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ABSTRACT

Current connectionist models are oversimplified in terms of the internal mechanisms of individual neurons and the communication
between them. Although connectionist models offer significant advantages in certain aspects, this oversimplification leads to the ineffi-
ciency of these models in addressing issues in explicit symbolic processing, which is proven to be essential to human intelligence. What we
are aiming at is a connectionist architecture which is capable of simple, [lexible representations of high level knowledge structures and effi-
cient performance of reasoning based on the data. We first propose a discrete neural network model which contains state variables for
each neuron in which a set of discrete states is explicitly specified instead of a continuous activation function. A technique is developed for
representing concepts in this network, which utilizes the connections to define the concepts and represents the concepts in both verbal and
compiled forms. The main advantage is that this scheme can handle variable bindings efficiently. A reasoning scheme is developed in the
discrete neural network model, which utilizes the inherent parallelism in a neural network model, performing all possible inference steps in
parallel, implementable in a fine-grained massively parallel computer.

1. INTRODUCTION

The advances in neurobiology and connectionist modeling provide a whole set of possibilities in
terms of implementing and extending Al ideas in conceptual representation and reasoning. Current
connectionist models are only crude approximations of the real neural network. They are oversimpli-
fied in terms of the internal mechanisms of individual neurons and the communication between neu-
rons. This oversimplification leads to the failure and/or inefficiency (at least as I have seen so far) of
the models in addressing issues such as modeling biological neural networks([Selverston 1987]),
representing high level data structures, rules, or concepts, developing inferential schemes, and
extending the application domain of the connectionist models to domains involving symbolic process-
ing (see [Pinker and Mehler 1988| for the necessity of explicit symbolic processing). What we are
alming at is a computational neural network model which is capable of simple, flexible representa-
tions of high level data structures and efficient performance of reasoning based on the data, i.e. an
Al architecture based on a neural network model, drawing ideas from biological mechanisms in real
neural networks.

Little progress has been made toward such an architecture. Among the few works that are
reported are [Touretzky and Hinden 1987, [Touretzky 1986], [Barnden 1988|, [Shastri and Feldman
1987], and [Smolensky 1987]. But in each of these schemes, parallelism is lost in some way, either
because of the matching process of harhwired rules or a centralized working memory. For example,
in [Touretzky and Hinton 1987], an elaborate pull-out network is designed to pick up a rule from a
rule network and to match the data (triples) in the working memory. Although the mechanism is
very elegant, it hinders the speed of reasoning by doing one match at a time. And it is possible to
travel deep down a wrong path. In [Barnden 1988] scheme, the rules are wired in symbolic forms
into a network in a grid form. Thus the problem is the symbolic manipulation necessary to match
the rule against data, which is a slow and complicated process in a connectionist model. Because of
that, only one rule can be matched at a time. The inherent parallelism is not fully utilized as a
result. In [Shastri and Feldman 1987], a mathematical formalism is developed, and a network archi-
tecture is designed to implement the formalism. Many different types of neurons are devised and
each has a special activation function specifically designed for that neuron. The scheme can handle
property inheritance in a conceptual hierarchy but not rule encoding and rule based reasoning.
Besides these, there are other shemes that employ different techniques for high level data or
knovirledge representation, for example, [Ballard 1986), [Fanty 1988], [Ackley 1987], and [Derthick
1988|.

916



SUN

2. THE DISCRETE MODEL

Our aim 1s to devise a model more general than conventional PDP models and capable of
explaining many intricate phenomena found in real neural networks. The generalization goes along
several dimensions: internal states, different synaptic outputs, and temporal response. The resulting
model can be used to attack several important problems in developing a reasoning scheme, i.e. rule
matching, variable binding, and certainty factor propagation. The model seems to be a reasonable
basis for an inference system and it is presented here as a first step towards a full fledged conceptual
representation and reasoning system.

Basically, a discrete neural model is a 2-tuple

W=<N, M>
where

N={<S, A, I, IF, T, C>}

S= the set of all the possible states of a neuron,

A= the set of all the actions to be taken by the neuron,
I=inputs,

[F'= input manipulation function: I --> T’,

T= State transition function: Sx I’ --> S,

C= action function: S x I’ —> 24,

and M is the connectivity among neurons in the set N.

In this model a set of discrete states is explicitly specified instead of a continuous activation
function. Hopefully this can capture more accurately the biological information processing mechan-
isms built into a real neuron. The idea came from the modeling study of lobster stomatogastric gan-
glion neural networks (see [Sun et al. 1988]). Evidence from physiological data observed by biologist
overwhelmingly points to a more powerful neural network model, which is capable of accounting for
more phenomena than conventional models. In a real neuron, unlike in conventional connectionist
models, there is no continuous input or output through synapses. Instead, an all-or-none action
potential is generated if the cell is depolarized to a certain degree, which in turn causes the release of
neurotransmitters. The input to the postsynaptic cell is dependent upon two factors: the type and
the amount of neurotransmitters released ([Kandel and Schwartz 1984] and [Edelman 1987]). This
powerful mechanism can not be captured by conventional neural network models. In a conventional
neural network model, the continuous output is meant to represent the frequency in which the action
potentials are generated, it is doubtful that the firing frequency is a primitive feature (not an emer-
gent feature that is caused by other more primitive activities) in the neuronal information processing
mechanism. On the contrary, we have shown in a simulation study [Sun et al 1988] that the firing
frequency, as well as phase relationship, is an emergent property of the network created by the com-
plex interaction of the components of the network, at least in lobster stomatogastric ganglions. The
proposed discrete model can easily capture the neural information processing mechanisms through
action functions and state transition functions by specifying a sequence of states to go through, and
specifying actions associated with each state, namely

s(t) =s(t-1) +1 mod n ,
C(t) =f(s(t),]1,12, ..., Ik) ,
where f is a predetermined function such as weighted sum or Goldman Equation.

This formalism can explain many intricate phenomena found in real neural networks such as phase
reponses, neuronal modulation and phasic relationship. These properties are important in terms of
the functional capability and versitility of a network, as seen in many different domains (e.g. [Rich-
mond & Optican 1987]).

Another issue is the importance of the membrane properties and, therefore, the endogenous fir-
ing of individual cells. According to our study [Sun et al 1988|, the dynamics and emergent proper-
ties of a neural network can mostly be attributed to two factors: the endogenous firing (determined
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by membrane properties of the cell, which could be affected by current inputs and the input history)
and the synaptic connectivity. Because of the physiological properties of the cell membrane, each
cell 1s capable of firing endogenuously even when 1t is insulated from any external influence. The
endogenous firings are important as a source of influences that help to shape the behavior of a net-
work. This fact is indicated in many biological papers (e.g. [Selverston and Moulin 1987)). However,
the importance of membrane properties and endogenous firings is overlooked in conventional connec-
tionist models, because of the highly approximate nature of these models. In the discrete neural
model, this feature can be captured by a state variable that represents the particular moment of
internal changes. The mechanism works this way: using the formula specified above, s(t) now deter-
mines a particular endogenous firing curve, for example,

Suppose the weighted sum model is used (see [Sun et al 1988]),
C(t) =f(s(t), 11, I2, .... ,Tk) = wO*E(s(t)) +w1*I1(t) +w2*I2(t) + ....... +wk*1k(t) ,
where E(s(t)) = sin(s(t)) .

Yet another issue is the different presynaptic actions performed by the same cell at differnet
sites of the axon. Different sites on the same axon can release different types of neurotransmitter
(thus cause different types of reactions in postsynaptic cells) or different amount of transmitters of
the same type. Some types of neurotransmitters may have long lasting effect, while others may act
instantaneously. Each can cause a different reaction in a postsynaptic cells. The "action"” taken by
an individual postsynaptic cell is determined mainly, but not exclusively, by the following factors: the
endogenuous properties of the cell, the type(s) and amount of transmitters it received, and the
current that is injected into it in case of electric synapsis. The issue of different postsynaptic actions
is not dealt with in conventional connectionist models either. In my model, the variaty in presynap-
tic actions can be modeled by A (the set of actions) and C (the action functions).

The equivalence property of this model to the more conventional models is studied. It is at
least capable of the same computational power as well as expressive power. Beyond that, it has the
advantage of generality and versatility. It is more general because it can accormodate the conven-
tional connectionist models as special cases as discussed below. It is also more versatile because, by
introducing state variables and a set of synaptic actions, the model can handle more elaborate pro-
cessing at neuronal level.

To see how my model simulates other connectionist models, look at various neural network
models. In general, neural network models can be classified into four classes:

continuous input/discrete activation models (e.g. linear threshold unit model),
discrete input/discrete activation models (e.g. Feldman and Ballard model),

continuous input/continuous activation models (e.g. McClelland and Rumelhart’s interactive
activation and competition model),

discrete input/continuous activation models (as another possibility).

All of them can be easily handled by my general formalism. To simulate a continuous input/discrete
activation neural model (suppose using a uniform activation function a), let a dicrete neural network

model be
<SALIF,T,C>
where

S={0,1},

A={do-nothing, output-1-to-all-postsynaptic-cells},

IF:Z‘”:'!‘J
T= the original acivation function a,
C= a table specifying which action in A to perform (see Figure 1).

This model can simulate the original model and produce the same output: 0 if '<<ths and 1 if
I’>=ths. The model will carry out the computation exactly as its conventioal counterparts.
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In case of simulating a continuous activation model, we will have to discretize the output, i.e. C
will be a table specifying a sequence of points sampled from the responce curve the neuron in the ori-
ginal model. If we sample enough points on the continuous output curve, we can approximate the
behavior of the original model closely enough for any practical purpose. For example, Figure 2
shows the approximation bf the model: output= potential+ J Jw;s;) .

We also looked at ways of implementing this model with a multilayer conventional PDP model.
The question is how to implement the state variable and the state transition function of a discrete
neuron. It has been shown that a three layer network could do the job: the hidden layer represents
the current state and each input/ouput value is explicitly represented by individual cells (cf.
[Servan-Schreiber 1988 and [Allen 1988]). See Figure 3. The output from the hidden layer is fedback
into the input layer to help decide, together with current inputs, which state to enter next.

There is one aspect of the model that may raise some questions. Usually in real neuron, one
synapse can only release a certain type of transmitters (or a certain group of transmitters). But in
my model each synaptic site can release different transimitters (i.e. different messages or synaptic
actions). How do we resolve this contradiction? This contradiction can be easily resolved by realiz-
ing the fact that we can implement this dicrete neural network model using only the type of neurons
in which each synaptic site can only release one type of transmitters, by adding a group of intermedi-
ate cells each of which represents a particular message and hook them together. See Figure 4.

The communication between cells can be viewed this way: each message sent is coded as (state,
strength), where state means output state or symbol. This can be implemented, in the same sense as
above, with the same kind of intermediate layer of units, connecting to source and target cells with
certain strengths. See Fig 5.

3. LOGICAL OPERATIONS

A number of researchers have cited logical operations as an important factor in determining
the adequency of a neural network model as a universal computational model ([Abu
1986|,[Rumelhart 1986] etc.).

The discrete model can handle all logical operations very efficiently because of the nature of
the state transition function and the action function. An AND operation of two inputs can be
modeled by the following state transition/action function (see Figure 6). The other operations such
as OR and NOT can be modeled exactly the same way.

Another advantage of the model is the ease with which we can model multiplicative connec-
tions. There is no need for an extra type of connections in the network. All of the connections can
be accormodated in the same general framework. Yet this framework is kept simple and directly
implementable.

4. DUALITY-CONNECTION ENCODING

A technique, called duality-connection encoding or DCE, has been developed for representing
concepts in a neural network of the type mentioned above, which utilizes the connections to define
the concepts and represents the concepts in both verbal and compiled forms. The main advantage is
that this scheme can handle variable binding efficiently.

The main dilemma of reasoning in connectionist models is at which level we should incorporate
symbols into the schemes. If we perform pure symbolic reasoning, the cost for representing symbols
and performing the reasoning is too high, such as in Barnden’s scheme (see [Barnden 1988]) or
Touretzsky&Hinton’s scheme (see [Touretzsky and Hinton 1985]) (even though it handles only a
much simplified case). But if we eliminate symbols from the scheme, it will not be suitable for per-
forming high level cognitive task. This model resolved this dilemma by introducing a dual coding
technique, That is, encoding a concept by using two cell assemblies: one for linguistic(symbolic)
representation and the other for non-linguistic representation suitable for reasoning and variable
binding. This scheme ensures the efficiency of reasoning processes. Coarse coding can be used here
to have the advantage of fault-tolerance. Another mechanism for fault tolerance is the replication of
identical units, which is particularly suitable in this model. This mechanism is found in some small
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neural circuits in crustacean stomatogastric systems ([Selverston 1986]).

A concept i1s encoded in the network by the connections it has to the other cells. Those uni-
directional connections help shape the concept as well as guide the reasoning. For example, Figure 7
shows how a concept is wired into a network.

In the reasoning assembly, there are k+1 cells: CF,c1,c2, .... ck. CF cell contains the cer-
tainty factors (or confidence, possibility, etc.) used in reasoning and connects to all other concepts
related to it. The other k cells take care of variable bindings for a maximun of k variables. The set
of states in the variable cell represents all possible bindings. The signal from CF cell tells the vari-
able cell which input to take. See Figure 8. The formulas used are summarized below (just one sim-
ple case as an example):

For CF, S(t) = f(CF(t-1), I1(t), 12(t), ..... Ik(t) ).

f here is a mapping to a value which encodes two things: the activation level and the activation
source. Because several other assemblies are connected to this one, { has to distinguish dif-
ferent sources by encoding it in its resulting value. CF(t-1) here is for keeping certain historical
contextual information and Is are outputs of other CF cells in other assemblies.

And for Ci, 1=1,2,...k, S(t) ={i( CF(t), I1(t), I2(t), ..... In(t) ).

f; here is a table specifying the state of C; at time t based on inputs at that moment from the
CF cell and ¢; cells in other assembly. CF(t) is actually an instruction to ¢;s , telling them
which input to take and make that input state its activation state.

The linguistic (symbolic) assembly of a concept representation records the verbal form of a con-
cept or a predicate which defines that concept. The information recorded can be recalled when the
concept 1s invoked in reasoning.

The representation scheme actually can handle two things: concept representation and predi-
cate representation. Predicate representation is a cell assembly containing one main connection cell
determining CF and a set of variable cells for variable binding as described above. On the other
hand, concept representation is a cluster (implemented with a cell assembly) with slots to be filled
just like variable binding. Each cluster is a frame like structure consisting several parts: a control cell
(CF) and a set of role cells. Cells in the latter two groups send signals to the control cell. Control
cell also receive signals from other cell assemblies(spreading activation). The conceptual hierarchy is
traversed based on spreading activation.

5. REASONING SCHEME

A reasoning scheme is developed in the discrete neural network model, which maximizes the
inherent parallelism in a neural network model and performs all possible inference steps in parallel.

One of the major drawbacks of conventional connectionist model is its inability in handling
deductive reasoning, 1.e. deriving conclusions from existing facts. The explicit deductive reasoning
(not intuition or subconscious reasoning) requires one to establish rules, store facts in working
memory, and use rules to deduce new facts. In real world, facts are usually known with certain
uncertainty. So a connectinoist inference engine has to take that into consideration too. Another
problem is variable binding. In order to avoid crosstalk betweeen rules, we have to have an efficient
mechanism for handling variable binding.

The basic architecture consists of three layers: input, processing and output, with additional
modules attachable to them, each of which can handle learning and pre- and post-processing
correspondingly.

The input information is processed in input layer and passed on to the processing layer. The
processing layer can have complicated internal structures. The information passed to each cell is
processed and propagated to all the post synaptic cells from each pre-synaptic cells. This scheme
guaranttees a high degree of parallelism.
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The calculus for dealing with uncertainty factor propagation was proposed in [Sun 1984, 1985].
The soundness and completeness under certain constraints were proven. It is capable of dealing with
certain types of default reasoning. For exampple, if C1(X) and C2(X) and C3(X) then A(X), where X
is the vector of variable bindings, can be coded as shown in Figure 8 in DCE. Cell A then combines
the evidences by doing CF=w* } ¥, . In case C3 is undetermined, based on partial information avail-
able, the system can still deduce A, with activation less strong than it would be if C3 is known. For
contradictory propositions, there can be inhibitory connections between each pair of them, with
strengths corresponding to the degrees of contradiction. When strict logical operations (AND, OR,
and NOT) are required in the reasoning, the method described in section 3 is applied to achieve the
desired effect. An interesting thing is that this scheme fits the 100 step rule well ( see [Feldman
1986]). Besides this formalism, it can also implement schemes proposed in [Zadeh 1983] or [Shastri
and Feldman 1987|.

ATTENTIONAL MECHANISMS There are two attentional mechanisms in the model: A-area,
the reasoning trace, and C-area, a mechanism for controlling the reasoning process directed by the
goal of the system.

We assume that the activation is calculated with J} ;i , where w=s;m+/ . Usually m; =0.

But when we want to concentrate on one area in the network (forming a C-area), the external inten-
tion control module can increase m; . s; is a predetermined value. So we might come up with results
that can not be deduced otherwise (because of strong inhibitions or high thresholds).

7. CONCLUSION

Putting these components together, it forms a coherent system with various features and
modules for various purposes. This discrete neural network model has the advantages of representa-
tional flexibility and expressive power with regard to high-level conceptual representation, and mas-
sive parallelism and real-time efficiency with regard to reasoning within this representational frame-
work. Further work is needed to specify more details of conceptual representations and various rule
codings. Several learning algorithms are currently under development.
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