
UC Irvine
ICS Technical Reports

Title
Initial thoughts on rapid prototyping techniques

Permalink
https://escholarship.org/uc/item/99m4z25m

Authors
Taylor, Tamara
Standish, Thomas A.

Publication Date
1981-02-07

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/99m4z25m
https://escholarship.org
http://www.cdlib.org/

J^nitial Thoughts on

Rapid Prototyping Techniques

Tamara Taylor

and

Thomas A. Standish

Irvine

Programming Environment Research Center

Technical Report 167

Computer Science Department

University of California

Irvine, California 92717

February 1, 1981

L-

_ library
•tJrtiversity o\ Californl^

I IRVINE
Co'S'n zL0|}!i)

met }i|6uAdoo Aq
P0j39iojd 0q Ablu

|BU0}B|/\1 S|m :0OI)O|\J

abstract

This paper sets some context, raises issues, and provides our
initial thinking on the characteristics of effective rapid prototyping
techniques.

After discussing the role rapid prototyping techniques can play
in the software lifecycle, the paper looks at possible technical
approaches including: heavily parameterized models, reusable
software, rapid prototyping languages, prefabrication techniques for
system generation, and reconfigurable test harnesses.

The paper concludes that a multi-faceted approach to rapid
prototyping techniques is needed if we are to address a broad range of
applications successfully no single technical approach suffices
for all potentially desirable applications.

Rapid Prototyping Techniques Page 1
Introduction

Introduction

When we are given a new computer system to build, we may find

ourselves facing one of several possible sets of circumstances:

(1) In the best of all worlds, the system requirements are

precisely stated, they reflect the true needs of the users, and it is

known how to implement the system using techniques in the current

state-of-the-art.

However, it is not always the case that things are as optimal

as they are in case (1). For instance:

(2) The requirements may be perfectly stated but it may not be

known how to build a system with the required properties. For

example, we may specify that we want to build a "world champion chess

program." We can state the requirements with complete precision, and

there can be no doubt about whether the true needs of the users

have been correctly and completely captured in the requirements

statement. The rules of chess and of chess tournaments are clear,

complete, and unambiguous. However, there does not exist the

knowledge of how to build such a system in the current

state-of-the-art in computer science. Here, we have a case where the

"ends" sought are perfectly well specified, but the "means" are

unknown.

Yet another case occurs when the "means" are adequate but the

"ends" are unclear. For instance:

Rapid Prototyping Techniques Page 2
Introduction

(3) The user may not really know what he needs and has no idea

of how his needs may change later. E.g.,"My office procedures are too

ad hoc. I need an office information system that will organize my

transactions and will allow me to make decisions more effectively." In

this case, there are enough computer science techniques available in

the current state-of-the-art to build office automation systems, but

the "ends" to be served are too vague.

So we see, in general, that the user may either not know what

he wants, or may describe what he wants in such vague unhelpful terms

that the system is not really specified, or he may specify what he

wants exactly, but computer science does not know how to build what he

wants.

In some of these cases, having a precise specification language

is of no help, since the user really doesn't know what statements to

make in such a language that is, he can't articulate his needs if

he doesn't know what they are regardless of whether or not there is a

precise language for stating them.

Under some of the above circumstances, what may be needed is a

learning process. System implementers may attempt to build a system

they think meets the true user needs on an experimental basis. Then,

they may attempt to expose the user to its behavior to allow the user

to experience what it can do and to learn whether he thinks it

satisfies his needs. Often, the user is able to articulate what he

likes and dislikes about an actual working system that gives him

concrete examples of behavior to judge, and often the chance to react

Rapid Prototyping Techniques Page 3
Introduction

to actual system behavior helps him to articulate statements of his

needs, especially if he was previously unable to do so.

Thus, exposure to working systems is often a helpful learning

method. Looking at a system design on paper may not be as effective

as direct exposure to the system behavior, since the user can often

understand the latter without technical training, whereas it takes

technical training to examine a design and to imagine what its

behavioral implications are.

If it is the case, then, that exposure to working system

behavior is a useful idea, we may wish to find ways of producing such

results rapidly and cheaply. This gives birth to the concept of rapid

prototyping. Rapid prototyping techniques are just techniques for

constructing working models of systems rapidly and cheaply. The aim

is to accelerate our learning process about whether a system design

meets user needs, and to do so as cheaply and rapidly as possible.

Here we can adopt the philosophy that, "Programs are like

waffles the first one should always be thrown away." We can

attempt to find ways of exchanging the increased power and capacity of

the new generation of computers to get compression and ease of

expression, since the latter is at a premium and the former may soon

be cheap to acquire.

Rapid prototyping may also have a role to play in helping to

improve software quality progressively during the software lifecycle.

Rapid Prototyping Techniques I Page 4
Introduction

During the software lifecycle it is usual to find activities

such as; (1) requirements analysis, (2) specification, (3) design,

(4) coding, (5) testing and integration, and (6) maintenance and

upgrade.

Because we live in an imperfect world, each of these activities

usually takes place in the context of imperfect predecessors. That

is, we live in a world where requirements are never likely to be

complete or accurate, designs are never likely to be correct, and

implementations are never likely to satisfy the requirements and

reflect the design intentions perfectly.

In such a world, we must resort to special measures in order to

improve quality progressively. This yields various quality assurance

disciplines such as design walkthroughs, independent validation,

thorough testing at pre-release time and so forth. Even maintenance

can be seen as an incremental activity that progressively improves

software quality by, for example, removing bugs and upgrading the

system to meet user needs better.

At a deeper level, we see that there are feedback loops between

the activities in the lifecycle that help us incrementally to improve

understanding and quality achieved at each stage. Thus, we may only

really begin to understand the true system requirements when we are

exposed to the behavior of an implementation. Cyclical exposure to

the behavior of the artifacts we build may be necessary to achieve

understanding of the true requirements, especially for a system we are

trying to construct for the first time.

Rapid Prototyping Techniques Page 5
Introduction

In this context, when we attempt to build systems with novel

capabilities, we often imperfectly understand the true user needs.

There is a learning process involved in articulating the true user

needs, which involves exposing the user to a working initial version

of the system and seeing if he is satisfied. Often, the user

discovers that the requirements he originally stated need to be

revised in light of the experience gained with a working model of the

system. Here again, exposure to a working version of the system

accelerates the learning process in which the user discovers and

articulates his true needs.

We often see circumstances in which the requirements statements

for a system get incrementally improved in just this fashion.

However, if the true requirements are not discovered and articulated

early enough in the software lifecycle there is often considerable

wasted activity downstream. Designs and implementations are sometimes

built to satisfy unstable requirements statements. As the

requirements shift, the designs and implementations must be redesigned

and reimplemented to track the changing requirements. This can be

highly wasteful of resources as modules and portions of the system

must be discarded and redone, and, perhaps worst of all, it is often

sociologically disastrous to the morale of the designers and

implementers who are forced to discard their previous work and are

made to feel that their accomplishments may have little permanent

value.

Rapid Prototyping Techniques Page 6
Introduction

It would be highly useful, therefore, to find some methodology

for learning about stable, accurate requirements as early as possible

in the lifecycle in order to prevent as much downstream waste as

possible and to prevent poor morale among project personnel due to

shifting requirements.

If a methodology for requirements validation were available

that involved static analysis of requirements statements and

verification that requirements were complete, accurate, not

over-constraining or under-constraining, and were truly reflective of

user needs, we could apply such a methodology at great savings.

However, no such satisfactory static analysis seems to have emerged

and to have been successful.

Another approach is to consider the possibility that

incremental learning via exposure to the behavior of working

prototypes is a methodology for which we already have existence

proofs, and to attempt to devise rapid prototyping techniques that

enable rapid, cheap construction of working system prototypes (without

much attention to efficiency or polish).

There are two more circumstances in which rapid prototyping

techniques are of potential value.

First, rapid prototyping has to do with quick response to

changing requirements after a system has been released as well as with

initial articulation of correct, complete requirements. There are

instances where the requirements for a system that we are perfectly

happy with may change in a matter of hours and may need to be upgraded

Rapid Prototyping Techniques Page 7
Introduction

in a matter of hours in response. For example, if we suddenly

discover that an electronic countermeasures device fails to protect

adequately against certain surface-to-air missiles, the viability of a

nation's air defenses may depend on reprogramming these devices

rapidly.

Second, in some branches of industry and government, it is not

uncommon that three to five years are spent building a system that may

be subsequently determined to be non-responsive to user needs, and the

system requirements analysis is iterated in succeeding procurement

cycles. In this case, exposure of the user to working versions of the

system still happens only it happens with very long cycle times in

the learning feedback loop. This is the second circumstance in which

a speed-up of the response time is important.

Thus, rapid prototyping has to do with more rapid effective

development of initial versions of the system as well as with quick

response to changing requirements in released systems during the

maintenance and upgrade portion of the lifecycle.

Often, if we relax the optimization constraints on a system, we

can build models at less expense than the expense of building the real

system. Thus, partial models of the system can function as moCk-ups

that yield samples of system behavior adequate to determine

responsiveness to user needs at a fraction of the cost of real

systems. In addition, in building a prototype, often one need not

model everything. Instead, one need only model things relevant to the

functionality of the system as viewed by the user.

Rapid Prototyping Techniques Page 8
Introduction

For example, the authors have built a model of an Automated

Flight Service Station Information System incorporating aircraft

weather and routing data to be used for pilots for preflight

briefings. The prototype did not have on-line weather data, nor did

it work for 4,000 terminals spread all over the continent, nor did it

have all the airways and navigational aids in it. Rather, it had

weather for one twelve hour period and airway and navigational aids

only for the northeast corridor. Further, it modeled only what the

user would do interacting at one terminal while getting weather, winds

aloft, and navaid data, and while calculating and filing a flight

plan. But it did model very accurately what the user could do at such

a terminal, and was built at a very small fraction of the cost of

building a real system (two man-weeks as opposed to who knows what?).

The database was resident in core rather than stored in large

file structures on secondary memory, and so forth. The prototype was

constructed in an extensible language and was used in a live demo at

the Federal Aviation Administration in Washington, B.C.

During the demo, it was evident that potential users of the

system could learn about whether the prototype satisfied their true

user needs i.e. the prototype was a fully effective means of

accelerating the learning process about the true system requirements

at a fraction of the cost of experimentation with real systems. We

cite this to illustrate our confidence that a basis already exists for

a workable technology of rapid prototyping.

Rapid Prototyping Techniques Page 9
Introduction

In the next section, we proceed to examine some possible

technical approaches to the development of a set of useful rapid

prototyping techniques.

Rapid Prototyping Techniques Page 10
Possible Technical Approaches

Technical Approaches

What are some good techical approaches to rapid prototyping?

Are there good general purpose techniques? In addition to such

general techniques, are there situations where we must have

well-adapted special purpose techniques in order to build prototypes

rapidly and cheaply?

Are there ways to trade processing power for ease of

construction? Can we devise good rapid prototyping languages that

give us a promising means for accomplishing this?

What specific method shall we use to expose the user to the

behavior of the prototype, and by what methodology can such exposure

result in improvement of the requirement statements? Can we get

traceability of the requirements and some specific methodology for

completeness of enumeration or coverage? For each prototype can we

automatically produce a test plan for running the prototype to check

out the requirements systematically?

Here are some possible technical approaches:

Heavily Parameterized Models

Sometimes we can have a family of systems that differ from each

other by variations in parameters or tables. For example, once we had

a computer graphics system that modeled a radar air-traffic control

system. The CRT displayed moving aircraft radar targets together with

attached data blocks on a background map of the airspace. The system

Rapid Prototyping Techniques Page 11
Possible Technical Approaches

incorporated laws for moving the airplane targets to simulate a

real-time radar air-traffic control system.

Then one day, some people from the St. Lawrence Seaway came by

and mentioned that they needed a system for controlling ship traffic

on the St. Lawrence Seaway. Could we give a demonstration of a

system concept for controlling ships?

We were able to substitute new display tables giving maps of

the seaway, new symbols for ships, and new equations for ship motion

starting with our air-traffic control system. In a matter of days, a

live demonstration of the Seaway control system was working. This

illustrates a technique for rapid-prototyping. It was only necessary

to view the air-traffic control system as an instance of a more

general system for moving "widgets". Once this view was adopted, it

was trivial to respecialize the system to move ships instead of

airplanes.

This yields the technique of rapid prototyping by

generalization and respecialization. In general, we may wish to have

heavily parameterized systems that can be specialized into particular

prototypes by supplying appropriate parameters, tables, and subroutine

packages.

Rapid Prototyping Techniques Page 12
Possible Technical Approaches

Reusable Software

One way to gain leverage in constructing working systems

rapidly is to make use of other people's work. The goal is to "Stand

on other people's shoulders, instead of stepping on their toes." By

this means, we may advance more rapidly.

We already use other people's work when we call subroutines

from a general subroutine library, or when we import packages of

utilities in some language that runs on our own machine. FORTRAN is a

frequently used medium for the exchange of programs since FORTRAN runs

on nearly every machine. We also make use of other people's work when

we implement algorithms drawn from the general computer science

literature. Why write your own binary search routine when, e.g.

Knuth, has done all the good thinking to get it right and to make it

efficient and when all you have to do is pay the cost of translation

into your own programming language?

In a more powerful sense, if we can agree on interface and

linkage conventions, it may be possible to have large libraries of

modules that can be conveniently assembled. This requires assembly

techniques and good languages, such as Ada, in which we can do

information hiding, clean interface specification, and independent

compilation. Perhaps Ada will give us the incentive to have large

libraries of reusable software giving us reliable pieces we can

assemble rapidly.

Rapid Prototyping Techniques Page 13
Possible Technical Approaches

The recent Irvine Ph.D. thesis of Jim Neighbors, Software

Construction Using Components, gives an approach to building systems

out of reusable software components [Neighbors 1980, UCI-ICS, TR160].

In this approach, reuse of software results only from reuse of

analysis, design, and code not just reuse of code. Sophisticated

program transformation techniques are part of the approach as are

careful specification of interfacing techniques for software

components.

Prefabrication and System Generation

If we have to build prototypes with special device types

included, such as special types of displays, we may need to have

prefabrication methods for programming the device types easily. For

example, if we have a two-dimensional incrementally updatable display,

we may want ways of programming the usual sort of graphical user

interface package that has capabilities such as windowing, clipping,

menuing, inking, latching, cut-and-paste editing, hand written

character recognition, and the like. It should be possible to define

tables giving the menuing choices, and to have lots of these

capabilities come in prefabricated form. There should be system

generators that take parameters and tables as inputs and which

generate a display interface according to the paradigm for the

particular device. This would hasten the job of generating a display

interface and would reduce the cost.

Rapid Prototyping Techniques Page 14
Possible Technical Approaches

Restricting Functionality

To expcfse a user to a sample of working behavior of a system,

often we do not have to model everything. Instead, we need model only

the functionality that the user will see.

In a previously mentioned example (that of the pilot's flight

service terminal), we needed only to model a single terminal (not

4000) , a small portion of the airspace (the northeast corridor, not

all of North America), and a single twelve hour period of weather (not

real-time, on-line weather). This enabled potential users to get the

feeling for how to use the system to request weather and winds aloft

data, how to file flight plans, and how to get "airline captain

quality" flight logs printed, without having to model everything.

Reconfigurable Test Harnesses

In some situations, such as testing satellites out on the

ground, or testing any sort of "embedded" computer system that has to

respond to sensor data in real-time, and that has to control devices

we may have to simulate the environment of operation to see how a

prototype behaves. This requires consideration of the properties of

the "test harness" and the simulation of events that the prototype

must respond to. It is not enough to have just a rapid prototyping

language. Here we need mature consideration of reconfigurable test

harnesses complete with event simulators and data collection

capabilities.

Rapid Prototyping Techniques Page 15
Possible Technical Approaches

Different embedded systems may need to be hooked up to

different real or simulated devices in such a test harness. For

example, we may want to attach real or simulated clocks, gyroscopes,

and accelerometers to the test harness in which the embedded system

prototype is being checked out. This requires us to have a technical

approach to being able to reconfigure the test harness rapidly

dropping and adding new peripherals using some cleanly specified

interfacing techniques. Simulation, data collection, and data

analysis capabilities clearly need to be included in order for such a

a system to be adequate to its task. (We are indebted to Dr. Stewart

I. Schlesinger of the Aerospace Corporation and to Dr. Larry Druffel

of the Defense Advanced Research Projects Agency for the origins of

these ideas).

Rapid Prototyping Languages

Rapid prototyping languages may give us a general technique we

can employ if our goal is to have a well-rounded set of rapid

prototyping techniques.

The following list of possible characteristics and features of

rapid prototyping languages represents an initial cut at our thinking

on desirable features: (We are indebted to Dr. David A. Fisher of

the Western Digital Corporation for some of these ideas.).

(1) Strongly extensible: (almost all of the following

suggestions and characteristics address and expand upon the meaning of

the phrase "strongly extensible").

Rapid Prototyping Techniques Page 16
Possible Technical Approaches

(2) Program text is data: can have program writing programs

and can execute programs that have been constructed as values.

(3) Has interpreter, and is highly interactive. Evaluator is

extensible and incrementally reprogrammable. Can overload evaluator

functions and can incrementally extend standard system functions for

printing, selection, assignment, equality, and the like. Explicit

control over the read-eval-print loop.

(4) Run-time environment accessible as data structure in the

language.

(5) Extended calling forms: self-replacing calls as well as

value returning calls. Command completion (or prompting with

automatic fill-in) of calling forms (e.g., hit "escape" button and

calling form fills in up to next point of ambiguity or next parameter

position). Postponed definition of meaning. Use of syntax macros and

program transformations to supply meaning and to show how to exchange

the new for the known.

(6) Remove explicit representational dependencies: When we

went from assembly language to high level languages we submerged

things critical to the implementation such as register allocation and

mappings between names and locations and we introduced application

oriented things such as arithmetic expressions. Can we do more of

this?

Rapid Prototyping Techniques Page 17
Possible Technical Approaches

(7) Concept minimization; remove different ways of saying the

same thing. E.g., T'FIRST, Array(Index), Function(Arg), and

Record.Component are all different ways of saying "the X of Y" in Ada.

(8) Boundary removal: example use conceptually unbounded

objects such as lota(infinity), infinite sets, or unbounded arrays.

Automatically allocate and use only that finite portion needed to

compute results.

(9) More abstract primitives: non-determinism, backtracking,

use of predicates in program forms (e.g., Gcd(x,y)= Max{d: d|x &

dly}).

(10) More powerful ways of defining things: In definitions, we

always show how to exchange the new for the known. Already in

extensible and ordinary programming languages, we have numerous ways

of doing this. Function definition and calling, introducing new data

definitions, introducing new operator definitions, and defining new

notations each illustrate this principle. If we can use new calling

forms and if we can introduce new ways of exchanging them for text

with assigned meaning, we can have a very powerful handle on

introducing compressed forms of expression of use in rapid

prototyping. E.g., we may replace Gcd(x,y)=Max{d: d|x & d|y} with

appropriate text in a programming language for computing the Gcd. The

capability of manipulating programs as data and of having program

writing programs opens up for us the possibility of powerful paradigms

of exchanging new forms of expression (using predicates, sets, and

other microworlds, for instance) with known executable program text.

Rapid Prototyping Techniques Page 18
Possible Technical Approaches

(11) Data Extension Features; (a) can add new type and new

operations on the type, (b) can give it all privileges of any

initially supplied type including, (c) extend printing routines to

print new type, (d) lexical recognition of literals of the new type,

(e) assignment of values of new type, (f) equality defined on new

type, (g) selection notation can perform selection on components of

new type, (h) information hiding of its internal representation

details, (i) extended appropriate new notation for operations on the

new type,

(12) Use of expressions that compute locations which can be

assigned values: E.g., (j_f x>0 then y else z end if) := 9.

(13) Extended control structures: tasking/rendevous,

real-time, exceptions, continuously evaluating expressions, monitors

and traps, interrupts and priorities, back-tracking, side-tracking.

(14) More user services: diagnostics, type checking,

information hiding and encapsulation, increased number of safe

transformations because there is more information in the language.

(15) More Powerful Concept of Types: Can we strengthen the

type system with a more powerful form of definition invocation and

recognition by attaching more advanced properties to objects, such as

"type T is the set of all even integers between 2 and 256 except 56."

Attribute attachment and textual substitution switched on attached

types. E.g., (x) is (y) ==> (y) is a (Boolean procedure) then

Y (x); elsif (y) is a (constant) then x=y; elsif (y) is a (set) then

(x) in (y) ; end if;, and so on.

Rapid Prototyping Techniques Page 19
Possible Technical Approaches

(16) Artificially Intelligent Transformations: Script based

programming, transforming plans of purposeful agents into programs.

Calculus of program derivation and synthesis. Use of special

micro-worlds such as sets, sequences, bags, heaps, trees, geometry,

relations, total orders, etc.

(17) Strong Program Transformations: program transformation

catalogue and semi-automatic system for chaining transformations (as

in Dennis Kibler's Ph.D. Thesis, UC Irvine).

Rapid Prototyping Techniques Page 20
Coupling Prototyping into the Lifecycle

Coupling Rapid Prototyping

into the Software Lifecycle

We have already mentioned that we need to have an explicit

feedback methodology for taking the results of a user's exposure to

the behavior of a working prototype and creating from them an

incremental update to the requirements statements. Thus, rapid

prototyping must feed back on the requirements. But can it also feed

forward into downstream lifecycle activities?

One possibility is to have a strategy for reworking the

prototype into a polished, production-engineered version of the

system.

Incremental Redevelopment

If we have identified a working prototype that provides a core

of functionality certified by the user to meet his perceived

requirements, we may wish to extend the core into a complete system

that displays the same core functionality.

Generally, there may be two sorts of incremental activities we

need to perform to transform an initial core system into a complete,

production-engineered final system:

(1) extending it functionally to a complete system by adding

functionality that the user didn't see, which wasn't in the prototype,

and which is needed to have a full operational capability, and

Rapid Prototyping Techniques Page 21
Coupling Prototyping into the Lifecycle

(2) altering or replacing inefficient pieces of the prototype

to yield required performance efficiency.

Activity (2) may involve rewriting the system in an efficient

systems programming language, using the program written in a rapid

prototyping language as a "design".

Activity (1) is inherently a system design activity that

requires knowledge of state-of-the-art system implementation

techniques drawn from parts of software engineering independent of

rapid prototyping and of known effectiveness in current practice.

We need to get some experience with some techniques for

incremental redevelopment of a prototype to see what sorts of

additional effort are required to rework prototypes into final

systems. What are the ratios of effort involved to develop the

prototype versus the effort involved to transform the prototype into a

final system? What sorts of incremental activities are required

during reworking, and how can they be scheduled and managed?

Feeding Design

Prototypes may perhaps best be used in some settings by not

attempting to rework them into final systems, but rather by having

them serve as an additional source of precise behavioral specification

used as an input to a system design. In effect, they may serve as

programs written in a program design language that are core designs

for the larger system design. In this case, we do not care so much

Rapid Prototyping Techniques Page 22
Coupling Prototyping into the Lifecycle

about running efficiency as we do about clarity of conceptual

structure and extensibility to complete system designs.

Are there any incremental techniques for expanding a core

design written in a program design language into a complete system

design? Can the features of a good rapid prototyping language serve

double duty by providing an attractive basis for program design

languages as well? Could programs written in a rapid prototyping

language be used directly as core designs for downstream design

completion? Could we devise a new "inside-out" software design

methodology based on such an approach?

Coupling with Requirements

Review and Testing

It would be useful to have some systematic method for

conducting a review of the system requirements that is closely

coordinated with systematic examination of the behavior of a

prototype. The reason this is important is that we are trying to use

prototypes to check out whether the requirements are adequate, and we

need some systematic way of performing this task, especially in cases

where the requirements are lengthy or complex.

To get samples of the behavior of the prototype, we need to

conduct a series of tests. Then we need to examine the behavior of

the prototype revealed by the tests to see if that behavior meets the

items of the requirements that it is supposed to satisfy.

Rapid Prototyping Techniques Page 23
Coupling Prototyping into the Lifecycle

Thus, we have a case where testing (which is used to extract

behaviors) needs to be coupled with requirements review (which checks

whether the elicited behaviors satisfy the relevant pieces of the

requirements). Systematic traceability of the requirements to the

tests that elicit the behaviors that are supposed to satisfy them

seems to be called for.

While we have no particular ideas or approach to offer on this

subject, we want to flag the issue and to suggest that it is important

that it be addressed in the future in connection with rapid

prototyping methodologies.

Rapid Prototyping Techniques Page 24
Limits of Prototyping

Limits of Prototyping

Up until this point in the discussion we have extolled

prototyping, but what are the limits on what we should expect?

What do we not easily learn from prototypes? Here are some

possibilties (kindly contributed by R. Kling):

(1) What it is like to live with the system for a while.

(2) How easy a real system will be to alter.

(3) How a system will behave when it is pushed to the extremes of

performance (e.g., heavily loaded, various buffers nearly

exhausted, displays saturated with data, etc.).

(4) How a system will interact with other elements in the software

environment or related systems with which it should easily

share data.

In general, there can be many different prototypes of a given

target system. Each is like a selective shadow, highlighting some

features and losing details of others. To the extent that rapidly

developed prototypes systematically distort since (a) they're designed

to be plastic, (b) they're designed to be small, and (c) their

interactions with other software will differ (by being more flexible

and less easily interfaced, in some cases) rapid prototyping can lead

users to misperceive what the target system may actually be like.

Rapid Prototyping Techniques Page 25
Limits of Prototyping

Thus, rapid prototyping may well be like democracy flawed,

but far better than the available alternatives.

Rapid Prototyping Techniques Page 26
Conclusions

Conclusions

It is reasonable to conclude from our discussion that no single

technical approach to rapid prototyping techniques can serve as a

panacea universally applicable in all settings and fully

sufficient to make prototyping cheap and rapid.

Rather, in some settings, such as the "test harness" setting

for real-time, embedded systems, and the advanced two-dimensional,

incrementally updatable display setting, we may need to take advantage

of specially adapted rapid prototyping techniques, such as strongly

paraiaeterized system generation, reusable software, or easily

reconfigurable test apparatuses coupled with event simulators and data

collectors.

Thus, the existence of rapid prototyping languages alone as a

general purpose technique won't provide rapid, cheap construction of

prototypes in all settings, even though they may considerably enhance

prototyping in many general settings and even though they may feed

downstream software lifecycle activities effectively.

This points to the conclusion that we must have a multi-faceted

technical approach to rapid prototyping if we are to address a broad

range of prototyping applications successfully.

