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ABSTRACT

Biological images have the potential to reveal complex
signatures that may not be amenable to morphological mod-
eling in terms of shape, location, texture, and color. An ef-
fective analytical method is to characterize the composition
of a specimen based on user-defined patterns of texture and
contrast formation. However, such a simple requirement de-
mands an improved model for stability and robustness. Here,
an interactive computational model is introduced for learning
patterns of interest by example. The learned patterns bound
an active contour model in which the traditional gradient de-
scent optimization is replaced by the more efficient optimiza-
tion of the graph cut methods. First, the energy function is
defined according to the curve evolution. Next, a graph is
constructed with weighted edges on the energy function and
is optimized with the graph cut algorithm. As a result, the
method combines the advantages of the level set method and
graph cut algorithm, i.e., “topological” invariance and com-
putational efficiency. The technique is extended to the multi-
phase segmentation problem; the method is validated on syn-
thetic images and then applied to specimens imaged by trans-
mission electron microscopy(TEM).

Index Terms— Interactive learning, Active Contour, Graph
Cut, Texture, Segmentation, Electron Microscopy

1. INTRODUCTION

Biological specimens have a complex phenotypic signature
requiring multiscale representations of their information con-
tent. At the coarse scale, we are interested in the composition
of various tissue compartments, which can be interactively
specified in a few small areas. These candidate patterns can
then be identified in a mosaic of images for compositional
analysis. As a result, the methods enables the quantification
and comparative analysis of tissue sections under different ex-
perimental conditions. The proposed method couples active
contour models [1, 2] with the graph cut optimization method
based on the link established by [3] to demonstrate superior
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performance, which includes “topologically” free curve evo-
lution, limited leakage, and an efficient optimization of the
objective energy function. The method is applied to the seg-
mentation and compositional analysis of specimens that have
been imaged by TEM. As a result, structural features corre-
sponding to organelles and various molecular complexes can
be identified. Unlike fluorescence microscopy, patterns of
image formation through electron microscopy are complex;
minute spatial features of limited perceptual significance may
be important; and texture and contrast varies widely from one
complex to another. Therefore, we have opted for a trainable
system that elicits important spatial features of interest. Fig-
ure 1 shows the work flow of our approach.

Fig. 1. Work flow of our approach.

This rest of this paper consists of the following sections:
Section 2 provides a summary of the active contour models
without edges and a description of the graph cut method; Sec-
tion 3 outlines the details of our approach; Section 4 compares
our method with the traditional level set approach and demon-
strates its effectiveness; and Section 5 concludes the paper.

2. RELATED WORK

In this section, we introduce Chan and Vese’s multiphase ac-
tive contour model and the principles of graph cut approach.

2.1. Active Contour Model with Multiple Phases

Chan and Vese generalized their system [1] into the multi-
phase(multi-class) level set model in [2]. Their implemen-
tation is quite different from other methods, which assign a
level set function to each phase. Their framework reduces the
number of level set functions from M (number of phases) to
log2 M by introducing the “vector level set function” Φ =
(φ1, ..., φm)|φi : Ω → R, and the “vector Heaviside func-
tion”

H(Φ) = (H(φ1), ...,H(φm))|H(φi) ∈ {0, 1}, 1 ≤ i ≤ m = log2 M



For each phase i, ci is defined to be the mean intensity in
region i, and Xi is defined to be the characteristic function of
region i. As a result, the objective energy function could be
written as:

FM = µ
1
2

M=2m∑

i=1

∫

Ω

|∇Xi|+
M=2m∑

i=1

∫

Ω

(u0(x, y)− ci)2Xidxdy

(1)
where u0(x, y) is the original image. The model is further
simplified by replacing the length term by

∑m
i=1

∫
Ω
| ∇H(φi) |,

which provides satisfactory results [2], although it leads to the
redundant counting of a curve segment subset. The final en-
ergy for minimization is formulated as

FM = µ

m∑

i=1

∫

Ω

|∇H(φi)|+
M=2m∑

i=1

∫

Ω

(u0(x, y)− ci)2Xidxdy

(2)
The optimization problem is then solved by the gradient de-
scent method based on the corresponding Euler-Lagrange equa-
tions.

2.2. Graph Cut Method

In the context of segmentation, this method represents the im-
age as a graph G = 〈V̄ , Ē〉, where V̄ and Ē correspond to
the sets of nodes and edges, respectively. Usually, nodes and
edges are pixels, and their relationship, which is typically a
4- or 8-connected configuration. Additionally, there are some
special nodes called terminals in the graph structure, which
correspond to a set of labels (L). The segmentation problem
is to assign a unique label xp ∈ L to each node p ∈ P , and
the image cutout is performed by minimizing the Gibbs en-
ergy E(X) [4]:

E =
∑

p∈P
E1(xp) +

∑

(p,q)∈N,xp 6=xq

E2(xp, xq) (3)

where N is the neighborhood system; E1(xp) is the likeli-
hood energy encoding the fitness cost for assigning xp to p;
and E2(xp, xq) is the smoothness energy denoting the cost
when the labels of adjacent nodes p and q are xp and xq , re-
spectively. Based on the number of terminals, the graph cut
could be classified into two groups: classical two-label graph
cut and multilabel graph cut. For the two-label labeling prob-
lem, polynomial-bound methods exist for optimizing directed
weighted graphs with two terminals. In the case of multil-
abel graphs, Boykov [5] proposed two effective optimization
algorithms, known as α-β-swap and α-expansion.

3. APPROACH

Suppose that we want to divide an image into M = |L| parts.
Each part is described as Ωi,1 ≤ i ≤ M , so that

Ωi ∩ Ωj = ∅, i 6= j

Ω1 ∪ Ω2 · · · ∪ ΩM = Ω

(a) (b)

Fig. 2. (a) Eight-neighborhood 2D grid. (b) One family of
lines.

Let (i) uk(p) be the kth feature of pixel p, and (ii) pk
i be the

probability function of the kth feature of region i, 1 ≤ i ≤ M .
The objective energy function to be minimized is formulated
as:

E = µ ·BoundaryLength−
M∑

i=1

N∑

k=1

λk
i

∫

Ωi

log pk
i (uk(p))dp (4)

in which µ and λk
i are constant weights. The first term ensures

the smoothness of the segmented region boundary, and the
last term ensures the similarity within each segmented region
in the feature space. Within the multiphase level set approach,
as described in Section 2.1, the objective energy function (4)
can be written as:

E = µ

m∑

i=1

∫

Ω

| ∇H(φi) | −
M=2m∑

i=1

N∑

k=1

λk
i

∫

Ω

log pk
i (uk(p))Xidp (5)

Although this function can be optimized by using the gra-
dient descent method, we have chosen the multilabel graph
cut method to perform the energy minimization for better ef-
ficiency. Let αi = i, 1 ≤ i ≤ M be the node label, and
xp ∈ {α1, ..., αM}. In a discrete graph, the energy functional
(4) could be written as:

E = µ ·BoundaryLength

−
M∑

i=1

N∑

k=1

λk
i

∑

Ω

log pk
i (uk(p))δαi(xp) (6)

In order to optimize the active contour model via graph cut,
the Euclidean length, represented as | C |ε, needs to be ap-
proximated by specifically designed n-links (edges between
neighboring pixels) of the graph model. For eight-neighborhood
system illustrated in Figure 2, it has been shown( by Function
[3] ) that this distance is given by:

| C |ε≈
∑

k

nc(k) · δ2 · 4φk

2· | ek | (7)

where nc(k) is the number of intersections of the curve C
with the kth family of edge lines; δ is the cell-size of the grid;
| ek | is the Euclidean length of vector ek; and 4φk is the
angular difference between the kth and (k + 1)th edge lines,



4φk = φk+1−φk. It has been shown that with constant edge
weights of

wk =
δ2 · 4φk

2· | ek |
for each family of edge lines, the Euclidean length of C can
be approximated by the cut length, which is defined as the
sum of weights of broken n-links in the graph grid. In our
implementation, we chose to use the eight-neighborhood sys-
tem, and the structure of graph G = 〈V̄ , Ē〉 is as follows: V̄
contains all the pixels, P , in the input image and M termi-
nals. Each p ∈ P is connected to every terminal with edge tip,
1 ≤ i ≤ M . Each pair of (p, q) in the neighborhood system
N is connected with edge w{p,q}. The edge weights of the
graph, which encode the energy terms of the active contour
model, are expressed in Table 1. Then, we apply the α-β-

Edge Weight For
tip −∑

k λk log pk
i (uk(p)) p ∈ P, 1 ≤ i ≤ M

w{p,q} π
8T {p, q} ∈ N, T ∈ {1,

√
2}

Table 1. Edge weights for the multilabel graph construction
based on the eight-neighborhood system.

swap algorithm to optimize the estimation, and the algorithm
flow is shown as follows.

α-β-swap

1. Start with an arbitrary labeling X

2. Set success = 0

3. For each pair of labels {α, β} ⊂ L :

(a) Find X̂ = min E(X ′) among X ′ within one α-β
swap of X

(b) If E(X̂) < E(X), set X = X̂ and success = 1

4. If success = 1, go to 2

5. Return X

In each cycle (steps 2-4), the algorithm performs an itera-
tion (step 3) for each pair of labels, and stops when there
is no improvement. Each cycle takes |L|2 iterations. It has
been shown that (i) this method terminates in O(|P|) cycles,
and (ii) the final energy under labeling X is a local minimum
with respect to a swap [6], where the optimal swap move in
Step 3(a) is computed by graph cuts. For the labeling result X
and the pair of chosen labels (α, β), the graph is represented
as Gαβ = 〈V̄αβ , Ēαβ〉, where V̄αβ contains two terminals
α, β; all pixels in the set Pαβ = Pα ∪ Pβ ; and each pixel
p ∈ Pαβ is connected to the terminals α and β by edges tαp

and tβp . Each pair of pixels {p, q} ∈ N is connected by an
edge w{p,q}. The weights of the edges are shown in Table 2.
Furthermore, the optimal α-β swap from X is X̂ = XC ,
where C is the minimum cut on Gαβ , and XC is the label-
ing that corresponds to cut C [5].

Edge Weight For
p → α E1(xp = α)+ p ∈ Pαβ∑

q∈Np,q /∈Pαβ
E2(xp = α, xq)

p → β E1(xp = β)+ p ∈ Pαβ∑
q∈Np,q /∈Pαβ

E2(xp = β, xq)
{p, q} ∈ N

w{p,q} E2(α, β) p, q ∈ Pαβ

Table 2. Edge weights of graph Gαβ for α-β swap.

4. EXPERIMENTAL RESULTS

To validate our method, we have tested our implementation
on synthetic and scientific images. The texture features are
extracted by a bank of gabor filters. The method can also
incorporate color data or hyperspectral data as additional fea-
ture values. The input image together with the user-specified
stroke provides the seeds for the corresponding feature-based
representation of each region. The Gaussian mixture model
(GMM , with 10 components) provides a model for color and
texture distributions based on user-provided information (de-
tails can be found in [7]). Let (i) GMMC

i and GMMT
i rep-

resent the texture model for the ith region, respectively, where
(i) 1 ≤ i ≤ M , and (ii) pC

i (p) and pT
i (p) refer to the proba-

bilities of contrast and texture features of pixel p belonging to
the ith region. Then

pC
i (p) =

GMMC
i (p)∑M

j=1 GMMC
j (p)

,pT
i (p) =

GMMT
i (p)∑M

j=1 GMMT
j (p)

The graph is then constructed according to Table 1 and opti-
mized with the α-β-swap algorithm. Figure 3 shows the label-
ing result on an synthetic image and compares the result with
the traditional level set method. It is clear that the proposed
method reduces fragmentation, and the computational com-
plexity of our method is comparable to the traditional level
set method. This is because the traditional level set method
is iterative, while the graph cut method is not. Figure 4 indi-
cates the results of our method on samples that are imaged by
TEM. Note that the images are generally noisy, and different
components of the micro-anatomy have unique textures. Al-
though it is beyond the scope of this paper to review previous
research on the segmentation of samples imaged by electron
microscopy, we must add that the fast marching method initi-
ating from interest point operators has been proposed [8]. We



suggest that the proposed region-based method (as opposed
to the gradient-based fast marching method) be coupled with
the prior texture model to provide a more robust solution to
the segmentation problem.

(a)

(b) (c)

Fig. 3. (a) Original image with user input samples. (b)
Segmentation result from the traditional level set method
(t = 3.3sec). (c) Segmentation result from our model (t =
2.7sec).

5. CONCLUSION

In this paper, we proposed a system for the compositional
analysis of complex patterns that are imaged through electron
microscopy, which is an extension of our previous work [9].
We suggest that, segmentation and subsequent compositional
analysis can be enabled for larger size-images by providing
examplar patterns. Our proposed method couples the new ac-
tive contour model of Chan and Vese’s model with the graph
cut algorithm. The level set formulation incorporates multi-
phase implementation for global differentiation of the scenes
into distinct regions. Our method has the advantages of “topo-
logical” freedom, minimal leakage, and high efficiency in en-
ergy minimization. These advantages are ensured by the in-
trinsic properties of the level set method and graph cut al-
gorithm. The behavior of the method has been validated on
synthetic images, and then applied to a specimen imaged by
TEM for population analysis. The potential limitations of our
method are twofold: (i) underlying feature properties are rep-
resented with Gaussian distributions, and (ii) the absence of
higher-level constraints for eliminating false positive regions.
In the first case, we plan to use generative models to achieve
a more parameter-free representation of the underlying image
features. In the second case, we plan to couple low-level im-
age features with higher-level constraints such as shape [10]
and other contextual features.

6. REFERENCES

[1] T. F. Chan, L. A. Vese, Active contours without edges, IEEE
Transactions on Image Processing 10 (2001) 266–277.

(a)

(b)

(c)

Fig. 4. Segmentation results for samples imaged through transmis-
sion electron microscopy with the trained regions (left column) and
automated labeling (right column): (a) 70nm thick section through a
zebra fish notochord, (b) multi-phase results of a human mammary
epithelial cell, and (c) a plant cell and its compartments.

[2] L. Vese, T. Chan, A multiphase level set framework for image
segmentation using the mumford and shah model, International
Journal of Computer Vision 50 (3) (2002) 271–293.

[3] Y. Boykov, V. Kolmogorov, Computing geodesics and minimal
surfaces via graph cuts, in: Proc. of IEEE ICCV, 2003.

[4] S.Geman, D.Geman, Stochastic relaxation, gibbs distribution
and the bayesian restoration of images, In IEEE Transaction
on PAMI 6 (6) (1984) 721–741.

[5] Y.Boykov, O. Veksler, R. Zabih, Fast Approximate Energy
Minimization via Graph Cuts, In IEEE Transaction on PAMI
23 (11) (2001) 1222–1239.

[6] O. Veksler, Efficient graph-based energy minimization meth-
ods in computer vision., PhD thesis, Cornell University.

[7] H. Chang, R. Defilippis, T. Tlsty, B. Parvin, Graphical methods
for quantifying macromolecules through bright field imaging,
Bioinformatics 25 (8) (2008) 1070–1075.

[8] C. Bajaj, Z. Yu, M. Auer, Volumetric feature extraction and
visualization of tomographic molecular imaging, Journal of
Structural Biology 144 (2003) 132–143.

[9] H. Chang, Q. Yang, M. Auer, B. Parvin, Modeling of front
evolution with graph cut optimization, in: Proceedings of the
IEEE ICIP, 2007, pp. 241–244.

[10] H. Chang, Q. Yang, B. Parvin, A bayesian approach for image
segmentation with shape priors, in: Proceedings of the IEEE
CVPR, 2008, pp. 1–8.




