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Traditional genome-wide association studies (GWAS) have successfully detected genetic variants

associated with schizophrenia. However, only a small fraction of heritability can be explained.

Gene-set/pathway-based methods can overcome limitations arising from single nucleotide poly-

morphism (SNP)-based analysis, but most of them place constraints on size which may exclude

highly specific and functional sets, like macromolecules. Voltage-gated calcium (Cav) channels,

belonging to macromolecules, are composed of several subunits whose encoding genes are located

far away or even on different chromosomes. We combined information about such molecules with

GWAS data to investigate how functional channels associated with schizophrenia. We defined a

biologically meaningful SNP-set based on channel structure and performed an association study by

using a validated method: SNP-set (sequence) kernel association test. We identified eight subtypes

of Cav channels significantly associated with schizophrenia from a subsample of published data

(N556,605), including the L-type channels (Cav1.1, Cav1.2, Cav1.3), P-/Q-type Cav2.1, N-type

Cav2.2, R-type Cav2.3, T-type Cav3.1, and Cav3.3. Only genes from Cav1.2 and Cav3.3 have been

implicated by the largest GWAS (N582,315). Each subtype of Cav channels showed relatively

high chip heritability, proportional to the size of its constituent gene regions. The results suggest

that abnormalities of Cav channels may play an important role in the pathophysiology of schizo-

phrenia and these channels may represent appropriate drug targets for therapeutics. Analyzing
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454 | VC 2018Wiley Periodicals, Inc. wileyonlinelibrary.com/journal/ajmgb Am J Med Genet. 2018;177B:454–467.

Received: 1 February 2017 | Revised: 13 February 2018 | Accepted: 23 March 2018

DOI: 10.1002/ajmg.b.32634

http://orcid.org/0000-0003-1964-0844
http://orcid.org/0000-0002-4461-3568


subunit-encoding genes of a macromolecule in aggregate is a complementary way to identify more

genetic variants of polygenic diseases. This study offers the potential of power for discovery the

biological mechanisms of schizophrenia.

K E YWORD S

channels, molecule-based GWAS, schizophrenia, SKAT, SNP-sets

1 | INTRODUCTION

Schizophrenia is a highly heritable complex disease (Lichtenstein et al.,

2009). The biological underpinnings of schizophrenia remain an enigma,

making prevention difficult and delaying development of better treat-

ment alternatives (Van Os & Kapur, 2009). Recently, advances in tech-

nology and the establishment of an international consortium, the

Psychiatric Genomics Consortium (PGC), have made it possible to per-

form genome-wide association studies (GWAS) involving more than a

hundred thousand individuals. The latest study from PGC has reported

108 independent genomic regions associated with schizophrenia

(Schizophrenia Working Group of the Psychiatric Genomics Consor-

tium, 2014). However, the variants identified can only explain a small

fraction of the estimated heritability (Giusti-Rodríguez & Sullivan,

2013; Goldstein 2009; Ripke et al., 2013; Schizophrenia Working

Group of the Psychiatric Genomics Consortium, 2014), and the func-

tional consequences of these variants remain largely uncharacterized.

These problems may originate from inherent limitations of the GWAS

methodology: The mass univariate testing approach requires an

extremely stringent significance threshold to control false positives,

thus reducing power; Genetic heterogeneity further complicate inter-

pretation in large meta-analysis; Connecting SNP markers to the causal

variants they represent is not straightforward; And, robust, efficient

methods for detecting interactions among genetic variants remain

elusive.

Gene-based, and gene-set/pathway-based methods provide prom-

ising alternatives to overcome certain limitations of GWAS (Askland,

Read, O’Connell, & Moore, 2012). Typically, genetic variants within or

near to a gene are aggregated and tested for associations with a dis-

ease (Liu et al., 2010). Gene-set/pathway-based analyses aggregate

functionally related genes, providing a potentially powerful and biologi-

cally oriented bridge between genotypes and phenotypes (Ramanan,

Shen, Moore, & Saykin, 2012; Wang, Li, & Hakonarson, 2010). These

methods, complementary to GWAS, have several advantages: they can

reduce the number of tests performed; they may reduce the impact of

genetic heterogeneity across cohorts; and they can facilitate the inter-

pretation of findings. On the other hand, they also have limitations:

genes typically work in concert with one another (Liu et al., 2010), thus

gene-based methods cannot take into account the joint effect among

genes; the organization of pathways is typically derived from experi-

ments of model organisms or predicted from mathematical models so

uncertainties may be present (Bauer-Mehren, Furlong, & Sanz, 2009);

the mechanism of the pathways is rarely clear (Khatri, Sirota, & Butte,

2012); and most published gene-set/pathway analyses place

constraints on size from 10 to a few 100 genes (Ramanan et al., 2012).

Restriction to pathways with more than 10 genes may exclude highly

specific and potentially informative functional SNP-sets, like

macromolecules.

A macromolecule is a very large molecule created by polymeriza-

tion of multiple smaller subunits. Voltage-gated calcium (Cav) channels

that belong to macromolecules are pore-forming membrane proteins

involved in diverse physiological processes including depolarization of

neuronal action potentials, neurotransmitter release, neuronal excitabil-

ity, and intracellular signaling (Simms & Zamponi, 2014). Before inter-

esting GWAS findings emerged, they have already received

considerable physiological investigations in psychiatric and neurological

disorders due to their importance to brain function (Catterall, 2000;

Simms & Zamponi, 2014). Cav channels are key mediators of calcium

entry into neurons (Turner, Anderson, & Zamponi, 2011) and calcium

signaling is involved in major molecular hypothesis of schizophrenia

such as dopamine, glutamatergic, and GABAergic hypothesis (Lidow,

2003). In fact, calcium signaling dysfunction has been suggested as a

unifying pathological mechanism in schizophrenia (Lidow, 2003). Thus,

Cav channels gene variants are of large interest in relationship to schiz-

ophrenia and we chose to perform the macromolecular analysis of

functional Cav channels.

Recently, GWAS have identified several associated neuronal ion

channel genes (e.g., CACNA1C, CACNB2, CACNA1I, KCNB1, HCN1,

CHRNA3, CHRNA5, CHRNB4) (Cross-Disorder Group of the Psychiatric

Genomics Consortium, 2013; Ripke et al., 2013). In particular, associa-

tions at CACNA1C, CACNB2, and CACNA1I, which encode Cav channel

subunits, extend previous findings implicating members of Cav channels

in schizophrenia (Hamshere et al., 2013; Ripke et al., 2013). Cav chan-

nels can either be monomers (one subunit), or heteromultimers (three

or four subunits). Although, these subunits physically bind together to

form a channel, their encoding genes are located in different regions of

a chromosome or even on different chromosomes. For example, in the

Cav1.1 channel (Bannister & Beam, 2013), the a1 subunit gene CAC-

NA1S, a2d subunit gene CACNA2D1, b subunit gene CACNB1, and g

subunit gene CACNG1 are located at chromosomal bands 1q32, 7q21-

q22, 17q21-q22, and 17q24, respectively (Figure 1). Due to the limita-

tions of gene-based and gene set-based analysis mentioned above, it is

possible that taking the macromolecules (Cav channels) as a joint entity

can explain more for the risk of schizophrenia than one single locus

alone.

We defined a SNP-set from single channel genes and investigated

how this biologically functional unit is associated with schizophrenia,

using the accessible PGC schizophrenia GWAS data (N556,605:
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25,629 cases and 30,976 controls) divided into a discovery and a repli-

cation sample. We applied the SNP-set (sequence) kernel association

test (SKAT) (Wu et al., 2010) and identified significant associations in

eight subtypes of Cav channels (Cav1.1, Cav1.2, Cav1.3, Cav2.1, Cav2.2,

Cav2.3, Cav3.1, and Cav3.3). In contrast, only genes (CACNA1C,

CACNB2, and CACNA1I) from two subtypes were implicated by the

original GWAS despite its larger sample (N582,315). These findings

show the potential of the macromolecule approach to identify the pos-

sible etiology of diseases, and suggest that abnormalities of Cav chan-

nels may play an important role in the pathophysiology of

schizophrenia.

2 | MATERIALS AND METHODS

2.1 | Cav genes

A total of 26 genes encoding subunits of Cav channels can be classified

into four groups (Table 1) according to the types of subunits they

encode (Catterall, 2000; Simms & Zamponi, 2014). Genes CACNA1A,

CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G,

CACNA1H, CACNA1I, CACNA1S encode the a1 subunits; CACNA2D1,

CACNA2D2, CACNA2D3, CACNA2D4 encode the a2d subunits;

CACNB1, CACNB2, CACNB3, CACNB4 encode the b subunits; and

CACNG1, CACNG2, CACNG3, CACNG4, CACNG5, CACNG6, CACNG7,

CACNG8 encode the g subunits. We only analyzed genes located on

the autosomes, so the gene CACNA1F on the X-chromosome was

excluded.

2.2 | Genotype data

Due to IRB restrictions from some substudies in PGC, we used the larg-

est accessible PGC schizophrenia data which contains 36 case-control

substudies (N556,605; 25,629 cases and 30,976 controls compared

FIGURE 1 Molecular organization of voltage-gated calcium channels
and chromosome locations of their subunit-coding genes. Most Cav
channels are multi-subunit structure (containing three or four subu-
nits, a1, b, a2d, with or without g subunits), but T-type Cav channels
only have the a1 subunit. In one specific channel, the subunits are
physically bound together, but their encoding genes are localized far
apart or even on different chromosomes. Nine autosomal genes (CAC-
NA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1G, CAC-
NA1H, CACNA1I, CACNA1S) encode a1 subunit (connected by red
lines), four genes (CACNB1, CACNB2, CACNB3, CACNB4) encode b

subunits (connected by blue lines), four genes (CACNA2D1, CAC-
NA2D2, CACNA2D3, CACNA2D4) encode a2d subunit (connected by
green lines), and eight genes (CACNG1, CACNG2, CACNG3, CACNG4,
CACNG5, CACNG6, CACNG7, CACNG8) encode g subunit (connected
by gray lines). The numbers 1, 2, 3, 7, 9, 10, 12, 16, 17, 19, and 22

represent chromosome numbers [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Gene-level test result from discovery and validation
stages

Gene name

Type of
encoding
subunit

Stage1
BH_SKAT P

Stage2
BH_SKAT P

Combined
dataset
BH_SKAT P

CACNA1A a1A 4.66E-01 3.80E-01 2.29E-01

CACNA1B a1B 7.15E-01 1.75E-01 1.75E-01

CACNA1C a1C 2.24E-04a 2.42E-12a 3.07E-18a

CACNA1D a1D 5.85E-01 7.63E-01 5.53E-01

CACNA1E a1E 4.48E-01 7.49E-02 8.85E-03a

CACNA1G a1G 8.94E-03a 1.75E-01 3.41E-03a

CACNA1H a1H 5.60E-01 8.16E-01 3.29E-01

CACNA1I a1I 3.75E-04a 2.32E-04a 9.88E-09a

CACNA1S a1S 2.13E-01 2.64E-01 1.26E-01

CACNA2D1 a2d1 5.85E-01 8.42E-02 1.26E-01

CACNA2D2 a2d2 5.60E-01 7.49E-02 1.94E-01

CACNA2D3 a2d3 4.48E-01 8.42E-02 8.01E-02

CACNA2D4 a2d4 4.48E-01 1.60E-01 7.15E-02

CACNB1 b1 7.15E-01 1.75E-01 1.53E-01

CACNB2 b2 3.55E-02a 6.73E-02 2.41E-05a

CACNB3 b3 4.66E-01 1.92E-01 1.60E-01

CACNB4 b4 6.68E-01 1.86E-01 1.75E-01

CACNG1 g1 6.48E-01 1.75E-01 1.53E-01

CACNG2 g2 4.48E-01 1.75E-01 2.91E-01

CACNG3 g3 4.66E-01 1.60E-01 1.26E-01

CACNG4 g4 8.47E-01 7.49E-02 1.26E-01

CACNG5 g5 4.66E-01 1.87E-01 1.26E-01

CACNG6 g6 4.66E-01 1.75E-01 4.98E-01

CACNG7 g7 5.75E-01 1.75E-01 1.26E-01

CACNG8 g8 4.66E-01 2.65E-01 1.75E-01

*p-Value <.05 after correction. Stage1: discovery phase; Stage 2: valida-
tion phase; BH: Benjamini Hochberg; SKAT: SNP-set (sequence) kernel
association test.
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to 52 sub-studies and N582,315 in the primary study) (Schizophrenia

Working Group of the Psychiatric Genomics Consortium, 2014). Qual-

ity control and imputation were performed by the PGC Statistical Anal-

ysis Group for each dataset separately. Briefly, SNP meets with

following conditions were retained: SNP missingness <0.05, SNP

Hardy–Weinberg equilibrium p>1 3 1026 in controls or p>1 3

10210 in cases. Samples with missing rate >0.05 were removed. After

quality control, the remaining genotypes were imputed using

SHAPEIT2/IMPUTE2 (Delaneau, Marchini, & Consortium, 2014; Howie

et al., 2012) based on the full 1000 Genomes Project dataset (Schizo-

phrenia Working Group of the Psychiatric Genomics Consortium,

2014). To evaluate the replicability of our analysis, we selected out the

data used in the first phase of PGC (PGC1) as a discovery sample

(10,616 cases and 10,315 controls), and used the rest as replication

sample (15,013 cases and 20,661 controls). In addition, we also used

combined samples from both discovery and replication stages. We first

merged the best-guessed genotype data (imputation information score

>0.8 and minor allele frequency >0.05) across 36 substudies, and

then, performed the second round of quality controls using parameters

SNP missingness <0.05 and minor allele frequency >0.05. To control

the impact of population stratification on our analysis, we computed

the first 20 principal components based on the merged and quality con-

trolled genotype data by using the program EigenSoft (Price et al.,

2006). Since, some Cav genes are close together in genomic position

(e.g., CACNG6, CACNG7, and CACNG8), it is possible that some SNPs

may be assigned to more than one genes. To avoid such undesired

bias, we annotated SNPs to the closest gene (GENCODEv1.9) based

on genomic positions that were derived from the human genome

assembly build hg19 (Supporting Information Table S8). Then based on

the SNPs list, the genotypes of the 25 Cav genes were extracted.

Cav channels can either be monomers (only the a1 subunit), or het-

eromultimers (three subunits a1, b, a2d; or four subunits a1, b, a2d, g).

Great diversity of Cav channels allows them to fulfill highly specialized

roles in specific neuronal subtypes (Simms & Zamponi, 2014). Thus, for

each a1 subunit (principal subunit for classifying subtypes of Cav chan-

nels), co-assembly of a variety of ancillary subunits (b, a2d, g) exists

(Table 2). In some Cav channels, the ancillary subunit types are not

completely known. So for channel-level association analysis, we test all

of the possible combinations based on the current literatures (Buraei &

Yang, 2010; Catterall, 1996; Davies et al., 2010; Hofmann, Flockerzi,

Kahl, & Wegener, 2014; Schlick, Flucher, & Obermair, 2010). According

to different subunit gene combinations (three or four genes per set),

genotypes of the genes consisting of a Cav channel were concatenated.

Therefore, each SNP-set is corresponding to one functional channel

that exists in nature.

2.3 | SNP-set (sequence) kernel association test

SKAT was used to test for association between a set of genetic var-

iants and dichotomous or quantitative phenotypes. It uses the logistic

kernel-machine regression modeling framework. SKAT aggregates indi-

vidual score test statistics of SNPs in a SNP-set and computes SNP-set

level p-values. SKAT can be used for common or/and rare variants

TABLE 2 Channel-level test results

Channel
name

Subunits
combination

Stage1
BH_SKAT P

Stage2
BH_SKAT P

Combined
datasets
BH_SKAT P

Cav1.1 a1S b1 a2d1 g1 4.63E-01 2.78E-02* 3.54E-02*

a1C b1 a2d1 9.56E-04* 5.85E-12* 1.51E-16*
a1C b1 a2d2 5.09E-05* 8.42E-14* 1.62E-19*
a1C b2 a2d1 6.21E-05* 8.87E-13* 1.31E-20*
a1C b2 a2d1 g1 6.21E-05* 8.05E-13* 1.16E-20*
a1C b2 a2d1 g2 5.70E-05* 6.13E-13* 1.13E-20*
a1C b2 a2d1 g3 6.21E-05* 4.66E-13* 5.56E-21*
a1C b2 a2d1 g4 6.93E-05* 6.03E-13* 1.07E-20*
a1C b2 a2d1 g5 6.21E-05* 6.93E-13* 6.59E-21*
a1C b2 a2d1 g6 6.21E-05* 7.04E-13* 1.31E-20*
a1C b2 a2d1 g7 6.21E-05* 8.05E-13* 1.13E-20*
a1C b2 a2d1 g8 6.21E-05* 8.36E-13* 1.13E-20*

Cav1.2 a1C b2 a2d2 6.66E-06* 8.72E-14* 1.75E-22*

a1C b2 a2d2 g1 6.66E-06* 8.42E-14* 1.64E-22*
a1C b2 a2d2 g2 6.66E-06* 8.42E-14* 1.61E-22*
a1C b2 a2d2 g3 6.66E-06* 8.42E-14* 1.16E-22*
a1C b2 a2d2 g4 7.22E-06* 8.42E-14* 1.61E-22*
a1C b2 a2d2 g5 6.66E-06* 8.42E-14* 1.16E-22*
a1C b2 a2d2 g6 6.66E-06* 8.42E-14* 1.64E-22*
a1C b2 a2d2 g7 6.66E-06* 8.42E-14* 1.61E-22*
a1C b2 a2d2 g8 6.66E-06* 8.42E-14* 1.61E-22*
a1C b2 a2d3 3.72E-05* 2.65E-12* 2.67E-20*
a1C b2 a2d4 6.66E-06* 1.49E-13* 1.16E-22*
a1C b3 a2d1 9.49E-04* 5.85E-12* 1.51E-16*
a1C b3 a2d2 5.09E-05* 8.42E-14* 1.62E-19*
a1C b4 a2d1 3.50E-03* 7.39E-11* 8.50E-15*
a1C b4 a2d2 7.72E-04* 4.67E-11* 6.26E-15*
a1D b3 a2d1 5.71E-01 6.08E-02 8.46E-02
a1D b3 a2d2 5.71E-01 1.85E-01 3.93E-01
a1D b3 a2d3 3.17E-01 5.79E-02 4.26E-02*

Cav1.3 a1D b3 a2d4 4.39E-01 3.18E-01 1.21E-01

a1D b4 a2d1 6.41E-01 4.63E-02* 6.17E-02
a1D b4 a2d2 6.78E-01 1.22E-01 2.00E-01
a1D b4 a2d3 4.07E-01 4.36E-02* 3.54E-02*
a1D b4 a2d4 5.71E-01 1.72E-01 9.55E-02
a1A b1 a2d1 4.99E-01 4.00E-02* 4.42E-02*
a1A b4 a2d1 5.71E-01 3.28E-02* 3.72E-02*

Cav2.1 a1A b4 a2d2 5.71E-01 7.90E-02 1.02E-01

a1A b4 a2d3 3.49E-01 3.27E-02* 2.13E-02*
a1A b4 a2d4 4.69E-01 1.13E-01 4.99E-02*
a1B b1 a2d1 6.41E-01 2.34E-02* 3.92E-02*
a1B b1 a2d2 7.14E-01 3.28E-02* 1.02E-01
a1B b1 a2d3 3.58E-01 2.34E-02* 2.16E-02*
a1B b3 a2d1 6.41E-01 2.34E-02* 3.92E-02*

Cav2.2 a1B b3 a2d2 6.92E-01 3.28E-02* 1.02E-01

a1B b3 a2d3 3.58E-01 2.34E-02* 2.16E-02*
a1B b4 a2d1 6.90E-01 2.15E-02* 3.51E-02*
a1B b4 a2d2 7.66E-01 3.97E-02* 8.89E-02
a1B b4 a2d3 4.37E-01 2.15E-02* 1.92E-02*
a1E b1 a2d1 4.25E-01 5.15E-03* 1.47E-03*

Cav2.3 a1E b2 a2d1 4.53E-02* 4.25E-04* 2.30E-07*

a1E b3 a2d1 4.25E-01 5.15E-03* 1.47E-03*
a1E b4 a2d1 4.82E-01 5.15E-03* 1.56E-03*

Cav3.1 a1G 2.23E-03* 1.28E-01 1.05E-03*

Cav3.2 a1H 4.82E-01 8.16E-01 3.08E-01

Cav3.3 a1I 7.31E-05* 3.85E-05* 1.64E-09*

*p-Value<0.05 after corrections. Stage1: discovery phase; Stage 2: validation
phase; BH: Benjamini Hochberg; SKAT: sequencing kernel association test.
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(Ionita-Laza et al., 2013; Wu et al., 2010, 2011). In the current study,

we focus on the common variants in line with the PGC schizophrenia

study and used SKAT version 1.07 (Wu et al., 2010). The linear kernel

with beta (p, 1.25), where p is the minor allele frequency of a SNP, was

used. In our analysis, we carefully selected the cohort indicators and

the first six principal components as covariates after comparing results

including different number of principal components (3, 6, and 10) (Sup-

porting Information Table S1). At the same time, to overcome the issue

of the large number of degrees of freedom, SKAT employs a test that

adaptively estimates the degrees of freedom by accounting for correla-

tion (LD) among the SNPs (Wu et al., 2010). In this study, a SNP-set

can be a collection of SNPs from a gene or several genes consisting of

a heteromeric channel. The Benjamini Hochberg (BH) procedure was

used to correct for multiple comparisons both in the Tables 1 and 2

(Hochberg & Benjamini, 1990; Wu et al., 2011).

2.4 | Estimate schizophrenia heritability contributed

by Cav channels SNPs

Channels significantly associated with schizophrenia (Table 2; Support-

ing Information Table S6) were selected. For each subtype of Cav chan-

nel, all of the auxiliary subunit (b, a2d, g) genes contributing to a

significant association with schizophrenia were grouped with each a1

gene. The following gene lists Cav1.1 (CACNA1S, CACNA2D1, CACNB1,

CACNG1); Cav1.2 (CACNA1C, CACNA2D1, CACNA2D2, CACNA2D3,

CACNA2D4, CACNB1, CACNB2, CACNB3, CACNB4, CACNG1, CACNG2,

CACNG3, CACNG4, CACNG5, CACNG6, CACNG7, CACNG8); Cav1.3

(CACNA1D, CACNA2D3, CACNB3, CACNB4); Cav2.1 (CACNA1A, CAC-

NA2D1, CACNA2D3, CACNA2D4, CACNB1, CACNB4); Cav2.2 (CAC-

NA1B, CACNA2D1, CACNA2D3, CACNB1, CACNB3, CACNB4); Cav2.3

(CACNA1E, CACNA2D1, CACNB1, CACNB2, CACNB3, CACNB4); Cav3.1

(CACNA1G); Cav3.3 (CACNA1I) were used to extract genotype–pheno-

type data for estimating chip heritability by using the linear mixed

method BOLT-REML (Loh et al., 2015). The level of enrichment for

association with schizophrenia was represented by the ratio of propor-

tion of chip heritability (from each subtype of channel) in total heritabil-

ity (33%) (Ripke et al., 2013) to the proportion of their SNPs in all SNPs

(9423850 variants, minor allele frequency >0.05) from the 1000

Genomes Project.

3 | RESULTS

3.1 | Association of Cav genes with schizophrenia

(gene level)

Two genes, CACNA1C and CACNA1I significantly associate with schizo-

phrenia in the discovery cohort (corrected p < .05) and in the replica-

tion cohort (corrected p< .05) both according to the SKAT) method

(Table 1) and univariate analysis (Supporting Information Table S2).

Within the combined sample (56,605 subjects) a further three genes

were identified by the SKAT analysis: CACNA1E, CACNA1G, and

CACNB2. CACNA1C, CACNA1I, and CACNB2 were previously reported,

whereas CACNA1E and CACNA1G have not been reported as

schizophrenia candidates (Schizophrenia Working Group of the Psychi-

atric Genomics Consortium, 2014).

3.2 | Association of Cav channels with schizophrenia
(macromolecule level)

Macromolecule-level testing in the discovery cohort identified hetero-

mers Cav1.2 (all possible subunits combinations), Cav2.3 (a1E b2 a2d1),

and monomers Cav3.1 (a1G) and Cav3.3 (a1I) as associated (corrected

p< .05). All of them except Cav3.1 (a1G) were replicated in the separate

samples by SKAT analysis (Table 2). In the combined sample, hetero-

mers Cav1.1 (a1S b1 a2d1 g1); Cav1.2 (all possible subunits combina-

tions); Cav1.3 (a1D b3 a2d3, a1D b4 a2d3); Cav2.1 (a1A b1 a2d1, a1A b4

a2d1, a1A b4 a2d3, a1A b4 a2d4); Cav2.2 (a1B b1 a2d1, a1B b1 a2d3, a1B

b3 a2d1, a1B b3 a2d3, a1B b4 a2d1, a1B b4 a2d3); and Cav2.3 (a1E b1

a2d1, a1E b2 a2d1, a1E b3 a2d1, a1E b4 a2d1), and monomers Cav3.1

(a1G) and Cav3.3 (a1I) associate with the risk of schizophrenia (cor-

rected p< .05) (Table 2).

3.3 | Chip heritability of Cav channels

We estimate that 0.0567% (s.e. 0.0391%), 0.5051% (s.e. 0.1172%),

0.2453% (s.e. 0.0946%), 0.1788% (s.e. 0.0708%), 0.2578% (s.e.

0.0929%), 0.176% (s.e. 0.0658%), 0.0272% (s.e. 0.0316%), and

0.0569% (s.e. 0.0464%) of the variance in schizophrenia can be

explained by Cav1.1, Cav1.2, Cav1.3, Cav2.1, Cav2.2, Cav2.3, Cav3.1,

and Cav3.3 SNPs, respectively (Figure 2a). The Cav1.2 account for the

largest amount of chip heritability (0.5051%, s.e. 0.1172%) and the

Cav3.1 account for the least (0.0272%, s.e. 0.0316%). However, after

accounting for the number of SNPs included in each Cav subtype,

Cav3.1 and Cav3.3 show largest fold enrichment (39.83 and 36.51,

respectively) (Figure 2b). All tested subtypes of Cav channels show

more than sixfold enrichment. The variance explained by each subtype

of Cav channels is proportional to its number of SNPs (Supporting

Information Figure S1). This is in line with the previous discovery that

the larger the genomic region, the higher the proportion of chip herit-

ability that can be accounted for (Yang et al., 2011).

3.4 | Robustness of the channel-based association

Cav channels that are significantly associated with schizophrenia

reported by SKAT were also identified by another program MAGMA

(de Leeuw, Mooij, Heskes, & Posthuma, 2015) (Supporting Information

Tables S4 and S5). However, MAGMA identified fewer channels at the

discovery stage compared with SKAT (Table 2; Supporting Information

Table S5). But for the largest European dataset (49 substudies),

MAGMA reports similar results with SKAT.

4 | DISCUSSION

In the current study, we applied a macromolecule approach to a sub-

sample of published schizophrenia GWAS (N556,605) and identified

eight subtypes of Cav channels associated with schizophrenia, including

the L-type Cav channels (Cav1.1, Cav1.2, Cav1.3), P-/Q-type Cav2.1,
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N-type Cav2.2, R-type Cav2.3, T-type channels (Cav3.1, Cav3.3). Only

genes (CACNA1C, CACNB2, and CACNA1I) from Cav1.2 and Cav3.3

were implicated in the primary PGC analysis, which was based on a

larger sample (N582,315) (Schizophrenia Working Group of the

Psychiatric Genomics Consortium, 2014). In addition, we used another

published statistical tool MAGMA to confirm our analysis. The results

are highly consistent, although the two programs are based on different

assumptions and statistical models. It demonstrates that analyzing

macromolecule subunit genes in aggregate is a complementary way to

identify more genetic variants of schizophrenia compare to the tradi-

tional GWAS that treating each SNP separately.

The macromolecule subunits physically bind together to achieve

their cellular functions, thus perturbations of any of their subunits may

contribute to disease pathogenesis. In previous, GWAS of schizophre-

nia, only a handful of channel subunits were implicated, perhaps due to

the limited power of the massive univariate tests (Lichtenstein et al.,

2009; Ripke et al., 2013; Schizophrenia Working Group of the Psychi-

atric Genomics Consortium, 2014). To the best of our knowledge, only

Askland et al. (2012) have performed an association analysis of ion

channels with schizophrenia, but the gene sets defined in their study is

a mixture of subunit-encoding genes from many ionic species and does

not therefore correspond to a macromolecule existing in nature. In

addition, it was tested in a much smaller sample. To test whether each

functional Cav channel is associated with schizophrenia or not, we com-

posed specific gene set based on molecular structures of Cav channels

(Buraei & Yang, 2010; Catterall, 1996; Davies et al., 2010; Schlick et al.,

2010; Simms & Zamponi, 2014). For each channel (macromolecule-

based analysis), although the containing genes locate far away or even

on different chromosomes, the encoding subunits are physically bind-

ing together in one functional unit to deal with flow of calcium ions.

This macromolecule-based approach is different from grouping genes

based on their functional catalogs or pathways since their products

(proteins) interact directly or indirectly and they could not form a

unique functional macromolecule. Our approach combining biological

priors with GWAS data identified eight subtypes of Cav channels asso-

ciated with the risk of schizophrenia. It is possible that the associations

of whole channels with schizophrenia may be due to a highly associ-

ated component gene. This is likely the case for Cav1.2, where a few

possible subunit combinations (e.g., Cav1.2: a1C b1 a2d2 that encoded

by genes CACNA1C, CACNB1, and CACNA2D2) show their significance

thanks to the a1 subunit gene CACNA1C (Table 1; Supporting Informa-

tion Table S7), although most of the others are not. The significant

associations of the other heteromultimeric channels may be not due to

a single significant gene. For example, during the discovery and replica-

tion stages, the Cav2.3 channel (subunits encoded by CACNA1E,

CACNB2, and CACNA2D1) was discovered and replicated by SKAT but

none of their composing genes was identified at the gene-level test.

The univariate analysis (minP SNP represents channel) could not iden-

tify this channel in small samples (discovery and replication stages), but

the combined sample could confirm this finding when applying a

macromolecule-based approach (Supporting Information Table S3).

None of the channels Cav1.1, Cav1.3, Cav2.1, and Cav2.2 subunit genes

was identified in gene-level testing, but the channels show significant

association with schizophrenia in the combined sample. These results

indicate that subunit genes can collectively associate with disease sus-

ceptibility, even if individual genes do not exhibit significant

FIGURE 2 Estimates of the schizophrenia variance explained by SNPs from each subtype of Cav channels. (a) Chip heritability of each
significant subtype of Cav channel, (b) fold enrichment of each significant subtype of Cav channel in schizophrenia. The fold enrichment is
the ratio of the proportion of chip heritability (from each significant subtype of channel) in total heritability (33%) to the proportion of their
SNPs in all SNPs (9,423,850 variants, minor allele frequency >0.05) from 1000 Genomes Projects [Color figure can be viewed at
wileyonlinelibrary.com]
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association. It seems that analyzing channel SNPs as a set can capture

the joint effect of multiple variants located on different chromosomes.

Thus, genetic variants with weak or moderate effects could be identi-

fied when we combined them together based on biological knowledge

of the macromolecule.

We also observed enrichment of heritability in significant Cav

channels SNPs for schizophrenia and it may point to a major role of the

inherited genetic variants in the risk of schizophrenia. These eight sub-

types of Cav channels may provide more knowledge about the pathol-

ogy of schizophrenia. Cav channels are the primary mediators of

depolarization-induced calcium entry into neurons (Simms & Zamponi,

2014). Calcium-dependent processes such as neurotransmitter release,

neuronal gene transcription, and activation of calcium-dependent

enzymes are of critical importance to brain function (Clapham, 2007;

Simms & Zamponi, 2014). L-type Cav channels (Cav1.1, Cav1.2, Cav1.3)

are involved in learning, memory, and synaptic plasticity (Moosmang

et al., 2005; White et al., 2008; Woodside, Borroni, Hammonds, &

Teyler, 2004). Mutations in CACNA1C, the gene encoding the a1 subu-

nit of Cav1.2, are responsible for Timothy syndrome, a multisystem dis-

order including cognitive impairment and autism spectrum disorder

(Splawski et al., 2004, 2005). SNPs located in CACNA1C are linked to

development of schizophrenia, bipolar disorder and depression (Dao

et al., 2010; Green et al., 2010; He et al., 2014). Data from mice and

humans suggest an involvement of Cav1.3 channels in neurophysiologi-

cal functions, in particular in the dopaminergic system (Simms &

Zamponi, 2014), which is involved in the pathology of schizophrenia

(Brisch et al., 2014). Although, in humans, mutations in Cav1.1 have

been linked to hypokalemic periodic paralysis (Pt�aček et al., 1994) and

malignant hyperthermia (Monnier, Procaccio, Stieglitz, & Lunardi, 1997),

a pathway analysis for a set of calcium channel genes implicated CAC-

NA1S (Cav1.1 channel a1 subunit gene) as one of the 20 gene regions

associated in the five psychiatric disorder meta-analysis (Cross-Disorder

Group of the Psychiatric Genomics Consortium, 2013). P-/Q-type chan-

nel Cav2.1 and N-type channel Cav2.2 play a role in neurotransmitter

release at the presynaptic terminal and in neuronal integration in many

neuronal types (Williams et al., 1992). R-type channel Cav2.3 is strongly

expressed in cortex, hippocampus, striatum, amygdala, and interpedun-

cular nucleus (Parajuli et al., 2012). The T-type channels (Cav3.1,

Cav3.3) appear to play important roles in regulating neuronal excitability

(Simms & Zamponi, 2014). Although, there is no direct evidence associ-

ating Cav2.1, Cav2.2, Cav2.3, and Cav3.1 with schizophrenia, due to

their strong expression and wide distribution in the human brain, these

four subtypes of Cav channels are likely involved in some aspects of

schizophrenia pathology. A recent study of rare variants in schizophre-

nia demonstrated that a gene set containing 26 Cav genes yielded a

large odds ratio of 8.4 (Purcell et al., 2014). Given the central role of

Cav channels in regulating neurotransmitter release and neuronal gene

transcription, the identified channels may represent convenient drug

targets for novel therapeutics. Designing drugs for specific channels by

targeting a1 subunit, or designing more universal drugs for some chan-

nels by targeting shared ancillary subunits can improve efficiency of

treatments. There are some Cav channels blockers in clinical use. A few

L-type Cav channel antagonists such as verapamil and nifedipine, which

are used for hypertension, have been examined in clinical trials in schiz-

ophrenia (Lencz & Malhotra, 2015). Revisiting the effect of existing

agents on Cav channels or designing new drugs could be a high priority

for new schizophrenia treatment development.

The genetic association test of macromolecules may also suggest

candidates for nonadditive interactions (epistasis) and improve poly-

genic predictions. In addition, while we only considered Cav channels,

future work could consider other types of channels, such as potassium

channels, sodium channels, and proton channels as interesting suscepti-

bility candidates for schizophrenia and other psychiatric disorders.

The present findings illustrate the power of the macromolecule-

based approach applied to schizophrenia, which identified eight sub-

types of Cav channels associated with the disorder. The results high-

light the combined role of different aspects of calcium signaling in

schizophrenia pathophysiology, and suggest several new potential drug

targets for development of novel therapeutics.
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