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Abstract

We propose a computational model of the impact of labels on
visual categorisation. The proposed model is based on self-
organising maps. The model successfully reproduces the ex-
periments demonstrating the impact of labelling on infant cat-
egorisation reported in Plunkett, Hu, and Cohen (2008). Two
architectures are explored. Both mimic infant behaviour in
both the familiarisation and testing phases of the procedure,
using a training regime which involves only single presenta-
tions of each stimulus. The model reproduced these results
in the absence of a explicit teaching signal and predicts that
the observed behaviour in infants is due to a transient form
of learning that might lead to the emergence of hierarchically
organised categorical structure.

Keywords: self-organising maps, connectionist modeling,
categorisation, lexical development.

Introduction

We present a computational investigation of the role of lan-
guage on visual categorisation. Our model reproduces recent
findings by Plunkett et al. (2008) that show that labels have
an impact on the way in which visual stimuli are categorised.
In a series of five experiments, Plunkett et al. (2008) demon-
strate that the manner in which 10-month-old infants perceive
the visual similarity of objects depends upon whether infants
are familiarised with the objects in the presence or absence of
labels, and upon the labelling contingencies during familiari-
sation, i.e., how the labels correlate with category member-
ship.

The model provides a mechanistic account of this dramatic
effect of labels on infant visual categorisation. It is based
on self-organising maps, proposed by Kohonen (1997) as a
biologically plausible alternative to error-driven algorithms,
such as back-propagation. In the ‘familiarisation phase’ of
their experiments, Plunkett et al. (2008) presented infants
with a set of eight line drawings, accompanied by novel words
in some conditions. Similarly, in our simulation, neural net-
works are familiarised with a set of eight inputs that encode
the stimuli presented to the infants. In contrast to previously
proposed connectionist models, and similarly to infants, each
of the stimuli is presented to the network only once. After
the familiarisation phase is complete, infants are tested with
new drawings, presented without labels. Following the well-
established novelty preference procedure, infant categorisa-
tion of the stimuli in the familiarisation phase is assessed
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by measuring their looking time at the different test draw-
ings. Similarly, network categorisation is assessed by mea-
suring its ‘quantisation error’ when presented with new test
stimuli that only contain a visual component. If we consider
the error as the analogue of the looking time in infants, fol-
lowing Mareschal and French (2000) and Westermann and
Marechal (2004), we find that our model reproduces infant
behaviour during testing. Furthermore, there is a correspon-
dence between infant behaviour and the model’s during the
familiarisation phase: to a large extent infant looking time
and network error rate during familiarisation follow the same
trend. We argue that this match contributes to the psycholog-
ical plausibility of our model.

The model comes in two variants: one variant is very sim-
ple and only contains a single self-organising map, whereas
the second variant is more complex and contains three self-
organising maps, namely a visual, an acoustic and a global
map. The two variants replicate all five experiments reported
in Plunkett et al. (2008).

The Role of Labels on Infant Categorisation

According to Plunkett et al. (2008), labels have a strong im-
pact on how infants form categories. In two experiments,
they replicate some results of Younger (1985) on visual cat-
egorisation, in which labels are not presented. During a fa-
miliarisation phase, 10-months old infants are exposed to a
set of 8 visual stimuli. These stimuli are cartoon drawings
of animal-like objects defined along four dimensions, corre-
sponding to the length of the neck and legs, to the ears’ ori-
entation and the size of the tail. Under the so-called ‘Broad
Condition’ (used in Exp. 1) infants are exposed to cartoons
whose feature-values freely vary, and which can be organ-
ised in a single large cluster centered on a prototype. Under
the so-called ‘Narrow Condition’ (used in Exp. 2), infants are
shown cartoons which are variants of two prototypes and that
can be grouped in two distinct clusters. In other words, un-
der the Broad Condition, the drawings invite infants to form
a single category, whereas under the Narrow Condition they
invite them to form two distinct categories. Images from the
two conditions are shown in Figure 1.

Once the familiarisation phase is complete, category for-
mation is assessed by measuring the looking time of infants
when tested with two different kinds of cartoon drawings: the
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Figure 1: Cartoons shown to infants during familiarisation.
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‘average’ drawing (the central tendency of all the drawings
presented during familiarisation ) and a ‘modal’ drawing (at
the edges of the drawings presented during familiarisation,
and close to one of the two prototypes used in the Narrow
Condition). Following the well-established novelty prefer-
ence procedure, looking time is taken to be a measure of in-
fant surprise at the new stimuli. If infants look longer at a
modal cartoon than at the average one, this is taken as a sign
that they have formed a single category for all cartoons; in
contrast, if they look longer at the average stimuli than at the
modal ones, this is taken as a sign that they have formed two
distinct categories. Results show that when familiarised with
the Broad Condition, infants form a single category contain-
ing all the stimuli, whereas when familiarised with the Nar-
row Condition, they form two distinct categories.

In order to assess the impact of labels on categorisation,
Plunkett et al. (2008) consider whether labels affect the cat-
egorisation of the visual stimuli, as described in the first two
experiments. To this end, three more experiments are con-
ducted. In all three experiments, infants are exposed to the
same visual stimuli as those used in Exp. 2, namely the vi-
sual stimuli from the Narrow Condition. In contrast with
Exp. 2, the visual stimuli are accompanied by acoustic labels.
In Exp. 3, two labels are presented, one for each visual cate-
gory; in Exp. 4 two labels are presented, randomly associated
with the visual stimuli; in Exp. 5 a single label is presented
with all the images. As for Exps. 1 & 2, category formation
is assessed by measuring the looking time of infants when
tested with modal and average stimuli in silence.

As with Exp. 2, in Exp. 3 infants formed two categories,
demonstrating that labels do not interfere with visual cat-
egorisation, when they are correlated with the visual cate-
gories. In Exp. 4 however, in which labels are not correlated
with the visual categories, no category is formed, as indexed
by a lack of preference for either the modal or average stim-
uli. This experiment indicates that a decorrelation between
labels and visual inputs has a disruptive effect on the process
of category formation. Finally, in Exp. 5 one single category
is formed, as indexed by a preference for the modal stimuli
during testing — an analogous result to Exp. 1. This result
emphasises the importance of labels in category formation:
in this case, a single label alters the manner in which visual
stimuli are categorised. Indeed, the same visual stimuli with-
out labels lead infants to form two categories (as in Exp. 2),
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whereas when accompanied with a single label they give rise
to a single category. Each experiment was carried out with
24 infants. The average ratio between looking time at the av-
erage stimulus and looking time at one of the modal stimuli
throughout the experiments is reported in Table 1 .

Exp. || LT average:modal | ratio LT average/total (SD) |

I 2.675:3.355 442 % (9.6)
2 3.43s:2.72s 56.1 % (11.8)
3 2.30s:1.90s 55.1 % (9.8)
4 2.14s:2.04s 50.3 % (12.2)
5 1.88s:2.14s 45.8 % (1.7)

Table 1: Infant looking time during testing.

Related Work

To the best of our knowledge, there are no previous com-
putational models of the dramatic effect of labels on visual
categorisation described by Plunkett et al. (2008). Plunkett,
Sinha, Mgller, and Strandsby (1992), and Mirolli and Parisi
(2005) hypothesize that language might accelerate the clus-
tering of visual images and improve the quality of visual cat-
egorisation. This hypothesis is much weaker than the hypoth-
esis we are considering here. Furthermore, these earlier mod-
els are based on traditional backpropagation networks, which
are widely recognised as biologically implausible (e.g. Crick,
1989). The same drawback applies to Mareschal and French
(2000) and Westermann and Marechal (2004) who described
successful simulations of the Younger (1985) experiments re-
ported by Plunkett et al. (2008).

More biologically inspired models have been proposed to
simulate aspects of infant linguistic development different
from those we are dealing with here. For instance, Li, Zhao,
and Whinney (2007) propose a model to account for various
phenomena connected to early vocabulary acquisition, such
as the vocabulary spurt, frequency and length effects; Mayor
and Plunkett (2008) model the generalisation of word-object
associations from a single labelling event (taxonomic con-
straint); Miikkulainen (1997) accounts for category-specific
impairments in language.

Our Model
Encoding of the Stimuli

For the purposes of our simulations, we have encoded the vi-
sual and acoustic stimuli by means of value vectors. For both
kinds of stimuli, we have used input vectors with four di-
mensions (e.g. [0.27,1,0.8,0.33]). Following Mareschal and
French (2000), in the case of visual stimuli each value in the
input vector corresponds to one feature in the cartoons pre-
sented to infants. In the Narrow Condition, the visual map re-
ceives input vectors that can naturally be divided into two cat-
egories. This parallels infants natural clustering into two cate-
gories of the images in the Narrow Condition, as described in
Plunkett et al. (2008). In contrast, in the Broad Condition, the

I Testing time in Exps. 1 & 2 is 10 sec. In Exps. 3-5, the testing
time is 6 sec (see Plunkett et al., 2008)



visual map receives input vectors whose values freely vary.
For the acoustic stimuli, each label is represented by a vector
of dimension four (e.g. [0,0,0.7,0.7]). As with the infants,
we have assessed the performance of the two architectures by
measuring their response to the average and modal test stim-
uli. The measured response is a function of the quantisation
error that we will define in the next section.

Network Architectures

We propose two neural network architectures that replicate
the five experiments described in Plunkett et al. (2008). The
two architectures use self-organising maps. They differ from
each other in the number of maps involved. The first archi-
tecture can be seen as a more abstract implementation of the
second. The first architecture contains a single map that re-
ceives both the visual and the acoustic stimuli. The second
architecture contains three maps: a visual, an acoustic and a
global map. The single map architecture implements the pro-
posal that the auditory stimulus acts as a tag for the visual
stimulus since it functions as a additional element to the vi-
sual feature vector. The three-map architecture permits some
pre-processing of auditory and visual information before they
are combined, implementing the idea that auditory and visual
stimuli can stand in a more abstract relationship to each other.

Self-Organising Maps Self-organising maps consist of a
set of units, spatially organised in regular grids. During the
training phase, each map is presented with a set of input vec-
tors that it learns to categorise. To each map unit u is as-
sociated a weight vector W, of the same dimension as the
input vectors. The i-th element of the weight vector W, rep-
resents the weight connecting unit u to the i-th element of
input vectors. The weight vectors are initialised to small ran-
dom values. The learning algorithm behaves as follows: the
input vectors are presented to the network in random order.
After each presentation of a vector, its best matching unit is
identified. This is the unit whose weight vector is closest to
the input vector itself (in Euclidean distance). Next, the best
matching unit’s weights and the weights of its neighbouring
units are adjusted towards the input vector, according to the
equation:

Wolt +1) = Wt) +(u,1)a() (1) - W(1)) (D)
where W, (t 4+ 1) and W, (z) are the weight vectors associated
to unit u at time 7 + 1 and ¢ respectively, s(u,7) is the neigh-
bourhood function associated with u at time 7, a(t) is the
learning rate at time ¢, and I(¢) is the input vector presented
to the network at time . When u is the best matching unit for
(1), we call the difference ||I(¢) — W, (z)|| the ‘quantisation
error’ of the network with respect to I(¢) (and we denote this
error by Q,(¢)). In general, the value of the neighbourhood
function shrinks over time, and the learning rate lowers over
time. Commonly, for a self-organising map to learn to cate-
gorise a set of inputs, the inputs need to be presented to the
network more than once. This does not seem very psycholog-

ically plausible. We will see that our model is an exception:
each input needs to be presented only once to the network.
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The Specificity of our Model According to Eq. 1, the
weight update depends on the neighbourhood function and
on the learning rate. In our case, the neighbourhood function
entails that only the weights of the best matching unit are up-
dated during the learning phase (whereas the weights of the
neighbouring units remain unchanged). This is a simplifica-
tion of our model that will be abandoned in future work.

The learning rate function is the most original part of the
model. In contrast to the commonly adopted learning rate
function, our function does not depend on time. Instead, it
depends on the quantisation error, that is the Euclidean dis-
tance between the weight vector being updated and the input
vector that produces this update: the higher the distance the
higher the learning rate, the lower the distance the lower the
learning rate. That the learning rate function depends on the
quantisation error can be related to attention. The fact that the
learning rate is higher when the input stimulus is new (and its
quantisation error presumably high) could correspond to the
observed phenomenon that infant attention is higher when ex-
posed to novel stimuli. Furthermore, our learning rate is in-
versely proportional to the dimensionality of the input vec-
tors. The fact that the learning rate is inversely proportional
to the dimensionality of the input vectors derives from the fact
that the same Euclidean distance is more significant for vec-
tors with lower dimensionality than for vectors with higher
dimensionality. From a cognitive point of view, this could re-
flect the fact that the increased cognitive load makes the input
distances less significant: infants might be more sensitive to
punctual distances when they have less information to pro-
cess than when they have more. More precisely, our learning
rate function is of the form a(r) = 0eP%"), where B is a scal-
ing factor associated to each map, and o scales the learning
rate according to the input dimensionality (o = 0.4/ input di-
mensionality).

A final difference to the standard self-organising map ar-
chitectures is that the model requires inputs to be presented
to the network only once. We believe this contributes to the
psychological plausibility of the model as this is the schedule
in which the input stimuli are presented to infants in the five
experiments that the model attempts to reproduce.

Network Architectures We propose two alternative archi-
tectures based on self-organising maps.

One-Map Architecture. This architecture consists of a sin-
gle self-organising map, with 9 units, organised in a rectan-
gular grid. To each unit is associated a weight vector of di-
mension eight, which is the length of the vectors that can be
received as inputs by the map. The first four values of the
weight vectors are weights to the visual inputs, the last four
values are weights to the acoustic inputs. The weight vectors
associated to each unit of the map are initialised to small ran-
dom values. These values are uniformly distributed between
the maximal and minimal values of the corresponding com-
ponents of the input vectors, scaled by a factor of 0.3. The



neighbourhood function entails that only the best matching
unit is affected by the learning algorithm. The inputs are pre-
sented to the network once, in random order. Weight update
is performed by using the update rule described in Eq. 1, with
the learning function a(r) that is a function of the quantisation
error, as described above, with f = 2.3.

Three-Map Architecture. In this architecture, we have three
9-unit maps: a visual, an acoustic, and a global map. The
three sets of initial weight vectors are initialised as for the
one-map architecture. The visual map receives as input the
visual stimuli, whereas the acoustic map receives as input the
acoustic stimuli. The global map receives as input the activity
of the visual and acoustic maps in response to their respective
input stimuli, where a map’s activity is the collection of the
activities of each unit, and a unit’s activity is inversely pro-
portional to the quantisation error (e=2()). For the visual
and acoustic maps the learning rate function is the same as
for the one-map architecture. In the case of the global map
the learning rate function parameter 3 is 3.5.

Results

In order to replicate the five experiments reported in Plun-
kett et al. (2008), we trained both architectures (one-map and
three-maps) by presenting once, in random order, the relevant
input stimuli. For Exps. 3 & 5 that deal with acoustic as well
as visual stimuli, we consider the whole architecture. In con-
trast, for Exps. 1 & 2, in which only the visual stimuli are
relevant, we consider only the visual portion of the two archi-
tectures. In the one-map architecture, this is done by ignoring
the weights connecting the global map to the acoustic stim-
uli. In the three-maps architecture, this is done by considering
only the visual map.

We then assess the categorisation of the stimuli performed
by the networks. Following Mareschal and French (2000)
and Westermann and Marechal (2004) we adopt the network
error as an analogue of looking time in infants. In our con-
text, the error that we consider as analogous to infant looking
time is the quantisation error. More precisely, we define the
‘Network Looking Time’ (NLT) as a monotonic function of
its quantisation error (NLT = 3Q8'2). We assume that if the
network looking time corresponding to modal visual stimuli
is systematically higher than the network looking time cor-
responding to the average visual stimulus, then the network
exhibits a novelty preference for the modal stimuli and has,
therefore, formed a single category. In contrast, if the network
looking time corresponding to the average stimulus is system-
atically higher than the one corresponding to the modal stim-
uli, we will conclude that the network has formed two distinct
categories. Since the test stimuli involve only visual stimuli,
the acoustic pathways in the network are ignored during test-
ing. All results refer to the performance of 24 networks per
experiment. In the following, we catalogue the results for the
five experiments. For each experiment, we consider the two
architectures together. Table 2 summarises the one and three-
map performance across the five experiments.
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Experiment 1. We trained and tested the visual portion of
24 networks with the visual stimuli from the Broad Condi-
tion. Once the training phase was complete (8 cycles), we
measured the network looking time for the average test stim-
ulus and the average network looking time for the two modal
test stimuli and computed their ratio. For both architectures,
the results are shown in Table 2. In both cases, the network
looking time for modal stimuli is higher than for the average
test stimulus, thus indicating that the networks have formed a
single category. This corresponds to infant behaviour in the
Broad Condition, as reported in Table 1.

Experiment 2. Analogously to Exp. 1, networks were
trained and tested using visual stimuli from the Narrow Con-
dition. Results are shown in Table 2. In both cases, the net-
work looking time for the average test stimulus is higher than
for the modal test stimuli, thus indicating that the networks
have formed two distinct categories. This corresponds to in-
fant behaviour in the Narrow Condition .

Experiment 3. Networks were trained and tested with pairs
of visual and acoustic stimuli (labels) in which a distinct la-
bel is associated with each visual category. In the one-map
architecture, both the visual and the acoustic stimuli were si-
multaneously presented to the network. In the three-maps ar-
chitecture, the visual and acoustic stimuli were first presented
to the visual and acoustic maps, respectively. The acoustic
and visual map activation was recorded and sent to the global
map. Once the familiarisation phase was complete, the global
map’s performance was assessed by measuring the network
looking time corresponding to the modal and average stimuli.
In both architectures, the acoustic part of the networks was
ignored during testing. Results are shown in Table 2. In both
the one and three-map architectures, the network looking time
for the average test stimulus is higher than for the modal test
stimuli, thus indicating that the networks have formed two
distinct categories. This result replicates the findings with in-
fants that visual categorisation is not affected by the presence
of labels, as long as these are correlated to the visual stimuli
(Exp. 3 of Plunkett et al., 2008).

Experiment 4. We trained and tested the 24 networks as in
Exp. 3, with the difference that labels were pseudo-randomly
associated to visual stimuli (two visual stimuli from the same
category were associated with the same label, the other two
were associated with a different label). For both architec-
tures, results are shown in Table 2. In both cases, there is no
significant preference for the test stimuli, thus indicating that
no category has been formed. Hence, labels can disrupt cat-
egory formation when decorrelated with visual inputs. This
corresponds to infant behaviour in Exp. 4 of Plunkett et al.
(2008).

Experiment 5. Similarly to Exps. 3 & 4, we trained and
tested the networks, this time with a single label consistent
with all visual stimuli. The results reported in Table 2 show
that in contrast to Exps. 3 & 4, the error corresponding to
the modal stimuli is significantly higher than the error for the
average stimulus, indicating that the map has formed a single



Experiment “ Expl [ Exp2 [ Exp3 [ Exp4 [ Exp5
I-map

LT average:modal 2.67:3.00 2.64:2.16 2.64:2.22 2.49:2.28 2.10:2.76
ratio LT (SD) 47.4% (1.5) 55.0% (0.5) | 54.0% (0.65) | 52% (6.3) 43.9% (5.2)
t-test (2-tailed) t(23)=-10.56 | t(23)=50.07 t(23)=31.64 t(23)=1.55 t(23)=-6.67
p-value < 0.0001 < 0.0001 < 0.0001 0.14 < 0.0001
3-maps

LT average:modal 2.55:2.94 2.64:2.34 2.61:2.07 2.40:2.25 2.19:2.52
ratio LT (SD) 46.6% (0.35) | 53.0% (0.11) | 56.0% (0.8) | 51.7% (4.7) | 46.5% (0.65)
t-test (2-tailed) t(23)=-52.16 | t(23)=126.74 | t(23)=40.35 t(23)=1.71 | t(23)=-26.51
p-value < 0.0001 < 0.0001 < 0.0001 0.10 < 0.0001

Table 2: Network Looking Time during Testing

category. Hence, the labels have changed the way in which
the visual stimuli would otherwise have been categorised in
the absence of labels. Indeed, the same stimuli without labels
gave rise to two distinct categories, as shown by Exp. 2. This
corresponds to the results obtained with infants in Exp. 5 of
Plunkett et al. (2008).

Behaviour during the Training Phase Plunkett et al.
(2008) report infant looking time during the familiarisation
phase. These findings show that infant looking time during
the familiarisation phase is higher in Exp. 1 than in Exp. 2,
and it is higher in Exps. 3-5 than in Exp. 2 (see Table 3).

|| Infants | 1-map | 3-maps |
Experiment I || 5.81 (1.56) | 6.53 (0.19) | 6.53 (0.23)
Experiment 2 || 4.34 (1.79) | 5.83 (0.02) | 6.07 (0.02)
Experiment 3 || 7.30 (1.74) | 6.07 (0.02) | 5.53 (0.37)
Experiment 4 || 7.44 (1.31) | 6.51 (0.47) | 6.23 (0.28)
Experiemnt 5 || 7.39 (1.23) | 6.93 (0.30) | 6.58 (0.33)

Table 3: Infant and network looking time during familiarisa-
tion.

To a great extent, the network looking time during famil-
iarisation in our model follows the same pattern as infant
looking time. Table 3 shows that for both architectures the
network looking time during training is significantly higher in
Exp. I thanitisin Exp. 2 (p’s < 0.0001). When we compare
infant looking time and network looking time in the familiari-
sation phase of Exp. 2 versus Exps. 3-5, we see that infant
looking pattern is fully matched by the one-map architecture.
Indeed, in the one map-architecture the network looking time
during training is systematically higher in Exps. 3-5 than it
is in Exp. 2 (p’s < 0.0001). This does not hold in the three-
maps architecture.

The difference in looking time across the experiments in
infants and in networks can be explained in a similar man-
ner. Both in infants and in networks, the difference between
Exps. 1 & 2 can be explained with the different average dis-
tance among the stimuli presented in the two experiments:
this distance is usually higher in Exp. 1 than it is in Exp. 2.
In contrast, the difference in looking time during Exp. 2 and
Exps 3-5 in infants can be explained with the increased cog-
nitive load deriving from the presence of labels in the last
three experiments. In the one-map architecture the difference
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can be explained in a similar way, with simple linear alge-
bra: in Exps. 3-5 the dimension of the input vectors is higher
than in Exp. 2. As a consequence, the errors (and therefore
the Network’s Looking Time) are higher in Exps 3-5 than
in Exp. 2. The different pattern for the three-maps architec-
ture depends on implementation details, related to the differ-
ent range of input values to the visual and global maps. We
conjecture that the same performance as for the one-map ar-
chitecture can be achieved by normalising the range of values
in the visual input patterns and in the visual and acoustic map
activation patterns. The other mismatches between infant and
network looking time during training will be the object of fu-
ture work.

Discussion and Conclusion

We have provided a neural network model of the impact of
labels on visual categorisation. In five sets of simulations we
have reproduced Plunkett et al. (2008)’s laboratory experi-
ments with infants showing that labels can affect the way in
which perceptual stimuli are categorised. In Plunkett et al.
(2008), infants’ categorisation is assessed by measuring their
looking time at test stimuli, following the well-established
novelty preference procedure. Similarly, in this work we have
assessed networks’ category formation by measuring their
looking time at test stimuli. In turn, network looking time
is a function of the quantisation error.

For all five experiments, the model’s looking preferences
mimic those of infants. Hence, when shown a set of visual
inputs from the so-called Broad Condition, the networks look
longer at the modal visual stimuli than the average stimulus
indicating that the network has formed a single category. In
contrast, when shown visual inputs from the Narrow Condi-
tion during familiarisation, networks look longer at the av-
erage stimulus at test indicating that they have formed two
categories. These results also mimic those of the infants in
Younger’s (1985) study and offer an alternative implemen-
tation of infant categorisation effects to those provided by
(Mareschal & French, 2000) and (Westermann & Marechal,
2004). An advantage of the current implementation is that it
requires only a single presentation of the familiarisation stim-
uli and it makes use of unsupervised, biologically plausible
learning algorithms. The pattern of categorisation changes
yet again when the same visual stimuli are accompanied by



labels: visual stimuli from the Narrow Condition produce two
distinct categories just in the case that labels are correlated
with visual category membership in the Narrow Condition.
When labels are randomly associated with the visual stimuli,
the networks show no systematic preference for either the av-
erage or modal stimuli indicating a disruption of the category
formation process. Finally, the networks demonstrated a nov-
elty preference for the modal stimuli when the accompany-
ing label is the same for all familiarisation stimuli, indicating
the formation of a single category as in the Broad condition
(Exp. 1).

To a large extent, our model’s behaviour also reproduces
infant looking time during familiarisation. Notwithstand-
ing the shortcomings of the three-map architecture, we have
shown that this general approach to modelling the impact of
labels on infant visual categorisation offers a powerful new
tool for understanding the nature of the mechanisms that un-
derlie infant looking preferences in novelty preference tasks.
In particular, the model demonstrates a psychological plausi-
bility in that it requires only single exposure to familiarisation
stimuli in order to capture the wide range of looking prefer-
ences reported by Plunkett et al. (2008). The success of the
one-map architecture in capturing the experimental finding
adds credence to the view that infants use labels as tags to
the visual stimuli. It is not necessary to assume that labels
are invitations to form categories or that they highlight the
commonalities between objects (Waxman & Markow, 1995).
In the model, labels are the common feature that binds the
objects together in a category.

The ability of the model to mimic infant’s looking prefer-
ences in Exp. 5 is worthy of further examination. Recall that
Exp. 5 exploits the Narrow condition visual stimuli together
with a single common label during familiarisation. From a
statistical learning perspective, this label is entirely redun-
dant during familiarisation since it is a constant across all tri-
als. In general, neural network models exploit the variability
between input stimuli to organise their patterns of connectiv-
ity and internal representations. One might have predicted,
therefore, that the networks in Exp. 5 would ignore the label
since it seems to provide no distinguishing information across
trials. Nevertheless, we have demonstrated that a single com-
mon label has a dramatic impact on the network’s classifica-
tion of the visual stimuli, causing it to treat them as a single
category rather than two.

The intuition of the label being redundant in this experi-
ment is nevertheless not entirely misleading. In fact, when
the network in Exp. 5 is trained with standard parameters for
multiple epochs, it learns to segregate the visual stimuli into
two categories rather than one, thereby ignoring the label. In
other words, the formation of the single category by the net-
work in Exp. 5 is a transient effect. This finding has several
important implications: First, it predicts that infants should
show similar transient effects such that if they were contin-
uously trained on the label-object contingencies of Exp. 5,
infants would eventually form two visual categories. Second,
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the transition from a single to a two category representation
in the model implies that the label changes its status from
being associated with a single visual category of objects to
being associated with two discriminable visual categories of
objects. This suggests that the model has the potential to rep-
resent a hierarchy of categorical organisation as a result of the
introduction of a common label for members of the hierarchy.
These transitions are emergent properties of a self-organising
system which do not require explicit instruction or feedback.
The model also predicts that the demonstrated impact of la-
bels on categorisation in 10-month-old infants does not rep-
resent an end-point of learning but rather is a step en route
to the development of a more structured system—perhaps a
system that underpins the organisation of the mental lexicon
itself.
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