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Abstract

The contribution of epithelial-to-mesenchymal transitions (EMT) in both developmental and 

pathological conditions has been widely recognized and studied. In a parallel process, governed by 

a similar set of signaling and transcription factors, endothelial-to-mesenchymal transitions 

(EndoMT) contribute to heart valve formation and the generation of cancer-associated-fibroblasts. 

During angiogenic sprouting endothelial cells express many of the same genes and break down 

basement membrane, however they retain intercellular junctions and migrate as a connected 

“train” of cells rather than as individual cells. This has been termed a partial EndoMT. A key 

regulatory check-point determines whether cells undergo a full or a partial EMT/EndoMT, 

however, very little is known about how this switch is controlled. Here we discuss these 

developmental/pathologic pathways, with a particular focus on their role in vascular biology.
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Morphological changes in tissues are invariably associated with phenotypical changes in the 

cells that comprise them. Often these are limited to temporary changes in protein expression 

patterns, but more dramatic changes can also occur, during which cells undergo changes in 

transcriptional programs that lead to significant changes in morphology and function. One 

class of such changes is called the epithelial-to mesenchymal transition (EMT), and variants 

of traditional EMT include endothelial-to-mesenchymal transition (EndoMT) as well as 

partial EMT/EndoMT. Our focus will be to highlight the distinctions among the subsets, 

with an emphasis on angiogenesis as a unique example of a partial EndoMT.
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Endothelial-to-mesenchymal transitions

Endothelial cells (EC) have many epithelial characteristics, including strong apical-basal 

polarity, the ability to form tubes, and the potential to undergo a transition to a 

mesenchymal-like cell (EndoMT). There are many reasons, therefore, to believe that this 

process is related to epithelial-mesenchymal transitions and may thus share some of the 

same pathways and effectors, including the key transcription factors Snail, Slug, Twist, Zeb1 

and Zeb2, which we describe in detail below. There have been several excellent reviews 

published on EMT1–4 and so we will focus on EndoMT, with reference to EMT where clear 

overlaps exist. During embryogenesis subsets of EC in the developing heart undergo 

EndoMT, acquire mesenchymal markers, invade the surrounding tissue and form the valves 

and septa of the adult heart5, a process that involves transforming growth factor-β (TGFβ), 

bone morphogenetic protein (BMP) and Notch signaling pathways6, 7. These pathways 

converge on a complex network of transcription factors that includes HES, HEY1/2, Twist 

and SOX98, 9. Pathologically, EndoMT can be reactivated in the adult heart, and has been 

shown to contribute to cardiac fibrosis, a characteristic common to most forms of heart 

failure. Using lineage-tracing techniques, Kalluri’s group demonstrated that 27 to 35% of 

fibroblasts present in fibrotic heart tissue were of EC origin, strongly suggesting a role for 

EndoMT in this process. Importantly, EndoMT was TGFβ1-dependent, whereas BMP-7 

preserved the EC phenotype and consequently reduced fibrosis10. Interestingly, however, a 

more recent study suggests that the accumulation of cardiac fibroblasts is not due to an 

EndoMT, but rather, the cells derive from a previously unrecognized fibroblast population, 

itself derived from endothelial cells during development11. EndoMT has also been 

implicated as a source of fibroblasts in hypertrophic cardiomyopathy12, diabetes-induced 

cardiac fibrosis13, and chronic pulmonary hypertension14, 15, although these studies lacked 

definitive lineage-tracing analyses.

There is also evidence supporting a role for EndoMT during both acute and chronic kidney 

injury16. In three distinct mouse models of chronic kidney disease approximately 30 to 50% 

of fibroblasts co-expressed the EC marker CD31 along with markers of myofibroblasts and 

fibroblasts, including fibroblast specific protein-1 (FSP-1) and alpha-smooth muscle actin 

(α-SMA). Lineage tracing experiments confirmed the EC origin of these cells16. More 

recent work has suggested that only about 10% of the myofibroblasts present in kidney 

fibrosis derive from an EndoMT, while the remainder come from proliferation of local 

fibroblasts and differentiation from bone marrow cells17. Other studies, however, have 

suggested that these fibroblasts may be derived from pericytes18. It should be borne in mind 

however, that these are all mouse studies and strain-specific differences are always a 

possibility. Other fibrotic diseases where EndoMT has been implicated as a source of 

fibroblasts/stromal cells include intestinal fibrosis19 and Scleroderma20, 21.

In aggregate, these studies provide evidence that EndoMT likely provides a source of 

fibroblasts in both damaged heart and kidney (although the extent is unclear) and may 

function to facilitate tissue remodeling and fibrosis.

Finally, EndoMT also has a significant role to play in cancer. For example, Zeisberg and 

colleagues, using two different mouse models of cancer, demonstrated that EndoMT 
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accounts for up to 40% of cancer associated fibroblasts (CAFs)22. A distinct population of 

fibroblasts co-expressed the EC marker CD31 along with either FSP-1 or α-SMA. Use of 

transgenic mice with irreversibly tagged EC revealed strikingly similar results – unique 

populations of fibroblasts co-expressing endothelial and mesenchymal markers. These data 

suggest that EndoMT is a significant source of CAFs in tumors. Remarkably, it has also 

been demonstrated that Twist over-expression in head and neck cancer cells can drive them 

into an endothelial cell phenotype23.

Angiogenesis: a partial EndoMT

When epithelial cells commit to a mesenchymal phenotype, the event is designated as a 

complete EMT. Partial EMT is also possible, and this occurs when one or more of the key 

characteristics of complete-EMT are not exhibited, such as loss of cell-cell contact. For 

example, during re-epithelialization of cutaneous wounds, keratinocytes undergo a series of 

changes reminiscent of EMT including loss of polarity, rearrangement of the actin 

cytoskeleton, alterations in cell-cell contacts, and breakdown of basement membrane (BM); 

however, these cells retain some intercellular junctions and migrate as a cohesive cell 

sheet24. Similarly, during Madin-Darby canine kidney (MDCK) cell tubulogenesis chains of 

epithelial cells migrate while again retaining intercellular junctions – a partial EMT driven 

by slug activity25. Angiogenesis, the formation of new blood vessels from the pre-existing 

vasculature, is essential during development and many normal physiological processes, but 

is also important in numerous pathological processes, including tumor growth. Interestingly, 

comparison of angiogenesis and EMT reveals several similarities. Among these, the tip cells 

that lead emerging sprouts lack apical-basal polarity, degrade both BM and extracellular 

matrix (ECM) and, by definition, are migratory. However, angiogenic EC do not usually 

separate from their neighbors, suggesting that angiogenesis may involve a partial 

EndoMT26, 27.

Although much is known about the growth factors, receptors and signaling pathways that 

govern angiogenesis, there is still much to learn about transcriptional changes that regulate 

each phase of angiogenesis, including sprouting. Our lab has recently published preliminary 

evidence demonstrating that the transcription factors Snail (SNAI1 in human, Snai1 in 

mouse) and Slug (SNAI2/Snai2) are indeed expressed and regulated by angiogenic EC 

during in vitro angiogenesis26. We demonstrated that inhibition of Snail or Slug expression 

results in a reduced ability of angiogenic EC to invade and migrate through multiple ECM 

environments. Importantly, lentiviral-mediated re-expression of membrane type-1 matrix 

metalloproteinase (MT1-MMP) rescued the inability of EC lacking Slug to migrate. This 

finding therefore suggests that MT1-MMP is a critical downstream target of Slug during 

angiogenesis. Importantly, we and others have observed increased expression of Snail and 

Slug in the vasculature of colon, breast28 and ovarian carcinoma29. It is interesting to 

speculate that the same factors that drive epithelial cells toward a mesenchymal, pro-

metastatic phenotype may also drive EC toward a pro-angiogenic phenotype, which is also 

associated with metastasis. Key factors here may include vascular endothelial growth factor 

(VEGF), TGFβ, BMPs, hepatocyte growth factor (HGF) and Wnts. The “permanently 

activated” phenotype of tumor vasculature may well reflect the chronic activation of the 

EndoMT process, driven by persistently elevated VEGF and a hypoxic environment, leading 
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to excessive sprouting and a failure to settle back into the mature, stable phenotype 

associated with non-tumor EC. It is possible therefore that drugs that target EMT/EndoMT, 

potentially through these pathways, may be doubly effective in slowing metastatic spread of 

epithelial tumors. Finally, we have preliminary data suggesting that Slug deficiency in mice 

leads both to impaired developmental and pathological angiogenesis (KMWR, NW and 

CCWH, unpublished data). In aggregate, these data clearly point to a role for the Snail 

family of transcription factors during angiogenesis. Furthermore, the findings that cell-cell 

contact is retained and expression of vascular endothelial-cadherin (VE-cadherin) is not 

reduced, are reminiscent of the partial EMT seen during keratinocyte migration in wound 

closure and during mammary gland or kidney epithelial cell tubule formation30. We 

therefore believe that angiogenic sprouting may represent a partial EndoMT.

Signaling pathways governing EndoMT

EndoMT and EMT share many of the same regulators, with members of the TGFβ 

superfamily being arguably the most prominent players. TGFβ signaling through Smad-

dependent and independent pathways leads to direct transcriptional regulation of multiple 

genes, including several EMT/EndoMT-inducing transcription factors31. Expression of these 

transcription factors subsequently drives loss of cell-cell adhesion by repression of 

epithelial/endothelial genes encoding junction proteins, regulation of cytoskeletal 

rearrangement, and increased expression and activity of both MT-MMPs and secreted 

MMPs32. Moreover, during EndoMT, upregulation of EC Slug by TGFβ and other growth 

factors results in increased migration and invasion into extracellular matrices of diverse 

composition, and this is due in part to the indirect activation of MT1-MMP, MMP-2 and 

MMP-926. Interestingly, nuclear Smads form multi-protein complexes with EMT/EndoMT-

transcription factors, including Snail, Zeb1 and Zeb2, resulting in suppression or activation 

of promoters of epithelial (E-cadherin, Occludin, ZO-1) or mesenchymal (Vimentin, N-

cadherin) genes, respectively4. TGFβ can also activate Smad-independent pathways such as 

MAPK/ERK/JNK, all of which are implicated in EndoMT31, 33, 34 Finally, a recent study 

has shown a requirement for PKCδ and c-Abl in mediating TGFβ-induced EndoMT in 

mouse pulmonary EC35.

Aside from TGFβ, several other signaling pathways associated with EMT have also been 

reported to regulate EndoMT. The relationship between canonical Wnt signaling and the 

onset of EMT and metastasis is well established in many cancer models. In human prostate 

cancer, the expression and nuclear activity of β-catenin correlates with the level of hypoxia-

induced factor 1 alpha (HIF-1α), and HIF-1α-induced EMT36. The degree of hypoxia-

induced EMT can also be enhanced by Wnt3a-induced activation of β-catenin in hepatic 

carcinoma37. Furthermore, it has been demonstrated that canonical Wnt signaling stabilizes 

Slug expression through regulating glycogen synthase kinase 3-β (GSK3-β) phosphorylation 

and βTrcp-1-mediated ubiquitination, thereby inducing EMT in triple-negative breast 

cancer38. In contrast, the understanding of canonical Wnt signaling in EndoMT was mostly 

limited to developmental processes until recently. In an experimentally induced myocardial 

infarction model, Aisagbonhi et. al., using lineage-tracing experiments, demonstrated that 

the canonical Wnt pathway is transiently activated in endothelial cells, and this in turn leads 

to EndoMT39. More recently, the effect of Wnt7a and its antagonist Dkk-1 on EndoMT 

Welch-Reardon et al. Page 4

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2016 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



during arteriosclerosis was explored. In contrast to its effect on myofibroblasts, the 

activation of Wnt signaling through Wnt7b expression preserves the phenotype of 

endothelial cells, while the expression of Dkk-1 promotes EndoMT40.

Fibroblast growth factor (FGF) has been proposed as a gatekeeper of partial EndoMTs 

through its regulation of the let-7 miRNA, which normally acts to suppress TGFβ-induced 

EndoMT41. When FGF signaling is reduced in a murine model of transplant arteriopathy, in 

this case by inflammatory signals that down-regulate the FGF receptor (FGFR), let-7-

mediated suppression of TGFβ signaling is relieved and EC undergo an EndoMT leading to 

intimal fibrosis. Given that the sprouty genes, which regulate FGFR signaling, have 

previously been implicated in the regulation of EC sprouting42, it is tempting to speculate 

that they may be acting as a rheostat to fine-tune FGF signaling43 and thereby control 

whether EC undergo a partial or full EndoMT in response to TGFβ signaling.

Notch activation is a well-known regulator of angiogenesis44–47; and is linked to both EMT 

and EndoMT events. The cleavage and nuclear translocation of the Notch intracellular 

domain (NICD) can induce transcriptional alterations and hence a series of morphological 

and functional changes related to a mesenchymal transition48. Notch can suppress (or 

activate) gene expression directly or through upregulation of Snail and Slug in both 

epithelial cells and EC, and thus initiate EMT and EndoMT in both developmental and 

pathological conditions49–51. Notch ligands can also be induced by TGFβ signaling to 

activate Notch receptors52 and enhance EMT synergistically53. Blockage of either Jagged-1, 

or its downstream signaling target Hey-1, can attenuate TGFβ-induced EMT in mammary 

gland, kidney tubule and epidermal epithelial cells50, 54. Notch and VEGF are both induced 

in the hypoxic tumor environment and they work together to drive metastasis. On the one 

hand, interaction of Notch and HIF pathways leads to increased “stemness” of cancer cells, 

self-renewal ability and a complete EMT50, 55. On the other hand, hypoxia-dependent 

induction of VEGF expression augments tumor angiogenesis, which provides increased 

opportunities for tumor cell intravasation. Finally, the crosstalk between Notch and VEGF 

pathways in the context of hypoxic tumors also promotes partial EndoMT in angiogenic 

tumor EC leading to the formation of unstable, leaky vessels52. Altered vessel integrity and 

permeability correlates with enhanced tumor cell dissemination to distant sites56.

Notch-mediated EMT/EndoMT is unusual, and somewhat paradoxical, as it is contact-

dependent. Importantly, the ability of cells to retain intercellular adhesion complexes while 

migrating as a group is crucial to tubulogenesis. As described above, processes involving 

tubulogenesis, such as angiogenesis and kidney tubule formation, both require a partial 

EMT/EndoMT, during which the participating cells temporarily lose apical/basal polarity 

and gain migratory capacity, but never fully acquire all mesenchymal phenotypes, nor 

completely lose cellular adhesion. While other signaling pathways such as TGFβ, HGF and 

FGF are capable of promoting this process, it is intriguing to speculate that Notch activation, 

perhaps in conjunction with sprouty, is a crucial determinant of a partial versus full EMT/

EndoMT.

Aside from the major signaling pathways discussed above, miRNA, epigenetic regulation 

and histone modification have also recently emerged as regulators of EMT30, 32 and may 
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also have a role in EndoMT41. These alterations control the expression level of the Snail/

Slug, ZEB, and Twist families of transcription factors, and these in turn feed back to affect 

the expression and/or activity of the miRNA, or histone modifying enzymes30, 32. Clearly, 

the relationship(s) between the master regulators governing EMT/EndoMT are extremely 

complex4, 31.

Transcription factor interactions governing EndoMT

Snail (SNAI1 in human, Snai1 in mouse), Slug (SNAI2/Snai2), Zeb1 (ZEB1/Zeb1), Zeb2 

(ZEB2/Zeb2) and Twist (TWIST1/Twist1) have been identified as the key transcriptional 

regulators of EMTs and EndoMTs. A shared function of these proteins is their ability to 

repress the transcription of epithelial-cadherin (E-cadherin), however, numerous studies have 

demonstrated that they have overlapping but non-redundant roles in EMT and tumor 

progression. In human carcinomas it is generally accepted that Snail plays a major role in 

inducing EMT, while Zeb1/2 and Twist are mainly involved in maintaining the invasive 

mesenchymal phenotype32. However, our recent study on EndoMT suggests that at least in 

the case of sprouting angiogenesis, Slug is the primary initiator of this process while the 

induction of Snail occurs at a much later time26. It is therefore unclear if each of these 

transcription factors has a distinct and specific role during EMT/EndoMT or if they rather 

act in symphony to promote a mesenchymal phenotype. Accumulating evidence from 

studies observing their expression patterns and their ability to regulate each other has begun 

to reveal a non-linear map that suggests these transcription factors mostly act in concert. For 

example, Snail can upregulate Zeb1 and Zeb2 in oral squamous carcinoma and, at the same 

time, negatively regulate its own expression through direct promoter binding57, 58. 

Moreover, Slug indirectly upregulates Snail through epithelial growth factor (EGF) and/or 

HGF signaling, thereby promoting mammary gland branching morphogenesis59. Slug can 

also activate Zeb1 and its own expression through direct transcriptional regulation60, 61. In 

addition, many have shown that Twist1 can regulate the expression level of Snail and Slug 

by either directly influencing transcription62, 63 or through post-translational regulation via 

the NF-κB/GSK-3β axis64.

Dynamic functions of EndoMT transcriptional regulators

The master regulators of EMT mediate repression of E-cadherin expression and this is often 

described as the hallmark of EMT. However, several recent studies show that in both in vitro 
and in vivo models, EMT master regulators can induce EMT/EndoMT-like phenotypes in 

cells without complete loss of membrane E-cadherin – a partial EMT. Similarly, we 

observed that overexpression of Slug in EC promotes EC sprouting, a process suggestive of 

a partial EndoMT, without altering the mRNA levels or surface expression of VE-cadherin, 

the EC equivalent of E-cadherin26. Interestingly, Leroy et al. and others have shown that 

Slug upregulation prevents apoptosis and promotes cell proliferation through p5365, two 

processes associated with angiogenic sprouting. The induction of Twist alone, perhaps 

surprisingly, is sufficient to induce single cell dissemination/local invasion without the loss 

of epithelial identity, and moreover, E-cadherin expression is required for this process66. 

Conversely, the deletion of E-cadherin alone is not sufficient to induce EMT. Indeed, in the 

absence of E-cadherin, and despite a reduction in multiple classes of junction proteins, 
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epithelial cells are still able to invade an extracellular matrix as a chain rather than single 

cells66. Collectively these data suggest that master regulators of EMT and EndoMT serve 

more functions than simply acting as repressors of the epithelial/endothelial phenotype.

Remaining questions and perspectives

Our knowledge of the mechanisms underlying EMT and EndoMT is rapidly advancing, 

however, there are still a number of critical questions that have to be answered, including:

• Are Snail, Slug, Twist, Zeb1 and Zeb2 all required for an EndoMT?

• Do these genes work sequentially, in parallel and/or in feedback loops?

• What regulates expression of EndoMT-promoting transcription factors?

• What are the target genes for EndoMT transcription factors?

• What controls whether cells undergo a full or partial EndoMT?

• How is VE-cadherin “protected” from down-regulation in partial EndoMT?

• Are there fundamental differences between EMT and EndoMT or are the basic 

mechanisms identical?

• Do the same factors that promote EMT in cancer promote EndoMT in 

angiogenic EC?

• How does EndoMT contribute to progression of diseases such as cancer, 

arteriosclerosis and fibrosis?

• Are there fundamental differences between pathological EndoMT and 

developmental EndoMT?

• Can EndoMT be targeted therapeutically in cancer and other diseases involving 

pathologic angiogenesis?

Answers to these questions have the potential to fundamentally affect how we target 

pathologic angiogenesis.
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NONSTANDARD ABBREVIATIONS AND ACRONYMS

BM basement membrane

BMP bone morphogenetic protein

CAF cancer associated fibroblasts
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E-cadherin epithelial cadherin

EC endothelial cells

EGF epidermal growth factor

EMT epithelial-to-mesenchymal transition

EndoMT endothelial-to-mesenchymal transition

FGF fibroblast growth factor

FGFR fibroblast growth factor receptor

FSP-1 fibroblast specific protein-1

GSK3-β glycogen synthase kinase 3-β

HGF hepatocyte growth factor

HIF-1α hypoxia-induced factor 1 alpha

MMP matrix metalloproteinase

MT1-MMP membrane type-1 matrix metalloproteinase

N-cadherin neural cadherin

NICD notch intracellular domain

α-SMA α-smooth muscle actin

TGFβ transforming growth factor β

VE-cadherin vascular endothelial - cadherin

VEGF vascular endothelial growth factor
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Significance

As a single cell multiplies and differentiates to generate a fully-developed multi-cellular 

organism daughter cells often undergo phenotypic changes that can be either permanent 

or temporary. One such change is termed an epithelial-to-mesenchymal transition (EMT) 

and this has been widely studied in both developmental and pathological conditions. It 

contributes to gastrulation and neural crest formation during development, and metastasis 

of epithelial tumors is also thought to involve an EMT. In a somewhat similar process, 

governed by an overlapping set of signaling and transcription factors, endothelial-to-

mesenchymal transitions (EndoMT) contribute to heart valve formation, the generation of 

cancer-associated-fibroblasts, and the activated endothelial cells that drive angiogenic 

sprouting. A key regulatory check-point determines whether cells undergo a full EndoMT 

(heart valve development) or a partial EndoMT (angiogenesis), however very little is 

known about how this switch is controlled. Here we discuss these developmental/

pathologic pathways, with a particular focus on their role in vascular biology.
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Figure 1. 
Complete vs. partial EMT/EndoMT. Epithelial and endothelial cells comprise the quiescent 

epithelium and endothelium respectively and utilize junctional proteins to maintain 

connections. Once transcriptional reprogramming is initiated, an event led by the EMT/

EndoMT-transcription factors Slug, Snail, Twist and Zeb1/2, the epithelial/endothelial cells 

lose apical-basal polarity, sever intercellular junctions and become motile cells. However, 

the regulatory signal(s) that determine whether these cells undergo a complete EMT/

EndoMT or partial EMT/EndoMT remains unclear. In the case of sprouting angiogenesis, 

the contact-dependent Notch signaling pathway may have a major role to play in this 

process.
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