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Abstract

The penetration through a two dimensional fission barrier is
investigated by a fully quantum mechanical coupled channel calcula-
“tion and by a new semiclassical method. One finds a quantitative

agreement.
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In recent years much progress has been made in the determlnatlon of

collective Hamiltonian describing the f1551on processl’z). One finds that in
order to understand better the physics behind the f1551on process, ofie has to

take into account more than one degree of freedom, and the inertial tensor

- seems to depend strongly on the coordinates. A fully quantum mechanical solu-

tion of this multidimensional barrier penetration problem is p0551b1e by the
method of coupled channels. We discuss in the first part of this letter how
to carry out such a caleuiation and apply it to a simple two dimensional mo-
del. HoweVer,ffor‘computational reasons such an approach may break down for
realistic sUrfaees with several minima and saddles. Thefefore one usually ‘
looks for approximations. The common approach is to make a one dimensional
problem by introduciﬁg a suitable fission paths). The traditiona1 choice of
the path is along the bottom of the valley in the pofentiel surface. The po-
tential energy along the valley is taken as the potential energy of the one-
dimensional problem; some suitable expression for the mass parameter, from
the hydrodynamic or the cranking model, is taken, énd'thelone dimensional WKB
formula is applied. Starting with one dimensional wayefunctions of this type
one can take into account the other degrees of freedom in a fully quantum |
mechanical wayvby'some kind of DWBA approach if the coupling is not too

4)

strong ~. For realistic cases with winding valleys and variable inertial
tensor the Strutinsky-Pauli groupl) applied the one dimensional WKB formula

for many paths,'lodking for the minimum action integral. In this two dimen- -

“sional approach however, one still ignores the kinetic energy tied up in the

motion orthogonal to the fission path.

Based on the formulatlon of quantum mechanics by path 1ntegrals given

5)

sical theory has been developed in the field of molecular reactions 6- ) In

by Feyhman together with the correspondence principle, a unified semlclas—

_the second part of this IetterAwe will describe briefly this method and apply

it to the same model for which the quantum mechanical calculation'was'done.
In the following we use a model for a collective Hamiltonian which de-
pends on the fission coordinate x and a coordinate y perpendicular to that,

which describes collective excitations along the fission path:

2 2 : 2,2, 1 2,202
= P, /2mx + py /Zmy + vV exp(-x"/a )‘+ E-C (1 +a expf-x /a”))y _ (1)



The barrier in the x-direction has a simple Gaussian shape, and the'potential

in the y-direction is harmonic but with an x-dependent'SPring constént. This
allows a coupling between the two degrees of freedom.'The parameters are cho-

sen so as to reproduce‘roughly a typical fission barrier: mx=500 MeV_l, my£

4.7 MeV-l, V -7'MeV a=0.185, C=5.1 MeV and a is véfiable Thé‘coordinates X,
y are dlmen51on1ess corresponding for instance to the deformatlon pdrameters
g -and & C and my are chosen in such a way, that the correspondlng frequency
is around 1 MeV. ' ‘

- The quantum mechanical description of the barrler penetratlon is given

by the solution of the stationary Schrodlnger equatlon
HY =EY o - ' ' S ' ’ (2)

with certainibbundary conditions. This equation can be solved by a decomposi-

tion:

?(u) ) % u,(x) e, - B S ®
where {¢v} is the orthonormal set of eigenfunctions of the y dependent oscil-
lator for ]x[*'w . The index p indicates the boundary cdnditidn' in the chan-
nel 1y one has for x - an incoming wave, but in the other channels only
outgoing waves. Multlplylng eq.(2) from the left hand side with ¢ *(y) and
- integrating over y yields a set of coupled channel equatlons for the func-
tlons uuv(x), which is solved numerically within the appropiate boundary con-
ditions. From ‘the amplitude of the oufgoing waves for IX|v+ o  one can deduce
in the usual way the trasmission probabilities P for a transition from the
1ncom1ng channel p to ‘the outgoing channel v and correspondlng reflection:
coefficients R o

A flrstpapprox1mat10n for the diagonal transitions is the so- called
adiabatic approximation. One assumes that during the f15$1on process the
system always stays in the same oscillator state u. Then one @Arries out‘a
one dimensional CaICﬁlation, taking into account only the change of the oscil-
lator energy. This gives a change of the available translational energy along

the fission path.

6‘ .



Fig. 1 shows in fts upper part the shape of the barrier together with
the adiabatic~translational_energies for the channels n %.0,2,4 and their
change along the fission path for a coupling constant‘;a = 0.1 . This corres-
ponds to a narrowing of the fission valley at the top of the bafrier. The
oscillator energy therefore increases and the coupling reduces the transition
probabilities. Table I shows the diagonal transition probabilitiesbfor'no
coupllng (0 = 0) and for a coupling a = 0.1 for the'exact quantum mechani-
cal (QM) solution and for the adiabatic approxlmatlon (QM d) It turns out
that in this case the adiabatic approx1mat10n is good.

For the ground state thiS‘diagonal trénsition is the most important
one. However, for excited states this is no longer true. In this case the
transitiqn probabilities to the ground state are always higher by some orders
of'magnitude thaﬂ'the ones to excited states. The reason is that the system
can penetrate more easily within the groundstate. The lower part of Fig. 1.
shows the quantum mechanical probab111t1es]u (x)l 'for:é barrier penetra-
tion starting from channel p=2. Within the inner reglan(x<0) we have, becau-
se of the high reflection probability in the p=2 chahnel; nearly a standing
wave and in all the other channels outgoing waves.‘Fortx>O we have only out-
going waves. the amplitude for v=0 however is larger than the one,for'v=2.
That means it is much more probable. for the system‘after the penetration to
be found in the ground state than in the excited state; This feature does not

depend very much on the value of the coupling constant‘a:.As is_shoWﬁ in Fig.2

‘ the diagonal transitions do not change very much. The same is true more or

less also for transitions between different oscillator states. Only fof very
small values of o the transitions are reduced. For a=0 they vanish obviquSly.
The coupled-channel code described above can take-into account only a
finite number of channels. It therefore is useful only for problems where one
can get convergence after inclusion of a reasonable number of channels.
Actually in the calculations described here we 1nc}uded the three open
channels.yA further closed channel changed the results Oniy in the fourth sig-
nificant figure. For realistic surfaces, in order te expand the wavefunction
eq;(S), many more channels have to be included. Thié does not only inVolye more

computer time, but also closed channels with highef energy require a special



handling. Therefore we carried out these calculationsonly for not too strong
coupling in order to test the validity of the uniform semiclassical dpprOXI—
mation (USCA), as discussed in the following sectlon

The underlylng idea of this approach is that one uses an analyt1ca1
continuation of the c1a551cal equatlons of motlon for the descrlptlon of the
dynamlcs of the system together w1th quantized boundary conditions and the
quantum mechanlcal superp051tlon pr1nc1p1e in adding amplitudes for different
traJectorles The foundatlons of the USCA and ‘many appllcatlons to molecular
3catteringiand reaction problems have been glyen by Miller in great detail;
(see refs. 6,7,8). 'Here we will therefore only give the're5u1ts of the USCA

as applled to our model.

We 1ntroduce in the asymptotic region, that is for le + < , the action-

angle variables (J,q) forlthe transverse collective degree of freedom. The
action variable J is related by the correspondenoe prinoiple to:the ""quantum
number" n of the harmonic oscillator throughb J = 2#ﬁ(h+172) and the angle
variable q to the phase ¢ of the oscillator through q d/2m .

The semiclassical S-matrix describing a tran51tlon between two quantum

6).

states nu > n,, is given by
Spep = ¥ (_Zﬂl (anf(qi)/aqi)nu ) exp(i¢(n,n))) O

“where the phase & is the classical action integral:

- P ST “ L te |
®(n,, = - = » dt - (Jq - = : : _ )
(n,n)) x e, (xp, + ¥p) (Jq -5 yp,) . _ }»(5).

The sum in eq.(4) goes over all possible classical paths wh1ch satlsfy the‘
| appropriate boundary conditions; that is, correspond to traJectorles which tun—
nel through the barrier and are such that n(tl-f—°° )= nu and n(t + o )= nv.

There are several differences between this USCA method andrthe two-
dimensional method used by Pauli et. al.l).Thevmain diffefence lies in the
different boundary conditions used in the two methods. The way in which the

boundary conditions are handled in the USCA method, allows one to calculate




 Eckard potential barrier 9). This problem can be solVéd‘analytically
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penetrabilities from partlcular initial states (i.e. ﬁot'only from the ground

state but also from excited states) to partlcular flnal states. In the USCA”

one also.takes the full dynamics of the problem along, that is the energy tied

up in the motion perpendicular to the fission path is included.

One way to proceed in order to find the pé;hs with the correct boun;
darY‘conditions isvfhe following: integrate the coupled classical Hamilton
equations of motion starting from the left side at some distance X=X, ( <0j-

outside of the interaction region, with the collective oscillation in the quan-

© tum state nu and with some arbitrary angle variable qy The integration is
directed so that tunneling is achieved and contlnued until x= X (>0) outside
~of the 1nteract10n region. The final '"quantum number' n .f (usually not an inte-

ger) in which the transverse oscillatory degree of freedom is found is then ‘a

function of q.f. This way one finds the final quantum number function LRCRE
The classical paths which satisfy the correct boundary conditions are then

those satisfying the equation:
ne(q;) =m, | (e

The way to obtain a trajectory that tunnels is to follow a time path
in the complex time plane around the approplate branch p01nts of the solutlon
of the equations of motion. ). How one has to proceed is most easily seen on
a’s;mple one-dimensional example: the barrier penetratlon through a symmetrical

: 9)

the main results are summarized in Fig.3. In the compleX’time plane the solu-
tion to this probiem has pairs of branch points joined by cuts. If the time
increments are kept real then the particle is reflected at the barrler “if a
purely imaginary time increment is Lhosen when the particle has reached the
barrier then the particle penetrates into the barrier. If one switches to real
time ihcrements"when the particle has reached the other side of the barrier,’ |
then the particle continues moving to the right and tunneling has been achie-
ved. In essentially the same way one has to proceed in our two-dimensional
example. o

It is noted, that in applying this semiclassical method one needs the

analytical continuation of the equations of motion into the complex plane.



For this to be possible one has to have an ahalyticalsexpression for the po-
tential energy in the Hamiltonian.A potential consisting of piecewise anaiy—
tical functions can.not be continued analytically in a unlque way 1nto the
complex plane and therefore the USCA can not be applled in this case. This
however doesn't pose a major restriction to the method since any potentlal
~energy surface can be approx1mated in the region of 1nterest, in some way by
an analytical function. _

For our model problem we find that eq. (6) has always two solutions:

that is, there are two values of q; (usually complex) that satisfy nf(qi)=nv-

' That one has complex initial and final phases should‘Cause no problems, since
these phases are not observable quantities. The quantities that are observa- .
vbles (for example; the initial and finalvquantum numb‘ef_svnu énd nv) are real
in the asymptotic regions. In our calculations we have used for the coupling
constant a=0.1 and 0=0.01 which correspond to a weak coupling and therefore ,
as in the case of Coulomb excitation 10) and other cases studied 2 one has
that for the off-diégonal transitions, only one of the two solutions of eq.(6)
contributesto the S-matrix, (this may noi'necessarily be true for largér coup-
ling constants). For the diagonal transition howevér both roots contribute.
Since the quantum number function is very flat (due to the weak coupling) a
uniform semiclassical expression for the S-matrix, based on Bessel funct1ons

% 11). We used herevan expre551on slightly

11)

is the appropiate one for this case
~modified and geﬁerélized from the one given by ‘Stine and Marcus
Once the S- matrlx is known, the transition probabilities pv<-u_lsv+uf
follow directly. It is found (see Fig.2 and Table II) that there is a very
good agreement between the USCA calculations and the exact quantum mechanical.
coupled channel calculations, even though the model here considered»is.highly

nonclassical.

This very good agreement makes us\confideht that the semiclassical
method may also be applied to more realistic cases with,stronggr coupling,
where the numerical effort does not change very much and where a quantum mecha-
nical calculation would be unfeasible. | .

Since to handle coordinate-dependent inertial parameters 1ntroduces

17
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no additional difficulty, we hope that it will be afuséful.tqol to investigate
the full dynamiéSlof the coupling between ‘the fiséién'cObrdinate and thevother
degrees of freedom such as hexadecupole deformations, mass asymmetries and

change in pairing correlation 12).

We would like to express our gratitude to W H. Mlller for many help-

. ful discussion. We would also like to thank C. F. Tsang for his comments on

our manuscript.
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Table I. Comparism'l between the quantum_mechanical‘ QM) , ‘adiabatic (QMad)
and semiclassical (USCA) calculations of the diagonal penetrabillity Puu
For a=0 QM corresponds to QMéd and USCA is the usual WKB formula.

a =0 a =_O..1gv.
QM UscA | oM QM USCA
0+ 0 1.67 10> 1.60 107> | 1.40 107> 1.40 1of5 1.44 107
22 | 5481078 52110 | 267 1071 2,42 10717 2052 10713
| - - ' co 23
4>a | 1.44.107%% 1.3 10722 | 4.66 1072 3.62 10




Table II. Comparison between the QM and USCA pénétrabilties PW

s

2.52 10°1% 9.15 10

‘1,42 10

0« 0 0« 2 0*—_*4 2+ 2 2 4 0 -0 0 2 O+—->~_4,
QM 1.40 10> 9.30 1071 1,03 10718 2,67 107!3 9.86 1071° | 1.64 107 1.22 1071? 1.29 10720
uscA | 1.44 1070 9.49 107'1 0,97 10716 1 1.56 107° 1.30 10712 20

01
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Figure Captions

Fig}I Fission barrier and the square of the quantum mechanical channel func-

tions qu(x) for an incoming wave in the channel u=2.

Fig.2 penetrabilities Puv for different values of the coupling constant «.
The lines correspond to the QM coupled channel calculations (solid line for |
the diagonal and broken lines for the off-diagonal penetrabilities) and the

dots correspond to the USCA calculations.

Fig.3 Diagram showing on the right hand side the diffefént time paths one has
to follow in order to obtain the trajectories shown on the left hand side. The
crosses represént the branch points and the wiggly line corresponds to the cuts

joining them.
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