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Abstract of the Dissertation

Topological Phases and Phenomena:
A Case Study of Nodal Semimetals and 2D Materials

by

Michael Robert Phillips

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2016

Dr. Vivek Aji, Chairperson

The explosion of recent work suggests that the next generation of solid state devices will

be built upon an understanding of topological phases and phenomena. Key to the devel-

opment and application of such devices are the notions of tunability, the manipulation of

device properties with some external stimulus, and interactions, the additional influences

on electrons.

Tunable devices form the basis for transistors and computer technology, but tun-

able topological devices have not been greatly explored. Thus, here we extend a previous

proposal[2], which realized a two-node Weyl semimetal with a heterostructure of alternating

topological/normal insulator layers and magnetic coupling in the direction perpendicular to

the layers, with the coupling placed parallel to the layers. The magnetic coupling, arising,

for example, from ferromagnetic insulators, here creates a line-node semimetal and it turns

out to allow for tunable features in the device which can, in principle, be measured in future

experimental studies. Interestingly, the Fermi surface can be tuned to have the topology of

either a sphere or a torus, a unique aspect of line nodes.

vii



Interactions in topological devices provide additional routes for further develop-

ment. A good example is the problem of dilute magnetic impurities, providing a window

into the structure of topological states. Here we use monolayer transition metal group-VI

dichalcogenides for a simple model of topological bands in a semiconductor. The system

is hexagonal but lacks an inversion center and includes strong spin-orbit coupling from the

heavy transition metal, resulting in spin-split bands in separate valleys around the K points,

with finite Berry curvature, and consequently a contrasted optical circular dichroism. The

hole-doped regime possesses separate Fermi surfaces, with opposite spins on opposite sides

of the Brillouin zone, producing an interesting spin structure in the Kondo ground state.

Furthermore, the selective absorption of circularly polarized light according to valley/spin

leads to the manipulation of the spin structure directly. We extensively study the Kondo

ground state resulting from the quasi-equilibrium configuration inferred from the applica-

tion of circularly polarized light, a situation which involves topology, spin-orbit interactions,

hybridization with a magnetic impurity, and tunability of the spin state with light.
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Chapter 1

Introduction

The discovery and importance of topological phases of matter has inspired a new school

within condensed matter physics. The impact was made even more clear upon the announce-

ment for the Nobel Prize in Physics of 2016, “for theoretical discoveries of topological phase

transitions and topological phases of matter”[3]. Building upon those ideas, exploring the

effects of interactions and the possibility of external device controls, is vital to the future

development of technological devices. Exploring two prototypical systems, a layered het-

erostructure and a two-dimensional hexagonal crystal, we find a highly tunable topological

phase complete with diagnostic properties accessible to experiments, and a remarkable spin-

valley coupled system which forms a nonstandard Kondo state and whose spin structure

can be manipulated with light.

In the following, we explain some of the background of topology in condensed mat-

ter physics, specifically the topics of nodal semimetals and topological bands corresponding

to the specific cases studied here. This includes the specific construction of nodal semimet-
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als studied in the first case (Chapter 2). Also we introduce a class of 2D materials and

present some background to the Kondo effect, the result of placing a magnetic impurity in

a metal and taking the temperature to zero, which provides context to the interactions and

resultant phase appearing in the second case (Chapter 3). Lastly, we mention some of the

key results.

1.1 Topology in Condensed Matter

The mathematical tools of topology had made their way into condensed matter physics

by the 1970s, often in the discussion if defects[4], but it was really the famous “TKNN”

paper of 1982 revealing the innate quantization of Hall conductivity[5] that sparked the

explosion of deeper study. Further details[6] and the connection to adiabatic changes[7]

were found within a few years after the TKNN work1, with an explicit extension to Bloch

states concluding the decade[8].

Over the past decades, many other advances have been made[9–19], showing that

the trend of topology will be sticking around. Partly due to the relative youth of the topic,

most of the work on topological phases and phenomena is focused on noninteracting systems

(although they occasionally involve interaction-driven phases like superconductors). A mild

exception is the spin Hall effect, which is now known to involve intrinsic topological sources

as well as extrinsic contributions from scattering off classical magnetic impurities[20–22].

However, the interplay of topology and quantum interactions is not often explored and it

is a topic that will be of great importance as topological devices continue development,

1See Appendix A for a generic derivation of the Berry phase from adiabatic changes.
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motivating a significant part of the current work. The other common thread is a focus on

tunable systems, where key properties of the topological phase can be manipulated with

some external control.

1.2 Nodal Semimetals: Dirac, Weyl, and more

Among the outcomes of the study of topological materials are classifications of materials

according to properties other than just band structure and symmetry. Important in the

development has been the study of gapless systems, initially given serious consideration due

to graphene, which are now known to exist in the surface states of topological insulators

and elsewhere. The two-dimensional example of graphene provides a starting point, since

it hosts massless Dirac fermions at low energies near the chemical potential; the degenerate

spectrum is gapless at the K(K ′) points leading to four-fold degeneracy at those points, the

defining characteristics of a massless Dirac system.

Extending to three dimensions, one may consider preserving both inversion and

time-reversal (TR) symmetry and obtaining some point where bands touch, but this proce-

dure would require fine tuning some parameter at particular points in momentum space. On

the other hand, breaking inversion or TR separates the points of contact and leads to one

or more pairs of opposite-chirality Weyl nodes[2, 23–26]. The Weyl states are topologically

equivalent to hedgehogs in momentum space, and they are protected against perturba-

tions essentially because the dimensionality requires all three Pauli matrices in the minimal

Hamiltonian. Candidates for Weyl semimetals, including one with 24 point nodes[26], have

been proposed and examined for their interesting properties, such as chiral edge states and

3



a Hall conductivity which scales with the distance between the Weyl nodes[2].

In addition to point (Weyl) nodes, the breaking of a symmetry in the Dirac Hamil-

tonian can also lead to a “line-node” which is a curve in momentum space along which the

bands touch. The line-node is not strictly as robust as Weyl nodes, meaning that they are

insensitive to perturbations that satisfy particular symmetries, and the line-node can be

displaced so that it’s not at constant energy. Nevertheless, the line-node is still topologi-

cally robust in the sense that the bands will remain touching in the vicinity of the chemical

potential despite the application of (many) perturbations. Interestingly, the structure of

bands touching along a continuous curve is so exotic that, unlike familiar Dirac, Weyl, and

Majorana particles, the elementary particles of the line-node have no counterparts in high

energy physics and are thus unnamed.

1.2.1 Multilayer Construction of Nodal Semimetals

As remarked above, some candidates for Weyl semimetals have been proposed but they are

often complicated, involving much more than the minimum of two Weyl nodes. However,

by using the construction of 3D Dirac states from coupled 2D states and adding a magnetic

coupling to break time-reversal symmetry, it was found that a Weyl semimetal may be

obtained in the simplest possible outcome of two nodes[2]. The 2D states are provided

by the surface states of topological insulators (TIs) which are protected linearly dispersing

states[11, 13, 14], and they are separated by normal insulating layers (NIs) as in Fig. 1.1.

These layers are not atomically thin but they are on the nanometer scale so states can

tunnel between adjacent topological insulating surfaces, generally with different amplitudes

for tunneling through the bulk of topological or normal insulators.
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The TI/NI multilayer described so far leads to massive (gapped) Dirac states in

3D. To get Weyl nodes, a magnetic coupling parameter is introduced to break time-reversal

symmetry. The origin of this parameter could be any magnetic coupling in the system,

like ferromagnetic normal insulators or the introduction of magnetic impurities into either

NI or TI layers. To get Weyl nodes, it is necessary to place this magnetic coupling along

the direction orthogonal to the layers (along the growth direction); placing in the direction

parallel to the layers leads to the line-node discussed above[25].

Figure 1.1: A schematic diagram of the layered topological/normal insulator (TI/NI) het-
erostructure. The direction of magnetic coupling, here depicted in the normal insulating
layers, leads to either a Weyl or line-node phase.

In previous work, the Weyl phase was found to exist in a significant finite range
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of magnetic coupling, meaning that there is no need for fine tuning that parameter to

achieve the phase. The Weyl and line-node cases were investigated in some length, including

basic transport calculations. The Weyl case is comparatively simple, possessing linear

dispersions and lending itself to the Born approximation in the calculation of the effects of

scattering off impurities. The line-node case on the other hand has a dispersion which is

locally linear in the directions orthogonal to the curve and is thus more difficult to describe

with a minimal Hamiltonian. Additionally, the slowly-vanishing density of states near

the line-node makes the simple Born approximation unreliable and one must use the Self-

Consistent Born Approximation (see Appendix B). Due in part to these complications, the

previous work[25] obtained analytical results by approximating the dispersion and line-node

as perfectly circular. In Chapter 2 of this work, we employ the layered TI/NI heterostructure

model to investigate the line-node case more fully, in particular we avoid approximating the

line-node as a circle and in fact we do not confine the case to closed curves, and the tunable

properties of the phase are explored by examining the evolution of the Fermi surface as the

magnetic parameter is varied.

1.3 Band Topology and Transition Metal Dichalcogenides

The appearance of topological properties in bands dates back at least to the famous work of

TKNN[5], but the identification and clean derivation of quantities like Berry curvature and

Berry phase appeared later[8]. By now, band topology is known to lead to several phases,

importantly the topological insulators and Weyl semimetals discussed above. Topological

bands often arise when a symmetry is broken, for example breaking inversion symmetry in
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graphene leads to a gapped spectrum with Berry curvature and related effects[27].

Another option is to use a material similar to graphene but with broken symmetry

coming from the crystal itself. This is realized in the single layer transition metal group-VI

dichalcogendes (TMDs), an (almost) atomically thick hexagonal crystal lacking an inversion

center but with preserved reflection and time-reversal symmetries (see Fig. 1.2). The

formula for TMDs is MX2, with transition metal M =Mo or W and chalcogenides X =S,

Se, or Te. Because of the heavy transition metal, particularly for tungsten (W), the atomic

spin-orbit coupling is very large, and the bands are greatly affected since the primary orbitals

near the chemical potential all originate from the metal atoms and thus have d character[28–

30]. In combination with broken inversion symmetry, spin-orbit coupling leads to a strong

spin-splitting of the low-lying bands centered around the K(K ′) points; the total splitting

can be as large as 28% of the gap parameter as in WSe2 or as small as 9% as in MoS2 .

The topological properties like Berry curvature may be calculated, but are most easily seen

by thinking about the Bloch sphere which describes the (pseudo-)spin state space of the

band. In graphene, the Bloch angle is fixed at π/2 so only the equator is explored with the

pseudo-spin forming either a chiral or a “hedgehog” pattern, either orthogonal or parallel

to the 2D momentum vector. In TMDs, on the other hand, half of the Bloch sphere is

explored by each band, with similar chiral or hedgehog patterns; this is indicative of some

nontrivial topology.

The low energy band structure being focused around the corners of the Brillouin

zone2, giving “valleys” around the K(K ′) points, alongside spin-splitting and preserved TR

2Note that MoS2 is different, having a low-lying Γ point as well.
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Figure 1.2: Top and side views of a monolayer TMD, MX2. It appears like graphene viewed
from above but it has some thickness, with each metal atom in a chalcogenide cage.

symmetry together give a structure with states at the same energy but opposite spin and

on opposite sides of the Brillouin zone. This spin-valley locking built into the system is

a particularly interesting point, particularly in the valence bands where the spin-splitting

completely separates the spin up/down bands; the conduction bands are affected also but

they are very closely spaced, like similar cups stacked one inside the other. In this work,

we focus on the hole-doped regime where only the upper valence band crosses the chemical
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potential, capitalizing on the spin-valley locking in the TMD system.

Another result of broken inversion symmetry is the selective absorption of circu-

larly polarized light depending on the valley, termed “contrasted circular dichroism”[31].

Thanks to the presence of Berry curvature, and hence angular momentum, spin-preserving

optical transitions are possible between the valence and conduction bands in TMDs despite

the fact that all orbitals involved have d character, i.e. the same atomic angular momentum.

By computing the optical transition probability directly for a particular circular polarization

at an appropriate frequency, the absorption rate is seen to depend strongly on the valley

and hence a particular spin may selectively be depleted from the valence bands. The optical

probing and manipulation of a given spin/valley makes the system even more interesting,

particularly when it is involved in an interacting state where spin is playing a crucial role

— this is explored in Chapter 3.

1.4 The Kondo Effect

In correlated physics it is difficult to think of a more classic example than the Kondo

problem, or the Kondo effect. In this section we give a very brief history and motivation of

the problem, as well as an explanation of the effect and resolution of the problem. Alongside,

we also present some basics concerning the methods that have been employed and developed

to deal with it. Since we are most focused on an exceptional system, the monolayer TMDs

described above, we also present some details having to do with the Kondo effect in that

setting.
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1.4.1 History and Methodology

The Kondo effect is the result of creating dilute alloys with magnetic metals, described most

generally by the Anderson model of localized magnetic states[32]. In this model, the dilute

limit is taken to an extreme with the inclusion of just a single magnetic impurity in a metal.

A magnetic impurity is like any quantum impurity orbital, but with a strong Coulomb

repulsion U acting when both spins occupy the orbital simultaneously. The coupling of the

impurity to the band electrons V is due to the familiar Hartree-Fock exchange term. The

Anderson Hamiltonian provides a good picture but the effective spin flips that result from

exchange can be made more clear by projecting to the so-called Kondo Hamiltonian using

the Schrieffer-Wolf transformation[33]. The result is an equivalent low-energy description

which has the form of explicit coupling between two spins, with a scale J ∼ V 2/U .

One can use perturbation theory to calculate various quantities to first order in

J , such as resistivity, which give rather standard results, e.g. the resistivity will approach

zero monotonically as the temperature decreases. However, experimental results revealed

a minimum in the resistivity with a depth and location in temperature which scale with

the concentration of magnetic impurities, suggesting that some increase in the resistivity

at lower temperatures should be coming from the Anderson (or Kondo) Hamiltonian[34].

Investigating this deeper, Kondo took the perturbation further, to J3, and indeed found a

piece that explained the resistance minimum, but that piece was logarithmic in temperature

and led to a singularity[35]. Perturbation theory can be carried out even further but the

result just gives higher order logarithmic terms, thus revealing that the system is inherently

non-perturbative in nature.
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The “Kondo problem” is then given: how can one explain the resistance minimum

and still go to temperatures lower than the so-called Kondo temperature? There was another

problem as well: we have placed a magnetic state in a metal which can naturally lead

to a local moment, but it is well-known that such moments cannot persist down to zero

temperature — what happens to the moment in the Anderson (or Kondo) Hamiltonian?

Attempts to answer these questions have come in many forms. Some have proposed a

variational ground state, a many-body state with parameters which are varied such that

the energy is minimized, which revealed that the magnetic impurity eventually forms a

bound singlet state with the metal electrons[36, 37]. This method explains the “Kondo

effect”, the way that the moment disappears and also why the resistance would rise at

low temperatures, and it gives a good energy scale for the problem (basically the Kondo

temperature).

To get thermodynamic results, however, one must employ a method that gives

more than just the ground state. To explain the formation of the singlet, the resistance

trend, and every other property, a method was developed by Wilson in the 1970s called the

Numerical Renormalization Group (NRG) [38], later refined and applied[39, 40]. Specific

details of NRG and how it’s used in this work are given in Sec. 3.4 (and Appendix D);

here we give only a brief overview. Within NRG, one sets up a numerical procedure in a

computer in which the system with the impurity is set up and diagonalized directly, with all

subspaces of Fock space. Of course it is impossible to do this with the huge number of metal

electrons, so one begins with effectively just one particle from the metal. The system of the

impurity with this one particle is diagonalized numerically, with various matrix elements
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(like impurity occupation and spin) being tracked and projected to the new eigenspace. To

continue, a new metal particle is added to the Fock space, a new Hamiltonian matrix is built

in the previously obtained eigenspace, and the diagonalization and tracking can be repeated.

Eventually the space grows too large so the system is truncated, retaining only some number

of lowest energy states (typically several hundred). Now, this procedure of extending the

Fock space, diagonalizing, and truncating can be repeated as far as time and computer

memory allow. With a diagonalized system, thermodynamics are easily obtained with

traditional definitions, and it turns out that each extension of Fock space to include another

particle also effectively lowers the temperature at which the thermodynamics are calculated.

Thus one can obtain the spin, entropy, susceptibility, etc. for a finite temperature range

approaching zero, and transport like resistivity may be obtained as well (although it is not

calculated in this work), all in an inherently non-perturbative way. All of these results

from NRG in the symmetric Anderson model agree very closely with other results in the

appropriate limits: the entropy approaches zero as the temperature is lowered, indicating

the formation of a spin singlet, and the susceptibility has a significant bump at moderate

temperatures (for large repulsion U), indicating a local moment for some temperatures.

Another useful quantity, the impurity spectral function, is calculable within NRG[41, 42],

revealing deeper details about the structure of the impurity in the metal.

1.4.2 Application to Monolayer Transition Metal Dichalcogenides

The hybridization, or coupling, of the impurity with the band electrons is largely decided by

the placement of the impurity on the lattice and the symmetry of the impurity and lattice

orbitals. In the case of monolayer TMDs, as remarked above, the primary orbitals are
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from the metal atoms and have d character; the low-energy basis involves dz2 , and mixtures

of dx2−y2 and dxy[29]. In two dimensions, a minimum requirement for the coupling to be

nonzero is that the azimuthal symmetry of the impurity orbital must agree with that of

the surrounding (nearest-neighbor) environment. For simplicity and to focus on the basic

physics, the location chosen in this work is directly on top of a metal atom, i.e. the impurity

is trying to share the site of a transition metal. As a result, given an impurity orbital, the

coupling is nonzero only for the corresponding d orbital of the same symmetry. This strictly

selective coupling to a particular orbital type is due to the location, but other high symmetry

locations will have similar behavior.

In the Anderson model, the above considerations have little effect on the overall

structure but the topological properties, the Bloch angles, enter when the lattice orbitals

are projected to the band eigenspace. Thus, for doped systems like the one considered in

Chapter 3 of this work, the model appears rather standard for an impurity in a metal, with

the small catch that the hybridization will vary somewhat with the chemical potential. The

real difference that is important here is the way that a single spin from each valley is crossing

the chemical potential, making the impurity hybridize with a distinct spin structure. Also,

the optical probing and manipulation of the TMD ground state discussed further above

allow for the study of the Kondo effect in a very interesting quasi-equilibrium topological

system.

1.5 Summary of Key Results

Given the background above, here we simply state some of the main findings of the work.
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First, for the tunable line-node semimetal phase of Chapter 2, the main finding is

the use of the magnetic coupling as a knob to manipulate the phase. The dispersion and

conductivity are mapped as the node is tuned and even as it splits into open curves. Also,

the Fermi surface is mapped and quantum oscillations are investigated for application and

identification in experiment. In particular is a very interesting frequency-doubling when

the Fermi surface closes, changing its topology from that of a torus to that of a sphere.

For the Kondo effect in doped TMDs in Chapter 3, both variational and NRG

methods are used to assess the ground state. In true equilibrium, the energy and spin are

addressed using the variational method with relative ease. In this case, the primary finding

is that the spin state is not a many-body spin singlet, but rather an equal mixture of singlet

and m = 0 triplet states. The outcome is nonmagnetic, but the triplet state implies some

variance in spin. For the case of the TMD under application of light, we have a quasi-

equilibrium case with effectively shifted chemical potentials in the two valleys, which due to

spin-valley locking also gives a shift to the spins. Investigating this case rightly requires the

use of NRG, the variational results giving an overreactive Fermi sea. The primary result is

that the spin is in fact strongly polarized when the Fermi sea is shifted, the impurity giving

a much larger contribution than the band electrons. To provide that evidence, the spectral

function is constructed, showing the polarization explicitly.
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Chapter 2

Tunable Line Node Semimetals

2.1 Introduction

The discovery of topological states of matter has brought a revolution in solid state physics.

They provide impetus to develop new methodologies to find and characterize them, both

theoretically and experimentally, and have opened new directions for technological inno-

vation. Topological insulators in two and three dimensions which are gapped in the bulk

and have surface states have already been realized. An important insight gained from

these developments is the prominent role played by spin-orbit interaction in stabilizing such

nontrivial phases[9–19]. A consequence of this line of investigation lead to the remarkable

conjecture that some pyrochlore iridates, which possess all the necessary ingredients, such

This chapter consists of a reprinted article used with permission: M. Phillips and
V. Aji, “Tunable line node semimetals”, Physical Review B 90, 115111 (2014), doi:
https://dx.doi.org/10.1103/PhysRevB.90.115111. Copyright 2014 by the American Physical Soci-
ety.
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as large atomic number, localized moments and moderate correlation, are in a semimetallic

phase where two nondegenerate bands touch at an even number of points in the Brillouin

zone[26]. Moreover these nodes in the energy landscape are at the chemical potential and

the low energy sector is described in terms of chiral massless electrons in three dimensions,

which were first discovered by Hermann Weyl[43].

While pyrochlore iridates have yet to be unambiguously shown to house such a

phase, a number of proposals have appeared in the literature that have the potential to do

so. Balents and Burkov[2] showed that a heterostructure made up of alternating layers of

magnetically doped topological insulator and normal insulator had Weyl fermions in its low

energy sector. An alternate route is to find materials which have a Dirac dispersion in three

dimensions and lift the spin degeneracy by breaking either time reversal or inversion. Angle

resolved photoemission spectroscopy measurements on Na3Bi and Cd3As2 have provided

the first evidence for the existence of massless Dirac fermions[44–48]. The latter also breaks

inversion and has the potential to be a Weyl semimetal, but the data lacks the resolution

to verify the claim.

Here we focus on a variant of the heterostructure where a line is obtained in-

stead of point nodes[25]. This requires the magnetization of either the magnetically doped

topological insulator or that of the ferromagnetic insulator to be perpendicular rather than

parallel to the symmetry axis of the device. The shape anisotropy of the device naturally

favors such a geometry. Alternatively one can use an antiferromagnetic insulator with a

suitable choice of terminating surfaces to provide the uniform exchange field needed. This

construction has the advantage of the ability to tune the magnetization by varying tem-

16



perature. This provides a knob to manipulate the response of the device and access the

interesting semimetallic phase. The main motivation of the study is that for line nodes the

size, shape and density of states all depend on the magnetization. This is in contrast with

the nodal semimetal where only the distance between the nodes depends on magnetization.

The evolution of the low energy sector, as well as its consequence on thermodynamic and

transport properties, as a function of magnetization is explored in this paper.

2.2 Model

As described by A. A. Burkov, M. D. Hook and Leon Balents[25], a simple way to construct

a Weyl semimetal is to arrange alternating layers of topological insulator (TI) and normal

insulator (NI). This setup leads to a Weyl semimetal dispersion containing the minimum

of two nodes, provided time reversal symmetry is broken. To achieve this, the addition of

magnetic impurities in each TI layer was proposed with magnetization along the z-direction

– orthogonal to each layer, along the direction of growth. The two materials are set up such

that each pair of layers (TI + NI) add up to a thickness d.

The full 2D Hamiltonian in terms of the momentum k⊥ = kxx̂ + kyŷ describing

this multilayered structure (using the notation and formalism in [25]) is

H=
∑
k⊥,ij

c†k⊥ick⊥j

[
vF τ

z(ẑ× σ) · k⊥δij +mσzδij + ∆Sτ
xδij +

1

2
∆D(τ+δj,i+1 + τ−δj,i−1)

]
.

(2.1)

The first term describes the top and bottom states of a single TI layer (with ~ = 1). The

second term describes the spin splitting, resulting from magnetization in the z-direction.

The remaining terms describe tunneling within an individual TI layer (the ∆S term), and
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between neighboring TI layers (the ∆D terms). Without loss of generality one can set

∆S ,∆D > 0.

The eigenvalues for this Hamiltonian lead to the dispersion

ε2
± = v2

F |κ⊥|
2 + (m± |∆(kz)|)2, (2.2)

where ∆(kz) = ∆S + ∆De
ikzd and κ⊥ = ky + ikx. There are a pair of non-degenerate nodes

located at kx = ky = 0, kz = π
d ± k0 where

k0 =
1

d
arccos

[
1−

(
m2 − (∆S −∆D)2

2∆S∆D

)]
. (2.3)

The nodes exist provided

(∆S −∆D)2 < m2 < (∆S + ∆D)2. (2.4)

Such Weyl semimetals are expected to display a number of anomalous properties and house

novel correlated phases. A variant of this setup is one where the axial symmetry is broken

in addition to time reversal. The low energy sector is this case has line nodes and a system

that is less studied.

Choosing the magnetization to be along the x-axis modifies the second term in Eq.

(2.1). In practice this can be achieved by replacing the normal insulator with either fer-

romagnetic insulator, or antiferromagnetic insulator with appropriately chosen terminating

surface. The Hamiltonian becomes

H =
∑
k⊥,ij

c†k⊥ick⊥j [vF τ
z(ẑ× σ) · k⊥δij +mσxδij+∆Sτ

xδij +
1

2
∆D(τ+δj,i+1 + τ−δj,i−1)].

(2.5)

The resulting dispersion is

ε2
± = v2

Fk
2
x +

(
m±

√
v2
Fk

2
y + |∆(kz)|2

)2

(2.6)
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which has an analogue condition to Eq. (2.4) for nodal behavior:

(∆S −∆D)2 < m2 − v2
Fk

2
y < (∆S + ∆D)2. (2.7)

The new feature of such a geometry is that, instead of point nodes, this architecture supports

line nodes. For our particular choice of magnetization, the zeros lie in the kz − ky plane.

The band for which this occurs is ε−. The resulting surfaces ±ε−(kz, ky) touch along a

curve, called a “line-node”, given by

v2
Fk

2
y + 2∆S∆D cos(kzd) = m2 −∆2

S −∆2
D. (2.8)

The curve is always bounded in the ky-direction,

m2 − (∆S + ∆D)2 < v2
Fk

2
y < m2 − (∆S −∆D)2. (2.9)

Since this relation potentially places a minimum on ky, the curve is not necessarily closed.

The upshot is that the variation of magnetization leads to an evolution of the nodal line

from being closed within a Brillouin zone to being open. Thus the low energy sector of

such an architecture is highly tunable. We explore the properties, such as density of states,

conductivity and magneto-oscillations, in the rest of the paper.

2.3 Closed Line-Node

Let us first examine the parameter space |∆S − ∆D| < m < ∆S + ∆D. A characteristic

nodal line is shown in Fig. 2.1. To further examine the nature of the dispersion, we plot

the energy as a function of kz − ky for kx = 0 in Fig. 2.2.
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Figure 2.1: An example of the nodal curve for the closed region of parameters. The param-
eters chosen are m = 0.9,∆S = 0.6,∆D = 0.4 (with d = vF = 1).

An interesting feature is that the dispersion is linear in momentum for deviations

normal to the nodal curve. Parametrizing the curve as (k0
z , k

0
y), which satisfy Eq. (2.8), the

dispersion as a function of deviation normal to the curve is

ε2
− ≈ v2

F δk
2
x +

(
vFk

0
y

m cos(θ0)

)2

v2
F δk

2
⊥ (2.10)

where tan(θ0) = ∆D∆Sd sin(k0
zd)/v2

fk
0
y.

The energy scale at which the deviation from linearity becomes substantial is also

a function of where one is on the nodal curve. Thus an effective linear dispersion is valid

only in an energy window which is the minimum of this function. To display this variation

we plot the dispersion along various cuts across the nodal line in fig.2.3. We occasionally

use k′z ≡ kz − π
d as a convenient variable. The ratio of the velocities along the cuts for

ky = 0 and k′z = 0 is

v⊥(ky = 0)

v⊥(k′z = 0)
=
md

2vF

√(
∆S + ∆D

m

)2

− 1 . (2.11)
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Figure 2.2: The dispersion surfaces ±ε−(kz, ky), showing the nodal curve where the top and
bottom surfaces touch along ε− = 0. The parameter values are the same as for Fig. 2.1.

This is always less than one implying that the corrections to linearity are more pronounced

along the growth axis of the heterostructure. Furthermore the monotonic increase of velocity

from kz to ky axis implies that the density of states also varies along the node.

For a given device ∆S and ∆D are hard to tune but the magnetization can be mod-

ified. As a consequence the nodal structure evolves and as the magnetization is increased

the curve extends out along kz until it reaches the edge of the Brillouin zone. This is shown

in Fig. 2.4. In general, analytic solutions are not possible. Under certain approximations

the density of states and conductivity can be obtained in closed form. These are

1. The width of the nodal curve is “small” : cos(kzd) ≈ −1 + (kzd−π)2

2 .

2. The parameter m is “large” : m� |∆S −∆D| ≡ ∆⇒ ∆/m ≈ 0 .
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Figure 2.3: The variation of energy as a function of momentum perpendicular to the nodal
line at four representative points is shown. Parameters remain as in Fig. 2.1.

Together, these greatly simplify the positive and negative dispersions that lead to the node,

±ε−(k) ≡ ±ε(k) in Eq. (2.6). From here, the density of states is found by taking the

derivative g(ε) = d
dεN(ε), where an integral must be done:

N(ε) =

∫
d3k

(2π)3
Θ[ε− ε(k)]. (2.12)

With the above approximations, this integral becomes the volume of a torus in

momentum-space with major radius m and minor radius ε, which can be calculated analyt-

ically to give a linear density of states (DoS): g(ε) ∝ ε. The constant of proportionality (the

slope of the DoS) comes out to be linear with respect to m. The resultant DC conductivity

(using the Kubo formula, after the Self-Consistent Born Approximation1) is also linear in

m[25].

1See Appendix B for details on this approximation.
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Figure 2.4: The shape of the closed line-node in Fig. 2.1 is plotted as the field parameter
m is changed, while keeping ∆S and ∆D fixed. The arrow shows the direction of increasing
m. The closed curves have m < ∆S + ∆D while the open curve violates this condition.

The analytic expressions provide an interesting insight into the behavior of this de-

vice. The low temperature properties are all functions of the magnetization m. Thus tuning

this parameter allows for the modification of transport and thermodynamic response. To

get an accurate description numerical methods need to be employed as the approximations

stated above are valid only for a finite intermediate window of m. As shown in Fig. 2.5,

the equal energy surfaces have significant deviations from a uniform torus. Thus the DC

conductivity will match the analytical expression for a finite range of magnetization.

To characterize the device better we employ numerical solutions for the full dis-
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Figure 2.5: The volume enclosed by a surface of energy ε in momentum space, N(ε), is
plotted while varying the field parameter m. A perfect torus is obtained for a particular
value of m. For smaller m, the torus gets squeezed, while for larger values the torus gets
stretched (along the kz-axis).

persion. Unless otherwise specified the parameters used are ∆S = 0.6eV and ∆D = 0.4eV.

The results are qualitatively identical for different choices of parameters. We first compare

the slope of the density of states near ε = 0 to that obtained analytically. This is shown

in Fig. 2.6. A monotonically increasing slope is obtained as long as the nodal line remains

closed. Once the nodal line hits the Brillouin zone boundary, the slope is roughly constant.

We discuss the open node case in the next section.

For point-like impurities within the Self-Consistent Born approximation using

Kubo formalism, the conductivity is proportional to the slope of the density of states.
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Figure 2.6: The slope of the linear (low-energy) density of states is plotted as a function of
m. The points are obtained from numerical evaluation of the integral in Eq. (2.12). The
black line is the analytical result from [25], while the dashed line shows the asymptotic
value.

The linear DoS is found numerically over the entire range of m using Eq. (2.12), resulting

in the conductivity shown in Fig. 2.7. For large values of m, the constant slope given by

Eq. (2.17) leads to a conductivity that’s also independent of m. This asymptotic value

depends on the direction as there is an anisotropy in velocity parallel versus perpendicular

to the growth axis of the device. To display the generic behavior we plot the ratio of the

conductivity to the asymptotic value as a function of m.

The asymptotic values are obtained from the linear density of states with a con-

stant slope (for details see the next section) and given by

σαα =
2e2

h

v2
F,α

πdv2
F

(2.13)

where vF,x = vF,y = vF and vF,z = d
√

∆S∆D.
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Figure 2.7: For large values of m, where the nodal line is open, the conductivity is roughly
constant. Here we plot the conductivity divided by the asymptotic value as a function of m.
These normalized curves are isotropic but the asymptotic values themselves are different
for parallel and perpendicular directions with respect to the growth axis of the multilayer.

To better understand the nature of the density of states we also examine N(ε)

itself (see Eq. (2.12)) for various values of m. Its quadratic dependence of ε yields a linear

density of states. As noted in the discussion of the dispersion and shown in Fig. 2.3, the

deviation from linear dispersion occurs for small distances away from the node. The change

in the dispersion is also evident in the evolution of N(ε) plotted in Fig. 2.8. For small m a

quadratic behavior is seen, but becomes linear as m is increased. The change in the density

of states is reflected in the conductivity.
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Figure 2.8: We plot N(ε) for two different values of m. The left figure is for the case where
we have a closed nodal line where the quadratic dependence is evident reflecting a linear
density of states. For large m, for open line nodes, the quadratic dependence crosses over
to a linear behavior very quickly as one departs from the node. This means that a linear
DoS is trustworthy only for very low energies when m� ∆S + ∆D (see Fig. 2.9).

2.4 Open Line-Node

We now turn to the regime of large m. This section examines the case m > ∆S + ∆D.

For these values of m the node touches the sides of the first BZ along the kz-axis. This

implies that the analytic result, slope ∝ m, of the previous section does not apply but the

numerical techniques can be used. The density of states at low energies remains linear, but
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its slope is constant as seen in Fig. 2.6. To evaluate the constant we use (2.10) and (2.8)

assuming large m. Adding 2∆S∆D to both sides of Eq. (2.8) and with m � |∆S −∆D|,

we drop (∆S −∆D)2 from the right hand side of Eq. (2.8) to get

(vFk
0
y)

2 + 2∆S∆D

(
1 + cos(k0

zd)
)
≈ m2 (2.14)

where the notation k0
α refers to the points on the nodal line. The second term in Eq.

(2.14) is bounded by the value of the cosine, and is small when m2 � 4∆S∆D. Therefore

vFk
0
y ≈ ±m. In other words, the open nodes evolve into straight lines stretching across the

Brillouin zone at a fixed value of ky. Similarly tan θ0 = ∆D∆Sd sin(k0
zd)/v2

fk
0
y is bounded

by the sine function and for m� ∆S∆Dd/vF , θ0 � 1. Asymptotically Eq. (2.10) simplifies

to

ε2
− ≈ v2

F δk
2
x + v2

F δk
2
y (2.15)

which, remarkably, is identical to the graphene dispersion. Setting q = vF
√
δk2
x + δk2

y, the

DoS is

g(ε) = 2

∫ 2π/d

0

dkz
2π

∫ 2π

0

dφ

2π

∫
qdq

2πv2
F

δ(ε− q) (2.16)

=
ε

πdv2
F

. (2.17)

The resulting conductivity reflects this behavior and is nearly independent of m for m >

1eV = ∆S+∆D. The conductivity varies appreciably only when |∆S−∆D| < m < ∆S+∆D.

An interesting aspect of this device is its sensitivity to changes in magnetization. The change

in conductivity from zero to the maximum value given in Eq. (2.13) occurs over the change
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in exchange splitting of 2∆S or 2∆D, whichever is smaller. This sensitivity is a generic

feature of such nodal semimetals. A minimum time reversal breaking field is needed to

close the gap and further increase leads to the nodal line spanning the Brillouin Zone. Over

this energy window the conductivity changes from zero to the asymptotic value.

Figure 2.9: Constant energy surfaces for the same parameters as in Fig. 2.6, but with
m = 1.15eV > ∆S + ∆D, and a larger m = 1.28eV � ∆S + ∆D. As m increases the
topology changes to disconnected surfaces.

The evolution of the fermi surface as seen in Fig. 2.5 is measurable in magnetic

oscillation experiments. Before we turn to the discussion of the expected behavior, it is

worthwhile to note the shape of the equal energy surface for even larger m. In Fig. 2.9

we see that the the volume enclosed gets disconnected on increasing m. Thus the fermi

surface of the doped system goes from a closed torus to two disconnected tubes, with an

intermediate state where the outer surface of the torus is not closed within a Brillouin zone.

Implications of these on quantum oscillations are discussed in the next section.
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2.5 Quantum Oscillations

The evolution of the low energy sector as a function of the magnetization can be probed for

systems with finite carrier density. For closed nodal lines the fermi surface has the topology

of a torus, whose axis is parallel to the direction of magnetization. In the presence of an

external magnetic field, the density of states is oscillatory. For large densities (i.e. Landau

level index corresponding to Fermi energy is large), the oscillation is periodic in 1/B with

a frequency proportional to the extremal area Ae of the fermi surface perpendicular to the

applied field [49]:

f 1
B

=
~c

2πe
Ae(εF ). (2.18)

We consider two cases motivated by the geometry of equal energy surfaces. For

magnetic field along the direction of the magnetization m (x-axis in our example), there are

two frequencies at small magnetization while for large magnetization one of two contributing

orbits changes from a closed to an open one. In Fig. 2.10 the two frequencies are plotted

as a function of fermi energy. The fermi surface has the topology of a torus. For a field

along the axis there are two extremal areas corresponding to the inner and outer circles. As

the fermi energy increases the inner circle shrinks while the outer one grows. The smaller

frequency vanishes when εF = m− |∆S −∆D|.

Alternatively, a field could be applied in the z-direction instead (i.e. along the

growth direction). There is only one extremal orbit in this case. More precisely, there are

two identical areas that contribute the same extremal area. As one increases the doping

or carrier concentration, these areas grow approaching one another. At a critical value of
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Figure 2.10: Frequency for quantum oscillations for magnetic fields applied along the x-
direction is plotted as a function of energy. The top curve shows the result corresponding
to the maximal area, while the bottom corresponds to the minimal area. Dashed curves are
obtained in the approximation of treating the surfaces as a circular torus. The parameters
are the same as above with m = 0.5eV, taking vF = 104m/s and d = 100nm.

the fermi energy the two merge, and the resulting orbit continues to be extremal. Thus the

frequency doubles at the critical value εF = m− |∆S −∆D| (see Fig. 2.11).

This frequency-doubling is an interesting diagnostic of the line node. The experi-

mental observation of the phenomenon depends on three conditions being satisfied: 1) the

ability to tune the density of electronic carriers in the device; 2) the shape anisotropy of

the magnetic insulator being sufficiently strong so as to allow for oscillations to be observed

without reorientation of magnetization in the external magnetic field; and 3) the doubling

occurs in the low energy regime of the device. While the first two are material challenges,

the last can be addressed by looking at the energy at which the doubling occurs as a func-

tion of magnetization. From Fig. 2.12 it is clear that a parameter regime exists where the
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Figure 2.11: Fequency for magnetic fields applied along the z-direction as a function of the
energy is plotted here. The solid curve shows the result corresponding to the only extremal
orbit in this case. Note the orders of magnitude difference compared to Fig. 2.10 arising
from the shape of the torus.

critical energy is small, i.e. less then an eV.

2.6 Experimental Outlook

Over the last few years remarkable progress has been made in realizing various elements

required for the multilayer device. Given the wealth of novel phenomena expected with

symmetry-broken surface states [14, 50–52], detailed theoretical studies have identified can-

didate materials to activate the time reversal breaking[53]. On the experimental side a

number of ferromagnetic insulators have been grown with the aim of opening a gap in the

spectrum of the surface states of topological insulators. Exchange coupling induced sym-

metry breaking has been observed when Bi2Se3 is grown on ferromagnetic EuS[54]. The
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Figure 2.12: As m is varied, the density at which the jump in frequency occurs is modified.
Here we plot the variation and note that it occurs for small densities when m is not too
much larger than the difference |∆S −∆D|.

induced magnetic moment at the interface at low temperatures is 1.3 ± 0.5 × 102 µB/nm2

with a transition at about 20 K. EuO is a viable candidate but so far only growth on

graphene has been demonstrated with a transition temperature of 69 K [55]. Cr2Ge2Te6

has a transition temperature of 61 K [56] and is another possible substrate for epitaxial

growth[57]. While YIG is an actively researched ferromagnetic insulator, its transition tem-

perature of 559 K results in a constant magnetization at low temperatures which prevents

its use as a tunable knob.

An alternative scenario is to follow the original suggestion of [2, 25] where a mag-

netically doped topological insulator is sandwiched between normal insulator layers. The

ability to magnetically dope topological insulators has been experimentally demonstrated

and resulted in the observation of the quantum anomalous hall effect [58]. The tempera-

33



tures at which the phenomenon is observed is 30 mK while the Curie temperature is 15 K.

Ordering the moments in plane, rather than perpendicular to the interface will achieve the

required geometry. Whether the requirements for line nodal semimetals are as stringent

in terms of temperature is yet to be determined. Nevertheless the progress suggests that

the prospect of growing devices with Weyl semimetallic characteristics is indeed promising,

opening the possibility of new tunable devices discussed in this paper.

2.7 Conclusions

In this paper we have focussed on the tunability of the low energy sector of a heterostructure

which is in a topological semimetallic phase with line nodes. The key insight is the depen-

dence of the dispersion on the strength of the time reversal breaking. For an insulating

magnetic layer, this is controlled by the magnetization which in turn depends on tempera-

ture. For example EuO has a Tc of 69.3 K and cooling provides a knob to continuously vary

the magnetization. As one increases the magnetization, the gap in the spectrum closes and

the line node appears. This evolves from a closed loop to two open lines which span the

Brillouin zone in the direction parallel to the growth axis of the multilayer. The associated

changes on density of states and topology of equal energy surfaces results in measurable

signatures in thermodynamic and transport properties. We show that the slope of the den-

sity of states rises monotonically as a function of m as long as the line node is closed and

is roughly constant for larger values. The trend is also reflected in conductivity.

The toroidal topology also has interesting implications for quantum oscillations in

this device. On doping the system the minor radius of the torus grows and for sufficiently
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large densities the equal energy surface changes topology to a sphere. This is accompa-

nied by the doubling of the oscillation frequency for magnetic fields perpendicular to the

symmetry axis of the torus. This is accessible even for small densities.

As noted in [25], the nodal line is not robust and that perturbations, such as

particle-hole asymmetry, induce an energy dependence to the line where the bands touch.

Thus the system is converted to a normal semimetal with electron-hole pockets. Neverthe-

less the size of these pockets depend on the size of the line node which in turn depends on m.

Thus the qualitative feature of the evolution of density of states and associated properties

as a function of magnetization continue to hold. The same is true of the change in geometry

of the nodal line from a closed to an open one.
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Chapter 3

Kondo Screening in p-Type

Monolayer Transition Metal

Dichalcogenides

3.1 Introduction

Single layer Transition metal Group-VI Dichalcogenides (TMDs), MX2 (M = Mo, W; X=S,

Se, Te), are direct band gap semiconductors whose physics is strongly influenced by spin

orbit coupling. While they share the hexagonal crystal structure of graphene, they differ

in three important aspects: 1) The spectrum possesses gaps at the K-points as opposed to

Dirac nodes; 2) Broken inversion symmetry and coupling of the spin with momentum result

in a large splitting of the valence bands; and 3) The two bands near the chemical potential

arise from the partial filled transition metal d-orbitals[29, 59–61]. A striking consequence

36



is the nontrivial Berry’s phase of the low energy bands. The symmetry of the system is

such that the z component of spin, sz (i.e. component perpendicular to the MX2 plane) is

conserved. Associated with each band is a Berry curvature, Ω, whose z component changes

sign going from one valley to the other, and also when going from the conduction to the

valence band. These properties allow for coupled valley and spin phenomena[29, 62].

Of particular significance is the ability to manipulate the valley degree of freedom.

The Berry curvature engenders an intrinsic angular momentum associated with Bloch wave

functions [63], which in turn allows for spin preserving transitions between valence and

conduction bands induced by optical fields even though the atomic orbitals involved all

have d character. Furthermore, the valley dependent sign of the Berry curvature leads to

selective optical excitation where right circular polarization couples to one valley and left

to the other. As a consequence a number of valleytronic and spintronic applications are

enabled and have attracted a lot of attention over the last few years [27, 29, 62, 64, 65].

While much of the focus thus far has been on the nontrivial properties engendered

in the noninteracting limit, our work emphasizes the band structure and valley contrasting

probe to study and manipulate correlated phenomena in these systems. This is particularly

interesting in hole doped systems where an experimentally accessible window in energy is

characterized by two disconnected pieces of spin nondegenerate Fermi surfaces (see Fig. 3.1).

(Note that these considerations do not apply to MoS2 because there is also a spin degenerate

Fermi surface at the Γ point.) Since one can preferentially excite electrons from one or the

other Fermi surface, optical probes have spin specificity. These features have important

implications on magnetic phenomena. Consequently we explore the nature of the Kondo
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Figure 3.1: Low energy band structure of hole doped TMD. The unique aspect of the system
is the spin split band allowing for spin nondegenrate Fermi surfaces around the K points.

effect. In doing so, particularly in the assessment of optical probing and manipulation, we

employ two methods: a variational wave function[36, 37], and the numerical renormalization

group (NRG)[38, 39, 66].

In conventional metals the screening of an isolated magnetic impurity relies on the

formation of a singlet state between the impurity moment and the electrons. In TMDs the up

and down spins at the same energy occupy different valleys and spin flip scattering requires

inter valley processes. For a hole doped system, where the chemical potential intersects only

one of the two spin split bands, the main findings are as follows: i) the Kondo resonance is

an equal admixture of singlet and the m = 0 triplet formed between the impurity spin and

the band fermions. Thus the ground state has total spin (S+σ)2 = J2 ≈ ~2, where S and σ
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are spin operators for the impurity and band fermions respectively. The result reflects the

fact that the Kondo energy scale as well as the level broadening are small compared to the

spin splitting scale which is ∼ 0.1-0.5 eV; ii) the hybridization of the impurity state with

the TMD depends crucially on the interplay between the symmetry of the atomic orbitals

involved and band topology (i.e. Berry curvature). To illustrate, orbitals with similar

atomic overlap with the fermionic states have different hybridization due to the additional

orbital angular momentum associated with the Berry curvature; iii) the spin specificity of

opto-electronic coupling allows access to components of the screening cloud which in turn

allows for the tuning of spin in the Kondo state.

We first introduce the specifics of the model for Anderson impurities in monolayer

TMDs (Sec. 3.2). The results of the spin structure are obtained using a variational wave-

function approach (Sec. 3.3) for a single impurity located on top of a M (Mo or W)

site. The location is chosen for illustrative purposes to show the interplay of topology and

interaction, and other high symmetry sites for the impurity only modify the precise form of

the hybridization. Since the density of states is always finite in the hole doped systems, the

energetics and stability of the Kondo resonance are rather conventional. What is striking

however is the composition of the Kondo cloud and its physical properties as emphasized

above. Additionally, to understand the effect of spin/valley specific optical coupling, we

find that the Kondo ground state starting from an optically excited Fermi sea is insufficient

and a better picture is obtained from NRG (Sec. 3.4). In this case we do not find J2

but we do expose a component in the Kondo cloud with a shift Jz 6= 0 which scales with

the strength of optical field excitation, revealing a very strong tunability of the correlated
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spin state with optical probes. Prior to concluding we compare the variational and NRG

methods and results (Sec. 3.5).

3.2 Model

In this section we describe the material and impurity model Hamiltonians.

3.2.1 Low Energy Bands and Topology

The minimal model for TMDs in the low energy bands near K (K′) is in terms of the two

basis functions |1〉 = |dz2〉 and |2〉 = 1√
2

(∣∣dx2−y2

〉
+ iτ |dxy〉

)
. The Hamiltonian is

Hm = at (τσxkx + σyky) +
∆

2
σz − λτ

σz − 1

2
sz (3.1)

where σi are Pauli matrices in the space of two bands represented by the eigenvalues ±1 of

σz, τ = ±1 is the valley index, sz is the Pauli matrix for spin, a is the lattice constant, t is

the effective hopping parameter, ∆ is the gap at the K points and λ is the spin orbit coupling

[29, 61]. Written in terms of the magnitude k = |k| and azimuthal angle φ = arctan (ky/kx),

the Hamiltonian (3.1) is diagonalized by the unitary matrix U(k, τ, s):

U(k, τ, s) =

 χk,τ,s wk,τ,s

τwk,τ,se
iτφ −τχk,τ,seiτφ

 (3.2)

with χk,τ,s = cos (θk,τ,s/2), wk,τ,s = sin (θk,τ,s/2) and Bloch angles

cos (θk,τ,s) =
(∆− λτs)√

(∆− λτs)2 + (2atk)2
(3.3)

where s = ± for eigenvalues of sz. The eigenvalues, the diagonal elements of U †HmU labeled

n = ±1, are given by En,k,τ,s = 1
2(λsτ + n

√
(2atk)2 + (∆− λsτ)2). The Berry curvature is
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encoded in θk,τ,s. Mapping (k, E+,k,τ,s) → (φ, τθk,τ,s) and (k, E−,k,τ,s) → (φ, τθk,τ,s − τπ)

wraps the conduction and valence bands (respectively) onto half the Bloch sphere with the

texture of a skyrmion (either chiral or hedgehog).

3.2.2 Hybridization

To study the nature of Kondo screening in a hole doped system, where the chemical potential

is in the topmost spin split valence band, we introduce an impurity orbital on top of the M

atom. The choice is for simplicity and does not affect the results as long as a site of high

symmetry is chosen. For generality however, this section does not presume a specific location

— the on-site choice is evaluated and employed in following sections. The magnetic impurity

brings its own orbital with Coulomb repulsion, Himp =
∑

s ε0f
†
sfs + Unf,↑nf,↓. Next, since

the Hamiltonian (3.1) is only an effective low energy theory, we impose an upper cutoff in

energy, Λ, within which its hybridization with the impurity takes the form [32, 67, 68]

HV =
∑
α,τ,s

∑
j

(
Vα,τ,ja

†
α,τ,s(rj)fs + h.c.

)
(3.4)

where a†α,τ,s(rj) = N
−1/2
M

∑
k a
†
α,k,τ,se

−ik·rj is the creation operator at M site rj with α =

1 or 2 corresponding to the basis states. The sum over j runs over the M nearest to the

impurity site, fs is the annihilation operator of the localized electron on the impurity (taken

as the origin), and Vα,τ,j is the hybridization strength between the localized orbital with

the |1〉 and |2〉 orbitals on the M atom at site j.

To analyze the screening of impurity moments we must first project to the eigenspace,

aα,k,τ,s =
∑

n=± Uα,n(k, τ, s)cn,k,τ,s. Generally, this means that the TMD and hybridization
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Hamiltonians are simply

Hm =
∑
n,k,τ,s

En,k,τ,sc
†
n,k,τ,scn,k,τ,s (3.5)

HV =
1√
NM

∑
n,k,τ,s

(
vn,k,τ,sc

†
n,k,τ,sfs + h.c.

)
(3.6)

where vn,k,τ,s =
∑

j

(∑
α=1,2 U

†
n,α(k, τ, s)Vα,τ,j

)
e−ik·rj . Owing to the structure of the U

matrices from (3.2), terms with no angular dependence pair with the α = 1 orbital whereas

those with the dependence ∼ e−iτφ pair with the α = 2 orbital.

To address the angular dependence rigorously, a discussion which is especially

useful in the context of NRG [39], we transform to a quasi-angular momentum (QAM)

basis (termed so because φ is defined with respect to the K rather than the Γ point).

The k-dependence is recast as the magnitude k and a quasi-angular momentum index m ∈

(−∞,∞) [69]. The sums become
∑

k → NMΩc/(2π)2
∫
d2k and the eigenstate operators

in the QAM basis are obtained with cn,k,τ,s = (NMΩck/2π)−1/2
∑

m eimφcn,k,m,τ,s, where

Ωc = (
√

3/2)a2 is the area of a unit cell. The Hamiltonians transform to

Hm =
∑

n,m,τ,s

∫
dk En,k,τ,sc

†
n,k,m,τ,scn,k,m,τ,s (3.7)

HV =
∑

n,m,τ,s

∫
dk

√
Ωck

2π

(
vn,k,m,τ,sc

†
n,k,m,τ,sfs + h.c.

)
(3.8)

with an effective coupling vn,k,m,τ,s =
∫

(dφ/2π)vn,k,τ,se
−imφ to the impurity. This form has

departed greatly from the original Vα,τ,j appearing in Eq. (3.4); the relationship is revealed

by expanding in Bessel functions,

vn,k,τ,s =
∑
α=1,2

U †n,α(k, τ, s)
∑
m

eimφV α,k,m,τ (3.9)

V α,k,m,τ =
∑
j

Vα,τ,j(−i)mJm(krj)e
−imφj (3.10)
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where φj is the real-space angle from the position rj of the M atom. To continue, one would

like to integrate and arrive at a relation between vn,k,m,τ,s and V α,k,m,τ , but the angular

dependence in U(k, τ, s) complicates matters. Fortunately, the matrix may be factored into

two distinct parts

U(k, τ, s) ≡M(φ, τ) ·N(k, τ, s) =

 1 0

0 eiτφ

 ·
 χk,τ,s wk,τ,s

τwk,τ,s −τχk,τ,s

 (3.11)

so that the hybridization may be written in the alternate form

HV =
∑
m,τ,s

∫
dk

√
Ωck

2π
×

×


 V 1,k,m,τ

V 2,k,m,τ


T

·

 χk,τ,sc
†
+,k,m,τ,s + wk,τ,sc

†
−,k,m,τ,s

τwk,τ,sc
†
+,k,(m−τ),τ,s − τχk,τ,sc

†
−,k,(m−τ),τ,s

 fs + h.c.

 .(3.12)

Note that the interaction V1,τ,j couples only to the host states with quasi-angular momentum

m, while V2,τ,j couples only to the states with m− τ . Interestingly, this pattern originates

from a gauge choice in the diagonalization of (3.1) so we expect physical quantities be

independent of the actual value of the QAM labels.

The above results reduce to the case of graphene and topological insulator when

the gap and spin splitting vanish, ∆ = λ = 0 [67, 69, 70]. The key new aspect due to the

Berry curvature is the dependence of the hybridization on the angle θk,τ,s which encodes

the nontrivial topology of the states, in addition to the orbital wave-function overlap that

determines Vα,τ,j and V α,k,m,τ .
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3.2.3 Impurity at M Site

We focus on the Kondo effect for magnetic adatoms, where the impurity state is on the

M site and the overlap (3.4) is with only one M atom. Symmetry mandates two classes:

i) orbitals of type I defined as s, pz, dz2 and f5z3−3zr2 couple to orbital |1〉, and ii) type

II orbitals dx2−y2 , dxy, fzx2−zy2 and fzxy couple to orbital |2〉. Therefore the hybridization

strength Vα,τ,j is nonzero for α = 1 or 2 but not both, implying HV enters with trivial

angular dependence. Since the adatom orbitals have maximum overlap with the nearest

M site the hybridization strength is Vα,τ,j = Vα,τδrj ,0. Also, since we are interested in

hole doped systems we project to the valence band. Then the simple form (3.6) for type I

becomes

HV =
∑
k,τ,s

(
v1
−,k,τ,sc

†
−,k,τ,sfs + h.c.

)
(3.13)

with v1
−,k,τ,s = wk,τ,sV1. For the type II case, the corresponding definition will need w →

−τχe−iτφ. The Berry curvature plays a crucial role in determining the coupling: θk,τ,s goes

from the north pole of the Bloch sphere at K (K ′) to the equator as k increases. Thus type

II orbitals couple more strongly to the valence band than type I.

As above, for NRG it is useful to have the hybridization decomposed into QAM

channels. Under the same conditions, the impurity lying on top of an M site gives V α,k,m,τ =

Vα,τ,0δm,0 so the alternate form (3.12) for type I is

HV =
∑
τ,s

∫
dk

√
Ωck

2π

(
wk,τ,sV1c

†
−,k,0,τ,sfs + h.c.

)
. (3.14)

This is clearly just Eq. (3.13) transformed to the new basis with apparently no change. On

the other hand, for type II, we would see the same as above but with w → −τχ, as well as

a shifted QAM label 0→ −τ on the operators. Thus the alternate forms (3.14) and (3.12)
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are equivalent to the simpler (3.13) and (3.6), but with all angular dependence shifted to

the operators with QAM labels. We will not employ this last form until the NRG setup

where it is useful.

3.3 Variational Wave Function

We examine the ground-state properties using the variational wave-function approach. This

method is known to capture the main spin content and energy scale of the Kondo effect,

though further details and exceptional situations may be missed. The full Hamiltonian is

H = H0 + HV , where H0 = Hm + Himp describes the system with the impurity [32, 34],

and HV is written in the form (3.13). All energies are measured relative to the chemical

potential µ.

For large Coulomb repulsion on the impurity level the variational state |ψ〉 includes

the ground state of the pure system |ψ0〉 and states with a singly occupied impurity level

[36, 37]. Since inversion is broken both singlet and triplet combinations must be included1.

Therefore,

|ψ〉 = b0 |ψ0〉+
∑
`

[
p`(f

†
↑c`,↑ + f †↓c`,↓) + t`(f

†
↑c`,↑ − f

†
↓c`,↓)

]
|ψ0〉 (3.15)

where b0 is the amplitude of the ground state in the absence of the impurity, p` is the singlet

amplitude, and t` is the triplet amplitude, giving a total of three variational parameters.

For brevity we use ` = {n,k, τ}. This state can be written more compactly by defining

1See Appendix C for details on the construction of this state and the following variational calculations,
including parameters and the spin of the state.
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B`,s = p` + s t`:

|ψ〉 = b0 |ψ0〉+
∑
`,s

B`,sf
†
s c`,s |ψ0〉 . (3.16)

3.3.1 Variational Parameters

We determine the variational parameters and ground-state energy when the impurity level

sits below the chemical potential, ε0 < 0. The energy is written as 〈ψ|H |ψ〉 = (E0 + ε0 +

ε) 〈ψ|ψ〉 where E0 = 〈ψ0|Hm |ψ0〉, subject to the constraint 〈ψ|ψ〉 = 1. The energy shift ε

is determined by minimization, which then yields the variational parameters,

b0 =
1√
NM

∑
`,s

′ v`,sB`,s
ε0 + ε

(3.17)

B`,s =
1√
NM

v?`,sb0

ε`,s + ε
. (3.18)

The notation
∑′

`,s indicates summation over occupied states states: E`,s − µ ≡ ε`,s < 0.

Solving for ε,

ε = −ε0 +
1

NM

∑
`,s

′ |v`,s|2

ε`,s + ε
. (3.19)

Imposing the normalization 〈ψ|ψ〉 = 1, the singlet/triplet parameters are found in terms of

ε and b0 given by

b0 =

1 +
1

NM

∑
`,s

′ |v`,s|2

(ε`,s + ε)2

−1/2

. (3.20)

Using the above results we state the solution in terms of the original singlet/triplet

parameters: p` = (B`,↑ + B`,↓)/2, and t` = (B`,↑ − B`,↓)/2. In the absence of spin orbit

coupling, every point in k-space is doubly degenerate and we expect the singlet parameters

to survive while the triplet parameters to go to zero. Indeed, for weak spin orbit coupling

(i.e. λ� ∆), to leading order p` ∝ const. and t` ∝ λ.
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For hole doped systems of interest, −∆
2 − λ < µ < −∆

2 + λ < 0. With cutoff

E−1,kΛ,s,s = −Λ, Eq. (3.19) to leading order is

ε = −ε0 + 2 Ωc

∫ kΛ

kµ

dk
|v`,s|2

E`,s − µ+ ε

∣∣∣∣
n=−1
τ=s

. (3.21)

The integrand is strongly peaked at the chemical potential. Thus for |ε| � |ε0|, the shift is

ε ≈ −(Λ− |µ|)eε0/2g(µ)|vµ|2 (3.22)

where g(µ) =
√

3
8πt2
|2µ− λ| is the density of states and |vµ|2 ≡ V 2

1 w
2
µ =

V 2
1
2

(
1− ∆−λ

2|µ|+λ

)
is

the effective type I hybridization, at the chemical potential.

For λ = 0 there is no spin splitting. Thus the density of states is typically doubled

compared to the spin split case studied here. Thus the Kondo temperature is lowered

for large λ[70–72]. In Fig. 3.2 we plot the Kondo energy scale ε as a function of the

inverse hybridization strength times the density of states: V g ≡ V1g(µ) with Λ = ∆ and

ε0 = −∆/20. Results are shown for different TMDs when the chemical potential is halfway

between the spin split valence bands, µ = −∆/2. The larger density of states and a larger

deviation away from the pole of the Bloch sphere leads to an enhanced Kondo scale for

WS2 and WSe2 as compared to MoSe2, revealing the mixed influence of the band and its

topological character.

3.3.2 Spin and Susceptibiltiy

Since time reversal symmetry is not broken, the expectation value of the impurity spin 〈S〉

and the electron spin 〈σ〉 individually go to zero. We verify this by explicitly computing 〈S〉

and 〈σ〉. Since only the m = 0 component of the triplet is admixed, the x and y components
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Figure 3.2: Kondo energy scale for TMDs as a function of the inverse of the hybridization
normalized to the spin splitting and density of states respectively, for the case where the
chemical potential is halfway between the spin split valence bands.

are automatically zero. The z components are given by

〈ψ|Sz |ψ〉 ≡ 〈Sz〉 =
∑
`,s

′
s|B`,s|2 = −〈σz〉 (3.23)

=
∑
`

′
(|B`,↑|2 − |B`,↓|2). (3.24)

The sum is zero due to time reversal symmetry.

The existence of the triplet component implies that the impurity is under screened.

Thus we consider the expectation value of the total spin J2 = (S + σ)2. Due to spin

orbit coupling in the pure system the ground state |ψ0〉 does not have a simple singlet

configuration, so the meaningful quantity is 〈J2〉 ≡ 〈ψ|J2 |ψ〉 − 〈ψ0|σ2 |ψ0〉. Defining also

δθk ≡ θk,+,↑ − θk,+,↓, the difference in polar angle on the Bloch sphere of opposite spin

states,

〈J2〉 = 2

kΛ∑
τ,k=kµ

cos
δθk
2

[
|p−1,k,τ |2

(
cos

δθk
2
− 1

)
+ |t−1,k,τ |2

(
cos

δθk
2

+ 1

)]
(3.25)

≈ cos2 δθµ
2
. (3.26)
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Figure 3.3: The expectation value of J2 is plotted as a function of the effective coupling
that controls the Kondo scale (see Eq. (3.22)).

In Fig. 3.3 we plot the variation of 〈J2〉 as a function of the exponent on the RHS in

Eq. (3.22). For weak hybridization, the resonance is an equal mixture of singlet and triplet

and 〈J2〉 ≈ ~2. The interacting system remains nonmagnetic, as revealed by 〈J〉 = 0,

but fluctuations give 〈J2〉 6= 0. Note that the pure system also has these fluctuations;

the additional contribution from the Kondo mixture alone is given by Eq. (3.25). As the

hybridization gets larger so does the width of the Kondo resonance leading to a decrease in

J2. Since the spin splitting in WS2 and WSe2 is large compared to MoSe2, the deviation

away from ~2 occurs for a larger value of V1 for the former two.

Concluding this section we consider the magnetic susceptibility. Note that the

conservation of the z-component of spin yields an anisotropic susceptibility. For the ground

state considered here we focus on the out of plane response. To do so we couple the magnetic

field to the impurity spin which further splits the energies: ε`,s → ε`,s = ε`,s + µ0hzs. The

only nonzero component of the susceptibility tensor is χimp ≡ χimpzz = d
dhz

µ0〈Sz〉. The zero
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field value is

χimp|h=0 =
2µ2

0b
2
0

NM

∑
`,s

′ |v`,s|2

|ε`,s + ε|3
∼ |ε|−1. (3.27)

Thus a finite spin orbit coupling reduces the Kondo energy scale enhancing the susceptibility.

3.3.3 Optically Excited Kondo State

With the Kondo state and its properties for the simple hole doped case in hand, we next

build a Kondo state starting from an optically excited TMD. Ultimately, we are interested

in the spin properties of the Kondo state formed in the presence of optical excitations,

but first we must build the pure excited state. In this case, for appropriate frequencies

affecting states near the chemical potential ~ω ∼ 2|µ|+ λ, states are taken from the upper

valence bands to the upper conduction bands via spin-preserving vertical transitions that

are k-dependent and highly valley selective[29]. Once the states are excited they can relax

to the conduction band minimum and eventually back to the chemical potential, only to

be excited again. The steady-state Fermi sea with optical excitations depends on all the

scattering rates involved and is thus complicated to determine thoroughly, however we may

construct a simple state that captures the main points.

Due to the valley selective circular dichroism, we allow the valence band valleys to

be unequally populated, the chemical potentials lowered by δτ . Denoting right/left circular

polarization ν = ±, we can write δν−δ−ν > 0 since the primarily activated valley has τ = ν.

Due to the form of transition amplitudes (see Ref. [29]), the shifts are approximately related

by δ−ν = qδν with q = |P− (kµ) |2/|P+ (kµ) |2 and
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|P± (kµ) |2 =

(
m0at

~

)2 (
1± cos θkµ,+,↑

)2
, (3.28)

where m0 is the free electron mass. Since the lower (filled) bands are essentially inert and

valley-selectivity translates to spin-selectivity in the hole doped regime of interest (as in Fig.

3.1), one can interpret the above shifts as a difference in spin up/down chemical potentials,

µ↑ − µ↓ = δ− − δ+ ≈ −νδν .

Remembering the excited states in the conduction band and valley (spin) conser-

vation, we write the sum over conduction band states formally as
∑ex

k with

ex∑
k

1 ≡
kex,τ∑
k=0

1 =

kµ−δτ∑
k=kµ

1. (3.29)

Now the excited Fermi Sea is

|ψex0 〉 =
∏
τ

kex,τ∏
ξ=0

kΛ∏
k=kµ−δτ

c†+1,ξ,τ,τc−1,k,τ,τ |ψ0〉 . (3.30)

With this new ‘ground state’, we can again analyze the Kondo physics and determine the

effect on total spin 〈J2〉. Typically the Kondo bound state forms with the highest energy

states having the largest amplitude, but here the conduction band states are all excited and

short-lived so we focus on the valence band states near the offset chemical potentials. Due

to unequal offsets the valley τ = −ν has higher energy and is dominant; the result is that

the main equations (3.17)-(3.20) simply require shifts ε0 → ε0 + δ−ν and ε`,s → ε`,s + δ−ν .

Despite their simplicity, evaluating the Kondo results (e.g. energy) is not very

straightforward; since the correction to the energy shift is expected to be minuscule we

apply the previous result (3.22) here as well. As for the spin results, conservation of spin
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Figure 3.4: The difference in expectation values of J2 from normal Fermi sea compared
to excited case, plotted against the chemical potential shift in the selected valley, δ ≡ δν ,
compared to the spin splitting λ. The unexcited case is always greater so the difference
shown is always positive.

requires that the system is still nonmagnetic 〈J〉ex = 0 while the total spin 〈J2〉ex ≡

〈ψex|J2 |ψex〉 − 〈ψex0 |σ2 |ψex0 〉 takes an approximate form similar to (3.25). The result is

shown in Fig. 3.4, where we have fixed the value 1/gV = 13 (cf. Fig. 3.2). It is important

to note that we have included the conduction band in J; if one is looking only at the valence

bands, Jval, the equivalent result is that the spin is not changed upon introduction of the

impurity: 〈Jval〉ex = 〈Jval〉ex0 .

Interestingly, the valley/spin specificity of optical excitations is not the controlling

factor for the properties of the this variational state. Indeed, the result for tuning the spin

state is independent of which circular polarization is used. Rather, the key factor is the

further deviation of the Bloch angles from the pole as one effectively lowers the chemical

potential in either (or both) valleys. The spin state in each valley is still an equal mixture

of singlet and triplet (as mandated by the hole-doped band structure) so we are required to
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still have 〈J2〉 ≈ ~2, with any difference due to the projection to eigenstates (i.e. the Bloch

angles).

3.4 Numerical Renormalization Group

The case of a magnetic impurity in a Fermi sea with effectively offset spin up/down chemical

potentials is of particular interest. The variational method above, which ought to present

the main features of the ground state, ignores all doubly-occupied states and may miss

crucial features of the offset system; specifically, only combinations with zero spin along z

are allowable in the state (3.15) even in the case of an excited Fermi sea. Thus in this section

we assess the same system, including both zero and finite offset of chemical potentials, using

Wilson’s numerical renormalization group (NRG) method [38].

Before entering the discussion we explain the focus of our NRG study. We are inter-

ested in aspects of the ground state, such as the spin structure, of the Anderson Hamiltonian

in hole-doped monolayer TMDs. In particular, we are interested in the possibility of tuning

the properties of the many-body Kondo bound state by application of circularly polarized

light. This is possible, in principle, because of the topological nature of the low-lying states

in monolayer TMDs which allows for optical transitions between two bands of d character

and which endows the transition rates with strong valley-selectivity with circular polariza-

tion [29]. To capture the main point, we depart from the picture of Sec. 3.3.3 and consider

only the upper valence bands which actually cross the chemical potential. These bands are

identical in form but have opposite spin and live in opposite valleys in momentum space.

As stated in the previous, valley-selectivity translates to spin-selectivity so one may imagine
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that the steady-state system created by application of light forms a Fermi sea with unequal

chemical potentials for spin up/down; this effective difference in chemical potentials is now

denoted δ, and the midpoint of the potentials µ. In terms of the previous section, the scale

is δ ∼ δν and the chemical potential top is raised slightly (so that the new midpoint is at the

top). We use δ > 0 for higher spin up occupation, i.e. the excitative circular polarization

is given by ν = −sgn (δ).

Below, we describe the usual projection of the initial problem onto a semi-infinite

linear chain with nearest-neighbor hoppings and the impurity situated at the end. Next,

we describe how interesting quantities are calculated; the total spin J2 is difficult to obtain

within NRG, particularly for our spin-split system, so the critical quantities include entropy,

spin Jz, and the impurity spectral functions. Results for the unexcited (zero offset) case are

presented alongside the initial definitions, whereas those for the excited case are presented

in the final part of this section. Numerical parameters are set to match the conditions of

the variational state from the previous section, with specifics stated prior to the results for

the excited case, Sec. 3.4.5.

3.4.1 Generic Setup

To begin with, we use a simplified model considering only the valence bands that cross the

chemical potential, taking the lower spin-split bands to be completely filled and inert. This

simplified picture is most applicable when the spin-splitting is largest, so the most appro-

priate materials are WSe2 and WS2. To begin with, we modify the Anderson Hamiltonian
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by using nf,s (nf,s − 1) = 0 [39],

H ′ = H −
∑
s=↑,↓

µsNs (3.31)

=
∑
k,s

[
(Ek − µs) c†k,sck,s +

(
vαkc
†
k,sfs + h.c.

)]
+
∑
s

(ε0 − µs) f †sfs + Unf,↑nf,↓ (3.32)

= Hm +Hα
V +

∑
s

(
ε0 − µs +

U

2

)
f †sfs +

U

2

(∑
s

nf,s − 1

)2

− U

2
(3.33)

where the number operators are Ns = nf,s +
∑

k c
†
k,sck,s, and Hm and Hα

V are the material

(TMD) and hybridization Hamiltonians as in (3.5) and (3.13), respectively. The remaining

terms (aside from U/2) are now collected to form Himp. The chemical potentials are µs =

µ + sδ/2 so that the difference is δ. The low-energy model leading to Hm is only valid

within a cutoff, |Ek| < Λ of the order of the gap ∆. Offsetting about the hole doped

chemical potential, we set D = Λ+µ as the effective cutoff and we note the top of the band

e0 = E(0)− µ so that −D < E(k)− µ < e0.

As in the previous sections, we use the most basic form of hybridization with the

impurity sharing a metal (i.e. W, Mo) site with type α = 1 or 2 orbital. The operators

appearing in Hm and Hα
V above refer only to the upper valence band, with labels n = −

and τ = s.

Moving out of discrete k-space, we construct effective states labeled with energy

ε relative to the chemical potentials. Specifically, we use the quasi-angular momentum

(QAM) operators as in Eq. (3.14); to complete the transformation to energy one simply

uses the density of states g(ε). In doing so we are moving to continuous space, and we

concentrate on the states hybridizing with the impurity, i.e. those with QAM m = 0 for

type I or m = −τ for type II. The remaining states, those with QAM labels not appearing
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in Hα
V , are treated as inert just like the lower valence bands — all such states are ignored

here as they will not be affected by the presence of the impurity. Once in continuous energy

space we rescale to the dimensionless variable ξ = ε/D. After the above steps, we have a

new Hamiltonian

H ′

D
=

∑
s

∫ es

−`s
dξ

[
ξ c†ξ,scξ,s +

√
Γ

πD

(
c†ξ,sfs + h.c.

)]

+
1

D

∑
s

(
ε0,s +

U

2

)
nf,s +

U

2D

(∑
s

nf,s − 1

)2

(3.34)

where we have the bottom/top of the rescaled bands `s = 1+sδ/2D and es = e0/D−sδ/2D,

effective impurity levels ε0,s = ε0− sδ/2, and half-width Γ = πg(µ)|vαµ |2 (the type label α is

dropped). The terms on the second line form Himp/D. The new Hamiltonian is a recasted

duplicate of (3.33); it is an exact transformation for the upper valence band only TMD

model under consideration (other than the irrelevant constant U/2 and inert states).

Proceeding, we make our first approximation: we re-discretize energy space into

logarithmic intervals approaching each chemical potential2. The reason for this step is to

catch the logarithmic divergences that are expected at low temperatures — each interval

will contribute an equal amount to integrals like
∫ −kBT/D
−1 dξ/ξ. Specifically, one chooses

intervals at positive and negative ‘energy’ labeled by n = 0, 1, 2, ... approaching zero[39]

esR
−(n+1) < ξ < esR

−n (3.35)

−`sR−n < ξ < −`sR−(n+1) (3.36)

where R > 1 is the discretization parameter3. The continuous limit is obtained by taking

R→ 1, although it is established that the approximation works well for up to R = 3. With

2See Appendix D for details on this and the following transformations.
3The notation here is different from that of Ref.s [39, 41] and others since we have already used their

symbol, Λ, for the model energy cutoff.
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positive/negative energy operators an,s and bn,s corresponding to the left/right of (3.36),

respectively, we can write an approximate version of the Hamiltonian:

H ′

D
≈ 1 +R−1

2

∑
n,s

(
esR

−na†n,san,s − `sR−nb†n,sbn,s
)

+
HV

D
+
Himp

D
. (3.37)

We now have the band (bath) operators appropriately discretized to focus on

states near the chemical potentials and that part of the Hamiltonian is diagonal, but the

interaction with the impurity involves a different state:∫ es

−`s
dξ c†ξ,s =

∑
n

√
1−R−1

Rn

[
(es)

1/2a†n,s + (`s)
1/2b†n,s

]
(3.38)

≡ (1 + e0/D)1/2 d†0,s. (3.39)

The state created by d†0,s is interpreted as the zeroth site of a semi-infinite chain, which has

the impurity coupled to it. To construct operators d†m,s for the remaining sites m = 0, 1, 2, ...

the Lanczos procedure is used[34, 41, 66]. Note that since the bath part of (3.37) is diagonal,

it will necessarily become non-diagonal when transformed to the new basis; the goal of the

Lanczos procedure is to create states orthogonal to the m = 0 state (3.39) such that the

Hamiltonian is as close to diagonal as possible, i.e. with only nearest-neighbor hoppings.

Skipping to the result (see Appendix D.2 for details),

H ′

D
≈

∞∑
m=0

∑
s

(
εm,sd

†
m,sdm,s + tm,s

(
d†m+1,sdm,s + h.c.

))
+

√
Γ(1 + e0/D)

πD

∑
s

(
d†0,sfs + h.c.

)
+
Himp

D
(3.40)

where the site energies/hoppings εm,s and tm,s must generally be determined numerically.

From here, we must consider how to handle the still-infinite number of degrees of

freedom. In the following we describe the main NRG iterative diagonalization procedure,

and later we get corresponding physical quantities.
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3.4.2 Iterative Diagonalization

The starting point of this section is the semi-infinite chain Hamiltonian (3.40). Since we

cannot handle an infinite number of sites, we consider breaking the chain off at some site M .

Previous experience tells us that hoppings scale as R−m/2, so we rescale the Hamiltonian

by something ∝ RM/2 to make each new site enter the system with order unity[38, 39].

Specifically, we write

HM =
2

1 +R−1
R(M−1)/2

[∑
s

(
M∑
m=0

εm,sd
†
m,sdm,s +

M−1∑
m=0

tm,s

(
d†m+1,sdm,s + h.c.

))

+ Γ̃1/2
∑
s

(
d†0,sfs + h.c.

)
+
∑
s

δ̃f,snf,s + Ũ

(∑
s

nf,s − 1

)2
 (3.41)

where Γ̃ = Γ(1 + e0/D)/πD, δ̃f,s = (ε0,s +U/2)/D, and Ũ = U/2D. Now, the semi-infinite

Hamiltonian is recovered with

H ′

D
= lim

M→∞

[
1 +R−1

2
R−(M−1)/2HM

]
. (3.42)

Furthermore, we can write a simple recursion relation to build the M + 1 Hamiltonian from

the previous:

HM+1 = R1/2HM +
2RM/2

1 +R−1

∑
s

(
εM+1,sd

†
M+1,sdM+1,s + tM,s

(
d†M+1,sdM,s + h.c.

))
.

(3.43)

Rather than go into details, like building each Hilbert space (see for example

Ref.s [39, 66]), we simply remark on the general methodology of the iterative procedure.

One begins with the simplest chain consisting only of the impurity and the zeroth chain

site coupled to it (H0) and the system is numerically diagonalized in Fock space, broken

down by subspaces. To label the subspaces, one notes that the number of spin up/down
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is conserved; the operators Ns = nf,s +
∑

m d
†
m,sdm,s commute with the Hamiltonian. For

convenience, one chooses the subspace labels of ‘charge’ Q =
∑

sNs − (M + 2) and spin

Jz = (1/2)(N↑ −N↓).

Once the initial M = 0 Hamiltonian is diagonalized in each subspace, the M = 1

Hamiltonian is constructed by extending the previous eigenspace to include the new site

and using Eq. (3.43). The only problem with this approach is that the Hilbert space grows

by a factor of 4 with each additional site; the total number of states to describe up to site

M is 4M+2, since each site has spin up/down slots which can be either empty or filled. To

deal with this, one chooses some number of states to keep and throws out everything above

the energy of the last state (keeping degenerate states). The number of states one must

keep is related to the choice of discretization parameter R > 1; approaching unity is the

same as approaching continuity so one must keep a larger number of states to describe the

system accurately. Typically, a choice of R = 3 requires about 400 states whereas R = 2.5

requires 600 or more. The rate of convergence is also influenced by R (larger is faster), so

for the sake of time and memory usage we choose R = 3 and 400-425 states4.

With the truncation step, the number of states is always numerically manageable

so one can repeat the steps of diagonalization, truncation, and Hamiltonian construction

until a sufficiently large site M is reached. How large do we need? Again, it depends on

the size of R — the larger the value, the faster the procedure converges, leading to fewer

required iterations/sites. Generally one must iterate until the system has stabilized, as

revealed particularly by vanishing differences in the energy spectrum in going from M to

M + 2. Also, one must note that finite-size effects create oscillations in various results for

4See Appendix D.3 for demonstrations of convergence.
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even/odd total sites; for thermodynamic results (next) we will interpolate and average the

even/odd curves to get a better curve for the system. To do even better, one could employ

a z-averaging technique to use fast computations with R = 4 − 10 and obtain properly

averaged results[41], however this would require the numerical Lanczos procedure to be

repeated at each z and we really only require accurate qualitative results, so the simple

even/odd average should be sufficient.

3.4.3 Thermodynamics

Now that we have built a reliable way of solving the finite systems of any size (within

reason), we can use the information to extract thermodynamic and other quantities. First

we note that, because of the rescaled form (3.42), we must be careful about calculating

the partition function and thermodynamic averages. The appropriate form of the partition

function is

Z(T ) = Tr exp
(
−βH ′

)
= lim

M→∞
Tr exp

(
−βMHM

)
(3.44)

≡ lim
M→∞

ZM (T ) (3.45)

where β = 1/kBT is the usual inverse temperature while βM = ((1+R−1)/2)R−(M−1)/2D/kBT

is a rescaled dimensionless version. Since the states are actually truncated, each step in-

troduces an error in calculated states and higher energies should be neglected by choosing

a lower temperature. Denoting the maximum energy scale of the finite system K(R), the

replacement of Z by ZM is a good approximation provided that [41]

1/K(R)� βM � R. (3.46)
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Choosing R = 3 one has K(R) ∼ 10, so a good choice is to fix βM = 1/2 so that the

condition is satisfied with 0.1 � 0.5 � 3. In this case, we are effectively considering a set

of temperatures which are decreasing exponentially with the number of sites M included:

kBTM/D = (1 +R−1)R−(M−1)/2.
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Figure 3.5: Impurity occupation in the unexcited case, δ = 0, for several choices of U at
fixed Γ (see Sec. 3.4.5 for parameter details). The occupation is diminished or enhanced
from 1 due to the asymmetry of the impurity level about the chemical potential.

Next, we simply write some of the quantities of interest to us. Impurity properties

are the main focus, so first we consider the average occupation of each spin

〈nf,s〉 = Tr
[
nf,s exp

(
−βMHM

)]
/ZM =

∑
q

〈q|nf,s |q〉 exp
(
−βMEq

)
/ZM (3.47)

where we have introduced eigenstates |q〉 with energies Eq (in the space up to site M).

In order to calculate such objects, one must keep track of the matrix elements 〈q|nf,s |q〉

projected to the eigenspace the each successively longer chain. With matrix elements and

energies in hand, quantities like (3.47) are straightforward to calculate, giving impurity

occupation and spin values 〈nf 〉 =
∑

s〈nf,s〉 and 〈sz〉 = (〈nf,↑〉 − 〈nf,↓〉)/2. To display the
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typical behavior in our case, we show in Fig. 3.5 the impurity occupation for WSe2 with

equal chemical potentials (the spin is omitted because it is identically zero in this case).

Since the system is broken down to ‘charge’ Q and total spin Jz subspaces, their

averages are very simple to obtain — sums like (3.47) are calculated in each subspace (each

with fixed Q, Jz), which are then totaled. The same can be done for powers, e.g. J2
z .

To assess the nature of the low-temperature system, i.e. the formation of a bound

singlet state, we are also interested in the impurity contributions to entropy and susceptibil-

ity. To calculate those we actually find the results for the system as a whole, then subtract

the part arising from the band (bath) alone without the impurity [38, 66]:

Simp = Stotal − Sb ; χimp = χtotal − χb. (3.48)

To compare the spin Jz to the variational results, one would also like to subtract the spin of

the chain without the impurity 〈Jz〉−〈Jz〉b but we find that the same quantity is accurately

given by the impurity spin 〈sz〉 as one might expect.

Also, we wish to avoid derivatives of the free energy (to minimize numerical errors)

so we use the alternative form of entropy

Stotal/kB = β〈H ′〉+ lnZ = βM 〈HM 〉+ lnZM (3.49)

where the average energy is very simply 〈HM 〉 =
∑

q Eq exp
(
−βMEq

)
/ZM . For the sus-

ceptibility, we use the fluctuation-dissipation theorem to write

χtotal/(gµB)2 = β
(
〈J2
z 〉 − 〈Jz〉2

)
. (3.50)

As stated above, the impurity contributions are found by subtracting the values arising

from the system with no impurity site. One may calculate those pure-chain values by hand,
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Figure 3.6: Impurity entropy (top) measured in units of kB ln 2 and susceptibility (bottom)
in units of (gµB)2/kBT , in the unexcited case. The trends are typical (as in fig. 6 of Ref.
[41]), except for the asymptotic value of susceptibility.

but for numerical consistency we choose to run a separate NRG procedure for the chain

without the impurity. Results in Fig. 3.6 for the unexcited case of WSe2 reveal rather

typical behavior for the Anderson model within NRG, except that we have a nonzero value

of Tχ as T → 0 revealing the persistence of a local moment.

In addition to providing information about the formation or persistence of a local

moment, we can follow Wilson[38] to obtain the Kondo temperature scale from the shape of
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Figure 3.7: The Kondo temperature as given by Wilson’s relation for the unexcited case of
WSe2 at a few U/Γ. The trend of increasing TK at decreasing U/Γ is due to the proximity
to the strong-coupling fixed point in parameter space.

the susceptibility curve; TK is the temperature at which kBTχ/(gµB)2 = 0.17/3 ≈ 0.0567.

We show in Fig. 3.7 the temperature obtained in this way for a few values of U/Γ in the

unexcited case.

One way to explain the increasing temperature with decreasing U is to recall NRG

flow diagrams (as in fig. 8 of Ref. [39]) which reveal the fixed points and their stability. The

final configuration for basically any starting point is the strong-coupling (U → 0,Γ → ∞)

fixed point, at which the impurity is fully bound. For small U/Γ, a local moment is never

formed (i.e. the flow stays away from the local moment fixed point) and the impurity is

easily bound so the Kondo temperature is higher. On the other hand, large U/Γ places

the system very near to the local moment fixed point so that the flow initially gives a local

moment, and only after more iterations does the system begin to approach the strong-

64



coupling fixed point, so the Kondo temperature is lower. This point is not just useful for

the temperature scale; the same description from the flow diagram also nicely explains the

susceptibility and how it changes with various U/Γ as seen in Fig. 3.6, the presence and

size of the bump at moderate temperatures revealing the formation of a local moment.
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Figure 3.8: Impurity entropy (top) measured and susceptibility (bottom) for three mono-
layer TMD materials. They are all in the unexcited case, and with fixed U/Γ = 9. The
trends are explained in the same way as for Fig. 3.6.

To compare across materials, we present in Fig. 3.8 the entropy and susceptibility
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for three TMDs (recall MoS2 is excluded). One can see that, despite the constant ratio

U/Γ = 9, the materials look like they have local moment regimes of varying intensity.

This is actually due to the topological content captured by the Bloch angles appearing in

the effective coupling to the impurity, i.e. the w = sin(θµ/2) of (3.13) and (3.14). The

angle θ approaches zero as the chemical potential approaches the lower valence band top,

the distance from which given by the magnitude of the spin-orbit coupling λ. Thus the

tungsten compounds with larger λ start off with larger Γ and their NRG trajectories form

relatively weaker local moments, quickly going to the strong-coupling fixed point. On the

other hand, MoSe2 has the smallest spin splitting and hence the smalleset deviation of the

Bloch angle from the pole so its NRG trajectory begins close to the free orbital fixed point

(U = Γ = 0), leading quickly to a strong local moment and very slowly to the strong-

coupling point. This pattern among the three materials and the explanation related to the

Bloch angles is consistent with the discussion in Sec. 3.3.1, following Eq. (3.22).

3.4.4 Spectral Function

Next we turn to the impurity spectral function. The T = 0 spectral function is given by

[42, 66]

As(ω) =
1

Z(0)

∑
q

[
|〈q| fs |0〉|2 δ (ω + (Eq − E0)) + |〈0| fs |q〉|2 δ (ω − (Eq − E0))

]
(3.51)

where the energies Eq are referring back to the full system H ′ as in (3.40). We are primarily

interested in ground-state properties so we use the T = 0 spectral function only, in which

only states differing from the ground state by one particle and one unit of spin appear:

|Qq −Q0| = 1 and |Jz, q −Jz, 0| = 1/2. If one is interested in the spectral function for T 6= 0
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then one must consider combinations between all states with such differences in Q and Jz,

and the following construction becomes much more involved[42].

In order to construct a spectral function within NRG, one must obviously keep

track of matrix elements of impurity operators fs projected to the eigenspace of each succes-

sive chain. Additionally, the energy range must be restricted for each M since each iteration

reduces the energy window in which results are accurate. The restriction cuts off the low

energies which are yet to be obtained from larger M and cuts out the high energies which are

already accurately described from previous M . Setting ωM = ((1 + R−1)/2)R−(M−1)/2 =

βM/(Dβ), the ranges are roughly ωM < |ω| < K(R)ωM .

Furthermore, the energy ranges for different M will overlap and one must properly

combine the spectral function aplitudes without double counting and while maintaining the

accuracy of low-energy states. There is a well-defined method for this purpose [42], which is

described as follows. Consider chains M and M + 2 (recall that even and odd are separated

due to finite size effects): the overlap region will involve the higher energies from M + 2

and the lower energies from M . Since its accuracy is at lower energy, the M + 2 spectral

function is weighted in the overlap region with a linear distribution going from one down

to zero towards higher energy. Conversely, the M spectral function is also weighted in the

overlap region but its line is zero at the lower end and rises to one in joining with the values

at yet higher energy. After adding the weighted M and M + 2 spectral functions, we have

a description over a larger energy range with appropriate emphasis and without double

counting (the sum of the linear distributions is unity). One can thus build a total spectral

function covering the full energy range by adding all even/odd functions as described up to
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some maximum chain length. Still, one will observe some difference between the even and

odd functions. To complete the total function the even and odd results are simply averaged,

A = (Aeven +Aodd)/2.
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Figure 3.9: Impurity spectral functions for the unexcited case, with fixed U/Γ ≈ 4.9. The
spin up/down results overlap due to preserved time-reversal. They are consistent with
conventional models[34], as expected from the metal-like structure of our model and choice
of parameters.

As a final step, we must have some way to interpret the δ-peaks appearing in

(3.51). There are many different options for broadening functions; here we replace the

peaks with Gaussians

δ (x)→ 1√
πη2

M

exp
(
−x2/η2

M

)
(3.52)

where the widths are ηM ≈ ωM . This final step gives final, accurate, and smooth spectral

functions for the impurity. When plotting these, because of the exponentially decreasing

widths, it is beneficial to sample the energies logarithmically so that most sample points lie

near ω = 0. The above construction leads to final spectral functions, representatives shown

in Fig. 3.9 for our case with equal chemical potentials in WSe2.
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It is worth noting here the way to check the accuracy of the above construction.

The spectral function should obey the Friedel sum rule,
∫ 0
−∞As(ω) dω = 〈nf,s〉, with the

occupations 〈nf,s〉 given by Eq. (3.47). It is well documented that the conventional con-

struction above works well on a qualitative level but may disobey the rule quantitatively;

typically the difference is quite small (a few percent) for models with time-reversal symme-

try, but it can be very significant (∼ 20%) when a magnetic field or other spin dependence

is introduced (see fig. 10 of Ref. [41]). This quantitative discrepency can be remedied by

using a reduced density matrix method for calculating the spectral function, which enforces

the Friedel sum rule by construction, but the overall shape and behavior is unchanged so

we stick to the simpler conventional method here.

3.4.5 Numerical Results

Recall that in our model system we can have slightly different chemical potentials in the

two valleys due to optical excitation, and with spin-splitting and time-reversal this implies

effectively spin-dependent chemical poentials. The effective difference is denoted δ = µ↑−µ↓,

and the midpoint of the potentials is µ = (µ↑ + µ↓)/2.

For the numerical results we would like to compare as closely as possible to the

variational case, we take µ = −∆/2 (midway between the spin-spit valence bands) and

include several cases δ = 0, δ = ±λ/10, and δ = ±λ/5 (see Eq. (3.1) for a reminder of the

band parameters). As in the variational section we take the impurity to be slightly below

the chemical potential ε0 = −∆/20, placing the model in a “mixed-valence” regime[34].

Note that we should have δ/2 < |ε0| to make sure that the impurity level is still below

both chemical potentials; the largest splitting parameter is λ ∼ ∆/6 so the condition is
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satisfied with 1/60 < 1/20. Also, using an absolute cutoff energy scale Λ = ∆, the effective

cutoff relative to µ is D = ∆/2. To make sure we can comfortably neglect the hybridization

of the lower (filled) valence bands, we choose for now the material with the largest spin-

splitting: WSe2. For the width Γ we need the hybridization strength so we set V1 = t/2

for type α = 1 coupling, i.e. half of the hopping energy associated with the TMD, leading

to Γ/D ≈ 0.051. Lastly, we allow the Coulomb repulsion U to vary but we fix it at a

benchmark value U = ∆/8 = D/4, giving U/Γ ≈ 4.9, unless otherwise stated.

Before jumping to the results, we recall a vital difference between this case and

other asymmetrical cases. A typical “asymmetrical” model[40] has the impurity level set

away from −U/2 so that the impurity term of (3.41) has δ̃ 6= 0, but the band is kept

symmetric, i.e. the energy is on the interval [−D,D]. Here, we have δ̃ 6= 0 (and spin-

dependent in the excited case) but we also have the chemical potential close to the band

top so that our energy interval is [−D, e0] with e0 < D, making our model have site energies

εm 6= 0 as well.

We begin the presentation of results for the excited case, with chemical potential

offset δ 6= 0, with thermodynamic quantities. To deal with oscillations between even/odd

chain length M , due to finite-size effects, we find separate interpolation functions and take

the average. We consider four values of δ, a pair of equally spaced values δ/λ = 1/10 , 1/5

and their negative counterparts, along with the zero offset values from the previous section.

The choice allows for a rough idea of how various quantities vary with the offset δ while

still keeping both chemical potentials above the impurity level.

The entropy and susceptibility, Fig. 3.10, show little difference compared to those
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Figure 3.10: Impurity entropy and susceptibility in the excited system for various offset
δ. The numerical values are as described at the beginning of this section. The rightward
evolution reveals increasing TK .

of the previous Fig. 3.6. The susceptibility lands higher as the temperature is decreased,

corresponding to a larger moment surviving at T = 0. Also, both suggest an increasing TK

with δ since the asymptotic values are approached more quickly; indeed that is what we

observe in Fig. 3.11. The reason for the larger moment is obvious, but the larger Kondo

temperature may not be so obvious. Apparently, due to the difference in energies for spin

up/down, the system is rapidly pushed in the direction of the inevitable moment and TK
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Figure 3.11: The Kondo temperature in the excited case at a few δ. The increasing values
away from δ = 0 suggest effectively larger Γ with increasing magnitude of δ, pushing the
starting point closer to the strong-coupling fixed point.

is increased.

Examining impurity properties further, the occupation 〈nf 〉 ≡ 〈nimp〉 and spin 〈sz〉

are presented in Fig. 3.12. Recall that the impurity spin 〈sz〉 here is essentially the same

quantity as the difference 〈Jz,val〉ex−〈Jz,val〉ex0 from the above variational results, Sec. 3.3.3,

which was identically zero there even with a nonzero offset. Here, we see a more expected

result: the spin is polarized overall with sign and magnitude reflecting the difference δ. As

for the occupation, the value is increased because one of the impurity levels (up or down)

is effectively deeper below its chemical potential, increasing the occupation of that spin,

while the other is shallower but still remains below, preventing its value from decreasing

too much. One may also be interested in the bump at moderate temperatures which shrinks

with increasing δ; it aligns closely with the bump in susceptibility which marks the point
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Figure 3.12: Impurity occupation (top) and spin (bottom). The nonzero offset polarizes the
spin as expected. The occupation is increased with larger δ because one chemical potential
becomes more distant from the impurity level.

at which the system begins to depart the local moment neighborhood and heads toward

the strong-coupling fixed point. Similarly, the average occupation will drop as the local

moment is formed since double occupation is not present there (the effective U/Γ becomes

very large), while the approach to strong-coupling allows for a growth of occupation (now

U/Γ→ 0) if the effective depth of the impurity is large enough.

To better understand the spin at T = 0, we show in Fig. 3.13 the impurity spin
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Figure 3.13: The impurity spin at T ≈ 0 shows some familiar dependence on δ. This result
is equivalent to the shift in total spin Jz,val from the variational calculation, revealing a
sharp contrast between the results.

at the lowest available temperature plotted against the offset δ. Our offset choice results in

only five points total, but the trend is reminiscent of the familiar hyperbolic tangent for a

paramagnetic system with δ playing the role of magnetic field. The big point here, however,

is that the impurity spin (and hence the shift of the total spin) varies monotonically with

the offset, in contrast to the corresponding variational results.

Finally, we come to the spectral functions for the excited case. A representative

with both spins together is shown in Fig. 3.14. As stated during the construction of the

spectral function, the spin polarization is typically under-approximated unless one employs

reduced density matrices, but the qualitative spin polarization is very clear. The spin up

chemical potential is higher for δ > 0 leading to an effectively deeper impurity level; the

resultant increase in occupation appears as a more pronounced bump in A↑(ω) at negative
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Figure 3.14: Impurity spectral functions for the excited model at δ/λ = 1/5. The qualitative
form is consistent with expectation, and is distinct from the variational result. The Friedel
sum rule is satisfied within ∼ 20%.

ω, alongside a very diminished amplitude for positive ω. We see that the impurity is

tightly bound for spin up, but almost completely unbound for spin down, in qualitative

agreement with the large impurity spin seen in Fig. 3.12. This behavior is suggested by

the variational result, although here the spin difference is much more significant and it does

not get cancelled out by a counter-reaction from the band (bath) electrons.

One may like to view the spectral functions together for all the chosen offsets.

For clarity, in Fig. 3.15 we plot the spin up/down functions separately, side by side, and

we make the figures as large as possible. It is very clear that the pattern is repeated as

expected for all the given offsets δ.
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Figure 3.15: The impurity spectral functions at various δ, for spin up (top) and down
(bottom). The pattern of Fig. 3.14 is repeated as expected, with a reversal of roles as δ
becomes negative.

3.5 Comparison of Methods

The two methods used to explore the Kondo effect in monolayer TMDs, a variational

ground state and NRG, have yielded some very contrasting results but they still have much

in common. For example, the temperature scale in the variational method (for WSe2 with
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the parameters of the previous section) is ∼ 2− 4 K, and we found that in NRG at large U

the scale is roughly in agreement at & 4 K. Also, the primary spin content for the impurity

and the system as a whole is the same (zero) in both methods so long as the excitative

circularly polarized light is not shining. We do not have a J2 to compare, but in NRG the

nonzero value of susceptibility Tχ as T → 0 suggests that there is s some moment surviving

with Jz = 0, apparently agreeing with the variational result. Since NRG is a widely used

and trustworthy method[34, 38, 39, 41, 42, 66], these agreements give some grounding of

truth in the variational state.

The differences between the two methods really become apparent once the system

is excited by the appropriate circularly polarized light, under the right conditions giving the

impurity a spin preference when hybridizing with the bath electrons. A common thread is

that the impurity spin 〈Sz〉 becomes polarized in either method, but the magnitude is much

larger in NRG. Also, the variational method leads to a conservation response from the bath

electrons, cancelling out the polarization of the impurity, but this is entirely absent from

NRG. In fact, the spin in Fig. 3.13 is representative of the change in total spin 〈Jz〉− 〈Jz〉0

due to the presence of the impurity and reveals a paramagnetic character, rather than the

static nonmagnetic character of the variational state. Correspondingly, we see in Fig. 3.10

an increase in the low-temperature part of Tχ with the magnitude of the induced offset

δ, signaling an increase in J2 from the development of a moment on the impurity along

z; meanwhile, we saw almost no shift in J2 in the variational method (Fig. 3.4), with

the only change being due to the varying distance from the Bloch pole with offset δ. It

appears that the variational wave function (3.15), forced to have only components with z

77



spin m = 0, cannot capture the polarized state that should arise, according to NRG, when

optical excitations offset the chemical potentials.

The spectral functions from the NRG method offer further information that was

not available in the variational method. As we saw in Fig. 3.9, the case that is not excited by

light displays rather conventional features for an impurity level in the mixed-valence regime,

with its energy level placed relatively close to the chemical potential. Once the chemical

potentials are offset, however, the spectral functions are split but they appear very different

from simply applying a magnetic field[73]. Because we are shifting the impurity levels

ε0 and the bath (or chain) levels εm, we see a preservation of the sharp resonance peak

corresponding to the spin at higher chemical potential, while the lower chemical potential

leads to a greatly diminished peak for the opposite spin. Of course the sign of offset acts like

the sign of some kind of magnetic field so in Fig. 3.15 we see the appropriate role-reversal

of spin up and down, along with the gradual disappearance of the sharp peak for one of

the spins as δ is increased. It is worth noting also that the appropriate sharp peak, while

preserved, is actually shifted slightly in the expected direction as δ is increased (note the

difference in sign between our effective field and the H of ref. [73]).

3.6 Conclusions

TMDs provide an exciting new venue to study the interplay of spin orbit coupling, topol-

ogy and correlations. While prior studies on two dimensional systems have focussed on

Rashba spin orbit coupling [74, 75] predicting an increased Kondo temperature, a more

general analysis in noncentrosymmetric metals showed that the conclusions deduced from
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them were not universally true [71]. In TMDs we have a particular realization of Dres-

selhaus spin orbit coupling that leads to a lowering of the Kondo scale which arises from

the reduced density of states due to spin splitting, reduction of effective band width, and

suppression of hybridization due to Berry curvature. The dominant hybridization channel

is also determined by the symmetry of the impurity state and the Berry curvature. The

finite triplet admixture assures the resonance contains spin fluctuations though it remains

nonmagnetic under normal conditions. Furthermore the composition of the Kondo cloud

can be tuned by circularly polarized light leading to a (steady-state) optically excited Fermi

sea.

Apparently, due to the shortcomings of the variational state, one must use a more

systematic approach like NRG to correctly capture even the qualtiative behavior of the

excited system. In particular we have found that the spin content of the ground state in the

presence of dilute magenetic impurites, usually described by a Kondo singlet, is described

by a mixed singlet and m = 0 triplet state, and from NRG we infer that m 6= 0 triplet

components are added when the Fermi sea is excited to give an offset δ 6= 0. We thus have in

monolayer TMDs a Kondo effect with triplet contributions and whose magnetic/spin content

may be tuned by the application of circularly polarized light, allowing for optomagnetic

manipulation and providing a new route for studying Kondo phenomena.
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Chapter 4

Conclusions

This work has gone through some case studies on the subject of topological phases and

phenomena in materials. A lot of ground has been covered, so here we restate the main

findings.

4.1 Diagnostics of Nodal Semimetals

In the first case, explored in Chapter 2, we have examined an interesting instance of a nodal

semimetal called a line-node semimetal. The phase is realized by the heterostructure of

alternating topological/normal insulator layers proposed previously[2, 25], but the direction

of magnetic coupling is switched to be in-plane. We have assessed the band structure by

looking at the energy near the node, going perpendicular to the curve, which revealed a

linear dependence up to a particular distance away from the node dependent on the position

along the curve. For very open (almost straight) curves, the result of very large magnetic

coupling, the outcome is invariant in the kz direction and the linear trend means that a
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graphene-like dispersion is obtained. As one might expect, the similarity of open curves to

graphene leads to a conductivity which is independent of the magnetic coupling, providing

an asymptotic value.

As discussed in Chapter 2 and Appendix B, the line-node semimetal requires the

Self-Consistent Born Approximation in order to calculate the conductivity using the Kubo

formula. In this work we utilize the previous calculations[25] on the point that the density

of states g(ε) is linear in energy, but the slope of that line is determined by numerically

calculating the volume of the Fermi surface N(ε) whose derivative gives the density of

states. The slope, and correspondingly the conductivity σ, grows with increasing magnetic

coupling m although the details of the growth differ from the simple approximation σ ∝ m,

particularly at very small and very large coupling.

The manipulation of the line-node, its size and whether or not it’s closed, is easily

demonstrated by changing the magnitude of magnetic coupling. Since the coupling may

originate in ferromagnetic insulators (such as EuO), it can be modified with temperature

changes and thus the Fermi surface itself can be tuned. One can observe this via the

transport as described above, or the Fermi surface can be probed directly by looking at

magnetic (de Haas-van Alphen) oscillations. We map out the frequencies of oscillation in

1/B as the field B is varied, which are related to the extremal areas of the Fermi surface.

Interestingly, there is a particular point where the Fermi surfaces changes its topology from

that of a torus to that of a sphere, effectively doubling the frequency.

The exploration of this exotic topological phase has several lessons, but the com-

mon thread is that everything is tunable. This case was focused on a noninteracting system
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(aside from some potential scattering), but it displayed some striking tunable features which

could, in principle, be accessed experimentally.

4.2 Kondo Effect in Exceptional Circumstances

In the second case of this work, discussed in Chapter 3, we looked at the monolayer transition

metal group-VI dichalcogenides (TMDs), specifically considering the Kondo effect. While

the hole-doped TMD system has a finite density of states like normal metals, it is exceptional

in that it has two valleys which are acting independently and which contain oppositely

polarized holes in opposite valleys. The spin-splitting in the bands is so extreme that, for

particular chemical potentials, holes have a single spin within a particular valley. This spin-

valley locking leads to a Kondo bound state which is nonmagnetic but which is unusual,

having both singlet and m = 0 triplet combinations. The mixture in the variational ground

state is equal in each valley, so the result of total spin is almost exactly half of the triplet

value: J2 ≈ ~2 = (1/2)J2
triplet.

We also considered the same situation but under application of circularly polarized

light. When the frequency is chosen appropriately, to span the energy gap from the upper

valence band vertically up to the conduction band, holes of a particular spin are added to

the matching valley, chosen by the polarization. The valley/spin selectivity is due to optical

circular dichroism which results from broken inversion symmetry, spin-splitting, and the

topological character of the bands. Effectively, the chemical potentials for spin up and

down in the upper valence bands are slightly shifted apart by some amount δ and the spin

structure of the Kondo state is affected.
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To address this point, we found that the variational method was insufficient and it

was necessary to move to the Numerical Renormalization Group (NRG) method. Using the

same asymmetrical Anderson model as for the normal case described above, NRG results

revealed strongly polarized impurity occupations and even a net magnetization which de-

pends on the chemical potential offset δ. The finding is that m = ±1 triplet combinations

must also be included, although those pieces are not possible within the variational formu-

lation. To make the case and understand the whole picture, many results are found within

NRG including entropy, susceptibility, and spectral functions. Despite their differences, the

Kondo temperature within NRG was found to be of the same order of magnitude as the

energy scale from the variational ground state, indicating an important physical consensus.

In this case we investigated Kondo screening in a very interesting two-dimensional

system, and we considered the effects of circular dichroism. The common thread of this case

was the inclusion of interactions in an already nontrivial topological material. Interestingly,

the ability to manipulate the spin populations with light also allowed for the internal struc-

ture to be tunable. The investigation of this last point required an entirely new approach

beyond a simple variational or mean field method, and led to an interesting result.

4.3 Future Directions

The future is bright for topological phases and phenomena. The work here has shown that

the tunable parameters can have drastic effects on the low energy structure, and introducing

interactions like an Anderson impurity creates new physical outcomes.

Future works may focus on the surface states implied by line-node semimetals or

83



other nodal semimetals, and how those states may be tuned with some parameter. Or they

may look at the TMDs in with other interactions like superconductivity, or with respect to

spintronic applications, which can be tuned with circularly polarized light. One important

point that could be applied to interacting systems is that the basic existence of phases, like

the Kondo bound state, does not go away in topological systems but the properties can be

unexpected.

Of utmost importance is future experimental work. It would require strong fields,

but the magnetic oscillations of the line-node semimetal would be very interesting to witness,

especially the frequency-doubling that results from a simple change of temperature. In the

case of tuning the Kondo state with light, a challenge would be the measurements on the

system which should be made while the light is still shining on it. However, again the

possible result would be very interesting, the system becoming clearly magnetic when the

appropriate circularly polarized light is shining. If one is measuring the resistivity, the

expectation is rather standard since the system is still forming a Kondo bound state of

some sort, but the Kondo temperature is expected to be lower due to spin-splitting. After

characterization, the next step would be to investigate and implement the devices which

may be built.

From a theoretical point of view, the primary next step is to look at the possibilities

of interactions in other tunable systems with topological properties. Additionally, the use of

interacting systems and topology may be investigated for applications, in parallel to the use

of superconductors with Majorana modes intent on applications to quantum computing.
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Appendix A

Berry Phase and Adiabatic

Changes

In his 1984 paper, M. V. Berry showed that general quantum states pick up a geometrical

phase when taken around some adiabatic path. This is exactly the same phase that appears

classically in the case of the Foucault pendulum as it rotates (adiabatically) with the Earth.

In this treatment, Berry phase is derived, and the related quantities Berry connection

and Berry curvature are defined. Additionally, the parallel between these quantities and

magnetism is built up, with a brief discussion of physical versus unphysical quantities. We

focus on the most general appearance of these topological quantities in quantum mechanics,

with no specific system assumed. A generic example is also provided.
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A.1 Adiabatic Changes in Quantum Mechanics

First off is the adiabatic theorem for quantum mechanics. Imagine a system in an eigenstate

|n〉 of some Hamiltonian H, with a corresponding energy En. If H picks up a slowly-varying

time dependence, the adiabatic theorem states that the system will remain in the nth

eigenstate (now also dependent on time).

For example, consider the ground state of the one-dimensional infinite well. On

the one hand, if the width of the well is changed from a to 2a instantaneously, the wave

function will remain the same:

ψ0(x) =


A sin (πx/a) , 0 < x < a

0 , otherwise.

(A.1)

From here, one could calculate a transition probability to the ground state of the final

Hamiltonian (which is neither 1 nor 0). However, if the width is changed from a to 2a very

slowly (adiabatically), the wave function will change accordingly, leading to a final wave

function

ψ′0(x) =


A′ sin (πx/2a) , 0 < x < 2a

0 , otherwise.

(A.2)

In this example, it’s clear how the changes in the Hamiltonian appear as changes in some

parameter like the width of the well.

A.1.1 Rigorous Setup

To put this all together, the take the eigenvalue equation

H (R(t)) |n(t)〉 = En (R(t)) |n(t)〉 (A.3)
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where R(t) is the vector made out of N time-dependent parameters (assuming N ≥ 1 for

generality)1.

Now, take a general state |Ψ(t)〉 =
∑

n |ψn(t)〉, with the definition

|ψn(t)〉 = cn(t)e−iφn(t) |n(t)〉 (A.4)

such that |Ψ(0)〉 = |n(0)〉 at t = 0. The “dynamical phase” φn(t) = 1
~
∫ t

0 En (t′)dt′ is the

expected evolution for a state subject to a time-dependent Hamiltonian. The factors cn(t)

are determined by the time-evolution equation given by

H (R(t)) |Ψ(t)〉 = i~
d

dt
|Ψ(t)〉 (A.5)

To proceed, use the definitions of |Ψ(t)〉 and φn(t), and use Eq. (A.3) where

possible:

∑
n

cnEne−iφn(t) |n(t)〉 =
∑
n

(
cnEne−iφn(t) + i~ċne−iφn(t) + i~cne−iφn(t) d

dt

)
|n(t)〉(A.6)

⇒ ċn′ = −
∑
n

cne−i(φn−φn′ )
〈
n′
∣∣ d
dt
|n〉 (A.7)

where a dot above means a time derivative (and some explicit time-dependence is omitted).

The second line is obtained by applying 〈n′| to both sides, assuming the usual orthonormality

relation: 〈n′(t)|n(t)〉 = δn,n′ . We essentially seek to solve for cn(t), so some simplification is

required. Taking the time derivative of Eq. (A.3), then applying the state bra 〈n′(t)| and

using the hermicity of H to act to the left gives

〈
n′
∣∣ Ḣ |n〉+ En′

〈
n′
∣∣ d
dt
|n〉 = Ėnδn,n′ + En

〈
n′
∣∣ d
dt
|n〉 . (A.8)

1To tie this formulation to the case of Bloch electrons, the role of time-dependent parameters is taken by
the crystal momentum k.
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Substituting this (assuming non-degenerate eigenvalues) into Eq. (A.7) for the two cases

n = n′ and n 6= n′ results in a first-order differential equation for cn(t) given by

ċn′ = −cn′
〈
n′
∣∣ d
dt

∣∣n′〉−∑
n 6=n′

cne−i(φn−φn′ )

(
〈n′| Ḣ |n〉
En − En′

)
. (A.9)

Note that this result is actually exact2. The actual adiabatic approximation is yet to come.

A.1.2 Berry Phase

Now, the adiabatic approximation is formally employed by blatantly ignoring the entire

sum with Ḣ in Eq. (A.9). This is essentially what was stated previously: the Hamiltonian

H is still dependent on time, but it varies extremely slowly3. This leads to the most simple

possible solution

cn(t) = eiγn(t) , (A.10)

since the definition Eq. (A.4) forces cn(0) = 1. Finally, Berry Phase is defined as the

quantity

γn(t) = i

∫ t

0

〈
n(t′)

∣∣ d
dt′
∣∣n(t′)

〉
dt′, (A.11)

which appears as the “geometrical phase” present in the solution for Eq. (A.4). Note that,

due to the time derivative, this phase is indeed real-valued4.

Up to this point, the time-dependent parameter-space R(t) ∈ RN has been ignored.

To “simplify” Eq. (A.11), a transformation can be made to make the integral over time

into an integral over the parameter-space:

d

dt′
→ dR

dt′
·∇R . (A.12)

2For details, see Ref. [76].
3For a more rigorous (nontrivial) justification, see Ref. [77].
4If not convinced, take the derivative of the orthonormality relation following Eq. (A.7) to show that

d
dt
〈n|n〉 = 2 · Re(〈n| d

dt
|n〉) = 0.
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Furthermore, if one assumes periodicity (i.e. R(T ) = R(0) for some T > 0) then Berry

phase becomes a function of the closed path C

γn(C) = i

∮
C
〈n(R)|∇R |n(R)〉 · dR . (A.13)

A.2 Berry Connection and Curvature

Now that Berry phase is well defined as a function of eigenstates and a path in parameter-

space, we can define additional quantities to make use of Stokes’ Theorem.

A.2.1 Definitions

First off is the Berry Connection, defined as the total integrand of Eq. (A.13):

A(n)(R) = i 〈n(R)|∇R |n(R)〉 . (A.14)

Then, the Berry Curvature (pseudo-vector form) is simply defined as

B(n)(R) = ∇R ×A(n)(R) (A.15)

which makes it possible to express Berry Phase in the form

γn(C) =

∮
C
A(n)(R) · dR =

∫
S(C)

B(n)(R) · dS (A.16)

where Stokes’ theorem has been used to convert the N -dimensional contour integral into a

“surface” integral in R-space.
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A.2.2 Alternate Forms

By applying ∇R to both sides of Eq. (A.3), the Berry Curvature can be expressed in the

form5

B(n)(R) = i
∑
n′ 6=n

〈n|∇RH |n′〉 × 〈n′|∇RH |n〉
(En − En′)2

. (A.17)

Also, the curvature can be expressed more generally as a tensor:

B(n)
µν (R) =

∂

∂Rµ
A(n)
ν −

∂

∂Rν
A(n)
µ . (A.18)

This results in a corresponding identity B(n)
µν = εµνλ(B(n))λ relating to the previous pseudo-

vector definition Eq. (A.15) where εµνλ is the Levi-Civita symbol.

In the same spirit as Eq. (A.17), the tensor form can be written as

B(n)
µν (R) = i

∑
n′ 6=n

[
〈n| ∂H

∂Rµ

∣∣n′〉 〈n′∣∣ ∂H
∂Rν

|n〉 − (µ↔ ν)

]
/(En − En′)2 , (A.19)

where the notation (µ↔ ν) indicates a label swap of the previous term.

A.2.3 Relation to Magnetism

Absolutely everything is now defined in the most general way. So how does this tie in with

magnetism? The notation should provide a hint: identify the Berry connection given by

Eq. (A.14) with the magnetic vector potential A(r) and note that the result is a parallel

between the curvature Eq. (A.15) and the magnetic field B(r). This finally implies, via

Eq. (A.16), that Berry phase is identified with the magnetic flux ΦB(Cr) through the area

bounded by the closed curve Cr in physical space.

5For details, see Supplement I of Ref. [78].
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Putting this all together:

A(n)(R) ←→ A(r) (A.20)

B(n)(R) ←→ B(r) (A.21)

γn(C) ←→ ΦB(Cr) . (A.22)

In fact, the parallel runs even deeper than this: the magnetic field and flux are

known to be “physical” quantities, whereas the vector potential depends on the gauge. To

continue the parallel given by the above (A.20)-(A.22), consider the set of eigenstates offset

by an arbitrary (parameter-dependent) phase:

|ñ〉 = e−iβ(R) |n〉 . (A.23)

For continuity following from the periodicity of R, we must have β(R(T )) = β(R(0))+2πm,

where m is some integer. By looking at Eq. (A.13) (or elsewhere), we observe that Berry

phase changes to

γ̃n(C) = γn(C) + 2πm (A.24)

which is invariant in the phase sense (i.e. invariant modulo 2π). Conversely, the connection

(from the definition Eq. (A.14)) is not invariant

Ã
(n)

= A(n) + ∇Rβ, (A.25)

while the curvature (from Eq. (A.15)) actually is invariant

B̃(n) = B(n) + ∇R ×∇Rβ = B(n) . (A.26)

This shows how, in the quantum mechanical sense, Berry phase and curvature

are gauge-invariant (hence “physical”) quantities, while the connection is not – just as one

would guess given the parallel in (A.20)-(A.22).
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A.3 An Example: Particle in Slow-Varying B Field

To illustrate the meaning of Berry phase and curvature, take the example of a spin-s particle

sitting in a time-dependent magnetic field B(t). Then, assume the field maintains a constant

magnitude B0 so that it can be expressed as

B(t) = B0 [ẑ cos θ + sin θ (x̂ cosωt+ ŷ sinωt)] (A.27)

with a fixed polar angle θ. To satisfy the adiabatic limit, the frequency ω is assumed

to be ‘very small’. With these definitions, consider eigenstates along the field direction

ẑ′ = B(t)/B0:

H(t) |m〉 = Em |m〉 , Sz′ = m~ (m = −s,−s+ 1, ..., s− 1, s) . (A.28)

The Hamiltonian and eigenvalues become

H(t) = −gµS ·B(t)/~ ≡ H(B), Em = −gµB0m (A.29)

where µ is the Bohr magneton.

At this point, we seek to find Berry phase using the 3D curve C specified by Eq.

(A.27). First, we obtain the curvature using Eq. (A.17).

Notice that the gradient of H in parameter space is ∇BH = −gµS/~. The z-

component of this gradient will go to zero in Eq. (A.17), since the sum runs over non-

degenerate states and Sz doesn’t modify the states. To evaluate the other components, use

the ladder operators S± = Sx ± iSy to write the matrix elements

〈m± 1|Sx |m〉 =
~
2

√
(s∓m)(s±m+ 1) (A.30)

〈m± 1|Sy |m〉 = ∓i~
2

√
(s∓m)(s±m+ 1) . (A.31)
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Now, Berry curvature has two terms

B(m) =
iẑ

~2B2
0

[
−2i

~2

4
[(s−m)(s+m+ 1)− (s+m)(s−m+ 1)]

]
= − m

B2
0

ẑ (A.32)

and Berry phase can be evaluated exactly (using Eq. (A.16)) as

γm =

∫
S(C)
− m

B2
0

ẑ · d2B = 2πm(cos θ − 1) = −mΩB (A.33)

where the ΩB in the last equality denotes the solid angle traced by the curve C in B-space,

with respect to the origin.

Note, from the form of H(B) in Eq. (A.29), that there was a degeneracy at the

point B = 0 (where E = 0 also). This would lead to a divergent curvature at this point, as

can be seen by taking B0 → 0 in Eq. (A.32). The existence of such a point is required to

give a finite phase for any curve C that avoids crossing B = 0, which is evident since the

solid angle in Eq. (A.33) is taken with respect to the degeneracy point.
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Appendix B

Self-Consistent Born

Approximation

Here we explain the background and main concepts behind the simplest calculations of the

conductivity in a generic system. We will not go into full detail; we present only the main

structure with accompanying references. Semi-classically, the conductivity is (basically)

proportional to the density of charge carriers n and the time between scatterings off of im-

purities τ [49]. The latter comes from inverting the scattering rate, which is calculated using

some chosen method, with some form of impurity potentials. For rigor and transparency,

Green functions and diagrammatic expansions are typically employed to calculate impurity

effects[34, 79, 80]. To get things like the conductivity more directly, a linear response for-

malism can be developed leading to the Kubo formula, which involves the Green functions

in a transparent way and allows for an examination of all possible contributions.

We first explain the starting point and the generic method for extracting the
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scattering rate from a Green function, given potentials from a random distribution of im-

purities. Then, the Born Approximation and Self-Consistent Born Approximation (SCBA)

are explained. Schematic diagrams are included where appropriate.

B.1 Potential Scattering

Since we are not focusing on any particular system, the Hamiltonian with impurity scatter-

ing is easily stated:

H =
∑
α

εαc
†
αcα +

∑
α,β

vα,βc
†
αcβ . (B.1)

In a typical metal one has Bloch electrons labeled by α ∼ {k, s}, although we will drop

the spin labels since they play little role here. With impurities located at Rj giving central

potentials u, the total scattering contribution is V (r) =
∑

j u (r−Rj). At the end of a

calculation, one must average over the random locations Rj . After projecting to momentum

space, we see that

vα,β →
1

Ω
Vk,k′ =

1

Ω

∫
ddr V (r)e−i(k−k

′)·r (B.2)

where the system volume (d-dimensional) is written Ω. In order to do something very

specific, the central potential u must be chosen; in Sec. 2.3 we use point-like impurities

with u(r) = u0δ(r), giving Vk,k+q = u0
∑

j exp(iq ·Rj).

With the Hamiltonian including impurity potentials, we can proceed to the Green

functions. In a clean system with zero impurities, the (retarded) Green function for the

Bloch electrons is

Gk,k′(ω) =
δk,k′

ω − εk + iη
(B.3)
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where the limit η → 0+ is taken at the end. Diagrammatically, the clean Green function

is depicted by a simple line. The introduction of impurities gives some more terms in the

denominator of the Green function for the Bloch electrons. A simple way to capture the

Figure B.1: The Green function with impurity scattering is represented as an infinite series
involving the Green functions of the pure system and the self-energy.

effects is to introduce a self-energy, i.e. the new Green function is written in the form

G(ω) =
1

ω − εk − Σk(ω) + iη
= G + GΣG + GΣGΣG + . . . (B.4)

where the second equality is a schematic series expansion (see Fig. B.1). The self-energy

is defined essentially as the sum of all scattering diagrams which cannot be separated by

cutting a single Green function line. Thus all of the complexity is moved into the determi-

nation of the self-energy, and naturally this is where the key approximations are typically

made. Before moving on to describing the approximations, we note a very useful property

of the self-energy: it is related to the width of the energy peak and thus the scattering rate

by ~/τ = −2 Im[Σ].
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B.2 Born and SCBA

The most general self-energy, with a sample shown in Fig. B.2, contains many combinations

of potential scatterings (depicted by dashed lines) off of one ore more impurities (depicted

by crosses). It is not possible to take into account every single diagram that will appear in

Figure B.2: A few of the simplest diagrams are shown from the exact self-energy due to
impurity potentials. Dashes are interaction lines, crosses indicate impurity sites (each giving
a factor of impurity concentration).

the exact self-energy. To make a rough approximation, one can take only the first diagram

of Fig. B.2 and put it into the Green function — this is the Born approximation, the result

depicted in Fig. B.3. The corresponding equation for the self-energy is, schematically,

Σ(ω) ≈ V G(ω)V . (B.5)

In this case, one is neglecting a very large subset of diagrams and it is important to under-

stand the conditions under which the approximations is trustworthy.

First, it is a single impurity diagram so the contribution will be proportional to the

impurity concentration nimp., which is taken to be comparatively small for clean systems.

Second, only a single scattering event is included on that one impurity. In other words, the

electron enters alone, scatters alone, and then leaves. For this to be an accurate description,
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Figure B.3: The series of diagrams for the Green function within the simple Born approx-
imation. This is the same as Fig. B.1, but taking only the first piece on the r.h.s. of Fig.
B.2.

the influence of the impurity potential must be comparatively small, meaning that the

strength (e.g. the above u0 for point-like impurities) must be small compared to the energy

of the incoming electrons. When a large number of electrons is involved it is more useful to

refer to the density of states; the equivalent statement is that the typical electron energy

must be large compared to the interaction times the density of states, ε� |V |2g(ε). At low

temperatures only the lowest-energy states are affected, and we see that the key property

is how the density of states scales with energy near the chemical potential. With a power

law g(ε) ∝ εP , one would require that P > 1 for the Born approximation to apply; for Weyl

semimetals, P = 2 and indeed the Born approximation is used with confidence[25]. One may

note also that the use and trust of the simple Born approximation is better captured within

the semiclassical formulation with Boltzmann’s equation, but the diagrammatic approach

allows for more transparency and further approximations such as the one we are about to

take.

What if we have a density of states with P ≤ 1, as in the case of line-node

semimetals? Physically, this means that the density of electrons is too high, i.e. too many
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are scattering simultaneously, so that multiple-scattering diagrams become more important.

In Fig. B.2, we see various choices for further corrections to the self-energy. The second

diagram, with three interaction lines, is higher-order and represents a corrected single-

scattering event. The next diagram has crossing interaction lines, so the two impurities

are said to be “interfering” and the result is typically a very small correction. The last

diagram, however, looks just like the first except that the internal electron line is replaced

by a line with the first correction included; this is the best picture of what we mean by

multiple-scattering diagrams, since the electron taking part in an event has already been

scattered.

Figure B.4: The self-energy used within SCBA, in accord with Eq. (B.7), where the exact
Green function is depicted by a double line. The second equality shows some terms resulting
from the expansion of the internal Green function.

Including all diagrams like the rightmost of Fig. B.2 generates the Self-Consistent

Born Approximation. As suggested, this is the same as the regular Born approximation

except that the electron taking part in the process is assumed to be corrected already. The
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result involves coupled equations for the Green function and the self-energy appearing in it,

G(ω) ≈ 1

ω − εk − Σk(ω)
(B.6)

Σ(ω) ≈ V G(ω)V (B.7)

hence the term “self-consistent”. As seen in Fig. B.4, the structure of the self-energy

diagram is identical to that of the Born approximation, but the structure of the Green

function involved is very different, like a deeply nested version of Fig. B.3. Clearly, it is

advantageous to use the simple Born approximation in most cases, but the SCBA must be

employed in exceptional cases where the density of states remains too large evan at low

energies, such as the line-node of Chapter 2.
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Appendix C

Variational State and Spin

Here we present details and supplemental information for the calculations of Sec. 3.3. First

we discuss the form of variational state chosen to describe the Kondo effect in monolayer

TMDs, and how the parameters are determined. Then, we go into the details of how

properties are extracted from the state, specifically the spin and susceptibility.

C.1 State and Parameters

The variational approach to understanding the Kondo effect and the underlying ground

state dates back to the early years of Kondo physics[36, 37]. The main idea is that the

ground state for the Anderson model should be a superposition of states which are closely

related to the ground state of the pure metal (i.e. the Fermi sea),

|ψ0〉 =

µ∏
`,s

c†`,s |vacuum〉 . (C.1)

As elsewhere, we use the shorthand ` = {n,k, τ}. At most, the impurity should be singly-

occupied because of the strong Coulomb energy U . Due to the spin-spin valley-locked band
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structure of the TMDs, we already expect that the parameters will be spin-dependent within

each valley. Allowing this, we get the simple form stated in Sec. 3.3,

|ψ〉 = b0 |ψ0〉+
∑
`,s

B`,sf
†
s c`,s |ψ0〉 . (C.2)

As noted in that section, the above for is equivalent to Eq. (3.15) with separated sin-

glet/triplet parameters p` = (B`,↑ + B`,↓)/2 and t` = (B`,↑ − B`,↓)/2. Here we use the

compact form above for calculations involving the state.

To determine the parameters b0 and B`,s of the ground state, the energy is cal-

culated and minimized. The Hamiltonian is H = Hm + Himp + HV as defined in Chapter

3. The energy is traditionally calculated as the quantum average 〈ψ|H |ψ〉 / 〈ψ|ψ〉 = Evar.,

which then has to be minimized[78]. To avoid differentiating a quotient, we use an alterna-

tive method with the equation rewritten 〈ψ|H |ψ〉 = Evar. 〈ψ|ψ〉 alongside the normalization

constraint 〈ψ|ψ〉 = 1 enforced at the end. The energy Evar. is the variational energy which

is yet to be determined. For transparency, and to extract a Kondo temperature scale, it is

best to write the energy as a starting point plus a shift, Evar. = E0
var. + ε. Generally the

shift ε must be negative in order for the variational state (C.2) to be an improvement to

the trivial state.

The starting point E0
var. is the energy of the metal after introduction of the

impurity, but without hybridization. The metal alone, before the impurity, has energy

E0 = 〈ψ0|Hm |ψ0〉 =
∑′

`,sE`,s, the sum being over states below the chemical poten-

tial. When the impurity level is above the chemical potential, its introduction will not

affect the energy (until hybridization is added). When the level is below the chemical

potential, however, a single electron will travel down to fill the impurity (avoiding double-
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occupation) and the energy is reduced by the difference, E0
var. = E0 + ε0, with relative

energy ε0 = εimp. − µ < 0. Thus, we are looking for the parameters b0 and B`,s and the

shift ε by differentiating the equation

〈ψ|H |ψ〉 = (E0 + ε0 + ε) 〈ψ|ψ〉 (C.3)

and enforcing normalization 〈ψ|ψ〉 = 1. The above is the same as given at the beginning of

Sec. 3.3, but is now fully motivated.

Before proceeding, we note the effect of a magnetic field since we will want the

susceptibility. A magnetic field acting on the impurity will add −µ0
∑

s,s′ h · f
†
s ss,s′fs′ to

Himp, where µ0 is the effective Bohr magneton and s is the vector of Pauli matrices. In

practice, only the z component of the field will enter any relevant equations so we restrict

to that direction. Writing it out explicitly, Eq. (C.3) with a magnetic field is

E0

|b0|2 +
∑
`,s

′
|B`,s|2

 +
∑
`,s

′
(ε0 − µ0hzs− E`,s) +

1√
NM

∑
`,s

′ (
v`,sB`,sb

?
0 + v?`,sB

?
`,sb0

)

= (E0 + ε0 + ε)

|b0|2 +
∑
`,s

′
|B`,s|2

 (C.4)

where again we write the sum over occupied states
∑

`,s
′. Recall the number of metal atoms

(also the number of unit cells) NM . Next, we differentiate with respect to b?0 and B?
`,s, and

we write the normalization explicitly, giving

(ε0 + ε) b0 =
1√
NM

∑
`,s

′
v`,sB`,s (C.5)

(ε+ µ0hzs+ E`,s − µ)B`,s =
1√
NM

v?`,sb0 (C.6)

|b0|2 +
∑
`,s

′
|B`,s|2 = 1 . (C.7)
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This set of three equations can now be used to determine all three objects b0, B`,s, and the

shift ε. The second line, Eq. (C.6), can be implemented in the first, Eq. (C.5), which gives

(assuming b0 6= 0) the solution for the shift, Eq. (3.19). By putting Eq. (C.6) into Eq.

(C.7), the Fermi sea parameter is obtained giving Eq. (3.20). Lastly, the singlet/triplet

parameters are found using B`,s directly from Eq. (C.6).

C.2 Spin and Susceptibility

Here we explain the calculations behind Sec. 3.3.2. The total spin is the sum of impurity

and TMD spin, J = S + σ, with S = (1/2)
∑

s,s′ f
†
s ss,s′fs′ for the impurity. To get spin

for the TMD, the operators must be properly projected from the plain basis states of Sec.

3.2.2. the localized (Wannier) states created by the operators a†α,τ,s(r), to the eigenstates

c†n,k,τ,s. Normally this is a trivial step, but it is important in the case of spin-split bands.

The starting point is the spin operator in the trivial basis,

σ =
1

2

∑
α,r,τ,s

a†α,τ,s(r)ss,s′aα,τ,s′(r) . (C.8)

Then we project to the eigen-basis, i.e.

aα,τ,s(r) =
1√
NM

∑
n,k

Uα,n(k, τ, s)cn,k,τ,se
ik·r . (C.9)

The spin operator now involves products of the matrices1 U = M · N for different spin

indices, so we define

Kn,n′(k, τ, s) =
∑
α

N †n,α(k, τ, s)Nα,n′(k, τ,−s) . (C.10)

1See Eq. (3.11) for a reminder of these matrices.

104



The spin being the same leads to an identity matrix, so the corresponding definition is not

required. Then, the spin operator components are given by

σj =
1

2

∑
n,n′,k,τ,s,s′


δn′,nδs′,ss c

†
n,k,τ,scn,k,τ,s , j = z

δs′,−s(sj)s,−sKn,n′(k, τ, s)c
†
n,k,τ,scn′,k,τ,−s , j = x, y .

(C.11)

The form of Eq. (C.11) is crucial to the discussion of Sec. 3.3.2 but it is due

to the fact that the valleys are treated independently, not really the involvement of the

K matrix. The spin expectations of |ψ0〉, |ψ〉, and other many-body states in this work

are easily calculated using the above eigenspace operators2, the transverse (x, y) directions

giving zero by construction for states conserving particle number. The result for the z

direction spin in the Kondo state (without photoexcitation) is given in Eq. (3.23), resulting

in Jz = 0 after cancelling with the impurity spin. Without a magnetic field, we find that the

spin of the impurity Sz and of the band σz are independently zero, showing the impurity

itself is already nonmagnetic.

In the computation of
〈
J2
〉
, or specifically the band part

〈
σ2
〉
, it is helpful to use

particle/hole operators with respect to some effective vacuum state, here the Fermi sea |ψ0〉.

In other words, we transform using

cn,k,τ,s →


pn,k,τ,s , En,k,τ,s > µ

h†n,k,τ,s , En,k,τ,s ≤ µ

(C.12)

and its hermitian conjugate. In the case of the photoexcited system, the above is also

depenent on spin since the chemical potentials are shifted and the transformations are

2Calculations such as these with a second-quantized many-body state in Fock space are standard theo-
retical techniques; see Ref.s [79–81].
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much more involved. Using the square of Eq. (C.11) and the above transformation for the

more typical state |ψ〉, we get for the total spin

〈
J2
〉

=
1

2

∑
k,τ,s

′ [
|B−,k,τ,s|2

(
1− |K−,+(k, τ, s)|2 + |K−,−(k, τ, s)|2

)
− 2 B−,k,τ,sB

?
−,k,τ,−sK−,−(k, τ, s)

]
− 1

2

∑
k,τ,s

un.
δτ,−s|B−,k,τ,s|2|K−,−(k, τ, s)|2 (C.13)

where we have also subtracted the band contribution 〈ψ0|σ2 |ψ0〉, and we denote the sum

over unoccupied states in the valence band
∑un.. This result is identical to Eq. (3.25),

which appears after simplifying the K matrix elements and substituting the singlet/triplet

parameters p` and t`.

To conclude this appendix, we discuss the calculation of the susceptibility. There

are two approaches, which of course give the same result. First, one can use the spin

expectation for the impurity,

〈Sz〉 =
∑
k,τ,s

′
s|B−,k,τ,s|2 =

∑
k,τ

′ (
|B−,k,τ,↑|2 − |B−,k,τ,↓|2

)
(C.14)

with the parameters at finite magnetic field as from Eq. (C.6). It is a simple matter to

take the magnetization of the impurity as mz = µ0 〈Sz〉 where again we use µ0 for the

effective Bohr magneton. The transverse x, y directions are always zero and as seen above

those components of the magnetic field do not appear in the variational solutions, so the

susceptibility tensor is zero except for a single element, easily obtained with

χimp.zz (hz) =
d

dhz
mz = µ2

0

d

d(µ0hz)
〈Sz〉 . (C.15)

Evaluating at zero field, this reduces to Eq. (3.27).

The other approach relies on the energy shift ε. The susceptibility here is found by

writing Eq. (3.19) with the inclusion of a field, then differentiating both sides with respect
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to hz. From thermodynamics, we know the first derivative gives the magnetization and the

second gives the susceptibility:

χimp.zz (hz) =
d

dhz
mz = − d2

dh2
z

ε . (C.16)

The derivatives are easily calculated by using implicit differentiation in Eq. (3.19), and at

zero field we again obtain the same result, Eq. (3.27).
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Appendix D

Details of NRG Projections &

Convergence

Here we expand upon the construction of the linear chain originating from the Anderson

Hamiltonian, Eq. (3.34), and we mention some details concerning general convergence of

the procedure. The chain basis is central to the NRG method, and its construction includes

the primary approximation of NRG. The chain pertains only to the bath (TMD) electrons,

but the zeroth site starting point is motivated by the state hybridizing with the impurity.

As described in Sec. 3.4.1, the chain is constructed in two main steps. First, energy space

is discretized into logarithmic intervals approaching the chemical potential; this is where

the approximation is made. Second, the discretized states are superposed to form states

orthogonal to the zeroth site, the state coupled to the impurity; this process inevitably leads

to departure from a diagonal basis so it is termed “tridiagonalization”.
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D.1 Logarithmic Discretization

In this section we fill in the steps between equations (3.34) and (3.37). There we noted that

the positive and negative energies are discretized separately, with their own operators a†

and b†, respectively[39]. Specifically, we have

a†n,p,s =

∫ es

−`s
dξ ψ+

n,p,s(ξ)c
†
ξ,s (D.1)

b†n,p,s =

∫ es

−`s
dξ ψ−n,p,s(ξ)c

†
ξ,s (D.2)

where the Fourier components ψ±n,p,s(ξ) are broken down by logarithmic intervals labeled

with n = 0, 1, 2, .... The intervals are as given by (3.36), and the Fourer components are

ψ+
n,p,s(ξ) =

[
Rn

es (1−R−1)

]1/2

eiω
+
n,spξ , for esR

−(n+1) < ξ < esR
−n ; (D.3)

ψ−n,p,s(ξ) =

[
Rn

`s (1−R−1)

]1/2

e−iω
−
n,spξ , for − `sR−n < ξ < −`sR−(n+1) (D.4)

with fundamental frequencies ω+
n,s = 2πRn/es(1 − R−1), ω−n,s = 2πRn/`s(1 − R−1), and

integral harmonic index p ∈ (−∞,∞). The components ψ± are zero when the energy

ξ lies outside the respective nth intervals on the r.h.s. above. We now have a properly

orthonormalized complete set of states which can be related back,

c†ξ,s =
∑
n,p

[(
ψ+
n,p,s(ξ)

)?
a†n,p,s +

(
ψ−n,p,s(ξ)

)?
b†n,p,s

]
(D.5)

leading to a form preceding Eq. (3.37), for the bath electrons only,

∫ es

−`s
dξ ξc†ξ,scξ,s =

1 +R−1

2

∑
n,p

(
esR

−na†n,p,san,p,s − `sR−nb†n,p,sbn,p,s
)

(D.6)

+
1−R−1

2πi

∑
n,p′ 6=p

[
R−n

p′ − p
e2πi(p′−p)

(
esa
†
n,p,san,p′,s − `sb†n,p,sbn,p′,s

)]
.
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The bath Hamiltonian is diagonal in the original basis c†ξ,s, so changing away

from it will inevitably lead to off-diagonal terms like those in the final sum above. Notice,

however, that the off-diagonal sum comes with a factor ∝ 1 − R−1 so it vanishes as the

discretization factor R approaches unity (i.e. as continuity is restored). In our work, we

have used R = 3 so the factor is in fact ∝ 2/3. Nevertheless we follow others[39] and make

the crucial approximation of using only harmonic index p = 0, killing the off-diagonal sum.

The components (D.3) are now constants (of varying magnitude) in each energy interval; in

other words the states created by a†n,0,s and b†n,0,s are simple (normalized) averages of the

states c†ξ,s on the appropriate intervals of energy ξ. Thus the approximation of retaining

only these states is equivalent to diregarding fluctuations across individual energy intervals,

only allowing changes across interval boundaries. Since phase changes like the Kondo effect

are known to exhibit changes across the entire energy space (and physical space) together,

Wilson’s approximation of taking only the constant p = 0 contribution is justified, and the

extensive history and success of NRG provide further credence to it. Upon ignoring all

states with p 6= 0, we obtain the expression in Eq. (3.37).

D.2 Tridiagonalization

We continue to develop the NRG chain, now proceeding from Eq. (3.37) to (3.40). Recall

(or see Eq. (3.39)) that the zeroth site d†0,s is the starting point, and is defined as the state

which couples to the impurity via HV . We wish to create other states which are orthogonal

to the zeroth site (and to each other) in such a way that nothing further than nearest-

neighbor hoppings appear in the final chain Hamiltonian, the first line of Eq. (3.40). For
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the purposes of this section we use Hc to denote the p = 0 bath Hamiltonian, the first sum

of Eq. (D.6) above or the first line of Eq. (3.37), which will become the chain Hamiltonian.

Constructing the chain states d†m,s with m > 0 involves a Graham-Schmidt orthog-

onalization procedure starting from the zeroth site, specifically the Lanczos algorithm[34,

41, 66]. Dropping the spin label for now, we write very generally our goal. We seek a

transformation, a set of {um,n, vm,n} with m,n = 0, 1, 2, ... describing the relation d†m =∑
n

(
um,na

†
n + vm,nb

†
n

)
, such that the resultant states are assigned some energies εm and

hoppings tm leading to the tridiagonal form (3.40). We are given the starting point (using

spin labels where appropriate) of

u0,n =

(
es(1−R−1)

1 + e0/D

)1/2

R−n/2 (D.7)

v0,n =

(
`s
es

)1/2

u0,n (D.8)

from the definition of the zeroth site, Eq. (3.39). To develop further sites, denote the zeroth

state |0〉 = d†0 |vac.〉. The energy of this state may be easily found with ε0 = 〈0|Hc |0〉. The

next site is then given by

|1〉 =
1

t0
(Hc |0〉 − |0〉 〈0|Hc |0〉) (D.9)

which is automatically orthogonal to |0〉 and whose normalization constant t0 is actually

the same as the hopping 〈1|Hc |0〉. In this case the hopping (squared) is also the same as

the variance in energy, t20 = 〈0|H2
c |0〉 − 〈0|Hc |0〉2, so that we have the zeroth site energy

and its hopping to site m = 1. For the energy of the new site, we get ε1 = 〈1|Hc |1〉 =

(〈0|H3
c |0〉−2ε0 〈0|H2

c |0〉+ε30)/t20. One can see that, in constructing many sites, we will need

arbitrary powers 〈0|HP
c |0〉, but every quantity can be fully given in terms of the starting
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point values (D.7) and (D.8). Continuing, the next site m = 2 is given by

|2〉 =
1

t1
(Hc |1〉 − |1〉 〈1|Hc |1〉 − |0〉 〈0|Hc |1〉) (D.10)

=
1

t1
(Hc |1〉 − |1〉 ε1 − |0〉 t0) (D.11)

which is orthogonal to both previous sites m = 0, 1. Importantly, one can check that the

above state does not connect to the zeroth site: 〈2|Hc |0〉 = 0. This is the key point that

keeps the Hamiltonian Hc tridiagonal instead of having arbitrarily off-diagonal pieces. One

may now write ε2 and t1, but they will be messier and involve larger powers of Hc in the

zeroth state. Instead we now move to the general site m,

|m+ 1〉 =
1

tm
(Hc |m〉 − |m〉 εm − |m− 1〉 tm−1) . (D.12)

With the above, and the definitions εm = 〈m|Hc |m〉 and tm−1 = 〈m− 1|Hc |m〉,

we can write a set of recursion equations which determines the tridiagonal transformation:

t2m =

(
1 +R−1

2

)2 ∞∑
n=0

[
|um,n|2(esR

−n)2 + |vm,n|2(`sR
−n)2

]
− ε2m − t2m−1 (D.13)

εm =
1 +R−1

2

∞∑
n=0

[
|um,n|2(esR

−n)− |vm,n|2(`sR
−n)
]

(D.14)

um+1,n =
1

tm

[(
1 +R−1

2
esR

−n − εm
)
um,n − tm−1um−1,n

]
(D.15)

vm+1,n = − 1

tm

[(
1 +R−1

2
`sR

−n + εm

)
vm,n + tm−1vm−1,n

]
. (D.16)

The above equations are consistent with those of Section II C of Ref. [66]. They

are valid for all sites, m ≥ 0, as long as one takes t−1 → 0. For the symmtric Anderson

model, the site energies εm are zero and Wilson has constructed[38] an analytic solution

for the hoppings tm. When the chemical potential is placed asymmetrically in a band the
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site energies are no longer zero, and the energies and hoppings must generally be deter-

mined numerically. For the sake of numerics, it can be useful to neglect the above form

(which involves infinite sums) and instead use the equivalent relations for powers, i.e. for

〈m|HP
c |m+ 1〉 and 〈m+ 1|HP

c |m+ 1〉. The energies and hoppings are then obtained with

P = 1. Either way, one can numerically calculate the tridiagonal chain parameters up to

any arbitrary chain length by iterating a set of equations like (D.13)-(D.16). We always

have at least one label other than site index, spin, so the procedure must be repeated for

both spin up and down, at least when any spin dependence is involved. If there is more

than one channel coupled to the impurity, that is if one effectively has multiple chains, then

of course the procedure must be repeated for each of those as well.

D.3 Convergence

In this section we look at the convergence of the iterative diagonalization procedure. The

main tools for establishing the fixed points and stability of the NRG procedure are the plots

of energy spectra against the number of sites included, with even and odd sites separated.

The lowest-lying energies are labeled with the corresponding subspaces so that they may

be tracked easily. For our choice R = 3, we generally observe good convergence by M ∼ 30.

In order for the system to converge at all, it is necessary to use enough states that each

iteration is accurately described, around 400-425 states for this work (as remarked in Sec.

3.4.2).

To begin, we look at the unexcited system with δ = 0. Looking at the left part

of Fig. D.1 it is clear that the states with equal but opposite spin Jz are degenerate, as
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expected for the unexcited case. In fact, due to its simplicity this NRG procedure should

appear like a rather conventional metal with an impurity level in the “mixed valence”

regime, just below the chemical potential.

Figure D.1: Energy levels relative to the ground state for even (top) and odd (bottom)
chain lengths, for the unexcited system δ = 0. The spectrum is certainly stable after going
up to site M = 30. The subspace labels appearing in legends are {Q, Jz}.

Next we consider the offset case δ = λ/5 > 0. From Fig. D.2, the system clearly

converges very quickly, even faster than the equilibrium case. The only real difference in
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the structure of the energy levels is that the levels are split for different Jz, leading to a

more complex structure overall. The levels stabilize very quickly, by M = 10, but they do

not join together as in typical cases like the above Fig. D.1.

Figure D.2: Energy levels relative to the ground state for even (top) and odd (bottom) chain
lengths, for the excited system δ > 0. The spin values clearly split energy levels, giving this
case much more structure. Interestingly, the system seems to stabilize more quickly, near
site M = 10.
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