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ABSTRACT 

The Effect of Growth Differentiation Factor 6 on the Epithelial-to-Mesenchymal Transition 

in Retinal Pigmented Epithelium 

By 

Amanda Mae Hurley Timm 

As retinal pigmented epithelium (RPE) cells are passaged, they undergo an 

irreversible epithelial-to-mesenchymal transition (EMT). We have shown previously that 

growth differentiation factor 6 (GDF6), a member of the transforming growth factor-beta 

(TGFβ) family, is highly upregulated in RPE cells that have lost the capacity to obtain an 

epithelial phenotype. We hypothesize that GDF6 plays an integral role in the irreversible 

transition of an RPE cell from an epithelial state to a mesenchymal state. 

To test this hypothesis, we overexpressed GDF6 in differentiation competent RPE 

and assessed the effects on phenotype and gene expression. To evaluate what receptors 

and signaling pathways might mediate GDF6’s effects, cells were also treated with an Alk5 

inhibitor (Repsox), an Alk2/3/6 inhibitor (LDN-193189), or both in combination. Passage 0 

RPE transduced with GDF6 produce significantly less pigmentation than cells infected with 

an empty vector control. This reduction in pigmentation is accompanied with a change in 

cell morphology; the control cells maintain a cuboidal morphology and the GDF6 expressing 

cells have a spindle-like morphology. Quantitative PCR analysis reveals that RPE cells 

transduced with GDF6 significantly upregulate known EMT markers like ACTA2, CTGF, and 

COL1A1 and downregulate classical RPE markers such as LRAT and PMEL compared to 

control cells. Both RepSox and LDN-193189 have the ability to reverse the GDF6 phenotype. 
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While the phenotype is recovered, RNA-seq analysis reveals GDF6-mediated regulation of 

genes that are unaffected by inhibitors, such as TGFβ1, MSX2, and CDH1.  

GDF6 is involved in the EMT process in RPE. We believe GDF6 upregulates TGFβ1, 

which in turn promotes EMT. The ability to revert back to an epithelial cell is inhibited by 

GDF6. Cells exposed to GDF6 will prematurely undergo EMT, simultaneously 

downregulating traditional RPE markers while upregulating EMT and wound response 

markers. Inhibition of the BMP receptors rescues the GDF6 phenotype, therefore inhibition 

of GDF6 may be integral in prolonging the integrity and functional lifespan of the RPE. As 

such, inhibition of GDF6 may help restore RPE to their epithelial state in diseases which 

affect RPE such as proliferative vitreoretinopathy and age-related macular degeneration.  
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CHAPTER I: Introduction 

1.1: Retinal Pigmented Epithelium (RPE) 

 The retinal pigmented epithelium (RPE) is a monolayer of highly pigmented 

epithelial cells located in the back of the eye, residing between the photoreceptor layer of 

the retina and Bruch’s membrane (BM). RPE cells have a very distinctive appearance—in 

addition to the accumulation of melanosomes contributing to the coloring of the cells, the 

cells are also hexagonal, resulting in a cobblestone-like structure. This monolayer is 

polarized, with the apical surface of the cells containing two types of microvilli and the basal 

surface containing multiple invaginations [1]. The apical side of the monolayer interacts 

with photoreceptor outer segments while the basal side faces the fenestrated choroid. RPE 

cells are vital in maintaining the homeostasis of the eye primarily through providing a 

barrier between the choroid and the retina, acting as a support cell by providing and 

transporting nutrients as well as phagocytosing photoreceptor outer segments, and by 

participating in the visual cycle [2, 3]. 

1.1.1: Barrier Function 

 A terminal maturation of the RPE, along with BM and choroidal blood vessels, 

establishes the outer blood-retina barrier (oBRB) [4]. The formation of this barrier is key for 

the regulation of nutrients and waste between the retina and choroid. One of the crucial 

features of oBRB development is the establishment of tight junctions, which not only 

maintains the polarity of the cells but also limits paracellular movement of ions and water 

across the monolayer [5]. The barrier ability of tight junctions allows for a concentration 



2 

gradient to be established between the apical and basal side of the monolayer [6]. The 

permeability of tight junctions is not the only way to move solutes from one side of the 

oBRB to the other; solutes can move through the oBRB using facilitated diffusion, active 

transport, transcytosis, or solute modification [7].  

 RPE barrier function is essential for transport from the blood to the retina and from 

the subretinal space to the blood. The oBRB, specifically the RPE layer, allows for absorption 

of fluid from the subretinal space, preventing retinal edema and detachment [7-9]. Glucose, 

retinal, and fatty acids are all taken up from the blood by the RPE and transported to the 

photoreceptors [2]. Breakdown or dysfunction of the oBRB can cause an imbalance of ions 

and nutrients in both the choroid and retina. The loss of a barrier cell layer is thought to be 

the root cause of many diseases in the eye, such as diabetic retinopathy and age-related 

macular degeneration (AMD) [10, 11]. A functioning barrier is necessary not only for disease 

prevention but also for the RPE cells to perform vital functions like nutrient regulation and 

participation in the visual cycle. 

1.1.2: Support 

 RPE cells support both the photoreceptors in the neural retina and the endothelial 

and immune cells of the choroid. One way in which the RPE provide support is through 

polarized secretion of proteins and growth factors. RPE apically secrete matrix 

metalloproteinases, hyaluronan, aB crystallin, and pigment epithelium-derived factor 

(PEDF) [12]. PEDF is critical in maintaining the health of normal retinas through its 

neuroprotective, antiangiogenic, and anti-senescent functions [13]. Loss or altered 

expression of PEDF has been associated with the pathogenesis of AMD, so correct 



3 

expression by RPE is crucial in maintaining a healthy eye [14]. Basolateral secretion of 

growth factors and proteins from the RPE include fibroblast growth factor 5 (FGF-5), 

endothelin I, cystatin C, and vascular endothelial growth factor (VEGF) [12]. VEGF is a 

vascular permeability and angiogenesis factor and is essential in maintaining the 

fenestrated choriocapillaris [15, 16]. Breakdown of the RPE barrier may lead to the 

expression of VEGF in the subretinal space which causes neovascularization within the 

retina, leading to blindness [17]. Secretion of polarized growth factors and proteins is just 

one way in which the RPE support the surrounding tissue. 

 Another way the RPE provide support to neighboring cells is through phagocytosis of 

photoreceptor outer segments. RPE, due to their senescent nature and support of multiple 

photoreceptors per cell, are considered to be the most phagocytic cell in the body [18]. 

Photoreceptors are constantly forming new outer segment disks and elongating their outer 

segments. The RPE, in turn, remove the most distal tip of the outer segment, participating in 

the outer segment renewal process [19]. Defects in the phagocytic ability of RPE impair 

retinal function and can lead to complete retinal degeneration and blinding disorders such 

as retinitis pigmentosa [20, 21]. RPE cells are central in the support and maintenance of the 

photoreceptors, and this dependent relationship is necessary for processing visual cues. 

1.1.3: Visual Cycle 

 The RPE are essential components of the visual cycle as they re-isomerize all-trans-

retinal (vitamin A) to 11-cis retinal [2]. Phototransduction begins with the absorption of 

light by visual pigments (rhodopsin and cone opsins) in the photoreceptors, where capture 

of light results in the isomerization of 11-cis retinal to all-trans retinal [22]. Lecithin retinol 
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acyltransferase (LRAT) helps the RPE uptake retinoids from both the choroid and the 

photoreceptors, and retinoid isomerase (RPE65) catalyzes all-trans retinal to 11-cis retinal 

[23]. The cycling of vitamin A analogs between RPE and photoreceptor cells replenishes 11-

cis retinal for sustained phototransduction [24]. Dysfunction in the pathway, either in RPE 

or photoreceptors, has been linked to numerous blinding disorders [22].  

1.1.4: Age-Related Defects 

 RPE have been known to undergo a variety of age-related changes, including loss of 

melanin granules, the formation of drusen, microvilli atrophy, and accumulation of 

lipofuscin, among other changes [25]. As RPE density decreases by up to 0.3% a year, the 

RPE struggle to maintain a proper barrier function, increasing their size to fill the gaps [26, 

27]. If the wound is too large to fill, RPE will attempt to proliferate to close the wound [28]. 

Aged RPE have shown defects in repairing large holes in the monolayer and instead undergo 

atrophy or a fibrotic mesenchymal differentiation [29, 30]. AMD, the most common blinding 

disorder in the developed world, is directly associated with aging of the RPE [31]. 

1.2: Epithelial-to-Mesenchymal Transition (EMT) 

 The epithelial-to-mesenchymal transition (EMT) is a phenomenon in which 

stationary epithelial cells take on a mobile mesenchymal-like state. EMT transforms the cell 

through disruption of their cell-cell junctions, loss of apical-basal polarity, the disintegration 

of the underlying basement membrane, and reorganization of the extracellular matrix 

(ECM) [32, 33]. One of the hallmarks of EMT is the repression of E-cadherin (CDH1), 

occludins, and cytokeratins and activation of N-cadherin (CDH2) and vimentin (VIM), 

converting the cell from a cuboidal morphology to a spindle-shaped cell [32, 34]. This 
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transition allows for the resulting cell to be migratory and invasive, a trait needed in 

development and wound healing but unwanted in cancer. This process was initially called a 

transformation, indicating that the process was not reversible [35]. However, another 

phenomenon, known as the mesenchymal-to-epithelial transition (MET), led to a change in 

terminology to transition, indicating the potential for the process to be reversed [36, 37]. 

EMT is subdivided into three types: EMT during development (Type 1), EMT during wound 

healing and fibrosis (Type 2), and EMT in cancer (Type 3). 

1.2.1: Type 1 EMT 

 Type 1 EMT is found during implantation, embryogenesis, and organ development of 

an organism [38]. Gastrulation of the embryo is the first instance of EMT as cells from the 

epiblast form the primitive streak, which undergoes EMT to form mesoderm and endoderm 

[39]. Neural crest cells, which can give rise to melanocytes and the peripheral nervous 

system, undergo EMT from the dorsal neural epithelium, allowing cells to migrate before 

differentiation [34]. Subsequent rounds of EMT are then initiated to form other 

mesodermal structures such as cardiac valves and the secondary plate [40]. 

1.2.2: Type 2 EMT 

 Wound healing and organ fibrosis is Type 2 EMT, or EMT that occurs after 

development. In Type 2 EMT, epithelial cells become myofibroblasts in order to repair 

injured tissues; if the wound is small it is reparative fibrosis, but if there is chronic injury and 

inflammation the myofibroblasts can cause progressive fibrosis and lead to organ 

destruction [41]. EMT is a necessary process to repair a disrupted epithelial layer; however 

aberrant wound healing can lead to disease. Fibrotic diseases of the kidney and lung as well 



6 

as fibrotic diseases of the eye, including AMD, are induced by Type 2 EMT [38, 42]. Growth 

factors such as fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), and 

transforming growth factor-beta (TGFb) have been known to induce EMT and are often 

expressed by inflammatory cells [36]. Inhibition of these growth factors, primarily TGFb, is a 

target for the prevention of fibrosis [34]. 

1.2.3: Type 3 EMT 

 Metastasis of cancer is related to the migration and invasion of cancerous cells into 

other tissues. Type 3 EMT is linked with cancer progression from normal epithelium to 

invasive carcinoma [38]. Unlike internal induction of EMT in development, cancer cells are 

believed to undergo EMT based on external factors [43]. Metastasis can be broken down 

into five steps: invasion, intravasation, systemic transport, extravasation, and colonization 

[43]. Early-stage carcinomas are generally in an epithelial state and take on more 

mesenchymal features as tumor progression continues [32]. However, there is doubt and 

skepticism about the role of EMT in cancer, especially because metastases often appear 

histologically identical to the original tumor [44]. In order for the metastases to be identical, 

the tumor cells must undergo an EMT in order to migrate to their new location, and then 

undergo MET to revert to an epithelial state [45]. This phenomenon has been observed in 

colorectal cancer, providing proof to the hypothesis that EMT of cancerous cells leads to 

metastasis [46]. Understanding both EMT and MET are necessary to understand and 

prevent the spread of cancer. 
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1.2.4: Mesenchymal-to-Epithelial Transition (MET) 

 The mesenchymal-to-epithelial transition is the opposite of EMT, lending to the 

reversibility of the phenomenon. Mesenchymal cells can achieve apicobasal polarity 

through the establishment of tight junctions and expression of epithelial markers like CDH1 

[32]. MET is present in morphogenesis and organogenesis, pairing with EMT to create 

multiple cell types [37]. Specifically, MET is critical in somitogenesis, cardiogenesis, and 

hepatogenesis [47]. Additionally, the reprogramming of fibroblasts to induced pluripotent 

stem cells requires MET [48]. MET is also an essential part of successful wound healing, as 

the epithelial layer needs to reestablish itself after closing the wound [32]. Understanding 

the mechanisms behind EMT and MET can prove helpful when trying to prevent aberrant 

wound healing and in stopping cancer progression. 

1.3: Transforming Growth Factor-Beta (TGFb) Superfamily 

 Over 30 secreted dimeric ligands comprise the TGFb superfamily, and it is grouped 

into multiple subfamilies: the TGFb protein family, bone morphogenic protein (BMP) family, 

growth differentiation factor (GDF) family, activin and inhibin family, glial cell-derived 

neurotrophic factor (GDNF) family, as well as anti-Mullerian hormone (AMH) and nodal [49]. 

All members of the superfamily are synthesized as a large precursor molecule, with the pro-

domain undergoing cleavage to produce an active ligand. The TGFb proteins and GDF8 are 

different from the rest of the family in that they are secreted as an inactive precursor and 

are subsequently cleaved into a latent and mature peptide which remains covalently 

attached to prevent unwanted signaling through the receptor [50]. The active domains of 
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the TGFb superfamily proteins contain six intra-strand disulfide bonds, forming a 

characteristic “cysteine knot” folding motif [50]. 

 The ligands bind to serine/threonine kinase receptors located on the cell surface. 

There are two groups of receptors that the TGFb superfamily can bind to: type I receptors 

(Activin-like kinase; Alk) and type II receptors. The receptors form heterotetrameric 

complexes of two type I and two type II receptors upon binding of the dimeric protein [51]. 

The close interaction of the receptors promotes type II receptor phosphorylation of the 

type I receptor, which then goes on to phosphorylate members of the receptor-activated 

Smad (R-Smad) family [51]. Though there is a high diversity of ligands, there are few 

receptors to interact with; only five type I receptors and seven type II receptors are present 

in mammals [52]. This sameness leads to differing affinities for receptors and multiple 

combinations of receptors, which can help explain the diversity in signaling responses to 

TGFb superfamily members [50, 53, 54]. Additionally, the TGFb superfamily can also 

participate in non-canonical signaling through the mitogen-activated kinase (MAPK) 

pathways, Rho-like GTPase pathways, and phosphatidylinositol-3-kinase/AKT pathways [55, 

56]. 

1.3.1: TGFb Proteins 

 TGFb1, TGFb2, and TGFb3 are the three isomers that make up the TGFb subfamily of 

proteins. These three proteins are synthesized as pre-pro-peptides that contain a signal 

peptide, a latency associated peptide (LAP), and the active peptide. Before secretion, the 

TGFb proteins form a pro-peptide homodimer containing two LAP chains and two active 

peptide chains [57]. The LAP chains are separated from the active peptides by the enzyme 
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furin in the Golgi apparatus and proceed to form a large latent TGFb complex, facilitating 

the export of TGFb out of the cell [57, 58].  

 The TGFb proteins are secreted in an inactive form and must be converted to a 

biologically active form. Several molecules have been hypothesized to activate the TGFb 

isoforms, including plasmin, thrombospondin-1 (TSP-1), reactive oxygen species, changes in 

pH, and the integrin avb6 [58, 59]. Once the protein is in its active form, it can interact with 

its receptors and participate in signal transduction. TGFb proteins often signal through the 

canonical type I receptor Alk5 but have been known to signal through Alk1 in endothelial 

cells [60, 61]. Canonical TGFb signaling results in the phosphorylation of the R-Smad2/3. 

 TGFb proteins play many roles in the eye, from development to disease. TGFb 

signaling is necessary in retinal development as it protects retinal neurons from 

programmed cell death [62]. Proper differentiation of lens epithelial cells also requires TGFb 

signaling as prevention of signaling causes nuclear cataracts [63]. However, various fibrotic 

eye diseases and EMT of RPE is associated with TGFb signaling in the mature eye [64]. TGFb 

expression has been directly linked to the wet form of AMD, choroidal neovascularization 

(CNV), as well as proliferative vitreoretinal diseases [65, 66]. Inhibition of TGFb proteins 

may be critical in preventing blinding disorders of the eye. 

1.3.2: Bone Morphogenic Proteins (BMPs) and Growth Differentiation Factors (GDFs)  

 BMPs and GDFs constitute the largest TGFb subfamily with over 20 different 

proteins. The subfamily is further divided into at least four subgroups based on sequence 

similarity: BMP2/4, BMP5/6/7/8, BMP9/10, and BMP12/13/14 (GDF 5/6/7) [67, 68]. The 

prodomain does form a complex with the BMP peptide to exit the cell but unlike TGFb 
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proteins, does not need to be activated in the extracellular matrix (ECM) [69]. This complex 

allows for sequestration of BMPs in the ECM, and complete activity may require the release 

of the protein from the ECM [68]. BMPs can signal through three different type I receptors 

Alk3 (BMP type 1A receptor; BMPR1A), Alk 6 (BMP type 1B receptor; BMPR1B), or Alk2 

(type 1A activin receptor; ActRIA) and three type 2 receptors BMPR2 (BMP type 2 receptor), 

type 2A activin receptor (ActRIIA), and ActRIIB (type 2B activin receptor) [67]. Binding and 

phosphorylation of these receptors result in the phosphorylation of (R)-Smad1/5/9. 

 Proper development of the eye requires both positive and negative regulation of 

BMP signaling [70]. BMP4 controls the patterning of the dorsoventral axis of the retina; 

BMP4 expression results in dorsal features and inhibition of expression, possibly through 

antagonists ventroptin or noggin, produces ventral features [71]. BMP4 and BMP7 both 

induce optic cup formation and lens induction [67]. Disease of the mature eye often results 

from expression of BMPs, similar to what is seen with TGFb proteins. For example, GDF5 

and BMP7 have been affiliated with osseous metaplasia, or bone development in the eye 

[72]. 

1.3.3: Activins and Inhibins 

 Activins and inhibins encompass another prominent subfamily of the TGFb 

superfamily. Both share a common b subunit, of which four isomers exist. Activins are 

composed of a homodimer of b subunits and inhibins are a heterodimer of a and b 

subunits. As seen with other TGFb family members, synthesis of activins and inhibins 

includes the creation of a pro-peptide, cleavage of the pro-domain from the active peptide, 

and complex formation to shuttle the protein out of the cell, protecting the active protein 
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dimer from degradation in the ECM [73]. The ligands can bind to two different type II 

receptors (ActRIIA or ActRIIB) which induces binding to the type I receptors Alk4 or Alk7 

[74]. Phosphorylation of (R)-Smad 2/3 occurs upon phosphorylation of the type I receptor. 

 As seen with the other TGFb superfamily members, both eye development and 

disease of the eye involves activin signaling. Activin signaling promotes eye field 

specification and differentiation of retinal progenitor cells from embryonic stem cells [75]. 

However, activin is a potent inducer of mesenchyme and thus linked with many fibrotic 

diseases of the eye [76, 77]. In CNV, an increase in activin expression correlates with an 

increase in vascular endothelial growth factor (VEGF), a known marker of the disease [78]. 

Activin A is also found to be involved in proliferative vitreoretinal diseases, regulating tissue 

fibrosis and angiogenesis [79]. 

1.3.4: Canonical Signaling 

 The canonical signaling pathway of the TGFb superfamily involves phosphorylation 

of Smad proteins (Figure 1.1). Smad proteins can be classified into three groups: R-Smads, 

common-mediator Smads (Co-Smads), and inhibitory Smads (I-Smads). R-Smads consist of 

Smad1, Smad2, Smad3, Smad5, and Smad9 (also known as Smad8), Smad4 is a Co-Smad, 

and I-Smads include Smad6 and Smad7 [80, 81]. The combination of type I and type II 

receptors determine what ligand binds and what R-Smads are phosphorylated. The type II 

receptor is constitutively active, and ligand binding induces recruitment and subsequent 

phosphorylation of serine and threonine residues on the type I receptor [82].  
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 R-Smads (Smad 1/2/3/5/9) are recruited to the type I receptor where 

phosphorylation occurs at the extreme C termini, allowing for heterotrimeric complex 

formation with other Smads and with Smad 4, a mediator Smad [83]. Activated Alk4/5/7 

phosphorylate Smad2/3 while Alk1/2/3/6 phosphorylate Smad1/5/9 [84]. Smad2/3 proteins 

remain accessible to the receptors through immobilization by the Smad anchor for receptor 

activation (SARA), and phosphorylation of the proteins causes dissociation of Smad2/3 from 

the SARA complex [85, 86]. Smad4 has a nuclear import signal, thus enabling the newly 

formed heterotrimeric complex to enter the nucleus where the Smad proteins can bind to 

DNA and affect gene transcription [87]. 

 
 

 
 

Figure 1.1. Canonical signaling of the TGFβ superfamily. Upon binding of the ligand to the 
appropriate type II receptor, phosphorylation of the type I receptor occurs, inducing 
phosphorylation of the receptor-activated Smads (Smad2/3 or Smad1/5/9). The 
phosphorylated Smad proteins then form a heterotrimeric complex with the co-Smad 
Smad4, allowing for transport into the nucleus where the Smad proteins can bind to DNA 
and affect gene transcription. 
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 I-Smads are directly induced by and mediate negative feedback in TGFb signaling 

[83]. I-Smads can directly block signaling through competitive inhibition of the type I 

receptor sites with R-Smads [88]. Indirect methods of silencing Smad signaling include 

prevention of heterotrimeric complex formation with R-Smads and co-Smads, 

transcriptional regulation in the nucleus, and down-regulation of type I receptors [89]. 

Diseases associated with fibrosis, autoimmune disorders, and cancer are linked to 

dysregulation of Smad signaling [90-92]. 

1.3.5: Inhibitors 

 In addition to the inhibitory Smads, a number of ligands can modulate Smad 

signaling. Decorin (DCN) is a proteoglycan found in the ECM and is primarily synthesized by 

fibroblasts, smooth muscle cells, and stressed vascular endothelial cells [93]. DCN 

antagonizes members of the receptor tyrosine kinase (RTK) family such as EGFR, insulin-like 

growth factor receptor I (IGF-IR), and hepatocyte growth factor receptor (Met) and has 

been observed to sequester growth factors, including TGFb1 [93]. DCN is thought to disrupt 

TGFb signaling through an increase in calcium signaling, which causes activation of 

calmodulin-dependent protein kinase II and subsequent phosphorylation of Smad2 at a 

negative regulatory site [94]. Another inhibitor of TGFb protein signaling is the morphogen 

lefty. Lefty can inhibit Smad2 phosphorylation as well as downstream signaling events, like 

the formation of the heterotrimeric complex with Smad4 and nuclear localization, without 

upregulating inhibitory Smads [95]. 

 While activin signaling induces phosphorylation of the same Smad proteins as TGFb 

signaling (Smad2/3), inhibition occurs by a different mechanism. Follistatin (FST) complexes 
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with activin and covers its receptor binding domain, preventing binding to the type II 

receptor and inhibiting signaling [96]. FST has the highest affinity for activin but has also 

been observed to bind with myostatin (GDF8) and BMP2/4/6/7 [97]. The BMP antagonist 

noggin also inhibits through direct binding. Noggin can bind to and inactivate BMPs by 

blocking the binding sites to both the type I and type II receptor, similar to FST [98, 99]. 

Chordin, another BMP antagonist, blocks the receptor binding sites of BMPs by forming a 

horseshoe-shaped complex around the BMP [100, 101]. 

 The differential screening-selected gene in neuroblastoma (DAN) family is comprised 

of seven BMP antagonists: Nbl1, uterine sensitization-associated gene 1 (USAG-1), Coco, 

Cerberus, sclerostin (SOST), Gremlin, and Gremlin-2 [102]. Different members of the family 

exhibit differing affinity for the BMP ligands; Gremlin, Coco, and Gremlin-2 all show 

preference to BMP2/4/7 whereas Nbl1 has an affinity for BMP2/4 and GDF5 [102]. Unlike 

Noggin whose antagonistic region for BMP7 lies within its N-terminus, DAN family members 

inhibit BMPs through amino acids located in their DAN domains [103, 104]. The mechanism 

of action of BMP inhibition by the DAN family is still undetermined, but it is likely to prevent 

binding of BMPs to their receptors by blocking the receptor binding sites and forming a 

complex with the ligand. 

1.4: An in vitro Model for EMT in RPE 

 The culture of RPE in vitro can elucidate mechanisms of diseases like AMD and 

provide the potential for new therapeutics through drug screening. In order to understand 

disease pathology and progression, a model for the disease must be established. Radeke et 

al. (2015), was able to induce a mesenchymal transition in RPE using a passaging model 
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simulating a chronic wound response [105]. They found that constant subconfluent culture 

reduced the ability for RPE to differentiate, with the RPE losing their ability to pigment after 

a couple of passages (Figure 1.2 A). By passage 5 (P5), RPE were no longer able to maintain 

their RPE phenotype, instead exhibiting mesenchymal traits like a spindle-like shape and 

loss of a cuboidal morphology (Figure 1.2 B). Interestingly, passage 0 (P0) RPE (RPE that can 

differentiate into a healthy monolayer) and P5 RPE have similar morphologies after three 

days when plated at a low density, suggesting that both passages of RPE undergo EMT. 

 

 
 

Figure 1.2. Sustained subconfluent culture reduces the differentiation capabilities of RPE. 
(A) Whole-mount images of 3 RPE donors that were serially passaged. At each passage, 
RPE were plated at 80,000 cells/cm2 and allowed to differentiate for 64 days. (B) Phase 
contrast images of Passage 0 (P0) and passage 5 (P5) RPE. RPE were plated at a low density 
(4,000 cells/cm2) and imaged after 3 days or plated at a high density (80,000 cells/cm2) and 
imaged after 32 days of differentiation. Images were reproduced from a previous 
publication [105]. 
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However, the P0 cells can undergo MET and regain their epithelial phenotype when induced 

to differentiate. 

 

 This led Radeke et al. (2015) to further investigate the differences between P0 and 

P5 RPE, specifically the changes in gene expression between the two populations [105]. 

Transcriptome profiling revealed that nearly two-thirds of genes were differentially 

expressed with a fold change greater than or equal to two between the two passages 

 
Figure 1.3. Transcriptome profiling and cluster analysis of P0 and P5 RPE. Microarray 
analysis was performed on P0 or P5 RPE plated at a low density (4,000 cells/cm2) and 
harvested after 3 days or plated at a high density (80,000 cells/cm2) and allowed to 
differentiate for 16, 32, or 64 days before harvesting. Genes were placed into clusters 
using AutoSOME 2.1, and individual clusters were manually placed into larger 
expression groups. The color scale indicates the expression level as a percentage of 
the maximum expression value for the gene. Images were reproduced from a previous 
publication [105]. 
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(Figure 1.3). Clustering analysis revealed classes of genes specific to either P0 or P5 RPE. 

Clusters A-C are comprised of genes specific to P0 cells and/or normal RPE differentiation; 

these genes fall into categories such as RPE differentiation, neuron development, DNA 

replication, and zinc finger proteins. Cluster D showcases genes relating to EMT as both P0 

and P5 RPE express these genes while they have a mesenchymal appearance (3 days), but 

P0 RPE begin to downregulate these genes upon initiation of differentiation. Cluster E is one 

of the most interesting clusters as it highlights genes specific to P5 RPE maturation where 

cells exhibit a terminal, fibrotic EMT phenotype. This cluster includes genes related to the 

ECM, blood vessel development, and cell adhesion.  

 In order to provide a therapeutic approach for diseases in which RPE undergo EMT, 

we need to understand what causes RPE to be pushed towards a fibrotic state, preventing 

the cells from undergoing MET. Radeke et al. (2015) examined the genes in clusters D and E, 

looking for genes that were not present in the P0 population but were highly expressed in 

P5 RPE [105]. TGFb family members were given special attention as mesenchymal RPE given 

A-83-01, a TGFb type I receptor inhibitor (Alk4/5/7), were able to undergo MET and 

differentiate into a healthy RPE monolayer, suggesting members the TGFb family inhibit 

MET in RPE (Figure 1.4). TGFb1 and TGFb2 were both present in P5 RPE, but they did not 

exhibit a large increase in expression levels as a function of passage (Figure 1.5). However, 

growth and differentiation factor 6 (GDF6/BMP13) exhibited an expression profile matching 

the requirements for an inhibitor of RPE differentiation: no expression in P0 RPE and high 

expression in P5 RPE. This makes GDF6 an ideal candidate to target to promote healthy RPE 

differentiation in passaged cells. 



18 

 

 
Figure 1.4. Inhibition of TGFβ signaling extends and restores the RPE phenotype. (A) 
Whole culture photographs of differentiated RPE. RPE were serially passaged and 
supplemented with 500 nM of the TGFβ inhibitor A-83-01 or normal media. Cells were 
plated at a high density (80,000 cells/cm2) at each passage and allowed to differentiate for 
32 days. RPE passaged in normal media were also placed into a media containing A-83-01 
and allowed to differentiate. (B) RT-qPCR analysis of healthy RPE (blue gene symbols) and 
RPE wound response (yellow gene symbols). The blue color scale indicates the percent 
maximum expression of the gene, with the maximum normalized amount listed in the 
right column titled “Amount”. Images were reproduced from a previous publication [105]. 
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1.5: Growth Differentiation Factor 6 (GDF6) 

 Growth differentiation factor 6 (GDF6/BMP13) is a member of the bone 

morphogenic protein subfamily, participating in canonical Smad1/5/9 phosphorylation. 

GDF6 was first discovered, along with GDF5 and GDF7, to have a role in limb alterations and 

tendon formations, hence its membership in the BMP family [106, 107]. GDF6 is required in 

the proper development of an organism, as GDF6 mutants exhibit a fusion in the carpel and 

tarsal elements, proposing GDF6 is essential for separation of early embryonic condensation 

units into separate skeletal elements [108]. Mutations in GDF6 have been observed in 

Klippel-Feil Syndrome, a disease in which anterior and cervical vertebrae are fused [109]. 

Induction of THBS4, a tendon marker, occurs in the presence of GDF6, transforming cells 

into collagen-secreting fibroblasts [110]. Multiple synostoses syndrome, a disease involving 

 

 
 

Figure 1.5. Change in expression levels of selected TGFβ family members over time. The fold 
change of genes in P5 RPE to P0 RPE at different time points of differentiation was 
determined. Figure was generated with data supplied from a previous publication [105]. 
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joint defects and sometimes progressive deafness, is also correlated with mutations in GDF6 

[111-113]. 

 In addition to the joint and tendon formation commonly associated with BMPs, 

GDF6 has also proved to be important in retinal development. Both microphthalmia and 

anophthalmia have been linked to defects in GDF6, and GDF6 knockout mice exhibit defects 

in neural tube formation, loss of key retinal genes PAX6 and NCAM, and increased apoptosis 

in the retina [114, 115]. GDF6 helps pattern the dorsoventral axis in the retina and is 

required for proper photoreceptor development and differentiation [116]. GDF6 is needed 

in the healthy development of the eye but may become harmful post-development. 

1.6: Specific Goals 

 The goal of my Ph.D. research is to dissect RPE EMT and understand the underlying 

mechanisms in order to prevent disease.  

1. In the first experimental chapter, chapter three, we address the involvement of 

GDF6 in RPE EMT.  

2. The fourth chapter investigates if inhibition of GDF6 can prevent EMT in RPE.  

3. The mechanism of GDF6 in RPE is evaluated in the final experimental chapter five. 

Together the findings in this dissertation provide insight into the role of GDF6 in RPE and 

possible ways to prevent fibrotic EMT. 

1.7: References 

1. Boulton, M. and P. Dayhaw-Barker, The role of the retinal pigment epithelium: 
topographical variation and ageing changes. Eye (Lond), 2001. 15(Pt 3): p. 384-9. 

2. Strauss, O., The Retinal Pigment Epithelium, in Webvision: The Organization of the 
Retina and Visual System [Internet]. F.E. Kolb H, Nelson R, Editor. 2011, University of 
Utah Health Sciences Center. 



21 

3. Simo, R., et al., The retinal pigment epithelium: something more than a constituent 
of the blood-retinal barrier--implications for the pathogenesis of diabetic 
retinopathy. J Biomed Biotechnol, 2010. 2010: p. 190724. 

4. Benedicto, I., et al., Concerted regulation of retinal pigment epithelium basement 
membrane and barrier function by angiocrine factors. Nat Commun, 2017. 8: p. 
15374. 

5. Rizzolo, L.J., Development and role of tight junctions in the retinal pigment 
epithelium. Int Rev Cytol, 2007. 258: p. 195-234. 

6. Rahner, C., et al., The apical and basal environments of the retinal pigment 
epithelium regulate the maturation of tight junctions during development. J Cell Sci, 
2004. 117(Pt 15): p. 3307-18. 

7. Rizzolo, L.J., et al., Integration of tight junctions and claudins with the barrier 
functions of the retinal pigment epithelium. Prog Retin Eye Res, 2011. 30(5): p. 296-
323. 

8. Negi, A. and M.F. Marmor, The resorption of subretinal fluid after diffuse damage to 
the retinal pigment epithelium. Invest Ophthalmol Vis Sci, 1983. 24(11): p. 1475-9. 

9. Chihara, E. and N. Nao-i, Resorption of subretinal fluid by transepithelial flow of the 
retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol, 1985. 223(4): p. 202-
4. 

10. Xu, H.Z. and Y.Z. Le, Significance of outer blood-retina barrier breakdown in diabetes 
and ischemia. Invest Ophthalmol Vis Sci, 2011. 52(5): p. 2160-4. 

11. Cunha-Vaz, J., The Blood-Retinal Barrier in the Management of Retinal Disease: 
EURETINA Award Lecture, in Ophthalmologica. 2017, (c) 2017 S. Karger AG, Basel.: 
Switzerland. p. 1-10. 

12. Kay, P., Y.C. Yang, and L. Paraoan, Directional protein secretion by the retinal 
pigment epithelium: roles in retinal health and the development of age-related 
macular degeneration. J Cell Mol Med, 2013. 17(7): p. 833-43. 

13. Zhu, D., et al., Polarized secretion of PEDF from human embryonic stem cell-derived 
RPE promotes retinal progenitor cell survival. Invest Ophthalmol Vis Sci, 2011. 52(3): 
p. 1573-85. 

14. Farnoodian, M., et al., Expression of pigment epithelium-derived factor and 
thrombospondin-1 regulate proliferation and migration of retinal pigment epithelial 
cells. Physiol Rep, 2015. 3(1). 

15. Blaauwgeers, H.G., et al., Polarized vascular endothelial growth factor secretion by 
human retinal pigment epithelium and localization of vascular endothelial growth 
factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine 
relation. Am J Pathol, 1999. 155(2): p. 421-8. 

16. Saint-Geniez, M., et al., An essential role for RPE-derived soluble VEGF in the 
maintenance of the choriocapillaris. Proc Natl Acad Sci U S A, 2009. 106(44): p. 
18751-6. 

17. Okamoto, N., et al., Transgenic mice with increased expression of vascular 
endothelial growth factor in the retina: a new model of intraretinal and subretinal 
neovascularization. Am J Pathol, 1997. 151(1): p. 281-91. 



22 

18. Mazzoni, F., H. Safa, and S.C. Finnemann, Understanding photoreceptor outer 
segment phagocytosis: use and utility of RPE cells in culture. Exp Eye Res, 2014. 126: 
p. 51-60. 

19. Young, R.W. and D. Bok, Participation of the retinal pigment epithelium in the rod 
outer segment renewal process. J Cell Biol, 1969. 42(2): p. 392-403. 

20. Bok, D. and M.O. Hall, The role of the pigment epithelium in the etiology of inherited 
retinal dystrophy in the rat. J Cell Biol, 1971. 49(3): p. 664-82. 

21. Gal, A., et al., Mutations in MERTK, the human orthologue of the RCS rat retinal 
dystrophy gene, cause retinitis pigmentosa. Nat Genet, 2000. 26(3): p. 270-1. 

22. Thompson, D.A. and A. Gal, Vitamin A metabolism in the retinal pigment epithelium: 
genes, mutations, and diseases. Prog Retin Eye Res, 2003. 22(5): p. 683-703. 

23. Kiser, P.D., M. Golczak, and K. Palczewski, Chemistry of the retinoid (visual) cycle. 
Chem Rev, 2014. 114(1): p. 194-232. 

24. Fulton, B.S. and R.R. Rando, Biosynthesis of 11-cis-retinoids and retinyl esters by 
bovine pigment epithelium membranes. Biochemistry, 1987. 26(24): p. 7938-45. 

25. Gu, X., et al., Age-related changes in the retinal pigment epithelium (RPE). PLoS One, 
2012. 7(6): p. e38673. 

26. Panda-Jonas, S., J.B. Jonas, and M. Jakobczyk-Zmija, Retinal pigment epithelial cell 
count, distribution, and correlations in normal human eyes. Am J Ophthalmol, 1996. 
121(2): p. 181-9. 

27. Boulton, M., M. Roanowska, and T. Wess, Ageing of the retinal pigment epithelium: 
implications for transplantation. Graefes Arch Clin Exp Ophthalmol, 2004. 242(1): p. 
76-84. 

28. Stern, J. and S. Temple, Retinal pigment epithelial cell proliferation. Exp Biol Med 
(Maywood), 2015. 240(8): p. 1079-86. 

29. Zarbin, M.A., Progressive RPE atrophy around disciform scars, in Br J Ophthalmol. 
2006: England. p. 396-7. 

30. Friedlander, M., Fibrosis and diseases of the eye. J Clin Invest, 2007. 117(3): p. 576-
86. 

31. Wong, W.L., et al., Global prevalence of age-related macular degeneration and 
disease burden projection for 2020 and 2040: a systematic review and meta-analysis. 
Lancet Glob Health, 2014. 2(2): p. e106-16. 

32. Dongre, A. and R.A. Weinberg, New insights into the mechanisms of epithelial-
mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol, 2019. 
20(2): p. 69-84. 

33. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-
mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96. 

34. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. 
Cell, 2009. 139(5): p. 871-90. 

35. Hay, E.D., An overview of epithelio-mesenchymal transformation. Acta Anat (Basel), 
1995. 154(1): p. 8-20. 

36. Kalluri, R. and E.G. Neilson, Epithelial-mesenchymal transition and its implications for 
fibrosis. J Clin Invest, 2003. 112(12): p. 1776-84. 



23 

37. Pei, D., et al., Mesenchymal-epithelial transition in development and 
reprogramming. Nat Cell Biol, 2019. 21(1): p. 44-53. 

38. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin 
Invest, 2009. 119(6): p. 1420-8. 

39. Acloque, H., et al., Epithelial-mesenchymal transitions: the importance of changing 
cell state in development and disease. J Clin Invest, 2009. 119(6): p. 1438-49. 

40. Yang, J. and R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of 
development and tumor metastasis. Dev Cell, 2008. 14(6): p. 818-29. 

41. Tennakoon, A.H., et al., Pathogenesis of Type 2 Epithelial to Mesenchymal Transition 
(EMT) in Renal and Hepatic Fibrosis. J Clin Med, 2015. 5(1). 

42. Ghosh, S., et al., A Role for betaA3/A1-Crystallin in Type 2 EMT of RPE Cells Occurring 
in Dry Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci, 2018. 59(4): p. 
Amd104-amd113. 

43. Tsai, J.H. and J. Yang, Epithelial-mesenchymal plasticity in carcinoma metastasis. 
Genes Dev, 2013. 27(20): p. 2192-206. 

44. Tarin, D., E.W. Thompson, and D.F. Newgreen, The fallacy of epithelial mesenchymal 
transition in neoplasia. Cancer Res, 2005. 65(14): p. 5996-6000; discussion 6000-1. 

45. Lee, J.M., et al., The epithelial-mesenchymal transition: new insights in signaling, 
development, and disease. J Cell Biol, 2006. 172(7): p. 973-81. 

46. Vincan, E. and N. Barker, The upstream components of the Wnt signalling pathway in 
the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp 
Metastasis, 2008. 25(6): p. 657-63. 

47. Sipos, F. and O. Galamb, Epithelial-to-mesenchymal and mesenchymal-to-epithelial 
transitions in the colon. World J Gastroenterol, 2012. 18(7): p. 601-8. 

48. Li, R., et al., A mesenchymal-to-epithelial transition initiates and is required for the 
nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 2010. 7(1): p. 51-63. 

49. Knight, P.G. and C. Glister, TGF-beta superfamily members and ovarian follicle 
development. Reproduction, 2006. 132(2): p. 191-206. 

50. de Caestecker, M., The transforming growth factor-beta superfamily of receptors. 
Cytokine Growth Factor Rev, 2004. 15(1): p. 1-11. 

51. Heldin, C.H. and A. Moustakas, Signaling Receptors for TGF-beta Family Members. 
Cold Spring Harb Perspect Biol, 2016. 8(8). 

52. Wrana, J.L., Signaling by the TGFbeta superfamily. Cold Spring Harb Perspect Biol, 
2013. 5(10): p. a011197. 

53. Mazerbourg, S., et al., Identification of receptors and signaling pathways for orphan 
bone morphogenetic protein/growth differentiation factor ligands based on genomic 
analyses. J Biol Chem, 2005. 280(37): p. 32122-32. 

54. Khalil, A.M., et al., Differential Binding Activity of TGF-beta Family Proteins to Select 
TGF-beta Receptors. J Pharmacol Exp Ther, 2016. 358(3): p. 423-30. 

55. Zhang, Y.E., Non-Smad Signaling Pathways of the TGF-beta Family. Cold Spring Harb 
Perspect Biol, 2017. 9(2). 

56. Zhang, Y.E., Non-Smad pathways in TGF-beta signaling. Cell Res, 2009. 19(1): p. 128-
39. 



24 

57. Poniatowski, L.A., et al., Transforming growth factor Beta family: insight into the role 
of growth factors in regulation of fracture healing biology and potential clinical 
applications. Mediators Inflamm, 2015. 2015: p. 137823. 

58. Khalil, N., TGF-beta: from latent to active. Microbes Infect, 1999. 1(15): p. 1255-63. 
59. Annes, J.P., J.S. Munger, and D.B. Rifkin, Making sense of latent TGFbeta activation. J 

Cell Sci, 2003. 116(Pt 2): p. 217-24. 
60. Dobolyi, A., et al., The Neuroprotective Functions of Transforming Growth Factor 

Beta Proteins, in Int J Mol Sci. 2012. p. 8219-58. 
61. Konig, H.G., et al., TGF-{beta}1 activates two distinct type I receptors in neurons: 

implications for neuronal NF-{kappa}B signaling. J Cell Biol, 2005. 168(7): p. 1077-86. 
62. Braunger, B.M., et al., TGF-beta signaling protects retinal neurons from programmed 

cell death during the development of the mammalian eye. J Neurosci, 2013. 33(35): 
p. 14246-58. 

63. Saika, S., TGFbeta pathobiology in the eye. Lab Invest, 2006. 86(2): p. 106-15. 
64. Xu, J., S. Lamouille, and R. Derynck, TGF-beta-induced epithelial to mesenchymal 

transition. Cell Res, 2009. 19(2): p. 156-72. 
65. Kita, T., et al., Role of TGF-β in proliferative vitreoretinal diseases and ROCK as a 

therapeutic target. Proceedings of the National Academy of Sciences, 2008. 105(45): 
p. 17504-17509. 

66. Wang, X., et al., TGF-beta participates choroid neovascularization through Smad2/3-
VEGF/TNF-alpha signaling in mice with Laser-induced wet age-related macular 
degeneration. Sci Rep, 2017. 7(1): p. 9672. 

67. Wang, R.N., et al., Bone Morphogenetic Protein (BMP) signaling in development and 
human diseases. Genes Dis, 2014. 1(1): p. 87-105. 

68. Bragdon, B., et al., Bone morphogenetic proteins: a critical review. Cell Signal, 2011. 
23(4): p. 609-20. 

69. Sengle, G., et al., Targeting of bone morphogenetic protein growth factor complexes 
to fibrillin. J Biol Chem, 2008. 283(20): p. 13874-88. 

70. Huang, J., et al., Negative and Positive Auto-Regulation of BMP Expression in Early 
Eye Development. Dev Biol, 2015. 407(2): p. 256-64. 

71. Murali, D., et al., Distinct developmental programs require different levels of Bmp 
signaling during mouse retinal development. Development, 2005. 132(5): p. 913-923. 

72. Toyran, S., A.Y. Lin, and D.P. Edward, Expression of growth differentiation factor-5 
and bone morphogenic protein-7 in intraocular osseous metaplasia, in Br J 
Ophthalmol. 2005. p. 885-90. 

73. Namwanje, M. and C.W. Brown, Activins and Inhibins: Roles in Development, 
Physiology, and Disease. Cold Spring Harb Perspect Biol, 2016. 8(7). 

74. Wijayarathna, R. and D.M. de Kretser, Activins in reproductive biology and beyond. 
Hum Reprod Update, 2016. 22(3): p. 342-57. 

75. Bertacchi, M., et al., Activin/Nodal Signaling Supports Retinal Progenitor 
Specification in a Narrow Time Window during Pluripotent Stem Cell Neuralization, in 
Stem Cell Reports. 2015. p. 532-45. 

76. Cornell, R.A. and D. Kimelman, Activin-mediated mesoderm induction requires FGF. 
Development, 1994. 120(2): p. 453-462. 



25 

77. Werner, S. and C. Alzheimer, Roles of activin in tissue repair, fibrosis, and 
inflammatory disease. Cytokine Growth Factor Rev, 2006. 17(3): p. 157-71. 

78. Poulaki, V., et al., Activin a in the regulation of corneal neovascularization and 
vascular endothelial growth factor expression. Am J Pathol, 2004. 164(4): p. 1293-
302. 

79. Yamamoto, T., et al., Expression and possible roles of activin A in proliferative 
vitreoretinal diseases. Jpn J Ophthalmol, 2000. 44(3): p. 221-6. 

80. Tsukamoto, S., et al., Smad9 is a new type of transcriptional regulator in bone 
morphogenetic protein signaling. Sci Rep, 2014. 4: p. 7596. 

81. Dennler, S. and P. Ten Dijke, Smad Proteins in TGF-Beta Signaling, in Encyclopedia of 
Cancer, M. Schwab, Editor. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 
3440-3443. 

82. Wrana, J.L., et al., Mechanism of activation of the TGF-beta receptor. Nature, 1994. 
370(6488): p. 341-7. 

83. Schmierer, B. and C.S. Hill, TGFbeta-SMAD signal transduction: molecular specificity 
and functional flexibility. Nat Rev Mol Cell Biol, 2007. 8(12): p. 970-82. 

84. Wrighton, K.H., X. Lin, and X.H. Feng, Phospho-control of TGF-β superfamily 
signaling. Cell Res, 2009. 19(1): p. 8-20. 

85. Tsukazaki, T., et al., SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta 
receptor. Cell, 1998. 95(6): p. 779-91. 

86. Xu, L., Y.G. Chen, and J. Massague, The nuclear import function of Smad2 is masked 
by SARA and unmasked by TGFbeta-dependent phosphorylation. Nat Cell Biol, 2000. 
2(8): p. 559-62. 

87. Shi, Y. and J. Massague, Mechanisms of TGF-beta signaling from cell membrane to 
the nucleus. Cell, 2003. 113(6): p. 685-700. 

88. Hayashi, H., et al., The MAD-related protein Smad7 associates with the TGFbeta 
receptor and functions as an antagonist of TGFbeta signaling. Cell, 1997. 89(7): p. 
1165-73. 

89. Miyazawa, K. and K. Miyazono, Regulation of TGF-beta Family Signaling by Inhibitory 
Smads. Cold Spring Harb Perspect Biol, 2017. 9(3). 

90. Walton, K.L., K.E. Johnson, and C.A. Harrison, Targeting TGF-β Mediated SMAD 
Signaling for the Prevention of Fibrosis. Front Pharmacol, 2017. 8. 

91. Malhotra, N. and J. Kang, SMAD regulatory networks construct a balanced immune 
system. Immunology, 2013. 139(1): p. 1-10. 

92. Samanta, D. and P.K. Datta, Alterations in the Smad pathway in human cancers. 
Front Biosci (Landmark Ed), 2012. 17: p. 1281-93. 

93. Neill, T., L. Schaefer, and R.V. Iozzo, Decorin: a guardian from the matrix. Am J 
Pathol, 2012. 181(2): p. 380-7. 

94. Abdel-Wahab, N., et al., Decorin suppresses transforming growth factor-beta-
induced expression of plasminogen activator inhibitor-1 in human mesangial cells 
through a mechanism that involves Ca2+-dependent phosphorylation of Smad2 at 
serine-240. Biochem J, 2002. 362(Pt 3): p. 643-9. 



26 

95. Ulloa, L. and S. Tabibzadeh, Lefty inhibits receptor-regulated Smad phosphorylation 
induced by the activated transforming growth factor-beta receptor. J Biol Chem, 
2001. 276(24): p. 21397-404. 

96. Hashimoto, O., et al., A novel role of follistatin, an activin-binding protein, in the 
inhibition of activin action in rat pituitary cells. Endocytotic degradation of activin 
and its acceleration by follistatin associated with cell-surface heparan sulfate. J Biol 
Chem, 1997. 272(21): p. 13835-42. 

97. Harrington, A.E., et al., Structural basis for the inhibition of activin signalling by 
follistatin. Embo j, 2006. 25(5): p. 1035-45. 

98. Zimmerman, L.B., J.M. De Jesus-Escobar, and R.M. Harland, The Spemann organizer 
signal noggin binds and inactivates bone morphogenetic protein 4. Cell, 1996. 86(4): 
p. 599-606. 

99. Groppe, J., et al., Structural basis of BMP signaling inhibition by Noggin, a novel 
twelve-membered cystine knot protein. J Bone Joint Surg Am, 2003. 85-A Suppl 3: p. 
52-8. 

100. Piccolo, S., et al., Dorsoventral patterning in Xenopus: inhibition of ventral signals by 
direct binding of chordin to BMP-4. Cell, 1996. 86(4): p. 589-98. 

101. Troilo, H., et al., Nanoscale structure of the BMP antagonist chordin supports 
cooperative BMP binding. Proc Natl Acad Sci U S A, 2014. 111(36): p. 13063-8. 

102. Nolan, K. and T.B. Thompson, The DAN family: modulators of TGF-beta signaling and 
beyond. Protein Sci, 2014. 23(8): p. 999-1012. 

103. Groppe, J., et al., Structural basis of BMP signalling inhibition by the cystine knot 
protein Noggin. Nature, 2002. 420(6916): p. 636-42. 

104. Sun, J., et al., BMP4 activation and secretion are negatively regulated by an 
intracellular gremlin-BMP4 interaction. J Biol Chem, 2006. 281(39): p. 29349-56. 

105. Radeke, M.J., et al., Restoration of mesenchymal retinal pigmented epithelial cells by 
TGFβ pathway inhibitors: implications for age-related macular degeneration. 
Genome Med, 2015. 7(1): p. 58. 

106. Storm, E.E., et al., Limb alterations in brachypodism mice due to mutations in a new 
member of the TGF beta-superfamily. Nature, 1994. 368(6472): p. 639-43. 

107. Wolfman, N.M., et al., Ectopic induction of tendon and ligament in rats by growth 
and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin 
Invest, 1997. 100(2): p. 321-30. 

108. Settle, S.H., Jr., et al., Multiple joint and skeletal patterning defects caused by single 
and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol, 2003. 254(1): p. 
116-30. 

109. Tassabehji, M., et al., Mutations in GDF6 are associated with vertebral segmentation 
defects in Klippel-Feil syndrome. Hum Mutat, 2008. 29(8): p. 1017-27. 

110. Berasi, S.P., et al., Divergent activities of osteogenic BMP2, and tenogenic BMP12 
and BMP13 independent of receptor binding affinities. Growth Factors, 2011. 29(4): 
p. 128-39. 

111. Wang, J., et al., A New Subtype of Multiple Synostoses Syndrome Is Caused by a 
Mutation in GDF6 That Decreases Its Sensitivity to Noggin and Enhances Its Potency 
as a BMP Signal. J Bone Miner Res, 2016. 31(4): p. 882-9. 



27 

112. Terhal, P.A., et al., Further delineation of the GDF6 related multiple synostoses 
syndrome. Am J Med Genet A, 2018. 176(1): p. 225-229. 

113. Drage Berentsen, R., et al., A Novel GDF6 Mutation in a Family with Multiple 
Synostoses Syndrome without Hearing Loss. Mol Syndromol, 2019. 9(5): p. 228-234. 

114. Hanel, M.L. and C. Hensey, Eye and neural defects associated with loss of GDF6. BMC 
Dev Biol, 2006. 6: p. 43. 

115. Asai-Coakwell, M., et al., GDF6, a novel locus for a spectrum of ocular developmental 
anomalies. Am J Hum Genet, 2007. 80(2): p. 306-15. 

116. Asai-Coakwell, M., et al., Contribution of growth differentiation factor 6-dependent 
cell survival to early-onset retinal dystrophies. Hum Mol Genet, 2013. 22(7): p. 1432-
42. 

 

  



28 

CHAPTER II: Materials and Methods 

2.1: Lentivirus Production 

 Human growth differentiation factor 6 (GDF6) open reading frame (ORF) was 

obtained from GeneCopia (Rockville, MD, USA). The ORF was cloned into the LeGO-iCer 

vector (Addgene, Cambridge, MA, USA). Guide RNA (gRNA) vectors were generated by 

cloning in gRNA sequences determined using guide design tools from the Zhang lab 

(crispr.mit.edu) into a donor plasmid (Addgene #46918). The packaging plasmids pMD2.G, 

pMDLg/pRRE, and pRSV-R (Addgene) were used in conjunction with the cloned GDF6 LeGO-

iCer vector, a LeGO-iV2 vector as a control, or the gRNA vectors to generate lentiviral 

particles from HEK293T cells. Lentiviral particles were harvested and concentrated using 

PEG-it™ (System Biosciences, Mountain View, CA, USA) and titered per fluorescent 

expression levels in retinal pigmented epithelial cells (RPE) using flow cytometry. Expression 

of GDF6 was verified using real-time quantitative PCR (RT-qPCR).  

2.2: Lentiviral Transduction and Cell Culture 

 Fetal RPE cells were obtained from a working cell bank described in Radeke et al. [1]. 

Passage 0 human fetal RPE were plated on Matrigel (Corning, Corning, NY, USA) coated 

plates at 20,000 cells/cm2 in a base media without hydrocortisone containing 5% heat-

inactivated fetal calf serum (Miller media) [2] or Miller media supplemented with 0.1mM 

RepSox (Cayman Chemical, Ann Arbor, MI, USA), 200nM LDN-193189 (LDN) (Cayman 

Chemical), or both. The following day the cells were transduced with the appropriate 

lentiviral vector (multiplicity of infection [MOI] = 0.4 – 0.5 for each vector) supplemented 

with polybrene (Millipore Sigma, Billerica, MA, USA) at a concentration of 10 µg/mL. After 
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24 hours, the viral media was replaced with fresh Miller media and appropriate 

supplementation. 48 hours post-transduction the cells were lifted using Accumax 

(Innovative Cell Technologies, San Diego, CA, USA) and sorted based on fluorophore 

expression using fluorescent activated cell sorting (FACS). After sorting, the cells were 

seeded at 80,000 cells/cm2 on Matrigel-coated plates and allowed to differentiate for 32 

days. During differentiation, Miller media and appropriate supplementation were replaced 

every 2-3 days. After 32 days cells were imaged and RNA was harvested using the 

NucleoSpin RNA Kit (Takara, Mountain View, CA, USA) following manufacturer’s 

instructions. 

2.3: Pigmentation Analysis 

 4X montage images were obtained using a Cytation 5 Imager (BioTek, Winooski, VT, 

USA). Images were automatically stitched together using the Gen5 Imager Software 

(BioTek) and imported into Matlab (MathWorks, Natick, MA, USA) to calculate the percent 

of the image that was pigmented. Briefly, images were cropped to the same size and 

binarized using a thresholding mechanism. The number of black pixels and white pixels 

were determined and transformed into percentages. 

2.4: Real-time Quantitative PCR (RT-qPCR) 

 Real-time Quantitative PCR (RT-qPCR) was performed using PrimeTime® PCR Assays 

(Integrated DNA Technologies Inc, Coralville, IA, USA). The iScript cDNA Synthesis Kit (Bio-

Rad, Hercules, CA, USA) was used to generate cDNA from total RNA. For each gene of 

interest, RT-qPCR was carried out in triplicate using iTaq Universal Probes Supermix (Bio-

Rad) using the following thermal cycle profile: 95⁰C for 1 min, 45 x (95⁰C for 5 s, 60⁰C for 1 
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min). Gene expression levels were normalized to the geometric mean of three 

housekeeping genes (RPLP0, RPS2, and UBB). 

2.4.1: RT-qPCR Probes 
 

Gene IDT Assay ID Gene IDT Assay ID 

ACTA2 Hs.PT.56a.2542642 NOG Hs.PT.58.27300029.g 

APOE Hs.PT.56a.3799446 OTX2 Hs.PT.58.46695245 

CDH3 Hs.PT.58.39234242 PMEL Hs.PT.58.18690699 

COL1A1 Hs.PT.58.15517795 RPLP0 Hs.PT.39a.22214824 

CTGF Hs.PT.58.14485164.g RPS2 Hs.PT.58.22843181 

DCN Hs.PT.58.38497176 SERPINF1 Hs.PT.58.20553847 

GDF6 Hs.PT.56a.20193545 SMOC2 Hs.PT.56a.20763253 

ITGA11 Hs.PT.58.39995058 SPP1 Hs.PT.58.19252426 

LIN7A Hs.PT.58.2551960 TGFB1 Hs.PT.58.39813975 

LRAT Hs.PT.56a.39384980 TGFB2 Hs.PT.58.24824921 

LUM Hs.PT.56a.39858305 TGFBI Hs.PT.56a.40018323 

MAN1C1 Hs.PT.58.4817967 TYRP1 Hs.PT.58.423853 

MITF Hs.PT.56a.38853705 UBB Hs.PT.58.4937882 

 

 

 

Gene Primer 1 Primer2 Probe 
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LPL 5’-GGACTGAGAGT 

GAAACCCATAC-3’ 

5’-TGTGGAAACTTC 

AGGCAGAG-3’ 

5’-/56-FAM/AATGGGATG/ZEN 

/TTCTCACTCTCGGCC/3IABkFQ/-3’ 

 

2.5: RNA-Sequencing (RNA-seq) and Transcriptome Analysis 

 RNA-sequencing (RNA-seq) libraries were prepared using the Ion AmpliSeq™ 

Transcriptome Human Gene Expression Kit (ThermoFisher, Waltham, MA, USA). Libraries 

were prepared using the Ion AmpliSeq Library Preparation on the Ion Chef System 

(ThermoFisher). Briefly, RNA was diluted to 1ng/uL, and a reverse transcriptase reaction 

was performed. The cDNA reaction was then loaded onto a primer plate, and the Ion Chef 

automatically prepared the libraries. The libraries were quantified by qPCR and diluted to 

100 pM using the Ion Library TaqMan™ Quantitation Kit (ThermoFisher). The libraries were 

then loaded onto sequencing chips via the Ion Chef system and sequenced using an Ion 

Torrent next-generation sequencer (ThermoFisher). The resulting sequences were 

automatically aligned to the human genome using the ampliSeqRNA plugin [3].  

 The dataset was normalized using the trimmed mean of the M-values method [4]. 

Genes were based on read counts per million (RPM) ≥ 1 in two or more samples, and 

differential expression and statistical analysis were performed using edgeR [5]. Heat maps 

were generated by averaging technical replicates together, and the Log2 ratio of GDF6 to 

control cells was determined for each biological pair. The average of all three pairs was 

taken, and the genes were ranked based on highest expression in GDF6 cells. Cluster 

analysis was performed using AutoSOME 2.1 on data that was Log2 transformed and 

centered on the midpoint of the range (500 ensemble runs, P=0.03, unit variance, sum of 
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squares = 1, and precision settings) [6]. Individual clusters were assigned to more general 

groups based on visual examination of the expression patterns. Gene ontology enrichment 

analysis was determined using DAVID Bioinformatics Resources 6.8 with default settings [7] 

and the ToppFun Application of the ToppGene Suite with default settings [8].  

2.6: Recombinant Gdf6 (rmGdf6) Treatment 

 Recombinant mouse Gdf6 (rmGdf6) (R&D Systems, Minneapolis, MN) was 

reconstituted according to manufacturer’s instructions in 4mM HCl with 0.1% bovine serum 

albumin to a final concentration of 300 µg/mL (22 mM). RPE were plated at 80,000 

cells/cm2 in Miller media supplemented with 3 µg/mL (219 uM) rmGdf6, 200nM LDN, or 

both. Media was changed every other day for 14 days at which time cells were imaged, and 

RNA was harvested for RT-qPCR analysis. For the dose-response experiments, passage 0 RPE 

were plated at 80,000 cells/cm2 and supplemented with various amounts of rmGdf6 for 14 

days, with media being replaced every other day for 14 days. At this point, cells were 

imaged and RNA was harvested as before for RT-qPCR analysis. 

2.7: Smad Phosphorylation Assay  

 RPE were plated at a concentration of 20,000-30,000 cells/cm2 on Matrigel-coated 

plates. The following day cells were placed in a Miller media without serum for 5 hours. 

After 5 hours of serum-starvation, appropriate inhibitor molecules (DMSO, RepSox, or LDN) 

were added to the media and allowed to incubate for one hour. Following this small 

molecule incubation, RPE were challenged with 1 µg/mL (73 µM) rmGdf6 or TGFβ1 (R&D 

Systems) for 30 minutes, rinsed in phosphate buffered saline (PBS), harvested in Laemmli 

Sample Buffer, and boiled at 95⁰C for 10 min. Samples were stored at -20⁰C until analysis.  
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2.8: Western Blot Analysis 

 Samples were harvested in Laemmli Sample Buffer and denatured using 10% TCEP 

(ThermoFisher) at 95⁰C for 10 minutes. The total cell lysate was loaded on to an AnyKD™ 

Criterion™ TGX™ Precast Midi Protein Gel (Bio-Rad), and proteins were separated by one-

dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under 

reducing conditions. Proteins were transferred to polyvinylidene fluoride (PVDF) membrane 

(Bio-Rad). The membranes were blocked in light soymilk (commercial grade) containing 

0.1% Tween-20 (Promega, Madison, WI, USA) for 30 minutes at room temperature [9]. 

Membranes were incubated in primary antibody overnight at 4⁰C, washed 5 times in Tris-

buffered saline containing 0.1% Tween 20 (TBST), and incubated in secondary antibodies 

conjugated to horseradish peroxidase for one hour at room temperature. The membranes 

were washed 5 times with TBST and one time with TBS before developing with 

SuperSignal™ West Femto Maximum Sensitivity Substrate (ThermoFisher) on a ChemiDoc 

Imager (Bio-Rad).  

 

 

 

 

 

 

Primary Antibodies Used: 

Antibody Dilution Company 
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Anti-PhosphoSmad 1/5/9 1:1000 Cell Signaling Technologies 13820 

Anti-PhosphoSmad 2/3 1:1000 Cell Signaling Technologies 8828 

Anti-GDF6 1:1000 Sigma-Aldrich PRS4691 

Anti-Ubi-1 1:1000 Thermo Fisher 

 

Secondary Antibodies Used: 

Antibody Dilution Company 

Goat anti-Rabbit HRP 1:10000 Pierce 31466 

Goat anti-Mouse HRP 1:500 ThermoFisher 32430 

 

2.9: LDN Passaging 

 Passage 0 RPE were plated at 4,000 cells/cm2 in Miller media, with half the samples 

supplemented with 200nM LDN. At approximately 80% confluence, the cells were passaged 

by enzymatically dissociating using Accumax and re-seeding at 4,000 cells/cm2. At the time 

of re-seeding, a portion of cells was plated at 80,000 cells/cm2 and allowed to differentiate 

for 32 days. After 32 days of differentiation, cells were imaged and RNA was harvested as 

before for RT-qPCR analysis. 

2.10: Generation of CRISPR Knock-in Cell Line 

 Induced pluripotent stem cells (iPSCs) were generated from the lab’s working cell 

bank of fetal RPE using ReproRNA-OKSGM (Stemcell Technologies, Vancouver, Canada) per 

manufacturer’s instructions. The methods published by He et al., 2016 were followed to 

generate a KRAB-dCas9 knock-in iPSC cell line through non-homologous end joining (NEHJ) 
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[10]. KRAB-dCas9-P2A (Addgene # 60954) was cloned into the double cut NH-donor plasmid 

(Addgene #83576) between the IRES and GFP. To deliver and transiently express the 

plasmids required for NHEJ, cells were electroporated to deliver 4 plasmids (Addgene 

#41815, #83576, #83809, and the donor plasmid) into an iPS cell line. The cells were then 

expanded and subjected to a series of three FACS selection sorts to ensure purity before 

differentiation into RPE. The site-specific insertion was confirmed using PCR. 

 The protocol for differentiation of iPSCs into RPE was adapted from Idelson et al., 

2009 [11]. Briefly, iPSCs were plated on Matrigel coated plates in TeSR-E8 (Stemcell 

Technologies) and cells were then directed towards an RPE fate. Once differentiated, iPSC-

RPE were dissociated using protease digestion and pure populations were isolated based on 

RPE cell surface markers and pigmentation using FACS (Coffey Lab, unpublished protocol). 

2.11: CRISPRi Knockdown in RPE 

 iPS-RPE stably expressing dCas9 were transduced with gRNA vectors targeting the 

transcription start site (TSS) of GDF6 or a control gene (UBE4A). The cells were sorted on 

mCherry expression 3 days after infection. Cells were plated at 5,000 cells/cm2 in Miller 

media without serum. At approximately 80% confluence, the cells were passaged by 

enzymatically dissociating using Accumax and re-seeded at 5,000 cells/cm2. At the time of 

re-seeding, a portion of cells was plated at 80,000 cells/cm2 and allowed to differentiate for 

32 days. After 32 days of differentiation, cells were imaged, and RNA was harvested as 

before for RT-qPCR analysis.  
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2.12: Proteome Profile Assay 

 To determine differences in receptor activation, a Human Proteome Phospho-Kinase 

Array (R&D Systems) was followed according to manufacturer’s instructions. Briefly, RPE 

were plated at a concentration of 20,000-30,000 cells/cm2 on Matrigel-coated plates. The 

following day cells were placed in Miller media without serum for 5 hours. After 5 hours of 

serum-starvation, appropriate inhibitor molecules (DMSO or RepSox and LDN) were added 

to the media and allowed to incubate for one hour. Following this small molecule 

incubation, RPE were challenged with 1 µg/mL (73 µM) rmGdf6. RPE were lysed at a 

concentration of 1x107 cells/mL and protein concentration was quantified using a DC™ 

protein assay (Bio-Rad). 600 µg of total protein extract was applied to the membranes. The 

membranes were treated with appropriate antibody cocktails and secondary antibodies. 

Chemiluminescence was read in a Bio-Rad ChemiDoc Imager from 30 seconds to 4 minutes, 

and spot pixel intensity was quantified using ImageJ software. 
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CHAPTER III: The Effect of GDF6 on RPE 

3.1: Introduction 

 Epithelial-to-mesenchymal transition (EMT) is a process in which a polarized, 

stationary epithelial cell transforms into a migratory, invasive mesenchymal cell [1]. EMT 

can be classified into three different types of biological processes, resulting in different 

functional characteristics. Type 1 EMT is found in embryogenesis and gastrulation, helping 

to form the mesoderm, neural tube, and other various bones and tissues [2, 3]. Type 2 EMT 

is commonly associated with wound healing and fibrosis, whereas Type 3 EMT is found in 

cancer and metastasis [1, 4]. EMT, and its converse, the mesenchymal-to-epithelial 

transition (MET), are necessary for proper development and performance. Disease can 

occur if these pathways do not function properly. 

 EMT in the eye is necessary for early development and wound healing, but 

unregulated EMT can lead to vision issues. Retinal pigmented epithelial (RPE) cells are a 

polarized, pigmented monolayer of cuboidal cells located behind the retina, performing 

various essential functions to maintain a healthy environment in the eye [5]. Aberrant 

wound healing mechanisms can lead to a permanent mesenchymal phenotype in RPE, 

leading to various blinding disorders such as proliferative vitreoretinopathy (PVR) and 

choroidal neovascularization (CNV) [6-9]. Previous work by Radeke, et al. 2015 established 

that early passage RPE can undergo EMT and MET in vitro, eventually differentiating back 

into a healthy monolayer. If RPE are passaged under a chronic wounding model, they lose 

their ability to undergo MET and remain in a mesenchymal, fibrotic state. In order to help 
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determine why RPE undergo this irreversible EMT after repeated passaging, they analyzed 

the genetic differences between early passage 0 (P0) and late passage 5 (P5) RPE [10].  

 Growth and differentiation factor 6 (GDF6; BMP13) was found to be exclusive to P5 

RPE, suggesting it is a contributing factor to irreversible RPE EMT [10]. GDF6 is a member of 

the transforming growth factor beta (TGFb) superfamily and thus it participates in Smad 

protein phosphorylation. GDF6 is essential for healthy development as it is involved in 

ectoderm patterning and proper bone and joint formation [11, 12]. Additionally, GDF6 is 

essential for the correct development of the retina through functions like inhibition of 

apoptosis and differentiation of photoreceptors [13-16]. Though GDF6 is present during 

development of the eye, it is noticeably absent in a healthy, mature eye until RPE cells 

undergo EMT. Here we investigate the role of GDF6 in RPE EMT by administering GDF6 to 

RPE and observing phenotypic changes, genotypic changes and Smad protein 

phosphorylation.  

3.2: Results 

3.2.1: GDF6 Overexpression Prevents Normal Differentiation in RPE 

 To investigate the possible role GDF6 may play in the EMT of RPE, P0 RPE were 

transfected with a GDF6 overexpression vector and sorted into a pure population using 

fluorescence activated cell sorting (FACS) (Figure 3.1). After 32 days in culture, these RPE 

cells overexpressing GDF6 (GDF6 RPE) were unable to obtain the normal RPE phenotype, as 

illustrated in Figure 3.2-A. GDF6 RPE do not exhibit the typical cuboidal, cobblestone RPE 

morphology, but appear larger and more spindle-like in shape with holes present in the 
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monolayer. This change in morphology is accompanied by a 35% reduction in pigmentation 

(Figure 3.2-B).  

Overexpressing GDF6 also has a substantial effect on RPE gene expression. A subset 

of genes was selected for further analysis based on their expression profile in passaged RPE 

cells [10]. This quantitative PCR (qPCR) panel includes genes typically upregulated in a late 

passage, mesenchymal-like RPE as well as genes found in healthy, differentiated RPE. GDF6 

RPE upregulate genes found in highly passaged mesenchymal RPE cells and downregulate 

genes found in healthy RPE (Figure 3.2-C). Notably, GDF6 RPE show increased levels of 

collagen (COL1A1), an extracellular matrix protein that is an abundant component of 

mesenchymal connective tissue, as well as an increase in TGFb2, a known inducer of EMT. 

GDF6 RPE display decreased levels of genes found in epithelial cells and low passage RPE, 

like p-cadherin (CDH3), an important cell adhesion protein in RPE, as well as lecithin retinol 

acyltransferase (LRAT), an essential gene involved in retinoid uptake and the visual cycle. 

 

 

 
 
Figure 3.1. RPE have the ability to overexpress GDF6. (A) Brightfield, phase contrast, CFP, 
and YFP images of RPE. RPE were infected with either a construct causing overexpression of 
GDF6 and CFP, or an empty vector control that causes overexpression of YFP. 
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Figure 3.2. GDF6 overexpression in RPE causes morphological and genotypic changes. (A) 
Phase contrast (left) and brightfield (right) images of four different RPE lines taken at 10X. 
Cells were transfected with either GDF6 or an empty vector construct, sorted, and allowed 
to differentiate for 32 days. (B) RPE that overexpress GDF6 lose the ability to pigment. 
Brightfield montage images were taken of each well, stitched together using the Gen5 
program software, and pigmentation was analyzed using the Matlab software package. 
Statistical significance was determined using the Student’s t-test (n=4, **≤0.005). (C) RPE 
overexpressing GDF6 upregulate genes related to EMT and a mesenchymal state while 
downregulating genes found in healthy RPE. Highlighted in red are genes known to 
increase during RPE passaging while genes in blue are representative of genes found in 
healthy RPE. A one-sample t-test was used to determine statistical significance (n=4, 
*≤0.05, **≤0.005). 
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 RNA-sequencing (RNA-seq) can help elucidate the differences between GDF6 RPE 

and control RPE. We generated libraries from 32-day GDF6 RPE and control RPE cells and 

determined which genes were differentially expressed. GDF6 RPE have genes that cluster in 

Extracellular Matrix Organization (n = 35, P-value < 1 x 10-14), EGF-like Domains (n = 30, P-

value < 1 x 10-9), and Focal Adhesion (n=24, P-value < 1 x 10-5) while Cell Junction genes (n = 

56, P-value < 1 x 10-7) and those involved in Melanin Biosynthesis (n = 4, P-value < 1 x 10-3) 

and Vision (n = 15, P-value < 1 x 10-4) are all downregulated (Figure 3.3). GDF6 RPE 

upregulate cadherin 2 (CDH2) and cadherin 11 (CDH11) along with fibronectin and 

collagens, while healthy RPE have higher expression levels of CDH1 and CDH3 (Table 3.1). 

Overall, GDF6 RPE cells exhibit dysregulation in greater than 10% of its genes. 

3.2.2: GDF6 Has No Effect on Mature RPE 

 As a member of the TGFb superfamily, GDF6 is involved in Smad protein 

phosphorylation, specifically Smad1/5/9 protein phosphorylation [17]. While the effects of 

GDF6 have been studied in some cell lines [18-22], the effect of GDF6 on RPE has not been 

previously assessed. We found that undifferentiated, low-density passage 1 (P1) RPE 

respond to GDF6 through phosphorylation of Smad1/5/9 (Figure 3.4-A). Low-density P5 RPE 

that have undergone a mesenchymal transition also phosphorylate Smad1/5/9 in the 

presence of GDF6. LDN-193189 (LDN) is a potent kinase inhibitor of the type 1 BMP 

Receptor (activin-like kinase (Alk) 2, 3, 6) [23, 24]. We can prevent the response to GDF6 

and subsequent phosphorylation of Smad1/5/9 in RPE with the use of LDN, thus making it 

an active inhibitor of GDF6 signaling. However, the kinase inhibitor of Alk5, RepSox, did not 

affect the GDF6 stimulation of Smad1/5/9.  
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Figure 3.3. GDF6 overexpression results in 10 % of genes having a 2-fold or greater change 
in expression. Differentially expressed genes are those with an FDR ≤ 0.01. Gene ontology 
enrichment analysis was carried out on genes that had a log2 transformed ratio ≥ 2 of 
GDF6 RPE to control cells. Significance was determined by taking the Log of the reciprocal 
of the Benjamini p-value. 
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Table 3.1 
Differentially expressed cadherin, collagen, and 
fibronectin genes in normal and GDF6 RPE. 

 

Gene logFC Pvalue FDR 
CDH1 3.145 1.62E-44 1.54E-41 
CDH2 -1.445 5.16E-20 6.35E-18 
CDH3 2.610 4.83E-57 1.15E-53 
CDH7 -1.118 2.67E-04 2.07E-03 
CDH8 -1.872 2.67E-08 5.73E-07 

CDH10 -1.813 1.99E-08 4.36E-07 
CDH11 -2.400 2.24E-17 1.90E-15 
CDH19 -1.897 2.59E-07 4.44E-06 
COL1A1 -2.348 2.53E-12 1.00E-10 
COL1A2 -2.207 1.10E-21 1.67E-19 
COL3A1 -2.227 2.52E-22 4.28E-20 
COL4A1 -1.358 1.91E-06 2.68E-05 
COL4A2 -1.094 8.83E-07 1.33E-05 
COL4A4 -0.714 2.47E-03 1.34E-02 
COL5A1 -1.648 2.23E-10 6.58E-09 
COL5A2 -1.464 1.03E-16 8.43E-15 
COL7A1 -1.812 1.82E-11 6.26E-10 
COL8A1 -0.395 2.18E-03 1.21E-02 
COL9A1 3.575 4.60E-21 6.44E-19 

COL14A1 -2.259 1.14E-10 3.54E-09 
COL15A1 5.570 1.75E-15 1.20E-13 
COL16A1 -0.778 2.16E-05 2.32E-04 
COL18A1 0.591 1.80E-04 1.48E-03 
COL25A1 -2.651 7.61E-04 5.04E-03 
COL27A1 1.225 3.92E-05 3.85E-04 

FN1 -2.622 1.12E-14 6.48E-13 
The log fold-change of normal/GDF6 is shown. FDR ≤ 0.01. 
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It is possible for GDF6 to induce Smad2/3 phosphorylation as GDF6 binds to the 

activin receptor 2 (ActRII) B with a high affinity, and ActRIIB can associate with the activin 

receptor 1 B (ActRIB; Alk4) [25]. However, it is unknown whether GDF6 can produce 

Smad2/3 signaling in RPE. Previous studies have used cell lines that did not express ActRIB, 
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Figure 3.4. Western blots showing phosphorylation of Smad proteins in RPE. (A) 
Undifferentiated RPE can respond to GDF6. Passage 1 and Passage 5 RPE were treated 
with 1 µg/mL (73 µM) recombinant mouse GDF6 (rmGDF6) for 30 minutes and phospho-
Smad1/5/9 levels were assayed, with α-Ubiquitin serving as a loading control. (B) Mature, 
differentiated RPE cannot respond to rmGdf6, but can respond to TGFβ1. Passage 0 RPE 
were differentiated for 4 months on inserts. rmGdf6 or TGFβ1 was applied to both sides of 
the insert for 30 minutes. Both phospho-Smad2/3 and phospho-Smad1/5/9 levels were 
assayed with α-Ubiquitin serving as a loading control. 
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whereas RPE cells have high expression levels of this receptor [10, 17]. Due to this 

combination of receptors, RPE maintain the potential to have GDF6 induce Smad2/3 

phosphorylation. We discovered that undifferentiated P0 RPE can participate in canonical 

Smad2/3 phosphorylation through TGFb1 stimulation, but GDF6 itself does not induce a 

similar response (Figure 3.5). GDF6 only initiates Smad1/5/9 signaling in RPE, similar to 

other cell types. 

 

 GDF6 and TGFb ligands initiate a dissimilar response in RPE based on the maturity 

and state of differentiation of the cells. Mature P0 RPE cells are unable to undergo 

Smad1/5/9 phosphorylation in the presence of GDF6 yet retain the ability to be stimulated 

 
 
 
 
 
 
 
 
 
 

α-Phospho Smad 2/3  

 
α-Ubiquitin 

 
 
 

Figure 3.5. GDF6 does not induce Smad2/3 phosphorylation in RPE. Passage 0 RPE were 
pretreated with LDN and RepSox inhibitors for one hour prior to stimulation with              
1 µg/ mL (73 µM) rmGdf6 or 100 ng/mL (4 µM) TGFβ1. Cells stimulated with rmGdf6 
show no induction of Smad2/3 phosphorylation whereas cells treated with TGFβ1 induce 
a robust phosphorylation on Smad2/3. 
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by TGFb1 (Figure 3.4-B). This absence of an immediate response to GDF6 was intriguing, so 

we investigated the effect of longer-term exposure to GDF6 on mature, differentiated RPE. 

After 14 days of administration of recombinant mouse (rmGdf6), the RPE display no overt 

difference in cell morphology or pigmentation when compared to their control counterparts 

(Figure 3.6-A). The lack of effect from rmGdf6 exposure remains true when examining any 

 

 
 

B 

 
Figure 3.6. GDF6 has no effect on the morphology or gene expression of mature, 
differentiated RPE. (A) Brightfield and phase contrast 10X images of P0 RPE that have been 
differentiating for 60 days. Cells received 3 µg/mL (219µM) GDF6 every other day for 14 
days. LDN was also administered every other day for 14 days. (B) RT-qPCR analysis of 
mature, differentiated P0 RPE treated with rmGdf6 for 14 days. Genes that had a significant 
change in previous overexpression experiments were selected for analysis. 

A 
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gene expression changes in cells treated with rmGdf6; RT-qPCR analysis revealed no 

significant differences in gene expression on the genes which were previously most affected 

by GDF6 (Figure 3.6-B). It appears GDF6 can only affect RPE if they are in a dedifferentiated, 

less mature state.  

3.2.3: GDF6 Accelerates the Mesenchymal Transition in RPE  

 As RPE are passaged under a persistent wounding model, they naturally undergo 

EMT [10]. Though mature P0 RPE treated for 14 days with rmGdf6 showed no phenotypic or 

genotypic effect, we observed a substantial effect on undifferentiated passage 2 (P2) RPE 

using the same concentration of rmGdf6. Passage 2 RPE are at a stage where they are 

beginning to waver between a pigmented, epithelial-like state and a more mesenchymal 

state, as evidenced in the altered morphology of the control cells seen in Figure 3.7-A. 

When treated with rmGdf6, the cells exhibit a more severe phenotype than seen in early 

passage cells. The cells are long and tube-like, with a net-like appearance instead of a 

spindle-like shape seen in P0 cells treated with GDF6. Looking at a subset of genes most 

likely to change during passaging, we see GDF6 treatment causes expression of p-cadherin, 

the most abundant cadherin in RPE, to drop to levels that are undetectable (Figure 3.7-B). 

As expected, other common EMT markers like connective tissue growth factor (CTGF) and 

TGFb2 are upregulated from GDF6 treatment in P2 RPE. There is no significant change in the 

TGFb1 level between P2 cells treated with GDF6 and those not. It is possible that as these 

RPE are beginning to undergo EMT, TGFb1 has reached its maximum expression value, and 

therefore no increase can be made. Importantly, it appears that the exogenous addition of 

GDF6 causes an endogenous upregulation of GDF6 transcripts, suggesting GDF6 participates 
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in a positive feedback loop for itself (see discussion).

  

 3.2.4: GDF6 Has a Dose-Dependent Effect on RPE  

 A dose-dependent effect of GDF6 on RPE was achieved by plating a known number 

of cells overexpressing GDF6 with a known number of control RPE expressing the empty 

vector. As seen in Figure 3.8, the two populations of cells are mixed and allowed to 

differentiate for 32 days. RPE cell morphology is altered more as the percentage of GDF6 

positive cells increase. Pigmentation is lost, cell size increases, the cuboidal structure is lost 

A B 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7. GDF6 causes a more severe phenotype on passage 2 RPE. (A) Brightfield and 
phase contrast 10X images of passage 2 RPE cells treated with 3µg/mL (219 nM) rmGdf6 for 
14 days. At P2, the control cells are beginning to undergo EMT, losing the ability to pigment 
as well as their cobblestone-like phenotype. (B) RT-qPCR analysis of a subset of genes most 
affected by GDF6. A decrease in epithelial gene expression and an increase in mesenchymal 
gene expression is expected in P2 RPE. Statistical significance was determined using a 2-way 
ANOVA with a Bonferroni post-test (** ≤ 0.005, *** ≤ 0.0005, **** < 0.0001). 
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and holes appear in the monolayer. The severity of the phenotype is correlated with an 

increase in GDF6 expression.  

 GDF6 has an effect, measured by canonical Smad1/5/9 phosphorylation, on RPE in 

the micromolar range (Figure 3.9). RPE exposed to nanomolar concentrations of rmGdf6 

show a considerable reduction of Smad1/5/9 phosphorylation. This finding led us to 

investigate the dose-dependent effect of rmGdf6 on P0 RPE. RPE were grown in the 

 

 
 
 
 

Figure 3.8. Dose-dependent effect of GDF6 on RPE. A dose-dependent effect of GDF6 can 
be observed by combining RPE overexpressing GDF6 with RPE infected with a control 
vector. RPE over expressing either GDF6 or an empty vector control were sorted and 
plated in to wells as follows: 0% GDF6, 100% Control; 25% GDF6, 75% Control; 50% GDF6, 
50% Control; or 100% GDF6, 0% Control. The cells were allowed to differentiate for 32 
days at which 10X images were taken. The cells over expressing GDF6 fluoresce CFP while 
the control cells fluoresce YFP. 
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presence of rmGdf6 for 14 days, feeding every other day. This protocol is consistent with 

what has produced major results in the previous experiments. After 14 days of 

differentiation, P0 RPE cells are beginning to exhibit characteristics typical of mature RPE, 

such as pigmentation and a cobblestone appearance. As the concentration of rmGdf6 is 

increased, the potential of RPE to exhibit these characteristics decreases (Figure 3.10 A). 

The highest concentration of rmGdf6, (5ug/ml) causes the RPE to look tubular and enlarged, 

no longer recognizable as an epithelial cell. 
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Figure 3.9. GDF6 induces Smad1/5/9 phosphorylation in RPE in micromolar concentrations. 
rmGdf6 was administered to p0 RPE for 30 minutes. The samples were harvested and 
assayed for Smad1/5/9 phosphorylation. rmGdf6 administered in the nanomolar range 
failed to induce phosphorylation, whereas rmGdf6 administered in the micromolar range 
induced Smad1/5/9 phosphorylation. 
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 Many genes found in mature RPE or RPE with a mesenchymal phenotype also exhibit 

a dose-dependent response to rmGdf6. As the rmGdf6 concentration increases, we see a 

corresponding increase in the natural inhibitor of GDF6, Noggin. This dose-dependent effect 

is also seen with two genes prominent in mesenchymal RPE: Osteopontin (SPP1) and TGFb1. 

Two genes important for RPE function show a dose dependent decrease with rmGdf6. The 

first is LRAT, a critical gene involved in the visual cycle. The second is premelanosome 

protein (PMEL), a gene involved in pigmentation, which appears to be silenced entirely once 

a particular concentration of GDF6 is reached. Interestingly, adding rmGdf6 to P0 RPE cells 

does not induce endogenous GDF6 production as was previously seen in P2 RPE.  



53 

 

A. 

B. 

 
 

Figure 3.10. rmGdf6 has a dose-dependent effect on RPE. (A) Phase contrast (left) and 
brightfield (right) 10X images of P0 RPE treated with various amounts of rmGdf6 for 14 
days. As the concentration of rmGdf6 increases, the traditional cobblestone phenotype 
diminishes. At the highest concentration, the cells appear tubular and thin. (B) RT-qPCR 
analysis of RPE treated with various amounts of rmGdf6 for 14 days. Highlighted are genes 
that exhibited a dose-like effect when treated with rmGdf6. 
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3.3: Discussion 

 RPE must maintain a healthy state, performing their essential barrier and support 

functions, in order to have healthy vision. When RPE become diseased or damaged, they 

often undergo an epithelial to mesenchymal transition into a fibrotic cell. This transition, in 

turn, results in the death of photoreceptors or scarring in the eye leading to blindness. To 

prevent this detrimental EMT, we must first understand it. GDF6 is highly upregulated in 

RPE that have undergone EMT but not expressed in healthy RPE. Thus, GDF6 became a 

candidate gene for playing a role in EMT and causing RPE to enter a fibrotic state. 

3.3.1: GDF6 Expression Causes RPE to Undergo EMT 

 We found GDF6 RPE to share many characteristics with P5 RPE (RPE that have 

undergone an irreversible EMT and begun to form fibrotic cells). Previous work has shown 

that these highly passaged P5 cells are unable to undergo MET and form a cobblestone 

monolayer. They exhibit a fibrotic appearance with holes beginning to appear in the 

monolayer [10]. Additionally, there are substantial changes in gene expression, with P5 RPE 

downregulating genes found in healthy RPE and upregulating genes related to EMT and a 

mesenchymal state [10, 26]. One of the genes that exhibited the highest change in RPE gene 

expression was GDF6, with its levels undetectable in P0 RPE and highly expressed in P5 RPE 

[10]. When we treated early passage RPE with GDF6, we saw the RPE exhibit morphology 

(loss of a cobblestone phenotype and reduced pigmentation) and changes in gene 

expression, similar to P5 RPE. The important difference between the two cell populations is 

that GDF6 RPE undergo EMT without passaging, suggesting GDF6 is an initiator for terminal 

EMT in RPE. 
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 There are multiple markers which indicate the transition of epithelial cells into 

mesenchymal cells, such as changes in cadherin expression, cytoskeletal rearrangement, 

and an increase in focal adhesions and stress fibers [1, 27-29]. The most characteristic sign 

that a cell has undergone EMT is the loss of epithelial cadherin (CDH1) and upregulation of 

mesenchymal cadherin (CDH2). While RPE express CDH1, it has been shown that p-cadherin 

(CDH3) is the most abundant cadherin in mature RPE [30]. GDF6 RPE decrease epithelial 

cadherins CDH1 and CDH3, indicating the cells are no longer epithelial. CDH11 has been 

shown to interact with the more traditional mesenchymal n-cadherin (CDH2), suggesting 

CDH11 expression may also be a marker for a mesenchymal cell [31]. GDF6 RPE show 

increased transcripts in both mesenchymal cadherins, no longer maintaining the necessary 

transcripts to form traditional epithelial adherins junctions. 

 Another common hallmark of EMT is fibronectin expression and changes in the 

extracellular matrix (ECM). As the cell transitions from a sedentary cell to a motile cell, 

changes in the ECM need to occur. Collagen is the most abundant fibrin protein in the ECM, 

followed by elastin and fibronectin (FN) [32, 33]. As cells undergo EMT, they begin to 

produce larger quantities of these ECM proteins, specifically collagen 1, collagen 3, and FN. 

This transformed ECM provides a stiffer environment, stimulating directional migration of 

the cells. GDF6 RPE also upregulate many of these ECM proteins, suggesting the cell has 

undergone EMT. Additionally, GDF6 RPE upregulate genes related to focal adhesion and 

stress fibers. Focal adhesions are essential in mediating the effects of the ECM on cell 

behavior and require cells to spread in order to form [34]. Under extreme conditions, like 

repetitive passaging or wounding, enhanced ECM crosslinking can lead to aberrant fibrosis, 
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similar to what is observed in diseases like proliferative vitreoretinopathy [32]. GDF6 may 

be placing the RPE under constant stress, forcing them to maintain this altered ECM, 

ultimately resulting in a final mesenchymal state. 

 In vitro, RPE are coaxed into undergoing EMT through various stressors, such as low 

density passaging or stimulation with TGFb ligands [10]. GDF6 RPE undergo EMT without 

passaging of the cells. This morphological transformation may be similar to what occurs 

with TGFb stimulation—the cells spontaneously undergo EMT [35]. When passaged, it is 

necessary for RPE to proliferate to reach confluence. However, the cells will stop dividing, 

undergo MET, and initiate differentiation once confluence is established. GDF6 RPE may not 

be able to undergo MET or halt proliferation. It is possible GDF6 RPE lose their contact 

inhibition ability and instead continuously proliferate. As the cells differentiate, they begin 

to grow on top of one another, forming a mesh-like network of cells instead of a nice even 

layer. BMP proteins have been found to have a multitude of effects in various cell types 

during development, including but not limited to the regulation of cell proliferation, 

apoptosis, and migration [36]. GDF6 RPE may upregulate cell cycle genes and proliferation 

early on, as no apparent upregulation in cell cycle genes is seen at 32 days of 

differentiation. Analysis of GDF6 RPE at various time points during differentiation can 

elucidate any potential increases in cell cycle markers. Many epithelial cancer cells will 

undergo EMT to migrate and invade tissues, resulting in a metastatic phenotype [37]. One 

of the hallmarks of cancer cells and tumor formation is the loss of cell contact inhibition, 

instead erroneously proliferating and growing on top of one another, similar to what is seen 

in GDF6 RPE [38]. 
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 TGFb ligands are known inducers of EMT and a mesenchymal fate in RPE [2, 7, 39]. 

However, these ligands are likely not responsible for an irreversible EMT in RPE. TGFb 

proteins are present in early passage, healthy RPE [10]. It is necessary for these RPE to 

undergo EMT to reach confluence, but the cells can undergo MET and revert to their 

epithelial state. GDF6 RPE are unable to undergo MET, suggesting GDF6 may be inhibiting or 

preventing that pathway. GDF6 may not be the primary reason why passaged RPE are 

unable to undergo MET, but it may interact or activate an inhibitor of the pathway. In order 

to determine the role GDF6 has in both EMT and MET, the gene will need to be silenced. 

3.3.2: GDF6 Only Affects Wounded RPE 

 For RPE to undergo EMT, there needs to be some cellular stress or damage to induce 

a loss of cell-cell contact. Differentiated RPE that maintain cell-cell contacts are resistant to 

TGFb2 induced EMT, whereas cells that have lost this contact are especially susceptible to 

TGFb2 stimulation [40]. GDF6 RPE also display this phenomenon, suggesting the RPE are 

resistant to GDF6 stimulation if fully mature, implying that the induction of EMT by TGFb 

family members is not possible in healthy RPE monolayers.  

 When RPE are passaged under a persistent wounding model, the cells begin to 

express GDF6 [10]. As the cells become more stressed through passage, they elicit a much 

stronger response to GDF6 treatment, taking on a myofibroblast phenotype. In this state, 

exogenous GDF6 exposure results in an endogenous increase in GDF6 transcripts. GDF6 

then causes the RPE to enter a terminal EMT state, ultimately resulting in fibrosis. This 

natural upregulation of GDF6 by RPE may be a protective mechanism. The retina is one of 

the most metabolically active tissues in the body, and RPE are responsible for processing 
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and transporting all of these metabolites, which puts high stress on the cell [5]. RPE are 

exposed to other stressors as well, such as ultraviolet radiation (which can cause DNA 

double-stranded breaks), and being that they are a somewhat quiescent cell, do not 

undergo the same rigorous proofreading as cells that regularly divide [41, 42]. RPE that 

accumulate damage (through inflammatory cytokines, DNA damage, oxidative stress, or 

other mechanisms) may not be able to perform the multitude of functions required of RPE, 

so they are transformed into a fibrotic cell instead.  

3.3.3: Implications in Disease 

 EMT of the RPE is a common phenotype found in eye diseases that result in scarring 

or RPE death, like PVR and CNV [6, 8, 9, 43, 44]. One study has linked a lack of GDF6 to an 

increased risk of age-related macular degeneration (AMD), finding elevated levels of GDF6 

mRNA in the mouse retina and protein localization using immunohistochemistry [45]. Our 

results from this study disagree. First, GDF6 mRNA is undetectable in healthy mature human 

RPE. Secondly, an antibody selective for GDF6 has yet to be located. We have found 

antibodies that can detect GDF6; however, it appears that other proteins are being 

detected as well. Large amounts of protein are seen in healthy RPE when no mRNA 

transcripts for GDF6 exist, suggesting the antibodies are non-specific and potentially 

recognizing some other, closely related GDF protein. 

 GDF6 is crucial during early ocular and retinal development, and lack of GDF6 has 

been associated with microphthalmia, photoreceptor death, and loss of laminar structure 

[13, 14, 16]. Proper development of the retina requires GDF6, but once the eye is fully 

differentiated, its presence is detrimental. This phenomenon of ligands having opposing 
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effects over time is well reported in various members of the TGFb family; loss of TGFb2 in 

early development results in altered ocular tissues (such as a thin cornea and immature 

retina), whereas TGFb2 expression in the developed eye can result in tissue fibrosis [46].  

 GDF6 has not been implicated in the pathogenesis of PVR or CNV [47]. Previous 

studies have shown that once RPE take on a myofibroblast phenotype, levels of GDF6 

gradually decline over time [10]. By the time these diseases have been diagnosed, the RPE 

have already undergone EMT. It is possible for GDF6 to be present in early stages of the 

disease to push RPE into a terminal EMT state and then disappear as it is no longer 

necessary to maintain the cell in a fibrotic state. We saw that in vitro RPE exhibit drastic 

changes in their gene expression and morphology in only 32 days of GDF6 exposure. It may 

be that the overexpression of GDF6 causes higher than normal amounts of GDF6 to be 

produced, eliciting a more drastic effect on the RPE. Stimulating RPE with recombinant 

mouse Gdf6 ligand produces the same results, ensuring the effect is not a by-product of 

overexpression. It would be helpful to determine the endogenous levels of GDF6 in P5 RPE, 

but a robust antibody is needed to do so. Once this is established, GDF6 can be 

administered to RPE for different durations to determine at what point they no longer need 

GDF6 and remain in a mesenchymal state. 

3.4: Conclusion 

 GDF6 RPE display qualities and characteristics of a mesenchymal cell, suggesting the 

RPE have undergone EMT. This effect is only noticeable on RPE that have lost cell-cell 

contact, potentially through damage or disease. Inhibition of GDF6 may help prevent 

diseases like CNV and PVR where EMT of the RPE is a major phenotype. Though a 
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knockdown is needed to determine its necessity, we have shown that GDF6 is sufficient to 

cause irreversible EMT in RPE. 
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CHAPTER IV: Inhibition of GDF6 Does Not Prevent EMT in RPE 

4.1: Introduction 

 In the previous chapter, we found growth differentiation factor 6 (GDF6/BMP13), a 

member of the transforming growth factor-beta (TGFb) superfamily, to play a role in the 

epithelial to mesenchymal transition (EMT) of the retinal pigmented epithelium (RPE). 

Expression of GDF6 resulted in a mesenchymal phenotype of the cells, indicating that GDF6 

is sufficient in inducing EMT in RPE. However, the necessity of GDF6 in the EMT process 

remains unknown. Prevention of aberrant wound healing in the RPE is essential to maintain 

healthy vision. EMT of the RPE is associated with the pathology of various eye diseases, 

including choroidal neovascularization (wet age-related macular degeneration) or 

proliferative vitreoretinopathy due to retinal detachment [1, 2]. 

 TGFb proteins are known inducers of EMT in RPE cells [3, 4]. Recent studies have 

shown that inhibiting the Smad2/3 TGFb signaling cascade through the small molecule A-83-

01, a TGFb type I receptor (TGFbRI) activin-like kinase (Alk) 5 inhibitor, prolonged the 

epithelial state in passaged RPE [5]. This small molecule will not suffice as an inhibitor for 

GDF6 signaling, as GDF6 operates through the bone morphogenic protein (BMP) receptors 

Alk3 and Alk6 where it participates in Smad1/5/9 phosphorylation [6]. Dorsomorphin is a 

small molecule that inhibits the BMP type I receptors Alk2, Alk3, and Alk6, thus inhibiting 

Smad1/5/9 phosphorylation [7]. Recently, dorsomorphin has shown promiscuity for other 

Alk receptors, and another small molecule, LDN-193189 (LDN) selectively inhibits 

Smad1/5/9 phosphorylation [8]. We can utilize these small molecules, along with other 

silencing techniques, to determine the necessity of GDF6 to initiate RPE EMT. 
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4.2: Results 

4.2.1: Inhibition of Smad 1/5/9 Signaling Does Not Prevent EMT in RPE 

 One way to block the effects of GDF6 on RPE is to prevent its subsequent signaling 

cascade. Culturing the cells in the presence of the small molecule LDN achieves silencing of 

the Alk1, 2, 3, and 6 receptors, thus preventing Smad1/5/9 phosphorylation [8, 9]. As seen 

in Figure 4.1-A, RPE are unable to maintain their pigmentation and lose their cuboidal shape 

when passaged, even when cultured with LDN. At passage 7 (P7), the RPE have undergone 

EMT in every treatment, but there are some differences in the morphology of the cells 

(Figure 4.1-B). RPE cultured without any inhibitor exhibit the typical appearance of RPE that 

have undergone EMT: the cells are spindle-like, fibrous, and thin. RPE cultured with LDN, on 

the other hand, exhibit a different morphology. There are more holes in the monolayer; 

however, the cells retain more of a spherical shape instead of a spindle shape. While the 

RPE in either treatment no longer resemble healthy RPE, LDN-treated RPE are not typical of 

RPE that have undergone EMT.  

 This difference in phenotype is confirmed by a difference in gene expression (Figure 

4.2). LDN suppresses GDF6 expression levels, thus reducing GDF6 protein expression. 

Expression levels remain relatively the same for the cell junction gene p-cadherin (CDH3) up 

to passage 5, when GDF6 expression increases in control cells. As GDF6 levels rise, CDH3 

levels simultaneously decrease; however, CDH3 levels remain high in RPE cultured with LDN 

(where GDF6 levels are low). LDN appears to inhibit TGFb1 expression independent of GDF6 
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A. 
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Figure 4.1. RPE passaged in the presence of LDN-193189 (LDN) do not display an extension 
of the epithelial phenotype. (A) Phase contrast (left) and brightfield (right) 10X images of 
RPE cultured with LDN. Cells were passaged under a persistent wounding model in the 
presence of LDN or dimethyl sulfoxide (DMSO) (control). At each passage, a subset of cells 
was plated at a high density and allowed to differentiate while still in the presence of the 
inhibitor or DMSO. The control to LDN RPE were passaged in the presence of DMSO but 
allowed to differentiate in the presence of LDN. (B) Phase contrast 10X images of P7 RPE at 
each condition. Images were enlarged to show the differences of morphology in each 
condition. 
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but does not affect TGFb2 levels. The morphological differences observed in P7 cells likely 

contribute to these differences in gene expression. Inhibiting GDF6 signal transduction does 

not prevent EMT in RPE, but it does create a difference in what type of mesenchymal cell 

the RPE become. 
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Figure 4.2. RT-qPCR analysis of RPE passaged in the presence or absence of LDN. Cells were 
passaged under a persistent wounding model and allowed to differentiate for 32 days. 
Genes that were different between the treatments are highlighted. LDN is able to prevent 
GDF6 from reaching control levels. CDH3 levels remain high in cells treated with LDN while 
TGFβ1 levels remain lower than control cells. TGFβ2 levels remain unchanged, with a slight 
decrease in expression seen in cells grown in DMSO but allowed to differentiate in LDN. 
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4.2.2: LDN-193189 Rescues RPE Treated with GDF6 

 Though LDN was unable to prevent RPE from undergoing EMT, it did show an 

inhibitory effect on GDF6. We examined the potential for LDN to prevent the drastic effects 

seen when RPE cells are treated with GDF6. Passage 2 (P2) and passage 3 (P3) RPE were 

treated with recombinant mouse Gdf6 (rmGdf6) for two weeks, resulting in a distinct 

phenotype in both passages, as evidenced in Figure 4.3-A. However, supplementation with 

A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. C. 
 
 
 
 
 
 
 
 
 
 

Figure 4.3. Treatment of passaged RPE with rmGdf6 and LDN-193189 (LDN). (A) Phase 
contrast (left) and brightfield (right) 10x images of passage 2 (P2) and passage 3 (P3) RPE. 
RPE were plated at high density and treated with 219nM rmGdf6 and 200nM LDN for 14 
days. (B-C) RT-qPCR analysis of a subset of genes most affected by GDF6 in P2 and P3 RPE, 
respectively. Statistical significance with respect to the control DMSO sample was 
determined using a 2-way ANOVA with a Bonferroni post-test (* ≤ 0.05, ** ≤ 0.005, *** ≤ 
0.0005, **** ≤ 0.0001). 
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LDN prevented the mesenchymal phenotype and allowed the RPE to pigment in the 

presence of rmGdf6, with P2 cells displaying a more substantial rescue than P3 RPE. This 

restoration of the phenotype extended to the genotype. Looking at a subset of genes most 

affected by passage, rmGdf6 treatment exacerbates the mesenchymal phenotype through 

upregulation of genes found in highly passaged cells like connective tissue growth factor 

(CTGF) (Figure 4.3-B). Treatment with LDN resulted in downregulation of these genes and 

upregulation of genes found in healthy RPE like CDH3. The passaged RPE already begin to 

express GDF6 naturally, as P2 and P3 cells are beginning to undergo EMT (as evidenced by 

the lack of pigmentation and cobblestone morphology in control cells), and GDF6 treatment 

further upregulates endogenous GDF6 in both passages. Treatment of the control cells with 

LDN significantly reduces the expression of GDF6 in P2 cells and brings it below control 

levels in P3 cells, resulting in an improved phenotype in both passages. P2 cells show a more 

drastic reduction of GDF6 expression with LDN treatment and thus a better rescue of the 

phenotype. LDN-193189 can effectively rescue the phenotype of externally applied and 

internally produced GDF6 in RPE.  

 Full inhibition of the BMP signaling pathway is unable to occur if the concentration 

of LDN is too low. To investigate the optimal concentration of LDN for full inhibition, we 

challenged low-density RPE with 1 µg/mL rmGdf and various amounts of LDN (Figure 4.4). 

RPE show phosphorylation of Smad1/5/9 with no LDN present, but every concentration of 

LDN examined prevented phosphorylation of Smad1/5/9. The concentration of LDN 

typically used is 200 nM, which is more than sufficient to prevent any Smad1/5/9 

phosphorylation due to GDF6 signaling [5].  
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4.2.3: Inhibition of TGFb Receptors Rescues RPE Overexpressing GDF6 

 Given the potential for mouse and human GDF6 to behave differently, we 

investigated if RPE could be rescued using LDN while overexpressing human GDF6. Data 

from P2 and P3 RPE, which begin to express GDF6 naturally, suggested LDN could rescue the 

phenotype, but GDF6 still had relatively low expression (Figure 4.3). We transfected RPE 

with GDF6 or an empty control vector and let the cultures differentiate in the presence of 

LDN, RepSox (an Alk5 or Smad2/3 inhibitor), or a combination of both. After 32 days of 

differentiation, the untreated cells behaved as expected, while the GDF6 overexpressing 

cells appeared mesenchymal-like and the control cells differentiated into a healthy 

monolayer (Figure 4.5-A). Treatment of RPE with the BMP receptor inhibitor LDN resulted in 

a rescue of the mesenchymal phenotype. The RPE regained their cuboidal morphology and 

pigmented, similar to healthy RPE (Figure 4.5-B). There were no overt morphological 
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Figure 4.4. LDN-193189 is able to effectively inhibit GDF6 induced Smad1/5/9 signaling. 
Passage 0 RPE were incubated with the various concentrations of LDN-193189 for one hour. 
Cells were then challenged with 1 µg/mL rmGdf6 for 30 minutes, at which time the cells 
were harvested for Smad phosphorylation analysis. GDF6 can induce Smad1/5/9 
phosphorylation in cells not treated with LDN-193189 but is prevented from initiating 
phosphorylation in all concentrations of LDN-193189 assayed. α-Ubiquitin is used as a 
loading control. 
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Figure 4.5. Effect of Smad phosphorylation inhibitors on RPE. (A) Phase contrast (left) and 
brightfield (right) 10X images of RPE overexpressing GDF6 or an empty control vector. Cells 
were fed approximately every other day with RepSox, LDN-193189, or a combination of the 
two for 32 days. (B) Effect of Smad phosphorylation inhibitors on RPE pigmentation after 32 
days. Displayed is the percentage of an image that is pigmented. Statistical significance was 
determined using a one-way ANOVA (** ≤ 0.005). (C) Heat map displaying RT-qPCR results. 
The log fold change of experimental value to control was determined. Genes higher than 
control are shown in red, while genes lower than control are shown in blue. 
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differences between cells overexpressing GDF6 and treated with LDN and the control group. 

This similarity in appearance continues into similar gene expression when comparing a 

subset of genes found in healthy and passaged RPE. LDN restores the levels of healthy RPE 

genes like CDH3 and lecithin retinol acyltransferase (LRAT) while reducing expression levels 

of genes found in highly passaged RPE like CTGF and collagen type I alpha 1 chain (COL1A1) 

(Figure 4.5-C). Interestingly, the TGFb receptor inhibitor RepSox displays a similar rescue of 

the phenotype and genotype. RPE overexpressing GDF6 can return to their normal 

morphology if Smad2/3 phosphorylation is inhibited. Inhibition of the TGFb pathway 

prevents GDF6 from affecting the cellular phenotype, suggesting one of the downstream 

targets of GDF6 may operate through the Smad2/3 pathway.  

4.2.4: CRISPR Knockdown of GDF6 

 We have shown GDF6 to be sufficient in causing RPE to undergo EMT, but its 

necessity in the process has yet to be determined. Clustered regularly interspaced short 

palindromic repeats (CRISPR)/Cas9 (CRISPR-associated protein 9) is a useful tool in editing 

and altering gene function in cells [10-12]. CRISPR interference (CRISPRi) uses a catalytically 

inactive Cas9 protein (dCas9) to prevent transcription of a gene instead of initiating double-

stranded breaks, thus reducing the potential for off-target effects [13-15]. RPE were 

transfected with dCas9 and two guide RNAs (gRNA) targeting different regions of the GDF6 

transcription start site (TSS). Passaged RPE that either have no gRNA or a gRNA targeting a 

control gene (ubiquitination Factor E4A; UBE4A) have a typical EMT morphology: mainly a 

loss of pigmentation and lack of a cobblestone appearance, favoring a larger, more 

stretched out appearance (Figure 4.6-A). RPE transfected with either gRNA targeting the TSS 
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of GDF6 retain a more typical appearance, with GDF6 gRNA 2 producing the healthiest 

phenotype with pigmentation. Looking at a subset of genes most affected by passaging of 

RPE, RPE transfected with either GDF6 gRNA downregulate genes found in highly passaged 

RPE and upregulate genes found in healthy RPE (Figure 4.6-B). Knocking down GDF6 

appears to delay RPE EMT; however, this effect is short-lived as the RPE transfected with a 

GDF6 gRNA undergo EMT by the next passage (Figure 4.7). GDF6 is sufficient, but not 

necessary, for RPE to undergo EMT.  
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Figure 4.6. CRISPRi knockdown of GDF6 in passage 5 RPE. (A) Phase contrast (left) and 
brightfield (right) 10X images of iPS-RPE infected with dCas9 and a gRNA directed to GDF6 
or a control gene (UBE4A). Images are of passage 5 iPS-RPE that were allowed to 
differentiate for 32 days. (B) Heat map of RT-qPCR results displaying the effect of GDF6 
knockdown on RPE. The log fold change the experimental gRNA samples to the dCas9 alone 
sample was determined. Expression levels higher than the dCas9 control are displayed in 
red whereas levels lower than control are in blue. UBE4A was used as a positive control. 
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4.3: Discussion 

4.3.1: GDF6 is not necessary for RPE to undergo EMT 

 In the previous chapter, we showed GDF6 to be sufficient in initiating EMT in RPE. 

However, blocking the signal transduction pathway of BMP genes through inhibition of the 

Alk2, 3, and 6 receptors does not prevent RPE from undergoing EMT. This same 

phenomenon has been observed with TGFb signaling, as TGFb signaling is sufficient to 

induce EMT in RPE [3, 16, 17]. A delay in EMT was seen when RPE were passaged in the 

 
 

Figure 4.7. CRISPRi knockdown in passage 6 RPE. Phase Contrast 10X images of passage 6 
iPS-RPE infected with dCas9 and a gRNA directed to GDF6 or a control gene (UBE4A). iPS- 
RPE were differentiated for 32 days before imaging. 
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presence of the Alk5 inhibitor RepSox, as the cells retained a normal phenotype for more 

passages than usual [5]. Nevertheless, the RPE ultimately succumbed to their fate and 

underwent EMT independent of TGFb, suggesting TGFb is sufficient, but not necessary for 

RPE EMT [5]. Attempted prevention of healthy RPE seems futile, as blocking one type of 

EMT (such as TGFb or GDF6 mediated) only results in another form of EMT, possibly 

through hepatocyte growth factor (HGF) signaling, the Hippo pathway, platelet derived 

growth factor (PDGF) signaling, or the Wnt/ b-catenin pathway [18, 19].  

 The multitude of ways RPE can undergo EMT may explain why RPE passaged with 

LDN undergo EMT but have a different appearance and gene expression from untreated 

RPE. The EMT seen in LDN treated RPE may be due to TGFb2 (but not TGFb1) expression as 

LDN treatment does not affect TGFb2 expression. Coupled with the increase in CTGF, as well 

as the fact that CTGF increases binding of TGFb2 to TGFb receptor 2 (TGFbRII), it is plausible 

LDN treated RPE have undergone this other form of EMT [19]. Often, there are antagonistic 

effects of TGFb and BMP proteins [20, 21]. TGFb proteins are known inducers of EMT; 

therefore, there may be BMP proteins acting antagonistically. By blocking the BMP 

pathway, we prevent possible antagonists from operating, thus letting TGFb act on the RPE 

uncontrollably, causing the EMT observed in LDN treated RPE. 

 Knocking down GDF6 allows us to determine the effects GDF6 alone has on RPE 

EMT. If GDF6 were necessary for RPE EMT, knocking down the gene would prevent RPE 

from undergoing EMT. However, RPE still undergo EMT with knockdown of GDF6, it is just 

delayed. Knocking down instead of knocking out a gene can create leakiness and still allow 

some gene expression. This phenomenon is seen in other CRISPRi knockdowns, especially 
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when dCas9 stem cells have been directed to differentiate into a cell type, as was done here 

[14]. It may be that a low level of GDF6 is all that is necessary to initiate EMT and 

incomplete knockdown may provide the necessary expression levels. Another possibility is 

that not all the cells integrated the gRNA for GDF6. These cells may proliferate faster than 

the rest of the culture and express GDF6, reducing the effect of the knockdown. 

 The inability for GDF6 knockdown to prevent EMT may be due to other factors as 

well. There is known redundancy in both the TGFb and BMP pathways, as there are many 

proteins that signal through just a few receptors [22, 23]. For example, bone morphogenic 

protein (BMP) 7 is a known inducer of bone formation; however, there is no noticeable 

effect on formation when BMP7 is conditionally deleted from the limb [24, 25]. GDF6 is very 

similar to GDF5 and growth differentiation factor 7 (GDF7), sharing 80-86% identity in the C-

terminus region and making up a unique subtype in the BMP protein group [26, 27]. It is 

highly plausible that by inhibiting GDF6, a similar protein (like GDF5 or GDF7) may be 

compensating for its loss and taking its place, causing RPE to undergo EMT. One of the only 

successful ways to prevent EMT in RPE is to transfect the RPE with MYCN and orthodenticle 

homeobox 2 (OTX2), key RPE transcription factors [28].  

4.3.2: GDF6 has an inhibitory effect on CDH3 

 RPE treated with GDF6 appear to ignore traditional contact inhibition pathways, 

resulting in a net-like layer of overlapping cells instead of a monolayer. It is possible the loss 

of the critical cadherin maintaining the epithelial state (CDH3), when GDF6 is expressed, 

may be initiating the Hippo pathway, causing increased cell proliferation and EMT in 

otherwise healthy RPE [18]. Cadherins play an essential role in both cell-cell adhesion and 



77 

transfer of information intracellularly through interactions with the cytoskeleton [29]. E-

cadherin (CDH1) is an epithelial marker, and as cells undergo EMT CDH1 expression 

decreases, with the loss of CDH1 function simultaneously promoting EMT [30]. CDH1 is an 

upstream modulator of the Hippo pathway and is critical in controlling cell proliferation 

through contact inhibition; without CHD1 cell proliferation is unimpeded, resulting in 

aberrant growth similar to tumor cells [31]. In RPE the dominant cadherin is p-cadherin 

(CDH3), not CDH1 as in most epithelial cells [32]. It is plausible for CDH3 to assume the 

same role as CDH1 in RPE, maintaining the RPE in a healthy epithelial state. When RPE 

undergo EMT, there is a decrease in both CDH1 and CDH3 levels, a phenomenon that is 

accelerated by GDF6 expression.  

 TGFb expression in epithelial cells has been linked to dedifferentiation of the 

epithelial state as well as a decrease in CDH1 [33]. In RPE a similar effect is seen, as 

increased expression of GDF6 correlates with a decrease in expression of CDH3. It is 

unknown whether this decrease in CDH3 expression is a direct effect of GDF6 expression or 

a bystander effect from RPE undergoing EMT. The data suggests the former: GDF6 has an 

inhibitory effect on CDH3 expression. By preventing GDF6 expression by passaging RPE in 

the presence of LDN, CDH3 levels remain high, even after the cells have undergone an 

apparent mesenchymal transition. Other BMP/GDF6 proteins—like the closely related GDF5 

and GDF7—may also have an inhibitory effect on CDH3. Blocking BMP signaling in healthy 

RPE using LDN results in higher CDH3 expression levels, thus proposing other members of 

the pathway participate in inhibiting the gene. Furthermore, knockdown of GDF6 does not 

elevate CDH3 levels but instead results in CDH3 levels lower than control counterparts. This 
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lowered expression is likely due to similar GDF/BMP proteins compensating for the loss of 

GDF6.  

 Non-canonical signaling has been well documented for members of the TGFb family, 

specifically TGFb1 and TGFb2 [34-36]. Additionally, members of the BMP family 

demonstrate Smad-independent signaling, with BMP-2 activating the p38 mitogen-activated 

protein kinase (MAPK) pathway as well as its canonical Smad1/5/9 signaling pathway [37]. 

However, non-canonical pathway activation due to GDF6 has yet to be identified, with 

canonical Smad1/5/9 the only pathway of note [26]. We found GDF6 protein treatment to 

inhibit CDH3 expression, and inhibition of its signaling pathway using LDN rescues 

expression; however, CDH3 is unable to reach the same levels as RPE not exposed to GDF6 

and treated with LDN. This negative regulation of CDH3 by GDF6 may be occurring in a non-

canonical, Smad-independent manner, as GDF6 appears always to effect CDH3 levels. 

Further investigation is needed to determine if the decrease in CDH3 due to GDF6 is what 

makes RPE undergo irreversible EMT. One possible way to achieve this is to overexpress 

CDH3 in RPE and see if the cells still undergo EMT; the RPE will probably still undergo EMT 

with the overexpression of CDH3, as LDN treated RPE retain high levels of CDH3 but still 

undergo EMT. A more useful approach would be to determine if GDF6 can initiate EMT in 

the presence of CDH3. 

4.3.3: Downstream targets of GDF6 operate through TGFb receptors 

 GDF6 has been shown to only activate the Smad1/5/9 pathway and bind to BMP—

not TGFb—receptors [6, 26]. However, GDF6 RPE given the TGFb receptor inhibitor RepSox 

exhibited an avoidance of the mesenchymal phenotype, much like GDF6 RPE treated with 
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LDN. RepSox is an extremely selective and potent inhibitor of TGFb type I receptors and 

therefore effectively inhibits canonical TGFb signaling [38]. GDF6 itself cannot be affected 

by RepSox, and Smad1/5/9 phosphorylation still occurs in its presence; yet, GDF6 appears 

to be affected by RepSox. This reaction indicates that something downstream of GDF6 

operates through the TGFb pathway, and it is this gene that promotes an EMT phenotype in 

RPE. In order to determine what gene this is and the mechanism of action for GDF6, a more 

in-depth sequencing analysis needs to be performed.  

4.4: Conclusion 

 GDF6 has previously shown to be sufficient in inducing EMT in RPE, but its necessity 

remained unknown. Inhibition of the BMP signaling pathway failed to extend the epithelial 

phenotype in RPE, and knockdown of GDF6 only slightly extended the phenotype, indicating 

GDF6 is not necessary for EMT in RPE. GDF6 did have an inhibitory effect on CDH3 

expression, a phenomenon seen with TGFb and CDH1. However, its method of inhibition 

may be through a non-canonical Smad-independent pathway. Canonical signaling of GDF6 

has downstream targets that operate through TGFb receptors, as the Alk5 inhibitor RepSox 

can maintain an epithelial phenotype in the presence of GDF6. In order to determine the 

mechanistic properties of GDF6, deeper sequencing and pathway analysis is needed. 

4.5: References 

1. Casaroli-Marano, R.P., R. Pagan, and S. Vilaro, Epithelial-mesenchymal transition in 
proliferative vitreoretinopathy: intermediate filament protein expression in retinal 
pigment epithelial cells. Invest Ophthalmol Vis Sci, 1999. 40(9): p. 2062-72. 

2. Ohlmann, A., et al., Epithelial-mesenchymal transition of the retinal pigment 
epithelium causes choriocapillaris atrophy. Histochem Cell Biol, 2016. 146(6): p. 769-
780. 



80 

3. Xu, J., S. Lamouille, and R. Derynck, TGF-beta-induced epithelial to mesenchymal 
transition. Cell Res, 2009. 19(2): p. 156-72. 

4. Saika, S., TGFbeta pathobiology in the eye. Lab Invest, 2006. 86(2): p. 106-15. 
5. Radeke, M.J., et al., Restoration of mesenchymal retinal pigmented epithelial cells by 

TGFβ pathway inhibitors: implications for age-related macular degeneration. 
Genome Med, 2015. 7(1): p. 58. 

6. Berasi, S.P., et al., Divergent activities of osteogenic BMP2, and tenogenic BMP12 
and BMP13 independent of receptor binding affinities. Growth Factors, 2011. 29(4): 
p. 128-39. 

7. Yu, P.B., et al., Dorsomorphin inhibits BMP signals required for embryogenesis and 
iron metabolism. Nat Chem Biol, 2008. 4(1): p. 33-41. 

8. Boergermann, J.H., et al., Dorsomorphin and LDN-193189 inhibit BMP-mediated 
Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol, 2010. 42(11): p. 
1802-7. 

9. Vogt, J., R. Traynor, and G.P. Sapkota, The specificities of small molecule inhibitors of 
the TGFss and BMP pathways. Cell Signal, 2011. 23(11): p. 1831-42. 

10. Doetschman, T. and T. Georgieva, Gene Editing With CRISPR/Cas9 RNA-Directed 
Nuclease. Circ Res, 2017. 120(5): p. 876-894. 

11. Jiang, F. and J.A. Doudna, CRISPR-Cas9 Structures and Mechanisms. Annu Rev 
Biophys, 2017. 46: p. 505-529. 

12. Ma, Y., L. Zhang, and X. Huang, Genome modification by CRISPR/Cas9. Febs j, 2014. 
281(23): p. 5186-93. 

13. Larson, M.H., et al., CRISPR interference (CRISPRi) for sequence-specific control of 
gene expression. Nat Protoc, 2013. 8(11): p. 2180-96. 

14. Mandegar, M.A., et al., CRISPR Interference Efficiently Induces Specific and Reversible 
Gene Silencing in Human iPSCs. Cell Stem Cell, 2016. 18(4): p. 541-53. 

15. Gilbert, L.A., et al., CRISPR-mediated modular RNA-guided regulation of transcription 
in eukaryotes. Cell, 2013. 154(2): p. 442-51. 

16. Roberts, A.B., et al., Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal 
transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev, 
2006. 17(1-2): p. 19-27. 

17. Li, H., et al., Snail involves in the transforming growth factor β1-mediated epithelial-
mesenchymal transition of retinal pigment epithelial cells. PLoS One, 2011. 6(8): p. 
e23322. 

18. Chen, Z., Y. Shao, and X. Li, The roles of signaling pathways in epithelial-to-
mesenchymal transition of PVR. Mol Vis, 2015. 21: p. 706-10. 

19. Yang, S., et al., Mechanisms of epithelial-mesenchymal transition in proliferative 
vitreoretinopathy. Discov Med, 2015. 20(110): p. 207-17. 

20. Keller, B., et al., Interaction of TGFbeta and BMP signaling pathways during 
chondrogenesis. PLoS One, 2011. 6(1): p. e16421. 

21. Candia, A.F., et al., Cellular interpretation of multiple TGF-beta signals: intracellular 
antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. 
Development, 1997. 124(22): p. 4467-80. 



81 

22. Munger, J.S. and D. Sheppard, Cross talk among TGF-beta signaling pathways, 
integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol, 2011. 3(11): p. 
a005017. 

23. Wolfman, N.M., et al., Ectopic induction of tendon and ligament in rats by growth 
and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin 
Invest, 1997. 100(2): p. 321-30. 

24. Sampath, T.K., et al., Recombinant human osteogenic protein-1 (hOP-1) induces new 
bone formation in vivo with a specific activity comparable with natural bovine 
osteogenic protein and stimulates osteoblast proliferation and differentiation in 
vitro. J Biol Chem, 1992. 267(28): p. 20352-62. 

25. Wang, R.N., et al., Bone Morphogenetic Protein (BMP) signaling in development and 
human diseases. Genes Dis, 2014. 1(1): p. 87-105. 

26. Mazerbourg, S., et al., Identification of receptors and signaling pathways for orphan 
bone morphogenetic protein/growth differentiation factor ligands based on genomic 
analyses. J Biol Chem, 2005. 280(37): p. 32122-32. 

27. Storm, E.E., et al., Limb alterations in brachypodism mice due to mutations in a new 
member of the TGF beta-superfamily. Nature, 1994. 368(6472): p. 639-43. 

28. Shih, Y.H., et al., Restoration of Mesenchymal RPE by Transcription Factor-Mediated 
Reprogramming. Invest Ophthalmol Vis Sci, 2017. 58(1): p. 430-441. 

29. Angst, B.D., C. Marcozzi, and A.I. Magee, The cadherin superfamily: diversity in form 
and function. J Cell Sci, 2001. 114(Pt 4): p. 629-41. 

30. Zeisberg, M. and E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions. J 
Clin Invest, 2009. 119(6): p. 1429-37. 

31. Kim, N.G., et al., E-cadherin mediates contact inhibition of proliferation through 
Hippo signaling-pathway components. Proc Natl Acad Sci U S A, 2011. 108(29): p. 
11930-5. 

32. Yang, X., et al., Cadherins in the retinal pigment epithelium (RPE) revisited: P-
cadherin is the highly dominant cadherin expressed in human and mouse RPE in vivo. 
PLoS One, 2018. 13(1): p. e0191279. 

33. Vogelmann, R., et al., TGFbeta-induced downregulation of E-cadherin-based cell-cell 
adhesion depends on PI3-kinase and PTEN. J Cell Sci, 2005. 118(Pt 20): p. 4901-12. 

34. Mu, Y., S.K. Gudey, and M. Landstrom, Non-Smad signaling pathways. Cell Tissue 
Res, 2012. 347(1): p. 11-20. 

35. Zhang, Y.E., Non-Smad Signaling Pathways of the TGF-beta Family. Cold Spring Harb 
Perspect Biol, 2017. 9(2). 

36. Guo, X. and X.F. Wang, Signaling cross-talk between TGF-beta/BMP and other 
pathways. Cell Res, 2009. 19(1): p. 71-88. 

37. Hassel, S., et al., Initiation of Smad-dependent and Smad-independent signaling via 
distinct BMP-receptor complexes. J Bone Joint Surg Am, 2003. 85-A Suppl 3: p. 44-51. 

38. Gellibert, F., et al., Identification of 1,5-naphthyridine derivatives as a novel series of 
potent and selective TGF-beta type I receptor inhibitors. J Med Chem, 2004. 47(18): 
p. 4494-506. 

 



82 

  



83 

CHAPTER V: The Mechanism of Action of GDF6 

5.1: Introduction 

 We have shown growth differentiation factor 6 (GDF6) to have an inhibitory effect 

on p-cadherin (CDH3), even in the presence of the Smad1/5/9 inhibitor LDN-193189 (LDN). 

This effect on gene expression is surprising, as GDF6 is not reported to act through any 

other signaling pathway [1]. In this final experimental chapter, we aim to investigate if GDF6 

can signal through a Smad-independent pathway in retinal pigmented epithelial (RPE) cells 

by utilizing RNA-sequencing (RNA-seq) techniques and receptor binding assays. 

5.2: Results 

5.2.1: GDF6 Affects Gene Expression in the Presence of Inhibitors 

 Initially, inhibition of the bone morphogenic protein (BMP) or transforming growth 

factor b (TGFb) receptor signaling cascades restored the phenotype of RPE cells to a healthy 

state, as evidenced in the previous chapter (Figure 4.5). To ensure the RPE were, in fact, 

healthy, RNA-seq was used to validate this claim. However, a closer look at the gene 

expression revealed the RPE, while phenotypically normal, were not the same as RPE not 

exposed to GDF6. AutoSOME, an unbiased clustering software, found 171 unique clusters 

which we manually placed into 18 subgroups (Supplemental Figure 5.1). We then selected 

four of the most interesting clusters for further analysis (Figure 5.1). RPE that overexpress 

GDF6 up-regulate genes found in extracellular matrix organization and cardiovascular 

development (Cluster A) while down-regulating genes related to pigmentation and melanin 

biosynthesis (Cluster B). Clusters C and D are of more interest as they include genes that are 
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sensitive to GDF6 but do not respond to the inhibitory drugs LDN-193189 (LDN) or RepSox. 
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Figure 5.1. RNA-Seq clustering and gene ontology (GO) analysis of RPE treated with 
Smad phosphorylation inhibitors. Data was range-centered and Log2 transformed prior 
to cluster analysis using AutoSOME 2.1. Clusters were manually placed into larger 
subgroups based on their expression profile (Supplemental Figure 5.1.1). Shown here 
are four prominent clusters with interesting expression patterns wherein (A) represents 
genes up-regulated in untreated GDF6 RPE, (B) shows genes down-regulated in 
untreated GDF6 RPE, (C) highlights genes up-regulated in GDF6 RPE irrespective of 
inhibitor treatment, and (D) portrays genes that are down-regulated in GDF6 RPE 
regardless of inhibitor treatment. The color scale represents the log2 expression level of 
the gene. Below each cluster are the ontology  groups associated with each cluster along 
with the associated enrichment P value. Each column of the cluster represents a 
replicate, and each row represents a gene. 



85 

Up-regulation of genes related to ossification and locomotion always occur when RPE 

overexpress GDF6, even in the presence of its inhibitor LDN (Cluster C), whereas neuronal 

development genes and cell adhesion genes remain down-regulated in every treatment 

(Cluster D). 

 We compared each treatment with its control (e.g., GDF6 with RepSox to control 

with RepSox) to determine what genes were up or down-regulated. We then looked across 

treatments to see if there were any similarities in what genes were being affected. Figure 

5.2 highlights the similarities in the up and down-regulated genes across treatments, with 

109 genes remaining up-regulated (A) and 184 genes staying down-regulated (B). The key 

epithelial-to-mesenchymal transition (EMT) genes, inhibitor of DNA Binding 1 (ID1), snail 

family transcriptional repressor 1 (SNAI1), and msh homeobox 2 (MSX2), populate the top 

20 genes that remained up-regulated regardless of treatment (C). The genes that are always 

down-regulated are involved in neural function and cell adhesion (D). Notably, TGFβ1 

displayed an increase in transcript number when exposed to GDF6 in all conditions when 

compared to control cells, though treatment with LDN appeared to lessen this effect (Figure 

5.3). While there is a restoration of morphology and pigmentation, there is still a difference 

when compared to control.  
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Figure 5.2. Determination of genes that remain unchanged during Smad inhibition 
treatment. (A&B) Venn diagram depicting the number of genes either up-regulated (A) 
or down-regulated (B) that are unique to each treatment. 109 genes remain up-
regulated and 184 genes remain down-regulated across all treatments. (C&D) Heat maps 
showing the top 20 up-regulated (C) and down-regulated (D) genes across all 
treatments. Gene order was determined using the FDR of each gene. The color bar 
represents the Log (Fold Change) of each gene, with red representing genes that are up-
regulated compared to control cells, and blue representing down-regulated genes. 
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5.2.2: GDF6 Does not Interact with Kinase Receptors 

 GDF6’s ability to affect gene expression in the presence of inhibitors suggests that it 

may be acting through a non-canonical Smad signaling pathway. Since the canonical GDF6 

pathway involves protein phosphorylation, we hypothesized its non-canonical pathway 

receptors might do the same, leading to an evaluation of common receptor kinases. A 

phospho-array on 43 different receptor kinases and two related total proteins was 

performed to elucidate the potential pathway. P0 RPE were plated the at a low density and 

the next day exposed to combination of RepSox and LDN for an hour, followed by addition 

of recombinant mouse Gdf6 (rmGdf6) for another hour. A combination of the small 
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Figure 5.3. Trimmed mean of M-values (TMM) normalized reads per million of TGFβ1 in control 
RPE or RPE exposed to GDF6 along with LDN or RepSox. Statistical significance was determined 
using a one-way ANOVA with respect to GDF6 over expressing cells (****≤0.0001, **≤0.007). 
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molecules was used to ensure complete blockage of the Smad signaling pathway, and the 

resulting protein lysate was analyzed to determine any changes in phosphorylation (Figure 

5.4). After normalizing the integrated pixel density for each treatment, there were no 

significant changes in the phosphorylation states of any of the kinases (Table 5.1).  

 

 
 
 

Control 

GDF6 

LDN 
+ RepSox 

 
GDF6 + LDN 
+ RepSox 

 
Figure 5.4. Western blot images of a phosphokinase array. Each pair of dots represents 
either one of 43 receptor kinases or 2 total proteins. RPE were treated with rmGdf6 
and the SMAD inhibitor drugs LDN-193189 and RepSox. The protein lysate was 
harvested, exposed to membranes containing antibodies to the receptor kinases and 
developed using chemiluminescence. 
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Standardized to Reference (Ratio) 
  

Control 
LDN + 

RepSox 
 

GDF6 
GDF6 + LDN 

+ RepSox 
Reference 0.99804605 0.99140143 0.98157545 0.93707416 

p38a 0.02698045 0.02829993 0.02792849 0.02059155 
ERK 1/2 0.31834259 0.39910442 0.29148681 0.40488961 

JNK 1/2/3 0.07907245 0.07656647 0.07642833 0.06131416 
GSK-3a/B 0.22220927 0.24211414 0.24796915 0.19733902 

EGF R 0.02777449 0.03060782 0.03069831 0.02481901 
MSK 1/2 0.07402574 0.08316838 0.07721224 0.08641883 
AMPKa1 0.05425344 0.05418471 0.04571454 0.04638054 
Akt 1/2/3 0.14852789 0.15951077 0.16699027 0.16206969 

TOR 0.01898327 0.02516273 0.02449864 0.01527471 
CREB 0.06129778 0.07421836 0.05682671 0.05480988 

HSP27 0.02463345 0.02969424 0.02530965 0.01983048 
AMPKa2 0.03892273 0.03760427 0.03426752 0.03095447 
B-Catenin 0.05119767 0.0618515 0.06153017 0.06986927 

Src 0.04789114 0.0807494 0.06621621 0.05178265 
Lyn 0.01323948 0.01402739 0.01176639 0.01000904 
Lck 0.00797378 0.00989999 0.00806944 0.00709906 

STAT2 0.0480349 0.05169486 0.04897986 0.0397313 
STAT5a 0.01217798 0.01523017 0.0138994 0.01410432 

Fyn 0.01112317 0.01634485 0.01670987 0.01057824 
Yes 0.0327861 0.03872662 0.03247323 0.03003351 
Fgr 0.00773306 0.00876807 0.00676679 0.00668975 

STAT6 0.03198538 0.03612186 0.03319908 0.03086707 
STAT5b 0.01544271 0.01988809 0.01951646 0.01655808 

Hck 0.01146084 0.01704393 0.01677761 0.01080422 
Chk-2 0.03771914 0.04472714 0.03984586 0.03120603 
FAK 0.08568718 0.0961711 0.07757226 0.08996197 

PDGF RB 0.0227027 0.02650341 0.02346311 0.0168203 
STAT5a/b 0.02867384 0.03321641 0.03015054 0.02604908 
Reference 1.00195395 1.00859857 1.01842455 1.06292584 

PRAS40 0.1851287 0.20489292 0.20966789 0.17558136 
PBS 0 0 0 0 
p53 0.02864716 0.02345409 0.03179839 0.0210295 

Reference 1 1 1 1 
Akt 1/2/3 0.03601812 0.02965853 0.02862979 0.02551217 

p53 0.02685309 0.02549085 0.0289526 0.02170853 
p70 S6 
Kinase 

 
0.02196164 

 
0.01815469 

 
0.01709565 

 
0.02347877 

p53 0.01417072 0.01346038 0.01133179 0.00497399 
c-Jun 0.08745557 0.0677675 0.07747245 0.06287137 

p70 S6 
Kinase 

 
0.03187487 

 
0.02618139 

 
0.02606183 

 
0.02524902 

RSK 1/2/3 0.0134 0.01338365 0.01336014 0.01101896 
eNOS 0.018248 0.0186848 0.01813311 0.01186912 
STAT3 0.01946443 0.01392597 0.01816202 0.01500662 

p27 0.00959303 0.00852892 0.00979487 0.00677184 
PLC-y1 0.02177017 0.01930211 0.02098533 0.01093063 
STAT3 0.02256663 0.01900043 0.01899071 0.01750373 
WNK1 0.11551864 0.09843219 0.09888336 0.07923419 
PYK2 0.0313455 0.02901332 0.02842102 0.01671982 

HSP60 0.13175214 0.13402487 0.11268194 0.11591621 
PBS 0 0 0 0 

Table 5.1. Ratio of integrated pixel density of each receptor kinase or total protein to its 
reference gene. 



90 

5.3: Discussion 

5.3.1: GDF6 can Act Through a Non-Canonical Smad Pathway 

 In the previous chapter, GDF6 was shown to affect p-cadherin (CDH3) gene 

expression in the presence of its inhibitor LDN, suggesting GDF6 possibly operated through 

a non-canonical pathway in addition to its traditional Smad1/5/9 phosphorylation pathway. 

Some TGFb and BMP proteins have been shown to have additional non-canonical pathways, 

but none had been previously reported for GDF6 [1-5]. By looking at changes in gene 

expression when using inhibitors, we show here that GDF6 has a robust effect on gene 

expression, suggesting it can operate through a non-canonical pathway.  

 Although our screen to determine novel GDF6 receptor binding did not pick up any 

hits, it is possible that GDF6 could be acting through an unassayed receptor kinase or 

another receptor type. Alternatively, GDF6 could be directly signaling through the BMP 

Type II Receptor (BMPRII), which has shown direct signaling with the assistance of LIM 

domain kinase 1 (LIMK1) [6]. A protein pull-down assay would be needed to determine 

what other receptors GDF6 may be binding. GDF6 has an extremely high affinity for BMPRII, 

so depletion of the receptor from the lysate is necessary prior to analysis [1]. GDF6 has also 

been found to bind to Activin Receptor 2 A/B (ActRII), and depletion of these receptors as 

well could help ensure the end product is not oversaturated with known ligand-receptor 

pairs. If no novel receptors are found to be interacting with GDF6, then we can assume it is 

directly signaling through BMPRII. 

 Another possibility is that LDN may not be fully inhibiting GDF6 signaling, allowing 

for some Smad1/5/9 signaling to occur. This leakiness may account for the subset of genes 
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that remain unchanged regardless of treatment. As previously reported in chapter 4, 

nanomolar amounts of LDN inhibit GDF6 Smad1/5/9 phosphorylation, so it would be 

surprising for LDN not to block the pathway effectively (Figure 4.4). Additionally, if LDN 

were leaky, we would expect the RPE to exhibit a phenotype and genotype more similar to 

those of RPE overexpressing GDF6. Instead, the cells showed a normal phenotype, and most 

of the highly affected genes returned to normal (Figure 4.5). We believe GDF6 is likely acting 

through a novel, non-canonical pathway, but to confirm this, the receptor it binds to needs 

to be identified. 

5.3.2: GDF6 is Priming RPE to Undergo EMT 

 We previously showed that GDF6 is not necessary for RPE to undergo EMT and 

blockage of the TGFb signaling pathway alone prevented EMT in RPE [7]. However, it 

appears that GDF6 is having an extensive effect on the RPE as evidenced by the number of 

genes that are altered by GDF6 expression. Regardless of inhibitory drugs, GDF6 upregulates 

genes related to EMT. MSX2 is one of the most affected genes due to GDF6 expression. It is 

integral in the early differentiation of mesenchyme and is directly activated by BMP protein 

binding [8]. Additionally, MSX2 can induce EMT in epithelial cells and, when combined with 

BMP4, promotes mesodermal cell fate [9, 10]. GDF6 induces MSX2 expression but may not 

necessarily interact with it; LDN and RepSox likely inhibit the gene(s) that bind to MSX2 and 

are responsible for the mesenchymal phenotype (along with its subsequent signaling 

pathway). Therefore, we see an increase in expression without induction of a mesenchymal 

state. 
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 In the previous chapters, we linked GDF6 to a decrease in both CDH1 (E-cadherin) 

and CDH3 (P-cadherin) expression. SNAI1 is a well-studied inducer of EMT in epithelial cells, 

often present in invasive cancerous tumors [11]. It is also a known repressor of CDH1 [12]. 

The decrease in both CDH1 and CDH3 expression may not be a direct consequence of GDF6, 

but instead be due to SNAI1 expression. Another gene well associated with both EMT and 

reduction of epithelial cadherin is ID1 [13, 14]. ID1, as well as TGFb1, is upregulated in the 

presence of GDF6. TGFb-induced EMT is dependent on not only Smad2/3 signaling but also 

Smad1/5/9, with ID1 being an early transcriptional target of the latter pathway [15]. GDF6 is 

affecting the necessary genes required for RPE to undergo EMT, but the phenotype is not 

occurring in the presence of LDN or RepSox because the mesenchymal transition requires 

both pathways.  

 The changes in gene expression suggest priming of the RPE to undergo EMT, even in 

the presence of inhibitors. LDN is an effective inhibitor of activin-like kinase (Alk) 1, 2, 3, and 

6 (inhibiting Smad1/5/9 signaling), and, while more potent and stable than dorsomorphin, 

LDN still has a large number of off-target effects, including inhibition of several kinases [16, 

17]. Additionally, LDN has been shown to inhibit the type II receptor ActRIIA, preventing 

Smad2/3 signaling as well [18]. This promiscuity of the inhibitor may be why we see an 

effect on gene expression; it may not be GDF6 itself eliciting this response. Inhibitors with 

fewer off-target effects are available, but they have a higher selectivity for Alk2 over the 

other type I receptor kinases[19, 20]. GDF6 has been shown to not bind to Alk 1 or 2 but to 

Alk6 and Alk3 instead, rendering these newer inhibitors ineffective [21]. A more potent pan-
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inhibitor of Smad1/5/9 phosphorylation needs to be discovered to block signaling with no 

off-target effects. 

5.4: Conclusion 

 The mechanism of GDF6 in RPE EMT has not previously been studied. In this chapter, 

we looked at what genes GDF6 affected, specifically those that remained unchanged in the 

presence of Smad phosphorylation inhibitors LDN and RepSox. Importantly, GDF6 can alter 

gene expression without signaling through its traditional Smad1/5/9 pathway. This novel 

signaling pathway may be a secondary pathway initiated through binding of the same 

receptors, similar to Smad-independent TGFb signaling. There could also be direct signaling 

through binding and activation of the BMPRII receptor. Though we were unable to detect 

binding of a novel receptor by GDF6, it is still a possibility.  

 The genes affected by signaling through the non-canonical pathway are genes 

related to EMT, essentially priming the RPE to undergo EMT. Genes like MSX2, TGFb1, 

SNAI1 and ID1 are all upregulated in the presence of GDF6 and are strongly linked to EMT. 

Studies have shown TGFb-induced EMT requires phosphorylation of both Smad pathways, 

so blocking one or more pathway with inhibitors is likely preventing the mesenchymal 

phenotype while still upregulating genes related to EMT.  
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CHAPTER VI: Discussion 

 The retinal pigmented epithelium (RPE) play an important role in the establishment 

and maintenance of the blood-retinal barrier, and breaking this barrier can lead to various 

eye diseases [1]. In order for this barrier function to be reestablished after disruption, RPE 

must undergo an epithelial-to-mesenchymal transition (EMT) to heal the wound, and 

subsequently, undergo a mesenchymal-to-epithelial transition (MET) to reform the barrier 

[2]. However, with repeated and/or prolonged wounding, RPE tend to undergo a terminal 

EMT, become fibrotic, and are incapable of reforming a healthy monolayer [3-6]. Previous 

investigations in our lab, using an in vitro model of wound healing, identified GDF6 as one of 

the top candidates to be involved in the failure of RPE to repair. This current body of work 

sets out to investigate GDF6 and its relationship with RPE EMT. 

 Radeke et al. (2015) examined the effect of EMT in RPE along with potential causes 

and preventions [7]. Repeated passaging was used as an in vitro model of wound healing or 

EMT. They found RPE that had undergone a terminal EMT were able to revert to a normal, 

epithelial state in the presence of the transforming growth factor beta (TGFb) inhibitor A83-

01. Their results indicated the TGFb pathway affected EMT. However, it is unlikely that TGFb 

alone was the cause for a terminal fibrotic differentiation, as passage 0 (P0) RPE express 

TGFb1 and these cells can freely undergo both EMT and MET. They compared gene 

expression profiles between healthy P0 RPE and mesenchymal passage 5 (P5) RPE, looking 

for a gene only expressed in P5 RPE, to determine what caused this fibrotic switch to 

happen. Growth differentiation factor 6 (GDF6), a member of the TGFb superfamily, 

matched this expression profile. GDF6 displayed one of the most dramatic gene expression 



97 

changes in healthy versus passaged RPE. This led to our initial hypothesis: GDF6 causes 

irreversible EMT in RPE and by inhibiting GDF6, we can prevent fibrotic RPE. 

 In this report we found GDF6 plays a major role in RPE EMT. In chapter three we 

demonstrated that GDF6 is sufficient to induce EMT in RPE. Exposing p0 RPE to GDF6 

induces a mesenchymal state as if the RPE have undergone EMT without passaging. This 

mesenchymal change was apparent in both the phenotype and gene expression of treated 

RPE. However, GDF6 is not necessary for RPE EMT. In chapter 4 we inhibited GDF6 signaling 

using a Smad1/5/9 phosphorylation inhibitor LDN-193189 (LDN). Prevention of its signaling 

cascade neither prevented nor delayed RPE EMT. Additionally, knocking down GDF6 failed 

to stop RPE EMT, though there was a slight delay. While the RPE still succumbed to a 

mesenchymal phenotype, the cells had a different appearance and gene expression, 

suggesting this switch was due to another pathway. In chapter five we investigated the idea 

that GDF6 may be operating through a novel, non-canonical pathway as GDF6 affects the 

expression of specific genes in the presence of Smad phosphorylation pathway inhibitors. 

To help determine this pathway, we performed a phospho-kinase array analysis but were 

unable to elucidate a novel receptor. We have since modified our hypothesis and now 

believe GDF6 may play a role in RPE EMT by inducing TGFb1 expression, leading to the EMT 

phenotype, as well as preventing the return back to an epithelial cell by inhibiting MET. 

6.1: Mechanism of GDF6 

 The mechanism of GDF6 action on RPE was previously unknown. Prior studies 

observed a canonical Smad1/5/9 signaling in mesenchymal cells, with GDF6 showing affinity 

for the type one activin-like kinase (Alk) receptors 3 and 6, as well as affinity to the type two 
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receptors activin receptor two (ActRII) A/B and the bone morphogenic protein (BMP) 

receptor two (BMPRII) [8, 9]. Based on the results shown in chapters three, four, and five, 

we have developed a model for how GDF6 signals in RPE (Figure 6.1).

 

 We believe that EMT in RPE is not caused directly by GDF6, but instead by a protein 

operating through the TGFb pathway that is induced by GDF6. When we administer GDF6 to 

RPE, RPE become mesenchymal; however, the use of RepSox, a Smad2/3 Alk5 inhibitor, 

restores the phenotype of RPE. Since GDF6 itself does not phosphorylate Smad2/3 (Figure 

3.5), RepSox should not be able to suppress the mesenchymal phenotype induced by the 

 
 

 
 

Figure 6.1. Model of GDF6 mechanism of action in RPE. GDF6 binds to the BMP receptors, 
initiating phosphorylation of Smad1/5/9. This phosphorylated Smad protein is then 
translocated to the nucleus with the assistance of Smad 4, where it affects TGFβ1 
expression. TGFβ1 then binds to the TGFβ receptors, triggering phosphorylation of 
Smad2/3. Once co-localized with Smad 4 and translocated to the nucleus, genes relating to 
RPE EMT are affected. Additionally, a protein acting through the TGFβ receptors activates 
GDF6 transcription. GDF6 affects gene expression of a subset of genes, like CDH3 and MSX2, 
through a non-canonical pathway, possibly through binding of another receptor complex. 
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addition of GDF6. The fact that it does suggests that GDF6 is acting on something that binds 

to the TGFb receptors to phosphorylate Smad2/3. We hypothesize the gene GDF6 is acting 

on is TGFb1. In order to conclude this, the gene in question must be unaffected by RepSox 

treatment but down-regulated by LDN and the gene must act directly on GDF6 and not by 

some other downstream effector. As shown in Figure 5.3, TGFb1 fits this profile. 

Additionally, GDF6 affects TGFb1 expression in a dose-dependent manner, suggesting that 

GDF6 directly influences TGFb1 expression (Figure 3.1).  

 We believe a protein operating through the TGFb receptor activates GDF6. 

Previously, Radeke et. al (2015) passaged RPE in the presence of a TGFb inhibitor, A-83-01, 

and GDF6 expression never occurred [7]. This suggests that something operating through 

the TGFb pathway initiates expression of GDF6. This activation of the pathway could be due 

to high, constant TGFb1 expression causing chromatin modification at the promoter site of 

GDF6. The passage model of wounding used to initiate RPE EMT is a constant source of 

stress on the RPE, and stress is known to induce transcriptional regulation changes in plant 

chromatin [10]. Stress, in the form of hypoxia or a tumor environment, can induce 

chromatin remodeling and epigenetic reprogramming of the genome in mammalian cells 

[11, 12]. TGFb is a known cell stressor through its induction of EMT in epithelial cells, and 

treatment of epithelial mammary cells and lens epithelial cells with TGFb resulted in vast 

chromatin modifications, especially around mesenchymal gene promoter sites [13, 14]. 

However, the list of potential genes that are involved in Smad2/3 phosphorylation is 

exhaustive, and it could be difficult to tease out exactly what is activating GDF6.  
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 Finally, when RPE are exposed to GDF6, we always see the regulation of specific 

genes—like a down-regulation of CDH3 and an up-regulation of MSX2 (Figure 5.2). This 

regulation remains true when the RPE are grown in the presence of both small molecule 

inhibitors, RepSox and LDN, suggesting GDF6 may be acting through some non-canonical 

signaling pathway. This non-canonical pathway may be due to direct signaling of BMPRII or 

by another unknown receptor complex [15]. The pathway can potentially be elucidated by 

performing receptor-ligand pull-down experiments, baiting the receptors with GDF6. 

6.2: Epithelial-to-Mesenchymal Transition (EMT) 

 EMT is an essential process in both development and wound healing, allowing cells 

to migrate to their necessary location to become a different cell type or to fill a gap [16]. 

Aberrant wound healing can cause RPE and other epithelial cells to become fibrotic and 

form scar tissue, leading to various issues [17]. Additionally, when cells undergo EMT they 

become migratory—an issue when the cells are cancerous. It is important to understand the 

underlying mechanisms of EMT and cell fibrosis in order to potentially reverse and prevent 

this transformation. 

6.2.1: GDF6 

 The research displayed in the previous chapters informs us that GDF6 is a key player 

in RPE EMT. This phenomenon is not specific to RPE cells; other epithelial cell types that 

have undergone a fibrotic transformation show evidence of increased GDF6. Renal 

epithelial cells exposed to TGFB1 have increased GDF6 transcripts and form fibrotic 

mesenchymal cells, similar to the fibrotic cells seen in RPE [18]. Also, lung epithelial cells 

with a TGFBR2 knockout exhibited a decrease in GDF6 transcripts and a subsequent 
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decrease in fibrosis [19]. It may be that GDF6 does not directly cause the mesenchymal 

phenotype, as is the case in RPE. Instead, GDF6 may be preventing the cells from returning 

to an epithelial state by inhibiting important cell junction genes. 

 GDF6 is also a natural inducer of mesenchyme. Embryonic stem cells treated with 

BMP12/13 resulted in tendon precursor cells, indicating GDF6 is a natural inducer of 

mesenchymal fate [20]. Older mesenchymal stem cells (MSCs) are rejuvenated in the 

presence of GDF6, reinstating their osteogenic potential [21]. GDF6 also induces adipose-

derived MSCs (AD-MSCs) into a nucleus pulposus (NP)-like phenotype, and these cells may 

be useful in therapies for intervertebral disc regeneration [22]. GDF6 appears to participate 

in the EMT process in many epithelial cells and targeting GDF6 may help prevent the fibrotic 

diseases that occur due to the inability of the cells to undergo MET. 

6.2.2: TGFb 

 TGFb is one of the most well-known inducers of EMT in RPE as well as many other 

epithelial cell types [23]. However, TGFb expression can be both beneficial and harmful to 

cells in what is known as the “TGFb Paradox” [24]. This phenomenon was first seen in 

cancer: TGFb initially acts as a tumor suppressor but switches to a tumor promoter in later 

stages of the disease, primarily when cells have undergone EMT [24, 25]. TGFb expression is 

common in metastatic breast cancer, promoting mesenchymal cell differentiation and 

migration through the lymphatic system [26, 27]. Gastric cancer cells exposed to TGFb also 

show increased EMT, lung metastasis, and tumor formation [28]. Inhibiting TGFb at later 

stages of disease could be beneficial in preventing the spread of cancer, but it is necessary 

to understand its early anti-tumor properties as well. 
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 The TGFb paradox is observed in the eye as well. Complications of dysregulated 

wound healing in lens epithelial cells can lead to cataract formation. This cataract formation 

is due to TGFb-induced transdifferentiation of epithelial cells into myofibroblasts [29, 30]. 

The myofibroblasts cause scarring and vision loss, but TGFb has also demonstrated an 

ability to induce the beneficial lens fiber cell from lens epithelial cells [31]. RPE also exhibit 

the TGFb paradox, as TGFb is present in healthy P0 RPE that can undergo both EMT and 

MET, but at some point TGFb becomes a main inducer of irreversible EMT in RPE [7]. This 

switch from a beneficial to a malevolent protein may be due to an increased concentration 

from prolonged activation. Initially, when RPE (or other epithelial cells) are healthy, TGFb 

signaling provides the beneficial effects previously noted. Continuous activation of the TGFb 

pathway leads to increased concentrations, signaling the cells are in a stressful environment 

and thus must change in order to survive, causing EMT, proliferation, and migration. While 

blocking TGFb signaling can rescue RPE that have undergone EMT, the cells ultimately 

succumb to a mesenchymal fate [7].  

6.2.3: Other Potential Pathways 

 While TGFb is one of the most well-known and well-documented inducers of EMT in 

epithelial cells, other pathways and mechanisms can also lead to a mesenchymal state. 

Blockage of TGFb-mediated Smad2/3 signaling in RPE delays EMT in RPE and can rescue 

mesenchymal RPE, but the cells ultimately lose their epithelial phenotype [7]. As 

demonstrated in chapter 4, RPE treated with the Smad1/5/9 inhibitor LDN still undergo a 

morphological change when passaged. TGFb1 and GDF6 expression levels remain low, yet 
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the RPE still lose their characteristic cobblestone morphology. This loss of an epithelial state 

is likely due to alternative pathways or non-canonical TGFb/BMP pathways. 

6.2.3.A: Wnt/b-catenin and Hippo Pathways 

 The Wnt signaling pathway is responsible for regulating proliferation, differentiation, 

and cell polarity [32]. This pathway comes in 2 forms: the canonical, b-catenin dependent 

pathway and the non-canonical, b-catenin independent pathway. The b-catenin 

independent pathway has been shown to play a role in EMT, specifically in cancers such as 

melanoma, but the interaction of b-catenin to cadherins makes the canonical pathway 

more interesting and applicable [33, 34]. In the canonical pathway, Wnt ligands bind to 

Frizzled and lipoprotein receptor-related protein receptors, leading to activation of 

Dishevelled (Dvl) and inhibition of the GSK-3/APC/Axin-degradation complex. This leads to 

b-catenin accumulation in the cytoplasm and its subsequent translocation to the nucleus 

where it can interact with transcription factor T-cell factor (TCF) and lymphoid enhancer 

factor (LEF). b-catenin translocation to the nucleus is thought to be a vital molecular event 

leading to EMT [35]. RPE that have undergone EMT upregulate members of the Wnt 

signaling cascade, suggesting activation of the Wnt pathway [7]. Wnt signaling has also been 

found to induce EMT and increase proliferation in RPE that have lost contact inhibition, 

independent of TGFb presence [36]. Initiation of the Wnt signaling cascade in RPE may 

prove useful in regenerating a healthy RPE layer or repairing a wound, as the pathway can 

increase proliferation in the normally senescent cell. Wnt-induced EMT is seen after laser 

photocoagulation of RPE, with the RPE showing an increase in proliferation as well as key 

RPE transcription factors MITF and OTX2 [37, 38]. Importantly, the EMT phenotype after 
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this treatment is transient, with the RPE undergoing MET and returning to a healthy state 

[37]. Stimulation of the Wnt pathway and use of Wnt inhibitors may prove useful in 

repairing the RPE monolayer after injury or disease.  

 The Hippo pathway is also involved in cell proliferation, differentiation, and survival 

[39-42]. Unlike other similar signaling pathways, the Hippo pathway does not have any 

dedicated signaling peptides or receptors, but it does maintain a core pathway comprised of 

serine/threonine kinases: Mammalian Sterile 20-like 1 and 2 (MST 1/2) and Large tumor 

suppressor 1/2 (LATS1/2) [39]. Phosphorylation of LATS1/2 leads to interaction and 

phosphorylation of the transcription regulators yes-associated protein 1 and transcriptional 

coactivator with PDZ-binding motif (YAP/TAZ), resulting in cytoplasmic retention and 

degradation [43]. The Hippo pathway can be regulated through four upstream branches of 

signaling: the Crumbs complex, regulators of MST kinases, the actin cytoskeleton, and 

adherens junctions [39]. Inhibition of the pathway through a mechanism such as loss of cell 

polarity causes translocation of YAP/TAZ to the nucleus, allowing for interaction with the 

TEA-domain-containing (TEAD) transcription factor family and induction of genes related to 

cell proliferation. Both YAP and TAZ have been shown to promote EMT when the Hippo 

pathway is inhibited [44, 45].  

 YAP/TAZ is also known to be affiliated with Wnt signaling. YAP/TAZ can associate 

with b-catenin in the Wnt-OFF state, leading to the degradation of the complex but in the 

Wnt-ON state, the complex is disassembled and YAP/TAZ, along with b-catenin, translocate 

to the nucleus [43, 46, 47]. Preventing YAP/TAZ accumulation in the nucleus can help avoid 

EMT, thus maintaining activation of the Hippo pathway is crucial. However, other pathways 
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like Wnt can regulate YAP/TAZ, so direct inhibition of YAP/TAZ is a more favorable approach 

to preventing EMT.  

6.2.3.B: Connective Tissue Growth Factor (CTGF) 

 Connective tissue growth factor (CTGF) is a matricellular protein, acting through 

unknown receptors as well as modifying other growth factors and cytokines, such as TGFb1, 

Wnt integrins, epidermal growth factor receptor (EGFR), among others [48]. It is strongly 

linked to the pathology of fibrotic diseases in many different cell types, from liver cells to 

heart and lung cells [48, 49]. CTGF dysregulation has also been found in various age-related 

vascular pathologies, including those in the eye like diabetic retinopathy [50]. CTGF can 

interact with TGFb to promote a fibrotic lineage but can also operate independently of 

TGFb through induction of p38, extracellular signal-regulated kinase 1/2mM (Erk1/2), Jun N-

terminal inase (JNK), and Akt [51]. Additionally, CTGF has been shown to cause an EMT-like 

cell fate change both in vitro and in vivo [52]. RPE subjected to TGFb/BMP inhibitors still 

eventually lose their epithelial fate, as evidenced in chapter four and previous work by our 

lab [7]. Since CTGF can initiate EMT and tissue fibrosis without signaling from TGFb, it 

becomes a probable answer as to how RPE can still undergo EMT. CTGF-induced EMT may 

also account for the differences in the appearance of passage 7 RPE in chapter four. RPE 

passaged with LDN have low levels of TGFb1 and still undergo EMT, but their appearance is 

markedly different from control cells, suggesting EMT is mediated from a factor other than 

TGFb. Inhibition of CTGF using neutralizing antibodies has been successful in reducing 

proangiogenic and profibrotic genes in RPE, and combination treatment with TGFb 

inhibitors may be necessary to prolong the RPE phenotype in vitro [53]. 
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6.2.3.C: Redundancy 

 The TGFb superfamily is comprised of over 35 protein-encoding genes that fall into 

four subfamilies: the TGFb subfamily, the BMP/GDF6 subfamily, the activin and inhibin 

subfamilies, and divergent members. These proteins operate through a handful of receptors 

and phosphorylate either Smad2/3 or Smad1/5/9. The complexity of the pathways makes it 

likely that there is some redundancy in the family and even within the subfamilies 

themselves [54]. TGFb1 and TGFb3 arefound to be partially redundant in developmental 

processes, like the creation of brain vasculature, where both isoforms are present and bind 

to integrins [55]. GDF11 and myostatin (GDF8) both regulate muscle growth and skeletal 

patterning, and redundancy has been seen in their skeletal patterning function, suggesting 

the redundancy is tissue dependent [56]. Redundancy of GDF6 has also been suggested due 

to its high homology with other family members, such as GDF5 and GDF7 [57]. In chapter 

four, we discovered that knocking down GDF6 still resulted in RPE EMT. It is possible that, 

due to the high levels of homology, GDF5 or GDF7 could be replicating GDF6 signaling and 

influencing RPE EMT. Targeting GDF6 for the prevention of a terminal, fibrotic EMT will 

likely not be sufficient; a broader inhibition of GDF/BMP family members is needed. As 

observed in chapter 4, LDN, a broad inhibitor of GDF/BMP, failed to delay EMT in RPE. 

However, the RPE in this situation may be undergoing EMT mediated by other previously 

mentioned pathways.  

6.2.4: Prevention 

 EMT and subsequent fibrosis of epithelial cells have been linked to the pathogenesis 

of various diseases, including cancer and organ fibrosis [58]. It is imperative to understand 
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the underlying mechanism in order to prevent EMT from occurring. Small molecules 

targeting multiple potential pathways of EMT have been synthesized and show promise in 

inhibiting EMT in cancerous cells [59]. 

 While preventing EMT may avoid disease pathology, EMT is a necessary process in 

development and wound healing. EMT stimulates both migration and proliferation which 

are necessary for normally senescent cells such as RPE [60]. In order to repair the RPE 

monolayer, EMT needs to be initiated to heal the wound, and then the cells need to be 

instructed to undergo MET to reform the barrier layer. Stimulation of EMT in RPE can be 

achieved using laser photocoagulation or addition of known EMT induction factors like TGFb 

[7, 37, 38]. Once the wound is repaired, the RPE need to undergo MET in order to reform 

the epithelial layer and prevent disease. BMP7 has been shown to promote MET and help 

cells regain an epithelial phenotype [61]. Inhibition of GDF6 may also promote MET, as 

evidenced in chapter four. Passaging RPE caused EMT by passage six but the addition of the 

inhibitor LDN restored the epithelial phenotype. This effect was short-lived as the addition 

of LDN to cells at passage seven resulted in only a partial restoration of the phenotype. The 

timing of EMT inhibition appears crucial both to the response of the cell and survival of the 

cell fate.  

6.3: Implication in Disease 

 The ability for GDF6 to induce EMT in RPE suggests that it may have a role in various 

eye diseases where EMT is involved in the pathogenesis of disease. This logic extends to 

other epithelial cells as well; GDF6 is likely involved in the pathology of other diseases 
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related to a change in epithelial morphology. Understanding and potentially inhibiting GDF6 

could prevent the progression of disease in tissues in addition to the eye. 

6.3.1: Age-Related Macular Degeneration (AMD) 

 Age-related macular degeneration (AMD) is the leading cause of blindness in the 

developed world among those aged 55 and older [62]. AMD is characterized by a loss of 

central vision in the macula region due to photoreceptor and RPE death. Accumulation of 

drusen, a yellow deposit of lipids, is a hallmark characteristic of AMD. Advanced AMD is 

divided into two types: wet AMD or choroidal neovascularization (CNV), and dry AMD or 

geographic atrophy (GA). In CNV, new blood vessels form in the sub-RPE space and leak 

fluid and blood, resulting in swelling and damage of the macula and RPE layer. GA is the 

gradual degeneration of RPE and photoreceptors, resulting in clearly demarcated lesions in 

the retina. Over 80% of all AMD cases are classified as dry AMD, but wet AMD results in 90% 

of blindness in all AMD cases [63, 64]. There is currently no cure for dry AMD, and CNV can 

only be treated with anti-VEGF treatments for so long before they stop working [65, 66]. 

Stem cell-based therapies are attempting to treat both types of AMD by transplanting 

derived RPE into the areas of cell death with positive responses, such as improvement in 

visual acuity, starting to be reported [67, 68]. While these therapies may prove useful in 

stopping disease progression, it would be better to prevent the disease entirely. 

 EMT of the RPE is a common occurrence in both GA and CNV. RPE in the GA 

transition zone (cells on the edges of the lesions) are commonly found to have undergone 

EMT, forming a fibrotic mesh [69-71]. In CNV, subretinal fibrosis is caused by RPE that have 

undergone EMT [3, 72]. RPE EMT is not sufficient to cause CNV, as blood vessel formation is 
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driven by an increase in VEGF [73]. As shown in previous chapters, GDF6 has a negative 

effect on cadherin 3 (CDH3) expression. This downregulation of a critical cell adhesion 

molecule can result in a loss of adherens junctions, leading to a breakdown of the barrier 

and allowing blood and other fluid from the sub-retinal space to leak onto the retina. There 

are reports of a slight increase of GDF6 transcripts in the macular age-matched RPE-choroid 

sample of patients with GA and CNV (personal communication with Monte Radeke). The 

RPE are likely undergoing EMT to repair the lesion in GA or the barrier function in CNV. 

Inhibition of GDF6 may enable RPE to undergo MET and reform the necessary epithelial 

barrier. 

6.3.2: Proliferative Vitreoretinopathy (PVR) 

 Proliferative Vitreoretinopathy (PVR) is a complication of retinal detachment 

surgery, occurring in 5-10% of all repairs [74]. PVR is the formation of a fibrous membrane 

on either or both sides of the retina, eventually causing retinal detachment and loss of 

vision. There are two main cell types involved in the formation of the membranes: RPE and 

Müller glia. Upon retinal detachment these cells undergo EMT or a glial-mesenchymal 

transition (GMT), initiating proliferation and migration into the subretinal or periretinal 

space [75]. The cells then transform to a myofibroblast cell, causing contractile forces that 

pull at the retina causing detachment.  

 We have shown in chapter 3 that GDF6 can induce EMT in RPE. Additionally, our lab 

has seen increased GDF6 expression in fibrotic RPE [7]. This suggests GDF6 may be involved 

in the RPE formation of epiretinal membranes. Müller glial cells also play an active part in 

PVR pathogenesis. Glial cells that have undergone GMT produce inflammatory cytokines 
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and elevate traditional mesenchymal markers [76, 77]. Similar to RPE, passaged Müller glia 

display increased GDF6 expression in vitro (personal communication with Monte Radeke 

and Rachael Warrington). Inhibition of GDF6 may prove useful in preventing fibrotic 

membrane accumulation after retinal detachment surgery. 

6.3.3: Cancer 

 Metastasis may be responsible for as much as 90% of cancer-related deaths, and 

EMT of the cancerous cells is a likely culprit in transforming the cells from a stationary state 

to a proliferative, invasive one [78]. Melanoma is regarded as one of the deadliest types of 

cancer and EMT is a well-studied phenomenon in disease progression [79]. It arises when 

melanocytes, pigmented cells within the skin, mutate and become cancerous. These cells 

are more likely to metastasize and spread throughout the body. Melanocytes and RPE share 

the ability to pigment using melanin, but melanocytes are of a neural crest origin whereas 

RPE originate from neuroectodermal cells [80]. Recently, GDF6 has been implicated in the 

pathogenesis of melanoma as it is found in cancerous melanomas but not the non-

cancerous precursor melanocyte [81]. The authors suggest that GDF6 promotes melanoma 

progression through inhibition of pro-apoptotic genes to increase proliferation and promote 

invasiveness. This is similar to what is seen when cancerous cells undergo EMT to 

metastasize and spread. We have shown GDF6 to play a role in EMT of an epithelial cell and 

combined with their new cancer-promoting role in melanomas, GDF6 may be involved in 

other cancers where cells undergo EMT and metastasize. Examination of GDF6 expression 

levels in other epithelial cancers is needed, and inhibition of GDF6 could prove useful in 

future treatments. 
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6.4: Conclusions 

 Understanding RPE EMT is critical in understanding various diseases of the eye. If we 

can control RPE EMT, we can help treat and prevent these diseases. In my Ph.D. research, I 

investigated the role GDF6 has in RPE EMT, revealing it can induce EMT in healthy cells but 

is not necessary for RPE EMT. Additionally, I showed that GDF6 could act through a novel, 

non-canonical pathway to affect gene expression. The work presented in this dissertation 

provides insight into the underlying mechanisms of RPE EMT and the conversion into a 

fibrotic cell, specifically the role GDF6 has in the process of RPE EMT. We believe GDF6 

promotes EMT through upregulation of TGFb proteins. It drives fibrosis of the RPE through 

prevention of MET by negatively regulating important adherens proteins, preventing the 

RPE from reforming a healthy, polarized monolayer. Future work is needed to determine 

the role of cadherins in MET as well as their relationship with GDF6.  

6.5: References 

1. Cunha-Vaz, J., R. Bernardes, and C. Lobo, Blood-retinal barrier. Eur J Ophthalmol, 
2011. 21 Suppl 6: p. S3-9. 

2. Sugino, I.K., H. Wang, and M.A. Zarbin, Age-related macular degeneration and retinal 
pigment epithelium wound healing. Mol Neurobiol, 2003. 28(2): p. 177-94. 

3. Ishikawa, K., R. Kannan, and D.R. Hinton, Molecular mechanisms of subretinal fibrosis 
in age-related macular degeneration. Exp Eye Res, 2016. 142: p. 19-25. 

4. Little, K., et al., Myofibroblasts in macular fibrosis secondary to neovascular age-
related macular degeneration - the potential sources and molecular cues for their 
recruitment and activation. EBioMedicine, 2018. 38: p. 283-291. 

5. Roberts, A.B., et al., Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal 
transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev, 
2006. 17(1-2): p. 19-27. 

6. Friedlander, M., Fibrosis and diseases of the eye. J Clin Invest, 2007. 117(3): p. 576-
86. 

7. Radeke, M.J., et al., Restoration of mesenchymal retinal pigmented epithelial cells by 
TGFβ pathway inhibitors: implications for age-related macular degeneration. 
Genome Med, 2015. 7(1): p. 58. 



112 

8. Mazerbourg, S., et al., Identification of receptors and signaling pathways for orphan 
bone morphogenetic protein/growth differentiation factor ligands based on genomic 
analyses. J Biol Chem, 2005. 280(37): p. 32122-32. 

9. Berasi, S.P., et al., Divergent activities of osteogenic BMP2, and tenogenic BMP12 
and BMP13 independent of receptor binding affinities. Growth Factors, 2011. 29(4): 
p. 128-39. 

10. Pecinka, A. and O. Mittelsten Scheid, Stress-induced chromatin changes: a critical 
view on their heritability. Plant Cell Physiol, 2012. 53(5): p. 801-8. 

11. Johnson, A.B. and M.C. Barton, Hypoxia-induced and stress-specific changes in 
chromatin structure and function. Mutat Res, 2007. 618(1-2): p. 149-62. 

12. Karpinets, T.V. and B.D. Foy, Tumorigenesis: the adaptation of mammalian cells to 
sustained stress environment by epigenetic alterations and succeeding matched 
mutations. Carcinogenesis, 2005. 26(8): p. 1323-34. 

13. Arase, M., et al., Dynamics of chromatin accessibility during TGF-beta-induced EMT 
of Ras-transformed mammary gland epithelial cells. Sci Rep, 2017. 7(1): p. 1166. 

14. Ganatra, D.A., et al., Association of histone acetylation at the ACTA2 promoter region 
with epithelial mesenchymal transition of lens epithelial cells. Eye (Lond), 2015. 
29(6): p. 828-38. 

15. Foletta, V.C., et al., Direct signaling by the BMP type II receptor via the cytoskeletal 
regulator LIMK1, in J Cell Biol. 2003. p. 1089-98. 

16. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. 
Cell, 2009. 139(5): p. 871-90. 

17. Stone, R.C., et al., Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell 
Tissue Res, 2016. 365(3): p. 495-506. 

18. Brennan, E.P., et al., Next-generation sequencing identifies TGF-beta1-associated 
gene expression profiles in renal epithelial cells reiterated in human diabetic 
nephropathy. Biochim Biophys Acta, 2012. 1822(4): p. 589-99. 

19. Degryse, A.L., et al., TGFbeta signaling in lung epithelium regulates bleomycin-
induced alveolar injury and fibroblast recruitment. Am J Physiol Lung Cell Mol 
Physiol, 2011. 300(6): p. L887-97. 

20. Dale, T.P., et al., Tenogenic Differentiation of Human Embryonic Stem Cells. Tissue 
Eng Part A, 2018. 24(5-6): p. 361-368. 

21. Hisamatsu, D., et al., Growth differentiation factor 6 derived from mesenchymal 
stem/stromal cells reduces age-related functional deterioration in multiple tissues. 
Aging (Albany NY), 2016. 8(6): p. 1259-75. 

22. Clarke, L.E., et al., Growth differentiation factor 6 and transforming growth factor-
beta differentially mediate mesenchymal stem cell differentiation, composition, and 
micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther, 2014. 
16(2): p. R67. 

23. Xu, J., S. Lamouille, and R. Derynck, TGF-beta-induced epithelial to mesenchymal 
transition. Cell Res, 2009. 19(2): p. 156-72. 

24. Roberts, A.B. and L.M. Wakefield, The two faces of transforming growth factor beta 
in carcinogenesis. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8621-3. 



113 

25. Principe, D.R., et al., TGF-beta: duality of function between tumor prevention and 
carcinogenesis. J Natl Cancer Inst, 2014. 106(2): p. djt369. 

26. Johansson, J., et al., TGF-beta1-Induced Epithelial-Mesenchymal Transition Promotes 
Monocyte/Macrophage Properties in Breast Cancer Cells. Front Oncol, 2015. 5: p. 3. 

27. Pang, M.F., et al., TGF-beta1-induced EMT promotes targeted migration of breast 
cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated 
chemotaxis. Oncogene, 2016. 35(6): p. 748-60. 

28. Peng, X., et al., SOX4 contributes to TGF-beta-induced epithelial-mesenchymal 
transition and stem cell characteristics of gastric cancer cells. Genes Dis, 2018. 5(1): 
p. 49-61. 

29. de Iongh, R.U., et al., Transforming growth factor-beta-induced epithelial-
mesenchymal transition in the lens: a model for cataract formation. Cells Tissues 
Organs, 2005. 179(1-2): p. 43-55. 

30. Shu, D.Y. and F.J. Lovicu, Myofibroblast transdifferentiation: The dark force in ocular 
wound healing and fibrosis. Prog Retin Eye Res, 2017. 60: p. 44-65. 

31. Boswell, B.A., et al., Dual function of TGFbeta in lens epithelial cell fate: implications 
for secondary cataract. Mol Biol Cell, 2017. 28(7): p. 907-921. 

32. MacDonald, B.T., K. Tamai, and X. He, Wnt/beta-catenin signaling: components, 
mechanisms, and diseases. Dev Cell, 2009. 17(1): p. 9-26. 

33. Zhan, T., N. Rindtorff, and M. Boutros, Wnt signaling in cancer. Oncogene, 2017. 
36(11): p. 1461-1473. 

34. Chen, Z., Y. Shao, and X. Li, The roles of signaling pathways in epithelial-to-
mesenchymal transition of PVR. Mol Vis, 2015. 21: p. 706-10. 

35. Hill, T.P., et al., Canonical Wnt/beta-catenin signaling prevents osteoblasts from 
differentiating into chondrocytes. Dev Cell, 2005. 8(5): p. 727-38. 

36. Chen, H.C., et al., Wnt signaling induces epithelial-mesenchymal transition with 
proliferation in ARPE-19 cells upon loss of contact inhibition. Lab Invest, 2012. 92(5): 
p. 676-87. 

37. Han, J.W., et al., Wnt/beta-Catenin Signaling Mediates Regeneration of Retinal 
Pigment Epithelium After Laser Photocoagulation in Mouse Eye. Invest Ophthalmol 
Vis Sci, 2015. 56(13): p. 8314-24. 

38. Cho, I.H., et al., The role of Wnt/beta-catenin signaling in the restoration of induced 
pluripotent stem cell-derived retinal pigment epithelium after laser 
photocoagulation. Lasers Med Sci, 2018. 

39. Johnson, R. and G. Halder, The two faces of Hippo: targeting the Hippo pathway for 
regenerative medicine and cancer treatment. Nat Rev Drug Discov, 2014. 13(1): p. 
63-79. 

40. Yu, F.X. and K.L. Guan, The Hippo pathway: regulators and regulations. Genes Dev, 
2013. 27(4): p. 355-71. 

41. Genevet, A. and N. Tapon, The Hippo pathway and apico-basal cell polarity. Biochem 
J, 2011. 436(2): p. 213-24. 

42. Halder, G. and R.L. Johnson, Hippo signaling: growth control and beyond. 
Development, 2011. 138(1): p. 9-22. 



114 

43. Totaro, A., T. Panciera, and S. Piccolo, YAP/TAZ upstream signals and downstream 
responses. Nat Cell Biol, 2018. 20(8): p. 888-899. 

44. Lei, Q.Y., et al., TAZ promotes cell proliferation and epithelial-mesenchymal 
transition and is inhibited by the hippo pathway. Mol Cell Biol, 2008. 28(7): p. 2426-
36. 

45. Lamar, J.M., et al., The Hippo pathway target, YAP, promotes metastasis through its 
TEAD-interaction domain. Proc Natl Acad Sci U S A, 2012. 109(37): p. E2441-50. 

46. Azzolin, L., et al., YAP/TAZ incorporation in the beta-catenin destruction complex 
orchestrates the Wnt response. Cell, 2014. 158(1): p. 157-70. 

47. Varelas, X., et al., The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell, 
2010. 18(4): p. 579-91. 

48. Toda, N., et al., CTGF in kidney fibrosis and glomerulonephritis. Inflamm Regen, 2018. 
38: p. 14. 

49. Lipson, K.E., et al., CTGF is a central mediator of tissue remodeling and fibrosis and 
its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair, 2012. 
5(Suppl 1): p. S24. 

50. Ungvari, Z., et al., Connective tissue growth factor (CTGF) in age-related vascular 
pathologies. Geroscience, 2017. 39(5-6): p. 491-498. 

51. Sonnylal, S., et al., Selective expression of connective tissue growth factor in 
fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum, 2010. 62(5): p. 
1523-32. 

52. Sonnylal, S., et al., Connective tissue growth factor causes EMT-like cell fate changes 
in vivo and in vitro. J Cell Sci, 2013. 126(Pt 10): p. 2164-75. 

53. Bagheri, A., et al., Simultaneous application of bevacizumab and anti-CTGF antibody 
effectively suppresses proangiogenic and profibrotic factors in human RPE cells. Mol 
Vis, 2015. 21: p. 378-90. 

54. Munger, J.S. and D. Sheppard, Cross talk among TGF-beta signaling pathways, 
integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol, 2011. 3(11): p. 
a005017. 

55. Mu, Z., et al., TGFbeta1 and TGFbeta3 are partially redundant effectors in brain 
vascular morphogenesis. Mech Dev, 2008. 125(5-6): p. 508-16. 

56. McPherron, A.C., T.V. Huynh, and S.J. Lee, Redundancy of myostatin and 
growth/differentiation factor 11 function. BMC Dev Biol, 2009. 9: p. 24. 

57. Williams, L.A., D. Bhargav, and A.D. Diwan, Unveiling the bmp13 enigma: redundant 
morphogen or crucial regulator? Int J Biol Sci, 2008. 4(5): p. 318-29. 

58. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin 
Invest, 2009. 119(6): p. 1420-8. 

59. Basu, D., et al., Identification, mechanism of action, and antitumor activity of a small 
molecule inhibitor of hippo, TGF-beta, and Wnt signaling pathways. Mol Cancer 
Ther, 2014. 13(6): p. 1457-67. 

60. Tamiya, S., L. Liu, and H.J. Kaplan, Epithelial-mesenchymal transition and 
proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact. 
Invest Ophthalmol Vis Sci, 2010. 51(5): p. 2755-63. 



115 

61. Wang, Y., et al., Bone morphogenetic protein-7 prevented epithelial-mesenchymal 
transition in RLE-6TN cells. Toxicol Res (Camb), 2016. 5(3): p. 931-937. 

62. Wong, W.L., et al., Global prevalence of age-related macular degeneration and 
disease burden projection for 2020 and 2040: a systematic review and meta-analysis. 
Lancet Glob Health, 2014. 2(2): p. e106-16. 

63. Kahn, H.A., et al., The Framingham Eye Study. I. Outline and major prevalence 
findings. Am J Epidemiol, 1977. 106(1): p. 17-32. 

64. Ferris, F.L., 3rd, S.L. Fine, and L. Hyman, Age-related macular degeneration and 
blindness due to neovascular maculopathy. Arch Ophthalmol, 1984. 102(11): p. 
1640-2. 

65. Tranos, P., et al., Resistance to antivascular endothelial growth factor treatment in 
age-related macular degeneration. Drug Des Devel Ther, 2013. 7: p. 485-90. 

66. Zarbin, M., I. Sugino, and E. Townes-Anderson, Concise Review: Update on Retinal 
Pigment Epithelium Transplantation for Age-Related Macular Degeneration. Stem 
Cells Transl Med, 2019. 

67. da Cruz, L., et al., Phase 1 clinical study of an embryonic stem cell-derived retinal 
pigment epithelium patch in age-related macular degeneration. Nat Biotechnol, 
2018. 36(4): p. 328-337. 

68. Kashani, A.H., et al., A bioengineered retinal pigment epithelial monolayer for 
advanced, dry age-related macular degeneration. Sci Transl Med, 2018. 10(435). 

69. Ghosh, S., et al., A Role for betaA3/A1-Crystallin in Type 2 EMT of RPE Cells Occurring 
in Dry Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci, 2018. 59(4): p. 
Amd104-amd113. 

70. Zanzottera, E.C., et al., Visualizing Retinal Pigment Epithelium Phenotypes In The 
Transition To Geographic Atrophy In Age-Related Macular Degeneration. Retina, 
2016. 36 Suppl 1: p. S12-s25. 

71. Sarks, J.P., S.H. Sarks, and M.C. Killingsworth, Evolution of geographic atrophy of the 
retinal pigment epithelium. Eye (Lond), 1988. 2 ( Pt 5): p. 552-77. 

72. Hirasawa, M., et al., Transcriptional factors associated with epithelial-mesenchymal 
transition in choroidal neovascularization. Mol Vis, 2011. 17: p. 1222-30. 

73. Ohlmann, A., et al., Epithelial-mesenchymal transition of the retinal pigment 
epithelium causes choriocapillaris atrophy. Histochem Cell Biol, 2016. 146(6): p. 769-
780. 

74. Khan, M.A., C.J. Brady, and R.S. Kaiser, Clinical management of proliferative 
vitreoretinopathy: an update. Retina, 2015. 35(2): p. 165-75. 

75. Kanda, A., et al., TGF-beta-SNAIL axis induces Muller glial-mesenchymal transition in 
the pathogenesis of idiopathic epiretinal membrane. Sci Rep, 2019. 9(1): p. 673. 

76. Eastlake, K., et al., Muller glia as an important source of cytokines and inflammatory 
factors present in the gliotic retina during proliferative vitreoretinopathy. Glia, 2016. 
64(4): p. 495-506. 

77. Zhou, T., et al., Mesenchymal marker expression is elevated in Muller cells exposed to 
high glucose and in animal models of diabetic retinopathy. Oncotarget, 2017. 8(3): p. 
4582-4594. 



116 

78. Chaffer, C.L. and R.A. Weinberg, A perspective on cancer cell metastasis. Science, 
2011. 331(6024): p. 1559-64. 

79. Yan, S., et al., Epithelial-Mesenchymal Expression Phenotype of Primary Melanoma 
and Matched Metastases and Relationship with Overall Survival. Anticancer Res, 
2016. 36(12): p. 6449-6456. 

80. Bharti, K., S.S. Miller, and H. Arnheiter, The new paradigm: retinal pigment 
epithelium cells generated from embryonic or induced pluripotent stem cells. 
Pigment Cell Melanoma Res, 2011. 24(1): p. 21-34. 

81. Venkatesan, A.M., et al., Ligand-activated BMP signaling inhibits cell differentiation 
and death to promote melanoma. J Clin Invest, 2017. 

 

 
  



117 

APPENDIX 

 

 

1 6 

 
 
 

7 
 

8 
 
 
 
2 9 

10 

11 

3 12 

13 
14 

4 15 

16 
17 
18 

 
 
 
 
 
5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-3 3 

 
 
 
 
 
Supplemental Figure 5.1. Complete RNA-Seq AutoSOME Clustering of RPE treated with 
Smad phosphorylation inhibitors. Clusters were manually placed into 18 larger subgroups 
from 171 unique clusters. Color bar represents the Log (Fold Change) of the gene, with blue 
representing down-regulated genes and red representing up-regulated genes. 
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Description for Supplemental Files 

• Supplemental File 5-1. Normalized Reads Per Million (RPM) of all differentially 
expressed genes. 

• Supplemental File 5-2. Gene expression information of the 4 clusters presented in 
Figure 5.1. 

• Supplemental File 5-3. Genes up or down-regulated in RPE exposed to GDF6, 
regardless of treatment (Figure 5.2). 
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ACRONYM LIST 

ActRI  Activin Receptor 1 

ActRII  Activin Receptor 2 

AD-MSC Adipose-Derived Mesenchymal Stem Cells 

Alk  Activin-like Kinase 

AMD  Age-Related Macular Degeneration 

AMH  Anti-Mullerian Hormone 

BM  Bruch’s Membrane 

BMP  Bone Morphogenic Protein 

BMP4  Bone Morphogenic Protein 4 

BMP7  Bone Morphogenic Protein 7 

BMPRI  BMP Receptor 1 

BMPRII  Bone Morphogenic Protein Receptor 2 

Cas9  CRISPR-associated Protein 9 

CDH1  Epithelial Cadherin (E-cadherin) 

CDH11  Cadherin 11 

CDH2  Mesenchymal Cadherin (N-cadherin) 

CDH3  Placental Cadherin (P-cadherin) 

CFP  Cyan Fluorescent Protein 

CNV  Choroidal Neovascularization 

COL1A1 Collagen Type I Alpha 1 Chain 

Co-Smads Common-Mediator Smads 
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CRISPR  Clustered Regularly Interspaced Short Palindromic Repeats 

CRISPRi CRISPR Interference 

CTGF  Connective Tissue Growth Factor 

DAN  Differential Screening-Selected Gene in Neuroblastoma 

dCas9  Catalytically Inactive Cas9 Protein 

DCN  Decorin 

DMSO  Dimethyl Sulfoxide 

Dvl  Dishevelled 

ECM  Extracellular Matrix 

EGF  Epidermal Growth Factor 

EGFR  Epidermal Growth Factor Receptor 

EMT  Epithelial-to-Mesenchymal Transition 

Erk  Extracellular Signal-related Kinase 

FACS  Fluorescent-Activated Cell Sorting 

FGF-2  Fibroblast Growth Factor 2 

FGF-5  Fibroblast Growth Factor 5 

FN  Fibronectin 

FST  Follistatin 

GA  Geographic Atrophy 

GDF  Growth Differentiation Factor 

GDF5  Growth Differentiation Factor 5 

GDF6 RPE RPE overexpressing GDF6 transcripts 
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GDF6  Growth and Differentiation Factor 6 

GDF7  Growth Differentiation Factor 5 

GDF8  Myostatin 

GDNF  Glial Cell-Derived Neurotrophic Factor 

GMT  Glial-to-Mesenchymal Transition 

gRNA  Guide RNA 

HGF  Hepatocyte Growth Factor 

ID1  Inhibitor of DNA Binding 1 

IGF-IR  Insulin-Like Growth Factor Receptor I 

iPSC  Induced Pluripotent Stem Cell 

I-Smads Inhibitory Smads 

JNK  Jun N-terminal Kinase 

LAP  Latency Associated Peptide 

LATS1/2 Large Tumor Suppressor 1/2 

LDN  LDN-193189 

LEF  Lymphoid Enhancer Factor 

LIMK1  LIM Domain Kinase 1 

LRAT  Lecithin Retinol Acyltransferase 

MAPK  Mitogen-activated Protein Kinase 

Met  Hepatocyte Growth Factor Receptor 

MET  Mesenchymal-to-Epithelial Transition 

MOI  Multiplicity of Infection 



122 

MSC  Mesenchymal Stem Cells 

MST 1/2 Mammalian Sterile 20-like 1 and 2 

MSX2  Msh Homeobox 2 

NEHJ  Non-Homologous End Joining 

NP  Nucleus Pulposus 

oBRB  Outer Blood-Retina Barrier 

ORF  Open Reading Frame 

OTX2  Orthodenticle Homeobox 2 

P0  Passage 0 

P1  Passage 1 

P2  Passage 2 

P3  Passage 3 

P5  Passage 5 

P7  Passage 7 

PBS  Phosphate Buffered Saline 

PDGF  Platelet Derived Growth Factor 

PEDF  Pigment Epithelium-Derived Factor 

PMEL  Premelanosome Protein 

PVDF  Polyvinylidene Fluoride 

PVR  Proliferative Vitreoretinopathy 

rmGdf6 Recombinant Mouse GDF6 

RNA-seq RNA-sequencing 
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RPE  Retinal Pigmented Epithelium 

RPE65  Retinoid Isomerase 

RPM  Read Counts Per Million 

R-Smad Receptor-Activated Smad 

RTK  Receptor Tyrosine Kinase 

RT-qPCR Real-Time Quantitative Polymerase Chain Reaction 

SARA  Smad Anchor for Receptor Activation 

SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 

SNAI1  Snail Family Transcriptional Repressor 1 

SOST  Sclerostin 

SPP1  Osteopontin 

TAZ  Transcriptional Coactivator with PDZ-Binding Motif 

TBST  0.1% Tween 20 

TCF  Transcription Factor T-Cell Factor 

TEAD  TEA-Domain Containing Transcription Factor 

TGFβ  Transforming Growth Factor β 

TGFβ1  Transforming Growth Factor β1 

TGFβ2  Transforming Growth Factor β2 

TGFβRI  Transforming Growth Factor β Receptor 1 

TGFβRII Transforming Growth Factor β Receptor 2 

TSP-1  Thrombospondin-1 

TSS  Transcription Start Site 
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UBE4A  Ubiquitination Factor E4A 

USAG-1 Uterine Sensitization-Associated Gene 1 

VEGF  Vascular Endothelial Growth Factor 

VIM  Vimetin 

YAP  Yes-Associated Protein 1 

YFP  Yellow Fluorescent Protein 

 




