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Demonstrating scalable randomized benchmarking of universal gate sets
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Randomized benchmarking (RB) protocols are the most widely used methods for assessing the performance
of quantum gates. However, the existing RB methods either do not scale to many qubits or cannot benchmark
a universal gate set. Here, we introduce and demonstrate a technique for scalable RB of many universal and
continuously parameterized gate sets, using a class of circuits called randomized mirror circuits. Our technique
can be applied to a gate set containing an entangling Clifford gate and the set of arbitrary single-qubit gates,
as well as gate sets containing controlled rotations about the Pauli axes. We use our technique to benchmark
universal gate sets on four qubits of the Advanced Quantum Testbed, including a gate set containing a controlled-
S gate and its inverse, and we investigate how the observed error rate is impacted by the inclusion of non-Clifford
gates. Finally, we demonstrate that our technique scales to many qubits with experiments on a 27-qubit IBM Q
processor. We use our technique to quantify the impact of crosstalk on this 27-qubit device, and we find that it
contributes approximately 2/3 of the total error per gate in random many-qubit circuit layers.

I. INTRODUCTION

Quantum computers suffer from a diverse range of errors
that must be quantified if their performance is to be under-
stood and improved. Errors that are localized to single qubits
or pairs of qubits can be studied in detail using tomographic
techniques [1, 2]. However, many-qubit circuits are often sub-
ject to large additional errors, such as crosstalk [3–8], that
are not apparent in isolated one- or two-qubit experiments.
There are now techniques for partial tomography on individ-
ual many-qubit circuit layers (also called “cycles”), includ-
ing cycle benchmarking [9] and Pauli noise learning [10–12].
But quantum computers can typically implement exponen-
tially many different circuit layers, and it is only feasible to
characterize a small subset of them.

Randomized benchmarks [5–8, 13–31] make it possible to
quantify the rate of errors in an average n-qubit layer, by prob-
ing a quantum computer’s performance on random n-qubit
circuits. However, established randomized benchmarks can-
not measure the performance of universal layer sets in the
many-qubit regime, where quantum computational advantage
may be possible. Those randomized benchmarks that can be
applied to universal layer sets, such as standard randomized
benchmarking (RB) [15, 16] and cross-entropy benchmarking
(XEB) [27–29], require classical computations that scale ex-
ponentially in the number of qubits (n). XEB requires classi-
cal simulation of random circuits that are famously infeasible
to simulate for more than approximately 50 qubits [28]. This
is because XEB requires estimating the (linear) cross-entropy
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FIGURE 1. Scalable randomized benchmarking of universal gate
sets. (a) Randomized mirror circuits combine a simple reflection
structure with randomized compiling to enable scalable and robust
RB of universal gate sets. (b) Data and fits to an exponential obtained
by using our method—MRB of universal gate sets—to benchmark a
universal gate set on n = 1, 2, 3, 4 qubits of the Advanced Quantum
Testbed, and the average error rates of n-qubit layers (rΩ, where Ω

is the layer sampling distribution) extracted from these decays. (c)
We benchmarked each connected set of n qubits for n = 1, 2, 3, 4, en-
abling us to map out the average layer error rate (rΩ) for each subset
of qubits.

between each circuit’s actual and ideal output distributions.
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Standard RB of a universal layer set is restricted to even
smaller n, because it requires compiling and running Haar ran-
dom n-qubit unitaries [15]. This compilation requires classi-
cal computations that are exponentially expensive in n, and
results in circuits containing O(2n) two-qubit gates [32]. Due
to the large overhead, even standard RB on Clifford gates—
which has lower overheads and non-exponential scaling—has
only been implemented on up to 5 qubits [5, 6, 8].

In this paper we introduce and demonstrate a simple and
scalable technique for RB of a broad class of universal gate
sets. Our technique uses a novel kind of randomized mirror
circuits, shown in Fig. 1 (a), and advances on a recently in-
troduced method—mirror RB (MRB)—that enables scalable
RB of Clifford gates [6]. Our randomized mirror circuits use a
layer-by-layer inversion structure that enables classically effi-
cient circuit construction and prediction of that circuit’s error-
free output. Furthermore, randomized mirror circuits do not
contain the exponentially large subroutines used in other RB
methods, which enables MRB of even hundreds or thousands
of qubits. To perform MRB on universal gate sets, we run ran-
domized mirror circuits of varied depths (d) and compute their
mean observed polarization [6], a quantity that is closely re-
lated to success probability. The mean observed polarization
versus circuit depth is fit to an exponential decay, as shown
in Fig. 1 (b). As in standard RB, the estimated decay rate is
then simply rescaled to estimate the average error rate of n-
qubit layers. MRB therefore preserves the core strengths and
simplicity of standard RB and XEB, while avoiding the classi-
cal simulation and compilation roadblocks that have prevented
scalable and efficient RB of universal layer sets.

We use MRB to study errors in two different quantum com-
puting systems, based on superconducting qubits. Our ex-
periments are on 4 qubits of the Advanced Quantum Testbed
(AQT) [33] and on all of the qubits of a 27-qubit IBM Q quan-
tum computer (ibmq montreal) [34]. In our experiments on
AQT we use MRB to quantify and compare the performance
of three different layer sets on each subset of n qubits (for
n = 1, 2, 3, 4), including a layer set containing non-Clifford
two-qubit gates [see Fig. 1 (b-c)]. In our experiments on
ibmq montreal we show that our method scales to many
qubits by performing MRB on a universal gate set on up to
27 qubits.

Multi-qubit MRB enables probing and quantifying
crosstalk, which is an important source of error in contempo-
rary many-qubit processors [3–5, 7] that cannot be quantified
by only testing one or two qubits in isolation. We quantify
the contribution of crosstalk errors to the observed error
rates in our experiments on AQT and further divide the error
into contributions from individual layers and gates. The
techniques we introduce for these analyses complement other
established RB-like methods for estimating the error rates of
individual gates—such as interleaved RB [35–37] and cycle
benchmarking [9]. In our experiments on ibmq montreal,
we use MRB to study how crosstalk errors vary on this device
as n increases, with n ranging from n = 1 up to n = 27. We
find that crosstalk errors dominate in circuit layers on n � 1
qubits.

This paper is structured as follows: In Section II we intro-

duce our notation and define the error rate that our method
measures. In Section III we define the MRB protocol. In Sec-
tion IV we present theory and simulations that show that MRB
is reliable. In Sections V and VI we present the results of our
experiments on AQT and IBM Q’s quantum processors, re-
spectively.

II. DEFINITIONS AND PRELIMINARIES

In this section, we introduce our notation and background
information related to our method. In Section II A we intro-
duce the notation and definitions used throughout this paper.
In Section II B we define the error rate that MRB is designed
to measure. In Section II C we describe the gate sets that our
method can be used to benchmark, i.e., we state the condi-
tions that a gate set must satisfy if it is to be benchmarked
with MRB.

A. Definitions

We begin by introducing our notation and definitions. A
k-qubit gate g is an instruction to perform a particular unitary
operation U(g) ∈ SU(2k) on k qubits. We will only consider
k = 1, 2, and we use G1 and G2 to denote a set of one- and
two-qubit gates, respectively. In this work G2 will only con-
tain controlled rotations about the X, Y , or Z axis, denoted
CPθ and defined by

U(CPθ) = |0〉〈0| ⊗ I + |1〉〈1| ⊗ e−i θ2 P, (1)

where θ is the angle of rotation and P is the axis of rotation.
Our experiments use four of these gates, which we write as
cs = CZπ/2, cs† = CZ−π/2, cphase = CZπ, and cnot = CXπ.
We denote the single-qubit gate that is a rotation by θ about P
by Pθ. An n-qubit, depth-d circuit is a length-d sequence of
n-qubit layers C = LdLd−1 · · · L2L1. An n-qubit layer L is an
instruction to perform a particular unitary operation U(L) ∈
SU(2n) on those n qubits. In this work, we use layers that
consist of parallel applications of only one-qubit gates or only
two-qubit gates. We use L(G) to denote the set of all layers
constructed by parallel applications of gates from the gate set
G. Often it will be convenient to think of random circuits and
layers as random variables, and when we do so we use the
L font, e.g., we often use L to denote a layer-valued random
variable, meaning that L = L with probability Ω(L) for some
distribution Ω over L(G). We use L−1 to denote an instruction
to perform the operation U(L)−1.

For a layer or circuit L, we use U(L) and φ(L) to denote
the superoperator for its perfect and imperfect implementa-
tions, respectively, soU(L)[ρ] = U(L)ρU†(L). We often rep-
resent superoperators as matrices, acting on states represented
as vectors in Hilbert-Schmidt space (denoted by |ρ〉〉). A layer
L’s error map is defined by E(L) = φ(L)U†(L). The entangle-
ment fidelity of φ(L) toU(L) is defined by

F
(
φ(L),U(L)

)
= F(E) = 〈ϕ|

(
I ⊗ E(L)

)
[|ϕ〉〈ϕ|]|ϕ〉, (2)
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where ϕ is any maximally entangled state of 2n qubits [38].
This fidelity is linearly related to another widely-used fidelity
variant—the average gate fidelity [38]

F̄
(
φ(L),U(L)

)
=

∫
dψ 〈ψ|E(L)[ψ]|ψ〉 (3)

=
2nF

(
φ(L),U(L)

)
+ 1

2n + 1
, (4)

where dψ is the Haar measure on pure states. Throughout,
we use the term “(in)fidelity” to refer to the entanglement
(in)fidelity.

Our theory will make use of the polarization of a channel
E, which is a rescaling of E’s fidelity given by

γ(E) =
4n

4n − 1
F(E) −

1
4n − 1

, (5)

as well as stochastic Pauli channels. An n-qubit stochastic
Pauli channel Epauli,{γP} is parameterized by a probability dis-
tribution {εP} over the 4n Pauli operators (Pn), and it has the
action

Epauli,{εP}[ρ] =
∑
P∈Pn

εPPρP, (6)

with
∑

P∈Pn
εP = 1. For a stochastic Pauli channel, the to-

tal probability of a fault, i.e., the probability it applies a non-
identity Pauli operator, is 1 − εIn = 1 − F(Epauli,{εQ}).

B. Fidelity decay and Ω-distributed random circuits

In this work we introduce a method for RB of a family
of universal n-qubit layer sets. By its definition (see Sec-
tion III B), our method estimates an error rate (rΩ) for these n-
qubit layers. To confirm that our method works correctly, we
must show that it reliably estimates an independently-defined
and well-motivated notion for the average error rate for a set
of n-qubit layers. Surprisingly, defining the error rate that our
method (or any other RB method) should aim to estimate is
challenging. RB protocols are often formulated as methods
for measuring the mean infidelity of a set of n-qubit gates or
layers, but this is subtly flawed: the mean infidelity is not
an observable property of a set of physical gates—it is not
“gauge-invariant” [39]. One solution to this problem, which
we adopt herein, was introduced in Ref. [40]: the rate of de-
cay of the mean fidelity of a family of random circuits, as a
function of increasing circuit depth, is (approximately) gauge-
invariant. This decay rate can therefore be what an RB proto-
col aims to measure.

Defining the error rate that an RB protocol aims to measure
in terms of the decay rate of fidelity of random circuits raises
an interesting question: which random circuits? A “random
circuit” is not uniquely defined: there are many possible dis-
tributions from which random circuits can be sampled, and
the rate that the fidelity of those circuits decays will vary from
family to family. For example, the degree to which coherent
errors can systematically add across circuit layers depends on
the speed at which those layers scramble errors. In this work,

we introduce a natural family of circuits—which we call Ω-
distributed random circuits—and we aim to estimate the decay
rate of the mean fidelity of these circuits.

Ω-distributed random circuits are similar to the circuits
used in XEB and other benchmarking routines. They are de-
fined in terms of a customizable gate set G and sampling dis-
tribution Ω over that gate set. This gate set consists of one-
and two-qubit gate sets G = (G1,G2), and Ω is determined
by two probability distributions Ω1 and Ω2 over n-qubit layer
sets L(G1) and L(G2), respectively. An Ω-distributed random
circuit with a benchmark depth of d is a circuit-valued ran-
dom variable Cd = L2d · · · L2L1 where the d odd-indexed lay-
ers are Ω1-distributed and the d even-indexed layers are Ω2-
distributed. These circuits consist of interleaved layers of one
and two-qubit gates, so it is useful to define a composite layer
to be a pair of layers of the form L = L2L1 where L1 ∈ L(G1)
is a layer of one-qubit gates and L2 ∈ L(G2) a layer of one-
qubit gates. We denote the set of all composite layers by
L(G). An Ω-distributed random circuit of benchmark depth
d then consists of d composite layers that are Ω-distributed
over L(G) with Ω(L2L1) = Ω1(L1)Ω2(L2). We require that
our Ω-distributed random circuits are highly scrambling [41]
(meaning that, in expectation, they quickly delocalize errors)
which is not true for every possible G and Ω [5]. In Sec-
tion II C we present the conditions we require of G and Ω,
which guarantee this scrambling.

Our protocol aims to estimate the rate at which the fidelity
of Ω-distributed random circuits decays with depth. The aver-
age fidelity of Ω-distributed random circuits with benchmark
depth d (F̄d) is given by

F̄d = E
Cd

F
(
U(Cd), φ(Cd)

)
. (7)

where E{·} denotes the expectation value (here over the
circuit-valued random variable Cd). The requirement that our
Ω-distributed circuits are highly scrambling ensures that F̄d
decays exponentially, and therefore has a well-defined rate of
decay. In Section IV we show that F̄d decays exponentially in
depth for our circuits, i.e., F̄d ≈ Apd

rc + B, for constants A and
B. We then define

εΩ = (4n − 1)(1 − prc)/4n. (8)

We choose εΩ to be this particular rescaling of prc because
prc corresponds to the effective polarization of a random com-
posite layer in an Ω-distributed random circuit—i.e., the po-
larization in a depolarizing channel that would give the same
fidelity decay—and so εΩ is the effective average fidelity of
a layer sampled from Ω. When stochastic Pauli errors are
the dominant source of error, εΩ is approximately equal to
the commonly-used metric of average layer infidelity (see Ap-
pendix A 3).

C. The gate set and sampling distributions

Our technique requires certain conditions of the gate set
G = (G1,G2) and the sampling distributions Ω1 and Ω2. The
gate set G = (G1,G2) must have the following properties:
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1. G1 is closed under inverses and conjugation by Pauli
operators, and is a unitary 2-design over SU(2). Ex-
amples of valid G1 are the set of all single-qubit gates
SU(2) and the set of all 24 single-qubit Clifford gates
C1.

2. G2 contains at least one entangling gate, it is closed un-
der inverses, and each gate in G2 is a CPθ gate (defined
in Section II A). Examples of valid G2 are {cnot} and
{cs, cs†}.

3. For all CPθ ∈ G2, G1 is closed under multiplication
by the single-qubit Pauli axis rotation Pθ. This is guar-
anteed to hold if G1 is the set of all single-qubit gates
SU(2).

We require the following properties of the sampling distri-
butions Ω1 and Ω2:

1. Ω1 is the uniform distribution over G1.

2. Ω2 is invariant under exchanging any subset of the gates
in a two-qubit gate layer L with their inverses.

3. Ω2-distributed layers quickly delocalize errors.

Our method can be generalized to single-qubit gate sets G1
that only generate a unitary 2-design and to distributions Ω1
other than the uniform distribution. However, this complicates
the analysis, so we do not consider this more general case
herein.

III. SCALABLE RANDOMIZED BENCHMARKING OF
UNIVERSAL GATE SETS

In this section we introduce our method for MRB of uni-
versal gate sets. In Section III A we introduce the family of
randomized mirror circuits used in MRB. In Section III B we
explain the MRB data analysis and define the complete MRB
protocol.

A. Randomized mirror circuits for universal gate sets

Our protocol uses a novel family of randomized mirror cir-
cuits [6, 7, 31] that we now introduce. The structure of these
randomized mirror circuits allows our protocol to measure εΩ,
the average error rate of n-qubit layers sampled from Ω (see
Section II B), without expensive classical computation. One
approach to estimating εΩ is to run Ω-distributed random cir-
cuits of varied depths, and then estimate the decay in the (lin-
ear) cross entropy between these circuits’ ideal and actual out-
put probability distributions [27, 29]. This is because the de-
cay rate of this cross entropy is known to be approximately
equal to εΩ [27, 29]. The problem with this method is that
the classical computation cost of computing the ideal output
probability distribution scales exponentially in the number of
qubits (n) when the gate set is universal [28], limiting it to
n . 50. To estimate εΩ without expensive classical com-
putation our protocol runs Ω-distributed randomized mirror

circuits, which use an inversion structure to transform an Ω-
distributed random circuit into a circuit with an efficiently-
computable outcome.

We construct a specific randomized mirror circuit on n
qubits with benchmark depth d via the three-step procedure
shown in Fig. 2. This procedure consists of first sampling a
circuit C1 consisting of an Ω-distributed random circuit pre-
ceded by an initial layer of random single-qubit gates that ran-
domizes the state input into the circuit (enabling estimation of
the circuit’s fidelity using the method of Ref. [42]). We then
append the inverse of C1 to obtain C2, a simple form of mirror
(or motion-reversal) circuit whose error-free output is definite
and easy to predict. Finally, C2 is randomly compiled, to pre-
vent systematic coherent addition or cancellation of errors be-
tween the Ω-distributed random circuit and its inverse—which
is essential for reliable estimation of εΩ. The exact procedure
is as follows:

1. (Sample a random circuit) Construct a circuit C1 =

Ld/2Lθd/2
· · · L1Lθ1 L0 consisting of:

(a) A layer L0 sampled from Ω1, which consists of a
single-qubit gate on each qubit.

(b) d/2 composite layers LiLθi , where Li is sampled from
Ω1, and Lθi is sampled from Ω2.

2. (Construct simple mirror circuit) Add to the circuit C1 the
layers in step 1 in reverse order, with each layer replaced
with its inverse. The result is a circuit

C2 = L−1
0 L−1

θ1
L−1

1 · · · L
−1
θd/2

L−1
d/2 Ld/2Lθd/2

· · · L1Lθ1 L0, (9)

such that U(C2) = I.

3. (Randomized compiling) Construct a new circuit M by
starting with C2 and replacing layers using the following
randomized compilation procedure, which reduces to stan-
dard Pauli frame randomization [43] when the two-qubit
gates are all Clifford gates. To specify our procedure, we
first write C2 [Eq. (9)] in the form

C2 = Ld+1Lθd+1 Ld · · · Lθd/2+2
Ld/2+1Lθd/2+1

Ld/2Lθd/2
· · · L1Lθ1 L0,

where Lθd/2+1
is a dummy (empty) 2-qubit gate layer, so

that C2 consists of alternating layers of one- and two-qubit
gates. Then:

(a) For each single-qubit gate layer Li in C2, sample a
uniformly random layer of Pauli gates Pi, that in the
following procedure is inserted after and then com-
piled into Li.

(b) Replace each two-qubit gate layer Lθi in C2 with a
new two-qubit gate layer T (Lθi , Pi−1) that is con-
structed as follows: For each gate CPθ in Lθi with
control qubit q j and target qubit qk, consider the in-
structions in Pi−1 acting on q j and qk, denoted by
Pi−1, j and Pi−1,k, respectively. If U(Pi−1, j) = I or Z,
then add CPφ acting on (q j, qk) to T (Lθi , Pi−1) where
φ = θ if [U(P),U(Pi−1,k)] = 0 and φ = −θ otherwise.
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If U(Pi−1, j) = X or Y , then add CPφ acting on (q j, qk)
to T (Lθi , Pi−1) where φ = −θ if [U(P),U(Pi−1,k)] = 0
and φ = θ otherwise.

(c) For each single-qubit gate layer Li in C2 with i > 0,
we define a layer of single-qubit gates Pc

i that undoes
the effect of adding Pi−1 into the circuit—meaning
a layer such that U(Pc

iT (Lθi , Pi−1)Pi−1) = U(Lθi ).
Because G2 is restricted to only controlled Pauli-
axis rotations, the correction takes the form U(Pc

i ) =

U(Pi−1Pθ̃i
), where Pθ̃i

consists of single-qubit Pauli
axis rotations. If Li is not immediately preceded by a
two-qubit gate layer, then Pθ̃i

= I. Otherwise,

U(Pθ̃i
) = U

(
Pi−1Lθi Pi−1T (Lθi , Pi−1)−1). (10)

(d) Replace each single-qubit gate layer Li in C2 with a
recompiled layer R(PiLiPc

i−1), defined by

U
(
R(PiLiPc

i−1)
)

= U(PiLiPc
i−1). (11)

This randomized compilation step transforms the layer
pair LiLθi into R(PiLiPc

i−1)T (Lθi , Pi−1), where

U
(
R(PiLiPc

i−1)T (Lθi , Pi−1)
)

= U(PiLiLθi Pi−1). (12)

The final circuit produced by this procedure (M) has the
property that U(M) = U(Pd+1), i.e., its overall action is
an n-qubit Pauli operator. So, if run perfectly, M returns
a single bit string (sM) that is determined during circuit
construction with no additional computation needed.

The final depth-d randomized mirror circuit has the form

M = R(Pd+1L−1
0 Pc

d) M̃ R(P0L0), (13)

where

M̃ = T (L−1
θ1
, Pd)R(PdL−1

1 Pc
d−1) · · · R(Pd/2+1L−1

d/2 Pd/2)

R(Pd/2Ld/2Pc
d/2−1) · · · R(P2L1Pc

1)T (Lθ1 , P0),

is the circuit obtained after applying randomized compilation
to the d/2 composite layers sampled from Ω and their inverses.

B. RB with non-Clifford randomized mirror circuits

We now introduce our protocol—MRB for universal gate
sets. Our protocol has the same general structure as standard
RB [15] and many of its variants: an exponential decay is fit to
data from random circuits. However, our data analysis method
is different from standard RB. We use the same analysis tech-
nique as MRB of Clifford gate sets [6]. In particular, for each
n-qubit circuit C that we run, we estimate its observed polar-
ization [6]

S =
4n

4n − 1

 n∑
k=0

(
−

1
2

)k

hk

 − 1
4n − 1

, (14)

where hk is the probability that the circuit outputs a bit string
with Hamming distance k from its target bit string (sC). As

Composite Layer

append 
inverse

randomized
compiling

random 2-qubit gates
random 1-qubit gates
from 2-design

FIGURE 2. Randomized mirror circuits over universal gate sets.
To construct a randomized mirror circuit of benchmark depth d (and
total depth 2d + 2) we first sample a random depth d + 1 circuit.
This circuit alternates between layers of randomly sampled one-qubit
gates and layers of randomly sampled two-qubit gates. It can be
thought of as consisting of a single initial layer of random one-qubit
gates followed by d/2 composite layers (see inset). We then append
to this circuit its inverse, i.e., the circuit in reverse with each layer
replaced with its inverse. This creates a depth 2d + 2 circuit that will,
if run perfectly, always return the all zeros bit string. This circuit is
susceptible to systematic addition or cancellation of errors between
the two halves of the circuit. To prevent this unwanted effect we
then apply randomized compiling to the circuit. We insert a layer
of random single-qubit Pauli gates (cyan) after each one-qubit gate
layer. In order to guarantee that this randomly compiled circuit still
always, if run perfectly, returns a single bit string s, our procedure (1)
changes the rotation angles in the two-qubit gates (orange) if these
gates are not Clifford gates, (2) adds in single-qubit Pauli axis rota-
tions following the two-qubit gates (red) and, (3) adds in correction
Pauli gates (purple) prior to each single-qubit gate layer. The yellow
boxes show gates that are compiled together to create the final circuit
of depth 2d + 2. This circuit contains d composite layers, which we
call its benchmark depth.

shown in Ref. [6] and discussed further below, the simple ad-
ditional analysis in computing S simulates an n-qubit 2-design
twirl using only local state preparation and measurement.

A specific MRB experiment is defined by a gate set G, a
sampling distribution Ω, and the usual RB sampling param-
eters (a set of benchmark depths d, the number of circuits K
sampled per depth, and the number of times N each circuit is
run). Our protocol is the following:

1. For a range of integers d ≥ 0, sample K randomized
mirror circuits that have a benchmark depth of d, using
the sampling distribution Ω, and run each one N ≥ 1
times.

2. Estimate each circuit’s observed polarization S .
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3. Fit S̄ d, the mean of S at benchmark depth d, to

S̄ d = Apd, (15)

where A and p are fit parameters, and then compute

rΩ = (4n − 1)(1 − p)/4n. (16)

Our claim is that rΩ is a reliable estimate of the average
error rate of Ω-distributed n-qubit circuit layers, i.e., rΩ ≈ εΩ
under broad circumstances.

IV. THEORY AND SIMULATIONS OF MRB ON
UNIVERSAL GATE SETS

In this section we present a theory for MRB of universal
gate sets that shows that our method is reliable. We show that
the average observed polarization (S̄ d) decays exponentially,
and that the MRB error rate (rΩ) approximately equals the av-
erage error rate of Ω-distributed layers [εΩ, Eq. (8)]. In Sec-
tion IV A we show that rΩ ≈ εΩ assuming Pauli stochastic er-
ror on each circuit layer. In Sections IV B and IV C we present
theory and simulations of the performance of MRB under gen-
eral Markovian errors to further validate our method. In par-
ticular, we show that the randomized compilation step of our
circuit construction guarantees that all errors in the circuit are
twirled into Pauli stochastic error (implying that rΩ ≈ εΩ) un-
der the assumption that all two-qubit gates are Clifford gates.

A. MRB with stochastic Pauli errors

We now show that rΩ ≈ εΩ under the assumption of stochas-
tic Pauli error on each circuit layer. A more detailed deriva-
tion can be found in Appendix A. Throughout this section,
we will treat circuits and circuit layers as random variables.
We assume each circuit layer has gate-dependent Markovian
error, φ(L) = E(L)U(L). However, we assume that the er-
ror on the single-qubit gates is independent of the Pauli gates
and Pauli-axis rotations inserted by randomized compiling,
i.e., φ

(
R(PLPc)

)
= E(L)U

(
R(PLPc)

)
. This is implied by the

stronger condition of gate-independent errors on single-qubit
gates—which is an assumption commonly made in the the-
ory of RB and related methods. We will model the error on
state preparation and measurement (SPAM) and the first and
last circuit layers of a randomized mirror circuit [R(P0L0) and
R(PdL−1

0 Pc
d−1), respectively] as a single global depolarizing

error channel ESPAM[ρ] = γSPAMρ + (1 − γSPAM) I
2n occurring

immediately before the final circuit layer. We assume ESPAM
is independent of L0 and the target bit string of the circuit.

We start by showing that the mean observed polarization
[Eq. (14)] of randomized mirror circuits, which is measured in
the MRB protocol, equals the mean polarization of the overall
error map of a randomized mirror circuit. An implementation
of the depth-d randomized mirror circuit Md [whose structure
is given in Eq. (13)] can be expressed in terms of its error and
its target evolutionU(Pd+1) as

φ(Md) = U(Pd+1)U(L−1
0 )Eeff(Md)U(L0), (17)

where

Eeff(Md) = ESPAMEeff(M̃d) (18)
= ESPAME

′

T (L−1
θ1
,Pd) · · · E

′

L−1
d/2

E′Ld/2
· · · E′T (Lθ1 ,P0) (19)

and

E′Li
= U(L1)−1 · · ·U(Li)−1E(Li)U(Li) · · ·U(L1). (20)

Eq. (18) defines an overall error map for Md, which includes
the error from the d/2 Ω-distributed circuit layers and their in-
verses (after randomized compilation). To extract the polar-
ization [Eq. (5)] of this error map, we average over the initial
circuit layer L0, making use of a fidelity estimation technique
that requires only single-qubit gates: the fidelity of any error
channel E can be found by averaging over a tensor product
of single-qubit 2-designs [42]. In particular, for any bit string
y ∈ {0, 1}n,

γ(E) =
4n

4n − 1

∑
x∈{0,1}n

(−1/2)h(x,y) 〈〈x + y| Ē |0〉〉 −
1

4n − 1
, (21)

where Ē = EL[U(L)†EU(L)] and L = ⊗n
i=1Li, where each Li is

a independent, single-qubit 2-design [42]. Applying Eq. (21)
to Eq. (17), we find that

γ
(
Eeff(Md)

)
= E

L0
S (Md) (22)

where S (Md) denotes the observed polarization [Eq. (14)] of
Md. Therefore, the mean observed polarization over all depth-
d randomized mirror circuits is

S̄ d = E
Md
γ
(
Eeff(Md)

)
. (23)

Equation (23) says that the average observed polarization S̄ d,
which is estimated in the MRB protocol, is equal to the ex-
pected polarization of the error channel of a depth-d random-
ized mirror circuit.

We now show how S̄ d depends on the error rate of layers
sampled from Ω (εΩ). To do so, we use the fact that a depth-d
randomized mirror circuit consists of randomized compilation
of a circuit consisting of a depth-d/2 Ω-distributed random cir-
cuit Cd/2 followed by its inverse. These two depth-d/2 circuits
are both Ω-distributed (even after randomized compilation),
but they are correlated. In particular,

S̄ d = γ(ESPAM) E
Cd/2

γ
(
U(Cd/2)Ēeff(C−1

d/2 )U(Cd/2)−1Eeff(Cd/2)
)
,

(24)

where Eeff(Cd/2) is the overall error map for Cd/2 [i.e., φ(Cd/2) =

U(Cd/2)Eeff(Cd/2)] and Ēeff(C−1
d/2

) denotes the average error map
over all possible circuits C′ resulting from applying random-
ized compilation to C−1

d/2
. Expressing Eq. (24) in terms of the

mean observed polarization of the overall error map on an Ω-
distributed random circuit, we have

S̄ d = γ(ESPAM)
(
Γ̄2

d/2 − ∆Ω

)
, (25)
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FIGURE 3. Investigating the reliability of MRB using simulations. We simulated MRB on n all-to-all-connected qubits for n = 1, 2, 4 on
the gate set (G1,G2) = (SU(2), {cs, cs†}) with randomly-sampled gate-dependent errors. From left to right, the columns show results from
simulations with crosstalk-free error models consisting of only stochastic errors (a,c), a combination of stochastic and Hamiltonian errors
(b,d), and only Hamiltonian errors (e,f) (see Section IV C for details). (a-c): The MRB error rate per qubit [rΩ, perQ = 1 − (1 − rΩ)1/n] versus the
average composite layer error rate per qubit [εΩ, perQ = 1 − (1 − εΩ)1/n] for each randomly sampled error model. The MRB error rate rΩ closely
approximates εΩ, and the agreement is closest under purely stochastic errors. (d-f): The relative error δrel = (rΩ, perQ−εΩ, perQ)/εΩ, perQ divided by its
uncertainty σδrel for each randomly sampled error model (σδrel is calculated via a standard non-parametric bootstrap). The MRB error rate rΩ

is biased towards very slightly underestimating εΩ for n > 2 qubits, which is expected from our theory (see main text).

where

Γ̄d = E
Cd

γ
(
Eeff(Cd)

)
(26)

and

∆Ω = E
Cd/2

γ
(
U(Cd/2)Ēeff(C−1

d/2 )U(Cd/2)−1Eeff(Cd/2)
)

−
(
E

Cd/2

γ
(
Eeff(Cd/2)

))2
. (27)

Equation (25) shows that S̄ d ≈ γ(ESPAM)Γ̄2
d/2

if |∆Ω| is small.
If S̄ d and Γ̄d/2 decay exponentially, Eq. (25) relates their decay
rates—i.e., rΩ = εΩ if ∆Ω = 0. ∆Ω quantifies the correla-
tion between the overall error map of a depth-d/2 Ω-distributed
random circuit and the overall error map of its randomly com-
piled inverse. We conjecture that |∆Ω| is typically small for
physically relevant errors, which is supported by our simula-
tions (see Section IV C) and the theory below.

To show that S̄ d decays exponentially, we will assume that
the error on each layer E(L) is a stochastic Pauli channel
[Eq. (6)] (we consider the case of general Markovian errors in
Section IV B). This assumption means that Eeff(M̃d) [Eq. (19)]
is the composition of a stochastic Pauli channel for each cir-
cuit layer of M̃d, each rotated by a unitary. This allows us to
relate the polarization of Eeff(M̃d) to the polarizations of the
error channels of individual circuit layers. To first order in the

layer infidelities ε, the polarization of the effective error chan-
nel is equal to the product of the polarizations of the layers’
error channels [42]:

γ
(
Eeff(Md)

)
= γ(ESPAM)

d/2∏
i=1

[
γ
(
E(Li)

)
γ
(
E
(
T (Lθi ,Pi)

))
γ
(
E(L−1

i )
)
γ
(
E
(
T (L−1

θi
,Pd−i+1)

))]
+ O(d2ε2). (28)

By substituting Eq. (28) into Eq. (24) (see Appendix A), we
find that S̄ d = Apd + O(d2ε2), with A = γ(ESPAM) and p given
by

p2 = E
L,Lθ

γ
(
E(L−1)

)
γ
(
E(L)

)
γ
(
E(Lθ)

)
γ̄
(
Lθ

)
, (29)

where γ̄(Lθ) = EP′ γ
(
E
(
T (L−1

θ ,P
′)
))

is the expected polariza-
tion of a two-qubit gate layer Lθ after inversion and random-
ized compiling. The O(d2ε2) term (and higher-order correc-
tions) quantifies the rate that errors in different layers cancel,
and it is negligible whenever the probability of two or more
errors cancelling is negligible [42]. This is the case in highly
scrambling circuits [5, 42] (when n � 1), and our circuits
are highly scrambling by construction. Therefore S̄ d ≈ Apd,
i.e., the observed polarization of depth-d randomized mirror
circuits decays exponentially with d.

We have shown that the observed polarization of random-
ized mirror circuits decays exponentially, and we now relate
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its decay rate to the decay rate of the expected polarization
of the overall error map of an Ω-distributed random circuit,
thereby relating rΩ and εΩ. An analogous argument to above
implies that the expected polarization of the overall error map
of an Ω-distributed random circuit [Eq. (26)] decays expo-
nentially. By rewriting Eq. (26) as a product of layer polar-
izations, we find that the expected polarization of the overall
error map is

Γ̄d,rc = pd
rc + O(d2ε2), (30)

where prc, which is given by

prc = E
L,Lθ

γ
(
E(Li)

)
γ
(
E(Lθi )

)
, (31)

sets the decay rate of the expected polarization of the overall
error map on an Ω-distributed random circuit, and therefore
determines εΩ. Substituting Eq. (31) into Eq. (29), we have
p2 = p2

rc + ∆′
Ω

, where

∆′Ω = E
L,Lθ

γ
(
E(L)

)
γ
(
E(L−1)

)
γ
(
E(Lθ)

)
γ̄
(
Lθ

)
− p2. (32)

Therefore p ≈ prc, which implies that rΩ ≈ εΩ, if |∆′
Ω
| is small.

∆′
Ω

quantifies the correlation of the polarization of the overall
error map of a Ω-random composite layer with the average po-
larization of the overall error map of composite layers of the
form T (Lθ,P)L−1 (averaged over all n-qubit Pauli layers P).
When these quantities are perfectly uncorrelated (∆′

Ω
= 0),

p = prc, which implies rΩ = εΩ. This holds, for example,
when errors are gate-independent. In practice, the polariza-
tions will be somewhat correlated (∆′

Ω
> 0), implying that

p > prc, and so rΩ will underestimate εΩ [44]. Prior work [6]
and our simulations (see Section IV C) suggest that |∆′

Ω
| is typ-

ically small for physically realistic errors, so rΩ only slightly
underestimates εΩ.

B. MRB with general errors

The theory presented above (Section IV A) shows that
MRB is reliable whenever stochastic Pauli errors dominate
over all other possible errors (e.g., coherent errors). In prac-
tice, stochastic error is not always dominant, which our pro-
tocol addresses with the randomized compilation step [see
Fig. 2]. The purpose of this step is to, upon averaging, con-
vert all types of errors into stochastic Pauli errors [43]—in
which case the theory presented above can be used to infer that
rΩ ≈ εΩ. When MRB is implemented on a gate set in which
all of the two-qubit gates are Clifford gates, this noise tailoring
follows from standard randomized compilation theory [43]. In
Appendix B, we show that with a Clifford two-qubit gate set,
the error in MRB circuits is twirled into Pauli stochastic noise
under the assumption that the error map on the single-qubit
gates is independent of the Pauli gates with which they are
compiled. In actual devices it is common for the single-qubit
gate layers to have errors that are gate-dependent but much
smaller than the two-qubit gate errors, in which case this re-
sult holds approximately [43].

Our MRB protocol can be applied to all controlled rotations
around Pauli axes, i.e., all CPθ gates. When the two-qubit
gates are not all Clifford gates (i.e., when θ , 0, π), the ran-
domized compilation method used in our circuits is not equiv-
alent to standard randomized compilation. In this case, we
cannot use standard randomized compilation theory to guar-
antee that all coherent errors on the two-qubit gates are twirled
into stochastic Pauli errors. Ineffective twirling of coherent
errors on two-qubit gates could result in coherent cancella-
tion of the errors in a layer of two-qubit gates and its inver-
sion layer in the second half of the mirror circuit (as happens
in a simple mirror circuit, or standard Loschmidt echo [7]).
In Appendix C 1 we prove that our randomized compilation
method largely—but not entirely—prevents this error cancel-
lation. We consider the sensitivity of our method to general
Hamiltonian errors on each gate g ∈ G2. We model these
errors by an error map E(g) = eMg , where

Mg =
∑
Pa,Pb

ε
g
Pa,Pb

HPa,Pb , (33)

and HPa,Pb is the two-qubit Hamiltonian error generator in-
dexed by the Pauli operators Pa and Pb, as defined in Ref. [45].
We show that rΩ depends on all Hamiltonian errors in CPθ

gates except one particular linear combination of the Hamilto-
nian errors on CPθ and CP−θ gates, when θ , 0, π (i.e., when
CPθ is not a Clifford gate). In particular, rΩ is insensitive (at
first order) to εCPθ

P,P + εCP−θ
P,P when θ , 0, π. This is the sum of

over- and under-rotation Hamiltonian errors in the CPθ gate
and its inverse. In Appendix C 2 we discuss how our tech-
nique could be adapted to remove this limitation. Note that if
G2 = {cs, cs†}, as is the case in our simulations (below) and
some of our experiments (Section V), then rΩ is insensitive (at
first order) to εcs

Z,Z + εcs†
Z,Z . However, it is sensitive to all other

linear combinations of the Hamiltonian errors on the cs and
cs† gates.

C. Simulations

We now use numerical simulations to investigate the ro-
bustness of MRB, studying whether the MRB error rate (rΩ)
closely approximates the error rate of Ω-distributed layers
(εΩ). Our theory for MRB suggests that MRB is particu-
larly robust when the two-qubit gates are Clifford gates and
when all errors are stochastic Pauli errors. Therefore we sim-
ulated MRB with non-Clifford two-qubit gates and for both
stochastic and coherent errors. We simulated MRB for n-
qubit layer sets constructed from the gate set G1 = SU(2)
and G2 = {cs, cs†} and n = 1, 2, 4, with all-to-all connectivity.
We used a sampling distribution Ω2 for which the two-qubit
gate density is ξ = 1/2 [46]. In these simulations (and our
experiments) each single-qubit gate is decomposed into the
following sequence of xπ/2 and zθ gates:

u(θ, φ, λ) = z−φ−π/2 xπ/2 zπ−2θ xπ/2 z−λ+π/2. (34)

Here xπ/2 is a π/2 rotation around the X axis and zθ is a rota-
tion around the Z axis by θ ∈ [0, 2π). Note that even when a
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shorter sequence of gates can implement the required unitary
(e.g., u(0, 0, 0) implements the identity so it could be imple-
mented with no gates) we always use this sequence of five
gates. Therefore, the only difference between any two single-
qubit gates is the angles of the zθ gates.

We simulated three different families of error model:
stochastic Pauli errors, Hamiltonian errors, and stochastic and
Hamiltonian errors. These error models are specified using
the error generator framework of Ref. [45], and they consist
of gate-dependent errors specified by randomly sampling er-
ror rates for each type of error and each gate. We simulated
error models that are crosstalk free (note that our theory en-
compasses crosstalk errors) so each error model is specified
by the rates of each type of local error on each gate. In partic-
ular, for an m-qubit gate we randomly sample 4m − 1 stochas-
tic error generators, or 4m − 1 Hamiltonian error generators,
or both, depending on the error model family. We sampled
the error rates so that the infidelity of each two-qubit gate was
approximately q, and the infidelity of each one-qubit gate was
approximately 0.1q, where q is a parameter swept over a range
of values (See Appendix D).

Figure 3 shows the results of these simulations. It compares
the true average layer error rate per qubit

εΩ, perQ = 1 − (1 − εΩ)1/n ≈ εΩ/n (35)

to the observed MRB error rate per qubit

rΩ, perQ = 1 − (1 − rΩ)1/n ≈ rΩ/n (36)

in each simulation, separated into the three families of error
model (1σ error bars are shown, computed using a standard
bootstrap). Figure 3(a)-(c) shows that rΩ ≈ εΩ in every simu-
lation, which means that our method closely approximates the
error rate of Ω-distributed layers for all of these error models.

For stochastic error models [Fig. 3 (a)], the relative er-
ror δrel = (rΩ, perQ − εΩ, perQ)/εΩ, perQ in the MRB estimate of
εΩ,perQ is small: |δrel| < 0.04 and the mean |δrel| is 0.007 for
all sampled error models. This is consistent with, and sup-
ports, our theory for MRB with stochastic errors. The relative
error is larger for Hamiltonian error models—the mean rela-
tive error is 0.04 and |δrel| < 0.21 for all error models. We
expect larger relative error for some Hamiltonian error mod-
els, because MRB is insensitive to some Hamiltonian errors
(see Section IV B)—but note that the uncertainty due to finite
sample fluctuations (σ) are larger in these simulations. For
stochastic Pauli errors [Fig. 3 (a)], the uncertainty in rΩ,perQ
is small, because there is little variation in the performance
of circuits of the same depth (the mean uncertainty in rΩ,perQ
is 0.5%). For Hamiltonian errors [Fig. 3 (c)], the uncertainty
in rΩ,perQ is larger (the mean uncertainty is 3%), as individ-
ual circuit performance varies widely due to coherent addition
or cancellation of error being highly dependent on the circuit
structure (as in all RB methods, we expect coherent errors to
add or cancel in individual MRB circuits).

Arguably the most relevant simulations for real-world
quantum computers are those with both stochastic and coher-
ent errors [Fig. 3 (b)]. In these simulations we sampled ran-
dom combinations of stochastic and Hamiltonian errors (so

the dominant source of error varies across these models). We
find that rΩ ≈ εΩ holds to a good approximation for typical
error models sampled from this ensemble (the mean relative
error is 0.017, and |δrel| < 0.11 for all models, and the mean
uncertainty in rΩ,perQ is 1.4%).

To investigate whether there is evidence for rΩ systemat-
ically under (or over) estimating εΩ we plot the relative er-
ror divided by its uncertainty σδrel [Fig. 3 (d-f)]. For n = 1
qubit, there is no evidence that MRB is significantly biased
towards under or overestimating εΩ with these error mod-
els. In contrast, we find that MRB slightly but systemati-
cally underestimates εΩ for n > 1 qubits. This underesti-
mate can be explained by the correlation between the error
in an Ω-distributed circuit and its randomly-compiled inverse,
which determines the difference between rΩ and εΩ (see Sec-
tion IV A). When the circuits contain two-qubit gates—which
in our simulations (and in most real systems) have higher er-
ror rates than one-qubit gates—the error in a circuit is typi-
cally highly correlated with the number of two-qubit gates in
the circuit. As a result, the correlation between a circuit and
its randomly-compiled inverse is typically larger when the cir-
cuits contain a variable number of two-qubit gates, causing rΩ

to slightly underestimate εΩ.

V. EXPERIMENTS ON THE ADVANCED QUANTUM
TESTBED

We used MRB to benchmark universal gate sets on the Ad-
vanced Quantum Testbed (AQT) [33], a quantum comput-
ing testbed platform based on superconducting qubits. We
performed our experiments on four qubits (Q4-Q7) of an
eight-qubit superconducting transmon processor (AQT@LBNL
Trailblazer8-v5.c2). These four qubits are coupled to
their nearest neighbors in a linear geometry (see Fig. 4). Be-
low and throughout this paper, estimated quantities include
error bars where possible [47]. All error bars are 1σ and
are written using standard concise notation, i.e., r = 1.2(3)%
means r = 1.2% with a standard error of 0.3%.

A. Experiment design

One of the advantages of MRB is that it can benchmark a
wide variety of n-qubit layer sets, and we used this flexibility
to explore the performance of three distinct layer sets on AQT.
Each layer set is defined by a set of single-qubit gates G1, a
set of two-qubit gates G2, a two-qubit gate density ξ, and the
connectivity of the qubit subset (see Section II). In our exper-
iments we investigated three different choices for (G1,G2):
(SU(2), {cs, cs†}), (SU(2), {cz}), and (C1, {cz}), where C1 is
the set of all 24 single-qubit Clifford gates.

MRB enables benchmarking each layer set on any con-
nected set of qubits, and the error rates on subsets of a device
can be used to learn about the location and type of errors. We
benchmarked n-qubit layer sets for every possible connected
set Q ⊆ {Q4, Q5, Q6, Q7} of n qubits with n = 1, 2, 3, 4, result-
ing in 10 different qubit subsets. Independently benchmark-
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FIGURE 4. The Advanced Quantum Testbed. We per-
formed MRB experiments on four qubits (Q4-Q7) of AQT’s
eight-qubit superconducting transmon processor (AQT@LBNL
Trailblazer8-v5.c2). The processor includes 8 fixed frequency
transmons coupled in a ring geometry. Each qubit (purple) has its
own control line (orange) and readout resonator (cyan) coupled to a
shared readout bus (red) for multiplexed readout.

ing every connected subset of qubits allows us to study the
spatial variation in gate performance in detail and determine
the size of crosstalk error on circuits with 3 and 4 qubits (see
Section V C).

For each of the three gate sets (G1,G2), and each qubit
subset Q, we ran experiments with a two-qubit gate den-
sity of ξ = 1/2. To investigate the effect of varying ξ, we
also ran experiments with ξ = 1/8 for one of the gate sets—
(SU(2), {cs, cs†})—and every Q. For each qubit subset we
therefore ran 4 MRB experiments, defined by [48]:

1. G1 = SU(2), G2 = {cs, cs†}, and ξ = 1/8.

2. G1 = SU(2), G2 = {cs, cs†}, and ξ = 1/2.

3. G1 = SU(2), G2 = {cz}, and ξ = 1/2.

4. G1 = C1, G2 = {cz}, and ξ = 1/2.

Further experiment details are provided in Appendix E.

B. Estimating average error rates of universal layer sets

Figure 5 summarizes the results of the 3 × 10 MRB experi-
ments in which we vary the gate set (G1,G2)—corresponding
to each row of Fig. 5—and the subset of qubits benchmarked
Q, but we keep the expected two-qubit gate density constant
(ξ = 1/2). The main output of an MRB experiment is an aver-
age layer error rate (rΩ), obtained by fitting the mean observed
polarization [S̄ d, defined in Eq. (14)] to an exponential decay.
This error rate is a function of (G1,G2,Q, ξ), so we denote our
estimated error rates by r(G1,G2,Q, ξ) whenever we need to
refer to a particular error rate. These error rates quantify the
performance of random circuits on this device and enable us
to compare the average performance of the gate sets we tested.

Figure 5 (a-c) shows MRB data and fits to an exponential,
for each of the three gate sets and ξ = 1/2. For each MRB ex-
periment, we show the mean observed polarization (S̄ d) ver-
sus benchmark depth, the distribution of the observed polar-
ization versus benchmark depth, and the fit of S̄ d to S̄ d = Apd.
Data for a single representative subset of qubits of each size
(n = 1, 2, 3, 4) are shown. In all cases, we observe that S̄ d is
consistent with an exponential decay in d, providing experi-
mental evidence for our claim that S̄ d will decay exponentially
under a broad range of conditions.

Figure 5 (d-f) shows the estimated error rates (rΩ) for each
qubit subset that we benchmarked, for each of the three dif-
ferent gate sets. Each rΩ is a rescaling of the decay rate of
the fitted exponential [see Eq. (15)]. By comparing Fig. 5
(d), (e) and (f) we can compare the average error rates of n-
qubit layers constructed from three different gate sets, two
of which are universal and one of which contains only Clif-
ford gates and therefore is not. By comparing (e) and (f), we
find that the average error rate of a layer set is approximately
independent of whether single-qubit gates are sampled from
SU(2) or from C1 (the single-qubit Clifford group)—that is,
r(SU(2), {cz},Q, 1/2) ≈ r(C1, {cz},Q, 1/2) for all ten subsets of
qubits Q. All single-qubit gates in our experiments are im-
plemented using a composite u(θ, φ, λ) gate [see Eq. (34)] that
contains two xπ/2 gates and three zθ gates. This is the case even
for unitaries that do not require two xπ/2 pulses, such as the
identity. The difference between any two single-qubit gates
is therefore only in the angles of the three zθ gates within
u(θ, φ, λ). These gates are implemented by in-software phase
updates on later pulses [49], so it is expected that these “vir-
tual gates” cause negligible errors. The observed similarity
between the average performance of these two gate sets is
consistent with this expectation (numerical values for all es-
timated rΩ are included in Table I). Note, however, that the
observed similarity between the average success rates of cir-
cuits in which the single qubit-gate gates u(θ, φ, λ) are sam-
pled from two different distributions does not imply that the
success rate of an individual circuit is independent of the val-
ues of θ, φ and λ in its u(θ, φ, λ) gates — see Appendix E 2 for
further discussions.

Our experiments included MRB on n-qubit layers contain-
ing two non-Clifford two-qubit gates—cs and cs†—and we
now turn to these results. Comparing Figs. 5 (d) and (f),
we observe that the error rates for layers containing cs and
cs† gates are all almost equal to, but slightly larger than,
the error rates for layers containing cz gates. The largest
relative difference is in the experiments on the 3-qubit set
{Q4, Q5, Q6}: r(SU(2), {cs, cs†}, {Q4, Q5, Q6}, 1/2) = 1.64(5)%
and r(SU(2), {cz}, {Q4, Q5, Q6}, 1/2) = 1.48(4)%. The three dif-
ferent two-qubit gates (cs, cs†, and cz) on each qubit pair
were a priori expected to have similar error rates, due to
their similar calibration procedures. The slightly larger error
rates for cs and cs† were cross-validated using cycle bench-
marking [9] (see Section V D for a quantitative comparison).
Therefore, these results are experimental evidence for the ro-
bustness of MRB with non-Clifford two-qubit gates (see Sec-
tions IV B and IV C for discussion of and theory for MRB of
non-Clifford two-qubit gates).
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FIGURE 5. Randomized benchmarking of universal gate sets on four qubits of the Advanced Quantum Testbed. We used MRB to
benchmark n-qubit layers constructed from three different gate sets, on each connected n-qubit subset of a linearly-connected set of four qubits
{Q4, Q5, Q6, Q7} in an eight-qubit superconducting transmon processor (AQT@LBNL Trailblazer8-v5.c2). The rows correspond to results
from three different choices of gate set, each consisting of a two-qubit gate set G2 and a single-qubit gate set G1. From top to bottom, the
rows correspond to: a universal gate set containing two non-Clifford entangling gates and the set of all single-qubit gates [G2 = {cs, cs†},
G1 = SU(2)]; a universal gate set containing a Clifford entangling gate and the set of all single-qubit gates [G2 = {cz}, G1 = SU(2)]; and a
non-universal, Clifford gate set [G2 = {cz}, G1 = C1 where C1 is the one-qubit Clifford group]. (a-c): MRB decays for the qubit subsets {Q4},
{Q4, Q5}, {Q4, Q5, Q6}, and {Q4, Q5, Q6, Q7}. Violin plots and points show the distribution and mean, respectively, of the MRB circuit’s observed
polarization (S d) versus benchmark depth (d). The curve is a fit of the mean of S d (S̄ d) to S̄ d = Apd. The average error rate of an n-qubit layer
(rΩ) is given by rΩ = (4n − 1)(1− p)/4n. The observed S̄ d decays exponentially, as predicted by our theory for MRB. (d-f): The estimated error
rate rΩ for each qubit subset that we benchmarked. (g-i): Predictions for the average layer error rate of 3- and 4-qubit subsets (hatched) based
on the experimental 1- and 2-qubit error rates (un-hatched) and the assumption of no crosstalk errors. The difference between (d-f) and (g-i)
quantifies the contribution of crosstalk errors to the average error rate of an n-qubit layer, for n = 3, 4. For all three gate sets and n = 4, we see
that crosstalk errors are contributing approximately 0.7% error to rΩ, which is approximately 1/3 of rΩ.

C. Estimating crosstalk errors

Crosstalk is an important type of error in current quantum
processors, but it is challenging to quantify [4]. Multi-qubit
MRB captures crosstalk errors, and it enables us to quantify
the contribution of crosstalk errors to the average error rate of
n-qubit layers. To do so, we compare the observed increase
in rΩ with n [Fig. 5 (d-f)] to predictions for rΩ that assume
no crosstalk errors. The excess observed error above these
predictions is then attributed to crosstalk.

We predict rΩ for sets of three or more qubits from the ob-
served rΩ values for each one- and two-qubit subset (note,
however, that this is not the only possible way for predict-
ing rΩ). This prediction is built on a simple theory for MRB.
We model rΩ by

rΩ =
∑
L∈L

Ω(L)εL, (37)

where εL is the infidelity of a G1-dressed layer L, which con-
sists of a specific layer of two-qubit gates—i.e., L is labelled
by the two-qubit gate layer—followed by a layer of random
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FIGURE 6. Estimating crosstalk errors on AQT. We estimate
the contribution of crosstalk errors to the layer error rate rΩ for
n = 3, 4 qubits by taking the difference between each experimen-
tal error rate (rΩ) and a corresponding prediction (rΩ,pred) obtained
from the experimental one- and two-qubit error rates and the assump-
tion of no crosstalk. We find that crosstalk contributes approximately
0.2% − 0.4% to rΩ for n = 3 (which is 1/8 − 1/4 of rΩ), and approxi-
mately 0.7% to rΩ for n = 4 (which is 1/3 of rΩ).

single-qubit gates (either from SU(2) or C1). Equation (37) is
justified by our theory for MRB (see Section IV), but note that
it only holds approximately, unless each layer’s error channel
is an n-qubit depolarizing channel. The fidelity F = 1 − ε of
a tensor product of channels is the product of those channels’
fidelities. So, under the assumption that there are no crosstalk
errors, the infidelity of L is given by εL =

∏
g∈L Fg, where g

are the G1-dressed gates in the G1-dressed layer L, and Fg is
the fidelity of g. Therefore,

εL = 1 −
∏
g∈L

(1 − εg), (38)

where εg = 1 − Fg.
To predict εL using Eq. (38) [and then rΩ using Eq. (37)]

we need estimates for εg for every possible G1-dressed gate
g. That is, we need estimates for (1) εidle(Qi) for each qubit
Qi ∈ {Q4, Q5, Q6, Q7} where idle(Qi) is the G1-dressed idle
gate on Qi, and (2) εg(Qi,Qj) for each connected pair of qubits
{Qi, Qj} where g(Qi, Qj) is a two-qubit gate on {Qi, Qj} uni-
formly sampled from G2. Each of these quantities can be esti-
mated from the observed one- and two-qubit MRB error rates.
Using Eq. (37) we have

r(G1, {Qi}) = εidle(Qi), (39)

because each single-qubit MRB circuit simply consists of re-
peating the G1-dressed idle gate. Similarly, using Eq. (37) we
have

r(G1,G2, {Qi, Qj}, ξ) = ξεg(Qi,Qj)+

(1 − ξ)(1 − εidle(Qi))(1 − εidle(Qj)), (40)

because each G1-dressed layer in a two-qubit MRB circuit is
either (with probability ξ) a G1-dressed two-qubit gate sam-
pled uniformly at random from G2, or a G1-dressed idle on
each qubit (with probability 1 − ξ).

Using Eqs. (38)–(40) and explicit expressions for Ω(L),
we obtain analytic expressions for our crosstalk-free predic-
tions of rΩ for the 3- and 4-qubit layers. These predictions
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FIGURE 7. Estimating the infidelity of dressed 4-qubit layers. Es-
timates of the error rates of individual G1-dressed layers containing
a single 2-qubit gate (cs, cs†, or cz), obtained by fitting an n-qubit
depolarizing model to the 4-qubit MRB data. This scalable analy-
sis technique enables extraction of additional information about each
layer’s error from MRB data. To validate our results against an estab-
lished technique, we compare to infidelities independently estimated
using cycle benchmarking [9]. We observe qualitative agreement.
The cycle benchmarking experiments measure the infidelities of lay-
ers dressed with one-qubit gates sampled from a different gate set
(the Pauli group) to those used in our MRB experiments, so exact
agreement is not expected.

are shown in Fig. 5 (g-i). The crosstalk-free predictions are
significantly smaller than the observed experimental values,
shown in Fig. 5 (d-f). For each gate set, the predicted 4-qubit
rΩ is approximately 25% smaller than the observed value.
The crosstalk-free predictions for {Q4, Q5, Q6} are 13%–19%
smaller than their observed values, and the crosstalk-free pre-
dictions for {Q5, Q6, Q7} are 20%–27% smaller than their ob-
served values. The difference between the experimental error
rates and the crosstalk free predictions, shown in Fig. 6, is a
quantification of the contribution of crosstalk errors to the av-
erage rate of errors in 3- and 4-qubit random circuits in this
system [50].

D. Estimating the error rates of individual gates

An MRB experiment is primarily designed to estimate a
single error rate (rΩ) that quantifies the average error rate of an
n-qubit layer. However, it is also often useful to quantify the
error in specific layers, e.g., to identify high-error gates. Infor-
mation about the error rates of individual layers is contained
within the MRB data (e.g., RB data can even be used for full
tomography [51, 52]), and we extract it using a scalable model
fitting method. Specifically, we fit a 4-qubit depolarizing error
model to the 4-qubit MRB data to estimate the error rates of
individual G1-dressed layers [Fig. 7]. To validate our results,
we compare the infidelities we estimate to independent esti-
mates obtained from an established technique: cycle bench-
marking [9], which is a method for estimating the infidelity
of individual many-qubit gate layers. Fig. 7 shows that our
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set, when applied to a universal gate set. DRB is known to be reliable, but it is exponentially expensive in n for universal gate sets—because,
for a universal gate set, its circuits start by implementing a Haar random unitary from SU(2n). (b) The error rates obtained when running
equivalent DRB and MRB experiments, on every one- and two-qubit subset of the 4 qubits we benchmarked on AQT. The close agreement
between the DRB and MRB error rates is experimental evidence that MRB is reliable. The inset shows the polarization at benchmark depth
d = 0 (S 0) for n-qubit DRB with n = 1, 2, 3. The rapid decay in S 0 is due to the overhead in implementing a Haar-random unitary, and it
makes DRB of universal gate sets infeasible on more than around 2–3 qubits.

estimates are broadly similar to the those obtained from cy-
cle benchmarking, differing by at most 23%, and note that we
would not expect exact agreement [53]. This demonstrates
the potential of MRB to go beyond average error rate estima-
tion, and provides an alternative to, e.g., interleaved RB. In
Appendix E 3 we discuss the depolarizing model fit as well as
two additional methods for estimating the error rate of indi-
vidual layers from MRB data, and compare their predictions.

E. Comparison to direct RB

One of the purposes of our experiments is to test the re-
liability of MRB. To investigate whether rΩ ≈ εΩ in experi-
ment (as claimed by our theory), we compare the results of
MRB to an alternative, established RB technique: direct RB
(DRB) [5]. DRB is a streamlined variant of standard RB. Both
DRB and standard RB are inefficient when applied to univer-
sal gate sets—as they have costs that scale exponentially with
the number of qubits—but they are feasible in the very few
qubit regime. We chose to compare MRB to DRB because
these two methods have the same flexible circuit sampling and
they are designed to measure the same error rate: εΩ. In con-
trast, standard RB benchmarks a gate set that forms a group,
e.g., SU(2n), and it measures an error rate for a uniformly ran-
dom element of that group—so this error rate cannot be di-
rectly compared to rΩ.

An n-qubit, benchmark depth d DRB circuit for a univer-
sal layer set is constructed by first sampling a depth-d circuit
C with layers sampled from some distribution Ω—exactly as
with MRB. As shown in Fig. 8 (a), this circuit C is then em-
bedded between (1) a circuit that implements an n-qubit Haar
random unitary, and (2) a circuit that returns the qubits to the
computational basis. Note that both (1) and (2) require circuits

of one- and two-qubit gates whose size grows exponentially in
n (we compile a SU(2n) unitary into a circuit of xπ/2, zθ and cz
gates using the Qsearch package [54, 55]). We therefore ran
DRB on all n-qubit subsets only up to n = 3.

In our DRB experiments we used the same layer sampling
distribution as in our G1 = SU(2), G2 = {cs, cs†}, and
ξ = 1/2 MRB experiments. So the DRB error rates we are
measuring—which we denote by rDRB(SU(2), {cs, cs†},Q, 1/2)
for qubit subset Q—will be equal to the equivalent MRB er-
ror rates r(SU(2), {cs, cs†},Q, 1/2) if both DRB and MRB are
working correctly. Figure 8 compares these DRB and MRB
error rates for each one- and two-qubit subset. For each of
these qubit subsets, the two error rates differ by no more than
2σ. Due to the overhead in implementing a Haar-random uni-
tary from SU(2n), the 3-qubit DRB circuits were so large that
the polarization of all n = 3 DRB circuits was S d ≈ 0, even
for the d = 0 circuits, so we were not able to obtain reliable
estimates of rDRB for either 3-qubit subset. The rapid decrease
in the d = 0 polarization (S 0) with increasing n is shown in
the inset of Fig. 8 (b). This demonstrates that DRB cannot
be used to benchmark universal gate sets on more than around
2-3 qubits (and note that standard RB requires running even
larger circuits than those used in DRB).

VI. 27-QUBIT IBM Q EXPERIMENTS

To investigate what many-qubit MRB can reveal about er-
rors in current many-qubit hardware, we ran MRB on a 27-
qubit IBM Q device (ibmq montreal, a Falcon r4 pro-
cessor). We used the universal gate set G1 = SU(2) and
G2 = {cnot}, and we sampled layers with a two-qubit gate
density of ξ = 1/4. We choose a single qubit subset Q contain-
ing n qubits for 15 exponentially spaced n up to n = 27. This
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FIGURE 9. Randomized benchmarking of a universal gate set on a 27-qubit IBM Q processor. We ran MRB on n-qubit subsets of the
ibmq montreal processor, for 15 exponentially spaced n from n = 1 to n = 27. (a) The MRB decays and fits to an exponential for the
six subsets of qubits illustrated in (b). The observed polarization decays exponentially in all cases. Due to the minimal overhead in MRB
circuits, we obtain an exponential decay even for 27 qubits and can extract a low-uncertainty estimate of the average error rate of 27-qubit
layers [rΩ = 28(1)%]. (c) The observed error rate per qubit rΩ,perQ = 1 − (1 − rΩ)1/n ≈ rΩ/n (red circles) versus n increases rapidly with n, even
though the circuits have a constant expected two-qubit gate density ξ = 1/4. This increase in rΩ,perQ is due to two-qubit gate crosstalk, not spatial
variations in gate error rates. This is confirmed by comparison to predictions for rΩ,perQ (blue diamonds) obtained from one- and two-qubit error
rates, for each one-qubit and connected two-qubit subset, and the assumption of no crosstalk. (d) The ratio of the observed (rΩ,perQ) to predicted
(rΩ,perQ,pred) per-qubit error rate shows that crosstalk errors cause the per-qubit error rate rΩ,perQ to increase by approximately 250%–300% when
n ≥ 15. (e) The one- and two-qubit error rates were obtained using simultaneous one-qubit MRB on all 27 qubits (blue boxes), and two-qubit
MRB, on all pairs of connected qubits, run simultaneously on the qubit pairs from eight distinct groupings (the purple and green boxes show
two such groups).

is illustrated in Fig. 9 (b), for 6 of the 15 qubit subsets. For
each qubit subset, we sampled and ran 30 circuits at each of a
set of exponentially spaced depths.

Figure 9 (a) shows the observed polarization versus bench-
mark depth for six representative values of n. Even for n = 27,
where we observe an average layer error rate of rΩ = 28(1)%,
we obtain a d = 0 average observed polarization of S 0 ≈ 40%.
This demonstrates that MRB is practical on many qubits, even
when the error rate per layer is O(10%). For all n, we ob-
serve that the mean observed polarization is consistent with
an exponential decay, as expected. Fig. 9 (b) shows the er-
ror rate per qubit (rΩ, perQ = 1 − (1 − rΩ)1/n ≈ rΩ/n) versus n.
Our circuits have a fixed expected two-qubit gate density (of
ξ = 1/4). Therefore, rΩ, perQ will be independent of n for n ≥ 2
if (1) the error rate of one-qubit gates and the error rate of two-
qubit gates is invariant across the device, and (2) there are no
crosstalk errors. Instead, we observe that rΩ, perQ rapidly in-
creases from rΩ, perQ ≈ 0.2% for n = 2 up to rΩ, perQ ≈ 1.2%—
an increase of approximately 600%.

To quantify the contribution of crosstalk errors to the ob-
served increase in the per-qubit error rate with n, we first need

to quantify the spatial variations in the one- and two-qubit
gate error rates (meaning the error rates of those gates when
all other qubits are idle). We used one- and two-qubit MRB
to measure the error rates of each one-qubit subset and each
connected two-qubit subset of the 27-qubits. Because of the
large number of qubits, it would require running more circuits
than was feasible to implement independent one-qubit MRB
experiments on each qubit (27 MRB experiments) and inde-
pendent two-qubit MRB experiments on each connected pair
of qubits (30 MRB experiments). Instead, we implemented
all 27 one-qubit MRB experiments simultaneously [3]. The
resultant one-qubit MRB error rates therefore include contri-
butions from single-qubit gate crosstalk errors. We ran the 30
two-qubit MRB experiments in eight groups, selected to min-
imize the closeness in frequency space of the qubits in each
group. These two-qubit MRB error rates will therefore in-
clude some contributions from two-qubit gate crosstalk, but
the experiments have been designed with the aim of mini-
mizing this contribution. We also ran five isolated two-qubit
MRB experiments and observed that the simultaneous two-
qubit MRB error rates were a factor of between 1.5 and 2.5
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times larger than the corresponding isolated MRB error rates
(see Table III).

We use the set of measured one- and two-qubit MRB error
rates to predict the n-qubit rΩ that would be observed if there
are no two-qubit gate crosstalk errors, using Eqs. (37)–(40)
[56]. Figure 9 (c) shows the predictions for the per-qubit error
rate rΩ, perQ. For n � 1 these predictions (blue diamonds) are
much smaller than the observations (red circles). This predic-
tion accounts for spatial variations in the one- and two-qubit
error rates, and includes contributions from one-qubit gate
crosstalk errors (and some contributions from two-qubit gate
crosstalk). Therefore, we can conclude that the additional ob-
served error is due to crosstalk caused by the two-qubit gates,
and it lower bounds the total contribution of crosstalk errors
to rΩ. Figure 9 (d) shows the ratio R of the observed to the
predicted error rate per qubit rΩ, perQ, versus n. R grows ap-
proximately linearly from R ≈ 0.2 at n = 2 up to R ≈ 2.5 at
n ≈ 13 and then saturates at between R ≈ 2.5 and R ≈ 3.0.
One possible explanation for this is two-qubit gate crosstalk
errors with finite spatial radius, i.e., two-qubit gates cause in-
creased errors on other qubits within some distance of the tar-
get qubits.

VII. DISCUSSION

Scalable benchmarking methods are needed to quantify the
integrated performance of medium- and large-scale quantum
processors. In this paper, we introduced a scalable method for
RB of universal gate sets that uses a novel and customizable
family of randomized mirror circuit. We presented a theory
for our method, showing that it reliably measures the error
rate of a random n-qubit circuit layer sampled from a user-
specified distribution Ω. We demonstrated MRB on multiple
gate sets in both simulations and experiments, demonstrating
that it is reliable and that it is a powerful tool for understand-
ing errors in many-qubit circuits. Our method can be viewed
as both an adaptation of standard RB and its variants, to enable
efficient and scalable benchmarking of universal gate sets, and
as an adaptation of XEB that removes XEB’s inefficient cir-
cuit simulation step. It therefore provides a link between two
widely used benchmarking methodologies, and so we antic-
ipate that the ideas introduced here will lead to further ad-
vances in randomized benchmarking.

In our experiments, we demonstrated MRB of a gate set
consisting of cnot and arbitrary single-qubit gates on up to
27 qubits and MRB of a gate set with non-Clifford two-qubit
gates (cs and cs†) on up to 4 qubits. Our results provide ev-
idence that MRB with non-Clifford gates is a robust method
for determining a processor’s error rate per gate layer, and that
these error rates can be used to understand the magnitude of
various types of errors. Our experiments show that MRB on
many qubits reveals and quantifies errors not present in one-
and two-qubit circuits, highlighting the importance of scal-
able benchmarks. Comparisons of RB error rates predicted
from crosstalk-free models and our experimental results show
evidence of large crosstalk errors in both of the devices we
benchmarked and, importantly, our methods make it possible

to quantify the size of these crosstalk errors.
We anticipate that a variety of interesting benchmarking

methods can be constructed using MRB and extensions or
adaptations of this method. For example, we anticipate that
MRB can form the foundation of methods for estimating the
error rates of individual gates and layers, within the context of
many-qubit circuits. In this work we demonstrated a simple
example of such a technique—fitting MRB data to a depolar-
izing model—and we expect that a variety of robust methods
could be developed, that would complement or advance on
existing methods for this task [9, 12, 35] such as interleaved
RB. Alternatively, we anticipate that MRB can be adapted to
construct scalable “full-stack” benchmarks based on random
circuits, such as a scalable variant of the widely-used quantum
volume benchmark [30].
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with all error moved to the beginning of the circuit. For a general depth-l circuit with gate-dependent errors,

φ(C) = E(Ll)U(Ll) · · · E(L2)U(L2)E(L1)U(L1)
= U(Ll) · · ·U(L2)U(L1)E′Ll

· · · E′L2
E′L1

, (A1)

where

E′Li
= U(L1)−1 · · ·U(Li)−1E(Li)U(Li) · · ·U(L1). (A2)

Applying Eq. (A1) to our randomized mirror circuit allows us to express the error in M̃d (which is the mirror circuit without the
initial and final layers), as a single error channel following the initial randomized state preparation layer L0. We find that φ(Md)
can be expressed as

φ(Md) = φ
(
R(Pd+1L−1

0 Pc
d)
)
φ(M̃d)φ

(
R(P0L0

)
)

= U
(
R(Pd+1L−1

0 Pc
d)M̃d

)
U(P0)ESPAMEeff(M̃d)U(L0)

= U(Pd+1)U(L−1
0 )Eeff(Md)U(L0), (A3)

where

Eeff(Md) = ESPAMEeff(M̃d) (A4)
= ESPAME

′

T (L−1
θ1
,Pd) · · · E

′

L−1
d/2

E′Ld/2
· · · E′T (Lθ1 ,P0). (A5)

To obtain Eq. (A3), we use the reflection structure of randomized mirror circuits—in particular, U(R(Pd+1L−1
0 Pc

d)M̃d) =

U(Pd+1L−1
0 P0), where P0 and Pd+1 are the Pauli gates that are recompiled into L0 and L−1

0 , respectively, in the randomized
compilation step. The Pauli gate Pd+1 determines the target bit string of Md—i.e., U(M) |0〉〉 = U(Pd+1) |0〉〉 = |b〉〉. The over-
all error map Eeff(M̃d) [Eq. (A5)] contains the error from the d/2 Ω-random circuit layers and their inverses (after randomized
compilation), and it is composed of unitary rotations of the error channels associated with each circuit layer.

In the MRB protocol, we compute each circuit’s observed polarization S [Eq. (14)]. We now show that the observed polariza-
tion S (Md) is related to the polarization [Eq. (5)] of Md’s overall error map (introduced above). Using the expression for φ(Md)
in Eq. (A3), the probability of measuring bit string x on circuit Md is given by

Px = 〈〈x| U(Pd+1)U(L−1
0 )Eeff(Md)U(L0) |0〉〉 (A6)

= 〈〈x + b| U(L−1
0 )Eeff(Md)U(L0) |0〉〉 . (A7)

The layer L0 consists of single-qubit gates independently sampled from single-qubit unitary 2-designs. We now average over the
initial circuit layer L0, making use of a fidelity estimation technique based on single-qubit gates: the fidelity of any error channel
E can be found by averaging over a tensor product of single-qubit 2-designs [42]. In particular, for any bit string y ∈ {0, 1}n,

γ(E) =
4n

4n − 1

∑
x∈{0,1}n

(−1/2)h(x,y) 〈〈x + y| Ē |0〉〉 −
1

4n − 1
, (A8)

where Ē = EL[U(L)†EU(L)] [42] and L = ⊗n
i=1Li, where each Li is a independent, single-qubit 2-design. This implies that the

expected observed polarization of Md over L0 is

E
L0

S (Md) =
4n

4n − 1

 n∑
k=0

∑
〈x,b〉=k

(
−

1
2

)k

E
L0

Px

 − 1
4n − 1

=
4n

4n − 1

 ∑
x∈{0,1}n

(
−

1
2

)h(x,b)

E
L0

Px

 − 1
4n − 1

= γ(Eeff(Md)) (A9)

where γ(E) denotes the polarization of E [Eq. (5)]. Eq. (A9) follows from Eq. (A8). Averaging over all depth-d randomized
mirror circuits, the mean observed polarization is

S̄ d = E
Md
γ
(
Eeff(Md)

)
. (A10)

Equation (A10) says that the average observed polarization S̄ d, which is estimated by the MRB protocol, is equal to the expected
polarization of the error channel of a depth-d mirror circuit.
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2. Relating the observed polarization of MRB circuits and Ω-distributed random circuits

Above, we related the mean observed polarization (S̄ d), which determines the MRB error rate, to the expected polarization of
the overall error map of a depth-d randomized mirror circuit. We now use this result to derive Eq. (25), which relates the mean
observed polarization of depth-d randomized mirror circuits to the expected polarization of the overall error map of a depth-d/2

Ω-distributed circuit. In combination with the theory in Section A 3—which shows that S̄ d and the mean polarization of the
overall error map of Ω-distributed random circuits decay exponentially—the relationship we derive here implies that rΩ ≈ εΩ.

Our goal is to relate the rate of decay of S̄ d to the rate of decay of the fidelity of Ω-distributed circuits (F̄d) [Eq. (7)]. We
start by expressing F̄d in terms of the expected polarization of the overall error map of a depth-d Ω-distributed circuit. Applying
Eq. (A1) to a depth-d, Ω-distributed random circuit Cd = LdLθd · · · L0Lθ1 , we obtain an overall error map for Cd, Eeff(Cd), which
is defined by φ(Cd) = U(Cd)Eeff(Cd). We define Γd to be the average polarization of the error map of a depth-d mirror circuit:

Γ̄d = E
Cd

γ
(
Eeff(Cd)

)
. (A11)

To relate S̄ d to Γ̄d, we use the fact that a depth-d randomized mirror circuit consists of randomized compilation of a depth-d/2

Ω-distributed random circuit followed by its inverse. These two depth-d/2 circuits are both Ω-distributed (even after randomized
compilation), but they are correlated. Below, we show that the polarization of the mirror circuit’s overall error map depends on
the covariance between the error in a depth-d/2 Ω-distributed circuit and its randomly compiled inverse. We can write the overall
error map in Eq. (A5) as a composition of two error maps—an overall error map for a random circuit and an overall error map
for its randomly compiled inverse:

Eeff(Md) = ESPAMEeff,2(Md)Eeff,1(Md), (A12)

where

Eeff,1(Md) = E′R(Pd/2Ld/2Pc
d/2−1

) · · · E
′
T (Lθ1 ,P0)

Eeff,2(Md) = E′
T (L−1

θ1
,Pd) · · · E

′

R(Pd/2+1L−1
d/2

Pd/2)

= U(C)Eeff

(
T (L−1

θ1
,Pd) · · · R(Pd/2+1L−1

d/2 Pd/2)
)
U(C)−1,

and

C = R(Pd/2+1L−1
d/2 Pd/2)R(Pd/2Ld/2Pc

d/2−1) · · · R(P2L1Pc
1)T (Lθ1 , P0).

C is the first half of M̃d, and it is a depth-d/2 Ω-distributed random circuit that has had randomized compilation applied to it. By
substituting Eq. (A12) into Eq. (A10), we obtain

S̄ d = E
Md
γ
(
ESPAMEeff,2(Md)Eeff,1(Md)

)
(A13)

= γ(ESPAM) E
Md
γ
(
Eeff,2(Md)Eeff,1(Md)

)
, (A14)

where, to go from Eq. (A13) to Eq. (A14), we have used the assumption that ESPAM is a global depolarizing channel.
Applying randomized compilation to an Ω-distributed random circuit creates a new random circuit that is also Ω-distributed.

This is due to the conditions we require of Ω1 and Ω2 (Ω1 is the uniform distribution, and Ω2 is invariant under replacing a
subset of a layer’s gates with their inverses). Therefore, we can replace the average over all depth-d randomized mirror circuits
in Eq. (A14) with an average over all depth-d/2 Ω-distributed random circuits:

S̄ d = γ(ESPAM) E
Cd/2

γ
(
U(Cd/2)Ēeff(C−1

d/2 )U(Cd/2)−1Eeff(Cd/2)
)
, (A15)

where Ēeff(C−1
d/2

) denotes the average over all possible circuits C′ resulting from applying randomized compilation to C−1
d/2

. Ex-
pressing Eq. (A15) in terms of Γ̄d/2 [Eq. (A11)], we have

S̄ d = γ(ESPAM)
(
Γ̄2

d/2 − ∆Ω

)
, (A16)

where

∆Ω = E
Cd/2

γ
(
U(Cd/2)Ēeff(C−1

d/2 )U(Cd/2)−1Eeff(Cd/2)
)
−

(
E

Cd/2

γ
(
Eeff(Cd/2)

))2

. (A17)
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3. Deriving the exponential decay model

In this appendix, we show that the mean observed polarization of randomized mirror circuits [S̄ d, Eq. (A15)] and the mean
polarization of the overall error map of a Ω-distributed random circuit [Γ̄d/2, Eq. (A11)] decay exponentially. To show that S̄ d
and Γ̄d/2 decay exponentially, we will assume that the error on each layer E(L) is a Pauli stochastic channel [Eq. (6)]. Because
S d ≈ γ(ESPAM)Γ̄2

d/2
, this theory implies that rΩ ≈ εΩ. Assuming stochastic Pauli error, we further show that rΩ ≈ δΩ, where δΩ is

the average infidelity of a layer sampled from Ω.
We start by considering the rate of decay of the observed polarization of randomized mirror circuits. Because each layer’s

error map is a stochastic Pauli channel, we can relate the polarization of Eeff(M̃d) [Eq. (A5)] to the polarizations of the error
channels of individual circuit layers. Eeff(M̃d) is the composition of a stochastic Pauli channel for each circuit layer of M̃d, each
rotated by a unitary. To first order in the layer infidelities ε, the polarization of the effective error channel is equal to the product
of the polarizations of the layers’ error channels [42]:

γ
(
Eeff(Md)

)
= γ(ESPAM)

d/2∏
i=1

[
γ
(
E(Li)

)
γ
(
E
(
T (Lθi ,Pi)

))
γ
(
E(L−1

i )
)
γ
(
E
(
T (L−1

θi
,Pd−i+1)

))]
+ O(d2ε2). (A18)

Equation (A18) relates S̄ d to the polarizations of the 2d individual layer error maps. By substituting Eq. (A18) into Eq. (A15)
and using the uniformity conditions on Ω specified in Section II C (see Appendix A 4 for details), we find that S̄ d = Apd+O(d2ε2),
with A = γ(ESPAM) and p given by

p2 = E
L,Lθ

γ
(
E(L−1)

)
γ
(
E(L)

)
γ
(
E(Lθ)

)
γ̄(Lθ). (A19)

where γ̄(Lθ) = EP′ γ
(
E
(
T (L−1

θ ,P
′)
))

is the expected polarization of a two-qubit gate layer Lθ after inversion and randomized
compiling. The O(d2ε2) term (and higher-order corrections) are negligible whenever the probability of two or more errors
cancelling is negligible [42]. This is the case in highly scrambling circuits [5, 42] (when n � 1), and our circuits are highly
scrambling by construction. Therefore S ≈ Apd, i.e., the observed polarization of depth-d randomized mirror circuits decays
exponentially with d.

We now show that the expected polarization of the overall error map on a Ω-distributed random circuit decays exponentially
in depth, which will allow us to relate its decay rate to the decay rate of the observed polarization of randomized mirror circuits.
By approximating γ(Eeff(C)) as a product of polarizations (as Ω-distributed random circuits are highly scrambling), we obtain

γ
(
Eeff(C)

)
=

d∏
i=1

γ
(
E(Li)

)
γ
(
E(Lθi )

)
+ O(d2ε2). (A20)

Combined with Eq. (A11), Eq. (A20) implies that the expected polarization of the overall error map of an Ω-distributed random
circuit decays exponentially. Averaging over all depth-d Ω-distributed random circuits, the expected polarization of the overall
error map is

Γ̄d,rc =

(
E

L,Lθ
γ
(
E(L)

)
γ
(
E(Lθ)

))d

+ O(d2ε2). (A21)

= pd
rc + O(d2ε2), (A22)

where prc is given by

prc = E
L,Lθ

γ
(
E(Li)

)
γ
(
E(Lθi )

)
(A23)

and sets the decay rate of the expected polarization of the overall error map on an Ω-distributed random circuit. Substituting
Eq. (A23) into Eq. (A19), we have p2 = p2

rc + ∆′
Ω

, where

∆′Ω = E
L,Lθ

γ
(
E(L)

)
γ
(
E(L−1)

)
γ
(
E(Lθ)

)
γ̄(Lθ) − p2.

Other RB protocols, including Clifford MRB [6], have been formulated as protocols measuring the average layer infidelity of
random circuits, which we denote as δΩ. The average layer infidelity can, in general, be very different from εΩ, and it is not a
gauge-invariant quantity [39, 40]. Under the assumption of stochastic Pauli errors, Eqs. (A22) and (A23) imply that εΩ ≈ δΩ

(due to the O(ε2) probability of errors on two layers canceling, this equality is not exact). However, for more general errors δΩ

is ill-defined [39, 40]. Furthermore, even for stochastic Pauli errors, the approximations required to relate rΩ to εΩ are smaller
than those needed to relate rΩ to δΩ—relating rΩ to εΩ requires the assumption that the correlation between the error on a Ω-
distributed random circuit and its randomly compiled inverse [∆Ω, Eq. (A17)] is small, whereas relating rΩ to δΩ requires this
assumption and the assumption that the rate of error cancellation between individual circuit layers is low.
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4. Computing the average observed polarization

In this appendix, we derive the exponential decay of the average observed polarization of randomized mirror circuits
[Eq. (A19)] from Eq. (A18). Our proof makes use of the following properties of the transformation applied to a two-qubit
gate layer Lθ in our randomized compilation procedure (see Section III A):

T
(
T (Lθ,P),P

)
= Lθ (A24)

T (L−1
θ ,P) = T (Lθ,P)−1 (A25)

T
(
T (Lθ,P1),P2

)
= T (Lθ,P2P1) (A26)

T
(
T (Lθ,P)−1,P

)
= L−1

θ . (A27)

Eq. (A27) follows from Eqs. (A24) and (A25).
We start with Eq. (A18), which gives the polarization of the overall error map of a depth-d mirror circuit Md,

γ
(
Eeff(Md)

)
= A

d/2∏
i=1

γ
(
E(Li)

)
γ
(
E
(
T (Lθi ,Pi)

))
γ
(
E
(
L−1

i
))
γ
(
E
(
T (L−1

θi
,Pd−i+1)

))
+ O(d2ε2), (A28)

where A = γ(ESPAM). We will average over all depth-d randomized mirror circuits to show that the expected polarization of the
overall error map decays exponentially. Our randomized mirror circuits consist of d/2 randomly-sampled two-qubit gate layers
from Ω2 and d randomly-sampled Paulis that get recompiled with these (for randomized compilation). We now average the
polarization over all of these layers and Paulis:

E
P1,...Pd

E
Lθi
γ
(
Eeff(Md)

)
= A E

P1,...Pd
E
Lθi

d/2∏
i=1

γ
(
E(Li)

)
γ
(
E
(
T (Lθi ,Pi)

))
γ
(
E
(
L−1

i
))
γ
(
E
(
T (L−1

θi
,Pd−i+1)

))
+ O(d2ε2) (A29)

= A
d/2∏
i=1

γ
(
E(L−1

i )
)
γ
(
E(Li)

)
E

P1,...Pd/2

E
Lθ
γ
(
E
(
T (Lθ,Pi)

))
E

Pd/2+1...Pd
γ
(
E
(
T (L−1

θ ,Pd−i+1)
))

+ O(d2ε2) (A30)

= A
d/2∏
i=1

γ
(
E
(
L−1

i
))
γ
(
E(Li)

)(
E
P
E
Lθ
γ
(
E
(
T (Lθ,P)

))
E
P′
γ
(
E
(
T (L−1

θ ,P
′)
)))d/2

+ O(d2ε2) (A31)

= A
d/2∏
i=1

γ
(
E(L−1

i )
)
γ
(
E(Li)

) (
E
P
E
Lθ
γ
(
E
(
T (Lθ,P)

))
E
P′
γ
(
E

(
T

(
T

(
T (Lθ,P)−1,P

)
,P′

))))d/2

+ O(d2ε2) (A32)

= A
d/2∏
i=1

γ
(
E(L−1

i )
)
γ
(
E(Li)

) (
E
P
E
Lθ
γ
(
E
(
T (Lθ,Pi)

))
E
P′
γ
(
E

(
T

(
T (Lθ,P)−1,P′P

))))d/2

+ O(d2ε2) (A33)

= A
d/2∏
i=1

γ
(
E(L−1

i )
)
γ
(
E(Li)

) (
E
P
E
Lθ
γ
(
E
(
T (Lθ,P)

))
E
P′
γ
(
E

(
T

(
T (Lθ,P)−1,P′

))))d/2

+ O(d2ε2). (A34)

Eq. (A32) follows from Eq. (A31) and Eq. (A27), and Eq. (A33) follows from Eq. (A32) and Eq. (A26) . To get from Eq. (A33)
to Eq. (A34), we use the fact that multiplying the uniformly random Pauli P′ by P gives another uniformly random Pauli, so

E
P′
γ
(
E

(
T

(
T (Lθ,P)−1,P′P

)))
= E

P′
γ
(
E

(
T

(
T (Lθ,P)−1,P′

)))
. (A35)

We can simplify Eq. (A34) using the uniformity conditions on the distribution Ω2 (see Section II C) that the two-qubit
gate layers are sampled from. The effect of randomized compiling on a 2-qubit gate layer is to invert some subset of the
gates in the layer, leaving the rest unchanged. Because Ω2 is invariant under inverting any subset of the gates in a layer,
Ω2(Lθi ) = Ω2(T (Lθi ,Pi)). Additionally, the randomized compilation transformation just permutes the elements of L2. Therefore,
ELθ f (T (Lθ,P)) = ELθ f (Lθ) for any function f . Applying this fact to Eq. (A34),

E
P1,...Pd

E
Lθi
γ
(
Eeff(Md)

)
= A

d/2∏
i=1

γ
(
E(L−1

i )
)
γ
(
E(Li)

) (
E
Lθ
γ
(
E(Lθ)

) (
E
P′
γ
(
E
(
T (L−1

θ ,P
′)
))))d/2

+ O(d2ε2). (A36)

We now finish averaging over all depth-d randomized mirror circuits by averaging over the single-qubit gate layers. Averaging
over the d/2 Ω1-random single-qubit gate layers, the expected polarization of the error map, over all depth-d randomized mirror
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circuits, is

E
Md
γ
(
Eeff(Md)

)
= AE

Li

 d/2∏
i=1

γ
(
E(L−1

i )
)
γ
(
E(Li)

) (
E
Lθ
γ
(
E(Lθ)

) (
E
P′
γ
(
E
(
T (L−1

θ ,P
′)
))))d/2

 + O(d2ε2) (A37)

= A
d/2∏
i=1

(
E
L
E
Lθ
γ
(
E(L−1)

)
γ
(
E(L)

)
γ
(
E(Lθ)

) (
E
P′
γ
(
E
(
T (L−1

θ ,P
′)
))))d/2

+ O(d2ε2). (A38)

Therefore, combining Eq. (A38) with Eq. (A15), we have that the average observed polarization decays exponentially as S̄ d =

Apd + O(d2ε2), with

p2 ≈ E
L
E
Lθ
γ
(
E(L)

)
γ
(
E(Lθ)

)
γ
(
E(L−1)

) (
E
P′
γ
(
E
(
T (L−1

θ ,P
′)
)))

. (A39)

Appendix B: MRB with Clifford Two-Qubit Gates

The theory presented in Section IV A (which is presented in detail in Appendix A) assumes stochastic Pauli noise on each
circuit layer to derive the exponential decay of the observed polarization of mirror circuits. However, stochastic error is not
always the dominant error in a processor. Our method uses a randomized compilation procedure to convert error into stochastic
Pauli error. In this appendix, we prove that when all two-qubit gates in an MRB experiment are Clifford, the error in randomized
mirror circuits is twirled into Pauli stochastic error, under the assumption that the error map on the one-qubit gates is independent
of the Paulis with which they are compiled.

We consider a depth-d randomized mirror circuit (treated as a random variable), which we write as

Md = R(Pd+1L−1
0 Pc

d)T (L−1
θ1
,Pd)R(PdL−1

1 Pc
d−1) · · · R(Pd/2+1L−1

d/2 Pd/2)R(Pd/2Ld/2Pc
d/2−1) · · · R(P2L1Pc

1)T (Lθ1 ,P0)R(P0L0). (B1)

When the two-qubit gate layers consist of two-qubit Cliffords of the form CPθ, they are not changed by the randomized compi-
lation step of our circuit construction. Therefore,

Md = R(Pd+1L−1
0 Pc

d)L−1
θ1
R(PdL−1

1 Pc
d−1) · · · R(Pd/2+1L−1

d/2 Pd/2)R(Pd/2Ld/2Pc
d/2−1) · · · R(P2L1Pc

1)Lθ1R(P0L0), (B2)

We will assume the error on the single-qubit gates is independent of the Paulis they are recompiled with—i.e., φ
(
R(LiP′P)

)
=

E(Li)U
(
R(P′LiP)

)
. Using this assumption, an implementation of the circuit Md can be written as

φ(Md) = E(L−1
0 )U

(
R(Pd+1L−1

0 Pc
d)
)
E(Lθ1

−1)U(L−1
θ1

)E(L−1
1 )U

(
R(PdL−1

1 Pc
d−1)

)
· · · E(L−1

θd/2
)U(L−1

θd/2
)E(L−1

d/2 )U
(
R(Pd/2+1L−1

d/2 Pd/2)
)
E(Ld/2)

U
(
R(Pd/2Ld/2Pc

d/2−1)
)
E(Lθd/2

)U(Lθd/2
)E(Ld/2−1)U

(
R(Pd/2−1Ld/2−1Pc

d/2−2)
)
· · · E(Lθ1 )U(Lθ1 )E(L0)U

(
R(P0L0)

)
. (B3)

We now push the error on the single-qubit gate layers through the two-qubit gate layers, defining new error channels that
represent the error on a composite layer. Eq. (B3) becomes

φ(Md) = E(L−1
0 )U

(
R(Pd+1L−1

0 Pc
d)
)
E′dU(L−1

θ1
)U

(
R(PdL−1

1 Pc
d−1)

)
· · · E′d/2+1U

(
L−1
θd/2

)U(R(Pd/2+1L−1
d/2 Pd/2)

)
E(Ld/2)

U
(
R(Pd/2Ld/2Pc

d/2−1)
)
E′d/2U(Lθd/2

)U
(
R(Pd/2−1Ld/2−1Pc

d/2−2)
)
· · · E′1U(Lθ1 )U

(
R(P0L0)

)
, (B4)

where

E′i = E(Lθi )U(Lθi )E(Li−1)U(Lθi )
−1 1 ≤ i ≤

d
2

(B5)

E′i = E(Lθd−i+1 )U(Lθd−i+1 )−1E(Li+1)U(Lθd−i+1 )
d
2
< i ≤ d. (B6)

We have grouped the error channels into error channels E′i that represent the error in a composite layer. Now, we use the
structure of the randomized compilation procedure to twirl the error. The dressed layers can be expanded in terms of the original
sampled layer and the Paulis inserted in randomized compilation as

U(Lθi )U
(
R(Pi−1Li−1Pc

i−2)
)

= U
(
(Pc

i )−1Lθi Li−1Pc
i−1

)
1 ≤ i ≤

d
2

(B7)

U(L−1
θd−i+1

)U
(
R(Pi+1L−1

d−i+1Pc
i )
)

= U
(
(Pc

i+1)−1L−1
θd−i+1

L−1
d−i+1Pc

i
) d

2
< i ≤ d. (B8)
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Rewriting Eq. (B4) using these expansions, we have

φ(Md) = E(L−1
0 )U(Pd+1L−1

0 Pc
d)E′dU

(
(Pc

d)−1L−1
θ1

L−1
1 Pc

d−1
)
· · · E′d/2+1U

(
(Pc

d/2+1)−1L−1
θd/2

L−1
d/2 Pc

d/2

)
E(Ld/2)

U
(
(Pc

d/2)
−1Lθd/2

Ld/2−1Pc
d/2−1

)
E′d/2U

(
(Pc

d/2−1)−1Lθd/2−1
Ld/2−2Pc

d/2−1
)
· · · E′1U

(
(Pc

1)−1Lθ1 L0
)
, (B9)

where each correction layer Pc
i is a uniform random Pauli, because the two-qubit gates are Clifford. Averaging over the uniform

random n-qubit Paulis P0,P1, . . . ,Pd, which equivalently averages over the correction Paulis Pc
1, . . . ,P

c
d+1, performs a Pauli

twirl, converting the error channels into Pauli stochastic error channels. Performing this average, Eq. (B9) becomes

φ(Md) = E(L−1
0 )U(Pd+1L−1

0 )SdU(L−1
θ1

L−1
1 ) · · · Sd/2+1U(L−1

θd/2
L−1

d/2 )S(Ld/2)U(Lθd/2
Ld/2−1)Sd/2U(Lθd/2−1

Ld/2−2) · · · S1U(Lθ1 L0), (B10)

where Si = EP PE′iP
−1 and S(Ld/2) = EP PE(Ld/2)P−1 are stochastic Pauli channels, each of which captures the error from one

composite layer. All error, except the error on the final circuit layer, is twirled into stochastic Pauli noise by the random Paulis
inserted in randomized compilation. Therefore, we expect our method to be sensitive to all errors when the two-qubit gates are
chosen to be Clifford gates.

Appendix C: MRB with non-Clifford two-qubit gates

In this appendix we show that, when applied to a gate set containing non-Clifford two-qubit gates, MRB is sensitive to all
Hamiltonian errors on those two-qubit gates except one linear combination of errors on a non-Clifford two-qubit gate and its
inverse. We then discuss possible adaptations to our protocol that would guarantee sensitivity to all Hamiltonian errors on
non-Clifford two-qubit gates.

1. Sensitivity of errors in non-Clifford two-qubit gates

In Appendix B, we showed that when the two-qubit gate set used in MRB contains only Clifford gates, the error in the two-
qubit gates is twirled, upon averaging, into stochastic Pauli noise. This guarantees sensitivity to general errors on the two-qubit
gates. We now consider circuits with non-Clifford two-qubit gates and show that randomized mirror circuits are sensitive to
most Hamiltonian errors on the two-qubit gates, to first order. We will assume there is no crosstalk error, and all two-qubit
layers are sampled independently, so that we expect the only systematic coherent cancellation of errors to come from a layer and
its inverse. We will also assume there is no error on the single-qubit gates. To see the effect of error in a two-qubit gate on a
randomized mirror circuit to first order, it is sufficient to consider mirror circuits resulting from applying our circuit construction
procedure to a single two-qubit composite layer L = L1Lθ, where Lθ = CPθ is a two-qubit gate and L1 is a one-qubit gate
layer. After mirroring and randomized compilation on L, we have the circuit M = T (L−1

θ , P2)R(P2L−1
1 Pc

1)R(P1L1Pc
0)T (Lθ, P0),

where P0, P1, and P2 are random two-qubit Pauli layers. The ideal operation M implements isU(M) = (Pc
2)−1P0. An imperfect

implementation of M can be expressed as

φ(M) = E
(
T (L−1

θ , P2)
)
U

(
T (L−1

θ , P2)R(P2L−1
1 Pc

1)R(P1L1Pc
0)
)
E
(
T (Lθ, P0)

)
U

(
T (Lθ, P0)

)
(C1)

= E
(
T (L−1

θ , P2)
)
U

(
T (L−1

θ , P2)P2Pc
0
)
E
(
T (Lθ, P0)

)
U

(
T (Lθ, P0)

)
(C2)

= E
(
T (L−1

θ , P2)
)
U

(
(Pc

2)−1L−1
θ Pc

0
)
E
(
T (Lθ, P0)

)
U

(
T (Lθ, P0)

)
(C3)

= E
(
T (L−1

θ , P2)
)
U

(
(Pc

2)−1P0T (Lθi , P0)−1(Pc
0)−1Pc

0
)
E
(
T (Lθ, P0)

)
U

(
T (Lθ, P0)

)
(C4)

= E
(
T (L−1

θ , P2)
)
U

(
(Pc

2)−1P0T (Lθ, P0)−1)E(T (Lθ, P0)
)
U

(
T (Lθ, P0)

)
, (C5)

where we have used the definitions of the two-qubit gate layer T (Lθ, P) and the correction layers Pc
i to rewrite the unitary

evolution.
We now consider the effect of general gate-dependent Hamiltonian errors on the two-qubit gates on φ(M). We will write the

error in terms of elementary error generators, as defined in the error generator formalism of Ref. [45]. We model the error on
each two-qubit gate g as E(g) = eMg , where

Mg =
∑
Pa,Pb

ε
g
Pa,Pb

HPa,Pb , (C6)

and where HPa,Pb is the two-qubit Hamiltonian error generator indexed by the Pauli operators Pa and Pb. Using this expression
for the error and expanding Eq. (C5) to first order in the error rates εg

Pa,Pb
, we have

φ(M) ≈ U
(
(Pc

2)−1P0
) U(I) +

∑
Pa,Pb

εT (L−θ ,P2)
Pa,Pb

HPa,Pb

 +U
(
T (Lθ, P0)−1) ∑

Pa,Pb

εT (Lθ ,P0)
Pa,Pb

HPa,Pb

U(
T (Lθ, P0)

) . (C7)
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Eq. (C7) expresses the implementation of M in terms of its target evolution and a first order correction. The circuit is insensitive
to an error to first order when the correction term vanishes, which occurs when∑

Pa,Pb

εT (L−θ ,P2)
Pa,Pb

HPa,Pb

 +U
(
T (Lθ, P0)−1) ∑

k

ε
T (Lθi ,Pi−1)
Pa,Pb

HPa,Pb

U(
T (Lθ, P0)

)
= 0. (C8)

Satisfying Eq. (C8) requires that the coefficient of each elementary error generator HPa,Pb is 0, which results in a system of
15 linear equations for each of 162 choices of two-qubit random Paulis P2, P0 used in randomized compilation. The randomized
mirror circuits are sensitive to an error if for some choice of P0 and P2, the system cannot be satisfied when the error is nonzero.
The two-qubit gate set G2 is closed under inverses, so in addition to mirroring L = L1Lθ as we have done above, we can mirror
L1L−θ to get an analogous set of linear equations. Considering all of the equations from mirroring L1Lθ and L1L−θ, we have a
system of 2 × 162 × 15 linear equations. The solutions to this system are εθPa,Pb

= ε−θPa,Pb
= 0 ∀(Pa, Pb) , (P, P) and εG

P,P = εG†
P,P.

This means that to first order, the mirror circuits are not sensitive to the sum of HP,P errors on CPθ and CP−θ, as we can change
εG

P,P + εG†
P,P without changing the error in any of the mirror circuits. This is a result of the structure we use for our mirror circuits.

Below, we discuss how our method can be adapted to address this insensitivity.

2. Adaptations of MRB

While our simulations and experiments suggest non-Clifford MRB is a robust method, when our randomized mirror circuits
contain non-Clifford two-qubit gates they are not sensitive to some coherent errors on these gates. In Appendix C 1 we showed
that MRB circuits containing non-Clifford two-qubit gates are not sensitive to one linear combination of the Hamiltonian errors in
these gates because of the correlations between the randomized compilation and the two-qubit gate that is applied, which prevent
error from being perfectly twirled into stochastic noise. This shortcoming in our method is due to our choice of structure for our
randomized mirror circuits. However, circuit mirroring is a flexible technique that can be applied to a variety of circuit structures,
and here we discuss several adaptations of our method utilizing this flexibility that would address the error insensitivity in MRB.

Our method involves sampling random circuits with layers sampled from a user-specified distribution Ω over circuit layers.
Different choices of circuit structure can address the shortcomings of our method and make other scalable benchmarks. We could
guarantee sensitivity to all errors with more complex sampling of the Ω-distributed random circuit. For example, to benchmark
a two-qubit gate set G2 = {cs, cs†} we could generate circuits containing cs, cs† and cz gates and implement the cz gate by two
consecutive cs or cs† gates. This MRB experiment would be sensitive to the HZ,Z errors on the cs and cs† gates that our MRB
experiment is insensitive to (see above).

Our MRB protocol performs inversion layer-by-layer, and an alternative method to guarantee sensitivity to all errors is to use
more complex inversion strategies that reduce the correlation in the gate layers in the two halves of a mirror circuit. One option
is to invert multiple circuit layers at a time, through computing the inverse of the layers and compiling an inverse circuit—and
similar ideas to this have recently been used to implement RB of continuously parameterized gates [57]. However, compilation
can be computationally-intensive with many qubits. Alternatively, we can modify the inversion layers by adding in additional
gates, while maintaining a circuit that is logically equivalent to the inverse.

Appendix D: Error Models for MRB Simulations

We simulated MRB with three classes of error models—stochastic, Hamiltonian, and stochastic+Hamiltonian. Our models
are defined based on the error generator formalism in [45]. Error rates are specified as elementary error generators of a post-gate
error map. We include qubit-dependent Hamiltonian errors and Pauli stochastic errors on the xπ/2 and single-qubit idle gates
with Hamiltonian error rates sampled in the range [0, h/10], and stochastic Pauli error rates sampled in the range [0, s/10]. The
stochastic and Hamiltonian errors are each split randomly across the three Paulis. We also include qubit-dependent Hamiltonian
errors and Pauli stochastic errors on the cs and cs† gates with Hamiltonian error rates sampled in the range [0, h], and Pauli
stochastic error rates sampled in the range [0, s], spread at random across the 15 two-qubit Pauli errors.

To generate error models, we start with an overall error parameter p and select s, h such that h2 + s = p. We generate models
with p ∈ [0.001, 0.2475] for 150 evenly-spaced values for the 1-qubit models and p ∈ [0.0001, 0.075] for 150 evenly-spaced
values for the 2- and 4-qubit models. In the stochastic error models, we set h = 0. In the Hamiltonian error models, we set s = 0.
In the stochastic+Hamiltonian error models, we generate s ∈ [0, p] at random, and set h =

√
p − s.

For each error model, we run a randomly-generated set of MRB circuits consisting of K = 300 circuits at each benchmark
depth d ∈ {2 j | 0 ≤ j ≤ 8}. We approximate the error rate in Ω-distributed random circuits (εΩ) via sampling. For each depth
d ∈ {2 j | 0 ≤ j ≤ 8}, we ran K randomly-generated depth-d/2 Ω-distributed random circuits, each followed by a perfect projective
measurement onto the target state.
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Appendix E: AQT experiments

In this appendix we provide further details about our experiments on AQT, which are discussed in Section V.

1. Experiment design

A specific set of MRB circuits for a given (G2,G1,Q, ξ) is obtained by sampling K circuits at a set of benchmark depths. We
used K = 30 and a set of exponentially spaced benchmarking depths (d = 0, 2, 4, 8 . . . ). For the MRB designs in which ξ = 1/2

we did not independently sample the circuits for the three different gate sets. Instead, to sample a depth-d circuit on qubits Q for
each of our three gate sets:

1. We sampled a depth d/2 circuit C for the ({cz},SU(2)) gate set.

2. We created a correlated sample for the ({cz},C1) gate set by replacing the SU(2) gates in C with gates sampled from C1.

3. We created a correlated sample for the ({cs, cs†},SU(2)) gate set by replacing each cz gates in C with either cs or cs† at
random.

4. We independently converted each of the three circuits in (1)-(3) into a randomized mirror circuit.

Because the marginal distribution for the sampling of each circuit set is unaffected by this procedure, it does not impact the RB
error rates we estimate (except by correlating their uncertainties), but it allows us to perform an interesting per-circuit comparison
(see Appendix E 2).

To enable comparison to an established technique, we also ran direct RB circuits, which are described in Section V E. This
resulted in a total of 16,194 circuits. In the experiment, we randomized the order of this circuit list, and ran each circuit
1000 times in turn. We repeated this three times in succession, to enable us to look for substantial changes in a circuit’s success
probability that signify drift. We used standard statistical testing methods [58] to identify circuits in which the success probability
changed between the three runs, and discarded that data. We performed qutrit classification in the readout, i.e., the readout was
calibrated to resolve the ‘2’ leakage state from the two computational basis states. Whenever a circuit output ‘2’, the result was
discarded.

2. Comparing MRB circuits with Clifford and Haar-random single-qubit gates

The observed similarity between the average success rates of circuits in which the single qubit-gate gates u(θ, φ, λ) are sampled
from two different distributions (see Section V B) does not imply that the success rate of an individual circuit is independent
of the values of θ, φ and λ in its u(θ, φ, λ) gates. We designed our experiments so that each circuit in the (SU(2), {cz},Q, 1/2)
experiment is identical to a circuit in the (C1, {cz},Q, 1/2) experiment except for the values of each of the single-qubit gate’s
parameters. We can therefore use our data for each such circuit pair (C1,C2) to investigate whether circuit success rates depend
on the values of the phase shifts. Figure 10 shows the observed polarization S for C1 versus S for C2 for each pair of circuits
(C1,C2) that differ only by the values of the phases in zθ gates. There are many circuit pairs that have very different S , e.g., there
is a circuit pair for which S ≈ 0.9 for one circuit and S ≈ −0.3 for the other (note that −1/2 ≤ S ≤ 1). Figure 10(b) shows that
the spread in the differences between the observed polarization of circuit pairs is largest for single-qubit circuits (σ = 0.147) and
decreases as the number of qubits increases (σ = 0.052 for n = 4). The substantial variance in observed polarization differences
implies strongly structured errors, e.g., coherent errors. Even for perfect zθ gates, the value of each phase shift impacts how
errors in other gates propagate through a circuit [59, 60].

3. Estimating the error rates of individual gates

A single MRB experiment is designed to estimate a single error rate rΩ that quantifies the average rate at which an n-qubit
layer causes an error in Ω-random circuits. But we can also use MRB to extract information about the error rates of particular
layers. In Section V D we present one method for doing so—fitting to a depolarizing model. In this appendix we explain this
method and present two alternative methods. These methods are complementary, as they trade off rigor for complexity. Note
that one possible method for estimating the error rates of individual gates using MRB is to run an interleaved [35] version of
MRB (and interleaved standard RB has been previously used to measure the error rate of a cs gate [36]). We do not explore this
here, although we note that interleaved MRB would inherit all of the known problems with interleaved standard RB [51, 61].
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FIGURE 10. Comparing the success rates of circuits that differ only by virtual phase gates. Our experiments were designed so that
each randomly sampled circuit containing cz and single-qubit Clifford gates [the ({cz},C1) gate set] differs from a randomly sampled circuit
containing cz and Haar-random single-qubit unitaries [the ({cz},SU(2)) gate set] only by the angles in its zθ gates. Here we compare the
observed polarization of each pair of circuits that differ only by the angles in these virtual zθ gates. For many of these circuit pairs (C1,C2), C1

and C2 have very different observed polarizations, meaning that they have very different success rates. (a): The observed polarization for the
({cz},SU(2)) circuits and their corresponding Clifford circuits. (b): The difference in observed polarization between ({cz},SU(2)) circuits and
their corresponding Clifford circuits.

a. Estimating gate error rates using a varied-densities heuristic

MRB uses flexible sampling of the circuit layers, as each composite layer is sampled from some distribution Ω. By running
MRB experiments with the same layer set L but different sampling distributions {Ω1,Ω2, . . . } over L, we can (approximately)
ascertain the average error rates of different subsets of gates by applying basic linear algebra to {rΩ1 , rΩ2 , . . . } [5]. In our
experiments, we ran MRB for the gate set ({cs, cs†},SU(2)) with two different Ω defined by two different two-qubit gate densities:
ξ = 1/2 and ξ = 1/8. We focus on the three two-qubit sets of connected qubits. Using Eq. (40), for each two-qubit subset Q, we
have that (

r1/2

r1/8

)
=

(
1/2 1/2
7/8 1/8

) (
ε1
ε2

)
, (E1)

where rξ = r(G1, {cs, cs†},Q, ξ), ε1 is the infidelity of the dressed layer consisting of dressed idles on each qubit in Q, and ε2 is
the mean of the infidelities of G1-dressed cs and cs† gates applied to the qubits Q. We solve these linear equations to estimate ε2,
for all three connected qubit pairs. These estimates are shown in Fig. 11(a), and we call this method the two densities heuristic,
as it is based on the approximate relation of Eq. (37) [62].

Qubit subset (Q) r({cs, cs†},SU(2),Q, 1/8) r({cs, cs†},SU(2),Q, 1/2) rDRB({cs, cs†},SU(2),Q, 1/2) r(cz},SU(2),Q, 1/2) r({cz},C,Q, 1/2)
Q4 0.25(3)% 0.18(2)% 0.27(2)%
Q5 0.12(1)% 0.12(1)% 0.12(1)%
Q6 0.118(4)% 0.108(5)% 0.113(3)%
Q7 0.079(1)% 0.080(2)% 0.080(1)%
(Q4, Q5) 0.50(3)/ 0.77(3)% 0.87(4)% 0.73(2)% 0.67(2)%
(Q5, Q6) 0.54(3)% 0.86(3)% 0.81(3)% 0.81(2)% 0.76(2)%
(Q6, Q7) 1.05(4)% 1.05(4)% 0.99(4)% 1.04(3)% 0.98(2)%
(Q4, Q5, Q6) 1.04(4)% 1.64(5)% 1.48(4)% 1.51(4)%
(Q5, Q6, Q7) 0.97(3)% 1.63(3)% 1.61(4)% 1.61(3)%
(Q4, Q5, Q6, Q7) 1.36(3)% 2.48(5)% 2.45(5)% 2.34(5)%

TABLE I. RB error rates on AQT. The RB error rates for every RB experiment we ran on AQT. We benchmarked each connected subset of
four linearly-connected qubits and used three different gate sets.
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FIGURE 11. Fitting error models to MRB data and estimating gate error rates. We fit two types of error models to MRB data to estimate
the infidelity of individual circuit layers. (a) By running two MRB experiments with two different two-qubit gate densities ξ, we can estimate
the mean infidelity of a set of one or more two-qubit gates—here cs and cs†—using basic linear algebra (see Appendix E 3 a). We call this
procedure the two densities heuristic. The estimates of the average gate error obtained from the two densities heuristic (orange) are compared
to independent estimates obtained from two more rigorous but more complex and computationally intensive procedures: fitting each set of
two-qubit MRB data to (1) a depolarizing model (light blue), and (2) a stochastic Pauli errors model (dark blue). (b) To fit a depolarizing
model, we assign an error rate to each dressed layer and an error rate to each qubit’s readout. (c) To fit a Pauli stochastic model, we assign a
Pauli stochastic channel to each possible gate except the virtual zθ gates.
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FIGURE 12. Estimating the infidelity of dressed 4-qubit layers. By fitting error models to MRB data, we can estimate the infidelity of each
G1-dressed layer used in the MRB circuits. Here we show four different estimates of the infidelities of 4-qubit layers containing a single cs, cs†

or cz gate on one of the three connected pairs of qubits. We fit a simple n-qubit depolarizing model to (1) the 4-qubit data, and (2) the 1- and
2-qubit data, and use both models to estimate the infidelity of 4-qubit G1-dressed layers. The estimates from fitting to the 1- and 2-qubit data
do not account for any additional crosstalk errors that occur in 4-qubit layers, so the additional error estimated when fitting to the 4-qubit data
is a quantification of crosstalk. We also fit a more sophisticated stochastic Pauli error model to the 4-qubit circuit data, resulting in comparable
estimates to those obtained from the simple depolarizing model (which uses a scalable, less computationally intensive analysis). To validate
our results against an established technique, we compare to infidelities independently estimated using cycle benchmarking [9]. We observe
qualitative agreement. The cycle benchmarking experiments measure the infidelities of layers dressed with one-qubit gates sampled from a
different gate set (the Pauli group) to that used in our MRB experiments [SU(2) or C1, the single-qubit Clifford group], and these experiments
were implemented on a different day than the MRB circuits, so exact agreement is not expected.
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b. Estimating gate error rates by fitting depolarizing error models

The two densities heuristic is built on the standard MRB data analysis, which extracts a single error rate (rΩ) from each MRB
experiment design. But data from even a single MRB experiment contains a lot more information about each gate’s errors than is
contained in rΩ, e.g., RB data can contain sufficient information for complete tomography [51, 52]. In principle, this information
can be extracted by fitting error models to MRB data—as has been demonstrated in simulations with 2-qubit standard RB [52].
However, fitting an error model to data typically requires simulating the circuits under that error model and this simulation is, in
general, exponentially expensive in the number of qubits. Simplified, scalable approximations are therefore useful. One model
that satisfies these criteria is a model in which each gate’s error is modelled by a single error rate, and the error map for a layer
of gates is a depolarizing channel [7].

Our depolarizing model summarizes the errors in each dressed one- and two-qubit gate (g) with a single, independent error
rate εg. The error channel for each dressed n-qubit layer L is modelled by an n-qubit depolarizing channel with an infidelity εL
given by εL = 1 −

∏
g∈L(1 − εg). This means modelling the error channel for each dressed n-qubit layer L by

DγL [ρ] = γL ρ + (1 − γL)
I

2n , (E2)

with

γL =
1

4n − 1

4n
∏
g∈L

(1 − εg) − 1

 . (E3)

This error model is illustrated in Fig 11(b). We also model the readout on each qubit with an independent error rate εQi, where
the readout error on an n-qubit circuit is an n-qubit depolarizing channel with infidelity εR = 1−

∏
Qi∈Q(1− εQi). Under this error

model, the observed polarization of a circuit C = L1L2 . . . Ld is

S (C) = γ(L1)γ(L2) . . . γ(Ld)γ(R). (E4)

The parameters of this depolarizing model are a set of error rates—an εg for each G1-dressed one- and two-qubit gate g and
an εQi for the readout on each qubit Qi. To estimate these parameters we use a least-squares fit of Eq. (E4) to the observed
polarizations of the MRB circuits. We separately fit the parameters of the depolarizing model to the data from MRB circuits on
different numbers of qubits (n = 1, 2, 3, 4), so that we can study how the error rates of the gates change with n, due to crosstalk
errors.

Fitting Eq. (E4) to the data from two-qubit MRB circuits results in estimates of the infidelity of each two-qubit dressed layer
containing a two-qubit gate from G2 (and an estimate for ε1, the dressed two-qubit idle). We can therefore use these fits to
compare to the two densities heuristic (above). Figure 11(a) compares the mean of the entanglement infidelities of the dressed
cs and cs† gates, obtained from this fit, with the estimate from the two densities heuristic. The estimates of both methods are
between 1.1% and 1.5%, with the estimates differing by 0.5%–2.1%, which cross-validates the two methods.

Fitting Eq. (E4) to the data from 4-qubit MRB circuits provides estimates for the entanglement infidelities of all 15 dressed
4-qubit layers used in our experiments. Figure 12 shows the estimated infidelity for each of the nine G1-dressed layers that
consist of a single dressed two-qubit gate applied to one of the three connected qubit pairs (in parallel with dressed idles on the
other two qubits). These infidelities are between 2% and 3.1%, and they vary between qubit pairs and between gates (cs, cs†

and cz). We quantify the contribution of crosstalk errors to these infidelities by also predicting the infidelities of these 4-qubit
layers from the dressed gate error rates obtained from fitting the depolarizing model to the one- and two-qubit data. Shown in
Fig. 12, these predicted infidelities are smaller than those estimated from the 4-qubit data by up to 60%. Crosstalk errors are a
large proportion of the total infidelity in these 4-qubit layers.

To validate our results, we compare the infidelities we estimate to independent estimates obtained from an established tech-
nique: cycle benchmarking [9], a technique for estimating the infidelity of individual many-qubit gate layers. Fig. 12 shows
that our estimates are broadly similar to those obtained from cycle benchmarking, differing by at most 23%. Moreover, we
only expect rough agreement with the cycle benchmarking estimates, for two reasons: (1) the cycle benchmarking experiments
were implemented on a different day (they were run immediately after the gates were calibrated), and (2) cycle benchmarking
estimates the error rate of layers that are dressed by random Pauli gates (whereas our layers are dressed by Haar-random gates
or random single-qubit Clifford gates).

c. Estimating gate error rates by fitting Pauli error models

Fitting data to an n-qubit depolarizing model is scalable, but the actual error map for each layer is unlikely to be global
depolarization. For example, a global depolarizing channel causes highly correlated errors, whereas physically we expect many
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FIGURE 13. Comparing Error Models for 2-Qubit MRB Data. For each pair of qubits we benchmarked, we fit two error models, a
depolarizing error model and a Pauli stochastic error model, to the data from the 2-qubit RB experiments. Here, we compare the simulated
observed polarization based on the fit models to the observed observed polarization for each circuit.
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FIGURE 14. Comparing Error Models for 4-Qubit MRB Data. We fit two error models, a depolarizing error model and a Pauli stochastic
error model, to the data from our 4-qubit MRB experiments. Here, we compare the simulated observed polarization based on the fit models to
the observed observed polarization for each circuit. The mean-squared error in the observed polarization is approximately 40% smaller for the
Pauli stochastic model than the depolarizing model.

errors to be local errors. We therefore fit a more physically well-motivated model against which to compare our estimates for
each dressed layer’s infidelity. Arbitrary Markovian errors on a set of n-qubit layers L can be modelled by an n-qubit process
matrix for each L ∈ L [1]. But each of these process matrices has O(16n) parameters, resulting in an infeasible number of
parameters to estimate when n = 4. Instead, we fit to a process matrix model of reduced complexity. This error model is
illustrated in Fig. 11(c). We model the error in each one- or two-qubit native gate (i.e., each xπ/2 etc, not each dressed gate,
or each element of G1) by a one- or two-qubit stochastic Pauli channel [Eq. (6)], respectively. We allow the Pauli error rates
{γP} to be gate- and qubit-dependent. We fix the error rates of the zθ gate on each qubit to zero (because it is a virtual gate).
We model state preparation error as a tensor product of single-qubit stochastic Pauli channels before the circuit, and we model
measurement error as a tensor product of single-qubit stochastic Pauli channels immediately before readout. We estimate the
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error rates of all gates besides zθ gates (cz, cs, cs† on each of three qubit pairs, and xπ/2 and idle on each of the four qubits) and
on state preparation and readout. We fit this model (which has 159 gate error parameters and 24 SPAM error parameters) to the
data from the 4-qubit MRB circuits, using maximum likelihood estimation.

The best-fit model contains a process matrix for each gate present in our circuits. These process matrices imply infidelities for
each dressed layer. Figure 12 shows the estimated infidelity for each of the 9 four-qubit G1-dressed layers containing a single
two-qubit gate. The estimates we obtained from the stochastic Pauli errors model are comparable to those obtained from the
depolarizing model. Maximum likelihood estimation of a Pauli stochastic model using data from general circuits is exponentially
expensive in n (due to the circuit simulation cost), whereas fitting a global depolarizing model is not. Note, however, that there
are a variety of powerful techniques for efficient estimation of Pauli errors on Clifford gates, using data from Clifford circuits
[9–12] (including a technique that uses data from Clifford randomized mirror circuits [12]).

Appendix F: IBM Q experiments

The error rates from all of our MRB experiments on ibmq montreal are shown in Tables II and III.

qubit subset rΩ

(Q0, Q1, Q2) 0.88(2)
(Q0, Q1, Q2, Q3) 1.39(3)
(Q0, Q1, Q2, Q3, Q4) 1.96(5)
(Q0, Q1, Q2, Q3, Q4, Q5) 2.53(6)
(Q0, Q1, Q2, Q3, Q4, Q5, Q7) 3.36(8)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6 ,Q7) 6.7(3)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9) 8.4(4)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9,
Q10, Q11)

11.6(4)

(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9,
Q10, Q11, Q12, Q13, Q14)

14.4(7)

(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9,
Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q18)

20.4(6)

(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9,
Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q18,
Q19, Q20, Q21)

23.6(9)

(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9,
Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q18,
Q19, Q20, Q21, Q22, Q23, Q24, Q25)

28(1)

(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9,
Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q18,
Q19, Q20, Q21, Q22, Q23, Q24, Q25, Q26)

27.9(9)

TABLE II. Many-Qubit MRB on IBM Q. The MRB error rates for every MRB experiment with n > 2 qubits we ran on ibmq montreal. We
benchmarked a single qubit subset Q containing n qubits for 13 exponentially spaced n.
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qubit subset rΩ (isolated MRB) rΩ (simultaneous MRB)
Q0 0.103(3) 0.104(2)
Q1 0.113(3)
Q2 0.106(2)
Q3 0.105(1)
Q4 0.087(2)
Q5 0.113(3)
Q6 0.33(1)
Q7 0.38(1)
Q8 0.19(1)
Q9 0.149(2)
Q10 0.30(1)
Q11 0.135(3)
Q12 0.165(6)
Q13 0.118(4)
Q14 0.106(3)
Q15 0.208(7)
Q16 0.30(2)
Q17 0.127(3)
Q18 0.31(1)
Q19 0.148(4)
Q20 0.097(2)
Q21 0.205(7)
Q22 0.118(3)
Q23 0.140(5)
Q24 0.121(2)
Q25 0.391(9)
Q26 0.168(2)

qubit subset rΩ (isolated MRB) rΩ (simultaneous MRB)
(Q0, Q1) 0.418(5) 0.82(2)
(Q24, Q25) 2.7(1)
(Q14, Q16) 1.23(5)
(Q18, Q21) 1.61(7)
(Q3, Q5) 0.389(5) 0.75(2)
(Q4, Q7) 1.26(4)
(Q12, Q15) 0.99(3)
(Q19, Q20) 0.72(1)
(Q1, Q2) 0.81(2)
(Q12, Q13) 0.92(3)
(Q22, Q25) 3.15(1)
(Q2, Q3) 0.64(1)
(Q8, Q9) 0.499(8) 0.85(2)
(Q25, Q26) 1.95(6)
(Q1, Q4) 1.34(3)
(Q6, Q7) 3.31(3)
(Q15, Q18) 1.98(7)
(Q23, Q24) 1.19(2)
(Q7, Q10) 1.30(4)
(Q11, Q14) 0.98(2)
(Q16, Q19) 0.77(2) 1.74(6)
(Q21, Q23) 1.45(6)
(Q8, Q11) 1.10(4)
(Q10, Q12) 0.66(1)
(Q19, Q22) 0.78(2)
(Q5, Q8) 1.00(4)
(Q17, Q18) 0.530(8) 1.29(5)
(Q13, Q14) 0.79(2)

TABLE III. 1- and 2-qubit isolated and simultaneous MRB on IBMQ. We performed simultaneous one-qubit MRB on all 27 individual
qubits of ibmq montreal. We also performed simultaneous two-qubit MRB on each connected qubit pair of IBMQ Montreal, in eight groups.
We ran isolated MRB experiments on five qubit pairs to compare the error rates from simultaneous and isolated two-qubit mirror RB. Isolated
MRB experiments had an error rate approximately 50% smaller than simultaneous MRB experiments.
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