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QUANTUM MECHANICAL AND SEMICLASSICAL DESCRIPTION OF A TWO -

DIMENSIONAL FISSION MODEL * 

** *** H. Massmann P. Ring and J. 0. Rasmussen 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

Abstract 

The penetration through a two dimensional fission barrier is 

investigated by a fully quantum mechanical coupled channel calcula­

tion and by a new semic.lassical method. One finds a quantitative 

agreement. 
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In recent years much progress has been mad€) in the determinat~on of 

collective Hamiltonian describing the fission process1•2). One finds that in 

order to understand better the physics behind the fission process, ohe has to 

take into account more than one degree of freedom, and the inertial tensor 

seems to depend strongly on the coordinates. A fully quantum mechanical solu­

tion of this multidimensional barrier penetration problem is possibl'e by the 

method of coupled channels. We discuss in the first part of this letter how 

to carry out such a calculation and apply it to a simple two dimensional mo­

del. However, for computational reasons such an approach may break down for 

realistic surfaces with several minima and saddles. Therefore one usually 

looks for approximations. The common approach is to make a one dimensional 

problem by introducing a suitable fission path3). The traditional choice of 

the path is along the bottom of the valley in the potential surface. The po­

tential energy along the valley. is taken as the potential energy of the one­

dimensional problem; some suitable expression for the mass parameter, from 

the hydrodynamic or the cranking model, is taken, and the one dimensional WKB 

formula is applied. Starting with one dimensional wavefunctions of this type 

one. can take into account the other degrees of freedom in a fully quantum 

mechanical way by some kind of DWBA approach if the coupling is not too 

strong4). For realistic cases with winding valleys and variable inertial 

tensor the Strutinsky-Pauli group1) applied the one dimensional WKB formula 

for many paths, looking for the minimum action integraL In this two dimen­

sional approach however, .one still ignores the kinetic energy tied up in the 

motion orthogonal to the fission path. 

Based on the formulation of quantum mechanics by path integrals given 
' . 5) 

by Feynman together with the correspondence principle,_ a unified semiclas-

sical theory has been developed in the field of molecmlar reactions 6- 9) . In 

the second part of this letter we will describe briefly this method and apply 

it to the same model for which the quantum mechanical calculation was done. 

In the following we use a model for a collective Hamiltonian which de­

pends on the fission coordinate x and a coordinate .z perpendicular to that, 

which describes collective excitations along the fission path: 

2 H = p /2m 
X X 

2 2 ? 1 2 ?. 2 
+ p }2m + V exp(-x /a~) +- C (1 +a exp(-x /a~))y 

y . y 0 2 
(1) 
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1. 

The barrier in the x-direction has a simple Gaussian shape, and the potential 

in they-direction is harmonic but with an x-dependent spring constant. This 

allows a coupling between the two degrees of freedom. The parameters are cho­

sen so as to reproduce roughly a typical fission barrier: mx =500 MeV-l, my= 
-1 4. 7 MeV , V 

0 
=7 MeV, a=O .18.5, C=S .1 MeV and ci is variable. The coordinates x, 

y are dimensionless correspondl.ng for instance to the deformation parameters 

~ and £4 ; C and my are chosen in such a way, that the corresponding frequency 

is around 1 MeV. 

The quantum mechanical description of the barrier penetration, is given 

by the solution of the stationary Schrodinger equation: 

H If = E If (2) 

with certain boundary conditions. This equation can be solved by a decomposi­

tion: 

ll'(U) = ~ u (x) ¢ (y) 
. l uv v 
. v 

(3) 

where {¢v} is the orthonormal set of eigenfunctions of the y dependent oscil­

lator for lxl~ 00 The index ~ in~icates the boundary condition; in the chan­

nel ~ one has for x -+- oo an incoming wave, but in the other channels only 

outgoing waves. Multiplying eq. (2) from the left hand side with ¢ *(y) and 
.)J 

integrating over r yields a set of coupled channel equations for the func-

tions u~v(x), which is solved numeric~lly within the appropiate boundary con­

ditions. From the amplitude of the outgoing waves for /xi ~ oo one can deduce 

in the usual way the trasmission probabilities P for a transition from the 
]..IV 

incoming channel ~ to the outgoing channel v and corresponding reflection 

coefficients R 
~v 

A first approximation for the diagonal· transitions is the so-called 

adiabatic approximation. One assumes that during the fission process the 

system always stays in the same oscillator stat~ ~· Then one carries out a 

one dimensional calculation, taking into account only the change of the oscil­

lator energy. This gives a change of the available translational ene~gy along 

the fission path. 



0 .. a .. -
. l} 0 

3 

Fig. 1 shows in its upper part the shape of the barrier together with 

the adiabatic-translational energies for the channels n = 0,2,4 and their 

change along the fission path for a coupling constant a. = 0.1 . This corres­

ponds to a narrowing of the fission valley at the top of the barrier. The 

oscillator energy therefore increases and the coupling reduces the transition 

probabilities. Table I shows the diagonal transition probabilities for no 

coupling (a. = 0) and for a coupling a. = 0.1 for the exact quantum mechani­

cal (QM) solution and for the adiabatic approximation (QMad). It turns out 

that in this case the adiabatic approximation is good. 

For the ground state this diagonal transition is the most important 

one. However, for excited states this is no longer true. In this case the 

transition probabilities to the ground state are always higher by some orders 

of magnitude than the ones to excited states. The reason is that the system 

can penetrate more easily within the groundstate. The lower part of Fig. 1 

shows the quantum mechanical probabilities lu2v(x) 12 for a barrier penetra.,. 

tion starting from channel ).1=2. Within the inner region (x<O) we have, becau­

se of the high reflection probability in the ).1=2 channel, nearly a standing 

wave and in all the other channels outgoing waves. ·For x>O we have only out­

going waves. the amplitude for V=O however is largyr than the one for v=2. 

That means it is much more probable,for the system after the penetration to 

be found in the ground state than in the excited state. This feature does not 

depend very much on the value of the coupling constant a.. As is shown in Fig.2 

the diagonal transitions do not change very much. The same is true more or 

less also for transitions between different oscillator states. Only for very 

small values of a. the transitions are reduced. For a.=O they vanish obviously. 

The coupled-channel code described above can takeinto account only a 

finite number of channels. It therefore is useful only for problems where one 

can get convergence after inclusion of a reasonable number of channels. 

Actually in the calculations described here we inciuded the three open 

channels. A further closed channel changed the results only in the fourth sig­

nificant figure. For realistic surfaces, in order to expand the wavefunction 

eq.(3), many more channels have to be included. This does not only involve more 

computer time, but also closed channels with higher energy require a special 
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handling. Therefore we carried out these calculationsonly for not too strong 

coupling in order to test the validity of the uniform semiclassical approxi­

mation (USCA), as discussed in the following section.· 

The underlying idea of this approach is that one uses an analytical 

continuation of the classical equations of motion for the description of the 

dynamics of the system together with quantized boundary conditions and the 

quantum mechanical superposition principle in adding amplitudes for different 

trajectories. The foundations of the USCA and many applications to molecular 

scattering and reaction problems have been given by Miller in great detail; 

(see refs. 6,7,8). Here we will therefore only give the results of the USCA · 

as applied to our model. 

We introduce in the asymptotic region, that is for .I xl + oo , the action­

angle variables (J,q) for. the transverse collective degree of freedom. The 

action variable J is related by the correspondence principle to the "quantum 

number'' n of the harmonic oscillator through J = 2rrfl(n+l/2) and the angle 

variable q to the phase ~ of the oscillator through q. = ¢/2rr . 

The semiclassical S-matrix describing a transition between two quantum 

states n~ + nv is given by 6
): 

s\*lJ = r ( -27Ti )
-112 

(anf(q.)/oq.) exp(i~(nv,n )) 
· 1 1 n ll 

ll 

where the phase~ is the classical action integral: 

tf 

~ (nv ,nll) = - K ~. (xpx + ypy) dt 
·1 

1 ., tf 
- (Jq - - yp ) 

2 y t. 
1 

(4) 

(5) 

The sum in eq.(4) goes over all possible classical paths which satisfy the 

appropriate boundary conditions; that is, correspond to trajectories which tun­

nel through the barrier and are such that n(ti+ ...:oo )=nll and n(tf+ oo )=nv. 

There are several differences between this USCA method and the two­

dimensional method used by Pauli et. al. l). The main difference lies in the 

different boundary conditions used in the two methods. The way in which the 

boundary conditions are handled in the USCA method, allows one to calculate 
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penetrabilities from particular initial states (i.e, not only from the ground 

state but also from excited states) to particular final states. In the USCA 

' one also. takes the full dynamics of the problem along, that is the energy tied 

up in the motion perpendicular to the fission path is included. 

One way to proceed in order to find the paths with the correct boun­

dary conditions is the following: integrate the coupled classical Hamilton 

equations of motion starting from the left side at some distance x=xi ( <0) 

outside of the interaction region, with the collective oscillation in the quan­

tum state n and with some arbitrary angle variable q .. The integration is 
~ . 1 

directed so that tunneling is achieved and continued until x=xf (>0) outside 

of the interaction region. The final "quantum number" nf {usually not an inte­

ger) in which the transverse oscillatory degree of freedom is found is then ·a 

function of qi . This way one finds the final quantum number function nf(qi). 

The classical paths which satisfy the correct boundary conditions are then 

those satisfying the equation: 

(6) 

The way to obtain a trajectory that tunnels is to follow a time path 

in the complex time plane around the appropiate branch points of the solution 

of the equations of motion.?). How one has to proceed is most easily seen on 

a· simple one-dimensional example: the barrier penetration through a symmetrical 

Eckard potential barrier 9). This problem can be solved·analytically 9) and 

the main results are summarized in Fig.3. In the complex time plane the solu­

tion to this problem has pairs of branch points joined by cuts. If the time 

increments are kept real then the particle is reflected at the barrier; if a 

purely imaginary time increment is chosen when the particle has reached the 

barrier then the particle penetrates into the barrier, If one switches to real 

time increments when the particle has reached the other side of the barrier, 

then the particle continues moving to the right and tunneling has been achie­

ved. In essentially the same way one has to proceed in our two-dimensional 

example. 
\ 

It is noted, that in applying this semiclassical method one needs the 

analytical continuation of the equations of motion into the complex plane. 
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For this to be possible one has to have an analytical expression for the po­

tential energy in the Hamiltonian.A potential consisting of piecewise analy­

tical functions can.1not be continued analytically in a unique way into the 

complex plane and therefore the USCA can not be applied in this case. This 

however doesn't pose a major restriction to the method since any potential 

energy surface can be approximated, in the region of in~erest, in some way by 

an analytical function. 

For our model problem we find that eq.(6) has always·two solutions: 

that is, there are two values of qi (usually complex) that satisfy nf(qi)=n,J. 

That one has complex initial and final phases should cause no problems, since 

these phases are not observable quantities. The quantities that are observa­

bles (for example, the initial and final quantum numbers n and n ) are real 
. ]..1 \) 

in the asymptotic regions. In our calculations we have used for the coupling 

constant a=O.l and a=O.Ol which correspond to a weak coupling and therefore , 

as in the case of Coulomb excitation lO) and other cases studied 9) one has 

that for the off-diagonal transitions, only one of the two solutions of eq.(6) 

contribute!.to the S-matrix, (this may not necessarily be true for larger coup" 

ling constants). For the diagonal transition however both roots contribute. 

Since the quantum number function is very flat (due to the weak coupling) a 

uniform semiclassical expression for the S-matrix, based on Bessel functions 
. h . . f h' 9• ll) w d h . . . 1' h 1s t e approp1ate one or t 1s case . e use ere an express1on s 1g tly. 

modified and generalized from the one given by Stine and Marcus 11
). 

Once the S-matrix is known, the transition probabilities P =IS 1:> 
\) + ]..1 \)+j.l 

follow directly. It is found (see Fig.2 a~d Table II) that there is a very 

good agreement between the USCA calculations and the exact quantum mechanical. 

coupled channel calculations, even though the model here considered is highly 

nonclassical. 

This very good agreement makes us.confident that the semiclassical 

method may also be applied to more realistic cases with strong~r coupling, 

where the numerical effort does not change very much and where a quantum mecha­

nical calculation would be unfeasible. 

Since to handle coordinate-dependent inertial parameters introduces 
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no additional difficulty, we hope that it will be a useful tool to investigate 

the full dynamics of the coupling between the fission coordinate and the other 

degrees of freedom such as hexadecupole deformations, mass asymmetries and 

change in pairing correlation 12 ) 

We would like to express our gratitude to W. H. Miller for many help­

. ful discussion. We would also like to thank C. F. Tsang for his comments on 

our manuscript. 
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Table I. Comparison between the quantum mechanical ·(QM), adiabatic (QMad) 

and semiclassical (USCA) calculations of the diagonal penetrability PIJIJ· 

For a.=O QM corresponds to QMad and USCA is the usual WKB formula. 

a. = 0 a. = 0.1 

QM USCA QM QMad USCA 

o ~o 1.67 10-5 1.60 10-5 1.40 10-5 1:..40 10-5 
1. 44 10-5 

2 ~2 5.48. 10-13 5.21 10 -13 2.67 10-13 2.42 10-13 2.52 10- 13 

4 '~4 1.44 .10-22 1. 34 10.;.22 4.66 io-23 3.62 10 
-23 



Table II. Comparison between the QM and USCA penetrabilties P 
/ 

a = 0.1 

0 ++ 0 0--- 2 0 ++4 2 +-+ 2 2 ++ 4 

QM 1.40 10-S 9. 30 10-ll 1. 03 1 o-16 2. 67 10-l3 9.86 10-19 

USCA 1.44 10-S 9.49 10-ll 0.97 10-16 2. 52 10- 13 9.15 10-19 

I - - - - - -- ----- -- ~ - --- -- -

~v 

0 +-+ 0 

' 1. 64 10 
-5 

! 

11.56 10-S 

I 
-

a. = 0.01 

. 

I 
! 

0 ++ 2 0 ._.. 4 ! 

i 

1. 22 10- 12 1. 49 10- 20 

1.30 16-12 1.42 10- 20 

-- - - - ----- --- ---~-

(' 

...... 
0 
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Figure Captions 

Fig.l Fission barrier and the square of the quantum mechanical channel func­

tions u2v(x) for an incoming wave in the channel ~=2. 

Fig. 2 Penetrabilities P llV for different values of the coupling constant a.. 

The lines correspond to the QM coupled channel calculations (solid line for 

the diagonal and broken lines for the off-diagonal penetrabilities) and the 

dots correspond to the USCA calculations. 

Fig.3 Diagram showing on the right hand side the different time paths one has 

to follow in order to obtain the trajectories shown on the left hand side. The 

crosses represent the branch points and the wiggiy line corresponds to the cuts 

joining them. 
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