultaneous 120◦ semiclassical order of ~σi and ~τi. Since there is an

obvious Lieb-Shultz-Matthis theorem which forbids a completely trivial disordered phase,

we expect this “double frustration” effect to lead to either a completely disordered spin-

valley liquid state, or a partially ordered state with certain topological order. In this

section we explore several possible spin-valley liquids or topological orders in the region

Jv ∼ Js ∼ J .

Spin nematic Z2 Topological phase

Let us get back to the mean field Hamiltonian Eq. 4.25. As we discussed before, if

the mean field value of ~φ is real (or equivalently if ~φ1 is parallel to ~φ2, for example,

~φ ∼ (0, 0, 1), both spin-up and spin-down Schwinger bosons participate in the mean

field analysis, and the mean field analysis is technically equivalent to the calculations in

Ref. [83] for the Sp(4) antiferromagnet on the triangular lattice. And with large spin
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symmetry, the quantum fluctuation makes it more difficult for bα to condense. If bα is

not condensed, the mean field order parameter ~φ already breaks the SU(2)s, and also

break the U(1) gauge symmetry down to Z2 gauge degree of freedom.

The nature of the state with condensed ~φ but uncondensed bα depends on the nature

of ~φ under time-reversal. The transformation of bα under time-reversal can be inferred

by the fact that ~σ → −~σ, (τ 1, τ 2, τ 3)→ (τ 1, τ 2,−τ 3):

T : bj → iσ21bj, ~∆ts
ij → ~∆ts

ij , (4.29)

as long as ~φ is a real vector (or ~φ1 parallel with ~φ2), time-reversal is preserved, and this

state is a spin nematic Z2 topological order. By contrast, if ~φ1 ⊥ ~φ2 the time-reversal is

broken.

Z2 × Z2 Spin-valley liquid

More states can be constructed by introducing two flavors of Schwinger bosons bsj,α and

bvj,α for the spin and valley space on each site respectively, which are subject to the

constraint ∑
α=1,2

bs,†j,αb
s
j,α = bv,†j,αb

v
j,α = 1. (4.30)

These two constraints introduces two U(1) gauge symmetries. It is fairly straightforward

to construct the FM ⊗ 120◦ state using this type of Schwinger bosons: bsα condenses at

zero momentum, while simultaneously bvα condenses at the corner of the Brillouin zone.

In fact, due to the “double frustration” effect, both the spin and valley space can
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form a Z2 topological order (overall speaking the system is in a Z2×Z2 spin-valley liquid

state), whose e particles carry the fundamental representation of SU(2)s and SU(2)v

respectively, as long as neither bsj,α nor bvj,α introduced in Eq. 4.31 condenses when the

mean field parameters break both U(1) gauge symmetries down to Z2.

More states can be constructed by introducing two flavors of Schwinger bosons bsj,α

and bvj,α for the spin and valley space on each site respectively, which are subject to the

constraint

∑
α=1,2

bs,†j,αb
s
j,α = bv,†j,αb

v
j,α = 1. (4.31)

These two constraints introduces two U(1) gauge symmetries. It is fairly straightforward

to construct the FM ⊗ 120◦ state using this type of Schwinger bosons: bsα condenses at

zero momentum, while simultaneously bvα condenses at the corner of the Brillouin zone.

In fact, due to the “double frustration” effect, both the spin and valley space can

form a Z2 topological order (overall speaking the system is in a Z2×Z2 spin-valley liquid

state), whose e particles carry the fundamental representation of SU(2)s and SU(2)v

respectively, as long as neither bsj,α nor bvj,α introduced in Eq. 4.31 condenses when the

mean field parameters break both U(1) gauge symmetries down to Z2.

Starting from the Z2 × Z2 spin-valley liquid state, one can also construct a spin-

valley liquid with only one Z2 topological order. This can be formally obtained by

forming bound state of the “visons” (the m excitations) of both Z2 topological orders,

and condense the bound state. This condensate will confine bsα and bvα separately, but

their bound state is still deconfined, and becomes the e particle of the new Z2 topological
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order. This final Z2 topological order preserves all the symmetries of the system, and it

can also be constructed using the same mean field formalism as Eq. 4.22, as long as one

condenses the spin-singlet/valley-singlet pairing operator ∆ss
ij in Eq. 4.22.

U(1)× U(1) Dirac spin-valley liquid

More exotic spin-valley liquid states can be constructed by introducing fermionic slave

particles f sj,α and f vj,α which are subject to the constraints

∑
α=1,2

f s,†j,αf
s
j,α = f v,†j,αf

v
j,α = 1. (4.32)

In Ref. [61], a Dirac spin liquid with U(1) gauge field and Nf = 4 flavors of Dirac

fermions was constructed for spin-1/2 systems on the triangular lattice. And this Dirac

spin liquid is the parent state of both the 120◦ ordered state and the valence bond solid

state [61, 94, 96], and it could be a deconfined quantum critical point between these two

different ordered states [46].

In our case, both spin and valley space can form the Dirac liquid phase mentioned

above, due to the double frustration effect. Thus in total there are eight flavors of Dirac

fermions and two U(1) gauge fields.

SU(4) Point

At the point Jv = Js = J , this model has a SU(4) ∼ SO(6) symmetry. Although

semiclasical approach such as nonlinear sigma model were studied before for SU(N)

antiferromagnet with other representations [81], with a fundamental representation on
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every site, this model has no obvious semiclassical limit to start with, and it is expected

to be a nontrivial spin liquid or topological order. At this point, it is most convenient

to define a four component Schwinger boson bj,α on every site which forms fundamental

representation under both the spin and valley SU(2) symmetry, and there is a constraint∑4
α=1 b

†
j,αbj,α = 1.

Unlike a SU(2) spin system, one can prove that at the SU(4) point there cannot be

a fully symmetric Z2 spin liquid whose e particle is the bα slave particle. The reason is

that all the local spin excitations can be written as b†j,αbj,β with different α, β = 1 · · · 4,

hence all the local spin excitations are invariant under the Z4 center of the SU(4) group.

In a Z2 topological order, two of the e particles should merge into a local excitations,

while two bα slave particle cannot fuse into a representation that is invariant under the

Z4 center. This argument also shows that a Z2 topological order whose e particle is a

SO(6) vector is allowed.

On the other hand, using the slave particle bα one can construct a Z2 topological

order with certain spontaneous SU(4) symmetry breaking. At the SU(4) point, the

model Eq. 4.10 can be written as

H =
∑
ij

J

(
−5

4
(~∆†ij) · (~∆ij) + · · ·

)
, (4.33)

where ~∆ij is a six component vector pairing between bα. One can introduce a six com-

ponent complex SO(6) vector mean field parameter ~φ:

HMF =
∑
ij

J

(
−5

4
~φ · ~∆ij +H.c.

)
+

5

4
J |~φ|2. (4.34)
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The complex vector ~φ = ~φ1 + i~φ2, where its real and imaginary parts ~φ1 and ~φ2 can be

either parallel or orthogonal to each other. If the Schwinger boson does not condense,

both mean field theories would lead to a Z2 topological order on top of the spontaneous

SU(4) symmetry breaking.

Our DMRG simulation actually suggest that the SU(4) point of the spin-valley model

is a spin-valley liquid state with a Fermi surface of fermionic slave particles, which will

be presented in detail in another work.

4.4.7 Conclusion

In this work we demonstrated both analytically and numerically that a quantum spin-

valley model with all antiferromagnetic interaction can have a fully polarized ferromag-

netic order in its phase diagram. We propose possible mechanism for an inplane Zeeman

field to drive a metal-insulator transition, as was observed experimentally at the 1/4 and

3/4 filling of TDBG. We also discussed various possible nontrivial spin-valley liquid state

and topological order of this model.

We would like to acknowledge several previous theoretical works that studied the

ferromagnetism in Moir~e systems using different approaches and different models [48,

90, 9, 114]. For example, in Ref. [90], a spin-valley model with ferromagnetic couplings

on an effective honeycomb Moir~e lattice was derived for the twisted bilayer graphene

system. While our work (which aims to understand a different Moir~e system, i.e. the

twisted double bilayer graphene) demonstrated that ferromagnetism can emerge from the
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spin-valley model on a triangular lattice with fully antiferromagnetic interaction.

Within our framework, under doping, again the system is likely described by the t−J

model with the similar J, Js, Jv terms as Eq. 4.10. Then the analysis in Ref. [118] still

applies: the spin-triplet/valley-singlet pairing channel between electrons would become

the strongest pairing channel. Due to a strong on-site Hubbard interaction, the system

would still prefer to become a d+ id topological superconductor with spin triplet pairing.

4.4.8 Emergent Superconductivity in the Mott Insulator Phase

While we have discussed the likely FM correlated insulator behavior of MAMM materials,

we have yet to discuss the many observations of transitions into superconducting states

in their vicinity.

While it is believed that the nearly flat mini bands of the system [109, 69, 27, 21] play a

major role in the phenomena observed so far, the physics we discuss in the current section

will be largely independent of the details of the microscopic model, despite the increasing

number of works in this area: beyond the work summarized in section 4.3, another work

by Kievelson et. al. Ref. [23] similarly described the system with an effective two-orbital

extended Hubbard model on a triangular lattice near half-filling. The prediction of

Ref. [118] has been checked with numerical methods [28]; Ref. [79, 124, 119] described the

system with a tight binding model on a honeycomb lattice, while the electron Wannier

functions strongly peak at the triangular lattice sites. The main difference between

these two classes of models is that the latter models capture the physics related to
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Dirac band crossings between a pair of flat mini-bands. While at the doping where the

SC and MI were observed, i.e. near half-filling within one of the mini-bands, it is not

clear that any symmetry protected Dirac point away from the band plays a major role,

unless one assumes a specific type of valley order, which leads to extra Dirac crossings

within the mini flat band [79, 119]. But without compelling evidence of this particular

valley ordering in the MI phase, the qualitative physics at the most relevant doping can

potentially be captured by the (simpler) effective triangular lattice models introduced

in Ref. [118, 23]. Especially since the activation energy of the insulating phase is very

low (4K) [11] even compared with the narrow bandwidth and the effective Hubbard

interaction, this Mott insulator is rather weak and it is conceivable that its insulating

behavior can be understood based solely on the electrons near the Fermi surface.

We instead focus on two peculiar and qualitative phenomena observed in TBG [12].

1. The resistivity Rxx(T ) in Ref. [12] shows that at the Mott insulator doping, Rxx(T )

first increases with lowering temperature below Tm ∼ 4− 5K (as one would expect

for an insulator), while rapidly drops to zero below another temperature scale

Tc ∼ 1K. This feature means that quite surprisingly the MI phase at very low

energy scale still has a superconductivity instability.

2. Once the SC is suppressed by a weak external magnetic field, the system becomes

a normal MI with Rxx(T ) growing without saturation at low temperature.

As we have mentioned the insulator phase in this system must be a “weak” one, its

activation gap is about the same as kBTm, which is much lower than the estimated
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Hubbard interaction, even with the large unit cell of the moir~e structure. A weak Mott

insulator can be naturally understood based on physics around the Fermi surface only.

The electrons on the Fermi surface can be gapped out by an order parameter at finite

momentum through folding of the Brillouin zone. When the amplitude of the order

parameter is weak, i.e. when the system is close to the order-disorder quantum phase

transition, only the “hot spots” on the Fermi surface connected by the momentum of the

order parameter are gapped out; but with a sufficiently strong order parameter and its

coupling to the electrons, the entire Fermi surface is gapped out, and the system becomes

an insulator, which can usually be adiabatically connected to a strong Mott insulator at

strong coupling without any phase transition.

The simplest analogue of the physics described above is the Hubbard model on the

square lattice with nearest neighbor hopping at exactly half filling. A weak Hubbard

interaction will induce the antiferromagnetic order at momentum (π, π) and drive the

system into an insulator due to the Brillouin zone folding and nesting of Fermi surface.

And the insulator with weak Hubbard U can be adiabatically connected to the insulator

with large U , where all the electrons are well localized on every site.

4.4.9 Mechanism for weak MI and emergent SC

Ref. [118, 23] both started with a two orbital extended Hubbard model to understand

the main experimental observations of the moir~e superlattice of twisted bilayer graphene.

The site of the triangular lattice is a patch of the bilayer graphene with AA stacking. The
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two effective orbitals correspond to the two valleys at the corners of the Brillouin zone of

the original honeycomb lattice. Both models in Ref. [118, 23] have a SU(4) symmetry at

the leading order, and the SU(4) symmetry is broken by other interactions such as the

Hund’s interaction. Ref. [118, 23] chose a different sign for the Hund’s coupling, hence

the former prefers a spin triplet and valley singlet on every triangular lattice site, while

the latter prefers a spin singlet and valley order.

Here we first argue that the phenomena (1) and (2) mentioned above can be both

naturally explained within the framework of Ref. [118]. A Hund’s coupling chosen as

Ref. [118] will favor the two electrons on every site in the Mott insulator phase to form

a spin-1, with an antiferromagnetic coupling between neighboring sites. The frustrated

nature of the triangular lattice will likely drive the system into a spin density wave order.

Even if we start with a geometrically unfrustrated honeycomb lattice, the weakness of

the Mott insulator will also generate further neighbor spin interaction and even multi-

spin interactions which frustrate the collinear magnetic order, and may as well lead to a

spin density wave (SDW). This SDW order connects different parts of the Fermi surface

through Brillouin zone folding. Phenomenon (2) suggests that when a “competing order”

is suppressed and the SDW is stabilized, the entire Fermi surface should be gapped out

by the SDW, i.e. there is no residual Fermi pocket left at the Fermi surface, hence the

amplitude of the SDW and its coupling to the electrons are sufficiently strong. But let

us not forget that the system is purely two dimensional, hence with a full spin SU(2)

symmetry, the spins can never form a true long range order at infinitesimal temperature.
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This situation is different from a magnetic order close to its quantum critical point, in

the sense that close to a quantum critical point, both the amplitude and direction of

the magnetic order parameter will fluctuate strongly; while in our case the amplitude

of the SDW does not fluctuate strongly, it is the direction of the order parameter that

modulates over a long correlation length scale ξ(T ).

A finite but long correlation length ξ(T ) implies that within a thin momentum shell

around the Fermi surface with |p− kF | < Λ(T ) ∼ ~/ξ(T ), the fermions will not feel the

background SDW order parameter with finite correlation length. Rather than demon-

strate this effect by detailed calculations based on a microscopic model, one can visualize

this effect by simply coarse-graining the system, until ~/ξ becomes the ultraviolet (UV)

cut-off (thickness) of the momentum shell around the Fermi surface following the standard

renormalization group picture of Fermi surface [91], and within this shell the electrons

only see a very short range correlated SDW, whose effects can be neglected. The electrons

within the thin shell are still “active” and can transport electric charge, or even form

Cooper pairs (Fig. 4.5); while the electrons outside this momentum shell will effectively

view the background SDW as a true long range order, and hence are effectively “gapped

out”. Based on the phenomenon (2), we know that the gap induced by the SDW is strong

enough when the SDW is stabilized by an external field.

The active fermion density is proportional to the thickness of the momentum shell

Λ(T ) ∼ ~/ξ(T ). The correlation length ξ(T ) of a SDW with a full SU(2) spin symmetry

can be estimated from the standard renormalization group calculation. Let us take
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the noncollinear SDW as an example, which happens very often in frustrated magnet

(the experimental phenomena would also be consistent with a collinear SDW at finite

momentum). A noncollinear SDW would break the entire SO(3) spin rotation group.

The standard way of describing such SDW is to parameterize its configuration manifold

with two orthogonal vectors n1, n2. It is convenient to introduce a SU(2) spinor field

z = (z1, z2)t [18], and

n1 ∼ Re[ztiσyσz], n2 ∼ Im[ztiσyσz] (4.35)

z = (z1, z2)t are complex bosonic fields at certain momentumQ, and subject to constraint

|z1|2 + |z2|2 = 1. The two component complex field zα lives in a target manifold: the

three dimensional sphere S3, and it must couple to a Z2 gauge field [18], and when zα

condenses the ground state manifold is S3/Z2, which is identical to the ground state

manifold of a noncollinear SDW.

The finite temperature physics of the SDW is well described by the nonlinear sigma

model (NLSM) defined with the spinor zα field:

Z =

∫
Dzα(x) exp

(
−
∫
d2x

1

2g

∑
α

|∇zα|2
)
, (4.36)

where g = kBT/ρs, and again ρs is the spin stiffness at zero temperature. The 2nd order

renormalization group (RG) equation of the coupling constant g is

dg

d ln l
=

1

π
g2 +O(g3). (4.37)

For small g (low temperature), the correlation length scales as:
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ξ(T ) ∼ a0 exp

(
πρs
kBT

)
, (4.38)

with an extra less important power-law function of T/ρs in the prefactor [116, 22]. a0 is

the lattice constant of the moir~e superlattice, ρs is the spin stiffness at zero temperature.

This means that the energy width of the momentum shell vfΛ(T ) is much smaller than

the thermal energy kBT at low enough temperature T , hence the electrons in this shell are

fully thermally excited. Thus the transport properties of these electrons can be captured

by the most classical theory of transport, such as the Drude theory. For instance, the

electric conductivity of the system is

σ(T ) ∼ n(T )e2τ

m∗
, (4.39)

where n(T ) is the density of electrons within this momentum shell, and it is proportional

to Λ(T ). Thus we can see that although there is no true magnetic order at any finite tem-

perature, due to the rapidly decreasing density of active electrons within the momentum

shell, the resistivity Rxx(T ) will still rise with lowering temperature, before the system

becomes a SC.

At low temperature, the active electrons within the momentum shell can still form

a SC, which is consistent with the phenomenon (1) mentioned above. But since the

correlation length ξ(T ) grows rapidly with lowering temperature, there are less and less

active electrons available for pairing, which is a sign of strong competition between SC

and the SDW. The SC transition temperature Tc for the active electrons can be estimated

126



Figure 4.5: The “active” electrons within the thin momentum shell around the Fermi surface with
|p − pF | < Λ ∼ ~/ξ(T ), which are insensitive to the background SDW with finite correlation length
ξ(T ), and hence can transport electric charge and potentially form a SC.

through the standard BCS theory, under the assumption of a uniform gap function around

the Fermi surface (which is the case for almost all the superconductors predicted in this

system so far):

1

J
=

∫ vfΛ(T )

0

dε
N√

ε2 + ∆2
tanh

(√
ε2 + ∆2

kBT

)
, (4.40)

where J represents the Heisenberg interaction on the effective triangular lattice, which is

the “gluing force” for superconductivity [118]. In Eq. 4.40 we have replaced the UV cut-

off of the standard BCS theory by vfΛ(T ). As always N is the density of states around

the Fermi surface, which has been taken to be a constant. As we explained, at very low

temperature vfΛ(T ) is much smaller than kBT , hence at Tc (∆ = 0), this equation can

be simplified as

1

NJ
=
vfΛ(Tc)

kBTc
. (4.41)
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This equation does not always have a solution, it only supports a nonzero Tc when NJ '

πρsa0/(~vf ). Hence the system no longer has a BCS instability against infinitesimal

attractive interaction, the interaction J needs to be stronger than a critical strength.

4.4.10 With weak anisotropy

Once an external magnetic field is turned on (either inplane or out-of-plane), the magnetic

order will be more “stabilized” at low temperature because the spin symmetry is reduced

to U(1), which supports a quasi long range order with infinite correlation length. In this

case, the size of the momentum shell (and the density of the active electrons) vanishes

to zero, and there is no room for SC.

The way a uniform Zeeman field couples to the spinor field zα depends on the symme-

try of the noncollinear SDW, but it will at least break the SO(3) symmetry down to U(1).

A weak Zeeman field h will be renormalized to h(l) at length scale l: l/a0 ∼ (h(l)/h)1/δ,

where δ is the scaling dimension of h in the NLSM; while at the same length scale the

coupling constant g is renormalized according to Eq. 4.37. Comparison between the RG

flow of h(l) and g(l) defines a critical temperature T ′c:

(ρs
h

)1/δ

∼ exp

(
πρs
kBT ′c

)
. (4.42)

When T � T ′c, the coupling constant g(l) will still be small and perturbative when h

becomes nonperturbative compared with ρs, hence g(l) stops growing at a small value,

and the system is in a quasi long range ordered SDW phase; while when T � T ′c, the
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Figure 4.6: The RG flow of g1 and g2 described by Eq. 4.46, with initial values g1 = 0.24, g2 = 0.02,
and their difference is amplified under RG. The horizonal axis is the RG scale l.

coupling constant g(l) becomes nonpeturbative before h(l) could affect the RG flow of

Eq. 4.37, and the system is in the disordered phase. Thus T ′c can be viewed as the critical

temperature of the O(2) SDW (the Kosterlitz-Thouless transition critical temperature),

which depends on the external Zeeman field h as

T ′c ∼
ρs

log(ρs/h)
, (4.43)

which is consistent with previous studies with magnetic systems with weak anisotropy [41].

As an illustration of the physics discussed above, let us consider a simple case without

reflection symmetry (the reflection symmetry takes zα → εαβz
∗
β in Ref. [18]), where an

external field leads to the following anisotropic NLSM:

∫
d2x

1

2g1

|∇z1|2 +
1

2g2

|∇z2|2 +
m2

kBT
|z1|2, (4.44)

gi = kBT/ρi. We take ρ2 > ρ1 for m2 > 0, i.e. the anisotropy favors the condensate of

z2, but penalizes condensate of z1.

Starting with m = 0, the RG flow of gi is described by the Ricci flow [30, 31]:

129



β(gab) = − 1

2π
Rab, (4.45)

where gab is the metric tensor of the target manifold of the NLSM, and Rab is the Ricci

tensor (see appendix for more details). Expanded at the ordered state with z1 = 0,

z2 6= 0, the Ricci flow of the metric tensor translates into the RG flow of g1 and g2 in the

field theory Eq. 4.44

dg1

d ln l
=

1

2π

(
g2

1 +
g3

1

g2

)
+O(g3

i ),

dg2

d ln l
=

1

π
g1g2 +O(g3

i ). (4.46)

The RG equations Ref. 4.46 can be solved exactly for arbitrary initial values of g1, g2

with a complicated form (see appendix). If we start with a choice of different g1 and g2,

their difference will be amplified under RG flow (Fig. 4.6). Intuitively, as long as gi are

small enough (for low enough temperature or the spin stiffness is sufficiently strong), once

m2 is renormalized strong, z1 will be explicitly gapped, and z2 becomes an O(2) order

parameter, and enters a quasi long range algebraic phase where g2 stops growing under

RG. The general physics discussed in this section becomes manifest in model Eq. 4.44.

With increasing magnetic field h, the Mott insulator phase will eventually be de-

stroyed, so will the SDW order. With strong field, the order-disorder transition of the

SDW is likely a quantum phase transition with dynamical exponent 2, due to the pre-

cession of the inplane SDW order parameter under an external field.
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4.4.11 Connections to more experimental phenomena, and com-

parison with other theories

In our picture the weak Mott insulator is a consequence of a SDW at finite momentum,

which significantly reduces the density of “active” fermions around the Fermi surface

with lowering temperature. Thus the SDW is a competing order of the SC. We expect

this to be still true under small doping away from the Mott insulator. Experimentally the

Hall density of charge carriers in the hole-doped Mott insulator is indeed proportional to

the dopant density away from the Mott insulator, suggesting the persistence of the SDW

under hole doping. And with an external field, either inplane or out-of-plane, the SDW

will be stabilized (the effect of a weak magnetic field will be strongly amplified due to

the logarithmic dependence of h in Eq. 4.43), thus the SC (even a spin triplet SC) will

be significantly weakened due to its competition with the magnetic order.

We would also like to point out that the main phenomena (1) and (2) mentioned

in the introduction are less likely to be simultaneously consistent with other theories

proposed so far. Ref. [23] proposed a nematic order which spontaneously breaks the

symmetry of the valley space in the Mott insulator phase, while Ref. [119] proposed a

valence bond solid (VBS) order in the Mott insulator. The valley space does not have a

SU(2) symmetry, hence at low temperature it would form either a true long range order

(which spontaneously breaks a discrete symmetry) or a quasi long range order (which

spontaneously breaks the approximate U(1) valley symmetry). In either case, it seems

difficult to reconcile phenomena (1) and (2): since the system is clearly an insulator when
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the SC is suppressed, there must be no Fermi pockets left with the valley order; but the

correlation length of the valley order remains infinite after the field is removed due to the

lower symmetry of the valley space, hence the density of “active fermions” is still zero,

and there seems no natural way to explain the emergence of SC inside the MI. The VBS

order proposed in Ref. [119] has the similar issue.

4.4.12 Summary

In summary we have proposed a phenomenological understanding of the unusual emergent

superconductivity inside a weak Mott insulator observed recently in the bilayer Graphene

Moir~e superlattice. In our picture this peculiar phenomenon is due to the pure two

dimensional nature of the system, and also the symmetry of the order parameter that

leads to the MI. We expect this to be a quite generic mechanism, and similar behaviors

can be found in other two dimensional systems.

4.5 Other works and Closing Remarks

In summary, we’ve reviewed some of the important aspects of a new class of materials

which, unlike many previous solid state devices, may be non-destructively tuned into

a strongly-correlated phase through the application of gate voltages. Such control over

a device is, historically speaking, unprecedented. With the mysteries that surround

the behavior of strongly correlated electron systems, this material class, as well as other

similar experimental platforms likely to emerge, will give the community improved clarity
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into the nature of strongly interacting electron systems.

Such progress has already been made in TBG, for example. In a 2019 publication,

Cao et. al [10] demonstrated evidence for ”strange metal” NFL liquid behavior at

and near fractional fillings that exhibited Superconducting Phases. They found Plankian

scattering and strongly dissipative dynamics in the intermediate tempeature regime above

the superconducting transition — a situation provocatively similar to the phase diagrams

of e.g. HTSC materials. This exciting development again ties into the larger picture of

correlated electron systems, whose quantum critical regime remains both universal and,

yet, poorly understood.

We briefly mention that a similar behavior in the R v.s. T plot has been observed in

La1.875Ba0.125CuO4 subject to disorder induced by radiation [56]. A similar argument can

be made for this material, such that the disorder weakens the strength of the underlying

CDW phase, allowing the SC to emerge at higher Temperatures.
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Appendix A

Detailed Work on Quadratic Band

Crossing

A.1 General Solutions to the Flow Equations

In order to evaluate the flow equations for the couplings and the source terms, we shall

make use of the following integral:

∫
dω

2π

∫ Λ

Λ(1−d`)

d2k

(2π)2
Ĝ0(iω,k)⊗ Ĝ0(±iω,±k) =

m

4π
d`

[
∓Aph,pp14 ⊗ 14 +

1

2
Bph,ppσ31⊗ σ31 +

1

2
Cph,ppσ11⊗ σ11

]
,

(A.1)

where Ĝ0(iω,k) is the bare Green function following from (2.2). The upper and lower

signs on the left hand side of (A.1) correspond to the labels ph and pp on the right hand

side, respectively. The coefficients on the right hand side of (A.1) are given by
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Figure A.1: Feynman diagrams contributing to the flow of the couplings gi. The solid lines correspond
to fermions; the dashed lines correspond to interactions. The internal fermion lines (colored red) have
“fast” momenta Λ(1− d`) < |k| < Λ, while the external legs have “slow” momenta |k| < Λ(1− d`).

Aph = −
√

2

π

K(1− cot2 η)

| sin η|

Bph =
2
√

2[E(1− cot2 η)− cot2 ηK(1− cot2 η)]

π| sin η|(1− cot2 η)

Cph =
2
√

2[K(1− cot2 η)− E(1− cot2 η)]

π| sin η|(1− cot2 η)
.

(A.2)

and

App =

√
2

π| sin η|

[
K(1− cot2 η) +

λ2

sin2 η − λ2
Π

(
sin2 η − cos2 η

sin2 η − λ2
, 1− cot2 η

)]
,

Bpp =
23/2

π| sin η|(tan2 η − 1)

[
−K(1− cot2 η) + Π

(
sin2 η − cos2 η

sin2 η − λ2
, 1− cot2 η

)]
,

Cpp =
23/2

π| sin η|(1− cot2 η)

[
K(1− cot2 η)− cos2 η − λ2

sin2 η − λ2
Π

(
sin2 η − cos2 η

sin2 η − λ2
, 1− cot2 η

)]
.

(A.3)

Note that the coefficients in (A.2), which correspond to particle-hole scattering processes,

are independent of the particle-hole asymmetry λ. The functions K, E, and Π are

complete elliptic functions. In the limit of particle-hole symmetry (λ = 0) and rotational

invariance (η = π/4), (A.2) and (A.3) reduce to Aph,pp = Bph,pp = Cph,pp = 1.

From evaluating the one-loop diagrams shown in Figure A.1, one obtains the coeffi-

cients Aijk =
∑5

m=1Aijk(m) in the flow equation for the couplings [(2.6) in the main text],

where m labels the five diagrams in Figure A.1. One gets only diagonal contributions
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from the first diagram:

Aiii(1) =
[
−4Aph + Cph Tr((σ1σj)

2) +Bph Tr((σ3σj)
2)
] m

4π
. (A.4)

From the second and third diagrams combined:

Aiij(2) + Aiij(3) =

[
Aph Tr(σiσjσiσj)−

1

2
Cph Tr(σiσjσ1σiσ1σj)

− 1

2
Bph Tr(σiσjσ3σiσ3σj)

]
m

4π
.

(A.5)

From the fourth diagram:

Aijk(4) =
1

8

[
2Aph Tr(σkσjσi) Tr(σjσkσi)− Cph Tr(σkσ1σjσi) Tr(σjσ1σkσi)

−Bph Tr(σkσ3σjσi) Tr(σjσ3σkσi)

]
m

4π
.

(A.6)

Finally, from the fifth diagram:

Aijk(5) = −1

8

[
2App (Tr(σkσjσi))

2 + Cpp (Tr(σkσ1σjσi))
2 +Bpp (Tr(σkσ3σjσi))

2

]
m

4π
(A.7)

The flows of the source terms introduced in (2.8) are computed by evaluating the

diagrams shown in Figure A.2. Evaluating these diagrams and using (A.1) gives the

following expressions for the coefficients appearing in the main text:
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Figure A.2: Feynman diagrams contributing to the flow of the source terms ∆c,s,pp
i . The solid lines

correspond to fermions; the dashed lines correspond to interactions. The two diagrams in (a) give
contributions to the particle-hole source terms, while the diagram in (b) contributes to the particle-
particle source term. The internal fermion lines (colored red) have “fast” momenta Λ(1− d`) < |k| < Λ,
while the external legs have “slow” momenta |k| < Λ(1− d`).

B
(c,s)
ij (1) =

m

4π
{−AphTr[(σj1)M

(c,s)
i ] +

1

2
BphTr[(σj1)(σ31)M

(c,s)
i (σ31)]

+
1

2
CphTr[(σj1)(σ11)M

(c,s)
i (σ11)]},

B
(c,s)
ij (2) = − m

16π
{−AphTr[((σj1)M

(c,s)
i )2] +

1

2
BphTr[M

(c,s)
i (σj1)(σ31)M

(c,s)
i (σ31)(σj1)]

+
1

2
CphTr[M

(c,s)
i (σj1)(σ11)M

(c,s)
i (σ11)(σj1)]},

B
(pp)
ij = − m

16π
{AppTr[(σj1)M

(pp)
i (σj1)TM

(pp)
i ]

+
1

2
BppTr[M

(pp)
i (σj1)(σ31)M

(pp)
i (σ31)(σj1)T ]

+
1

2
CppTr[M

(pp)
i (σj1)(σ11)M

(pp)
i (σ11)(σj1)T ]}.

(A.8)

Adding the contributions from the first two diagrams together then givesB
(c,s)
ij = B

(c,s)
ij (1)+

B
(c,s)
ij (2). By differentiating the free energy with respect to the source terms, one obtains

the following expression for the particle-hole susceptibilities in the charge and spin chan-

nels:

χ
(c,s)
i (`) =

m

4π

∫ `

0

d`′e2Ω
(c,s)
i (`′)

{
−4Aph +

1

2
BphTr[(σ31)Mi)

2] +
1

2
CphTr[(σ11)Mi)

2]

}
(A.9)

where
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Ω
(c,s)
i (`) =

∫ `

0

d`′
3∑
j=0

B
(c,s)
ij gj(`

′). (A.10)

The particle-particle susceptibilities are given by

χppi (`) =
m

4π

∫ `

0

d`′e2Ωppi (`′)

{
4App +

1

2
BppTr[(σ31)Mi)

2] +
1

2
CppTr[(σ11)Mi)

2]

}
(A.11)

where

Ωpp
i (`) =

∫ `

0

d`′
3∑
j=0

Bpp
ij gj(`

′). (A.12)

A.2 Flow equation coefficients with finite µ

Let the bare part of the action be given by

S0 = T
∑
n

∫ 2π

0

dθk
2π

∫ Λ(θk)

0

dk

2π
k

×
∑
α

ψ†nkα[−(iωn + µ)12 +H0(k)]ψnkα,
(A.13)

where we have taken the the UV cutoff to be dependent on the angle in k-space. We

can write this as Λ(θk) = Λf(θk), and will choose f(θk) below. We shall assume in what

follows that µ ≥ 0, so that the Fermi level is at positive energy. In performing an RG

step, we decrease the cutoff magnitude as Λ→ Λe−`, without scaling the angle-dependent

part f(θk). Similarly, we scale the magnitude of all momenta as k → ke`, while leaving

θk untouched. With the scaling for µ, ωn, and ψnkσ remaining the same as before, one

sees that the bare action (A.13) remains invariant.
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The Green function obtained from (A.13) is

Ĝ0(iω,k) =
−(iω + µ− λ√

2m
k2)12 − k2√

2m
(sin η sin 2θkσ1 + cos η cos 2θkσ3)

(iω + µ)2 −
(
k2

2m

)2
(√

2λ+
√

1 + cos(2η) cos(4θk)
)2 . (A.14)

The outer product that is required in evaluating the one-loop diagrams is given by (taking

the limit T → 0)

∫
>

Ĝ0(+)⊗ Ĝ0(±) ≡
∫
dω

2π

∫ 2π

0

dθk
2π

∫ Λf(θk)

(1−d`)Λf(θk)

dk

2π
kĜ0(iω,k)⊗ Ĝ0(±iω,±k)

=
Λ2

2π
d`

∫
dω

2π

∫ 2π

0

dθk
2π

f 2(θk)

∑3
i=0 qiσi ⊗ σi

GΛ(iω)GΛ(±iω)
.

(A.15)

where GΛ(iω) = (iω + µ− λΛ2√
2m

)2 −
(

Λ2

2m

)2

(1 + cos(2η) cos(4θk)) and

q0 =

(
iω + µ− λΛ2

√
2m

)(
±iω + µ− λΛ2

√
2m

)
q1 = 2

(
Λ2

2m

)2

sin2 η sin2 2θk

q3 = 2

(
Λ2

2m

)2

cos2 η cos2 2θk

(A.16)

. Below we consider (A.15) separately for the particle-hole and particle-particle cases,

which correspond to the upper and lower signs in the above equation, respectively.

For the particle-hole case, we find that the dependence on µ, λ, and f(θk) disappears

upon integrating over frequencies:
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∫
>

Ĝ0(+)⊗ Ĝ0(+) =
m

4π
d`

∫
dθk
2π

{
− 1√

1 + cos(2η) cos(4θk)
12 ⊗ 12

+ 2
cos2(η) cos2(2θk)σ3 ⊗ σ3 + sin2(η) sin2(2θk)σ1 ⊗ σ1

[1 + cos(2η) cos(4θk)]3/2

} (A.17)

The angular integrals in this expression can be performed using special functions, leading

to the following result:

∫
>

Ĝ0(+)⊗ Ĝ0(+) =
m

4π
d`

[
−A(ph)12 ⊗ 12 +

1

2
B(ph)σ3 ⊗ σ3 +

1

2
C(ph)σ1 ⊗ σ1

]
, (A.18)

where

A(ph)(µ̃, λ, η) =
2

π
√

1 + cη
K

(
2cη

1 + cη

)
(A.19)

B(ph)(µ̃, λ, η) = (1 + cη)

[
2F1

(
3

4
,
5

4
; 1; c2

η

)
− 3

4
cη2F1

(
5

4
,
7

4
; 2; c2

η

)]
(A.20)

C(ph)(µ̃, λ, η) = (1− cη)
[

2F1

(
3

4
,
5

4
; 1; c2

η

)
+

3

4
cη2F1

(
5

4
,
7

4
; 2; c2

η

)]
. (A.21)

We now turn to the particle-particle version of (A.15), defining the following coeffi-

cients:

∫
>

Ĝ0(+)⊗ Ĝ0(−) =
m

4π
d`[

A(pp)(µ̃, λ, η)12 ⊗ 12 +
1

2
B(pp)(µ̃, λ, η)σ3 ⊗ σ3 +

1

2
C(pp)(µ̃, λ, η)σ1 ⊗ σ1

]
.

(A.22)

In the most general case, the angular integrals in (A.19) must be evaluated numerically,

which greatly increases the computational cost of solving the flow equations. In light
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of this, we consider two special cases. In the first case, we do not assume particle-hole

symmetry but do assume rotational invariance, so that η = π
4
, but λ is arbitrary. In

this case we simply choose f(θk) = 1, so that the UV cutoff has no angular dependence.

Performing the integrals in (A.19), one obtains

A(pp)(µ̃, λ,
π

4
) = B(pp)(µ̃, λ,

π

4
) = C(pp)(µ̃, λ,

π

4
) =

1

(1 +
√

2λ)2 − µ̃2
. (A.23)

In the second case we allow for angular anisotropy, but require particle-hole symmetry

(λ=0). In order that the UV cutoff describes a contour of constant energy, we choose

in this case f(θk) = 1/[1 + cos(2η) cos(4θk)]1/4, so that ε+(k)|Λf(θk) = Λ2/2m, which is

independent of θk. Then performing the angular integrals from (A.19), one obtains the

following result:

A(pp)(µ̃, 0, η) =
2

π
√

1 + cη

1

1− µ̃2
K

(
2cη

1 + cη

)
(A.24)

B(pp)(µ̃, 0, η) =
1 + cη
1− µ̃2

[
2F1

(
3

4
,
5

4
; 1; c2

η

)
− 3

4
cη2F1

(
5

4
,
7

4
; 2; c2

η

)]
(A.25)

C(pp)(µ̃, 0, η) =
1− cη
1− µ̃2

[
2F1

(
3

4
,
5

4
; 1; c2

η

)
+

3

4
cη2F1

(
5

4
,
7

4
; 2; c2

η

)]
. (A.26)

In the case where we assume rotational invariance and particle-hole symmetry such

that η = π
4

and λ = 0, we obtain from (A.19) and either (A.24) or (A.23) the following
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Figure A.3: Particle-particle diagram contributing to the one-loop flow equations for the couplings gi(`)

coefficients:

Aph = Bph = Cph = 1, (A.27)

App = Bpp = Cpp =
1

1− µ̃2
`

, (A.28)

which corresponds to the case analyzed in the main text.

With these results, we can proceed to calculate the coefficients in the flow equations.

There are five marginally relevant one-loop diagrams which contribute to the coupling

flows (2.6), shown in Figures ?? and A.3. Let Aijk =
∑5

d=1A
5
ijk, where d corresponds to

one of these five diagrams.

The first diagram only gives diagonal contributions:

A1
iii =

[
− 4Aph + Cph Tr((σ1σj)

2)

+Bph Tr((σ3σj)
2)
]m
4π
.

(A.29)

From the second and third diagrams combined:

A2
iij + A3

iij =
m

4π

[
Aph Tr(σiσjσiσj)

− 1

2
Cph Tr(σiσjσ1σiσ1σj)−

1

2
Bph Tr(σiσjσ3σiσ3σj)

]
.

(A.30)

From the fourth diagram:
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A4
ijk =

m

32π

[
2Aph Tr(σkσjσi) Tr(σjσkσi)

− Cph Tr(σkσ1σjσi) Tr(σjσ1σkσi)

−Bph Tr(σkσ3σjσi) Tr(σjσ3σkσi)

]
.

(A.31)

And from the fifth diagram:

A5
ijk = − m

32π

[
2App (Tr(σkσjσi))

2

+ Cpp (Tr(σkσ1σjσi))
2

+Bpp (Tr(σkσ3σjσi))
2

] (A.32)

The flows of the source terms introduced in (2.8) are computed by evaluating the

diagrams shown in Figure A.4. Evaluating these diagrams gives the following expressions

for the coefficients :

B
(c,s)
ij (1) =

m

4π
{−AphTr[(σj1)M

(c,s)
i ] +

1

2
BphTr[(σj1)(σ31)M

(c,s)
i (σ31)]

+
1

2
CphTr[(σj1)(σ11)M

(c,s)
i (σ11)]},

(A.33)

B
(c,s)
ij (2) = − m

16π
{−AphTr[((σj1)M

(c,s)
i )2]

+
1

2
BphTr[M

(c,s)
i (σj1)(σ31)M

(c,s)
i (σ31)(σj1)]

+
1

2
CphTr[M

(c,s)
i (σj1)(σ11)M

(c,s)
i (σ11)(σj1)]},

(A.34)
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Figure A.4: One-loop diagrams representing contributions to the source terms ∆c,s,pp
i (`).

B
(pp)
ij = − m

16π
{AppTr[(σj1)M

(pp)
i (σj1)TM

(pp)
i ] +

1

2
BppTr[M

(pp)
i (σj1)(σ31)M

(pp)
i (σ31)(σj1)T ]

+
1

2
CppTr[M

(pp)
i (σj1)(σ11)M

(pp)
i (σ11)(σj1)T ]}.

(A.35)

Adding the contributions from the first two diagrams together then gives B
(c,s)
ij =

B
(c,s)
ij (1) + B

(c,s)
ij (2). By differentiating the free energy with respect to the source terms,

one obtains the following expression for the particle-hole susceptibilities in the charge

and spin channels:

χ
(c,s)
i (`) =

m

4π

∫ `

0

d`′e2Ω
(c,s)
i (`′)

{
4Aph

− 1

2
BphTr[((σ31)Mi)

2]− 1

2
CphTr[((σ11)Mi)

2]

}
,

(A.36)

where

Ω
(c,s)
i (`) =

∫ `

0

d`′
3∑
j=0

B
(c,s)
ij gj(`

′). (A.37)

The particle-particle susceptibilities are given by

144



χppi (`) =
m

4π

∫ `

0

d`′e2Ωppi (`′)

{
4App

+
1

2
BppTr[((σ31)Mi)

2] +
1

2
CppTr[((σ11)Mi)

2]

}
,

(A.38)

where

Ωpp
i (`) =

∫ `

0

d`′
3∑
j=0

Bpp
ij gj(`

′). (A.39)

Having determined the complete flow equations for the couplings and susceptibilites,

we can proceed to solve the coupled differential flow equations given initial conditions

gi(0) and µ(0). We assume that − 1√
2
< λ < 1√

2
, so that the bands do not cross the Fermi

level away from the point k = 0. The phase instability is taken to be the in the channel

in which the susceptibility χi is the largest when the couplings reach values |gi(`)| & 1.

The phase diagrams obtained in this way are shown in Figure A.5.

A.2.1 Anisotropic case

Let us now generalize the discussion by moving away from the rotationally invariant

and particle-hole symmetric limit by including arbitrary η and λ in the flow calculations,

which is done explicitly in the second portion of the Appendix. Solving these modified RG

equations leads to the phase diagrams shown in Figure A.5. In calculating these phase

diagrams, the leading instabilities are determined by taking the largest susceptibility

when the couplings attain values |gi(`)| & 1. Another possible criterion for determining
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Figure A.5: Phase instabilities at various values of angular anisotropy η− π
4 and particle-hole asymmetry

λ. Top row: Hubbard interaction (for a checkerboard lattice) at zero doping (a) and with doping (b), with
instabilities to quantum anomalous Hall (QAH) and d-wave superconducting (d-SC) phases. Bottom row:
longer-ranged forward scattering interaction at zero doping (c) and with doping (d), with instabilities
to QAH, quantum spin Hall (QSH), and s-wave superconducting (s-SC) phases.

phases is to take the largest susceptibility exponent γ where the flows diverge. The phase

diagrams resulting from this choice are qualitatively similar to those shown in Figure

A.5, with the only significant differences appearing for forward scattering interaction,

with an s-wave superconducting phase rather than QAH at |λ| > 0.2 at µ = 0, and a

superconducting phase with degenerate dxy and dx2−y2 order parameters (leading to a

chiral, “d+ id” superconducting state) appearing at µ = 10−3 Λ2

2m
and λ < −0.6.

Finally, let us consider the case of the kagome lattice as an example of a C6v-symmetric

system, in which case η is fixed to π
4
. A tight-binding calculation with nearest-neighbor

hopping leads to three energy bands, with a completely flat upper band touching a

parabolically dispersing middle band at k = 0, as shown in Figure A.6. Thus, the system
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Figure A.6: Band structure for fermions on the kagome lattice with nearest-neighbor hopping t. A
quadratic band touching point occurs between the upper and middle bands at the Γ point (k = 0).

near 2
3

filling corresponds to a QBC in the extreme particle-hole asymmetric case where

λ = −1/
√

2. The two-band low energy effective theory introduced in the main text

can be obtained by projecting out the completely filled lowermost band, after which

the two components of the spinor ψσ correspond to different linear combinations of the

three fermion operators defined on the three sublattices. Starting with a microscopic

Hubbard interaction in the lattice model and performing the projection onto the low-

energy effective theory leads to the Hubbard interaction shown in Table 2.1, which is

distinct from the form of the Hubbard interaction on the checkerboard lattice. Thus,

although the two systems are described by the same effective field theory (at least in the

case where tx = tz), knowledge of the original lattice model is retained through the form

of the interactions. In fact, this can even affect which phase is realized. For the C6v-

symmetric system at µ = 0, Hubbard interaction leads to a QSH phase for |λ| < 0.98/
√

2

and QAH for 0.98/
√

2 < |λ| < 1/
√

2, which is very different from the behavior shown

in Figure A.5(a). In the case with one nearly flat band (|λ| . 1/
√

2), the couplings

g̃i(`) turn out to all remain positive until very large values of `, with C1 ≡ `1g & 10.

147



According to the condition (2.22), then, superconductivity is only to be expected in a

vanishingly small range of µ for any bare interaction strength g . 1. Rather than leading

to superconductivity, the coupling flows terminate when the UV cutoff reaches the Fermi

energy, and the resulting phase in this case is a Fermi liquid.
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Appendix B

MAMMs

B.1 From Ricci flow to RG equation

In this appendix, we discuss the effect of anisotropy on the noncollinear spin density

wave from a geometric point of view. As we argued in the main text, the ground state

manifold of the noncollinear spin density wave is a three dimensional manifold, which

will be deformed by the Zeeman field. Thus the noncollinear spin density wave can be

generally described by the NLSM

S [X] =

∫
1

2
Gab [X] dXa ∧ ?dXb + . . . (B.1)

where the bosonic field X is introduced as


X1

X2

X3√
1− |X|2

 =


Rez1

Imz1

Rez2

Imz2

 , (B.2)
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and the metric Gab should carry the information of the external Zeeman field which lowers

the symmetry of the system. In our choice here, Xi = 0 corresponds to the ground state

|z1|2 = 0, |z2|2 = 1.

To describe the geometric evolution of the target manifold more precisely, we need to

introduce our conventions of geometric quantities. The affine connection is defined as

Γabc =
1

2
Gae (−∂eGbc + ∂cGbe + ∂bGce) , (B.3)

where ∂a = ∂
∂Xa is the derivative with respect to the field Xi. This connection gives the

Riemann curvature

Ra
bcd = ∂cΓ

a
db − ∂dΓacb + ΓaceΓ

e
db − ΓadeΓ

e
cb, (B.4)

and its contraction

Rab = Rc
acb (B.5)

is called the Ricci tensor. The action Eq. B.1 is invariant under coordinate transforma-

tions which preserve the distance GabdX
adXb.

Friedan [30, 31] proved that the one-loop beta function of Gab corresponds to the

Ricci flow

dGab

d ln l
= − 1

2π
Rab + . . . (B.6)

Then the central task is to explore how the external Zeeman field affects the Ricci flow.

Let us first consider the simpler case without the Zeeman field. The metric Gab obtained
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from the isotropic O (4) NLSM reads

Gab [X] =
1

g

(
δab +

XaXb

1− |X|2
)
, (B.7)

The Ricci tensor is given by

Rab [X] = 2gGab [X] , (B.8)

which is proportional to the metric. Using Eq. B.6, we obtain the RG flow Eq. 4.37 of

the coupling constant g.

After turning on the Zeeman term, the O (4) symmetry is broken, and the NLSM is

modified as Eq. 4.44. The metric now becomes

Gab [X] =

 1
g1

0 0

0 1
g1

0

0 0 1
g2

+
1

g2

XaXb

1− |X|2
. (B.9)

The complete expression of the Ricci tensor in this case is rather complicated. To read

the RG flow of g1, g2 from the Ricci flow, we consider the Ricci tensor at point Xi = 0,

which corresponds to the ordering of z2 at zero temperature, and it is the order favored

by the Zeeman field:

Rab [X → 0] =

 1 + g1
g2

0 0

0 1 + g1
g2

0

0 0 2g1
g2

 . (B.10)

Combining with the value of Gab [X] at Xi = 0, we obtain the RG flow Eq. 4.46 of g1

and g2.

If we start with initial values g1 = g and g2 = (1 − α)g, the solution of the RG
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equation Eq. 4.46 reads

g1(l) =
πg

π − g ln l

+
gπ3/2

(
−π + g ln l +

√
π(π − g ln l)

)
α

(π − g ln l)5/2
+O(α2),

g2(l) =
πg

π − g ln l

+
g
(
π2 − 2π3/2

√
π − g ln l

)
α

(π − g ln l)2 +O(α2). (B.11)
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