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Semantic Networks Generated from Early Linguistic Input
Andrei Amatuni, Elika Bergelson

Department of Psychology and Neuroscience, Duke University
417 Chapel Dr. Durham, NC 27708 USA
{andrei.amatuni, elika.bergelson}@duke.edu

Abstract
Semantic networks generated from different word corpora
show common structural characteristics, including high de-
grees of clustering, short average path lengths, and scale free
degree distributions. Previous research has disagreed about
whether these features emerge from internally- or externally-
driven properties (i.e. words already in the lexicon vs. regu-
larities in the external world), mapping onto preferential at-
tachment and preferential acquisition accounts, respectively
(Steyvers & Tenenbaum, 2005; Hills, Maouene, Maouene,
Sheya, & Smith, 2009). Such accounts suggest that inherent
semantic structure shapes new lexical growth. Here we ex-
tend previous work by creating semantic networks using the
SEEDLingS corpus, a newly collected corpus of linguistic in-
put to infants. Using a recently developed LSA-like approach
(GLoVe vectors), we confirm the presence of previously re-
ported structural characteristics, but only in certain ranges of
semantic similarity space. Our results confirm the robustness
of certain aspects of network organization, and provide novel
evidence in support of preferential acquisition accounts.
Keywords: semantic networks; word learning; preferential ac-
quisition

Introduction
A word functions as an atomic unit of meaning, in principle
carrying independent semantic content. In practice though, it
occurs with its fellow words, as humans produce language.
From this word-stream, infants begin to understand words by
6-9 months (Bergelson & Swingley, 2012), and to produce
them soon thereafter. Here we aim to shed light on how these
semantic atoms are organized in the mental lexicon, and the
degree to which this representational structure is reflective of
the conceptual order found “out there” in the world.

To explore this, we turn to semantic networks, an idea dat-
ing back nearly a century (Trier, 1931). Given that words
are related along semantic dimensions, characterizing these
relations is a first step towards understanding their represen-
tational structure. Previous research on semantic networks
generated from word corpora have shown small-world con-
nectivity (i.e. any given word node is not very many nodes
away from any other), as well as scale free degree distribu-
tions (i.e. a few nodes serve as ‘hubs’, and node distribu-
tion follows a power law such that probability(k) ≈ k−α ,
for a node with degree k, and scaling parameter α) (Sigman
& Cecchi, 2002; Steyvers & Tenenbaum, 2005; Hills et al.,
2009). This suggests that semantic information may be in-
herently structured in nonrandom, clustered, and highly or-
ganized ways, which internal representations may mirror or
exploit1 (Todd, Hills, & Robbins, 2012). Scale invariance

1Graphs with high clustering coefficients and low average path
lengths, as in small-world networks, are efficient to search and relay
information through, while scale invariance allows a single algo-
rithm to operate across seemingly disparate representational frames.

(here equivalent to scale-free distributions), has been found
in many cognitive domains and diverse natural phenomena; it
is argued to be a general unifying principle of cognitive orga-
nization (Kello et al., 2010).

Barabási and Albert (1999) suggest that graphs with degree
distributions that follow power laws imply constraints on the
processes which formed them. Their model for generating
such networks relies on incremental growth and a process of
“preferential attachment” (hereafter PAT), whereby existing
nodes with many connections are preferentially “chosen” by
new nodes. While their resulting graphs display power law
degree distributions, they did not find small world connec-
tivity of the kind found in semantic networks, such as those
generated from WordNet and Roget’s Thesaurus. Building on
this, Steyvers and Tenenbaum (2005) proposed a model for
incrementally growing semantic networks similar to Barabási
and Albert (1999), which indeed resulted in both small world
and scale free structures. Their growth process centered on
semantic differentiation, i.e. new words that are more con-
trastive with existing words are preferentially incorporated
into the graph; they include a frequency parameter as well.
The resulting semantic graphs showed degree distributions
which reflected the relative time at which a particular node
was added to the network: age-of-acquisition (AoA) norms
for words corresponded to the relative number of connec-
tions in these graphs. PAT-based graphs inherently bias nodes
which are added earlier to have higher degree.

Steyvers and Tenenbaum (2005) suggest that the structure
of internal representations guides the selection process of
new words or concepts. In contrast, Hills et al. (2009) pro-
pose that the connectivity of words in the external environ-
ment plays a guiding role in the acquisition of new words.
In this alternative, dubbed preferential acquisition (hereafter
PAQ), the relative salience between unlearned words directs
new node integration into the lexicon. Under PAQ, the struc-
ture of the external semantic ground is itself scale-free, clus-
tered, and small world, leading internal representations to
mirror this structure as lexical items are added. This con-
trasts with PAT, which suggests that the structuring is a conse-
quence of incremental semantic network growth. Under PAQ,
the higher a word’s contextual variety, the more interactions
it has with other elements in the external ground. This results
in more neighbors in semantic network space, making it more
linguistically salient to the learner. Indeed, evidence by Hills,
Maouene, Riordan, and Smith (2010) suggests a role for con-
textual variety and associative density in noun lexical devel-
opment in particular. In the present work, we build on these
previous results, combining approaches that suggest network
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properties arise from incremental generative processes with
networks that are definitively non-generative, as a window
into how external and internal semantic spaces may influence
the growing noun lexicon.

One limitation of previous work concerns operationaliz-
ing semantic relatedness, generally achieved through hand-
tagged features or word associations (Steyvers & Tenenbaum,
2005; Hills et al., 2009). Hand-tagged features may not re-
flect the underlying semantic organization given that they
stem from an overt metalinguistic task. Indeed such fea-
tures do not produce scale free graphs or predict AoA. Word
association data lead to directed networks, which may ob-
scure inherent transitivity between word pairs (unless both
words have the other as their associative target). It’s not clear
whether this directedness is inherent in the lexicon. While
asymmetry is conspicuous in human similarity judgments
(Tversky, 1977), this may be a function of task rather than
underlying semantic representations. In the present work, we
rely on neither hand-tagged features nor directed associations
in building our semantic graphs.

Given the goal of explaining how semantic structure
emerges, a further limitation of previous work lies in the con-
stituent word nodes in the semantic networks, which used e.g.
free associations, Roget’s Thesaurus, and WordNet, rather
than child-directed corpora. In this paper, we make use of a
new corpus of words from infant-caretaker interactions. This
allows us to examine whether scale free distributions, small
world connectivity, and links to lexical development trajecto-
ries are limited by corpus origin, and thus whether using a full
range of concrete nouns children are exposed to in naturalistic
settings renders different results.

Here we extend previous work and begin to address these
limitations by building ecologically valid semantic graphs of
early linguistic input. We use modern vector space methods
to calculate undirected semantic relations, resulting in a gra-
dient of networks parameterized by degree of similarity. We
limit network nodes to only those which infants’ hear and em-
bed them in a space which approximates a common semantic
ground shared by infants and adults alike. We also investigate
links between word frequency in the corpus, and connectivity
rank in network space.

Present Study
We generate networks using a new model of semantic relat-
edness: vectors trained with GloVe (Pennington, Socher, &
Manning, 2014). We first determine whether our networks re-
produce previously reported small world structure, and scale
invariance (i.e. power law distributions). Such structures are
consistent with PAT or PAQ. However, only PAT proposes
that such structures arise due to incremental growth mecha-
nisms (Barabási & Albert, 1999). PAT suggests that words al-
ready in the internal lexicon guide new word selection: early
words have higher degree than later-added words, i.e. new ad-
ditions “prefer” to attach to words with higher degree. In con-
trast, PAQ proposes that external network connectivity drives

node addition, suggesting that internal structures mirrors ex-
ternal structure, which may be scale-free, small-world, or
not. Because our networks are built using the GloVe vectors,
they are, by definition, non-generative and non-incremental:
showing scale free and small world behavior in our networks
would suggest this structuring might exist without PAT’s as-
sumed incremental generative growth processes.

As a proxy for AoA, we make use of parent-reported
vocabulary norms from WordBank (Frank, Braginsky,
Yurovsky, & Marchman, 2016), a compilation of the
MacArthur-Bates Communicative Developmental Inventory
(CDI.) We assume words known by more infants at a given
age have been in the lexicon longer. Here we attempt to
replicate network structure and AoA correlations originally
presented as evidence for PAT, while violating PATs assump-
tion of incremental growth. If successful, it would imply that
scale-free structure does not itself depend on PAT.

We also test for evidence of PAQ, by determining whether
words that go from being poorly-known to well-known over
time have more connections in the externally-based network
than those that remain poorly known over time. That is, we
test PAQ’s proposal that high degree nodes in networks gen-
erated from external linguistic input are acquired earlier than
lower degree nodes in those same networks. Notably, PAQ
models do not depend on power law distributions or scale
free behavior, but rather on children selectively integrating
salient (more densely connected) words from all possible lex-
ical items they’re exposed to. If adult sampling is also inher-
ently biased to those words which have high degree in seman-
tic network space, then we expect too that highly frequent
words have higher connectivity relative to all child-directed
words. Because our corpus is generated from a large sam-
ple of child-directed speech, we can further compare word
frequency statistics with degree distributions generated using
the same set of words.

Method
Data
The SEEDLingS corpus (Bergelson, 2016a, 2016b) comes
from home recordings of 44 infants from upstate New York,
followed from 6 to 17 months. Each month, a daylong au-
dio recording and hour-long video recording were collected.
All videos and 3-10 hours of each audio recording were man-
ually tagged for concrete nouns directed to and/or attended
by the child, creating tags of several thousand hours of nat-
uralistic interactions between infants and caregivers. We ex-
clude utterances made by the child, resulting in a final dataset
of 4359 unique noun-types (194204 tokens). Plurals and
diminutives were consolidated into a “basic level” proxy for
word lemmas for each recording. These nouns were used
to generate the SEEDLingS-All graphs. We also generate
graphs for 6 month recordings alone (1855 types, 29289 to-
kens; SEEDLingS-6mo) and a 16/17 month combined set
(1708 types, 26969 tokens; SEEDLingS-16+17mo), to con-
trast networks generated from speech to pre-verbal infants
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and speech to newly verbal toddlers; the SEEDLingS net-
works are our model of the external linguistic environment.
We generated an additional network (WordBank), using only
the 369 nouns on the CDI; this serves as our internal semantic
network, given that it only includes words that (some) 16-30-
month-olds produce.

As our measure of relative AoA, we used by-word sum-
mary data from the online WordBank repositories (Frank et
al., 2016). This data includes productive vocabularies for
children aged 16 to 30 months (reported productive vocab-
ulary is generally more reliable than reported receptive vo-
cabulary.2 We make the assumption that words said by more
children at a given age entered the lexicon earlier. Indeed,
the age at which a word is produced by 50% of children, the
AoA metric used by Hills et al. (2010), is significantly in-
versely correlated with the percentage of production at 16, 23,
and 30 months (r = −0.78, −0.97, and −0.88 respectively;
all p < 0.005). Furthermore, AoA measures correlate with
children’s elicited naming rates (Morrison, Chappell, & Ellis,
1997). We use WordBank norms rather than the SEEDLingS
infants’ own productions, as an independent and extremely
large-n (n = 5450, for English) estimate of children’s knowl-
edge for each word in our networks, removing potential de-
pendencies in our analyses.

GloVe Vectors
Since our dataset is not tagged with semantic features, and
since results with hand-engineered features have been mixed,
we chose to follow a method described by Steyvers and
Tenenbaum (2005) and use semantic vector space models to
generate edges between any nodes above a given similarity
threshold. We build on their use of Latent Semantic Analysis
(LSA) vectors. In that work, LSA vectors (which along with
other geometric methods, are non-incremental) did not gen-
erate scale free networks; this result was used to suggest that
such approaches are incompatible with incremental growth
and PAT. To generate our graphs, we use pre-trained word
vectors produced by GloVe, a recently developed algorithm
for word embedding (Pennington et al., 2014). Using this al-
gorithm, we can investigate whether we find scale free and
small world graphs; if so, the original failure to do so might
be LSA-specific, and not a necessary consequence of PAT, as
the authors suggested.

GloVe has been demonstrated to have higher perfor-
mance on many different word similarity tasks compared to
word2vec and matrix factorization methods using SVD. Here,
we opted to use vectors trained on the Common Crawl cor-
pus with 42 billion tokens, resulting in 300 dimensional vec-
tors for 1.9 million unique words.3 In some sense this ’full’
dataset provides word similarity proxy based on the target
(i.e. adult) meanings the child is acquiring. Further analy-
ses using vectors trained on CHILDES (MacWhinney, 2000),

2SEEDLingS networks contain many more nouns than the
WordBank network (resulting in different connectivity patterns), but
AoA data is only available for the 369 CDI nouns for all networks

3http://nlp.stanford.edu/projects/glove/

displayed analogous and in some cases even stronger pat-
terns than the current results.4 This to us suggests consis-
tency in the linguistic manifestation of word meaning (and
perhaps their concomitant cognitive processes) at both large-
and narrow-sampling scales.

Similar to LSA, GloVe learns vector representations of
words from co-occurrence matrices built from large text cor-
pora. It instantiates the distributional hypothesis of linguis-
tics, famously articulated by Firth (1957): “you shall know
a word by the company it keeps”. Because the GloVe vec-
tors encode co-occurrence statistics derived from natural lan-
guage, our similarity measures also indicate the degree to
which two words share contextual coherence. I.e., the more
connections a word has in the semantic network, the more
words it shares this coherence with. Given this high dimen-
sional encoding space, we can use a continuous metric of sim-
ilarity. Iterating through similarity thresholds, we create a
gradient of networks to study.

Generating Semantic Networks
We generate graphs across a range of similarity thresholds
(ε). Our similarity measure is the cosine between two GloVe
vectors. The cosine function also normalizes for word fre-
quency (to some degree) since dot products are divided by
their vector norms. For each corpus, for each word, we cal-
culate cos(θ) between it and every other word in the set.

We give an undirected edge between two words if their co-
sine is above a threshold ε. Since generating each graph is
a quadratic operation we normalize the vectors to unit length
before calculating cosines. We iterate ε from 0 to 0.99 (step
size=0.01), generating a graph for each similarity threshold.
Further methods of edge generation are left for future re-
search. Our code and IPython notebooks are on Github5,6.

Results and Discussion
Correlations Between Node Degree and Production
We generated 100 graphs for each corpus, one for each value
of ε. We calculated Spearman’s rank correlation coefficients
between each word’s number of connections and productive
vocabulary norm (for the 369 CDI nouns), for each network
and similarity threshold, at 16, 23 and 30 months. Under
both PAT and PAQ, we would expect to see that words with
more connectivity have higher CDI production rates. Indeed,
we find robust and significant correlations between the degree
of a word in the network, and the percent of toddlers who
produced it, for a range of ε, across corpora and ages; Fig.1.

More specifically, we find similar behavior across all net-
works, with a global peak in correlation for ε = 0.12-0.19. All
peak correlation values had Spearman’s ρ = 0.43-0.52, with
p < 10−5, showing consistent behavior across networks and
ages . This suggests that both the parent’s word choice given

4We omit these due to space, but thank an anonymous reviewer
for this suggestion; they will be presented at CogSci.

5https://github.com/andreiamatuni/wordgraph
6https://github.com/BergelsonLab/semspace
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a child’s age, and the child’s responsiveness to external se-
mantic density across time are roughly constant. This range
of ε where the correlation is at a maximum is relatively low,
allowing very loose semantic associations to result in edges.
In Figure 2 we show a subgraph from the SEEDLingS-All
network, centered around the node “baby.”

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8
ε

ρ

CDI month
16
23
30

Corpus
SEEDLingS 16+17 mo
SEEDLingS 6 mo
SEEDLingS−All
WordBank

Figure 1: Correlation coefficients (ρ) between number of
edges and CDI production rate across words, as a function
of similarity threshold ε (all ρ are significant at p < 0.005).
Color indicates which corpus created the network, shape in-
dicates which month of CDI norms was used to calculate ρ.
Vertical lines indicate the range in which we find scale free
degree distributions (0.6-0.73). (For thresholds ε> 0.75 there
were very few (or no) edges being created, explaining the dis-
continuity and lack of points towards the end of the scale.)

Figure 2: “Baby” subgraph from the SEEDLingS-All net-
work at the similarity midpoint (ε = .5), where “baby” has
40 neighbors.

Power Law Degree Distributions
Surprisingly, at the values of ε where the correlation is max-
imal, we did not find power law distributions. We did how-
ever find them at higher thresholds: at ε = 0.68 we can fit a
power law function with α = 3.2±0.1, with a log likelihood
ratio in favor of power law over exponential fit (R = 115.73,
p = 2.337×10−21). Indeed, at ε = 0.63−0.75 we find power
law distributions (α =2.39-3.73) characteristic of scale free

networks. At these higher thresholds a word’s neighbors
are semantically very close, similar to other semantic graphs
which have shown scale free distributions (e.g. Roget’s The-
saurus), suggesting this property might depend on connec-
tions’ high semantic proximity. See Figure 3.

10

100

10

degree (k)

# 
of

 n
od

es

SEEDLingS All ε = 0.68
SEEDLingS 6 mo ε = 0.66
WordBank ε = 0.6

Figure 3: Sample networks showing degree distributions with
power law behavior (α=3.1-3.2; SE=.1, p < 0.001; similar
behavior found across networks for 0.60≤ ε≤ 0.73). Distri-
butions are plotted on a log-log scale with logarithmic spac-
ing between points, which represent the edges of bins. Power
law distributions appear linear on this scale.

PAT models presuppose power law distributions (indeed,
PAT was initially proposed after observing scale free distri-
butions in semantic networks, and arguing that this limits the
kinds of mechanism which could have created them). We thus
further analyze the range of ε where our networks display
power law behavior. Again, networks showing this distribu-
tion are critical for PAT (and thus our CDI-based Wordbank
networks’ proxie of an internal network), but incidental for
PAQ, which makes no claims about power-law distributions.

Limiting our focus to these ranges (between the vertical
lines in Figure 1,) we see that the degree of a given word
in the SEEDLingS-All network has uniformly higher correla-
tion with productive vocabulary norms compared to that same
node in the internal (i.e. WordBank) networks. (To be clear,
we can only calculate ρ for words we have CDI norms for, but
the SEEDLingS networks contain all the nouns infants heard,
while the WordBank networks contain only CDI word nodes).
This pattern is consistent with PAQ, where more densely con-
nected words in the environment are preferentially incorpo-
rated into the learner’s lexicon. The correlation between AoA
and node degree for the WordBank networks, along with their
scale-free organization, suggest that PAT is not a necessary
condition for this behavior, since these graphs were generated
using GloVe. The presence of these same correlations for our
other networks (which serve as a proxy of an externally-based
network) in this same range of ε, are also scale-free, and pro-
vide new support for PAQ.

This pattern validates our method of generating graphs us-
ing GloVe vectors: both the WordBank and our SEEDLingS
networks display behavior consistent with previous accounts
(i.e. scale free distributions in internal lexical networks
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and node degrees correlated with AoA). If anything, the
SEEDLingS networks show the predicted structure more
strongly, suggesting the nouns infants actually hear may
form a better representation than limiting the space to lex-
ically simple, early-learned nouns alone. Our current anal-
ysis suggests that scale-free and small world structure can
be produced without an incremental growth process, since
our graphs were generated using a vector space model (i.e.
GloVe). If words are to be incorporated using PAQ, this ex-
ternal structure would necessarily be mirrored in the internal
lexical network. However, it remains possible that PAT and
PAQ could both be at play during infant lexical development,
perhaps with PAQ supplementing PAT by providing a struc-
tured sampling space for new word selection.

Clustering Coefficients and Path Lengths
We next examined whether our semantic networks, based on
natural language to children, exhibited two key small-world
properties found in previous research: low average path-
length (L), and high clustering coefficients (C). We found that
the SEEDLingS networks generally had lower C and higher
L than the WordBank networks. In Table 1 we list C and
L of each network at their respective peak from Figure 1.
We also generated Erdős-Renyi and Watts-Strogratz graphs
for comparison (Watts & Strogatz, 1998; Erdős & Rényi,
1960); Erdős-Renyi gives us a baseline measure of a compa-
rably sized graph built using a random process, while Watts-
Strogatz provides a prototypical example of a small world
graph, with low L and high C. The SEEDLingS networks
clearly showed higher clustering coefficients and smaller av-
erage path lengths compared to the Erdős-Renyi graph, and
comparable behavior to the Watts-Strogatz graph. This small
world organization is indicative of hub structures in the net-
work, where a few very densely connected nodes establish
routes between a large proportion of the graph, keeping the
average shortest path length low. This is also a defining fea-
ture of networks with power law distributions, even though
the networks we’ve listed in Table 1 do not fit that criteria.
This small world organization, even in the absence of power
law distributions,7 supports previous findings in other seman-
tic networks and suggest that even in child-directed natural
language input we see these structures.

AoA as a Function of Frequency and Connectivity
The SEEDLingS corpus contains word frequency counts,
a particularly powerful predictor of word acquisition
(Goodman, Dale, & Li, 2008), allowing us to examine the
relationship between word frequency and network connectiv-
ity.8A positive relationship would suggest that densely con-
nected words are preferentially sampled in adult speech di-
rected towards children. As shown above, more highly con-
nected words were said by more toddlers, across our networks
(at peak ε, all ρ > .51, all p < .0001; see Fig. 1). Using

7Scale free networks are inherently ultrasmall (Cohen & Havlin,
2003)

8Phonological neighborhood effects are saved for future work

Corpus ε C L
SEEDLingS All 0.13 0.594 1.749
SEEDLingS 6 mo. 0.16 0.669 1.739
SEEDLingS 16+17 mo. 0.12 0.726 1.534
WordBank 0.13 0.895 1.202
Erdős-Renyi - 0.049 1.950
Watts-Strogatz - 0.634 3.013

Table 1: Clustering coefficients (C) and average shortest path
lengths (L) of the largest connected subgraph at peak values
from Figure 1. Generated Erdős-Renyi (n=6404, p=0.05) and
Watts-Strogratz graphs (n=6404, k=64, p=0.05) are listed for
comparison.

model comparison of simple linear models, we find that in-
cluding both word frequency and node degree as predictors
of word production (at 16, 23, and 30 months) accounts for
significantly more variance than either alone (all p < .01; in-
teraction term significantly improved model fit for months 23
and 30 only, both p < .01).9

Finally, to better understand whether our semantic net-
works find support for PAT and PAQ models, we tested one
specific prediction of each. For PAT, we tested whether words
that had been known longer (i.e. by proxy, were said by
more children) had more connections than those that had
not. Indeed, conducting a median split on words’ produc-
tion rates at each age (16, 23, and 30 months), we find that
better known words have higher degree than less well known
words (p < 0.005 by Wilcoxon Test). For PAQ, we tested
whether the words that went from less-well-known to better-
known over 16-30 months had higher degree than those that
remained poorly known. Indeed, for words produced below
the median rate at 16 months, those below the median at 30
months had significantly lower degree than those above it
(p < .005 by Wilcoxon Test.) This supports PAQ’s proposal
that high degree nodes in networks generated from external
linguistic input are acquired earlier than lower degree nodes
in those same networks.

Conclusions
Our results suggest there is inherent semantic structure
present in the early linguistic environment, and that both the
caregivers and their children are likely sensitive to this non-
uniform distribution of semantic information. Because the
SEEDLingS corpus provides a uniquely rich dataset of early
linguistic input, we were able to construct ecologically valid
networks and study differences in their structure across time
for a constant set of infants. Our present findings support
previous work addressing semantic network structure. Us-
ing a modern semantic vector space model to generate our
graphs, we were able to confirm the presence of scale free de-
gree distributions in our networks, as well as high clustering

9Node degrees are from the SEEDLings-All network at peak
similarity threshold of ε = 0.13
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coefficients and low average path lengths. This method for
generating semantic networks avoids the need for hand en-
gineered features and sidesteps the limits of free-association
data, providing a potentially more advanced measure of se-
mantic relatedness compared to the original work on PAQ.

That said, the process that generated the GloVe vectors
here is not the same as that generating any human’s lexi-
con; further work is needed to strengthen and test links be-
tween these representations. Moreover, the GloVe model
does not speak to the origin of token distributions in natu-
ral language. It does, however, encode a geometric projec-
tion of a meshwork of causal substructures present in the ex-
ternal world. Future research will explore the link between
these structures and their grounding in cognitive processes.
While we have taken a few steps towards examining network
growth over time (finding little difference in our 6mo. and
16+17mo. SEEDLingS networks, or over 16, 23, and 30mo.
CDI norms), more work is needed to better understand not
only whether PAT and/or PAQ-compatible processes are at
play, but how the interplay between input and uptake changes
as the learner grows.

In their original work, Hills et al. (2009) were not able
to produce scale free graphs using their hand made features,
but were able to do so using adult free association data. In
our own graphs we saw that the scale free property only
manifested at relatively high values of ε, where only very
closely related words (often synonyms) were connecting to
each other. Because our measure of similarity was parame-
terized, we were able to produce a gradient of networks and
study their behavior across a range of thresholds, focusing at
different ranges of the scale as needed. By generating scale
free networks using a non-incremental procedure, we lend
support to the hypothesis that this structuring may be an in-
herent feature in the external environment, rather than a con-
sequence of how it’s integrated into internal representations.
Building on Firth: our results suggest that words may indeed
become known by the company they keep, and that the rele-
vant neighbors may be both those inside the lexicon, and in
the as-yet unknown external world of words.
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