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Abstract: Lung cancer is a leading cause of cancer deaths worldwide. Metabolic alterations 

in tumor cells coupled with systemic indicators of the host response to tumor development 

have the potential to yield blood profiles with clinical utility for diagnosis and monitoring of 

treatment. We report results from two separate studies using gas chromatography time-of-flight 
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mass spectrometry (GC-TOF MS) to profile metabolites in human blood samples that 

significantly differ from non-small cell lung cancer (NSCLC) adenocarcinoma and other 

lung cancer cases. Metabolomic analysis of blood samples from the two studies yielded a 

total of 437 metabolites, of which 148 were identified as known compounds and 289 identified 

as unknown compounds. Differential analysis identified 15 known metabolites in one study 

and 18 in a second study that were statistically different (p-values <0.05). Levels of maltose, 

palmitic acid, glycerol, ethanolamine, glutamic acid, and lactic acid were increased in cancer 

samples while amino acids tryptophan, lysine and histidine decreased. Many of the 

metabolites were found to be significantly different in both studies, suggesting that 

metabolomics appears to be robust enough to find systemic changes from lung cancer, thus 

showing the potential of this type of analysis for lung cancer detection. 

Keywords: metabolomics; lung cancer; mass spectrometry; blood  

 

1. Introduction 

Lung cancer continues to be the leading cause of cancer death for men and women in the United 

States in spite of reduced rates in smoking [1]. Furthermore, there is an increased global burden of lung 

cancer largely due to increased smoking in economically developing countries [2]. Only 16% of cases 

with non-small cell lung cancer (NSCLC) survive longer than 5 years, largely due to late stage diagnosis 

and metastasis of this disease. Early diagnosis significantly improves the 5 year survival rate for lung 

cancer [3]. Currently, there are no FDA-approved diagnostic tests available to detect the presence of 

lung cancer, especially in the high-risk smoking population. Results from the National Lung Screening 

Trial (NLST) showed that CT screening could reduce mortality by 6.7% [4]. However, CT screening is 

not cost-effective, has a high false positive rate and can expose the patient to low amounts of  

radiation [5]. There is also variability in the reading and interpretation of radiographic scans, thereby 

reducing the enthusiasm of CT screening for routine clinical use [6]. Ideally what is needed is a non-invasive 

blood analysis for biomarkers capable of assisting with diagnosis that might also help reduce the high 

false positive rate of CT scan screening [7,8]. 

Metabolomic changes in cancer are well-documented with increased glycolysis and decreased 

oxidative phosphorylation (the “Warburg effect”), as described by Deberardinis et al. [9]. Of particular 

interest are components of the glycolytic pathway, nucleotide, amino acid and fatty acid synthesis and 

how tumor cells are able to scavenge the available cellular and environment material to produce the 

necessary cellular components to support increased growth and proliferation. Metabolomic analysis has 

been used to distinguish between benign prostatic hyperplasia (BPH) and prostate cancer in urine 

samples [10], and invasive ovarian carcinoma tumors compared with borderline tumors in tissues [11], 

thus yielding potential biomarker panels for breast, ovarian and gastric cancers [12–16]. Maeda et al. 

used metabolomics to examine levels of plasma amino acids in the blood of patients with lung  

cancer [17]. Analysis of metabolic pathways has identified glycolytic and signaling pathways differentially 

regulated in pre-diagnostic blood samples from subjects diagnosed with breast cancer [18] and  

AMPK-related alterations in ovarian cancer [19]. Thus, measuring changes in metabolites detectable in 
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blood samples that may represent tumorigenesis has the potential to yield suspicious systemic 

metabolitic changes indicating the presence of lung tumors [20–22]. The purpose of this study is to 

perform metabolomic analysis of blood samples from two separate case-control studies obtained from 

two different sites  to determine if untargeted metabolic profiling by GC-TOF MS can  identify metabolic 

differences in patients with lung cancer when compared with blood samples from those without cancer. 

2. Results and Discussion 

2.1. Differential Analysis Results of Cancer Cases and Controls 

Gas chromatography (GC) time of flight (TOF) mass spectrometry (MS) was used to analyze  

pre-existing blood samples provided by two separate sites in pilot lung cancer case control studies. For 

Study 1, samples were acquired from the Fred Hutchison Cancer Research Center (FHCRC) (Table 1A) 

comparing blood samples from NSCLC adenocarcinomas with controls (all current or former smokers 

frequency matched for age and gender). All patient samples for Study 1 (cases) were collected during a 

clinic visit prior to surgery for resectable early stage lung cancer and the controls were collected from 

clinic subjects without lung cancer. For Study 2, samples were acquired from University of California 

at Davis Medical Center (UCDMC) (Table 1B) and included a variety of lung cancers. For Study 1, 20 

control subjects were compared to 18 cases. Data from two samples were not included in the analysis 

due to low analytical results for these samples. 

Data results were differentially analyzed (see methods for details). In Study 1, based on p-values  

(p < 0.05), 19 metabolites differed significantly by cancer status (15 known metabolites and 4 unknown, 

shown highlighted in grey in Supplemental Table S1, left side). Data for 9 of the top 15 known 

metabolites from Study 1 with mean values, fold changes and p-values are shown in Table 2A. These 

metabolites are maltose, ethanolamine, glycerol, palmitic acid, lactic acid, tryptophan, lysine, histidine 

and glutamic acid. (Supplemental Table S2 show mean values, fold changes and p-values for all known 

and unknown compounds measured in Study 1). 

In Study 2, 82 metabolites differed significantly for cancer versus control samples based on  

p-values (p < 0.05) (18 known metabolites and 64 unknown). Data for all of the metabolites (known and 

unknown) in Study 2 are shown in Supplemental Table S1(middle section) with the 82 metabolites with 

p-value < 0.05 highlighted in grey. Results (mean values, fold change, p-values) of the same 9 metabolitles 

as shown for Study 1 (Table 2A) are listed in Table 2B for comparison. These results show similar 

changes in these metabolites (increase or decrease) in both studies with the exception of glutamic acid, 

which shows an increase in Study 1 and a decrease in Study 2. Supplemental Table S2 show mean values, 

fold changes and p-values for all known and unknown compounds measured in Study 2.  
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Table 1. Summary of patient information for FHCRC and UCDMC samples. SE is standard error of the mean. 

 Type and Stage Female Male Total Smoking History 

(A) Study 1 (38 Samples) 

Lung cancer 
NSCLC adenocarcinoma 

stage unknown 
8 10 18 

Current or former 

smokers 

Control  12 8 20 
Current or former 

smokers 

Average age (cancer)  
62 (SE 2.38)  

(range 53–72) 

67 (SE 3.66)  

(range 50–85) 
  

Average age (control)  
64 (SE 2.71)  

(range 49–80) 

66 (SE 2.65)  

(range 58–82) 
  

(B) Study 2 (22 Samples) 

Lung cancer 

 7 4 11  

NSCLC Stage I-IIB 1  1 1 former smoker 

NSCLC Stage IIIA-IV 2 2 4 
1 never smoker 

1 former smoker 

SCLC 3  3 

1 unknown,  

1 former smoker 

1 current smoker 

Mesothelioma  1 1 1 former smoker 

Secondary 2nd metastasis 

to lung 
 1 1 1 former smoker 

other 1  1 1 former smoker 

Control  6 5 11 unknown 

Average age (cancer)  
67 (SE 4.2) 

(range 47–76) 

67 (SE 2.66) 

(range 61–73) 
11  

Average age (control)  
54 (SE 2.64) 

(range 44–61) 

69 (SE 3.79) 

(range 61–83) 
11  
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Table 2. (A) Means and fold change for nine known metabolites from Study 1 that differ 

significantly (raw p-value < 0.05) between cancer patients and disease free controls;  

(B) means and fold change for nine known metabolites from Study 2. 

Metabolite Mean Cancer Mean Control Fold (Cancer/Control) Raw p-Value 

(A) Study 1 (FHCRC) 

Maltose 1298 780 1.664 0.013 

Ethanolamine 156,214 123,699 1.263 0.016 

Glycerol 66,463 49,062 1.355 0.023 

Palmitic acid 53,763 41,293 1.302 0.047 

Lactic acid 380,753 301,909 1.261 0.055 

Tryptophan 121,513 143,383 0.847 0.005 

Lysine 159,156 179,325 0.888 0.042 

Histidine 30,526 37,025 0.824 0.036 

Glutamicacid 39,179 27,794 1.410 0.026 

(B) Study 2 (UC Davis) 

Maltose 1061 989 1.074 0.819 

Ethanolamine 150,655 127,546 1.181 0.006 

Glycerol 67,557 47,052 1.436 0.315 

Palmitic acid 50,740 43,659 1.162 0.797 

Lactic acid 381,850 296,663 1.287 0.108 

Tryptophan 126,621 139,426 0.908 0.391 

Lysine 167,528 172,015 0.974 0.636 

Histidine 31,053 36,840 0.843 0.047 

Glutamicacid 31,486 34,887 0.903 0.914 

Box-plots comparing the mean intensities of 9 of the top candidate metabolites for all samples listed 

in Table 2A,B from Study 1 and Study 2 are shown in Figure 1. Also shown in Figure 1 are additional 

box plots to show a comparison between results from males (blue) and females (red) for the two studies. 

These plots show the same trends (increased or decreased) as all samples with the exception of glutamic 

acid, which shows the same trend for females, but not for males. This striking similarity between the 

studies is notable, especially since both studies were quite small and involved differences in the matrix 

(plasma and serum), dealt with different types of lung cancers and originated from different clinics. 

Overall, we concluded that it is possible to compare the two studies and still find evidence of an increase 

in glycolysis and lipid biosynthesis in blood samples, along with a general decrease in aromatic amino acids. 
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Figure 1. Box-whisker plots of top metabolite candidates in Study 1 and Study 2 with 

additional plots of the same metabolites from each study separated by gender (males and 

females). Box-whisker plots of gender adjusted intensities of top known metabolite 

candidates from Study 1 (S1) compared with the same compounds in Study 2 (S2) for cancer 

cases (C) and normal/control (N) showing similarity in the changes in both studies are shown 

for nine of the top metabolites: maltose, ethanolamine, glycerol, palmitic acid, lactic acid, 

tryptophan, lysine, histidine and glutamic acid. Shown below each metabolite plot are results 

for the same metabolites separated by gender. Blue plots denotes male results only and red 

plots denote females results only for each study. 

2.2. Multivariate Analysis of Data by PLS-LDA  

Multivariate analysis [23] using partial least square (PLS) [24] with linear discriminant analysis 

(LDA) with and without adjusting for age and gender was also performed to determine whether the blood 

metabolome as a combination of all metabolites identified in this study could discriminate cancer cases 

from control samples. PLS was used to reduce the 437 spectral peaks, each representing a metabolite, to 

a smaller number of latent components that distinguished cancer cases and controls and then determined 

which peaks were most influential in separating cases and controls as possible biomarkers. Metabolomic 

results from the cases and controls of Study 1 were separated by the first and second components when 
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adjusted for age and sex (Figure 2A) that also showed good separation when the results were not adjusted 

for co-variants (Figure 2C). Based on leave-one-out cross-validation (LOOCV), we attempted to assess 

the performance of the metabolites to correctly identify the cancer cases. Sixty-three % of Study 1 

samples were correctly classified , with 66.7% sensitivity and 60% specificity when two latent components 

were used to predict cancer status with adjustment for age and gender (Table S3A) and without 

adjustment for age and gender (Table S3B).  

 

Figure 2. Multivariate PLS separates lung cancer patients and controls in two independent 

studies by the global metabolomic profiles. (A) PLS of Study 1 data results with gender and 

age adjusted; (B) PLS of Study 1 without gender and age adjusted; (C) PLS of Study 2 with 

gender and age adjusted; (D) PLS of Study 2 without gender and age adjusted. Red squares 

denote control cases and solid blue circles denote cancer cases. 

For Study 2, PLS-LDA analysis also showed separation for cancer based on metabolic profiles with 

adjustment for gender and age (Figure 2B) as well as for metabolic profiles without adjustment for 

gender and age (Figure 2D). Based on LOOCV, 68% of Study 2 samples were correctly classified with 

sensitivity 63.6%, specificity 72.7% when two latent components were used to predict cancer status with 
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adjustment for age and gender (Table S4A). However, the PLS analysis without age and sex adjustment 

yielded better separation of the groups for Study 2 samples (Figure 2D). Using two latent components 

meant 81.8% were correctly classified with sensitivity 72.7%, specificity 90.9%, suggesting an influence 

of covariants (Table S4B).  

2.3. Detection of Unknown Metabolites  

Some of the metabolites that we found to be differentially expressed were unknown compounds 

(Tables S1 and S2). We have intentionally used an untargeted metabolomic screen to detect novel 

metabolites that might be involved in the pathogenesis of NSLC and thereby detected “unknown” 

compounds in our metabolomic analysis. Most of these unknown compounds have been previously 

observed in other samples from different species, mammalian (human, mouse, rat), plant, bacterial and 

others which have been carefully tabulated in the BinBase database [25]. Searching our BinBase 

database and comparing the MS spectra of the unknowns with known compounds with similar electron 

ionization fragment spectra and similar retention times can help identify several interesting compounds 

that the unknown may be linked or is related to, based on the similarity of the spectra to known spectral 

fragmentation (Figure 3). For example, based on its fragmentation scan, the BinBase unknown 

compound #200595 has evidence of being an amino-compound, #200595 shows substructure patterns 

of carbohydrates and a retention index close to glucoheptose, #220177 can also be matched to 

carbohydrate substructures, in addition to showing a characteristic fragment m/z 144 typical for amines, 

and #223597 is a very high boiling compound with fragments found in sterols. Once additional cohort 

studies validate the importance of such unidentified metabolites, accurate mass GC-QTOF MS data can 

be acquired to obtain elemental formulas and matching structures from database queries [26,27]. 

 

Figure 3. Box plots of top unknown compounds with electron ionization mass spectra 

comparing the two studies. Box-whisker plots (top panels) of the top unknown candidates 

from each study (Study 1 and Study 2) with the electron ionization MS spectra (lower panels) 

of the compound to show the mass fragmentation of the compounds to help with the 

identification of the compound.  
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2.4. Discussion  

2.4.1. Systemic Metabolic Changes in Blood from Lung Cancer Patients 

The most significant metabolite changes were representative of changes in amino acid, energy, fatty 

acid and lipid metabolism. Amino acid differences have been reported in NSCLC and other cancers in 

plasma [10,12,16,17,28] with Maeda et al. reporting that concentrations of Ser, Pro, Gly, Ala, Met, Ile, 

Leu, Tyr, Phe, Orn and Lys were higher and histidine was lower in NSCLC compared with controls [17], 

while Cascino et al. reported increases in Trp, Glu and Orn (Arg) in lung and breast cancers in blood [29]. 

Other amino acid changes we detected were consistent with a recent report by Miyagi et al. [30] who 

identified decreases in histidine, glutamine and threonine in early and late lung cancer in plasma samples 

from five cancers (lung, gastric, colorectal, breast and prostate). Miyagi et al. also reported that histidine 

was decreased in all but prostate cancer. Tryptophan was decreased in all five cancers in Miyagi’s study [30], 

which we also identified as decreasing in our two studies. A general difference between the two studies 

is that Miyagi’s study focused on the analysis of early stage cancers (Stage I–III) whereas Rossi Fanelli’s 

studies analysed cancer anorexia in very late stage cancers [31,32]. 

Other studies in lung cancer in blood plasma have been conducted by NMR. Rocha et al. [33] detected 

metabolic changes related to glycolysis, glutaminolysis and gluconeogenesis with suppressed Krebs 

cycle and reduced lipid catabolism as a metabolic signature for lung cancer in 85 lung cancer patients 

and 78 healthy controls using NMR analysis. The average age for the lung cancer patients was 63 yr 

(30–85 yr) versus non-diseased control with an average age of 41 yr (22–60 yr) showing an age 

difference between the cases and controls. Histopathology of the cases ranged from 43% (37 cases) of 

adenocarcinoma with the rest a combination of epidemoid carcinoma, carcinoid, large cell and small cell 

carcinoma, with mostly early stage (81% Stage I and Stage II), and a few late stage (8% Stage III). Our 

Study 1 focused only on NSCLC adenocarcinoma with better matched controls for age and smoking 

history and all late stage disease. Hence, the metabolomic biomarkers we describe may be more 

associated with late stage, metastatic disease. We understand that the reason  most experimental 

biomarkers fail in clinical validation studies for early detection is that the biomarkers were discovered 

in late stage cancer cases,  and are unsuitable as biomarkers for early stage disease [34,35]. We still need 

to conduct studies on early stage lung cancer (Stage I-II) matched with suitable gender, age and smoking 

history controls to better characterize biomarkers of early lung cancer. Comparing the results from 

plasma and serum blood samples has already been shown to be marked similar for the two biofluids by 

Wedge et al. for small cell lung cancer (SCLC) [36]. Also, our studies complement those of the SIRM 

and NMR tissue and blood studies in lung cancer [17,22,37]. These studies require the infusion of C13 

stable isotopes into the patient before analysis and are not practical for the clinical laboratory. The results 

from two studies add to the growing body of evidence that metabolomic changes detectable in blood and 

tissue could be used to detect and diagnose lung cancer.  

2.4.2. Pathway Analysis and Overall Metabolic Effect on Blood Metabolites  

While diagnosis of lung cancer phenotypes is clinically important, a differential analysis of plasma 

metabolic changes between lung cancer patients and matched controls should also reflect known 

mechanisms in cancer biology or lead to new hypotheses. We have therefore used less stringent thresholds 
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(p < 0.1) to increase the number of metabolites that are potentially metabolically connected and visualized 

all metabolites at p < 0.1 using a combined biochemical and chemical network graph, MetaMapp (Figure 4). 

This graph clusters metabolites based on biochemical reactant pairs in the KEGG RPAIR Database [38,39] 

in addition to Tanimoto chemical structure similarity for identified metabolites that lack enzymatic 

information [40]. This type of analysis gives us a better perspective on how metabolic changes detected 

in blood samples might be due to the overall systemic effect of tumour growth and helps us to identify 

the potential biochemical links between the metabolic changes in blood from lung cancer (Figure 4). 

The use of MetaMAPP graphs enable understanding which metabolic modules are more affected by a 

disease or a treatment than others [40]. For example, few hydroxyl acids were differentially regulated, 

which means that trichloroacetic (TCA) cycle metabolites in blood plasma did not reflect the disease 

status, whereas plasma lactic acid was significantly increased in ACD NSLC patients. A range of both 

proteinogenic (tryptophan, lysine, histidine, valine) and non-proteinogenic amino acids (N-methylalanine, 

trans-4-hydroxyproline, cis-4-hydroxyproline) were found at lower levels in cancer patients, reflecting 

the increased use of carbon skeletons of amino acids in tumor cells. Reduced levels of amino acids have 

also been observed in cancer cachexia showing greater protein turnover and metabolism in advanced 

stage disease [41].  

 

Figure 4. MetaMapp mapping of metabolomic analysis of lung cancer blood samples: a 

MetaMapp clustering metabolites based on biochemical reactant pairs in the KEGG RPAIR 

Database in addition to Tanimoto chemical structure similarity for identified metabolites that 

lack enzymatic information. 

Interestingly, the most prevalent changes were seen in fatty acid/lipid biosynthesis (Figure 4). Several 

fatty acids were found to be up-regulated, including the important building blocks palmitate, stearate 
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and palmitoate, but also precursors for complex lipids such as glycerol and ethanolamine. The general 

increase in lipid biosynthesis is well established in tumor metabolism but has not been linked to plasma 

levels before. Conversely, peroxidative lipid breakdown products such as the dicarboxylic acids adipate 

and azelaic acid appear to be lowered in lung cancer patients, which may be linked to signalling functions 

or may indicate a lowered use of oxidative pathways in lipid metabolism in tumors. All of these 

possibilities are presently speculative and the actual mechanisms would need to be confirmed in more 

extensive studies. 

2.4.3. Metabolomic Biomarker Potential for Lung Cancer Detection-Clinical Use  

PLS and LDA were used on each study to determine if cancer and control samples could be separated 

and predicted based on metabolic profiles with data adjusted for sex and age or not. Using leave-one-out 

cross validation (LOOCV) of the results, which were regressed for sex and age, identified two latent 

components in Study 1 that were found to have sensitivity and specificity of 66.7% and 60% respectively 

and in Study 2 with a sensitivity of 63.6% and specificity of 72.7% (Tables S3A,B and S4A,B). We 

conclude from these results that our studies were not sufficiently robust to enable satisfactory biomarker 

identification. Our results do show similar results between cases and controls from two groups of 

samples. These results provide additional evidence for the use of metabolomic analysis to identify lung 

cancer biomarkers and support what others have already reported. Our results also add to our growing 

knowledge of the systems biology of lung cancer through our pathway analysis. However, considerably 

better performance characteristics than what we obtained here will be needed for clinical use. High 

specificity of biomarkers (>90% and 95%) will be necessary to adequately reduce false positive rates in 

lung cancer. It might be more feasible to use metabolomic biomarkers in the clinic to help monitor 

treatment and for recurrence. Again it will be important to have good sensitivity for this clinical 

application. We would need performance characteristics more similar to what is now being measured 

with current miRNA studies [42]. We are already conducting better designed studies with larger sample 

sizes with the goal of identifying suitable lung cancer biomarkers using metabolomic analysis. It may 

also be necessary to have a combination of different biomarkers or even a metabolomic profile to provide 

sufficient performance characteristics for clinical utility. The next hurdle would then be how best to 

adapt such an analysis to the clinical laboratory. 

3. Experimental Section  

3.1. Patient Samples 

Pre-existing patient blood samples were acquired from the biorepositories of two institutions 

(FHCRC and UCDMC), all collected and stored at −80 °C before use in these metabolomics studies. 

Samples were received with all identifiers removed. Each institution supplied an equal number of cases 

and controls (20 cases and 20 controls from FHCRC and 11 cases and 11 controls from UCDMC). 

Samples acquired from FHCRC were referred to as Study 1 (or FHCRC) and samples acquired from 

UCDMC were referred to as Study 2 (or UCDMC). All samples were collected with informed consent 

and following IRB protocols approved by each Institution’s Institutional Review Board, intended for use 

only for research purposes. Collection and storage of clinical samples were conducted in accordance 
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with the Declaration of Helsinki with protocols approved by each institution (Gandara IRB protocol 

255991-3). Blood samples (plasma) in Study 1 (FHCRC study) were taken from newly diagnosed lung 

cancer patients with NSCLC adenocarcinoma (mostly late stage) and were frequency matched with for 

age, gender and for general smoking history (current and former smokers) (Table 1A). Controls for this 

study were blood samples collected from individuals who were cancer free and with no history of cancer 

and who were current or former smokers. Blood (plasma) was collected using EDTA tubes (fasting 

conditions unknown), processed into plasma using approved protocols and stored at −80 °C. 

The second set of blood samples (Study 2) came from patients diagnosed with lung cancers (different 

types) (11 cases) that were frequency matched (age and gender) with samples from individuals without 

cancer and with no history of cancer (11 controls). These samples were obtained from the UC Davis 

Cancer Center Biorepository (CCB) and the UC Davis Clinical laboratory at the UC Davis Medical 

Center (UCDMC)(Table 1B). Smoking history and treatment status were known for most of the cases 

in Study 2, but not known for some of the control group. Fasting status of patients and controls were 

unknown. All blood samples (plasma and serum) were prepared using standard clinical SOPs specified 

at each institution and stored at -80 °C until use. De-identified samples from each study were blinded 

and then subjected to metabolomic analysis as previously described [43–45] or described in the 

following methods section. 

3.2. Non-Targeted Metabolomics Analysis by ALEX-CIS-GC/TOF MS 

Samples were stored at −80 °C prior to analysis. Samples were thawed and 30 µL of each sample was 

extracted and derivatized, and metabolite levels were quantified by gas chromatography time-of-flight 

(GC-TOF) mass spectrometry as previously described (38). Briefly, a 30 µL sample was extracted with 

1 mL of degassed acetonitrile:isopropanol:water (3:3:2) at 20oC, centrifuged, the supernatant removed 

and solvents evaporated to dryness under reduced pressure. To remove membrane lipids and triglycerides, 

dried samples were reconstituted with acetonitrile/water (1:1), decanted and taken to dryness under 

reduced pressure. Internal standards, C8–C30 fatty acid methyl esters (FAMEs), were added to s 

amples and derivatized with methoxyamine hydrochloride in pyridine and subsequently by MSTFA  

(Sigma-Aldrich) for trimethylsilylation of acidic protons and analysed by GC-TOF mass spectrometry.  

An Agilent 6890 gas chromatograph (Santa Clara, CA) was used with a 30 m, 0.25 mm i.d. Rtx5Sil-MS 

column with 0.25 μm 5% diphenyldimethylsiloxane film.A Gerstel MPS2 automatic liner exchange 

system was used to inject 0.5 µL of sample at 50 °C (ramped to 250 °C) with 25 s splitless injection 

time. An Agilent 6890 gas chromatograph (Santa Clara, CA, USA) was used with a 30 m, 0.25 mm i.d. 

Rtx5Sil-MS column with 0.25 μm 5% diphenyldimethylsiloxane film. An additional 10 m integrated 

guard column was used (Restek, Bellefonte, PA, USA). Chromatography was performed at a constant 

flow of 1 ml/min, ramping the oven temperature from 50 °C to 330 °C with a 22 min total run time. 

Mass spectrometry was conducted by a Leco Pegasus IV time of flight mass spectrometer with a 280 °C 

transfer line temperature, electron ionization at −70 V and an ion source temperature of 250 °C. Mass 

spectra were acquired from m/z 85–500 at 20 spectra s-1 and 1750 V detector voltage. All samples were 

analyzed in one batch, throughout which data quality and instrument performance were monitored using 

quality control and reference plasma samples (National Institute of Standards and Technology, NIST). 
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3.3. Raw Data Processing and Chemometrics 

Acquired spectra were further processed using the BinBase database [25,46]. Raw data files from the 

GC-TOF mass spectrometer were processed using proprietary software provided by the instrument 

company (Leco, ChromaTOF software (v. 2.32)) for peak finding and mass spectral deconvolution. 

Result files were exported and filtered for consistency using the UC Davis Metabolomics BinBase 

database. All metabolite spectra in BinBase [25] were matched against the Fiehnlib mass spectral library 

of 1200 authentic metabolite spectra using retention index and mass spectrum information in addition to 

the NIST05 commercial library. All output files were stored in the miniX study design database system. 

Identified metabolites were named by biochemical names, KEGG, referenced to PubChem as 

authoritative NIH/NCBI database and InChI hash keys encoding the chemical structures (Table S3). 

Further details of the BinBase algorithm and spectral libraries are given in Scholz and Fiehn [46] and 

Kind et al. [25].  

3.4. Differential Analysis and Partial Least Squares Analysis  

Prior to statistical analyses, metabolite intensities were mean normalized and log2 transformed to 

meet underlying assumptions of normality with a constant variance and to reduce the dominant effect of 

extreme values. Differential analyses were conducted of each study (Study 1 and Study 2) to identify 

individual metabolites that differed between cancer and control subjects. For each study, a difference in 

mean intensity of each metabolite between cancer and control subjects was evaluated with an Analysis 

of Covariance (ANCOVA) which included gender and age as covariates. The significance of difference 

in each metabolite’s intensity by cancer statue was determined based on partial-F statistics using a 

parametric null distribution for each study. False discovery rates (FDRs) were calculated to account for 

multiple testing (Table S2).  

Partial least squares (PLS) regression and linear discriminant analysis (LDA) [24,47] were conducted 

on the metabolomic data to determine if cancer and control patients could be separated and thereby 

predict the sample classification based on global metabolomic profiles. PLS regression was performed 

to reduce the intensity measures of the total number of 437 peaks to a smaller number of latent 

components that explained most of the variation in the data. Leave-one-out cross validation (LOOCV) 

was used to determine the optimal number of latent components to use for the LDA for each study. 

Through LOOCV, the class membership of each excluded subject (cancer or control) was predicted with 

LDA using 1 through 10 latent components identified with the other subjects. For each number of latent 

components evaluated, the misclassification rate was calculated. The number of latent components 

yielding the lowest misclassification rate was considered optimal. 

Each study was analysed separately. We conducted the PLS-LDA for each study in two ways. 

Because gender and age could be confounding factors, in the first analysis we adjusted for these factors 

by using the residuals from a linear regression of metabolite intensities versus gender and age in the 

PLS-LDA. In the second analysis, metabolite intensities were not adjusted for age and gender. For all 

analyses, the misclassification rate, sensitivity and specificity of the PLS-LDA for 1 through 10 latent 

components were calculated through leave-one-out cross validation (Tables S3A,B and S4A,B). In 
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addition, R2, Q2, the percent variation in the metabolite intensities explained by the PLS regression were 

calculated. PLS and LDA analyses were conducted with the R package plsgenomics [48]. 

3.5. MetaMapp Mapping of Identified Compounds 

Molfile encoded chemical structures were retrieved from the PubChem database using PubChem 

identifiers of the identified metabolites. The structures were subjected to pairwise Tanimoto chemical 

similarity coefficient calculations using an online structure clustering tool available at PubChem website. 

For this analysis we relaxed the stringency of the statistical analysis of metabolites and included those 

with p < 0.1 to increase the number of metabolites that are potentially metabolically connected. This 

graph clusters metabolites based on biochemical reactant pairs in the KEGG RPAIR Database [38] in 

addition to Tanimoto chemical structure similarity for identified metabolites that lack enzymatic 

information [40]. The resulting similarity matrix was downloaded and used as an input for MetaMapp 

mapping software [40] at www.metamapp.fiehnlab.ucdavis.edu. A network graph of one-reaction steps 

for the metabolites that were annotated with KEGG identifiers was calculated using MetaMapp software. 

Generated network graphs were imported into Cytoscape and were visualized using organic layout 

algorithm. Results of ANOVA statistics were converted into a node-attributed file using an online tool 

available on the MetaMapp website. Directions of differential alterations were visualized as node color 

and fold-changes were visualized as node size. 

4. Conclusions  

We analysed blood samples from lung cancer cases and matched controls to determine whether 

metabolomic analysis of blood by GC-MS has the potential to be used to detect the presence of lung 

cancer. Similar metabolic differences were detected in two pilot studies. Generally, energy or 

carbohydrate metabolites (maltose, glycerol, lactic acid) increased, amino acids (tryptophan, lysine, 

histidine decreased and certain fatty acids (palmitic acid) increased in both studies.  

What is valuable about our studies is the overall finding that metabolomic analysis has the potential 

to distinguish blood samples of patients with lung cancer from those without cancer. This type of analysis 

has potential for clinical use to aid diagnosis, especially if it can help identify different types of lung 

cancer (NSCLC from SCLC or adenocarcinoma from squamous), which could impact the type of 

treatment. Furthermore if metabolomic biomarkers and a systems biology approach can be proven to 

have high specificity, this type of analysis/assay could possibly help reduce the high false positive rate 

for low-dose CT screening. Clinical use would require adaptation to the clinical laboratory, which we 

foresee would not be difficult since there are already mass spectrometers in clinical chemistry being used 

to analyse specific chemicals and drugs. Target assays for specific metabolites could be developed for 

the clinical laboratory and used for blood testing.  

These findings support the idea that metabolic changes measurable in blood samples are indications 

of early systemic metabolic consequences of lung cancer, which could potentially be useful in a clinical 

setting to enhance present diagnostic methods. In addition to aiding diagnosis of lung cancer, 

metabolomic and other types of biomarkers analysis (proteomics, glycomics, miRNA) could accompany 

present imaging methods such as low-dose CT scan screening to reduce its high false positive rate for 

malignant lung cancer if early metabolic changes related to progression of cancer can be detected in 
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blood samples. Further investigations into the use of metabolomic analyses of blood samples in much 

larger clinical studies are needed in order to adequate assess the clinical value of this type of analysis. 
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