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September 17, 1974

ABSTRACT

The calculation of the higher order, o(Za)?, n >3,
vacuum.polarization charge density induced by high Z nuclei of
finite extent is discussed here, The Wichmann-Kroll formalism
relating the vacuum'polarization charge density to the Green's
functiph_qf the Dirac equation is reviewed with attention drawn to
modifications necessary for very large Z systems (Z > 137) en
" countered in heavy ion collisions. This paper is concerned with the
construction of the radial Green's functions fqr the Dirac equation
in the field of finite radius nuclei and on the numerical calculation
of the higher order vacuum polarization density from those Green's
functions. Specific calculations are made for muonic Pb and super-
heavy electronic atoms. The results from these calcuiations have been

published elsewhere but are further elaborated upon here.

t
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1. Introduction end Swmmary

The purpose of this paper is to supplement the discussion of
‘two previous papers (1;2) on the calculation of the higher order
vacuum polarization chsrge_density in the field‘of high Z nuclei of
finite extent. The‘problem considered in Ref, (l)AWas the calculation
of the nuclear size corrections to the vacuum polarization (VP) den-
sity‘for orders ol Za)?, h > 3, in muonic Pb. In particular, the
effect of those corsections qn the 5g9/é-4f7/2 transition was cal-
culated. This is;of_interest in view of the 42iZO eV discrepancy
reported between theory and experiment (3-5). As reported in Ref. (l),v
these corrections do increase the discrepancy but by only 6 eV. In
the work of Arafune (4) and Brown et al. (5) approximations based on
the smallness of the electron mass and of the nuclear radius were made.
The accuracy of those approkimations was studied in Ref.v(l) and found
to be quite.adequate (~1 eV) for this transition in muonic Pb. 1In
Ref. (2), the effect of the higher order VP density on electronic bound
states in the field of very large Z nuclei was discussed. The main
cpnciusion reported there Was.that the highsr order VP cannot prevent
the 1sl/2 state from reaching the lower continﬁ#m (Elsl/2 = -me)
for some critical value of the nuclear charge Zcr ~ 170, (6). Then
the calculation of the VP charge density for overcritical fields (7)
was diséﬁssed, and finally, the stability and localization of the helium- .
like charge density PHe for Z in the neighborhood of Zcr were | "
demonstrated thfough precise calculations of PHe for Z < Zcr and
Z >-Zcr' In this paper, we discuss the details and methods used in ‘
arriving at the results reported in Refs. (1,2). This paper, then,

serves as the basis for both those papers.



The discussion here is divided into the following sections,
In secfion 2, the Wichmann-Krqll formalism (B)fbrthe calculation of
the VP density Pyp is reviewed; The modifications nécessary for very
large Z nuclel are discussed in detail, and formal relations between
pyp and the Green's function for the Dirac equation are established.
A partial wave decomposition of Pyp is then made, and each partial
wave contribution is further expanded in powers of the coupling con-
stant Za. Then, tﬁe regularization of the formal expressions involv-
ing the Green's functions is discussed and illustrated through a calcu-
lation of Pyp in the field of a constant externai pofential.

- In section 3, expressions for the radial Green's functions,
required in the calculation of the partial wave contributions to Pyp’
are constructed valid to all orders in Za. The construction of the
radial Green's functions to first aﬁd third order in Zd is then
‘carried out in section 4. |

Section 5 is designed to supplement the discussion of Ref. (1).
While the emphasis in Réf. (1) was on the energy shifts due to nuclear
_ »size corrections to Pyp’ the emphasis in section 5 is on the‘effect
of thosé,corrections on  Pyp itself. The results for high Z systems
reported in Ref. (2]-are further elaborated upon in section 6. The
critical charge Zop is calculated for the particular model of the
nuclear charge density considered in Ref. (2). The lsl/2 wave-
functions and the higher order VP density for 137 < Z < Zcr are
also calculated. Again, the emphasis is on the structure of bVP
rather than the resulting energy shifts. In both sections 5 and 6,.
pyp 1s calculated only for the lowest partial wave (j = 1/2)

contribution. The contribution from higher partial waves (J 2_3/2)



. _4_
may be estimated from the results of a point nucleus as in Refs.
(2,2).
Finally, in section 7, the numerical techniques applied to the

evaluation of the special functions and integrations in the calculation

of pVP are discussed.

2. Relation of Pyp ‘to the Green's function of the Dirac equation

A, Formal Expressions
The VP density pVP is given by the vacuum expectation value

of'the u = 0 component of the current operator,*
Ju(x) = —J—g-l-[@(x),yuw(x)] . | (2.1)

In terms of the Feynman propagator SF(x,x'), pyp can be written

(10) as

ey i|e|vTr<SF(x,x')Yo)|. o (2.2)
where Sp satisfies

@G, - e A6 - 1) splux) = Slx-x) L (2.3)

For time independent potentials AP’ SF(x,x') depends on time only

through t - t', and consequently,

- -t ! '
1 Sp(x,x's ¢ - t')y, = 2—,1,-; dz e M1tz G(x,x'; 2z), (2.4)

c

where the Green's function G then satisfies

The metric, gamma matrices, units (% = ¢ = 1), and notation are

rchoSen to agree with the conventions of Ref. (9).



(g(—i‘z - eA(x)) - z + eA(x) + Bme) G(x,x'; 2) = 87(x -x')
| (2.5)
and the contour C 1is determined from the Feynman boundary conditions
(which depend on the definition of the vacuum).

In terms of G, eq. (2.2) can be written as

= J&t 1. -
pVP %?4- dz Tr G(§,§ ;5 2) o . ' (2.6)

C ~ -

This relétion, then, is the basis of the Wichmaﬁn-Krolllformalism

(8) for the calculation of pyp to all orders in Za. Note that the
Green's function in this relation must be properly regulated to insure
that the limit x' »x exists and that the integral over z con-
verges. This regularization is discussed in the next section. In
this section, though, all expressions are to be understood to involve
only regulated Green's functions{

The well-known formal solution of eq. (2.5),

ZIPE(gc) vix)
E-2z.

G(f,g'; z) = ) ' (2.7)

E
where_YwE are properly normalized eigenfunctions of the Dirac
equation, exhibits the singularitieé of G in the complei z-plane.
Trese singularities are illustrated in Fig. 1.

The path of the contour C in eq. (2.6) through these singu-
larities is chosen so that the contour lies above the singularities of
G associated with positive energy states and below the singularities
associated with negative energy states. With this choice of C, SF
in eq, (2.4) satisfies the Feynman boundary conditions. The definition

of  which states correspond to positive and negative energy states is



-
equivalent to the definition of the vacuum and is completely deter-
mined by the energy. Ec, wheré the contour crosses. the real axis in
Fig. 1, Whén there is no external potential; EC can obvioﬁsly be
chosen anyWhere between E = :mé.' As the strength of the potential
increases, bound states are formed and  G"deve1ops poles between the
two branch points at "E = 1me. The energy EC must then be adjﬁsted
so fhat all bound stafe enérgies remain greater than EC .for the case
'ofvattractive‘potenéials or less than EC for the caﬁe of repulsive
potentials. With this specification of EC’ the conventional vacuum
in the bound;interaction (Furry) picture is obtained (11]. On the
other hand,'if EC is chosen so that there are bound states with
. energies both greater and less than EC’ then the corresponding vacuum
state will be charged. This is easily seen by caldﬁlating Pyp in
eq. (2.6) with two different contours corresponding to differeﬁt choices
of EC.  Figure 1 illustrates two such contours,

The contour CO corresponds to the usual.definition of the
vacuun for the case of attractive potentials since all bound state
energies are greater than EC. On the other hand, CHe corresponds
to a charged vacuum (2} since, from eq. (2.7), the difference of the
VP densitieS'.calculated in eq. (2.6) with contours Co and Cp s
just 2|e||\plsl/2(-x)_|2. Thus, in fact, eq. (2.6) with C = Cyo gives
a helium-like charge_density Phe that contains a total charge of : -
-2le].

In the chbice of the contour CO for the calculation of Pyp’
it was assumed that all binding energies were less than Zme and, '

thus, that no poles of G have crossed from one branch point to the

other. However, for overcritical fields —(Z > Zcr) the pole of G
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cofresponding to the 181/2 state . (the 181/2 pole) moves from the
branch point at E = +mé through the branch point at E = -, off of
the "physical" sheet of the Riemann surface for the Green's function;
In that case, the vacuum is predicted to decay spontaneously into a
heliqulikeustate* plus two free positrons (7). Thus, the stable VP
density for Z > Zcr corresponds to a helium-like»density' PHe
obtained with contogr Che in eq. (2.6) rather than to the analytic

continuation of pyp from Z < Zc (2). Furthermore, if the

r’
potential becomes so strong that the 2P1/2 pole also moves off the
physical sheet through the branch point at E = —me,then.the helium-
like state will spontaneously decay‘to a berylium-like state plus two

more positrons, and consequently, the stable vacuum must agdain be

redefined by shifting the contour CHe to the right of the ,2P1/2

- pole. Each time a bound state pole moves off the physical sheet, the

contour in eq. (2.6) must be shifted so that _EC stays to the right
of the branch point at -m,, and to the left of any remaining bound
state poles on the physical sheet. A simple expression for.the stable
vacuum density for any strength of the potential can be written by

deforming the contour C to the imaginary axis I. Thus, from eq.

(2.7),
[=-)
: 1
Pyp = le] Z le(f)lz * 5 dy Tr GQC’E'; 11y)
~m <E<QO -0 v i 5'-’5
e
(2.8)

We neglect interaction between the two electrons,
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This equation contains the fact that each time a pole of G moves off
the physical sheet through 't_hé' branch point at BN ,- the totai charge.
of the vacuum around the nﬁcleus changes by -2|e| X
For spherically symmetric potentials, the Green's function
6(x,x'; z) has a partial wave decomposition (12) in terms of rédial -

Green's functions Gk satisfying

r ' 14,k
glei-V(r)-z “r& T
. 8 o |

G (r,r'; z) = "(‘11?1'1;_2'; |

_ T dr r = . (2.9) :

where k = #(j + 1/2) for a given total angular momentum j. From

‘the following relation (8,12)

e o5 7Y ooy Z molellel ), . (20

the contribution to the VP density for a given k is then given by

-[E-U—L [ dz Tr Gk(.r,r'; z)!r'-rr : o
c | o 4

p.(r) =
k (21r) i '
ellk| . 2 1 . : —
- el Z e, (7 + 3| ay TrGy(e,rtsay)| s
: -me<E<O ~c0

(2.11) |

+2|e| amount of charge escapes with two free positrons; -2]e| . ;

is localized with two bound electrons. , 1
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where wE,k afe the normalized radial wave functions with elgenvalues
E and k for the potential V,

For a given angular momentum j, there exiéts a simple symmetry
for Gk.v Let Gk(V; r,r'; z) be the solution of eq. (2.9). Then it

is easily seen that

Gék(V; r,r'; z) = -0 Gk('V; r,v'; ~z) oy s (2.12)
o 1\
where Oy = . Thus,
| 1 0
Tr GQk(V; r,r'; z) = - Tr Gk(—V; r,v'; -z) . (2.13)

With this relation, the sum of the VP densities for k = |k|,

p|k| = Py + Py can be written as

oy L Z Z Ivg, 1)) °

k=t|k| -m_<E<O

| + 2—%’1'-[ dy TI‘(Gk(V; r,r'; iy) - Gk(..V; r,r'; inlr.',-&' ]
| (2.14)

The integral along the iﬁaginary axis is manifestly odd as a function
of V. To see that the sign of fhe first term also changes as V » -V,
note that for repulsive potentiais the bound stéte poles emerge from
.thé branch poinf at -m,, and approach the branch point at tm, fron
the left. The contour C giving the VP density in eq. (2.11) must
then cross the real axis to the right of those poles on the physical.
sheet but to the left of the branch point at . Deformiﬁg C to

the imaginary axis I, the residues of Tr Gk’ k = +|x|, in the
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interval 0 < E < m_  must then be added to the contour integral along

I ~with the opposite sign as in eq. (2 14), Thus p'kl(r) is an odd

_function of V as required by Furry's theorem.

In addition to a partial wave expansion of-’pVP, it is useful
to consider the expansion of each pk. in.powers of the external.
potential. Writing this potential as V = -Za V (r), where Za is
an‘expansion parameter and Vb is a function of r, the power series
expansion in _Za for the Green's function is given by the Neumann

series for the resolvent
-y (Za)n E:(Za)n (v Gko)n' , (2.15)

where qko

The trace of the nth order Green's function for a given k is then

is the resolvent in the absence of an external potential.

~given by

. -] n
Tr Gkn(r,r') = f ’/rrdri riz VO(riD
. 0 1i=1

E Tr(éko(r,rl)---cko(rn,r'i) X (2.16)

The nth order VP charge density for k =,:|k| is thus given by

k ‘ ' . ', 1.
Ol () = (;) " (Za)nldz (e Nr, v 2) .+ G_kl_l(»r,r., z)) .

(2.17)

From eqs. (2.13 and 2.16) ,

Tr G_kn(r,r'; z) =-(-1)" Tr Gkn(r,r'; -z) . - (2.18)

Y
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Also for a given n and Xk, Tr Gkn has no poles between im, .

Therefore, deforming C +to the imaginary axis," kal can be written

as, :
k TR |
/ %§£%§l.2(za)n B éy Tr Gkn(r’r ; 1y)|r,_.r (p odd)
PTkI(T) = < . : | _ ,;
0 (n even) ‘ | : (2.19)

-\
This equation again contains the requirement of Furry's theorem that

the VP density must be an odd function of 2Z.
B, Regularization

The formal manipulations that led to the equations of the
previous sécﬁion are of course justified oniy-if the operations indicated
ih them;‘such as taking limits and perfofming integrations, are well
| defined and if there is no ambiguity associated with the interchange
of those operations. However, as noted in the previous section, eq.
(2.6) is nbt well defined since neither the limit 5' -> X nor the
integral o#er z exist. Therefore a regulator schemé ié essential if
meaningful results are to be obfained from any‘of the equations of the
previous section.

One.well—known regulator scheme that is known to give unambig-
uous, gauge invariant results is due to Pauli and Villars (14). In
that schemelthe Green's function isbfegulated with éuxiliary,masses
as follows: let G(mi) denote the solution of eq., (2.5) for an electron

of mass m, ; the regulated Green's function is then defined through

Opeg = Z a; 6(m) | ' (2.20)

i
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where the coefficients. a; are chosen such that

- o,
. 2: & = EE: agmy =0

and

}#i 1, m o= m . ‘: (2.21)

With G replaced by G in eq. (2.6), the limit x' + x exists,

Reg
the intégral over z converges, and there is no ambiguity associated
with the interchange of those operations. Furthermore, the steps
leading toAthe3subsequent eqﬁations of section 2A, which include the
changing of the original contour of integration C to the imaginary
axis I ;and expanding Pyp in terms of Py and kal; are permissible
with - GReg
.i > 2, are taken and the unamhiguous, gauge invariant result

. After renormalization of the nuclear charge, the limits

’

nﬁ'* ©
for Pyp is thus obtained to. all orders in Zo and for each partial
wave gontribution.

.Oﬁ the other hand, if we consider the Feynman graphs for Pyp
in tﬁe field of finite radius nuclei, it will be clear tﬁat regulariza-
tion is needed only for the contributions from the first few orders in
Zoa, The graph corresponding to the term linear in 2a (Fig. 2a) is

well known to»be quadraticallyldiﬁergent. It is also well known that
the electron loop integral for orders (Zo)®, n > 5, is finite. The
third order graph is a borderline case and will be considered in detail
later. Of course, in addition to the electron loop integral, the
graphs in Fig. 2 also involve integrals for each external poten-
tial, For bounded potentials, such as those due to nuclei of finite
extent, these integrals are finite and, hence; do not introduce new

singularities, This is most easily seen by considering the integrations
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in moméhtum space, where the rapid decrease of the nuclear charge form
factor insures the convergence of the integrals, However, for the
point nucleus (constant form factor) considered by Wichmann and Kroll
'(8), additional singularities appea; due to the singularity of the
' potential at X = 0. Thus, while regularization ﬁill always be needed
for first.order, for orders (Za)", n > 5, regularization will not
be needed as long as nuclei of finite extent are considered.

'Considering.the contribution from order. (Za)B; the electron
bloop integral in Fig. 2b is'seen to diverge logariihmically. It is
well known, hbwever, that this divergence is eliminated if gauge
invariance is imposed on the Feynman émplitude or, alternately, if the
' graph is regulated with one auxiliary mass. (15]. Therefore, an
ambiguity is expected in the calculation of p3 with eq. (2.6) if
some regularizatidn is not performed. To see how this ambiguity
arises in eq. (2.6), consider the calculation of -p3 for the case of
a constant external potential V. This calculation is ;arried out in
APPendix.I. The results show that if the limit x' > X is taken first'
and then the contour integral is performed in eq; (2.6), then a non-
, gaﬁge invariant result, p3 = V3/3n2,_is obtained.* On the other hand,
if the cqntour integral is performed first and then the limit 5' > X
is taken, then the gauge invariant result, p3 =0, is_obtained. Thus,
the ambiguity expected from the third order Feynman graph shows up in
eq, (2.6) as an ambiguify associated with the interchange of a limit
’and integral. This ambiguity is of course eliminated if the regulator

condition, eq. (2.21), with one auxiliary mass is applied to the

See also Ref. (3) for a discussion of this point, and note that gauge
3

invariance requires that p” - 0 ‘as V - constant.
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Green's function, Note, by the way, that the calculation of the
contribution from higher than third order is fdund‘in Appendix I to | i

be free from this ambiguity, as it must be since the corresponding

Feynman graphs are finite and unambiguous. |
Although the calculation of p3 in eq. (2.6) suffers from the .

abové—ﬁentioned ambiguity, the calculation of the contriﬁution from -

each partial wave pfkl ﬁith eq. (2.19) is free frdm ambiguity; This

is.because the radiél Green's function is much less singular than the

full Green's function 'G. In particular, the limit |x'| + |x| exists

for G

k
for the example of a constant external field considered in Appendix I

while the limit x' » x does not exist for G. The results

confirm that pfkl is indeéd free from ambiguify and thus automatically
'satiSfies gauge invariance. Note, on the other hénd, that the calcula-
tion of the first order density p%kl is ambiguous with eq. (2.19)
since different results are obtained if the limit =r' + r and the
contour integral are interchanged. For third order, though, the ecal-
culatibnvof p3 by summing pfk' gives the unambiguous; gauge invar-

. iant result, p3 = 0, for the case of a constant external potential.
This study of p3 in a constant potentiél suggests that for

3 is achieved by calculating

bounded potentials, regularization of p
p3 as a sum over the partial wave contributions 'pfkl. In particular,
each p?kl is expected to be well defined and gauge invariant,

Therefore, the total charge contained in each partial wave density is .

*
expected to vanish. Provided that the sum over k converges

For undercritical potentials (Z < Zcr)' ' {
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fast enough, the sum of spfkl should then give the regularized result

for p3.

The convergence of the sum over k has been discussed in Ref.
'(ij based on the results of Wichmann and Kroll (8).* It was found that
the lowest partial wave, |k| = 1, contains already 93% of the contri-
bution to p? from all partial waves. Thus the sum over k is
expected to converge very rapidly. In fact, for the VP density p5+,
for orders five and higher, the contribution from k| = 1 amounts to
more than 99% of the contribution from all k. Therefore, one expects

that a good approximation for p3+ is obtained by calculating only the

lowest partial wave contribution p?;', k| = 1, where

k=t|Xk| -m_<E<0

©o I
R
+ -T-re- dy Tr [Gk(Za; r,r; iy) - Gk(-Za; r,r; iy)
0

-2 % le(r,r; iy)] ) (2.22)

This equation follows from removing the first order contribution, eq.
(2.19), from plkl in eq. (2.14). As it siands, eq. (2.22) is
‘expected to require no further regularization for bounded potentials.
Indeed, the explicit calculation of p?zl, lx] = 1, reported in Refs.

(1,2] for finite radius nuclei confirms this éxpectation.

See also Ref. (16).
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For the first order (Uehling) contribution, the regulated VP
density in an arbitrary pofeniiai is known (17,18). The energy shifts &
due to-the Ueh1ing potential héve been worked out in detail for muonic é
atoms'(3;19).ahd for superheavy electronic atoms (6,20) and, thus, need f

no further consideration here.

We now turn to the construction of Tr Gk’ Tr le, and Tr G 3,

-

necessary for the calculation of the energy shifts quoted in Ref. (1,2)

due to higher order VP.

3. Construction of Tr Gk

The power of the Wichmann-Kroll formalism is that the radial

Gfeen'é functions needed in eq. (2.22) can be readily constructed in

terms of two particular solutions of the radial Dirac’ equation.* Let
wR be the solﬁtion regular at r = 0 and wI ‘be the solution regular
at r=e (i.e., Y >0 as r > ), Then for an eigenvalue k and ;

energy -z, these two component wavefunctions satisfy

. ’ .

1+ V(r) -2z -%—c%-r+-§- xpl(r)
= 0 , (3-1)

%‘%r+§ -1l + V() -2 wz(r)

where the radius and energy have been scaled by the electron mass.

Then in terms of these solutions the radial Green's function is given

by, ' .

G (rr's 2) = g e(rt = r) up(r) wlr)T + a(r - = Wp(r g )T},,

(3.2) i

See also Ref. (21).
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with the Wronskian J(z) given by

i) = rz{wﬂz(r) prl(r)-le(r)wIz(r)}- . (3.3)

and wvhere T stands for transpose and the subscripts 1 and 2 refer
to the upper and lower components. It is easy to verify from eq. (3.1)
that J(z) is independent of r and that G, does satisfy eq. (2.9)
for m =1,
e
From eq. (3.2), we get
T
oy(r, )T ulr)
Tr Gk(r,r‘; z) = y (3.4)
I(z) ,

where r (r<) is the greater (lesser) of r and r'. The potential

>

due to a nucleus of finite extent is of the form

f(r/R)/R , r<R
V(I‘) = -Za . (3-5)
1/r , r >R
Two models of the nuclear charge distribution Will be considered in

this paper: Model I, a shell density, = §(r - R)/4wR2,

pNuc
f(r/R) = 1;. Model II, a uniform density, Pruc = 8(R - r)/(4wR3/3),
t(z/R) = (3 - (x/R))/2.
| The solutions of eq. (3.1) for the potential of eq. (3.5) are
constructed by matching the interior solutions (r < R) to the exterior
solutions (r > R) witp a continuity condition at r = R.

The exterior solutions satisfy eq. (3.1) for the case of a puyre
Coulomb potential (R = 0). These solutions are well known (8,12).
Letting 777 denote the solution regular at 1r = 0 and dlcfﬁ denote

the solution regular at' r = ®, then
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/‘ ')ryzl = }.,;’7; [(s' - '.\)) N\)“%’S(Zc'r) -~ (x - v/c) Mw%’S(Zc'r)}

r

M = [(s_ = V) M,y (2er) + (k - y/e) Mv+§,s(2cr)]

\ R

( 2/ ' }_3-:72_2_ [ (k + v/c) Wv_é’s(Zcr) + Ww%’s(Zcr)]

r

\ QJZ = ;_3.‘.’7.2_ [(k + y/c) wv_%’s(Zcr)'- W\H_%’S(Zcr)} , (3.6)

where

¢ = 1-2° , v=y-§- . (3.7)

" The branch of the square root for ¢ is taken such that Re[c]"'_>_ 0.
The functions Ma,B and Wa,B in eq. ( ﬁ;é) are the Whittaker
(confluent hypergeometric) functions as defined in Ref.: (22).

To obtain the interior solutions, vthe nuclear charge density
must be specified. The simplest case for which the interior solutions
are known is the shell distribution of model I. In that case, the
interiof potential is a constant V, = ~Y/R. The solutions of eq. (3.1)
for a constant potential VO are obtained from the solutions of eq.
(3.1) with V = 0 simply by shifting the energy from z to z - Vq
Denoting the solution regular at r =0 by u and the solution regular

at r =« by v for the case V = 0, we find (12)
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W= (1% a) )y (ier)

u, = ic T%T- jlk_%l_%(icr)

and
- (1) :
v, = i(z -1) X uf1)  (der) (3.8)
2 TRT “|x~3| -3 ’ : _ :
where Jv and h(l) are the spherical Bessel and Hankel functions as

v .
defined in Ref. (23 . The solutions of eq. (3.1) with V = -y/R are

then given by

i = u(z+ y/R)
and
¥ = v(z + y/R) . | (3.9)
Thus, the solutions of eq. (3.1) for a model I nucleus are
given by o
by = HR- 1)+ 8r - R)eM s v]
wi = 8(R - r)[éﬁ + 5\7] +6(r - R)W | . (3.10)

-~

where the coefficients a, b, &a, and b are determined by the con-
tinuity condition at r = R. As in eq. (3.3), we define the bracket-

expression for two arbitrary wavefunctions as
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L3

[¢,¢]h' _:Rg(?zﬁl’“ *I?é)jr=g

The coefficients in eq. (3.9) can then be expressed as

(8.2 [l

o -
v o= [l

B - [w,v]R/[ﬁ,v]R

b = '[ﬁ,W]R/[ﬁ,v’]R : | (3.11)

. This form for the coefficients is partiuclarly useful because the
different brackets are related to the Wronskians for different poten-
tials. In particular, the Wronskian Jcoul for a pure Coulomb poten-

~tial is given by (see Appendix II)

Teou(®) [‘m,W}R = 41+ z)cz{.%—s-:%—lr) : (3.12)

The Wronskian Jv for a constant potential is given by
0

Jvo(y;) = (89 =1, (3.23)

as may be verified with eq. (10.1.31) of Ref. (23}.
Finally, the Wronskian for the potential of eq. (3.5) as com-

puted via inserting eq. (3.10) into eq. (3.3) is given by

r=

() = (8w = Rl g . (3.14)
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The zeroes of J(z) determine the location of the poleé of Tr Gk
corresponding to bound states of the radial Hamiltonian with the
potential of eq. (3.5).‘ Note that the condition Jcoul(z) =0 gives
. the usual Sommerfeld's %ine structure formula for a poi;t nucleus.

The radial Green's function for several potentials of interest
can now be constructed via eq. (3.2). The free radial Green's

function Gko referred to in eq. (2.15) is given by

Gko(r;r'; z) = G(r'<; T) u(r) v(r')T +08(r - ') v(r) u(r')T ,
| (3.15)

in terms of the solutions in eq. (3.8). The pure Coulomb Green's

function G;oul "is given by (8,12)

™ e,r5 2) = {otet - 7)) ke V!

ol = e WDME P @ L (Gas)

in terms of eqs. (3.6) and (3.12)., Finally, for the case of a finite

radius nucleus, G, is given by substituting'éqL (3.10) into eq.

k
' (3.2). The trace of G, for r' =r, appearing in eq. (2.22), can
be written conveniently for the case of a model I nucleus as

( 0 <

Tr Gk (r,7; =z + y/R) + Tr AGk , T <R
Tr G (r,r ; z) = <

Tr 62 (r,r; 2) + Tr 4G, , r>R ,

\ k k .
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' <(>
where the finite size corrections AGk( ) are given by
| < | e mp\T o
Tr AG, (r,r; z) = & u(r)” W(r)/3(z)

and 

-

wag (r,rs 2) = W Whe)az) . (3.8)

In this form, the expected properties of Tr G, that
Tr G | > Tr G 0 as R » o
k k
and that for y <1, i.e,, 2 <137,

Tr G, - TrGioul as R + 0 (3.19)

are easily derived from the asymptotic behavior of &8 as R+ « and
of b as R > 0 (see Appendix Ii). Note, however, that for y > 1,
the 1imit R - O does not exist, confirming the result that for
superheavy nuclei (2 > 137), nuclear size effects must be taken into
acoount (6).
Furthermore, the nuclear size correction to the VP density is
vcomputed directly from Tr AGk> in‘eq. (3.18). This calculation is
discussed in section 5. |
The bound state wave functions appeéfiﬁg in eq. (2.22) are
computed from the residues of Tr Gk for poles in the energy range
-m, < E < 0. As noted before,the location of these poles is deter-
mined by the condition J(z) = O for the Wronskian in eq. (3.14). ' The
residues at those poles are seen from egs. (3.17, 3.18) to come only

. >(< s '
from the finite size corrections, Tr AGk( ), These residues are
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préportional to .lﬁ(f)lzl for r <R and to |m/(r)(2 for r > R,
This is expecﬁed since the bound state wavefunctions must be regular
both at r = 0 and 1 = o, Furthermore, the continuity of the wave-
functions at r =R is insured by the choice of 2 and b and may
easily be verified with egs. (3:11, 3.14, 3.18). Note that the
construction of Gk in eq. (3.2) also guaranteesvthat these wave-
functions are normalized to unity. See section 6 for further discus-

sion on the calculation of the 181/2 and .’zPl/2 wavefunctions.

4. Construction of Tr le and Tr Gk3

-In this section the trace of the radial Green's function to
first and third order in vy = Zo are constructed from eq. (2.16).
- The Tr le is of course necessary for the calculation of p?;[ in

eq. -(2.22). The trace Tr G 3 for k= -1, is calculated (1) to

k ?
provide a check on the numerical calculation of pl3+ to third order,
(2) to eétimate the dependence of pl3+ on different models of the
nuclear charge density, and (3) to determine the size of the contri-
bution of b13 to p3. The ratio of the |k|4= 1 contribution to
the |k| > 2 contribution for the third order term is considered in
order to estimate the éccuracy of the approximation used in Ref's.
(1,2) for calculating the nuclear size effect by including only the
lx| =1 contribution to p> .

The construction of Tr le. and Tr Gk3 will be carried out
first generally for all k and then specificaily for |x|] =1. To

simplify the notation, define



2

(), = u(e)’ u(r)
(), = ue) wr) = v u(r)
(w), = v w(r) . | (4.1)

From eq. (2.16), Tr le is seen to involve the trace of a
prbduct of two free radial Green's functions Gko; This trace is

easily calculated from eq. (3.15) to be
Tr(G O(r r.) G O(r r)) = (vv). (uwu) (4.2)
T\ (o717 By (T r, “Wp - G

where T (ry) is the 1esserv(gre§teﬂ of r and r. Thus,

T
Tr le(r,r; z) = (vv)r‘]r dry rl2 V(rl) (uu)rl
0

+ (u.u)r dry rl2 V(rl)'(vv)rl . (4.3)
' T

To third order, Tr sz involves the trace of a product of
four free Green's functions. Let T4(r,r1,r2,r3) denote this trace.
The explicit analytic expression for T4 depends on the relative

ordering of the four radii. Consider, for example, the ordering in

eq. (2.16) with r > r) > 1, > T, From eq. (3.15),

T4(r >ry >, > r3) N '(vv)r (uv)r (uv)r (uu)r3 . (4f;)v

1 2



Qg‘ngg,ﬁufsﬁiﬁ
-25-

Similar expressions may be written for the other 23 orderings, The
contribution from the particular ordering in eq., (4.4) to Tr GkB will
then be
: r 1 _ r
(vv) dr. .2 V(r,) dar. r.2 V(r,) dr., r.2 V(r.,)
T 171 1 2 "2 2 3°3 3
0 0 ' 0

, (uu)r3 . (4.5)

x (uv), (uv),
1
The contributions from other orderings will have analogous forms.
Hoﬁever, three other orderings, (r > r, > Ty > r2),

(r>r >r) > r2), (r>r,>r, > rl), give rise to the same

3 3 2

contribution as eq. (4.5). In fact, there are only eight different
contributions to Tr Gk3 out of the possible 24.

‘ From the following simple property,

2

b x | I b . |
f dx f(x) dy f(y) = %-\f dx f(x) ’ (4.6)
e .

a Ja
all the occurring three dimensional integrals can be reduced to two
dimensional ones and some two dimensional integrals reduce to one

dimensional ones. Defining three fundamental integrals by

| b
Jl(a,b) = -j’ dr r° V(r) (uu)r
a
o b
Jz(a,b) = dr r2 V(r) (uv)r
a
b : .
Iap) = ar r% V(z) (w)_ (4.7)
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the eight different contributions to Tr Gk3 can be expressed in

terms of the above -int_eg'rals and the following six integrals
o T -
T -2 1 2
Il = f drl ry V(rl) (uu)r '2-(J2(rl’~r))
0 1 |
T
= 2 1 2
I, = f dr; Ty V(rl) (vv)rl '2‘(']1(0’1'1'))
. O . . . .
' T
= 2 "
13 = f dry 1y V(rl) (uv)r1 Jl(O,rl)
0

_14 = [ dr, rl2 V(rl) (uV)rl J3(rl,§o)

rl2 V( rl) (vv)rl %—(Jz(r,rl ))-2

o
o
u
H \
8
o
g ]
[

U

| f dry rl2 V(rl) (uu.)r1 %<J3(rl’°° ))2 . (4.8)

Then Tr Gk3 is given by
3 2
Tr (r,r; z2) = (vv) {41 + 21, + 17 (0,0)iI% J (r,m)‘s
Gy AW BT %R [ 1(0,m))7 3 J
¢ 4, {10 15+ (0,0 1,

o ), {az, + 21 s 0,32 - (4.9)
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Note that in this notation eq. (4.3) can be written as

Tr 6 (r,m; 2) = (W), 3(0,) * (), I(r®) . (4.10)

The reason that this notation is convenient is that analytic expressions

may be>obtained for the Ji’ and thus, the calculation of Tr Gk3

involves.only one dimensional numerical integratiohs. Also, Tr le
can then be'evaluated without any numerical integrations.

To proceed further, only the Xk = -1 radial Green's funcﬁions
will be considered. Note that Tr Gkn for k = +1 is related to'the
trace for k = -1 by eq. (2.18). From eq. (3.8), we get the

following products for k = -1:

| ) 2
(uu) = (1 + Z)Z_Si.n.'p_?c_r. + %[m - cosh CI‘] ; R
r (er) er
¢ e~CT
(uv). = ——- (1 + z) sinh er -
¥ (cr) |
+ (1 - 2)1 + El;)l:—s-l—r-l-:l}—cr- -~ cosh cr.{ ,
-2cr 2 2 . '
(w), = Z—— {1+ —(-L;}z— (1+ 31?) . (4.11)
S r c

Ihe fundamental integrals Ji may now be calculated for thé two
different models of the nﬁclear charge distribution considered in
connection with eq. (3.5). .Since the potential in eq. (3.5) has
different forms for r < R and r > R, it is natural to define the

indefinite integrals Ji< and Ji> such that



and

=S

>
& 2 (r)

4
dr

J3>(r)

where f(r/R) =1

1,7(x)

i

n

n

T (uu)r

T (uv)r
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= r'(W)r ’

for a model I nucleus and f(r/R) = (3 - Qr/R)Z)/Z

% £(x/R) (w) /R
r? £(2/R) (ur) /R

r? £(x/R) (vv) /R

for a model II nucleus. Thus, for example,

e < BB >R) = (3R - 3,%@)) ¢ (37(0) - 37(R)) . (4.13)

" (4.12)

From eqs. (4.11, 41.2), the integrals for the case k = -1 and

for a model I nucleus are easily verified to be

J1<(r)
) =

1,5(x)

1

-1

1 1
cR

T-2)

o
{;r +

e-20r

R IR
L

2cr -cr
_ 1 -2ze
2¢c [ cer
l -2z
cr ’

sinh cr -

2

cr

22 - 1
2¢

1 . z sinh” ecr
-2- sinh 2c¢r -'m CY = ecror——emcce——

b

Equation (4.14) continued next page
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Equation (4.14) continued.

J1>(‘r') = rl'__f..ﬂ{cpi(zcr) - fn(2er) - v

1 /sinh 2c¢r stinh2 er
+ > - - ~— - 1 ,
¢ © (er)

oy
N
v
P
L2 ]
g
1

%{El'(zcr) + n(2er) + YE}

: -2cr 4
' > (1 " % ) -——r3)
| c cr cr (2cr) :

-
!
N

il

- SR YPROS T K ol (U U ST S
B G e AR R ar-Sr 2¢T ’ *

J3>(r)

where Yg is Euler's constant, E1 is the exponential integral and

Chi d1s the hyperbolic cosine integral defined in Ref. (23]. In this

form the integrals Ji<(>) can be easily evaluatéd'numerically

(see section 7).

For model II nuclei, the interior integrals J£< have a
' ' <
different form. These are related to Ji in eq. (4.14) by

1 2z (cr)2
2er) | NFXT-2)” )

,‘T;n(.r) il %‘Q - (E‘)ZD 7 (x) -

20r(1 - 2cr) - e-Zcr(l + 2cri) + %-sinh 2cr

Equation (4.15) continued next page
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Equation (4,15) continued

N W < 1 fi- r 2 (er)?
JIIZ(r) = 5(3 - (-E-) )JZ (r) - 2(cR)31 : 2 cr<1 - 321 Srz

-2cr , '

' Zcr
3 ey = L 2y g < 1 .3
JIIB(r) = 5(3 - (g) >J3 (r) + 2(cR)3 ﬁ 7 (cr 7 + >

(4.15)
.The integrals Ij may then be computed numerically for either
nuclear model.

In order to estimate the ratio of tﬁe |x] = 1 contribution
to the higher partial wave contribution for the third order VP density,
the total VP charge accumulated at the origin for a point nucleus has

“to be calculated for |k| = 1, This charge is calculated through eq.
(2) of Ref, (1). For that calculation, pfkl for |k' =1 is needed
in the limit m - 0. To get the m =0 liﬁit for Tr GkB, recall
that in egqs. (4.11, 4.14, 4.15) the energy and radius have been scaled
by the electron mass. In those equations the mg = 0 1limit is

.obtained by replacing z +1 by z and ¢ by -iz in the upper half
z plane and ¢ by +iz in the lower nalf 2 plane. With these

3

substitutions, Tr Gk is computed‘as for the mé # 0O case with

eq. (4.9);

5, TFinite Size Effects in Muonic Atoms

Having constructed all the relevant Green's functions for the
3+

s, we turn to a more

3+

calculation of the higher order VP density p

detailed discussion of the effect of finite nuclear size on o
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In particular, this section elaborates upon the calculations reported
in Ref, (1) for muonic .Pb,

For the region 1 > R, the correction to the trace of the
Coulomb_Green‘s funetion is given by Tr AGk> in eq. (3.18); In this
region, the difference, 8oy s between the VP charge density for a
finite radius nucleus and the‘density for a point nucleus is then
given by eq. (2.11) with G, replaced by AGk?. In the discussion of
section 2B, it was noted that the first order contribution has to be
subtracted,from Gk’ as in eq. (2.22), to eliminate an ambiguity
present in the calculation of ﬁhe first order contribution to Py
However, the calculation of the first order contribution to the
difference Apy for r> R 1is free from ambiguity. To see this,
consider the difference, Tr'Ale(r,r'), between Tr le(r;ri) for
a finite radius and point nucleus. From eqs. (2.16, 3.15, 4.12),

we get for r,r' >R

e agMr,e) = vl v (55R) - IR) (5.1)

where it was noted that J1<(0) = Jl>(0) = 0. It is easy to verify
from eq. (3.8) that as a function of 2z, Tr Ale(r,r') decreases
exponentially as exp(}[y[(r + ' - 2R)) for z =iy, |y| > .

For r,r"> R, then, this exponential decrease insures the uniform

- convergence of the contour integral in eq. (2.19)'forv r' in the |
neighborhood of r and thus eliminates the ambiguity associated with
the r' +r 1limit, For r,r' < R, though the ambiguity in the cal-

1

is still present because Tr Ale decreases

exponentially only as exp(-|y(r - r')|) for that region and the

culation of bpy
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contour integral does not converge uniformly for r'!' in the neighbor-
hood of r, Thus regularization is required for the ¢alculation of

kl in the region r <R,

Ap
-Beéause we are interested in transitions in.mubnic atoms
betwgen states of high angular momentum; the calculation of ‘Apk for
r <R may be a&oided and we can restrict our attention to the calcula-
- tion of Abk for r > R,bwhere no regularizatioh is required; This

is due to the observation by Arafune (4) and Brown et al..(5) that the
mean radii of the muonic states involved in high angular momentum
transitions are much larger than R. Thus, the energy shifts due to

Ap, should be quite insensitive to the actual distribution of the

k
VP density inside the nucleus, r < R. Since after regularization the
total Charge AQ< contained in the region r < R must cancel the
charge, AQ’, in the region r > R, the approximation of setting

‘ Apk(r) = —AQ> 6(r)/r2 for r < R, will generate only small errors in
the calculation of energy shifts for high angular momentum muonic

states, Therefore, the energy shifts due to the nuclear size correc-

tions to the VP density are calculated from the density Ap'kl given

*
by ‘
r lel[X] dy T (AG,”(v; iy) -.AG («v; iy)), r > R
(2m)2 ( x Y k )
Aplkl =<
-{ dr ‘1‘2 Aplkl §'(%)‘ 3 r<R ;. (5-2)
. LR d

Note that this procedure is applicable only for Y < 1, so that

Pyp for a pure Coulomb field is still defined.
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where AGk> is evaluated with either k = |k| or k - ~-|k|. The
contribﬁtion Ap}kl, linear in vy, is calculated from'eq; (5.2) by
replacing Tr AGk> with the first order correction Tr Ale(r,r) in
eq. (5.1). |

The primary purpose of-calculating Ap'k' in Ref. (1] was to
check the accuracy of the approximations in Refs. (4,5) of setting
m, = 0 ‘and expanding Aplkl in powers of the radius R. These |
approximations are implemented by setting m, =0 in eq.(3.18) and
expanding b in powers of R. Note that the function f(R,z,me)
defined in Ref. (1) is related to b in eq. (3.18) by
£(R,z,m ) = b/3(z). "

The m, = 0 approximation requires the' m, > 0 limit of
eas. (3.6, 3.8). The 9 and QL/ functions for m, = 0 are obiained
from eq. (3.6) by making the following substitutions: z + 1 » z,
¢ + Fiz (-1 for Im 2 ;IO; +1 for Im z < 0), and k * v/c > k.

The u and v functions for m, = 0 are obtaingd from eq. (3.8)
by making the first two of the above substitutions. With these new
functions, Tr AGk> (me = 0) is calculated as in eq.(3.18).

The further approximation of retaining only the lowest power
of R in an expansion of f(R,z,me = 0) is obtained by calculating
the small R limit of b/J3(z) in eq. (3.18). For the case of a model
I nucleus with radius R, the leading term in an expansion of

i‘(R,z,me = 0) in powers of R is given by (see Appendix II)

Note a misprint in Ref. (1), p. 1395, line 30: f(R,z,m,) = 0

should read f(R,z,me = 0).
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£(R,iy,m_ = 0) = _{ i - Y/(s -~ k) } RS (2y)25°3

T-IA Y/ (s = XJ

-1 I(s - iy) |
) e

where iA = —ﬁz/ﬁl, evaluated in the limit m, > 0O and R+ 0 from
eqs; (3.8 'and '3.95. With this formula, the integrals in eq. (5.2)
may be evaluated analytically (4,5).

The nuclear size corrections Aplkl to the VP density for
|k| =1 are listed in Table I for Pb (Z = 82, model Ie = 5.5 fm)
as a function of the radial coordinate r. The range of r covered
in the first column is R < r < 500R. The next three columns list

Ap, for the following cases: (1) m, #0 in eq. (5.2), (2) m, = 0,

1
and (3) both m, = 0 and lowest power in R/r. The first order
.density  Apll is then listed in the last column. The energy level
shifts due to these corrections have been discussed in Ref. (1). Here
we want to discuss the differences in Apl as calculated within the
different approximations. For r/Xé << 1, Apl B Apl(me = 0) to a
high degree of accuracy, In fadt, the assertion in Ref. (4) that
corrections to Apl(me = 0) appear to order (mér)2 is supported by

our numerical results. On the other hand, the approximation of .

retaining only the lowest pover of R as in eq. (5.3) is not

e
[55]

particularly accurate for r = R. In fact, Apl(@e =_0,0(R/r§)
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T
smaller than Apl(mé #0) by roughly a factor of 2 in that region.
For 0;1 5 :/X; S 0}5;' all three approximations are seen to give the
same value of Ap; to within 10%, For r/X, > 1; the relative accuracy
of thé me ='O approximation‘decreases, although the relative
accuracy of the O(R/r) approximation increases, i.e.,
tpy(m_ = 0) ~ Ao, (m = 0,0(R/r)) but dpi(m # 0) # bp (m_ = 0).

The ihadequacy of the O(R/r) approximation in the region
r & R for computing the charge density does not affect the accuracy
of the energy shifts computed from Apl(@e = 0, O(R/ri) in Ref. (1)
very much, because, as noted before, the overlap of the muonic wave-
functions with the region r < R 1is very sméli for the high éngular
momentum states (e.g., 5g9/2,4f7/2). The inadequacy of the m, = 0
'approximatiﬁn for computing Apl in the region r,?‘ﬁ; does not
affect the computed energy shiftsAQery much because Apl is very
small in that region and only a small fraction of the charge contained
in Apl in the region r > R 1is contained iﬁ the region r >gX;;
this can also be‘seen by comparing AQ1,2 in Table III of Ref. (l].

. The region that determines the accuracy of the computed energy shifts
is thus the intermediate region, where all three approximations give
the same Apl to within 10%.

Note that a tést on the numerical integrations required for
the construction of Table I is given by a comparison of the values for
Apl(@e = 0,0(R/r)) in Table I to the values determined from the
analytic formula [eq. (3))of Ref, (5). These values were found to

agree to better than four places throughout the range R < r < 500R.



~36-,
In connection with Tables I and II of Ref, (1)," the VP

densities p?#l and ,p?;I' for |k| =1 from egs. (2,19, 2,22)

are needed. These are listed in Table II here. As disﬁcssed in Ref.
' (1}, pfkl and- pfil are expected to agree to within 10% for APb.
It is indeed reassuring that the values of pfkl and ~pf;| are in
such close agreement, then, considering that they were qbtained with
totally different computational techniques. A more demanding test of
the numerical accuracy of each VP density in Table II is given by the
degree of cancellation between the charges Q contained in the

region where that density is negative (r < 60 fm) and the charge

Q+ contained in the reglon where the density is positive (r > 60 fm)..

As reported in Ref, (l), these charges were found to cancel to better
3 3+

than five decimal places for both Py . See section 7 for

and Py
further discussion of the numerical techniques employed in calculating

these densities.

6, Vacuum Polarization in Heavy Ion Collisions

| ~In this section some of the results reported in Ref. (2} for
the case of Zd > 1 are elaborated upon. Consider a nucleus of - type
I with a radius R = 10 fm. The evaluation of p?;l in eq. (2.22)
requires, for 1argev Z, the determination of bound state wavefunctions
with energies E Dbetween -1, < E < 0. The energy eigenvalues
determined from eq. (3.14) for this type of nucleus are plotted in
Fig. 3 as a function of Z for the 181/2 and 2P1/2 electronic

states. The curves for R =0 and 0.1 fm are also shown for

Note that in the last line of Table I in Ref. (1), the second

column should read |k| > 1 rather than [k| = 1.
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comparison, Figure 3 is included here to exhibit the range of Zo
for which the 181/2 and 2P1/2 state are present in eq, (2,22) for
the particular model of the nucleus chosen here, Also the slopes of
the cuives in Fig. 3 provide a measure of the.accuracy of t£e computed
and 2P

1S wavefunctions (2), We note that the energy eigen-

1/2 1/2
values in Fig. 3 are ih generalvagreement with the results of calcula-
tions using more realistic models of the nucleus (6,20), and that the
values of Zcr and of the slope d4E/dZ at Zcr compare favorably
with those obtained in other calculations (2). It can be seen that

the 18 state is present in eq. (2.22) for range

1/2

1,275 > ‘Zo > 1.086, and that the 2P state is present for the

1/2
range 1,383 > Za > 1,254.
The critical value of the nuclear charge Zci, where

= -m_, has been determined in two different ways. First = .

E e

181/2
the zeroes of J(z) in eq. (3.14) have been determined as a function
of Za for z=-m +E€ with e/me = 0.05, 0.01, 0.001, 0.0001.

Then (Za)Cr is determined from the extrapolation to € = O. -This
method gave the value (Za)cr = 1,274587. The second method of cal-
culating (za)cr is based on deriving the asymptotic form of J(z)
for =z > -m, (e >0, v+ -») and determining the zeroes of J(z) in
that limit (24). From the relation between the upper and lower

components of the radial wavefunctions obtained from eq. (3.1), it

is easy to see that the condition J(z) = O is equivalent to

7 ! ] E
wi Y
= = , (6.1)
QA{ LY
r=R r=R
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where1only the upper components of the inner and outer wavefunctions
enter, and the prime denotes the derivative. This equations is con-
venient because the asymptotic limit (z - —mé) of the left-hand
side is calculable from the relation (24)

1lim P(“*l)was = 2Vx Kzs(z\/") , (6.2)

Q>

valid for 2B # integer and for real x > 0. Thus

W & {iy, Vé*—)

- (6.3)

1 zo-m KZB( Y8yr )
where the modified Bessel function KZB and its derivative are
calculable from the relations (22)

K (2Vx ) = [ T y (4Vx )

28 4Wf; 0,28

and

S d 1

& Vo,28(%) = F¥o,20%) -3V 26(x) - (6.4)

The solution of eq, (6.1) in the Emit z = -m_  with egs. (6.3 and
6.4) gives the value (Za)cr = 1.27,588 in very good agfeement with
the value determined from extrapolation. In addition to providing a
check on the calculation of (Za)cr, this agreement shows that the
nontrivial relations egs. (6.2, 6.4) are satisfied by the computed
Whittaker functions to a high degree of accuracy. Thé comparison of

(ZCI)cr from the two methods therefore provides one important test on
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the accuracy of the numerical techniques for computing the Wa 8
2
functions -(see section 7).

‘The calculation of the 1S /2 bound state wavefunection in the

1
range 1,275 E_Zd 3_1.086 is necessary not only for the calculation
of p13+' in eq. (2.22) but also for the calculation of the 181/2
energy shift due to the VP potential.*v Figure 4 has 4nr2|¢18' |2
plotted for several values of Zo in that range fof the case of the
model I nucleus with R = 10 fm under consideration here. As noted
in Ref, (2), one fest of the accuracy of the computed wavefunctions
(computed from the residues of the radial Green's function as discussed
in Section 3) is given by the value of their norm. As reported there,

all 1S and 2P /2 wavefunctions so computed were found to be

1/2 1
normalized to better than one part per 105. Another, more qualitative
test of the accuracy of thesé wavefunctions is given by the comparison
‘of the slope dE/dZ obtained from Fig. 3 to the approximation
~dE/dZ % o, (l/r) , where the expectation value (l/r) is
evaluated from the computed wavefunctions. Table III lists the.values
of the slope dE/dZ obtained in the two ways. The good agreement in
Table IITI gives further assurance that the 181/2‘ and 2P1/2 wave-
functions were correctly calculated. Finally, we note that the 131/2
wavefiunctions in Fig. 4 are in good qualitative agreement with those
calculated using more realistlic models of the nucleus (20).

For the study of the stability and localization of the helium-

like density Py B8S & function of Z in the neighborhood of Zcr’

See Table 1 of Ref. (2).
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we note that for ,Z'< Zcr

~12
o, = -2lellv ()< + 0
He 181/2 _ VP
= w2lellyy, @IFeeen (6.5)
1/2 » o
where pVP has been divided into two parts: DIBf, which includes the

contribution from higher orders for lk' =1, and P, which ineludes

the first order (Uehling) and the higher order, Ikl > 2 densities.
It is clear that P is a continuous function of 2 for around Zcr'*

Furthermore, the Uehling contribution is known (17}, and the ratio of

D?;! for Ikl 2_2 to 013+ is small (2). Thus, for the study of -
the continuity of P, around Z  We may neglect p in eq. (6.5).
The curves for pHe given in Fig. 2a of Ref. (2) for Z < Zcr are

thus obtained by adding to —2|e||¢is (r)|2 in Fig. 4 the VP
1/2 ’
density 013+ as computed from eq. (2.22). These VP densities are

plotted in Fig. 5 for several values of ZO& approaching

) (Za)cr = 1,27459. Note that these densities were also used in connec-~

tion with Table I of Ref._(Z). For Z > Zér, ﬁhe 181/2 wavefunction
in eq. (6.5) is no longer present and pHe is computed directly from
eq. (2.22) by setting Ple = 013+. The continuity of P,  as a
function of Z around Zcr may be seen from Table IV, where pHe
for several values of the radial coordinate are listed as a function
of Z. This table is intended to supplement Figs. 2a and 2b in Ref.

(2). The continuity of pHe has been expected on the basis of

The first discontinuity of P occurs for Z = Zcr(2P3/2)’ where the

2P state reaches the lower cohtinuum. This value of Z is

3/2
much large than Zcr(lsl/z) though (6JQ
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~general arguments presented by Muller et al, (7). What we have

pfesented.here are précise calculations demonstrating this fact,

7. Numerical Techniques

This section deseribes the numerical techniques that were used
to evaluate the Green's functions constructed in sections 3 and 4.

The calculation of Tr Gk in eq. (3.17) requires the calcula-

tion of the Whittaker functions M and W
. a,B o,8

techniques employed to calculate these functions are those discussed

in eq. (3.6). The

extensively in Ref. (13). With those techniques an accuracy.of better
than 10 deecimal places is achleved for the range of the arguments
needed in the present study. Tests on the accuracy of the subroutines
for calculating these functions include verification that those
functions satisfy particular recursion relations* and that they also
satisfy eq, (3.12) to more than 10 decimal places for a large range

~ of the arguments. Another test is described in section 6.

‘For the calculation of Tr G 1 and Tr G 3

k k’
in eq. (4.14) require the evaluation of exponential integrals

the integrals

>
I3

El(x) and . Chi(x). These functions are computed from the power
series representations eq. (5.1.11) and eq. (5.2.18) of Ref. (23) N
for x <1 and from the techniques described in Ref. (25) for x> 1.
The subroutines for these functions werevtested against tabulated.
values in Ref. (26). Again, better than 10 place accuracy was ‘achieved.
The calculation of the integrals Ij in eq. (4.8) requires a

numerical integration. All numerical integrations were done with a

Gauss-Legendre quadrature method (27]. This method is

See p. 303 and 304 of Ref. (22),
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particularly suited for the integrétion of fﬁnctiohs that are well
approximated by polynomials of relatively low degree on a giveh |
interval. This is beéause an n point quadratdre formula is designed
to gi&e the correct value of the integral fof a polynomial of degree
2n - 1, AThe accuracy of the numeriéal integratioh with an n point
formula for an arbitfary function is customarily estimated from the
variation ofvthe value of that integral as n is varied. This pro-
cedure was followed in the preseht work. Thus, if the value of an
integral changes only in,theveleventh decimal place as n 1is increased
to n+ 10 or n + 20, then the numerical integration is considered
to be acéﬁrate to ten places with the n point formula.

For>the integrals required in eq. (4.8), modification of the
integrands is required in order to achieve ten place accuracy with low
n, This is because many of the integrands contain terms such as
inverse powers or logarithms that are not directly suited for integra-
tion by Gauss-Legendre quadrature. However, thse terms are easy to
isolate in each integrand, and the integral over those terms may be
done analytically. The remainder of the integrand will contain only

terms such as r" or r" log r for m > 1, for which Gauss-Legendre

quadrature converges fast. To illustrate this procedure, consider the
integral
_ b
I (a,b) = ay ¥ (v), 3,7(y) (7.1)
572 y v2 ’ _ :
a

which is needed in the evaluation of I5 in eq. (4.8). As y~»> 0,

the integrand is of the form-




(—1-5-57)— [; (22 +1)y - +2) -] +o1) ,  (7.2)
c . .

as is easily seen from egs. (4.11, 4.14). While Gauss-Legendre
quadrature is not suitable for the terms exhibited in eq. (7,2), their

intégrai is trivial to do analytically. Thus, I5 is computed for

b <1l/c by
b
> > 22 + 1 2 l-21
1.7(a,b) = dy { y(wv) 3.7 (y) - + el
2 ? . Yy 2 (1 + Z)2 3y2 c 2y
2z +1 211 1 1-21 ’ ' A
,,mj[;_.s} ~io2 1o/ . (7.3)

With eq. (7.3), the number of quadrature points n found necessary to
achieve ten place accuracy for 15> in the range 0 <a <b <1/c
was n = 20. For large values of the argument (ey > 1), the integrand

in eq. (7.1) behaves as

2(1 - 2z)z e~2%Y

3 y

2ﬁ(2cy) . | (7.4)
e

However, because the exponehtial dominates this term, the presence of
the logarithm and inverse power do\not effect the convergence of the
numerical integration very much. In fact, ten place accuracy is
achieved for I5>(a,®) when a > 1/c¢c with a 30 point quadrature
formula applied to I5>(a,a . 20/c). Therefore,. I; (a,») for any

a > 0O may be computed to_tén place accuracy with a maximum of 50
evaluations of the integrand. This numerical integration is then very

rapidly perfofmed. There are altogether 19 integrals of this type that
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are required for the calculation of the 'Ij in eq. (4.8), All integ-
rals are hahdled in the manner ofvthe'abbve example.

A ceritical test of the accuracy of the so.computed Tr Gk’
Tr G 1, and Tr G 3 with the techniques described above is given by

k k
the comparison of the right- and left-hand sides of the equation

(G (y; *,75 2) - Gy (=ys T,7; z))

=,_2YTr_Gk‘1(r,r; z) + 2> Tr sz(r,r; z) + 0(y’) . | (7.5)

For a model I nucleus with R = 10 fm; the right- and left-hand sides
were computed for Y = Z¢ = 0,001 and r = aR with '{a = 0.01, 0.1,
0.3, 0.7, 1.0, 1.05, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0, 1000.0} and
z = iy with {y = 0.0, 0.5, 1;0, 2.0, 4.0, 10.0, 20.0, 40.0, 100.0,
500.0, 1000.0}. Better than ten place agreement was found between
the two sides‘for the range of variablés considered.

The contour integral along thg imaginary axis, which is
required for the calcualtion of pfkl and p?;l in eqs. (2.19'
2,22), is performed by dividing the interval (O,im) into two or
three segments and applying a 30 point quadraturg formula on each
interval; 'The integrands fall off roughly as 1/z5 rather than
exponentially, and conséquently, the .30 point formulas were found to
give five place accuracy; Of course, such accuracy is still quite
- adequate for the applications described in Sections 5 and 6. The
charge densities pfkl and .pfil were calculated for 60 values of
the radial coordinate in each of the intervals O <r<30R and

30R < r < 500 R. The 60 values in each interval were chosen to
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coincide with Gauss-Legendre quadrature points so that integrations
involving the charge densities (in the calculation of energy shifts
due to VP) could be done{immediately.

Finally, we note that all numerical calculations were done

with thé CDC 7600 at the Lawrence Berkeley Laborafory.
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Appendix 1

‘The calculation of the VP density.for the case of a constant
external potential V 1is discussed here in detail. The purpose of
this célculation is to supplement section 2B by illustrating the
properiies of the Green's function G that makes regularization of
eq. (2.6) necessary.

The Green's function GV for a constant potential V is
obtained from the free Green's_function ‘GO simply by shifting the
energy z to z - V, where ® is given by '

. . | . |
Go(f,ic'; z) = (-ioz-? + 8+ z) %’E’ o (1.1)

1
where A = |x - x'| and c¢ = (1 - 22)2,‘ Re(c) > 0. Then

Gv(g,lc'; z) GO(_{C)?E'; z-V) . (1.2)
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From eq. (I.1), it is clear that the limit A + O does not exist,

However, consider the Taylor series expansion of Tr GV in powers of

Ve

- _=cA 2
w Tr Gv(x,x'; z) = 28 - V(-];*- Z > e~ch
A c
V2 z ~cA
3z (1 +cp) | e
c '3

| 3 2 4 4
.V 3 Z Z 2z -cA
. _.B..(-c—5-+ A<6-c—2-+ 3-;:) + A -c—3- e .+ el . (1.3)

From this expansion, the singularity of Tr GV as A -+ 0 1is seen to
be confined to the terms of order zero and one in V. Note also that
the contour integral along the imaginary axis does not converge
absolutely until third order for A = O,

Consider now the calculation of the third order density p3

as in eq, (2.8). Then in units of -|e], p3 is given by

3 oo
pB(x) v dy {Tr G (x x'; 1y)}
v 127 e d(ly) '

= VB(-i) lim limf3—+-7(1+cA)
6? z+ico A'*O)

| (1.4)
From eq. (I.4), it is clear that depending on which order the limits
are taken, 03 = V3/31r2 or 0. For higher orders, though, a similar
calculation shows that pn =0 for n >4 independently of the order

of the limits, v
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To calculate the contribution plkl to Pyp consider eq.
(2.14). The trace Tr Gkv is obtained from Tr GkO 'in eq. (3.15)
again by shifting z ts, z -V, With referenée to egs. (3.4, 3.8,
3.13), we define

0
Dlx|

Hi

EEONERY Z),"; INCESED)

—220<3+(1cr<) hsl)(icr>) +‘j_(icr<) hgl)(icr>2) , (I.5)

H]

where *+ stand for |k + %4 - %@ - Then DY#I = D?kl(z - V). Again a
power series in V may be obtained by taking successive derivatives

0
of lel

absent for each |k| to any order in V. However, the calculation of

with respect to z. Note that the A + 0 singularity is

the first order density p?kl in eq. (2,17) gives

1 k|V ',
Pl {‘;L)?f ¥ 5T [lel‘” ”’]

rtor

n

_Elz—-(—Zl) lim  1im lel(r,r'; z) . , (1.6)

(2n gz*ie rlsr

If the limit rf + r 1is taken first, then from the high 2z 1limit of
eq.(I.5) for r. =r,, we get kaI =v|le/(ﬂr)2. - On the other hand,
if ' # r,‘then since the product jv(icr<) and hsl)(icr>)
decreases éxponentially for 3z > ix, we get p}kl = 0, ' Thus there is
an ambiguity associated with the calculation of pﬁk[, and hence,
regularization is required for first order. For higher orders, though,
it is easy to verify that terms of even orders vanish because even

derivatives of D?kl are odd functions of z and that terms of odd
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orders vanish because the.even derivatives vanish at .z =  iw, Also
there is no ambiguity associated with the interchange of limits for

the terms of higher orders.

Appendix IT

.The properties of Tr Gk given in eq. (3.19) as well as the
asymptotic form of b/J(z) in eq. (5.3) are derived here.

First, from éqs, (3.11, 3.13),. a =[?,(},?7}R. Since both
Wa,B(z) and h\()l)(iz) in egs. (3.6, 3.9) decrease expoﬁentially for
Re (z) » o (2_3), it follows at once that a + 0 as R = ,

The calculation of b in eq. (3.11) in the small R 1limit

is obtained from relations (22,23)

M _(x) = x8+%(l + O(x))

=
~
e
~
]

= r(2g) -B+% 1 + 0(x)
C!)B F(B +%.-a) X ( x)

¢ —tCB) BG4 o) (11.1)
P(-8 + 5 - ) :

for x O+. ‘Note that eq. (3.12) follows from the calculation of

["M,W]R with these relations, Restricting now to the case Yy < |k|

(s is real), the ratio b/J(z) in the small R 1imit may be written

from egs. (3.11, 3.12, 3.14, and II.1) as



1%““% 1

(ulfhjé i 42/ ) coul(z)

b/3(z) =

Ay J(8-v-k+tvy/e)h-(s-v+k-y/e) }
I\

Ro (B FVFE +y/c)-(5 -V FEk+ /)

2s Eiﬁl" v+1) 1
x (2¢cR) T(2s) 142) ’

(11.2)
cou

where A = (ﬁz/ﬁl)(l + z)/c. Note that corrections to the small .R
form in eq, (II.2) appear in orders R4S' and 'R28+1. For a model I

nucleus, the small R 1limit of A is found from eqs. (3.8, 3.9) to

s be

l+2z k .J-(Y)~

SSRar-aallh 13l R ¢ B

(II.3)

where Ji stand for jlktﬁl-%°

"From eq. (II.2), the second property of Tr Gy in eq. (3.19)
follows, since Tr AGk? > O(st) +0 as R~ 0. Note, howeve;, that
for Y>1, (2 >137), s is purely imaginary for |k| =1, ahd,
thus, the 1limit R * 0 does not exist.

Finally, eq. (5.3) is obtained by taking the m_ + 0 limit in
eq. (II.2). As described in section 5, this limit is taken by making
the following substitutions: for 2z =iy, y >0, 2z + 1~ iy,

e>y, v-=>1iy, k t y/e + k.
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(6)

)

(13)
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Table I. The finite size correction to the x| = 1 vacuum polariza-

tion denmsity for Pb, R =55 fm=1.42 X 107°x,. Ap is given

for three approximations: (1) m, #0, (2) m, = 0 and

(3) m, = 0, o(R/r). The first order correction. Apl is also

listed for me # 0. The radius is measured in fe and the quan-

tities ‘z‘_'z_Ap. are given in units of -I,n[el/’Xe.

r2Ap I‘2Ap (me=0 ) r2Ap (me=,0 ,O(R/r )) : r2Ap 1
1.51 ¥ 1072} 8.15 x 10° | 8.15 x 10° 4.35 x 100 8.05 x 10°
4.56 x 1072} 3.16 x 1071 3.6 x 101 | 2.45 x 1071 | 2.74 x 1072
1,14 x 1071 2,56 x 102 | 2.55 x 1072 ]  2.28 x 2072 | 1.7 x 1072
2,99 x 101} 1.92 x 102 {1.92 x 1073}  1.83 x 103 | 9.55 x 107
4.27 x 10711 7.39 x 1074 | 7.51 x 1074 |  7.26 x 1074 ] 3.23 x 107
6.95 x 10711 1.91 x 10741 2,00 x 1074 |  2.05 x 107 | 6.9 x 107
1.03 x10° | 5.7 x 107 1 7.43 x 1077 |  7.33x 107 | 1.82 x 107
2,50 x 100 | 1.3 x 100 7.3 x 10| 7.20 x 10 | 3.15 x 207
4.55 x 10° | 1.63 10781 1,55 x 1076 | 1.54 x 20 3.13 X 1072
7.02 x 10° | 9.80 x 107 4.99 x 1077 | 4.98 x 1077 {1.64 x 107t




Couvuod2u4d] 29

53~
Table II, The = |k| =1 vacuum polarization density times r° for Pb
(mOdel'I, R = 5;5 fm) in the range 0 < r < 500 RI The contributions
from third order and orders n 3_3 are listed separately in units

of 4mlel/Xx as functions of r (in units of X ).

r o ‘ r2p13 £2p13+
1,6875 x 1074 | 21,8351 x 1077 -1.9439 % 1077
2.1817 x 1072 ~3.0541 x 1073 -3.2450 % 107>
6.4730 x 107° | -2.5196 x 107 -2.6746 x 1072
1.2997 x 1072 ~7.7206 x 10”2 -8.1857 x 107°
1.7075 x 1072 -9.2082 x 1072 -9.7962 x 1072
2.6808 x 107> | -7.4151 x 1072 -8.0434 x 1072
3.8554 x 102 | —4.6475 x 1072 | ~5.1769 x 1072
6.7561 x 1072 -1.5718 x 1072 | -1.8589 x 1072
1.0285 x 10°% 4,493 x 1073 | -5.7939 x 1073
1.4290 x 1070 | -7.5815 X 1070 | -52797 x 1074
1.6417 x 107* % 1.0772 % 1072 ; 8.8277 x 1074
2.0810 x 100 | 2.3900 x107  : 2.5152 x 107
2.8439 x 1071 J.2348 x 1003 | 3.5007 x 1073

3.6762 x 1071 | 3.4147 x 1072 3.8399 x 1072 |

e e A b b S AR s b WA B
e T At A o

4.2081 x 10~ 3.3712 x 1072 3.8013 X 1072
6.9479 x 1071 2,6325 X102 | 2.9663 x 107 |
1.0313 x 00 | 1.7118 x 107 % 1.9183 x 102 |
2.0386 x 10° é 3.8784 X 107% | 4.2928 x 1074
4.0348 x 100 % 1,6036 X 1077 1.7329 x 1077
55100 x10° | 1,608 x 108 1.6946 x 107
7.0200 x1® | 1.9882 x 1077 2,0379 x 1077

—
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Table III, Slope dE/dz of curves in Fig. 3

" for 1S

1/2

~54m

and '2?1/2 statgs for.

R =10 fm compared to épproximationl

Qime <l/r)' in units of keV.

Zo -3dE/dz qme(l/r> state
0.95 8 | 8 181/2
1.12 15 16
1,205 21 22
1.27445 27 28
1.27445 25‘ | 26 2P,
1,28 25 26
1.295 27 28
1,38 35 37

S
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- Table IV, Computed values of 4“1‘29}{(;(1‘) .in units -
~ of —]el_/ﬂ(e as a.'f‘unction-of Zc'x. fop'different
values of r (in units °£. k;). These values
show the continuity of Py @round

> | -(Za)cr.f.;i2745?.

e

9\%@ 1.2732 | 1.27445 | 1.27545 1.28

0,003 | 0,1082 | 0,1091 |..0.1097 0.1124
0.0261 | 3.838, | 3.8671 3.8901 3.9959
0.0681 | 6.4124 | 6.4495 6.4791 6.6144
0.1505 | 5.0467 | 5.0600 | 5.0705 | 5.1160
0.4035 | 1.6789 | 1.6726 1.6676 | 1.6448

'1.0330 | 0.1852 | 0.1831 0.1815 0.1742
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FIGURE CAPTIONS

.Singularities of the Green's function in the complex energy

plane and contours Co,' Cyo» @nd I giving the VP and

helium-like charge densities in units of |e],
Feynman graphs corrésponding to pyp to lowest order (a) -
and higher orders .(b) in Zd, wvhere X denotes the nuclear

charge form factor,

Energy eigenvalues for the 151/2 and 2P1/2 states as a
function of Zo for a model I nucleus with R = 0.0, 0.1,

"and 10,0 fm.

The 1S wavefunctions for several values of "y = Za

1/2
approaching (Zd)cr = 1,27459 . for a model I, 10 fm nucleus.
The |k| =1 VP density for orders (Za)”, n >3, for

several values of Yy = Za corresponding to Fig. 4.

<
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights. '
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