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ABSTRACT

Acyclic Monte Carlo: Efficient multi-level sampling of undireed
graphical models through fast marginalization

by
Jakub K. Kominiarczuk

Door of Philosophy in Mathematics
University of California, Berkeley

Professor Alexandre J. Chorin, Chair

We present a method for sampling high-dimensional probability spaces,
applicable to Markov fields with both discrete and continuous variables,
based on an approximate acyclic representation of the probability density.
Our method generalizes and places in a common framework some recent
work on computing renormalized Hamiltonians and stochastic multigrid
sampling.
An acyclic representation of a probability distribution funion (PDF) is

obtained when one chooses an ordering of the variables and writes the
PDF as a produ of conditional probabilities, so that the probability of any
variable is conditional only on the variables that precede it in the order-
ing. An acyclic representation makes the sampling efficient, because it
uses the sparsity present in the model. We derive an approximate acyclic
representation for general graphs by finding marginals through a fast
marginalization scheme. e partial derivatives of the logarithm of the
marginal probability are computed approximately through stochastic lin-
ear projeion onto a polynomial basis, followed by reconstruion of the
marginal through integration. e projeion is based on an optimized in-
ner produ, making possible the use of Gaussian quadrature. Probability
distributions involving discrete variables are handled by embedding the
PDFs in differentiable extensions. Our algorithm can be extended to the
evaluation of renormalized Hamiltonians formed using general renormal-
ization schemes.
e approximate acyclic representation of the PDF is then used for sam-

pling. e variables are sampled in a fixed order, producing independent
samples together with their sampling weights. We present an optimized
sampling strategy that uses a maximum amount of information to choose
individual variable values. e samples are further improved using tech-
niques from particle filtering. We also introduce a block Markov chain
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Monte Carlo scheme based on the sampling weights. Finally, we present
applications of our methodology to the Ising model.
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ABSTRACTUM

Acyclicus Mons Caroli (Monte Carlo): Efficax multiæquilibris ratio ad
exempla casualia formarum graphorum efficienda per quadraturam

citam
Iacobus Carolus Kominiarczuk

Ph. door scientiarum mathematicarum
Universitas Californiensis, Berkeley

Professor Alexandre J. Chorin, qui Iacobum C. Kominiarczuk doorem
creat ac renuntiat

Demonstramus rationem exemplorum casualium efficiendorum ex multis
dimensionibus distributionibus probabilitatis, quam possumus usu adhi-
bere ad aream Marcovi iuxta cum quantitatibus variabilibus casualibus
discretis ac variabilibus casualibus continuis, nisam in acyclicam formam
distributionis probabilitatis. Ratio nostra generatim rem exponit atque
communi lingua aliquam partem methodorum calculandi mediocres ha-
miltonianos ac probandi casualiter multis cum modis adhibendis.
Acyclica forma funionis distributivæ probabilitatis accipitur dispo-

nendo quantitatum variabilium in eleo ordine scribendoque funionem
distributivam ut summam funionis probabilitatis conditionalis indica-
tarum quantitatum variabilium ex multiplicatione effeam. ibus spe-
cialitas est: probabilitas eleæ quantitatis variabilis sita est in quantitati-
bus variabilibus, quæ exsistebant iam in eleo ordine. Usus formæ acy-
clicæ distributionis propabilitatis dat facultatem fingendi citius exempla
casualia, quoniam utitur paucis inter quantitates variabiles coniunioni-
bus. Introducimus appropinquatam acyclicam formam distributionis ad-
hibitam usu ad quælibet grapha subiea per computationem distributio-
nes marginales methodo quadraturæ celeris usa. Derivatæ particulares
logarithmi marginalis distributionis propabilitatis calculantur modo ap-
propinquato per proieionem casualem perpendiculatam in basem po-
lynomiorum, postea calculatur distributio marginalis recuperata ex deri-
vatis per quadraturam. Proieio ab optima produo scalare nitens licet
modo Gaussi quadratura uti. Introduo extensione differentionali ratio
ad distributiones probabilitatis cum quantitatibus variabilibus casualibus
discretis adhibitur. Methodon nostra accomodari potest ad calculandum
mediocres hamiltonianos assecutos variarum rationum gratia.
Calculata acyclica forma distributionis probabilitatis ea utimur ad ex-

empla casualia efficienda. antitates variabiles casuales in eleo ordine
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probantur atque libera exempla eorumque pondera dant. Demonstramus
optimatum modum ad exempla casualia efficienda a quo maximus nume-
rus informationum ad certam quantitatem variabilem probandam adhibi-
tur. Usis particulas colandi modis qualitas finalium exemplorum casua-
lium in meliorem statum mutatur. Introducimus etiam methodon Mons
Caroli (Monte Carlo) nisam in calculatam a nobis acyclicam formam di-
stributionis probabilitatis ac ponderis exemplorum casualium. Disserta-
tionem finimus demonstrantes eventus accomodandi rationem nostram
ad formam Isingi.
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ABSTRAKT

Acykliczne Monte Carlo: Metoda efektywnego próbkowania losowego
modeli graficznych poprzez szybkie ubrzegowianie

Jakub K. Kominiarczuk
Doktor nauk matematycznych

Uniwersytet Kalifornijski, Berkeley
Profesor Alexander J. Chorin, Promotor

Przedstawiamy metodę tworzenia próbek losowych z wielowymiaro-
wych rozkładów prawdopodobieństwa, mającej zastosowanie do pól
Markowa zarówno o dyskretnych, jak i ciągłych zmiennych, opartą
o acykliczną formę rozkładu prawdopodobieństwa. Nasza metoda
uogólnia i opisuje we wspólnym języku pewną klasę metod obliczania
zrenormalizowanych hamiltonianów oraz próbkowania losowego z
użyciem wielu skal.
Acykliczna forma funkcji rozkładu prawdopodobieństwa jest otrzymy-

wana poprzez uszeregowanie zmiennych w wybranym porządku oraz
zapisanie funkcji rozkładu jako iloczynu funkcji prawdopodobieństwa
warunkowego poszczególnych zmiennych posiadających swoistą cechę:
prawdopodobieństwo danej zmiennej jest zależne jedynie od zmiennych
występujących wcześniej w wybranym porządku. Użycie acyklicznej for-
my rozkładu prawdopodobieństwa pozwala na efektywne tworzenie pró-
bek losowych, ponieważ wykorzystuje niską gęstość zależności pomię-
dzy zmiennymi losowymi. Wprowadzamy przybliżoną acykliczną formę
rozkładu stosowalną w przypadku dowolnych grafów zależności poprzez
obliczanie rozkładów brzegowych z użyciem metody szybkiego ubrzego-
wiania. Pochodne cząstkowe logarytmu brzegowego rozkładu prawdopo-
dobieństwa są obliczane w sposób przybliżony poprzez stochastyczne rzu-
towanie prostopadłe na bazę wielomianową, po czym obliczany rozkład
brzegowy jest odzyskiwany z pochodnych poprzez całkowanie. Rzuto-
wanie jest oparte o zoptymalizowany iloczyn skalarny, pozwalający na
użycie całkowania metodą Gaussa. Metoda jest stosowalna do rozkładów
prawdopodobieństwa ze zmiennymi dyskretnymi po wprowadzeniu roz-
szerzenia różniczkowalnego danego rozkładu. Nasza metoda znajduje za-
stosowanie do obliczania renormalizowanych hamiltonianów powstałych
przy użyciu dowolnych metod renormalizacji.
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Po obliczeniu acyklicznej formy rozkładu prawdopodobieństwa, używa-
my jej do tworzenia próbek losowych. Zmienne są próbkowane w usta-
lonym wcześniej porządku, dając niezależne próbki oraz ich wagi. Pre-
zentujemy zoptymalizowaną strategię próbkowania losowego używającą
maksymalną ilość informacji dostępnych do próbkowania danej zmiennej.
Jakość wynikowych próbek losowych jest polepszana z użyciem technik
filtrowania cząsteczek.Wprowadzamy równieżmetodęMonte Carlo opar-
tą o obliczoną przez nas acykliczną formę rozkładu prawdopodobieństwa
oraz wagi próbek losowych. Rozprawę kończy prezentacja wyników za-
stosowania naszej metody do modelu Isinga.
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ΠΕΡ ΙΛΗΨΗ

Ακυκλικά Monte Carlo: Αποτελεσματική πολυεπίπεδη δειγματοληψία
ακυκλικών γραφικών μοντέλων μέσω ταχείας περιθωριοποίησης Από

Jakub K. Kominiarczuk
Δόκτωρ Φιλοσοφίας στα Μαθηματικά
Πανεπιστήμιο Καλιφόρνιας, Μπέρκλεϊ

Καθηγητής Alexander J. Chorin, προεδρεύων

Παρουσιάζουμε μια μέθοδο δειγματοληψίας χώρων πιθανότητας μεγά-
λων διαστάσεων, εφαρμόσιμη σε πεδία Markov τόσο με διακριτές όσο
και συνεχείς μεταβλητές, βασισμένη σε μια προσεγγιστική ακυκλική
αναπαράσταση της συνάρτησης πυκνότητας πιθανότητας. Η μέθοδός
μας γενικεύει και τοποθετεί σε ένα κοινό πλαίσιο πρόσφατες εργασίες
σχετικά με τον υπολογισμό επανακανονικοποιημένων Χαμιλτονιανών
και τη στοχαστική πολυπλεγματική δειγματοληψία.
Μια ακυκλική αναπαράσταση μιας συνάρτησης πυκνότητας πιθανό-

τητας (σ.π.π.) επιτυγχάνεται όταν επιλεγεί μια διάταξη των μεταβλητών
και γραφεί η σ.π.π. ως γινόμενο δεσμευμένων πιθανοτήτων, έτσι ώστε η
πιθανότητα κάθε μεταβλητής να εξαρτάται μόνο από τις μεταβλητές που
προηγούνται αυτής στη διάταξη. Μια ακυκλική αναπαράσταση κάνει
τη δειγματοληψία αποτελεσματική, επειδή χρησιμοποιεί τη σποραδικό-
τητα που υπάρχει στο μοντέλο. Εξάγουμε μια προσεγγιστική ακυκλική
αναπαράσταση για γενικά γραφήματα βρίσκοντας τις περιθώριες συν-
αρτήσεις μέσω ενός γρήγορου συστήματος περιθωριοποίησης. Οι μερι-
κές παράγωγοι του λογαρίθμου της περιθώριας συνάρτησης πιθανότη-
τας υπολογίζονται προσεγγιστικά μέσω στοχαστικής γραμμικής προβο-
λής σε μία πολυωνυμική βάση, ακολουθούμενη από την ανακατασκευή
της περιθώριας συνάρτησης μέσω ολοκλήρωσης. Η προβολή βασίζεται
σε ένα βελτιστοποιημένο εσωτερικό γινόμενο, που καθιστά δυνατή τη
χρήση των Gaussian τετραγωνισμών. Οι κατανομές πιθανότητας που
αφορούν διακριτές μεταβλητές αντιμετωπίζονται με την ενσωμάτωση
της σ.π.π. σε διαφορίσιμες επεκτάσεις. Ο αλγόριθμός μας μπορεί να επε-
κταθεί στην αξιολόγηση των επανακανονικοποιημένων Χαμιλτονιανών
που σχηματίζονται χρησιμοποιώντας γενικές μεθόδους επανακανονικο-
ποίησης.
Η προσεγγιστική ακυκλική αναπαράσταση της συνάρτησης πυκνό-

τητας πιθανότητας χρησιμοποιείται στη συνέχεια για δειγματοληψία.
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Παίρνουμε δείγματα μεταβλητών με μία συγκεκριμένη σειρά, παράγον-
τας ανεξάρτητα δείγματα σε συνδυασμό με τα βάρη δειγματοληψίας
τους. Σας παρουσιάζουμε μια βελτιστοποιημένη στρατηγική δειγματο-
ληψίας που χρησιμοποιεί μια μέγιστη ποσότητα πληροφορίας για να επι-
λέξει μεμονωμένες τιμές μεταβλητών. Τα δείγματα βελτιώνονται περαι-
τέρω χρησιμοποιώντας τεχνικές φιλτραρίσματος σωματιδίων. Επίσης,
παρουσιάζουμε ένα μπλοκ σύστημα Markov Chain Monte Carlo με βάση
τα βάρη της δειγματοληψίας. Τέλος, παρουσιάζουμε εφαρμογές της με-
θοδολογίας μας στο μοντέλο Ising.
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ר י צ ק ת

לא גרפיים מודלים של יעילה רב-שכבתית דגימה אציקלית: מונטה-קארלו דגימת
מהירה לשוליים דחיקה בעזרת מכוונים

ידי על נכתב
קומיניארצ’וק יקוב

במתמטיקה לפילוסופיה דוקטור
ברקלי קליפורניה, אוניברסיטת
ראש יושב צ’ורין, אלכסנדר

לשדות ישומים עם גבוה, מימד בעלי הסתברות מרחבי לדגימת שיטה מציגים אנו
פונקצית של מקורב אציקלי ייצוג על המבוססת ורציפים, בדידים משתנים עם מרקוב
מהמחקר חלק את אחידה במסגרת ומאחדת מכלילה שלנו השיטה מצטברת. הסתברות
מולטי-שריגים. על סטוכסטית ודגימה מנורמלים המילטוניאנים חישוב על לאחרונה שיצא
סידור בוחרים כאשר מתקבל מצטברת הסתברות פונקציית של האציקלי הייצוג
כך מותנות, הסתברויות של כמכפלה הסתברות פונקציית את וכותבים המשתנים של
הייצוג בסידור. לו הקודמים משתנים של בהסתברויות מותנה המשתנה של שההתסברות
מפתחים אנו במודל. שישנה בדלילות מתשמש שהוא מכיוון הדגימה, את מייעל האציקלי
דרך שולית הסתברות מציאת ידי על כלליים לגרפים המקורב האציקלי הייצוג את
הסתברות של הלוגריתם של החלקית הנגזרת לשוליים”. ”דחיקה של מהירה שיטה
שיחזור ואחריה פולינומיאלי לבסיס אקראית לינארית הטלה דרך בקירוב מחושב שולית
מיועלת פנימית מכפלה על מבוססת ההטלה אינטגרציה. בעזרת השולית הסתברות של
בדידים משתנים של הסתברות התפלגויות גאוס. בתרבועי השימוש עקב שמתאפשרת
את חלקה. הרחבה בתוך מצטברת הסתברות פונקצית של שיכון בעזרת מחושבות
שיטות מתוך המתקבלים מנורמלים להמילטוניאנים להכליל ניתן שלנו האלגוריתם

כלליות. רנורמליזציה
מראש, קבוע בסדר נדגמים המשתנים לדגימה. מייושם האציקלי הייצוג מכן, לאחר
שיטת מציגים אנו שלהם. הדגימה משקולות עם יחד תלויים בלתי מדגמים מתקבלים בכך
משתנים של ערכים לבחור כדי המידע של המקסילית בכמות משתמשת אשר יעילה דגימה
חלקיקים. סינון של בטכניקות שימוש ידי על המדגמים את משפרים אנו בנוסף, בודדים.
משקולות על המבוססת מרקוב שרשראות של בלוקים של מונטה-קרלו שיטת מציעים אנו

אייסינג. למודל שלנו המתודולוגיה של יישומים מציגים אנו לסיום, דגימה.
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ZUSAMMENFASSUNG

Azyklisches Monte Carlo: die Methode des effizienten stochastischen
Samplings durch schnelle Marginalisierung

Jakub K. Kominiarczuk
Doktor der mathematischen Wissenscha
Die kalifornische Universität, Berkeley
Professor Alexander J. Chorin, Betreuer

Wir praesentieren eine Methode um Zufallsvariablen in hoch-
dimensionale Wahrscheinlichkeitsraeumen darzustellen. Die Methode
findet Anwendung inMarkov Feldern mit diskreten und kontinuierlichen
Variablen und basiert auf einer angenaeherten, azyklischen Repraesen-
tation der Wahrscheinlichkeitsdichte. Unsere Methode generalisiert und
vereinigt Ansaetze fuer renormalisierte Hamiltonische Systeme und
stochastische Multigrid Verfahren.
Eine azyklische Repraesentation einer Wahrscheinlichkeitsdichte wird

erreicht in dem den Zufallsvariablen eine Ordung zugewiesen wird und
die Wahrscheinlichkeitsdichte als Produkt konditionierter Wahrschein-
lichkeitsdichten geschriebenwird, wobei dieWahrscheinlichkeit einer Va-
riable nur auf jene Zufallsvariablen konditioniert ist die in der gegebenen
Ordnung vorangehen. Die azyklische Representation beschleunigt das
generieren von Realisationen der Variable da die duennbesetzte Modell-
struktur genutzt werden kann. Wir leiten eine Annaeherung an die azy-
klische Representation fuer allgemeine Graphen her, in dem wir schnelle
Marginalisierungen nutzen. Die partiellen Ableitungen des Logarithmus
der Marginale werden durch stochastische lineare Projektionen auf eine
Polynom-Basis angenaehert, welche dann einfach integriert werden ko-
ennen. Die Projektion basiert auf einem optimalen inneren Produkt, so
das Gauss-adratur genutzt werden kann. Differenzierbare Erweiterun-
gen werden fuer diskrete Zufallsvariablen angewendet. Unsere Methode
kann auch zur Auswertung renormalisierter Hamiltonischer Systeme, die
aus generalisierter Renormalisierung hervorgehen, genutzt werden.
Wir nutzen die azyklische Representation derWahrscheinlichkeitsdich-

te um Stichproben zu generieren. Die Stichproben der einzelnen Zufalls-
variablen werden der gegebenen Ordnung nach erzeugt, so das die Stich-
proben und deren Gewichte unnabhaengig voneinander sind. Wir pre-
sentieren eine optimierte Strategie die maximale Information benutzt um
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einzelne Stichproben zu generieren. Die Stichproben werden dann mit
Hilfe von Methoden der “particle filter” weiter verbessert. Daneben stel-
len wir eine Strategie fuer blockweise Markov-Keen-Monte-Carlo vor
das auf den Gewichten der Stichproben basiert. Schliesslich zeigen wir
die Anwednung unserer Methoden am Ising Modell.





АННОТАЦИЯ

Ациклический метод Монте-Карло: многоуровневая выборка
моделей на неориентированных графах посредством быстрого

интегрирования
Якуб Коминиарчук

Кандидат физико-математических наук
университет Калифорнии, Беркли

Председатель диссертационной комиссии: профессор Александр
Чорин

Представлен метод выборки в многомерных вероятностных про-
странствах, применимый к марковским полям как с дискретными,
так и с непрерывными переменными, основанный на приближен-
ном ациклическом представлениифункции плотности. Данныйме-
тод обобщает некоторые недавние работы по вычислению ренорма-
лизованных гамильтонианов и выборок многосеточнымметодом и
дает им новую интерепретацию.
Ациклическое представление вероятностной функции распреде-

ления получается при выборе порядка следования переменных и
записи функции распределения как произведения условных веро-
ятностей таким образом, чтобы условная функция распределения
каждой переменной зависела только от предшествующих перемен-
ных. Ациклическое представление повышает эффективность вы-
борки, так как оно использует разрешенность исследуемой модели.
С использованием схемы с быстрым интегрированием для поиска
полных вероятностей получено приближенное ациклическое пред-
ставление для произвольных графов. Частные производные лога-
рифма полных вероятностей вычисляются приближенно через ве-
роятностную линейную проекцию на базис, состоящий из полино-
мов; затем полная вероятность восстанавливается интегрировани-
ем. Проекция основана на оптимизированном скалярном произве-
дении, позволяющем использовать метод численного интегрирова-
ния Гаусса. Для вероятностных пространств с дискретными пере-
менными применяется вложение в дифференцируемые расшире-
ния. Предложенный алгоритм может быть обобщен для вычисле-
ния ренормализованных гамильтонианов, полученных при помо-
щи общих схем ренормализании.
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Приближенное ациклическое представление функции плотности
затем используется для выборки. Выборка переменных производит-
ся в фиксированном порядке, в результате чего получаются незави-
симые выборки с соответствующими весами. Представлена оптими-
зированная стратегия выборки, использующая наибольшее количе-
ство информации для выбора значений каждой переменной. Затем
выборки улучшаются посредством методов фильтрования частиц.
Также описана схема Монте-Карло на блочных марковских цепях,
использующая веса выборки. В завершение представлены приложе-
ния разработанных методов к модели Изинга.
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ZET

Çevrimsiz Monte Carlo: Yönsüz grafiklerin çok katlı örneklenmesi için
hızlı marjinal almaya dayanan etkili bir yöntem

Jakub K. Kominiarczuk
Matematik Doktorası

Kaliforniya niversitesi, Berkeley
Danışman: Profesör Alexandre J. Chorin

Bu tezde, çok boyutlu uzaylarda tanımlanan olasılık dağılımlarından ör-
nekleme yapmak için geliştirilen ve hem ayrık hem de sürekli değişkenli
Markov alanlarına uygulanabilen bir yöntem sunulmaktadır. Bu yöntem,
verilen bir olasılık dağılımının çevrimsiz yaklaşık bir gösterimini temel
almaktadır. Yöntemimiz, yeniden normalize edilmiş Hamiton hesaplama
ve stokastik çok katmanlı ızgara örneklemesi üzerine yapılmış bir takım
güncel çalışmaları genellemekte, bunları bir çerçeve içine almaktadır.
Bir olasılık dağılımının çevrimsiz gösterimi, dağılımdaki değişkenlerin

koşullu olasılıklarının çarpımıdır. Bu koşullu olasılıklar, tercih edilen belli
bir sıraya göre her bir değişkenin sadece kendinden önceki değişkenlere
koşullandırılmasından elde edilir. Çevrimsiz gösterim, verilen bir model-
deki seyrekliği kullanarak örneklemenin verimli olmasını sağlayabilir. Bu
çalışmada, genel grafikler için verilen bir dağılımın marjinalleri bir hızlı
marjinal hesaplama yolu ile hesaplanarak bu dağılımın çevrimsiz yaklaşık
bir gösterimi türetilmiştir. Marjinal olasılığın logaritmasının kısmi türev-
lerinin yaklaşık olarak hesaplanması ise önce bir polinom tabanına yapı-
lan stokastik izdüşüm, ardından da marjinal dağılımın integralle geri çatıl-
ması işlemleri ile gerçekleştirilmiştir. Söz konusu izdüşüm bir eniyilenmiş
iç çarpıma dayanmakta olup, Gauss dördününün kullanılmasını mümkün
kılmaktadır. Ayrık değişken içeren olasılık dağılımları ile, bu dağılımla-
rın türevlenebilen uzantılarına gömülmesi suretiyle çalışılmıştır. Yönte-
mimiz, genel yeniden normalize etme yolları kullanılarak oluşturulmuş
yeniden normalize edilmiş Hamitonları hesaplamak için de uyarlanabilir.
Olasılık yoğunluk dağılımının yöntemimiz ile elde edilen yaklaşık gös-

terimi daha sonradan örnekleme için kullanılmaktadır. Değişkenler belli
bir sırayla örnekleme ağırlıklarıyla birlikte üretilmektedir. Tek tek değiş-
kenlerin değerlerini seçmek için eldeki bilgiyi olası en yüksek miktarda
kullanan bir örnekleme stratejisi geliştirilmiştir. Elde edilen örnekler par-
çacık süzgeci teknikleri kullanılarak bir iyileştirmeye tabi tutulmuştur.





Ayrıca, örnekleme ağırlıklarına dayanan bir blok Markov zinciri Monte
Carlo yöntemi tanıtılmıştır. Son olarak, yöntemimizin Ising modeline uy-
gulaması gösterilmiştir.
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When we try to pick out anything by itself,
we find that it is bound fast by a thousand

invisible cords that cannot be broken,
to everything in the universe.

— John Muir
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ing the conditional probability 𝑃(𝒙𝑉𝑖\𝑉𝑖+1

∣ 𝒙𝑉𝑖+1
).

Direed edges are visualized by painting a line ema-
nating from ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑢, 𝑣) the predecessor𝑢 ∈ 𝑁𝑝(𝑣) toward
the successor node 𝑣 and reaching half the distance
between the two nodes. . . . . . . . . . . . . . . . . . 

Figure . e cubic basis funion (a) 𝑥𝑖+1,𝑗𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗 and its
equivalent funion, (b) 𝑥𝑖+1,𝑗+1𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗+1. e
node 𝑥𝑖𝑗 is marked red, while the remaining nodes
of the particular basis funion are colored blue. . . . 

Figure . Visualization of the arrangement of nodes, showing
(a) the original laice 𝑉 and (b) the sublaice 𝑈 . e
nodes 𝑈 ⊂ 𝑉 are marked green on both images. . . . 

Figure . e 𝜒𝑢 dependence of seleed basis funion coeffi-
cients 𝑐𝑖(𝜒𝑢) under (a) no symmetrization, (b) partial
symmetrization and (c) full symmetrization. . . . . . 

Figure . Two dependency graphs respeed by (a) the approx-
imation 𝑃 𝑖

≈(𝒙𝑇𝑖
) and (b) the approximation ̂𝑃∗(𝒙𝑇𝑖

). . 





Figure . Visualizations of the set of successors 𝑆(𝑢) for head
nodes 𝑢 lying on different laices obtained by a
checkerboard coarsening of a 32 × 32 Cartesian lat-
tice. Nodes are colored by the number of links from
the initiating node, marked red, through yellow to
green. e nodes which are not accessible from the
head node 𝑢 are marked blue. . . . . . . . . . . . . . . 

Figure . Size of the affeed subset 𝑆(𝑢), proposed move ac-
ceptance probability and the resulting average move
size in the case of a 64 × 64 Ising model at critical
coupling. . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure . Autocorrelation in the case of the 32×32 Isingmodel
at critical coupling. e lines show the initial laice
used to choose head nodes, including both the first
renormalized laice 𝑉1 and the optimal laice 𝑉4.
Although the number of variables where a change
is aempted is quite large in the case of 𝑉4, most of
the variables remain unaltered due to the very strong
pull of the unchanged variables 𝒙𝑉 \𝑆(𝑢), resulting in
a long autocorrelation time. . . . . . . . . . . . . . . . 

Figure . Variables and the dependence graph 𝐺 = (𝑉 , 𝐸) of
the one-dimensional Ising model (turquoise nodes),
together with the auxiliary variables 𝒙𝑆 (red nodes). . 

Figure . Complete coarsening process of a two-dimensional
Cartesian laice of initial size 8 × 8. e nodes of
the laice are divided into subsets of size 2 × 2, de-
creasing the number of nodes by a faor of 4 during
each coarsening step. Although the laices are two-
dimensional, height was used to represent the coars-
ening level, with nodes higher up belonging to the
coarser laices. . . . . . . . . . . . . . . . . . . . . . . 

Figure . Visualization of the arrangement of nodes, showing
(a) the original laice 𝑉 and (b) the sublaice 𝑈 . e
nodes 𝑈 ⊂ 𝑉 are marked green on both images. . . . 

Figure . Convergence of the coefficients 𝑐𝑖 of the relevant ba-
sis funions under no symmetrization, partial sym-
metrization and full symmetrization. . . . . . . . . . . 

Figure . e 𝜒𝑢 dependence of the coefficients 𝑐𝑖(𝜒𝑢) of the
relevant basis funions under (a) no symmetriza-
tion, (b) partial symmetrization and (c) full sym-
metrization. . . . . . . . . . . . . . . . . . . . . . . . . 
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Figure . Convergence of the coefficients 𝑐𝑖 of the relevant ba-
sis funions under no symmetrization, partial sym-
metrization and full symmetrization. . . . . . . . . . . 

Figure . Dependence of the renormalized coupling coeffi-
cients 𝑐𝑖 on the choice of the parameter 𝑝 when
integrated using the five-point Gaussian quadrature
rule. e differences between values for different 𝑝
are caused by the inadequate number of integration
nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure . Shape of the coupling coefficients 𝑐𝑖(𝜒𝑢) for differ-
ent values of the parameter 𝑝, showcasing the strong
dependency on 𝑝. e optimal value of 𝑝 leading to
the least-complex shape is dependent on the cou-
pling 𝜇 of the original model. . . . . . . . . . . . . . . 

Figure . Coefficient mapping 𝑅(𝜇) and the induced parame-
ter flow veor field 𝐹(𝜇). . . . . . . . . . . . . . . . . 

Figure . An example two-dimensional map visualized by its
induced veor field. e dots mark the only finite
fixed points of the original veor field, located at the
centers of the swirling vortices. e projeed veor
field, visualized using red arrows, shows that it may
be at times a poor approximation of the true veor
field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure . Arrangement of spins on the fine laice 𝑉0 and the
coarse laice 𝑉1. Periodic neighborhood is shown in
lighter gray. . . . . . . . . . . . . . . . . . . . . . . . 

Figure . Exa computation of the parameter flow for a 4 × 4
laice 𝑉0 and under 𝜈 = 0 coarsening rule (decimation).

Figure . Exa computation of the parameter flow for a 4 × 4
laice 𝑉0 and under 𝜈 = 1/2 coarsening rule. . . . . . . . 

Figure . Exa computation of the parameter flow for a 4 × 4
laice 𝑉0 and under 𝜈 = 1 coarsening rule (majority
rule). . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure . Dependence of the critical point location 𝜇∗(𝜈) on
the coarsening rule. e critical couplings 𝜇∗(𝜈) di-
verge logarithmically as 𝜈 → 0, a fa made clear by
the logarithmic fits on Figure (b). . . . . . . . . . . . . 

Figure . Approximate computation of the parameter flow for
a 4 × 4 laice 𝑉0 and under 𝜈 = 0 coarsening rule
(decimation). . . . . . . . . . . . . . . . . . . . . . . . 
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Figure . Approximate computation of the parameter flow for
a 4 × 4 laice 𝑉0 and under 𝜈 = 1/2 coarsening rule. . . 

Figure . Approximate computation of the parameter flow for
a 4 × 4 laice 𝑉0 and under 𝜈 = 1 coarsening rule
(majority rule). . . . . . . . . . . . . . . . . . . . . . . 

Figure . Approximate computation of the parameter flow for
a 8 × 8 laice 𝑉0 and under 𝜈 = 0 coarsening rule
(decimation). . . . . . . . . . . . . . . . . . . . . . . . 

Figure . Approximate computation of the parameter flow for
a 8 × 8 laice 𝑉0 and under 𝜈 = 1/2 coarsening rule. . . 

Figure . Approximate computation of the parameter flow for
a 8 × 8 laice 𝑉0 and under 𝜈 = 1 coarsening rule
(majority rule). . . . . . . . . . . . . . . . . . . . . . . 

Figure . Approximate computation of the parameter flow for
a 16 × 16 laice 𝑉0 and under 𝜈 = 0 coarsening rule
(decimation). . . . . . . . . . . . . . . . . . . . . . . . 

Figure . Approximate computation of the parameter flow for
a 16 × 16 laice 𝑉0 and under 𝜈 = 1/2 coarsening rule. 

Figure . Approximate computation of the parameter flow for
a 16 × 16 laice 𝑉0 and under 𝜈 = 1 coarsening rule
(majority rule). . . . . . . . . . . . . . . . . . . . . . . 

Figure . Dependency of the (a) absolute average magnetiza-
tion ℳabs(𝜇) = 𝔼𝜇 [ 1𝑛 ∣∑𝑢 𝑥𝑢∣], a slight modifi-
cation of the average magnetization ℳ(𝜇) defined
above, and (b) Binder cumulant 𝑈4(𝜇) of the two-
dimensional Ising model on the coupling parameter
𝜇. As the coupling increases and reaches the critical
coupling 𝜇𝑐 = ln(1 +

√
2)/2 ≈ 0.44068679 (solid

black line), the magnetization begins to grow rapidly
and plateaus for 𝜇 above 𝜇𝑐. e larger the laice
the more abrupt the change, eventually converging
to a first order phase transition. e Binder cumu-
lant also abruptly changes value in the vicinity of the
phase transition, but the precise location of the tran-
sition is indicated by the interseion of the curves
corresponding to different laice sizes. . . . . . . . . 
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Figure . e interaions 𝜙𝑘 used in the computation of
the renormalized coupling coefficients. e first
five funions are linear terms corresponding to
interaions between pairs of variables, while the
laer three funions are cubic and correspond to
four-variable interaions. . . . . . . . . . . . . . . . . 

Figure . Visualization of the direed acyclic graph 𝐷 =
(𝑉 , 𝐴) representing the dependencies between vari-
ables, construed for a 64 × 64 Ising laice us-
ing three stages of lateral densening. e nodes are
color-coded according to the order in which they are
sampled; red nodes are sampled first, followed by
green and finally the blue nodes. Cylinders repre-
sent direed arcs (𝑢, 𝑣) ∈ 𝐴, where an arc (𝑢, 𝑣)
from 𝑢 to 𝑣 implies that the node 𝑣 depends on the
value of the node 𝑢. e overwhelming complexity
of the resulting struure shows how complicated are
the algorithms and their results even for seemingly
straightforward, regular graphical models. . . . . . . 

Figure . Performance of the sequential importance sampler
on a 8 × 8 Ising laice at critical coupling 𝜇 = 𝜇𝑐. . . 

Figure . Performance of the sequential importance sampler
on a 16 × 16 Ising laice at critical coupling 𝜇 = 𝜇𝑐. 

Figure . Performance of the sequential importance sampler
on a 32 × 32 Ising laice at critical coupling 𝜇 = 𝜇𝑐. 

Figure . Performance of the partial rejeion control sampler
on a 8 × 8 Ising laice at critical coupling 𝜇 = 𝜇𝑐. . . 

Figure . Performance of the partial rejeion control sampler
on a 16 × 16 Ising laice at critical coupling 𝜇 = 𝜇𝑐. 

Figure . Performance of the partial rejeion control sampler
on a 32 × 32 Ising laice at critical coupling 𝜇 = 𝜇𝑐. 

Figure . Performance of the partial rejeion control sampler
on a 64 × 64 Ising laice at critical coupling 𝜇 = 𝜇𝑐. 
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Figure . Correlation between the approximate weights
𝑤∗(𝒙𝑉𝑖

) and the final weights 𝑤(𝒙𝑉 ) computed
using a basis of width  on a 32 × 32 Ising laice
at 𝜇 = 𝜇𝑐, showing the prediive value of the
approximate weights. If the prediion were exa,
the points would form a straight line; however, the
strength of the correlation is limited due to the
approximate nature of the weights 𝑤∗(𝒙𝑉𝑖

) and
changes in the proposal density. . . . . . . . . . . . . 
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NOTAT ION



𝑥, 𝑦, 𝑧 Random variables
𝒙𝑉 Veor of random variables whose components cor-

respond to a laice (set of nodes) 𝑉
𝒙𝑉 \𝑈 Veor of random variables corresponding to the

subset 𝑉 \ 𝑈 ⊂ 𝑉
𝑥𝑢 Component of a veor of random variables corre-

sponding to a node 𝑢 on a laice
𝑃(𝒙𝑉 ) Probability distribution of random variables corre-

sponding to the nodes in 𝑉
𝑊(𝒙𝑉 ) Hamiltonian corresponding to 𝑃(𝒙𝑉 ), defined as

𝑃(𝒙𝑉 ) = exp(𝑊(𝒙𝑉 ))/𝑍𝑉
𝑍𝑉 Partition funion, a normalization constant de-

fined as 𝑍𝑉 = ∫ exp(𝑊(𝒙𝑉 ))𝑑𝒙𝑉
𝑥𝑢 Component of a veor of random variables corre-

sponding to a node 𝑢 on a laice
𝑃(𝑥 ∣ 𝑦) Conditional probability distribution of 𝑥 given 𝑦
𝑥 ⟂⟂ 𝑦 ∣ 𝑧 𝑥 is conditionally independent of 𝑦 given the value

of 𝑧
𝐄[𝑓(𝒙𝑉 )] Expeed value of a funion 𝑓(𝒙𝑉 ) with respe to

𝑃(𝒙𝑉 )
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

𝐺 Graph, wrien as 𝐺 = (𝑉 , 𝐸)
𝑉 Set of nodes 𝑢
𝐸 Set of undireed edges (𝑢, 𝑣)

𝑁(𝑢) Set of neighbors of a node 𝑢 ∈ 𝑉
̄𝑁(𝑢) Closed set of neighbors, ̄𝑁(𝑢) = 𝑁(𝑢) ∪ 𝑢

𝐷 Direed graph (digraph), wrien as 𝐷 = (𝑉 , 𝐴)
𝐴 Set of direed edges (arcs) ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑢, 𝑣) from node 𝑢 to

node 𝑣, for 𝑢, 𝑣 ∈ 𝑉
𝑁𝑝(𝑢) Set of dire predecessors (parents) of a node 𝑢 ∈ 𝑉 ,

defined as a set of nodes 𝑣 ∈ 𝑉 such that ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣, 𝑢) ∈ 𝐴
𝑁𝑠(𝑢) Set of dire successors (children) of a node 𝑢 ∈ 𝑉 ,

defined as a set of nodes 𝑣 ∈ 𝑉 such that ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑢, 𝑣) ∈ 𝐴
𝑆(𝑢) Set of successors of a node 𝑢 ∈ 𝑉 , defined as a set

of nodes that can be reached from 𝑢 using arcs in 𝐴
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1
IN TRODUCT ION

e concept of renormalization arose in the study of critical behavior in
thermodynamical systems, where one is interested in studying the scaling
behavior of the system. Renormalization is oen presented in the context
of the Ising model, in which spins — as detailed below — on a regular
Cartesian laice intera with their nearest neighbors. e Ising model
is then renormalized by integrating away a fraion of the spin variables.
e study of the scaling of various properties of the system allows the
investigation of the properties of the critical transition occurring in the
model.
e random variables 𝒙𝑉 of the Ising model live on a Cartesian laice

𝑉 and can take only two values, either −1 or 1, corresponding to a spin
pointing down or up. e probability of a configuration is given by

𝑃 (𝒙𝑉 ) = exp ( 𝐽
2𝑇 ∑

𝑢
𝑥𝑢 ∑

𝑣∈𝑁(𝑢)
𝑥𝑣) ,

where 𝑇 is the temperature, 𝐽 a coupling constant and 𝑁(𝑢) the set of
nearest neighbors of the node 𝑢. e Ising model can be generalized to an
arbitrary number of dimensions and will be used throughout this work
as an model example, due to the wide array of results available.

. 

We begin the discussion with definitions of terms that will be mentioned
throughout the thesis. Let 𝑃(𝒙𝑉 ) be a probability distribution funion
defined for a finite veor of random variables 𝒙𝑉 , which form a laice
𝑉 . Assuming that 𝑃(𝒙𝑉 ) > 0, i.e. it is a Gibbs measure, we define the
Hamiltonian 𝑊(𝒙𝑉 ) to be the logarithm of the probability distribution,

𝑃(𝒙𝑉 ) = exp(𝑊(𝒙𝑉 ))/𝑍𝑉 ,

where the partition funion𝑍𝑉 = ∫ exp(𝒙𝑉 )𝑑𝒙𝑉 is a normalization con-
stant ensuring that ∫ 𝑃(𝒙𝑉 )𝑑𝒙𝑉 = 1. For reasons of generality and sim-
plicity of notation, the definition of Hamiltonian used within the present
thesis is the negative of the potential energy of the system and absorbs


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all physical parameters, such as the temperature 𝑇 or coupling strength
𝐽 .
By the Hammersley-Clifford theorem, the Hamiltonian may be decom-

posed into a sum of interaions between the variables.erefore, wemay
write

𝑊(𝒙𝑉 ) = ∑
𝑖

𝑐𝑖Φ𝑖(𝒙𝑉 ). (.)

where the funions Φ𝑖(𝒙𝑉 ) represent the interaions between
the random variables 𝒙𝑉 . e coupling coefficients 𝑐𝑖 specify the
relative strengths of these interaions and may be wrien as a
veor 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝐾). Among the common interaions are the
nearest-neighbor interaion 𝑥𝑢𝑥𝑣, where the nodes 𝑢 and 𝑣 are nearest
neighbors on the laice 𝑉 , and the plaquee 𝑥𝑢𝑥𝑣𝑥𝑤𝑥𝑡, with the nodes
𝑢, 𝑣, 𝑤 and 𝑡 forming a square tile on the laice.
We renormalize by coarsening the finite system, dividing the original

fine variables 𝒙𝑉 into subsets and assigning each subset a group variable,
thus obtaining a set of coarse variables 𝒙𝑈 . Following this coarsening, we
compute the Hamiltonian that defines the probability distribution of the
coarse variables.
For example, under a renormalization rule one may decrease the size of

the laice by a faor 𝑏 = 2 through the creation of 2 × 2 blocks of vari-
ables, and assigning a group variable to each block. One obtains a new
set of variables 𝒙𝑈 that live on a laice 𝑈 coarser by a linear faor of
two than the laice 𝑉 occupied by 𝒙𝑉 . e variables 𝒙𝑈 are then related
to 𝒙𝑉 through a renormalization rule (e.g., decimation and majority rule
defined in detail in Seion .) which gives the conditional probability
𝑃(𝒙𝑈 ∣ 𝒙𝑉 ) of a state 𝒙𝑈 given a configuration 𝒙𝑉 . e renormaliza-
tion rule describes the conneion between the original variables 𝒙𝑉 , the
renormalized variables 𝒙𝑈 and their probabilities; the joint distribution
of the two sets of variables is given by the Bayes’ rule

𝑃(𝒙𝑈 , 𝒙𝑉 ) = 𝑃(𝒙𝑈 ∣ 𝒙𝑉 )𝑃 (𝒙𝑉 ).

Our interest lies in the probability density of the renormalized system 𝒙𝑈 ,

𝑃(𝒙𝑈) = ∫ 𝑃(𝒙𝑈 ∣ 𝒙𝑉 )𝑃 (𝒙𝑉 )𝑑𝒙𝑉 .


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We assume that the renormalized probability distribution 𝑃(𝒙𝑈) can be
wrien as

𝑃(𝒙𝑈) = exp(𝑊(𝒙𝑈))/𝑍𝑈 .

𝑊(𝒙𝑈) is the renormalized Hamiltonian, which takes the general form

𝑊(𝒙𝑈) = ∑
𝑖

𝑐′
𝑖Φ𝑖(𝒙𝑈). (.)

While the interaions Φ𝑖 are frequently of the same funional form on
both the original and renormalized laices, they need not be. Even when
they are of the same form, typically the renormalized Hamiltonian has
more non-zero coupling constants 𝒄′ than the original one: e.g., a Hamil-
tonian 𝑊(𝒙𝑉 ) consisting of only the nearest-neighbor interaion may
produce a renormalized Hamiltonian 𝑊(𝒙𝑈) that includes both the near-
est neighbor interaion, interaions with second-nearest neighbors, and
the plaquee interaion.
Numerous quantities of physical interest can be computed using renor-

malization techniques. e most basic of those are the renormalized cou-
pling coefficients 𝒄′. e behavior of these coefficients under renormal-
ization indicates the general behavior of the system; for example, when
the coupling coefficients do not change under renormalization, we are
dealing with a fixed point of the renormalization. A system described by
the fixed point coefficients does not change under renormalization, which
means that it behaves in the same way at every observable scale. Finding
the fixed points is of great interest as they may be related to phase transi-
tions and can be used to study them.
In principle, performing a marginalization requires the integration of

the joint probability distribution funion over an enormous number of
variables, a task impossible to perform exaly in case of statistical models
of reasonable size. Instead, approximate methods must be used.
e foundations of renormalization methods were laid by Kadanoff

(), who proposed to divide the spins of the Ising model into subsets
(cells) and study the interaions between the cells rather than simply be-
tween the individual spins. He used this model to study the Ising model
around the phase transition by calculating the free energy of the system;
however, Kadanoff () did not aempt to compute the renormalized co-
efficients 𝒄′. In later papers, Kadanoff () and Kadanoff and Houghton
() define the renormalized coupling coefficients and a renormaliza-
tion transformation 𝑅 ∶ 𝒄 → 𝒄′ conneing the two, and use them to


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study the behavior of the Ising model and the renormalized coefficients
with the help of perturbation theory.
Many methods have since been devised to compute the renormalized

coefficients or to direly find fixed points of the renormalization trans-
formation. Wilson (a,b, ) aempts to find a set of renormalized
coefficients 𝒄′ such that the so called correlation funions

⟨Φ𝑖(𝒙𝑈) − Φ𝑖(𝒙𝑉 )⟩ = 0

are zero for the two systems, the fine system 𝒙𝑉 and the renormalized sys-
tem 𝒙𝑈 described by couplings 𝒄 and 𝒄′, respeively. Unfortunately, such
a method is not very efficient and thus limited to special cases (Swendsen,
b).
Following Kadanoff () and Kadanoff and Houghton (), the

renormalization process can be seen as a mapping 𝑅 ∶ 𝒄 → 𝒄′ of the
original set of coefficients 𝒄 to the renormalized set 𝒄′ (Nauenberg and
Nienhuis, b). At the fixed point 𝒄∗ we have 𝒄∗ = 𝑅(𝒄∗), while in the
vicinity of the fixed point 𝒄∗ the renormalization transformation 𝑅 may
be expanded in a Taylor series as

𝒄′ = 𝒄∗ + 𝐴(𝒄 − 𝒄∗) + 𝒪(|𝒄 − 𝒄∗|2).

with 𝐴 being the Jacobian of the renormalization mapping 𝑅 evaluated at
the fixed point. Nauenberg and Nienhuis (a,b) found the location of
the fixed point using a 4 × 4 laice, finding it to be located at 𝑐1 = 0.307,
𝑐2 = 0.084, 𝑐3 = −0.004 (Nauenberg and Nienhuis, b) or 𝑐1 = 0.300,
𝑐2 = 0.0871, 𝑐3 = −0.00126 (Nauenberg and Nienhuis, a). However,
the authors do not explain how these values were found; a likely different
method is discussed by Binney et al. (), who quote the fixed point
location found by Nauenberg and Nienhuis (b).
Ma () took a different approach. He simulated the original laice

𝒙𝑉 using the Ising probability distribution 𝑃(𝒙𝑉 ) and from each state
𝒙𝑉 he generated samples of the group spins 𝒙𝑈 using the known con-
ditional probability 𝑃(𝒙𝑈 ∣ 𝒙𝑉 ). e renormalized parameters 𝒄′ could
then obtained by observing the probabilities with which the group spins
flip under different circumstances. e method of Ma () takes the de-
tailed balance equations for the renormalized laice

𝑃 (𝑥𝑢 → −𝑥𝑢 ∣ 𝒙𝑈\𝑢)
𝑃 (−𝑥𝑢 → 𝑥𝑢 ∣ 𝒙𝑈\𝑢) =

exp(𝑊(−𝑥𝑢, 𝒙𝑈\𝑢) − 𝑊(𝑥𝑢, 𝒙𝑈\𝑢))
exp(𝑊(𝑥𝑢, 𝒙𝑈\𝑢) − 𝑊(−𝑥𝑢, 𝒙𝑈\𝑢))

= exp(2𝑊(−𝑥𝑢, 𝒙𝑈\𝑢) − 2𝑊(𝑥𝑢, 𝒙𝑈\𝑢))


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that can be wrien for every configuration of the neighboring spins, and
aempts to solve them to obtain the renormalized coupling parameters
𝒄′. e quantity on the le hand side is estimated using a Monte Carlo
simulation of the renormalized laice, with samples generated using the
original probability distribution 𝑃(𝒙𝑉 ) and the conditional 𝑃(𝒙𝑈 ∣ 𝒙𝑉 ).
e right hand side is of known form, with 𝑊(𝒙𝑈) given by Equation .,
but with unknown coupling coefficients 𝒄′. e equation can be rewrien
as

ln (
𝑃(𝑥𝑢 → −𝑥𝑢 ∣ 𝒙𝑈\𝑢)
𝑃 (−𝑥𝑢 → 𝑥𝑢 ∣ 𝒙𝑈\𝑢)) = 2𝑊(−𝑥𝑢, 𝒙𝑈\𝑢) − 2𝑊(𝑥𝑢, 𝒙𝑈\𝑢),

where the right hand side is typically linear in the coupling coefficients.
For example, in the case of only one coupling coefficient related to the
nearest neighbors, the right hand side becomes

2𝑊(−𝑥𝑢, 𝒙𝑈\𝑢) − 2𝑊(𝑥𝑢, 𝒙𝑈\𝑢) = −2𝑐1 ∑
𝑁(𝑢)

𝑥𝑣;

however, with four spins in the nearest neighbor set 𝑁(𝑢) one can write
ten equations: there are two possible values of 𝑥𝑢 and five possible val-
ues of ∑𝑁(𝑢) 𝑥𝑣. erefore, the resulting linear constraints on 𝑐1 must
be solved approximately in the least squares sense due to the inevitable
stochastic errors involved in the estimation of the le hand side through
Monte Carlo simulation.
Using the same linearization of the renormalization mapping 𝑅 as

Nauenberg and Nienhuis (a,b), Swendsen (a) introduced the
Monte Carlo Renormalization Group (MCRG) method for studying the crit-
ical exponents of the Ising model. Swendsen found formulas for the ma-
trix elements of the Jacobian 𝐴 through the use of chain rule applied to
derivatives of the expeed interaion strengths ⟨Φ𝑖⟩, where one obtains

∑
𝑖

(⟨Φ𝑗(𝒙𝑉 )Φ𝑖(𝒙𝑉 )⟩ − ⟨Φ𝑗(𝒙𝑉 )⟩⟨Φ𝑖(𝒙𝑉 )⟩) 𝐴𝑖𝑘

= ⟨Φ𝑗(𝒙𝑉 )Φ𝑘(𝒙𝑈)⟩ − ⟨Φ𝑗(𝒙𝑉 )⟩⟨Φ𝑘(𝒙𝑈)⟩.

e renormalized system 𝒙𝑈 is simulated using Monte Carlo in the same
manner as in Ma (). e eigenvalues of the matrix 𝐴 = (𝐴𝑖𝑘) provide
the critical exponents. While the renormalization methods discussed thus
far are frequently termed real-space renormalization, Swendsen () de-
scribes a relatedmethod using themomentum-space representation of the
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Hamiltonian, where the variables are the coefficients of Fourier modes on
the laice; the two formulations are formally equivalent.
Swendsen (b) performed a study of the two-dimensional Ising

model with different numbers of coupling coefficients, obtaining 𝜈 =
0.998, 𝛼 = 0.004, 𝛽 = 0.1259 and 𝛾 = 1.744, in good agreement with
the exa values of 𝜈 = 1, 𝛼 = 0, 𝛽 = 0.125 and 𝛾 = 1.750. He also
briefly analyzed the eigenvalues of 𝐴 coming from the three-state Pos
model in two dimensions. is calculation was then extended in Swend-
sen and Berker (), where they computed the renormalized coupling
coefficients and critical exponents for the three-state Pos model in two
dimensions.
Swendsen and Wang () then applies the MCRG method to study the

critical exponents and the location of the phase transition in a ±𝐽 spin
glass model in dimensions two, three and four. e critical coupling 𝐽𝑐
is determined as the crossing point of the renormalization group scaling
exponent 𝑦𝐻(𝑛, 𝐽).
Swendsen (a,b,c) uses methodology related to the Monte Carlo

Renormalization Group to study the behavior of coupling coefficients un-
der renormalization. Assume one has the ability to sample the renormal-
ized variables exaly, for example using the method used earlier by Ma
() and Swendsen (a,b). Let the our current guess for the renormal-
ized coefficients be ̃𝒄′ and denote the local interaions around a variable
𝑥𝑢 as Φ̂𝑖,𝑢; for example, the nearest neighbor term becomes

Φ̂𝑖,𝑢 = ∑
𝑁(𝑢)

𝑥𝑣.

With 𝑚𝑖 being the number of variables showing up in the interaion Φ𝑖,
we define

⟨Φ̃𝑖⟩ = 𝑚−1
𝑖 ∑

𝑢
⟨Φ̂𝑖,𝑢 tanh (∑

𝑗
̃𝑐′
𝑗Φ̂𝑗,𝑢)⟩ .

Swendsen (a) notes that the equality ⟨Φ̃𝑖⟩ = ⟨Φ𝑖⟩ would hold only if
̃𝒄′ = 𝒄′, i.e., the guess couplings were exa. Otherwise, in the vicinity of

the exa coupling 𝒄′ the difference becomes

⟨Φ̃𝑖⟩ − ⟨Φ𝑖⟩ = ∑
𝑗

𝜕⟨Φ̃𝑖⟩
𝜕 ̃𝑐′

𝑗
( ̃𝑐′

𝑗 − 𝑐′
𝑗),
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which can be solved by matrix inversion for the exa coefficients 𝒄′. Two
steps of such iteration are sufficient to obtain good estimates of 𝒄′. Swend-
sen (b) uses this method to compute renormalized coupling coeffi-
cients for the critical (𝜇 = 0.440687) two-dimensional Ising model on a
32 × 32 laice, using both decimation and majority rule renormalization
methods. Using the same method, Swendsen (c) computed coupling
coefficients for the critical (𝜇 = 0.22166) three-dimensional Ising model
on a 32 × 32 × 32 laice under majority rule renormalization. Finally,
Swendsen (a) studied the flow of coupling coefficients in the two-
dimensional Ising model on 32 × 32 laice under majority rule with up
to seven interaions and briefly the three-dimensional Ising model on
32 × 32 × 32 laice with seventeen interaions.
Using a method similar to that of Swendsen (a), Gupta and Cordery

() computed the coupling coefficients of the critical two-dimensional
Ising model under majority rule renormalization. In their method, states
𝒙𝑈 are sampled from the probability

𝒙𝑈 ∼ 𝑃 (𝒙𝑈 ∣ 𝒙𝑉 )𝑃 (𝒙𝑉 ) × exp (−𝑊̃(𝒙𝑈)) /𝑍𝑈 ,

where 𝑊̃ (𝒙𝑈) is the current guess for the renormalized Hamiltonian, de-
termined by the current guess for the renormalized coupling coefficients

̃𝒄′. When ̃𝒄′ = 𝒄′, we obtain

∫ 𝑃(𝒙𝑈 ∣ 𝒙𝑉 )𝑃 (𝒙𝑉 )𝑑𝒙𝑉 =
exp (−𝑊̃(𝒙𝑈))

𝑍𝑈
.

Since the group variables 𝒙𝑈 are independent of each other given 𝒙𝑉 , it
follows that

1
𝑍𝑈

∫ Φ𝑖(𝒙𝑈)𝑃 (𝒙𝑈 ∣ 𝒙𝑉 )𝑃 (𝒙𝑉 ) exp (−𝑊̃(𝒙𝑈)) 𝑑𝒙𝑈 = Φ𝑖(𝒙𝑈).

For Φ𝑖(𝒙𝑈) being even polynomials of the spin variables averaging, this
quantity over 𝒙𝑈 yields

⟨Φ𝑖(𝒙𝑈)⟩ = 0 and ⟨Φ𝑖(𝒙𝑈)Φ𝑗(𝒙𝑈)⟩ = 2|𝑈|𝛿𝑖𝑗,

where |𝑈| is the number of laice sites on the renormalized laice 𝑈 . e
laer equation shows that the laice polynomials are in fa orthogonal
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with respe to the uniform inner produ. When ̃𝒄′ ≠ 𝒄′, in the vicinity
of 𝒄′ one may use a linear expansion and obtain

⟨Φ𝑖(𝒙𝑈)⟩ = ∑
𝑗

⟨Φ𝑖(𝒙𝑈)Φ𝑗(𝒙𝑈)⟩( ̃𝑐′
𝑗 − 𝑐′

𝑗),

a linear equation allowing one to solve for 𝒄′ by matrix inversion and im-
prove the guess ̃𝒄′. Repeated iteration quickly leads to the a good approx-
imation of the sought coefficient values. In comparison with the method
with that of Swendsen (a), this method is less complicated but leads
to similar coupling coefficient values.
Binney et al. () describe a variation on the method of computing

the renormalized coefficients that requires computing the exa marginal.
ey define the marginal Hamiltonian as

𝑊(𝒙𝑈) = ln [∫ 𝑃(𝒙𝑈 ∣ 𝒙𝑉 )𝑃 (𝒙𝑉 )𝑑𝒙𝑉 ]

and direly proje 𝑊(𝒙𝑈) onto a basis of interaions {Φ𝑖}, requiring
one to compute

𝑐𝑖 = 1
2|𝑈| ∫ Φ𝑖(𝒙𝑈) ln [∫ 𝑃 (𝒙𝑈 ∣ 𝒙𝑉 )𝑃 (𝒙𝑉 )𝑑𝒙𝑉 ] 𝑑𝒙𝑈

exaly in order to compute the renormalized coefficients. eir method
works because the basis funions used (polynomials of the laice vari-
ables) are orthogonal under the uniform inner produ. However, Binney
et al. () commits an error by applying it to a 4×4 laice renormalized
to a 2 × 2 laice and not adjusting the resulting coefficients for double-
counting due to periodicity. A correed version of this approach is de-
scribed and used to study parameter flow in Chapter .
Further developments are due to Brandt and Ron (a,b), who com-

puted a representation of the renormalized Hamiltonian 𝑊(𝒙𝑈) in a dif-
ferent, but related way. eir approach was to build a table 𝑃+(𝒙𝑁(𝑢))
that assigns to each possible state of the neighborhood 𝒙𝑁(𝑢) of the vari-
able 𝑥𝑢 the probability that 𝑥𝑢 = 1. ese probabilities are obtained by
sampling 𝒙𝑉 using the original probability density and subsequently sam-
pling 𝒙𝑈 using the conditional probability, as in Ma (), Swendsen
(a,b, a,b,c) and Gupta and Cordery (). e table 𝑃+(𝒙𝑁(𝑢)) is
computed by counting the fraion of times the neighborhood was in the
state 𝒙𝑁(𝑢) and 𝑥𝑢 = 1. Brandt and Ron (a,b) curb the rapid growth
of the table using laice symmetries and by considering only neighbor-
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hood states whose 𝑃+ value varies significantly from 1/2; however, this
results in a complicated data struure.
Although the method of Brandt and Ron (a,b) at the outset appears

very different from that of the remaining authors, it is in fa closely re-
lated to the method discussed by Binney et al. (). Consider the fa
that the tabulated representation may be seen as a series expansion

𝑃(𝑥𝑢 = 1 ∣ 𝒙𝑁(𝑢)) = ∑
𝑖

𝑐𝑖Φ𝑖(𝒙𝑁(𝑢)) = ∑
𝑖

𝑐𝑖𝛿(𝒙𝑁(𝑢) − 𝒙𝑖
𝑁(𝑢)),

where the basis funions are the discrete delta funions, defined as

𝛿(𝑥 − 𝑦) = { 1 for 𝑥 = 𝑦
0 otherwise.

e coefficient 𝑐𝑖 is the table entry for 𝑃+(𝒙𝑖
𝑁(𝑢)) corresponding to the

state 𝑥𝑖
𝑁(𝑢). e apparent absence of a linear projeion or solution of a

linear system is due to the fa that the 𝛿 basis funions are orthonormal
under every inner produ, thus only need a normalizing constant: the
number of times the state 𝒙𝑖

𝑁(𝑢) was observed. However, the cost paid by
using this approach is the inability to handle continuous variables: an ap-
proximate method using a discretization of the continuous variables was
pursued by Shmulyian () and mentioned by Brandt and Ron (b),
but was not continued.
Finally, Chorin (, ) and Okunev () describe a novel method

of computing the renormalized coefficients using an approximate pro-
jeion related to that described by Binney et al. (); however, their
method is only applicable to decimation because of the required assump-
tion that 𝑈 ⊆ 𝑉 . Aer defining the marginal Hamiltonian, Chorin (,
) and Okunev () differentiate it with respe to 𝑥𝑢 for 𝑢 ∈ 𝑈 ⊆ 𝑉 ,
obtaining the fast marginalization equation

𝜕𝑊(𝒙𝑈)
𝜕𝑥𝑢

= 𝔼 [𝜕𝑊(𝒙𝑉 )
𝜕𝑥𝑢

∣ 𝒙𝑈] .

Projeing the partial derivative 𝜕𝑊(𝒙𝑈)/𝜕𝑥𝑢 onto a basis 𝜙 using least
squares produces a linear system with

𝐴𝑖𝑗 = 𝔼 [𝜙𝑖𝜙𝑗] and 𝑏𝑖 = 𝔼 [𝜙𝑖
𝜕𝑊(𝒙𝑉 )

𝜕𝑥𝑢
] ,

which satisfies 𝐴𝒄 = 𝒃. e method is applied to the Ising model by let-
ting the variable 𝑥𝑢 be continuous and taking a derivative of the smooth
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Hamiltonian; the discrete renormalized Hamiltonian is recovered by in-
tegration of the approximate partial derivative. However, the references
contain two major errors. e partial derivative 𝜕𝑊(𝒙𝑈)/𝜕𝑥𝑢 is explic-
itly required by Chorin () to be a constant funion of 𝑥𝑢, while
one may in fa show that it is highly non-linear even in the simplest,
one-dimensional Ising model. Additionally, the expeation values used
to constru the linear system ignore the entire interior of the interval
𝑥𝑢 ∈ [−1, 1]; as a result, the non-linearity of the derivative is not cap-
tured.
Okunev () proposed an exponential projeion method that, al-

though similar in spirit to that of Chorin (, ), was applicable to
discrete variables of the Ising model. He noticed that the funion

exp (Δ𝑢𝑊(𝒙𝑈\𝑢; 𝑥𝑢, −𝑥𝑢)) = exp (𝑊(−𝑥𝑢, 𝒙𝑈\𝑢) − 𝑊(𝑥𝑢, 𝒙𝑈\𝑢))

may bewrien as a conditional expeation given𝒙𝑈 , allowing for the use
of the remainder of the fast marginalization methodology in unchanged
form. Because this method does not requiremaking 𝑥𝑢 continuous, it does
not suffer from the difficulties faced by the method used by Chorin (,
). Unfortunately, the exponential projeion is much more compli-
cated in praice, because it requires one to approximate an exponential,
which has to be positive. erefore, finding an approximation using least
squares or other methods is extremely challenging.

.  

Although renormalization was long used to compute coefficients of the
marginal probability distributions, the goal of the computation was to ob-
tain quantities of physical interest — such as critical exponents — via scal-
ing arguments. e possibility of using the marginal probability distribu-
tions to sample from the original statistical model was not pursued. One of
the first methods of aempting to use a multi-scale approach to sampling
laice models was construed by Goodman and Sokal (). ey pro-
pose a Monte Carlo method formulated in the language of the multigrid
method (Briggs, Henson, andMcCormick, ), where the coarse laices
are composed of blocks of the original, fine variables. In their method the
variables are then updated as blocks, performing large-scale moves on the
very coarse laices and finer-scaled moves on laices closer to the origi-
nal. Although their method does indeed improve the convergence of the
Markov Chain Monte Carlo (MCMC) method, it requires that the magni-
tude of the proposed changes be small on the coarse laice in order to





.  

obtain reasonable acceptance probabilities: the proposal probability dis-
tribution is in fa unrelated to any marginal distribution. Although this
requirement does not preclude application of their method to discrete sys-
tems, Goodman and Sokal suggest that such applications are impraical.
e next approach to sampling laices is that of Brandt and Ron

(a,b), who use their 𝑃+ table representation of the marginal proba-
bility density to sample states of the two-dimensional Ising model using
the top-down approach. ey first compute the 𝑃+ tables numerically by
sampling the original laice 𝑉0 = 𝑉 and computing the 𝑃 1

+ table de-
scribing the marginal probability density 𝑃(𝒙𝑉1

), where 𝑉1 is a laice of
majority rule block variables with block size of 2 × 2. rough a finite
recursion, Brandt and Ron (a,b) constru a sequence of laices 𝑉𝑖
and tables 𝑃 𝑖

+ by sampling the laice 𝑉𝑖 using 𝑃 𝑖
+ and computing the ta-

ble 𝑃 𝑖+1
+ . eir approach has the consequence that the coefficients slowly

dri away from the true values, because the subsequent tables are com-
puted using the already approximate probability distributions; however,
their tests suggest that the errors may be small.
Following the determination of the 𝑃+ tables, Brandt and Ron (a,b)

sample in the reverse direion: first, the coarsest (top) laice 𝑉𝑚 is ran-
domly initialized and sampled using MCMC with the help of the table 𝑃 𝑚

+ ,
producing a state 𝒙𝑉𝑚

. Assuming the laice 𝑉𝑖+1 has already been sam-
pled, the laice 𝑉𝑖 is sampled by assigning the spins 𝒙𝑉𝑖

random values
that are consistent with the state 𝒙𝑉𝑖+1

, i.e., such that the coarsening rule
𝑃(𝒙𝑉𝑖+1

∣ 𝒙𝑉𝑖
) > 0. Subsequently, MCMC is employed to sample from the

joint distribution 𝑃 (𝒙𝑉𝑖
, 𝒙𝑉𝑖+1

) while holding 𝒙𝑉𝑖+1
constant, thus hav-

ing the effe of sampling from the conditional probability 𝑃(𝒙𝑉𝑖
∣ 𝒙𝑉𝑖+1

):
see Chapter  for an in-depth discussion. Because the table 𝑃 𝑖+1

+ is only
an approximation of the true marginal of 𝑃 𝑖

+, Brandt and Ron (a,b)
employ a post-relaxation step where the value 𝒙𝑉𝑖+1

is discarded and 𝑝
iterations of unconstrained MCMC on the laice 𝑉𝑖 are employed to bring
the probability density of 𝒙𝑉𝑖

closer to the target. ey show that very
few post-relaxation sweeps are necessary.
While the sampling method of Brandt and Ron (a,b) is shown to

work well with the two-dimensional Ising model, the validation comes
from observed quantities such as the two-point correlation funion be-
tween spins located at a distance

√
2 on the laice, which is compared to

values computed using long simulations using theWolff cluster algorithm
(Wolff, ). erefore, this sampling method is unable to provide infor-
mation about sample quality for previously unstudied statistical models,
cf. Chapter .
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Ron, Swendsen, and Brandt () describe a variation of their sampling
method that is limited to sampling from the critical point of the renormal-
ization transformation. Let the original model with coupling coefficients
𝒄 undergo a series of renormalization steps. If the repeated application
of the renormalization transformation 𝑅 maps the initial coupling coeffi-
cients 𝒄 to the fixed point 𝒄∗, Ron, Swendsen, and Brandt () propose
to reverse this operation for sampling.ey compute a large basis approx-
imation of the fixed point 𝒄∗ and store it as the table 𝑃 ∗

+. Subsequently,
they sample a sequence of laices 𝑉𝑚, 𝑉𝑚−1, … , 𝑉0 in a top-down fash-
ion using the same table 𝑃 ∗

+ on each laice. e rationale behind such a
move is that if repeated marginalization brings the coefficients towards
𝒄∗ and the 𝑃+ table toward 𝑃 ∗

+, sampling using 𝑃 ∗
+ at each laice implies

that a virtual original laice was extremely large, to the point that the in-
termediate coefficients between 𝒄 and 𝒄∗ were eliminated. is way one
may generate high quality states for very large laices, assuming that
the fixed point coefficients can be approximated accurately and that the
coefficients 𝒄∗ do not depend significantly on the size of the original lat-
tice used to compute them. However, since renormalization flows from
multiple points converge onto the fixed point 𝒄∗, it is unclear what is
the relationship between the samples obtained using this method and the
samples of the original model at criticality.
Weare () construs anMCMCmethod utilizing multiple laices, but

without a top-down approach. Starting with the fine laice 𝑉0 and prob-
ability distribution funion 𝑃(𝒙𝑉0

), he construs a sequence of subse-
quently coarser laices 𝑉0 ⊃ 𝑉1 ⊃ 𝑉2 ⊃ … ⊃ 𝑉𝑚 with probability
distributions funions 𝑃(𝒙𝑉𝑖

), 0 < 𝑖 ≤ 𝑚, defined as the approximate
marginals

𝑃 (𝒙𝑉𝑖
) ≈ ∫ 𝑃(𝒙𝑉 )𝑑𝒙𝑉 \𝑉𝑖

.

Each laice hosts a Markov chain 𝑌 𝑛
𝑖 with transition probability

𝑇𝑖(𝒙𝑉𝑖
→ 𝒚𝑉𝑖

) that leaves 𝑃(𝒙𝑉𝑖
) invariant. e Markov chains on

the coarser laices equilibrate much more quickly than those on the
fine laices; therefore, to speed-up the convergence of the fine chains,
Weare introduces a swap move where the variables 𝒙𝑉𝑖

are swapped
with the corresponding variables in 𝒙𝑉𝑖+1

. Since the invariant probability
distribution 𝑃(𝒙𝑉𝑖+1

) of the chain 𝑌 𝑛
𝑖+1 is not an exa marginal

of 𝑃(𝒙𝑉𝑖
), unconditional swaps would not preserve the invariant

distributions of the chains. In order to leave these distributions invariant,
Weare introduces a swap move acceptance probability that corres for
the approximate nature of the probabilities 𝑃 (𝒙𝑉𝑖

). He then continues
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to simplify the calculation of the acceptance probability to eliminate the
need of computing 𝑃(𝒙𝑉𝑖

) entirely, and applies the resulting method to
the problems of bridge path sampling and non-linear filtering.
Lastly, Chorin () and Okunev () use their approximate renor-

malized coupling coefficients to sample spins of the two-dimensional
Ising model and the three dimensional Edwards-Anderson spin glass us-
ing a top-down approach. eir Chainless Monte Carlo (ChMC) method
does not use the MCMC approach at all; instead, the samples are con-
strued using a conditional sampling process: the variables are deter-
mined individually using a probability conditional on the already sam-
pled spins. In contrast to Brandt and Ron (a,b), the ChMC produces
a proposal density of each generated sample and thus the approximate
nature of the coefficients may be correed using importance sampling
by computing weights. Furthermore, it can be shown that the ChMC sam-
pling approach is equivalent to Sequential Importance Sampling (SIS) (cf.
Seions .. and ..), paving the way to the use of advanced particle
filtering techniques for improving the quality of the generated samples.

.  

Graphical models provide a natural framework for the marginalization
of laice models (Airoldi, ; Koller and Friedman, ). e informa-
tion encoded by the graph provides a natural way to describe sparsity
present in many probability distribution funions, making it possible to
optimally compute examarginals. For an introduion to graphical mod-
els and their typical applications consult Jordan (), Koller and Fried-
man (), and Wainwright and Jordan ().
We first define graphical models. e conditional independence of ran-

dom variables is a crucial part of this definition.
Definition (Conditional independence). e random variables 𝑥𝑢 and 𝑥𝑣
defined on a laice of variables 𝑉 , 𝑢, 𝑣 ∈ 𝑉 , are said to be conditionally
independent given all remaining variables 𝒙𝑉 \{𝑢,𝑣}, denoted as 𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣
𝒙𝑉 \{𝑢,𝑣}, if and only if

𝑃 (𝑥𝑖, 𝑥𝑗 ∣ 𝒙𝑉 \{𝑢,𝑣}) = 𝑃 (𝑥𝑖 ∣ 𝒙𝑉 \{𝑢,𝑣}) 𝑃 (𝑥𝑗 ∣ 𝒙𝑉 \{𝑢,𝑣}) ,

i.e., the joint conditional probability distribution given all other variables
faors into two funions dependent on 𝑥𝑢 and 𝑥𝑣, respeively. If random
variables are not conditionally independent they are said to be dependent.
Intuitively, the above definition captures the fa that variables inter-

a direly only with a limited set of other variables. Similar behavior is
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present in other areas of applied mathematics. A natural example is the
heat equation ∇2𝑢(𝒙) = 0, where knowing the values of the solution
𝑢(𝒙) on a sphere 𝜕𝐵(𝒙0, 𝑟) around a certain point 𝒙0 uniquely deter-
mines 𝑢(𝒙0) (Evans, ). In case of the heat equation, the points on the
sphere separate 𝒙0 from the remainder of the space. Similar separation re-
sult can be found in the case of graphical models, where the interaions
between variables occur through the graph rather than through space,
leading to the following definition.

Definition (Graphical model). e probability distribution 𝑃(𝒙𝑉 ) is said
to induce a dependency graph 𝐺 = (𝑉 , 𝐸). Each variable 𝑥𝑢 is assigned a
node 𝑢 in the set of nodes 𝑉 . Two nodes 𝑢, 𝑣 ∈ 𝑉 are not conneed by an
edge if and only if the variables 𝑥𝑢 and 𝑥𝑣 are conditionally independent, i.e.,
(𝑢, 𝑣) ∉ 𝐸 iff 𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣ 𝒙𝑉 \{𝑢,𝑣}. e probability distribution together with
its induced undireed dependency graph is called an undireed graphical
model.

Using the Partial Differential Equation (PDE) analogy again, the depen-
dency graph can be thought of as the graph of the matrix discretization
of a differential operator. For example, the heat equation has operator
ℒ = ∇2, whose classical discretization in two dimensions

∇2𝑢(𝑥, 𝑦) = 𝑢𝑖+1,𝑗 − 2𝑢𝑖𝑗 + 𝑢𝑖−1,𝑗
ℎ2 + 𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

ℎ2 +𝒪(ℎ2)

has non-zero matrix elements at positions corresponding to the couplings
between the variable 𝑢𝑖𝑗 and its neighbors on the Cartesian mesh. e
graph of the resulting matrix is incidentally the same as that of the Ising
model.
With the above definition, every probability distribution is also a graph-

ical model. However, the machinery of graphical model theory is only
useful when the resulting dependency graph is sparse. Many physically
motivated statistical models lead to sparse dependency graphs in the same
way that many PDE can be discretized using sparse matrices.
e graphical models will be used throughout the present thesis as the

language used to describe our methodology. Graphical models will be
used mainly in Chapter  to show howmarginalization of variables alters
the conditional independence relations between the remaining variables,
and in Chapter  to motivate the choice of consistent basis funions. Fi-
nally, the dependency graph will define the order of sampling variables
discussed in Chapter .
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ere are several areas of current interest that are tangentially related to
the concepts or approaches used within the present thesis. e renormal-
ization of a graphical model is related to the concept of deep architeures
used in the computer learning community, where a seemingly complex
probability distribution is described using a sparse multi-level struure
involving hidden variables (Poon and Domingos, ). e construion
of the acyclic Monte Carlo method, especially using the framework for
general coarsening rules, can indeed be seen as adding auxiliary hidden
variables in order to obtain a new representation for the probability dis-
tribution funion.
Because of the similarity between the dependency graph induced by the

probability distribution 𝑃(𝒙𝑉 ) and the graph of a matrix 𝐴, the marginal-
ization of a probability distribution has links to the process of Gaussian
elimination and 𝐿𝑈 decomposition (Demmel, ). As such, the devel-
opments in algorithms for finding sparsity-preserving variable orderings
are of natural interest (Davis et al., a,b).
Finally, the acyclic Monte Carlo aempts to constru an acyclic rep-

resentation of a given probability distribution funion 𝑃(𝒙𝑉 ), which al-
lows for efficient sampling. Such approximate representations are known
in the fields of genetics and automated learning as Conditional Sampling
Distributions (CSDs) or Produs of Approximate Conditionals (PACs); the
standard references in the field are Chow and Liu () and Paul and
Song ().

.     

e methodology described within this thesis is named acyclic Monte
Carlo, encompassing both the method for coarsening a graphical model,
the computation of approximate renormalized coupling coefficients, and
the subsequent sampling techniques.e fa that our method transforms
a graphical model with circular dependencies between variables into an
acyclic model is at the interseion of these methods and makes them ef-
ficient. erefore, it is only fiing that the methodology herein described
bear that name.
e present thesis is struured in the following way. We begin with the

description of the prior work of Chorin (, ) and Okunev (),
discuss a straightforward method for computing the renormalized coeffi-
cients, and use them for sampling the original model in Chapter . While
this straightforward sampler is not intended for praical use, it serves
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the purpose of illustrating the major elements of the methodology with-
out unnecessary complexity.
In Part  we present the contributions of this thesis. Chapter  opens

the discussion, describing renormalization methodology using the frame-
work of graphical models. We detail the transformation of the undireed
dependency graph induced by a probability distribution into an approx-
imate direed acyclic graph and present related algorithms. e discus-
sion of graphical methods is done separately from the computation of the
resulting coefficients.
e computation of renormalized coupling coefficients forms Chapters

 and , where we describe the fast marginalization algorithm and its gen-
eralized version, respeively. Chapter  is concerned with the computa-
tion of approximate renormalized coefficients describing a marginal prob-
ability distribution 𝑃(𝒙𝑈), where 𝑈 ⊆ 𝑉 . erefore, it does not depend
on the fa that the set 𝑈 forms a part of a hierarchy of increasingly coarse
laices; however, it is intended that 𝑈 be thought of as one of the laices
𝑉𝑖 described in Chapter .
e sampling methods using the acyclic form of the probability distri-

bution are discussed in Chapter . We discuss the sequential importance
sampler used byChorin () andOkunev () and improve upon it, us-
ing techniques from particle filtering. We touch on the topic of using the
acyclic form to constru MCMC sampling schemes. Chapter  discusses
the sampling techniques compatible with arbitrary coarsening rules.
Part  discusses the results obtained using the acyclic Monte Carlo.

In Chapter  we describe the application of the fast marginalization al-
gorithm and its generalized version to calculate the parameter flow of
the two-dimensional Ising model, showing the lack of a critical point in
case of decimation. Finally, Chapter  benchmarks the performance of the
acyclic Monte Carlo on the two-dimensional Ising model.
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e method of sampling Markov fields described in this thesis is com-
posed of multiple parts. In order to bring together the seemingly discon-
need components, we present here a description of a simplified version
of the more general sampler discussed in Chapters  and . is sampler
contains all the parts required by the advanced method and is based on
the earlier work of Okunev () and Chorin (, ), with several
improvements. As a pedagogical example, we will apply the simple sam-
pler to the Ising model on a Cartesian laice in one and two dimensions
(Ising, ) .
e current chapter is organized as follows. For both the one- and two-

dimensional Ising model, we first describe the components of the algo-
rithm: (i) coarsening of the laice, (ii) computation of marginal probabil-
ity densities and (iii) a sampling scheme using the produs of the prior
two parts. Following the description is our analysis and commentary on
the presented material, discussion of the choices made and interpretation
of the method from different vantage points. We hope that the concise
description of the algorithm will allow the reader to learn about the al-
gorithms presented, while the subsequent analysis will provide the nec-
essary discussion and lead the reader toward the main parts of the thesis
contained in Chapters ,  and .
We begin by describing decimation of the one-dimensional Ising model,

following the standard approach of Kadanoff (, ) (cf. Binney et al.,
; Migdal, ; Мигдал, ). We describe the decimation process in
the language of graphical models, leading to the concept of graph coars-
ening. We motivate and analyze the choices made during Kadanoff renor-
malization, and finally use the analysis to hint at a possible generalization
of the decimation algorithm to complex graphical models. e renormal-
ization (graph coarsening) produces a ladder of increasingly coarse graph-
ical models, eventually reducing the original Ising laice to only one vari-
able. We show that this ladder struure can be used to efficiently sample
the Ising model and describe the resulting algorithm. Analyzing the sam-
pling algorithm, we show that the ladder struure produces an alterna-
tive graphical model representation of the Ising model: while the origi-
nal graphical model was undireed and contained cyclical dependencies,
the ladder struure produces an equivalent direed and acyclic graphical
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model reproducing the same probability density.is direed acyclic rep-
resentation of the probability density is a Bayesian network and therefore
can be sampled efficiently.
e simplified method consists of two steps, (i) the decimation of the

original Cartesian laice to a series of coarser laices through Kadanoff
renormalization (e.g. Binney et al., ; Kadanoff, , ) and (ii) the
sampling of the resulting hierarchy of laices in the reverse, coarse-to-
fine, direion. e decimation step aempts to constru a sequence of
smaller Ising-type laices by marginalizing (integrating out) a fraion of
random variables at a time.ese coarser laices may be easier to sample
due to their reduced size, albeit at a cost of computing their probability
densities through marginalization. e sampling step uses the coarser lat-
tices and the relationship between their respeive probability densities.
Starting at the coarsest laice, which is assumed to be easy to sample
using an alternative method, such as MCMC or even dire sampling (Liu,
) , the laices are sampled iteratively: the immediately coarser laice Dire sampling means

computing the
probabilities of all
possible states and
choosing one of them at
random.

is sampled using the conditional probabilities 𝑃(fine ∣ coarse), which can
be obtained efficiently in a number of ways. We will first discuss the Ising
model in one dimension, where the above procedure may be performed
exaly, and use it to motivate the developments of Chapter .

.     

We begin with the Ising model defined on a periodic chain of length 𝑛 =
2𝑚, with 𝑚 ≥ 2 (see Figure .). e probability distribution defined over
the spins 𝒙𝑉 = (𝑥1, 𝑥2, … , 𝑥𝑛) is

𝑃(𝒙𝑉 ) = 1
𝑍(𝜇) exp [𝜇

2
𝑛

∑
𝑖=1

𝑥𝑖 (𝑥𝑖−1 + 𝑥𝑖+1)] ,

where 𝜇 = 𝐽/𝑇 is the coupling strength and 𝑍(𝜇) the partition funion.
e insight of Kadanoff (, ) was to notice that changing the value
of a spin 𝑥𝑖, while keeping all the other spins fixed, will have a very
limited influence on the probabilities of the remaining spins. In fa, the
conditional probabilities of only two spins will be changed, precisely the
nearest neighbors of 𝑥𝑖 in the laice: 𝑥𝑖−1 and 𝑥𝑖+1. ese spins are said
to be dependent on 𝑥𝑖, while all other spins are conditionally independent
of 𝑥𝑖 given 𝑥𝑖−1 and 𝑥𝑖+1. e conditional independence gives rise to the
graphical struure depied on Figure ..
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Figure .: Periodic laice of a one dimensional Ising model of size . e nodes
are color coded using the index of the node: node  is deep blue, node
 is green, while node  is red.

.. Coarsening

Kadanoff renormalization or decimation aempts to eliminate, or deci-
mate, random variables to produce a coarser random model. To describe
the renormalization process we introduce the following notation. e
components of the random veor 𝒙𝑉 correspond to nodes of the graph
𝐺 = (𝑉 , 𝐸); thus for every node 𝑢 ∈ 𝑉 we identify 𝑥𝑢 as the correspond-
ing random variable. Given a subset 𝑈 ⊂ 𝑉 , 𝒙𝑈 is a veor of dimension
|𝑈| made of components 𝑥𝑢 of the original veor 𝒙𝑉 for all 𝑢 ∈ 𝑈 . For
simplicity of notation we will frequently write 𝑈 \ 𝑢 to mean 𝑈 \ {𝑢}. To
avoid cluer, the probability distribution over the variables 𝑃(𝒙𝑈) uses
the same symbol as that of 𝑃(𝒙𝑉 ); therefore, the precise distribution is
identified by the variables it depends on.
Following the standard approach (Binney et al., ; Kadanoff, ,

; Migdal, ; Мигдал, ), we eliminate half of the variables by
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marginalizing them. Let 𝑉0 = 𝑉 and decompose 𝑉0 into two into two
subsets,

𝑉1 = {1, 3, 5, … , 𝑛 − 1} and 𝑉0 \ 𝑉1 = {2, 4, 6, … , 𝑛},

which separate the variables in 𝒙𝑉 into two non-overlapping parts

𝒙𝑉1
= {𝑥1, 𝑥3, 𝑥5, … , 𝑥𝑛−1} and 𝒙𝑉0\𝑉1

= {𝑥2, 𝑥4, 𝑥6, … , 𝑥𝑛}.

e set 𝑉1 will represent the renormalized, or coarse, variables. e
marginal probability of 𝒙𝑉1

is the integral of the joint probability An integral is with
respe to a discrete
measure, therefore the
integral becomes a sum.

𝑃(𝒙𝑉1
, 𝒙𝑉0\𝑉1

) over 𝒙𝑉0\𝑉1
,

𝑃(𝒙𝑉1
) = ∫ 𝑃 (𝒙𝑉1

, 𝒙𝑉0\𝑉1
)𝑑𝒙𝑉0\𝑉1

.

e resulting probability density is defined for a half of the variables of the
original Ising model, yet a straightforward calculation shows that 𝑃(𝒙𝑉1

)
can be wrien in the same form as the original Ising model (see Appendix
A):

𝑃(𝒙𝑉1
) = 1

̂𝑍
exp ⎡⎢

⎣
𝜇1
2

𝑛/2

∑
𝑖=1

𝑥2𝑖−1 (𝑥2𝑖−3 + 𝑥2𝑖+1)⎤⎥
⎦

, (.)

where 𝜇1 = 1/2 ln cosh(2𝜇0) (see Example .). is exa result shows
the effe of eliminating a variable on the graphical struure of the prob-
lem. Indeed, if we look at the graph 𝐺1 = (𝑉1, 𝐸1) induced by 𝑃(𝒙𝑉1

)
we will again find a circular chain, i.e., the struure of the graph has not
changed. e effe of marginalizing (integrating out) a variable can be is is precisely the

reason why
renormalization can be
performed exaly in case
of one dimensional Ising
model but fails in two or
more dimensions.

seen purely in terms of graphs (Seion .. or Chapter  of Koller and
Friedman ()): eliminating a node 𝑢 in a graph requires conneing by
edges all of the neighboring nodes 𝑁(𝑢).
e hierarchy of graphical models construed this way from the origi-

nal Ising model is shown on Figure .. e top-most laice is composed
of only one variable and therefore has a different graphical struure than
the finer laices; as such, the general formula shown on Equation .
cannot be used to describe the probability distribution 𝑃(𝒙𝑉𝑚

). Instead,
we notice that 𝑃(𝒙𝑉𝑚

) is the probability that a single variable in 𝒙𝑉 is
positive or negative. Using a symmetry argument it becomes clear that
𝑃(𝒙𝑉𝑚

= 1) = 𝑃(𝒙𝑉𝑚
= −1) = 1/2, which completes the renormaliza-

tion process.
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(a) 𝜇 = 1 (b) 𝜇 ≈ 0.6625

(c) 𝜇 ≈ 0.3501 (d) 𝜇 ≈ 0.1137

Figure .: Hierarchy of graphical models produced by the Kadanoff-Midgal
renormalization. e probability distribution of each model is of
Ising-type, with 𝑛𝑖 = 𝑛/2𝑖 nodes and inverse temperature 𝜇𝑖 =
1/2 ln cosh(2𝜇𝑖−1). e quoted numbers show approximately the de-
cay of the inverse temperature with renormalization, starting from an
arbitrary 𝜇 = 1.

E .. In the circular graph of Figure ., each variable is conneed
to only two other variables; thus, removing node  connes the neighbor-
ing nodes, i.e., nodes  and , while removing node  connes nodes  and
. Initially, node  was conneed to nodes  and , but aer eliminating
them it is conneed to nodes  and . Removing all even numbered nodes
we obtain a graph with nodes , , , and  with edges (1, 3), (3, 5), (5, 7)
and (7, 1). e resulting decimated graph is shown on Figure .. ■
Since the result of a Kadanoff renormalization is again a

graphical model, let us consider repeating the procedure. Let
𝑀 = (𝒙𝑉 , 𝑃 (𝒙𝑉 ), 𝐺 = (𝑉 , 𝐸)) be a graphical model. e Kadanoff
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Figure .: e graph induced by the probability density 𝑃(𝒙𝑉1).

renormalization (cf. Migdal, ; Мигдал, ) can be though of as a
mapping 𝑅

𝑀 ′ = 𝑅(𝑀)

between the original graphical model and the renormalized model, speci-
fied using the process described above. Beginning with the original graph-
ical model 𝑀0 = 𝑀 , we may define iteratively a hierarchy of graphical
models 𝑀𝑖 = (𝒙𝑉𝑖

, 𝑃 (𝒙𝑉𝑖
), 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖)) through

𝑀𝑖+1 = 𝑅(𝑀𝑖),

where the resulting model 𝑀𝑖+1 has 𝑛𝑖+1 = 𝑛𝑖/2 = 𝑛/2𝑖+1 variables.
Because the probability distribution can be described by a single param-
eter 𝜇𝑖, we can think of the renormalization as a mapping between the
original and renormalized coupling parameters,

𝜇𝑖+1 = 𝑅(𝜇𝑖).
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e plot of 𝑅(𝜇𝑖) is shown on Figure .. Visual analysis of the curve
shows that there exists only one fixed point of the mapping, i.e., the zero-
coupling (infinite temperature) fixed point 𝜇 = 0. Additionally, for 𝜇 > 0
the renormalized value 𝑅(𝜇) < 𝜇; therefore, the variables on coarse lat-
tices become increasingly decorrelated. ese two observations are pre-
cisely the reason for lack of a phase transition in the one-dimensional
Ising model: at large distances the Ising spins become decorrelated, while
at the phase transition correlation length grows infinitely large.



.



.



 .  . 

𝜇 𝑖
+1

𝜇𝑖

𝜇

Figure .: Mapping of the Ising model in one dimension.

.. Sampling

e sampling algorithm uses the ladder of laices in the coarse-to-fine
direion, opposite to that of the coarsening procedure. e sampling pro-
cedure will iterate, filling the variables one level at a time. At each itera-
tion we will assume that variables 𝒙𝑉𝑖+1

are known and those in 𝒙𝑉𝑖\𝑉𝑖+1
need to be sampled. erefore, we will begin by handling the case of sam-
pling the top laice 𝑉𝑚 with variables 𝒙𝑉𝑚

separately and follow with a
general coarse-to-fine iteration.
e top laice 𝑉𝑚 is composed of only one variable, thus must be

treated separately in a special manner. Since both values 𝒙𝑉𝑚
= 1 and

𝒙𝑉𝑚
= −1 are equiprobable, we simply choose one at random. Having
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Algorithm . Sampling a one-dimensional Ising model of of 𝑛 = 2𝑚

spins using the coarsened laice struure.

e algorithm generates a single state of random variables 𝒙𝑉 , given the
laices 𝐺 = 𝐺0, 𝐺1, … , 𝐺𝑚 and the renormalized coupling constants
𝜇0, 𝜇1, … , 𝜇𝑚−1. e top laice 𝑉𝑚 has only one spin, therefore by
symmetry both values are equally likely. e funion SS
returns a random spin with the prescribed unnormalized probabilities.
procedure SID(𝑚, 𝐺𝑖, 𝜇𝑖)

𝒙𝑉𝑚
← SS(1, 1)

for 𝑖 = 𝑚 − 1 → 0 do
for all 𝑢 ∈ 𝑉𝑖 \ 𝑉𝑖+1 do

𝑊𝑢 ← 𝜇𝑖 (𝑥𝑢+2𝑖 + 𝑥𝑢−2𝑖)
𝑥𝑢 ← SS(e−𝑊𝑢 , e𝑊𝑢)

end for
end for

end procedure

function SS(𝑝−, 𝑝+)
𝑝 ← U[0, 1]
if 𝑝 < 𝑝−𝑝−+𝑝+

then
return −1

else
return 1

end if
end function

sampled the top laice 𝑉𝑚, we may assume that the variables in 𝒙𝑉𝑖+1
have been sampled. Because 𝑉𝑖+1 ⊂ 𝑉𝑖, in order to complete the sam-
pling of variables 𝒙𝑉𝑖

we must sample the variables 𝒙𝑉𝑖\𝑉𝑖+1
. We make

the important observation that for any 𝑢, 𝑣 ∈ 𝑉𝑖 \ 𝑉𝑖+1 the variables 𝑥𝑢
and 𝑥𝑣 are conditionally independent given 𝒙𝑉𝑖+1

,

𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣ 𝒙𝑉𝑖+1
.

erefore, the variables to be sampled at level 𝑖 are conditionally indepen-
dent of each other and can be sampled individually. We contrast this with
sampling the original laice, which requires determining all variables si-
multaneously, typically using an iterative process such as the Markov
Chain Monte Carlo.
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To sample a spin 𝑥𝑢 ∈ 𝑉𝑖 \ 𝑉𝑖+1, we require the probabilities of both
states, 𝑥𝑢 = −1 and 𝑥𝑢 = 1. Starting with the joint probability of
𝑃(𝒙𝑉𝑖

) = 𝑃(𝒙𝑉𝑖+1
, 𝒙𝑉𝑖\𝑉𝑖+1

), we obtain

𝑃(𝒙𝑉𝑖+1
, 𝒙𝑉𝑖\𝑉𝑖+1

) = 1
𝑍𝑖

exp [𝜇𝑖
2 ∑

𝑉𝑖

𝑥𝑢 (𝑥𝑢−2𝑖 + 𝑥𝑢+2𝑖)]

= 1
𝑍𝑖

∏
𝑉𝑖\𝑉𝑖+1

exp [𝜇𝑖𝑥𝑢 (𝑥𝑢−2𝑖 + 𝑥𝑢+2𝑖) ]

= ∏
𝑉𝑖\𝑉𝑖+1

𝑃 (𝑥𝑢 ∣ 𝒙𝑉𝑖+1
) ,

where 𝑍𝑖 is a produ of normalization constants for the individual expo-
nents. Defining

𝑊𝑢 = 𝜇𝑖 (𝑥𝑢−2𝑖 + 𝑥𝑢+2𝑖) ,

each 𝑥𝑢 for 𝑢 ∈ 𝑉𝑖\𝑉𝑖+1 can be sampled using the probability distribution

𝑃 (𝑥𝑢 = −1) = 𝑒−𝑊𝑢

𝑒−𝑊𝑢 + 𝑒𝑊𝑢
,

𝑃 (𝑥𝑢 = 1) = 𝑒𝑊𝑢

𝑒−𝑊𝑢 + 𝑒𝑊𝑢
.

e complete sampling procedure is described in Algorithm .. We make
the observation that we can write down the probability of the state 𝒙𝑉
generated by Algorithm ., as detailed in the Example . below.
E .. Consider the Ising model with 𝑛 = 8 spins described in Ex-
ample .. Given the original coupling coefficient 𝜇 = 𝜇0 and the renor-
malized

𝜇1 = 1/2 ln cosh 2𝜇0 and 𝜇2 = 1/2 ln cosh 2𝜇1,

the complete probability distribution may be wrien as

𝑃(𝒙𝑉 ) = 1
2 × e2𝜇2𝑥1𝑥5

e−2𝜇2𝑥1 + e2𝜇2𝑥1

× e𝜇1𝑥3(𝑥1+𝑥5)

e−𝜇1(𝑥1+𝑥5) + e𝜇1(𝑥1+𝑥5) × e−𝜇1𝑥7(𝑥1+𝑥5)

e−𝜇1(𝑥1+𝑥5) + e𝜇1(𝑥1+𝑥5)

× e𝜇0𝑥2(𝑥1+𝑥3)

e−𝜇0(𝑥1+𝑥3) + e𝜇0(𝑥1+𝑥3) × e−𝜇0𝑥4(𝑥3+𝑥5)

e−𝜇0(𝑥3+𝑥5) + e𝜇0(𝑥3+𝑥5)
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Algorithm . A classical greedy algorithm for computing the Maximum
Independent Set (MIS).
function MISG(𝐺 = (𝑉 , 𝐸))

𝑆 ← ∅
𝑄 ← 𝑉
repeat

𝑢 ← arg max𝑢 NO(𝑢) for 𝑢 ∈ 𝑄
𝑄 ← 𝑄 \ 𝑢
𝑆 ← 𝑆 ∪ 𝑢.
for all 𝑣 s.t. (𝑢, 𝑣) ∈ 𝐸 do

𝑄 ← 𝑄 \ 𝑣
end for

until 𝑄 is empty
return 𝑆

end function

× e𝜇0𝑥6(𝑥5+𝑥7)

e−𝜇0(𝑥5+𝑥7) + e𝜇0(𝑥5+𝑥7) × e−𝜇0𝑥8(𝑥1+𝑥7)

e−𝜇0(𝑥1+𝑥7) + e𝜇0(𝑥1+𝑥7)

Note the special form of the term with 𝜇2: since laice  has only two
spins, the coupling between them must be counted twice, hence the extra
faor of two. ■

.. Analysis

Having described the standard renormalization of the one dimensional
Ising model and the sampling Algorithm . that uses the renormalized
laices, we can analyze the renormalization (coarsening) and subsequent
sampling to understand how the two work and interconne.

... Graph coarsening

We begin with the spliing of variables 𝒙𝑉𝑖
into those that are to be kept

on the coarse laice 𝒙𝑉𝑖+1
and the remainder of variables that are to be

marginalized 𝒙𝑉𝑖\𝑉𝑖+1
. From the graphical point of view, the spliing de-

cides which nodes of the graph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) are to be kept in the coars-
ened graph 𝐺𝑖+1 = (𝑉𝑖+1, 𝐸𝑖+1). e standard approach removes every
other variable and can be motivated in multiple ways, however the rea-
soning we employ comes from the requirements of the subsequent sam-
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Algorithm . An improved greedy algorithm for computing the Maxi-
mum Independent Set (MIS) due to Prof. Richard M. Karp (private commu-
nication). e funion F produces a set that does not belong to
𝑈 , but forms the boundary (frontier) of 𝑈 in the graph 𝐺.
function MISGK(𝐺 = (𝑉 , 𝐸))

𝑆 ← ∅
𝑄 ← 𝑉
repeat

𝑢 ← arg min𝑢 | F(𝐺, 𝑆 ∪ 𝑢) for 𝑢 ⊂ 𝑄
𝑄 ← 𝑄 \ 𝑢
𝑆 ← 𝑆 ∪ 𝑢.
for all 𝑣 s.t. (𝑢, 𝑣) ∈ 𝐸 do

𝑄 ← 𝑄 \ 𝑣
end for

until 𝑄 is empty
return 𝑆

end function

function F(𝐺 = (𝑉 , 𝐸), 𝑈 )
𝑆 ← ∅
for all 𝑣 ∈ 𝑉 do

if 𝑣 ∉ 𝑈 and (𝑣, 𝑢) ∈ 𝐸 s.t. 𝑢 ∈ 𝑈 then
𝑆 ← 𝑆 ∪ 𝑣

end if
end for
return 𝑆

end function

pling step. As we saw, the spins 𝒙𝑉𝑖\𝑉𝑖+1
defined above are conditionally

independent given the values of spins 𝒙𝑉𝑖+1
,

𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣ 𝒙𝑉𝑖+1
for all 𝑢, 𝑣 ∈ 𝑉𝑖 \ 𝑉𝑖+1, (.)

which allows the sampling of the components of 𝒙𝑉𝑖\𝑉𝑖+1
independently

of each other. erefore, the variable partition must satisfy Equation ..
Graphically, this condition requires that no two nodes 𝑢, 𝑣 ∈ 𝑉𝑖 \ 𝑉𝑖+1
can be conneed by an edge,

(𝑢, 𝑣) ∉ 𝐸𝑖 for all 𝑢, 𝑣 ∈ 𝑉𝑖 \ 𝑉𝑖+1. (.)
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A set of nodes 𝑈𝐼𝑆 ⊆ 𝑉𝑖 in a graph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), such that no two nodes
are conneed by an edge, is called an Independent Set (IS); conversely,
a set of nodes 𝑈𝑉 𝐶 ⊆ 𝑉𝑖, such that the complement 𝑉𝑖 \ 𝑈𝑉 𝐶 is an
independent set, is known as a Vertex Cover (VC).
Using the independence requirement . we see that the set of variables

that are to be marginalized, 𝒙𝑉𝑖\𝑉𝑖+1
, must form an Independent Set (IS)

𝑈𝐼𝑆, while the remaining variables 𝒙𝑉𝑖+1
that are to be kept for the coarse

laice must be the matching Vertex Cover (VC) 𝑈𝑉 𝐶 = 𝑉𝑖 \ 𝑈𝐼𝑆. Because
wewish to remove as many variables from 𝒙𝑉𝑖

as possible, it is reasonable
to require that 𝑈𝐼𝑆 be a Maximum Independent Set (MIS): an independent
set of the largest possible size in the graph 𝐺𝑖. e complementary task
of finding the smallest vertex cover is known as the Minimum Vertex
Cover (MVC) problem. e graph associated with the one dimensional
Ising model with even number of variables has a special struure: the
graph is bipartite, i.e., the nodes 𝑉𝑖 may be divided into two subsets such
that there are no edges conneing the nodes within each subset. ese
two subsets are the exa solutions to the MIS and MVC problems and may
be computed efficiently through graph coloring. Up to equivalence, the
partition of the set 𝑉𝑖 into 𝑈𝑉 𝐶 = 𝑉𝑖+1 and 𝑈𝐼𝑆 = 𝑉𝑖 \ 𝑉𝑖+1 is

𝑈𝑉 𝐶 = {1, 3, 5, … , 𝑛 − 1}, 𝑈𝐼𝑆 = {2, 4, 6, … , 𝑛}

for even 𝑛, the same as the partition we chose previously without explana-
tion. erefore, the division of variables may be generalized by requiring
variables in 𝒙𝑉𝑖+1

to form a Minimum Vertex Cover (MVC), while 𝒙𝑉𝑖\𝑉𝑖+1
form the complementary Maximum Independent Set (MIS). Finding a so-
lution to the MVC or the MIS problem is prohibitively expensive; in fa,
both graphical problems are part of the original twenty-one NP-complete
problems compiled by Karp (), thus there are no known polynomial
time algorithms for solving them. Instead, the requirement on 𝒙𝑉𝑖+1

and
𝒙𝑉𝑖\𝑉𝑖+1

must be relaxed. We require that 𝑉𝑖 be a Minimal Vertex Cover of
𝐺𝑖, i.e., a Vertex Cover that cannot be made smaller by removing a node,
making it a locally optimal solution. Similarly, 𝑉𝑖 \ 𝑉𝑖+1 be the comple-
mentary Maximal Independent Set, an Independent Set which cannot be
made larger by adding a node. Both the Minimal Vertex Cover and Maxi-
mal Independent Set can be found quickly using greedy algorithms, such
as Algorithm . or ..
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... Marginalization

In the above example of the one-dimensional Ising model, the marginal
probability distribution 𝑃(𝒙𝑉𝑖+1

) was computed exaly from the defini-
tion

𝑃(𝒙𝑉𝑖+1
) = ∫ 𝑃(𝒙𝑉𝑖+1

, 𝒙𝑉𝑖\𝑉𝑖+1
)𝑑𝒙𝑉𝑖\𝑉𝑖+1

,

which in that case is analytically traable (see Appendix A). While the
computation of the value of the renormalized coupling coefficient 𝜇𝑖+1 is
complicated, the form of the renormalized Probability Distribution Func-
tion (PDF) can be found easily using arguments from graphical model the-
ory.
We return to the Example .. Consider five consecutive nodes in the

Ising model, 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑥5, where we wish to marginalize 𝑥2 and
𝑥4. Per previous analysis, removing a node induces dependencies between
all of its neighbors; therefore, removing node 𝑥2 induces a dependency
between 𝑥1 and 𝑥3, while removing 𝑥4 induces another one between 𝑥3
and 𝑥5. e conditional probability of 𝑥3 given all remaining spins,

𝑃(𝑥3 ∣ 𝒙{1,5,7}) = 𝑃(𝑥3 ∣ 𝑥1, 𝑥5)

simplifies to a funion of only 𝑥3 and the two dependent variables 𝑥1 and
𝑥5. Since the components of 𝒙𝑉 are binary and can only assume values
of −1 or 1, the probability of 𝑥3 can be expressed exaly using all the
possible monomial terms involving 𝑥1, 𝑥3 and 𝑥5:

𝑃(𝑥3 ∣ 𝑥1, 𝑥5) =
exp (𝑎1 + 𝑎2𝑥1 + 𝑎3𝑥3 + 𝑎4𝑥5

+𝑎5𝑥1𝑥3 + 𝑎6𝑥1𝑥5 + 𝑎7𝑥3𝑥5 + 𝑎8𝑥1𝑥3𝑥5)/𝑍.

e terms 𝑎1, 𝑎2𝑥1, 𝑎4𝑥5 and 𝑎6𝑥1𝑥5 are constant in 𝑥3 and thus can be
arbitrarily set to zero. Due to the symmetries of the Ising laice, the spins
𝑥1 and 𝑥5 are identical from the perspeive of 𝑥3 and we immediately
obtain that 𝑎5 = 𝑎7. e resulting formula is then wrien as

𝑃 (𝑥3 ∣ 𝑥1, 𝑥5) = exp (𝑎3𝑥3 + 𝑎5𝑥3 (𝑥1 + 𝑥5) + 𝑎8𝑥1𝑥3𝑥5)/𝑍.
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Due to the symmetry 𝑃(𝒙𝑉 ) = 𝑃 (−𝒙𝑉 ), only terms that are even in
components of𝒙𝑉 may have non-zero coefficients, requiring 𝑎3 = 𝑎8 = 0.
erefore, the conditional probability of 𝑥3 is wrien as

𝑃(𝑥3 ∣ 𝑥1, 𝑥5) = exp (𝜇1𝑥3 (𝑥1 + 𝑥5) )/𝑍,

where 𝜇1 was substituted for 𝑎5. e complete marginal probability
𝑃(𝒙𝑉1

) of Equation . can be deduced from the conditional probabili-
ties of individual spins.
Unfortunately, in case of models of interest computing the marginal is

impossible due to the complicated nature of the probability distribution
and the size of the space to be integrated over. Instead, approximate meth-
ods must be used. In anticipation of the more advanced method described
in later chapters, we describe a variant of the method of Chorin ()
applied to the two-dimensional Ising model in Seion ..

... Sampling

e choice of variables that were to be marginalized was diated by the
goal of using the marginal probability densities for efficient sampling. In-
deed, as Example . shows, the original probability 𝑃(𝒙𝑉 ) can be rewrit-
ten in its acyclic form. Following the nomenclature of that example, the
probability 𝑃 (𝒙𝑉 ) may be wrien as

𝑃(𝒙𝑉 ) = 𝑃 (𝑥1) × 𝑃(𝑥5 ∣ 𝑥1)
× 𝑃(𝑥3 ∣ 𝑥1, 𝑥5) × 𝑃(𝑥7 ∣ 𝑥1, 𝑥5)
× 𝑃 (𝑥2 ∣ 𝑥1, 𝑥3) × 𝑃(𝑥4 ∣ 𝑥3, 𝑥5)
× 𝑃 (𝑥6 ∣ 𝑥5, 𝑥7) × 𝑃 (𝑥8 ∣ 𝑥1, 𝑥7).

e striking feature is that the original distribution required determining
values of all the variables at once due to cyclical dependencies, yet the
acyclic form does not: a value for 𝑥1 can be determined direly by sam-
pling from its marginal distribution, 𝑥1 ∼ 𝑃(𝑥1). e remaining spins
are then sampled frommarginal probabilities conditional on the variables
that have already been determined. In graphical terms, the graphs of the
two representations of 𝑃(𝒙𝑉 ) are different: the original is a circular chain,
while the acyclic representation is a Direed Acyclic Graph (DAG). Visu-
alization of these two graphs for a 32-spin Ising model is shown on Figure
..
EveryDireedAcyclic Graph (DAG) induces a partial order on the nodes

of the graph, known as topological order: for every two nodes 𝑢, 𝑣 ∈ 𝑉
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(a)

(b)

Figure .: Graphs of the (a) original graphical model and (b) its acyclic form.

we have 𝑢 ≤ 𝑣 if there exists a direed path from 𝑢 to 𝑣. Nodes 𝑢, 𝑣 for
which a direed path either from 𝑢 to 𝑣 or from 𝑣 to 𝑢, but not both,
exist are called comparable, because one can write either 𝑢 ≤ 𝑣 or 𝑢 ≥ 𝑣;
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otherwise, the nodes are incomparable. Sampling can be accomplished by
choosing values for variables in the order diated by the partial order.
Following Example ., the partial order is

𝑥1, 𝑥5, 𝑥3, 𝑥7, 𝑥2, 𝑥4, 𝑥6, 𝑥8,

where the underlined parts of the order are composed of incomparable
variables. e incomparability of these variables, e.g. 𝑥3 and 𝑥7, arises
due to the fa that they are conditionally independent of each other;
therefore, given that the variables preceding them in the ordering, i.e. 𝑥1
and 𝑥5, have been sampled, the variables 𝑥3 and 𝑥7 may be sampled in an
arbitrary order. is situation arises because the faorization

𝑃 (𝑥3, 𝑥7 ∣ 𝑥1, 𝑥5) = 𝑃(𝑥3 ∣ 𝑥1, 𝑥5) × 𝑃 (𝑥7 ∣ 𝑥1, 𝑥5)

implies that the values for 𝑥3 and 𝑥7 can be determined independently
of each other and in arbitrary order. As we will see in later chapters,
this independence is a crucial part of the proposed method and decisive
for its efficiency: the acyclic form of the probability distribution turns
the simultaneous sampling of a large number of random variables into a
sequential sampling of individual variables.

.     

e two-dimensional Ising model presents a bigger challenge than
the one-dimensional case because exa renormalization cannot be
performed. is statement is frequently mentioned while discussing
Kadanoff renormalization, but should be quantified: exa renormal-
ization of the two- and three-dimensional Ising model changes the
form of its dependency graph, which becomes increasingly dense.
e renormalized probability distributions are described by a rapidly
increasing number of interaions and finding the required coupling
strengths becomes analytically intraable. Computationally, though, it
is possible to perform renormalization approximately or even exaly in
certain cases.
In the following we will describe a modified version of the approximate

algorithm of Chorin () as applied to the two-dimensional Ising model.
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Algorithm . Coarsening procedure for a two-dimensional Cartesian
laice graph.

e algorithm may be applied to arbitrary graphs as long as an ap-
propriate metric 𝜌(𝑢, 𝑣) is supplied. For example, one may define the
distance between two nodes to be the length of the shortest path in the
graph. However, the natural choice of a metric should be used whenever
possible.
procedure GCCD(𝐺𝑖 = (𝑉𝑖, 𝐸𝑖))

𝑈𝐼𝑆 ← MISGK(𝐺𝑖)
𝑉𝑖+1 ← 𝑉𝑖 \ 𝑈𝐼𝑆
𝐸𝑖+1 ← ∅
for all 𝑢 ∈ 𝑉𝑖+1 do

𝑑 ← min
𝑢≠𝑣

𝜌(𝑢, 𝑣)
for all 𝑣 ∈ 𝑉𝑖+1 s.t. 𝜌(𝑢, 𝑣) = 𝑞 do

𝐸𝑖+1 ← 𝐸𝑖+1 ⋃ (𝑢, 𝑣)
end for

end for
end procedure

.. Coarsening

We begin with the double-periodic Cartesian laice 𝐺0 = 𝐺 of size 𝑛×𝑛,
restriing our consideration to cases where 𝑛 is a power of two. Exa
renormalization of such a graph, showed on Figure ., requires that when
a node 𝑢 ∈ 𝑉 is removed from the graph all its neighbors 𝑣 ∈ 𝑁(𝑢)
be conneed; unfortunately, in two and three dimensions this process
rapidly produces a clique, a graph where every node is conneed to every
other node. At this point, exa computation of the marginal probability
distribution becomes impossible for problems of interest.
Instead, we forgo exa coarsening and from the beginning assume

that the dependency graphs and marginal probability distributions are ap-
proximate. In the crudest approximation, we will assume that the graphs
𝐺𝑖 keep their struure and are all Cartesian laices. Given a graph
𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), we constru 𝐺𝑖+1 = (𝑉𝑖+1, 𝐸𝑖+1) by removing nodes of
𝑉𝑖 in a checkerboard-paern and conneing the remaining nodes to their
four nearest neighbors, thus preserving the laice struure. Algorithm
. describes the procedure in detail. We initially find an independent set
𝑈𝐼𝑆 ⊂ 𝑉𝑖 that should be removed from 𝑉𝑖, therefore, 𝑉𝑖+1 becomes the
vertex set separating the nodes of 𝑈𝐼𝑆. Since 𝐺𝑖 was a Cartesian laice,
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(a) (b) (c) (d)

(e) () (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure .: Exa coarsening of a 8 × 8 Cartesian laice. At each coarsening the
algorithm removes a Minimal Independent Set from the set of nodes.

both the independent set and the vertex cover form a checkerboard pat-
tern. e coarse edge set 𝐸𝑖+1 is construed by conneing every node
𝑢 ∈ 𝑉𝑖+1 to the four closest neighbors among other nodes in 𝑉𝑖+1. An
example with a 8 × 8 initial laice is shown on Figure ..
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(a) (b)

(c) (d)

(e) ()

Figure .: Approximate coarsening of a 8 × 8 Cartesian laice computed using
Algorithm . with 𝑝 = 2 metric.

... Approximate marginalization

Given the coarsened graphs

𝐺0 = (𝑉0, 𝐸0), 𝐺1 = (𝑉1, 𝐸1), … , 𝐺𝑚 = (𝑉𝑚, 𝐸𝑚),

for 𝑖 = 0, 1, … , 𝑚 the set of nodes 𝑉𝑖 is a subset of the original set of
nodes 𝑉 = 𝑉0. Defining 𝒙𝑉 \𝑉𝑖

as the set of all variables that belong to
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the original set of variables 𝑉 but are not present in the coarse set 𝑉𝑖, our
aim is to obtain for each graph the marginal probability density 𝑃(𝒙𝑉𝑖

)
defined through

𝑃(𝒙𝑉𝑖
) = ∫ 𝑃(𝒙𝑉𝑖−1

)𝑑𝒙𝑉𝑖−1\𝑉𝑖
= ∫ 𝑃(𝒙𝑉 )𝑑𝒙𝑉 \𝑉𝑖

.

As already remarked, for any praical size it is impossible to compute
the marginal probabilities direly from the definition, therefore we will
use the fast marginalization algorithm of Chorin (, ) and Okunev
().
fast marginalization is based on the observation that for each 𝑢 ∈ 𝑉𝑖

the logarithmic derivative

𝜕 ln 𝑃(𝒙𝑉𝑖
)

𝜕𝑥𝑢
= ∫

𝜕 ln 𝑃(𝒙𝑉𝑖
)

𝜕𝑥𝑢
𝑃(𝒙𝑉 )𝑑𝒙𝑉 \𝑉𝑖/∫ 𝑃(𝒙𝑉 )𝑑𝒙𝑉 \𝑉𝑖

= 𝔼 [𝜕 ln 𝑃(𝒙𝑉 )
𝜕𝑥𝑢

∣ 𝒙𝑉𝑖
]

is equal to the expeed value of the logarithmic derivative of the original
probability distribution, a quantity that can be readily computed through
Monte Carlo simulation. We shall quietly assume that it is possible to dif-
ferentiate a funion of discrete variables, leaving the associated technical
difficulty for later.
Assume that for each 𝑉𝑖 we have 𝑃(𝒙𝑉𝑖

) > 0, that is the original and
marginal probability distributions are strily positive. en

𝑃(𝒙𝑉𝑖
) = exp (𝑊(𝒙𝑉𝑖

)) /𝑍𝑉𝑖

and the logarithmic derivatives become simply

𝜕 ln 𝑃(𝒙𝑉𝑖
)

𝜕𝑥𝑢
=

𝜕𝑊(𝒙𝑉𝑖
)

𝜕𝑥𝑢
and 𝜕 ln 𝑃 (𝒙𝑉 )

𝜕𝑥𝑢
= 𝜕𝑊(𝒙𝑉 )

𝜕𝑥𝑢
.

For each 𝑢 ∈ 𝑉𝑖 we define a funion ℱ(𝒙𝑉𝑖
) through

ℱ(𝒙𝑉𝑖
) =

𝜕 ln 𝑃(𝒙𝑉𝑖
)

𝜕𝑥𝑢
=

𝜕𝑊(𝒙𝑉𝑖
)

𝜕𝑥𝑢
= 𝔼 [𝜕𝑊(𝒙𝑉 )

𝜕𝑥𝑢
∣ 𝒙𝑉𝑖

] .

is funion can be subsequently approximated by projeing it onto a
subspace spanned by a basis 𝜙 consistent with the graph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖),
that is if 𝜙 contains only funions of variables 𝑥𝑢 and 𝒙𝑁(𝑢) that corre-
spond to cliques of the graph 𝐺𝑖. e definition of consistency of a basis
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will be further discussed in Seion ..., because symmetries of the lat-
tice and the translation invariance put further constraints on the allowed
basis funions.
Write the basis abstraly as

𝜙 = {𝜙1, 𝜙2, … , 𝜙𝐾}

so that an approximation ̂ℱ(𝒙𝑉𝑖
) of ℱ(𝒙𝑉𝑖

) within the space spanned by
funions of 𝜙 becomes

̂ℱ(𝒙𝑉𝑖
) =

𝐾
∑
𝑖=1

𝑐𝑖𝜙𝑖(𝑥𝑢, 𝒙𝑁(𝑢)).

e coefficients of the approximation are obtained through linear projec-
tion in an inner produ space. We associate with the space spanned by
the basis 𝜙 the inner produ

⟨𝑓, 𝑔⟩ = ∫ 𝑓(𝒙𝑉𝑖
)𝑔(𝒙𝑉𝑖

)𝑃 (𝒙𝑉𝑖
)𝑑𝒙𝑉𝑖

= 𝔼 [𝑓𝑔 ∣ 𝑥𝑉𝑖
] ,

turning the space into an inner produ space. Finding the set of coeffi-
cients 𝒄 that is optimal with respe to the above inner produ involves
solving a least squares linear problem 𝐴𝒄 = 𝒃 showed in detail in Figure
.. e elements of matrix 𝐴, known as the Gram matrix, and veor 𝒃
are

𝐴𝑘𝑙 = ⟨𝜙𝑘, 𝜙𝑙⟩ and 𝑏𝑘 = ⟨𝜙𝑘, ℱ⟩.

e marginal probability density 𝑃 (𝒙𝑉𝑖
) appearing in the inner produ

is not known. However, the special form of the inner produ allows these
equations to be wrien in terms of the expeed value with respe to the
original probability density 𝑃(𝒙𝑉 ) as

𝐴𝑘𝑙 = ⟨𝜙𝑘, 𝜙𝑙⟩ = ∫ 𝜙𝑘(𝒙𝑉𝑖
)𝜙𝑙(𝒙𝑉𝑖

)𝑃 (𝒙𝑉𝑖
)𝑑𝒙𝑉𝑖

= ∫ 𝜙𝑘(𝒙𝑉𝑖
) (∫ 𝑃(𝒙𝑉 )𝑑𝒙𝑉 \𝑉𝑖

) 𝑑𝒙𝑉𝑖

= ∫ 𝜙𝑘(𝒙𝑉𝑖
)𝜙𝑙(𝒙𝑉𝑖

)𝑃 (𝒙𝑉 )𝑑𝒙𝑉

= 𝔼[𝜙𝑘𝜙𝑙] (.)
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and

𝑏𝑘 = ⟨𝜙𝑘, ℱ⟩ = ∫ 𝜙𝑘(𝒙𝑉𝑖
)ℱ(𝒙𝑉𝑖

)𝑃 (𝒙𝑉𝑖
)𝑑𝒙𝑉𝑖

= ∫ 𝜙𝑘(𝒙𝑉𝑖
)

× (∫ 𝜕𝑊(𝒙𝑉 )
𝜕𝑥𝑢

𝑃(𝒙𝑉 )𝑑𝒙𝑉 \𝑉𝑖
/ ∫ 𝑃(𝒙𝑉 )𝑑𝒙𝑉 \𝑉𝑖

)

× (∫ 𝑃(𝒙𝑉 )𝑑𝒙𝑉 \𝑉𝑖
) 𝑑𝒙𝑉𝑖

= ∫ 𝜙𝑘(𝒙𝑉𝑖
) (∫ 𝜕𝑊(𝒙𝑉 )

𝜕𝑥𝑢
𝑃(𝒙𝑉 )𝑑𝒙𝑉 \𝑉𝑖

) 𝑑𝒙𝑉𝑖

= ∫ 𝜙𝑘(𝒙𝑉𝑖
)𝜕𝑊(𝒙𝑉 )

𝜕𝑥𝑢
𝑃(𝒙𝑉 )𝑑𝒙𝑉

= 𝔼 [𝜙𝑘
𝜕𝑊(𝒙𝑉 )

𝜕𝑥𝑢
] . (.)

e variable 𝑥𝑢 was implicitly made continuous by taking the derivative
𝜕𝑊/𝜕𝑥𝑢 in the definition of

ℱ(𝒙𝑉𝑖
) = 𝜕𝑊

𝜕𝑥𝑢
.

erefore, the funion ℱ(𝒙𝑉𝑖
) is continuous in 𝑥𝑢 and the basis 𝜙 onto

which we proje ℱ(𝒙𝑉𝑖
) must contain continuous funions of 𝑥𝑢 in

addition to discrete funions of 𝒙𝑁(𝑢). Our choice for the basis 𝜙 is the
outer produ of a polynomial basis 𝜙𝑐 of funions of the continuous
variable 𝑥𝑢 and a polynomial basis𝜙𝑑 of funions of the discrete variables
𝒙𝑁(𝑢). e basis 𝜙𝑐 is simply

𝜙𝑐 = {1, 𝑥𝑢}

due to the fa that the expeation value 𝔼[ ⋅ ] samples only two values of
𝑥𝑢, thus allowing two degrees of freedom. However, the basis 𝜙𝑐 could be
extended to higher powers of 𝑥𝑢 as shown in later chapters. e basis 𝜙𝑑
on the other hand is restried by constraints and the only possible choice
is

𝜙𝑑 = {1, ∑
𝑁(𝑢)

𝑥𝑣},
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due to (i) laice symmetries, (ii) shi invariance and (iii) consistency with
independence graph 𝐺𝑖, which will be discussed in detail in Seion ...
erefore, the example basis takes the form

𝜙 = 𝜙𝑐 × 𝜙𝑑

= {1, ∑
𝑁(𝑢)

𝑥𝑣, 𝑥𝑢, 𝑥𝑢 ∑
𝑁(𝑢)

𝑥𝑣}

and the full linear system satisfied by the optimal expansion coefficients
is shown on Figure .. e projeion is performed once for each graph
𝐺𝑖 = (𝑉𝑖, 𝐸𝑖); however, the projeion matrices for all laices are typi-
cally accumulated simultaneously during a simulation. Additionally, due
to shi invariance of the Ising model it is possible to accumulate the pro-
jeion matrices by averaging over all spins in 𝒙𝑉𝑖

, as explained in Algo-
rithm ..e expeation values required by Equation . can be obtained
by sampling the original probability distribution 𝑃(𝒙𝑉 ).

... Probability reconstruion

e coefficients 𝒄𝑖 obtained with Algorithm . describe the best approxi-
mation of the logarithmic derivative of 𝑃(𝒙𝑉𝑖

), 𝜕𝑊/𝜕𝑥𝑢 with respe to
the norm induced by the inner produ used. e knowledge of the loga-
rithmic partial derivatives of 𝑃(𝒙𝑉𝑖

) uniquely determines the probability
𝑃(𝒙𝑉𝑖

), which we will now show by demonstrating the reconstruion of
the probability 𝑃(𝒙𝑉𝑖

) from the logarithmic partial derivatives.
To determine the probability distribution 𝑃(𝒙𝑉𝑖

) uniquely one only
needs to know a funion proportional to it; that is, knowing a funion

̄𝑃 (𝒙𝑉𝑖
) = 𝐶 × 𝑃(𝒙𝑉𝑖

) for some constant 𝐶 > 0 allows one to compute

̄𝑃 (𝒙𝑉𝑖
)

∫ ̄𝑃 (𝒙𝑉𝑖
)𝑑𝒙𝑉𝑖

=
𝑃(𝒙𝑉𝑖

)

∫ 𝑃(𝒙𝑉𝑖
)𝑑𝒙𝑉𝑖

= 𝑃 (𝒙𝑉𝑖
),

where the constant and integral disappear since

∫ 𝑃 (𝒙𝑉𝑖
)𝑑𝒙𝑉𝑖

= 1,

by definition. erefore, the probability distribution 𝑃(𝒙𝑉𝑖
) must be

defined up to a multiplicative constant, or equivalently, its logarithm
𝑊(𝒙𝑉𝑖

) must be known up to an additive constant. Our approach to defin-
ing 𝑃(𝒙𝑉𝑖

) will be to constru a funion ̄𝑃 (𝒙𝑉𝑖
) proportional to 𝑃(𝒙𝑉𝑖

).
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Algorithm . Algorithm for computing expansion coefficients 𝒄𝑖 using
a weighted sampling scheme 
procedure (𝑚, 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), 𝜙𝑖)

for 𝑖 = 1, 2, … , 𝑚 do
𝐴𝑖 ← (|𝜙𝑖|, |𝜙𝑖|)
𝒃𝑖 ← (|𝜙𝑖|)

end for

for all samples do
𝒙𝑉 , 𝑤 ← 
for 𝑖 = 1, 2, … , 𝑚 do

for all 𝑢 ∈ 𝑉𝑖 do
𝑓 ← 𝜕𝑊/𝜕𝑥𝑢
𝒗 ← (𝜙𝑖, 𝑢, 𝒙𝑉𝑖

)
𝒃𝑖 ← 𝒃𝑖 + 𝑤𝑓𝒗
𝐴𝑖 ← 𝐴𝑖 + 𝑤𝒗𝒗T

end for
end for

end for

for 𝑖 = 1, 2, … , 𝑚 do
𝒄𝑖 ← 𝐴−1

𝑖 𝒃𝑖
end for

end procedure

We will choose a fixed state 𝒚𝑉𝑖
such that 𝑃(𝒚𝑉𝑖

) > 0. en, we will pro-
duce a funion ̄𝑃 (𝒙𝑉𝑖

, 𝒚𝑉𝑖
) defined as

̄𝑃 (𝒙𝑉𝑖
, 𝒚𝑉𝑖

) =
𝑃(𝒙𝑉𝑖

)
𝑃 (𝒚𝑉𝑖

) .

For constant 𝒚𝑉𝑖
we have

𝑃(𝒚𝑉𝑖
) × ̄𝑃 (𝒙𝑉𝑖

, 𝒚𝑉𝑖
) = 𝑃(𝒙𝑉𝑖

),

thus ̄𝑃 (𝒙𝑉𝑖
, 𝒚𝑉𝑖

) is proportional to 𝑃(𝒙𝑉𝑖
), as required. We will first con-

stru ̄𝑃 (𝒙𝑉𝑖
, 𝒚𝑉𝑖

) for two states differing in only one component and
then generalize it to two arbitrary states 𝒙𝑉𝑖

and 𝒚𝑉𝑖
, completing the re-

construion process.
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e probability of every state is specified uniquely given a procedure
for computing the ratio ̄𝑃 (𝒙𝑉𝑖

, 𝒚𝑉𝑖
) of probabilities of two states 𝒙𝑉𝑖

and
𝒚𝑉𝑖

,

̄𝑃 (𝒙𝑉𝑖
, 𝒚𝑉𝑖

) =
𝑃(𝒙𝑉𝑖

)
𝑃 (𝒚𝑉𝑖

) .

Because probabilities of different states can vary greatly in magnitude,
we would be beer off to compute the logarithm of ̄𝑃 (𝒙𝑉𝑖

, 𝒚𝑉𝑖
) instead,

obtaining

ln ̄𝑃 (𝒙𝑉𝑖
, 𝒚𝑉𝑖

) = ln (
𝑃(𝒙𝑉𝑖

)
𝑃 (𝒚𝑉𝑖

)) = 𝑊(𝒙𝑉𝑖
) − 𝑊(𝒚𝑉𝑖

).

Consider for a moment the simpler case of 𝒙𝑉𝑖
and 𝒚𝑉𝑖

differing by only
one component 𝑢 ∈ 𝑉𝑖, i.e., for any 𝑣 ∈ 𝑉𝑖 such that 𝑣 ≠ 𝑢 the equality
𝑥𝑣 = 𝑦𝑣 holds. In this simple case we have e notation 𝜕𝑊

𝜕𝑥𝑢
∣
𝑡

implies that we take the
derivative of 𝑊(𝒙𝑉𝑖 )
with respe to 𝑥𝑢 and
then evaluate it at
𝑥𝑢 = 𝑡, renaming it so to
avoid confusion with the
value 𝑥𝑢 appearing in the
integration limit.

ln ̄𝑃 (𝒙𝑉𝑖
, 𝒚𝑉𝑖

) = 𝑊(𝒙𝑉𝑖
) − 𝑊(𝒚𝑉𝑖

)

= ∫
𝑥𝑢

𝑦𝑢

𝜕𝑊
𝜕𝑥𝑢

∣
𝑡
𝑑𝑡

= ∫
𝑥𝑢

𝑦𝑢

𝐾
∑
𝑗=1

𝑐𝑖𝑗𝜙𝑗 (𝑡, 𝒙𝑁(𝑢)) 𝑑𝑡

=
𝐾

∑
𝑗=1

𝑐𝑖𝑗 ∫
𝑥𝑢

𝑦𝑢

𝜙𝑗 (𝑡, 𝒙𝑁(𝑢)) 𝑑𝑡,

a quantity known given the coefficients 𝒄𝑖.
e general problem of computing ln ̄𝑃 (𝒙𝑉𝑖

, 𝒚𝑉𝑖
) for arbitrary veors

𝒙𝑉𝑖
and 𝒚𝑉𝑖

can be dealt with using the single-component version. Let𝒙𝑉𝑖
and 𝒚𝑉𝑖

differ in multiple components. Constru a path of 𝑘 + 1 states

{𝒛0, 𝒛1, … , 𝒛𝑘−1, 𝒛𝑘}

such that 𝒛0 = 𝒚𝑉𝑖
, 𝒛𝑘 = 𝒙𝑉𝑖

and any two consecutive veors 𝒛𝑗 and 𝒛𝑗+1
differ by only one component. Additionally, we require that 𝑃(𝒛𝑗) > 0
for 0 ≤ 𝑗 ≤ 𝑘, to ensure that the logarithm is finite. en, we may write

ln ̄𝑃 (𝒙𝑉𝑖
, 𝒚𝑉𝑖

) = ln ̄𝑃 (𝒛0, 𝒛𝑘) =
𝑘−1
∑
𝑗=0

ln ̄𝑃 (𝒛𝑗, 𝒛𝑗+1),
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essentially adding up the logarithmic quotients along the path.e case of
strily positive probability, i.e. 𝑃(𝒙𝑉𝑖

) > 0, allows any path between 𝒙𝑉𝑖
and 𝒚𝑉𝑖

that satisfies the single-component differece constraint, as the path
will automatically satisfy the positivity constraint. In particular, the path
construed by changing each differing component exaly once satisfies
these constraints and is used by the Algorithm ..
e probability of a state 𝒙𝑉𝑖

is then defined through

𝑃(𝒙𝑉𝑖
) = 𝑃(𝒚𝑉𝑖

) × ̄𝑃 (𝒙𝑉𝑖
, 𝒚𝑉𝑖

),

with ̄𝑃 (𝒙𝑉𝑖
, 𝒚𝑉𝑖

) computed as above by following a path of states con-
neing 𝒙𝑉𝑖

with 𝒚𝑉𝑖
. e probability of the fixed state 𝒚𝑉𝑖

as here as a
normalization constant, ensuring 𝑃 (𝒙𝑉𝑖

) is properly normalized. While
𝑃(𝒚𝑉𝑖

) may be computed through

𝑃(𝒚𝑉𝑖
) = 1

∫ ̄𝑃 (𝒙𝑉𝑖
, 𝒚𝑉𝑖

)𝑑𝒙𝑉𝑖

,

in most aual computations the knowledge of the normalization constant
is not necessary.

.. Sampling

In order to discuss the sampling procedure it is important to describe the
independence struure of the graphs. As we have seen in prior seions,
the graphs were construed so that for any 𝑢, 𝑣 ∈ 𝑉𝑖 \ 𝑉𝑖+1 the variables
𝑥𝑢 and 𝑥𝑣 are conditionally independent given the variables in 𝒙𝑉𝑖+1

, writ-
ten

𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣ 𝒙𝑉𝑖+1
,

with the conditional independence being with respe to the probability
𝑃(𝒙𝑉𝑖

). at is, assuming that the variables 𝒙𝑉𝑖
are distributed according

to 𝑃(𝒙𝑉𝑖
), the variables 𝑥𝑢 and 𝑥𝑣 for 𝑢, 𝑣 ∈ 𝑉𝑖 \ 𝑉𝑖+1 are conditionally

independent given 𝒙𝑉𝑖+1
. erefore, knowing the values of the variables

𝒙𝑉𝑖+1
allows to fill-in the remaining variables 𝒙𝑉𝑖\𝑉𝑖+1

individually as they
are independent of each other.
e sampling algorithm proceeds as follows. e top graph 𝐺𝑚 =

(𝑉𝑚, 𝐸𝑚) with probability distribution 𝑃(𝒙𝑉𝑚
) has to be sampled using
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Algorithm .Algorithm for computing the logarithmic ratio of marginal
probability densities for two states 𝒙𝑉 and 𝒚𝑉 .
function (𝒙𝑉 , 𝒚𝑉 , 𝑉 , 𝒄, 𝝓)

𝒛𝑉 ← 𝑦𝑉
𝑊 ← 0
for all 𝑢 ∈ 𝑉 do

if 𝑧𝑢 ≠ 𝑦𝑢 then
Δ𝑊 ← (𝑢, 𝒛, 𝒄, 𝝓)
if 𝑧𝑢 = −1 then

𝑊 ← 𝑊 + Δ𝑊
else

𝑊 ← 𝑊 − Δ𝑊
end if
𝑧𝑢 ← 𝑦𝑢

end if
end for
return 𝑊

end function

function (𝑢 ∈ 𝑉 , 𝒛, 𝒄, 𝝓)

return
𝑚

∑
𝑗=1

𝑐𝑗 ∫
1

−1
𝜙𝑗 (𝑧𝑢, 𝒛𝑁(𝑢)) 𝑑𝑧𝑢

end function

some alternative algorithm: Markov Chain Monte Carlo or even dire
sampling. us, we obtain a sample

𝒙𝑉𝑚
∼ 𝑃(𝒙𝑉𝑚

)

and begin sampling finer laices given values of the variables on the im-
mediately coarser laice. Assume 𝒙𝑉𝑖+1

has been successfully sampled
and we wish to sample the remaining variables on the immediately finer
laice 𝑉𝑖, i.e., sample the variables in 𝒙𝑉𝑖\𝑉𝑖+1

. We obtain

𝑃(𝒙𝑉𝑖\𝑉𝑖+1
∣ 𝒙𝑉𝑖+1

) = ∏
𝑢∈𝑉𝑖\𝑉𝑖+1

𝑃 (𝑥𝑢 ∣ 𝒙𝑉𝑖+1
)

= ∏
𝑢∈𝑉𝑖\𝑉𝑖+1

𝑃 (𝑥𝑢 ∣ 𝒙𝑁(𝑢))

due to conditional independence. By construion, 𝑁(𝑢) ⊂ 𝑉𝑖+1 and the
conditional probability 𝑃(𝑥𝑢 ∣ 𝑥𝑁(𝑢)) depends only on one unknown
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value, 𝑥𝑢, making it straightforward to sample. Defining Δ𝑊𝑢 to be the
logarithmic quotient at node 𝑢 ∈ 𝑉𝑖 \ 𝑉𝑖+1 (cf. Algorithm .)

Δ𝑊𝑢 =
𝑃(𝑥𝑢 = 1 ∣ 𝒙𝑁(𝑢))

𝑃 (𝑥𝑢 = −1 ∣ 𝒙𝑁(𝑢))

=
𝐾

∑
𝑗=1

𝑐𝑖𝑗 ∫
1

−1
𝜙𝑗 (𝑥𝑢, 𝒙𝑁(𝑢)) 𝑑𝑥𝑢

we can further write

𝑃(𝑥𝑢 ∣ 𝒙𝑉𝑖+1
) = 𝑃(𝑥𝑢 ∣ 𝒙𝑁(𝑢))

=
⎧{
⎨{⎩

e∆𝑊𝑢

e∆𝑊𝑢 + e−∆𝑊𝑢
if 𝑥𝑢 = 1,

e−∆𝑊𝑢

e∆𝑊𝑢 + e−∆𝑊𝑢
if 𝑥𝑢 = −1.

(.)

us, sampling the variable 𝑥𝑢 involves choosing at random between
𝑥𝑢 = −1 and 𝑥𝑢 = 1 with probabilities

e−∆𝑊𝑢

e∆𝑊𝑢 + e−∆𝑊𝑢
and e∆𝑊𝑢

e∆𝑊𝑢 + e−∆𝑊𝑢
,

respeively. Sampling all of the variables in 𝒙𝑉𝑖\𝑉𝑖+1
completes the miss-

ing variables, making all of the variables in 𝒙𝑉𝑖
known. e top-down

approach ends when all of the original variables in 𝒙𝑉 = 𝒙𝑉0
are sam-

pled.
e above sampling algorithm defines a probability distribution

𝑃≈(𝒙𝑉 ) = ̂𝑃 (𝒙𝑉𝑚
) × ̂𝑃 (𝒙𝑉𝑚−1\𝑉𝑚

∣ 𝒙𝑉𝑚
) × … ×

̂𝑃 (𝒙𝑉𝑖−1\𝑉𝑖
∣ 𝒙𝑉𝑖

) × … × 𝑃 (𝒙𝑉0
∣ 𝒙𝑉0\𝑉1

), (.)

which we will refer to as the trial probability distribution in the impor-
tance sampling framework. In the discussion that follows, we denote with
a hat all approximate quantities; that is, ̂𝐴 is always an approximation of
𝐴. Were the conditional probabilities exa, 𝑃≈(𝒙𝑉 ) would be equal to
𝑃(𝒙𝑉 ) and the sampling algorithm would be complete, as was the case
in one dimension. However, due to the necessity of using approximate
marginal distributions, the conditional probabilities are also approximate
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Algorithm . Algorithm for generating a weighted sample 𝒙𝑉 ∼ 𝑃(𝒙𝑉 )
along with logarithm of its weight ln 𝑤. e conditional probability
𝑃(𝑥𝑢 ∣ 𝒙𝑁(𝑢)) is defined through Equation ..
function (𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), 𝒄𝑖, 𝝓𝑖)

𝒙𝑉𝑚
∼ 𝑃(𝒙𝑉𝑚

)
ln 𝑤 ← ln ̂𝑃 (𝒙𝑉𝑚

)
for 𝑖 = 𝑚 − 1 down to 0 do

for all 𝑢 ∈ 𝑉𝑖 \ 𝑉𝑖+1 do
𝑥𝑢 ∼ ̂𝑃 (𝑥𝑢 ∣ 𝒙𝑁(𝑢))
ln 𝑤 ← ln 𝑤 + ln ̂𝑃 (𝑥𝑢 ∣ 𝒙𝑁(𝑢))

end for
end for
ln 𝑤 ← ln 𝑃(𝒙𝑉 ) − ln 𝑤
return ln 𝑤, 𝒙𝑉

end function

and in general 𝑃≈(𝒙𝑉 ) ≠ 𝑃(𝒙𝑉 ). To corre for the approximation, we
aach a weight

𝑤 = 𝑃(𝒙𝑉 )
𝑃≈(𝒙𝑉 )

to each generated sample 𝒙𝑉 . erefore, the expeed value of a funion
𝑓(𝒙𝑉 ) is wrien as

𝔼[𝑓(𝒙𝑉 )] =

𝑁
∑
𝑖=1

𝑤𝑖𝑓(𝒙𝑖)

𝑁
∑
𝑖=1

𝑤𝑖

,

a minimal change to the standard Monte Carlo expression.

.. Iterative improvement

e algorithm for sampling the laice ladder requires prior knowledge of
the approximate expansion coefficients 𝒄𝑖 for each laice. While the fast
marginalization algorithm used for computing the expansion coefficients
can utilize any sampling algorithm, the use of an algorithm different than
the one described above defeats its purpose. Instead, following (Chorin,





    

) we make the sampling algorithm iteratively improve itself through
a fixed point iteration.
Consider the set of expansion coefficients for each laice, 𝒄𝑖. We be-

gin by choosing a reasonable initial guess for the values of all expansion
coefficients for all the laices. e known values are used to compute ex-
peed values required by the fast marginalization, producing an updated
set of coefficients. Assuming convergence, the process quickly leads to a
stable set of coefficients.
Due to the stochastic nature of the fixed point funion it is difficult to

perform a rigorous analysis of conditions leading to convergence of the it-
eration even for the simplest models. However, in praice it is observed
that the iteration converges in at most three iterations under most con-
ditions. e only failure was recorded for very strong couplings, a case
where the fast marginalization algorithm fails due to low variability in
observed states leading to singular projeion matrices.

.. Analysis

e two-dimensional Ising model brought important differences from the
one-dimensional case.e graph coarsening cannot be performed exaly,
marginal probabilities must be computed approximately using the fast
marginalization algorithm of Chorin (, ), and an iterative process
has to be used to determine the expansion coefficients in order to make
the overall scheme an effeive sampling algorithm.We analyze these new
elements below.

... Approximate graph coarsening

As it was the case in one-dimension, at each stage of the coarsening al-
gorithm a graph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) with random variables 𝒙𝑉𝑖

described by
marginal probability density 𝑃(𝒙𝑉𝑖

) are given. Importantly, the marginal
probability distribution is not known explicitly but only through its defi-
nition. e required output is a coarser graph 𝐺𝑖+1 = (𝑉𝑖+1, 𝐸𝑖+1) such
that 𝑉𝑖+1 ⊂ 𝑉𝑖 and for any 𝑢, 𝑣 ∈ 𝑉𝑖 \ 𝑉𝑖+1 the variables 𝑥𝑢 and 𝑥𝑣 are in-
dependent given 𝒙𝑉𝑖+1

. As before, the graph describes the independency
struure, translating the conditional independency into the requirement
that 𝑉𝑖+1 ⊂ 𝑉𝑖 be a vertex cover of the graph 𝐺𝑖.
However, because the marginal probability density 𝑃(𝒙𝑉𝑖

) is assumed
to be only an approximation of the true marginal, the graph 𝐺𝑖 is also
only approximate. As a result, the spins in 𝒙𝑉𝑖\𝑉𝑖+1

are not independent
of each other as assumed by the sampling Algorithm ..
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... fast marginalization

e fast marginalization algorithm is a necessary step for computing the
approximate marginal densities. While other methods exist for comput-
ing expansion coefficients, they are either applicable to a very limited
number of problems (Brandt and Ron, b) or do not aually compute
the marginal probabilities (Swendsen, b). erefore, at present there
is no other algorithm capable of performing the computation and it is
imperative to study it on its own.
fast marginalization computes the best approximation of the derivative

𝜕𝑊/𝜕𝑥𝑢 in the norm induced by the inner produ used. e particular
choice of the inner produ, namely

⟨𝑓, 𝑔⟩ = ∫ 𝑓(𝒙𝑉𝑖
)𝑔(𝒙𝑉𝑖

)𝑃 (𝒙𝑉𝑖
)𝑑𝒙𝑉𝑖

,

is a crucial step necessary to make the algorithm work. Comparing the
algorithm with the definition of marginalization (cf. Binney et al. ),
the sole difference is the presence of the weight 𝑃(𝒙𝑉𝑖

). As a result, the
inner produ does not aach equal importance to all the possible states,
reducing the pool of important (highweight) states down to amanageable
size.
e appropriate weight performs an additional funion. Inspeing the

Equations . and . shows that the weight can be used to remove the
unknown marginal probability 𝑃(𝒙𝑉𝑖

) from the inner produs through
careful algebraic manipulation. e result is a series of expeed values
with respe to the original, rather than marginal, probability distribu-
tion that can be computed effeively using the same set of samples (cf.
Equation .).
e use of a weighted inner produ has a negative side, however, espe-

cially important in the case of approximating the probability distribution.
e use of 𝑃(𝒙𝑉𝑖

) as weight skews the approximation toward states of
high probability. While difficult to show rigorously, in praice the high-
probability bias leads to incorre estimation of the ratios of probabilities
of high- and low-probability states. Due to the importance of the partic-
ular choice of weight, tackling this issue is difficult and will be discussed
in later chapters.
In principle, given a very large basis and unlimited samples, the fast

marginalization algorithmwould compute expansion coefficients as close
to their true values as desired. However, the fast marginalization algo-
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rithm as stated here and in Chorin () would not produce exa results
due to a technicality. e funion

ℱ(𝒙𝑉𝑖
) =

𝜕𝑊(𝒙𝑉𝑖
)

𝜕𝑥𝑢

is defined over a variable 𝑥𝑢, whichwas implicitlymade continuous. How-
ever, the algorithm samples that variable only at two points, 𝑥𝑢 = −1 or 1,
ignoring the behavior of ℱ(𝒙𝑉𝑖

) over the rest of the interval [−1, 1]. e
exa computation carried out in Appendix A can be used to see the exa
behavior of ℱ(𝒙𝑉𝑖

). Indeed, beginning with Equation A., we obtain

𝑊(𝒙𝑉𝑖
) = ln ( 2𝑛/2

𝑍(𝜇) ∏
𝐸𝑖

cosh [𝜇 (𝑥𝑢 + 𝑥𝑣)])

= 𝑛
2 ln 2 − ln 𝑍(𝜇) + ∑

𝐸𝑖

ln cosh [𝜇(𝑥𝑢 + 𝑥𝑣)]

where the produs and sums are over all edges (𝑢, 𝑣) ∈ 𝐸𝑖. erefore,
the derivative becomes

ℱ(𝒙𝑉𝑖
) =

𝜕𝑊(𝒙𝑉𝑖
)

𝜕𝑥𝑢
= 𝜇 ∑

𝑁(𝑢)
tanh [𝜇(𝑥𝑢 + 𝑥𝑣)],

a funion ploed on Figure ., which shows clearly that the funion
ℱ(𝒙𝑉𝑖

) is far from linear in 𝑥𝑢, which was the assumption used in con-
struing the basis 𝜙. Additionally, due to the weighted inner produ, the
linear approximation obtained by the fast marginalization algorithm will
tend to favor the areas of high probability: 𝑥𝑢 = 1 in the positive and
𝑥𝑢 = −1 in the negative case. While the addition of basis funions of
higher powers in 𝑥𝑢 would allow for a beer fit, it would require sam-
pling values of 𝑥𝑢 at more points than just the endpoints. e solution to
this and other problems will be discussed in the later chapters.

... Sampling

e sampling Algorithm . proposed by Chorin () is very straight-
forward thanks to the careful construion of the laice ladder during the
graph coarsening stage. While the computation of approximate marginal
probability densities moves boom-to-top, or from fine to coarse, the sam-
pling moves in the opposite direion, beginning with sampling the coars-
est laice and systematically filling up the finer laices. ere are two
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Figure .: Plot of the exa derivative 𝜕𝑊/𝜕𝑥𝑢 computed for the one-
dimensional Ising model. e curves represent dependence of the
derivative on the continuous variable 𝑥𝑢 for the three distinguish-
able combinations of the neighboring discrete variables: positive
∑𝑁(𝑢) 𝑥𝑣 > 0, mixed ∑𝑁(𝑢) 𝑥𝑣 = 0, and negative ∑𝑁(𝑢) 𝑥𝑣 < 0.

equally valid ways of looking at the sampling algorithm and I will briefly
describe both.
We begin with the more straightforward. As was shown in Equation

., the sample 𝒙𝑉 generated by the sampling process can be described
as coming from the probability distribution 𝑃≈(𝒙𝑉 ) defined through

𝑃≈(𝒙𝑉 ) = ̂𝑃 (𝒙𝑉𝑚
) × ̂𝑃 (𝒙𝑉𝑚−1\𝑉𝑚

∣ 𝒙𝑉𝑚
) × … ×

̂𝑃 (𝒙𝑉𝑖−1\𝑉𝑖
∣ 𝒙𝑉𝑖

) × … × 𝑃 (𝒙𝑉0
∣ 𝒙𝑉0\𝑉1

).

erefore, the set of approximate marginal probability densities simply
defines a trial proposal density, which one hopes approximates well the
target density 𝑃(𝒙𝑉 ). At the final stage, once the entire sample has been
seleed, the target probability 𝑃(𝒙𝑉 ) may be evaluated and the dis-
crepancy between the two correed by assigning the sample a weight
𝑤 = ̂𝑃 (𝒙𝑉 )/𝑃(𝒙𝑉 ). Assuming that the proposal density ̂𝑃 (𝒙𝑉 ) is at
least as broad as the target distribution, i.e., that 𝑃(𝒙𝑉 ) > 0 implies
𝑃≈(𝒙𝑉 ) > 0, the weights exaly corre for the mismatch between the
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two distributions. However, for reasons of efficiency one would hope that
the range of weights is small, as the error in the estimation of expeed
value grows with the range of weights.
However, the algorithm could also be analyzed in more detail. Assume

that 𝒙𝑉𝑖+1
has been sampled according to ̂𝑃 (𝒙𝑉𝑖+1

) and we wish to fill
out the remaining values in 𝒙𝑉𝑢

in such a way that the complete sample
𝒙𝑉𝑖

is distributed according to ̂𝑃 (𝒙𝑉𝑖
). Because the marginalization was

approximate, there is a mismatch between the marginal densities ̂𝑃 (𝒙𝑉𝑖
)

and ̂𝑃 (𝒙𝑉𝑖+1
) in that the laer is not an exa marginal of the former, but

only an approximate one.erefore, an error is accumulated not only due
to the mismatch between ̂𝑃 (𝒙𝑉 ) and 𝑃(𝒙𝑉 ), but also due to approxima-
tions at intermediate laices.
For the moment, assume that the probability ̂𝑃 (𝒙𝑉𝑖

) is exa, writing it
𝑃(𝒙𝑉𝑖

). Using Bayes’ rule, the exa conditional probability would be

𝑃(𝒙𝑉𝑖\𝑉𝑖+1
∣ 𝒙𝑉𝑖+1

) =
𝑃(𝒙𝑉𝑖

)
𝑃 (𝒙𝑉𝑖+1

) ,

however the examarginal 𝑃(𝒙𝑉𝑖+1
) is not known.erefore, the sample

𝒙𝑉𝑖
is generated from the probability distribution

𝒙𝑉𝑖
∼ ̂𝑃 (𝒙𝑉𝑖

) = 𝑃(𝒙𝑉𝑖\𝑉𝑖+1
∣ 𝒙𝑉𝑖+1

) ̂𝑃 (𝒙𝑉𝑖+1
).

Substituting for the conditional, we find that the sample was generated
from the probability

𝒙𝑉𝑖
∼ 𝑃 (𝒙𝑉𝑖

) ×
̂𝑃 (𝒙𝑉𝑖+1

)
𝑃 (𝒙𝑉𝑖+1

) ,

thus requiring a correion using weight

𝑤𝑖+1 =
𝑃(𝒙𝑉𝑖+1

)
̂𝑃 (𝒙𝑉𝑖+1

)

in order for the sample to be distributed according to 𝑃(𝒙𝑉𝑖
). Here,

𝑃(𝒙𝑉𝑖+1
) is the exa marginal (assuming the probability at level 𝑖 is ex-

a), while ̂𝑃 (𝒙𝑉𝑖+1
) is the approximate marginal; the weight 𝑤𝑖 simply

corres for this local mismatch between the consecutive laices. e fi-
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nal weight 𝑤 is then simply the produ of these local weights (cf. Seion
..,

𝑤 = 𝑤1 × 𝑤2 × … × 𝑤𝑚−1 × 𝑤𝑚 =
𝑚

∏
𝑖=1

𝑤𝑖.

ese weights can only be computed because the expression

𝑃(𝒙𝑉𝑖\𝑉𝑖+1
∣ 𝒙𝑉𝑖+1

) =
𝑃(𝒙𝑉𝑖

)
𝑃 (𝒙𝑉𝑖+1

)

can be computed; in fa, this conditional probability is given in closed
form as

𝑃 (𝒙𝑉𝑖\𝑉𝑖+1
∣ 𝒙𝑉𝑖+1

) = ∏
𝑉𝑖\𝑉𝑖+1

𝑃(𝑥𝑢 ∣ 𝒙𝑉𝑖+1
),

which rests on the fa that variables in 𝑉𝑖 \ 𝑉𝑖+1 are conditionally inde-
pendent given those in 𝑉𝑖+1.
e sampling process can thus be seen also as a series of small steps

between laices, where an error is commied at each level and the cor-
reions are accumulated as weights. is point of view is very helpful
as it shows how critical is the conditional independence assumption, but
also because it shows a way of reducing weights. Because the final weight
𝑤 is a produ of laice-to-laice weights, if it were possible to corre the
sample at an earlier stage, the final weight could be reduced.
In fa, this and other weight-reducing strategies are necessary to

achieve good results. Numerical experiments show that the range of
weights in the two-dimensional Isingmodel grows exponentially with the
number of variables in the model, i.e., at a rate of roughly 𝒪(e𝑘𝑛2), mak-
ing it virtually impossible to sample even modest laices of size 32 × 32
using the method of Chorin (). ese and other modifications will be
discussed in the subsequent chapter.
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In the previous chapter we saw how a ladder of marginal probability den-
sities may be used to efficiently sample from a given probability 𝑃(𝒙𝑉 ).
is was done in effe by sampling from the acyclic form of 𝑃(𝒙𝑉 ), writ-
ten as

𝑃(𝒙𝑉 ) = 𝑃(𝑥1)𝑃 (𝑥2 ∣ 𝑥1) … 𝑃 (𝑥|𝑉 | ∣ 𝑥1, 𝑥2, … , 𝑥|𝑉 |−1).

Even when this probability was only approximate, we found that we may
still use it as a trial density through importance sampling. In the present
chapter we will discuss the circumstances that led us earlier to coarsen
the Ising laice using the checkerboard coarsening paern and how this
method may be generalized to more complex situations.

.   

Suppose we split the variables 𝒙𝑉 into two subsets, 𝒙𝑈 and the remainder
𝑥𝑉 \𝑈 . Further assume that we know the values of 𝒙𝑈 , but may compute
the probability density 𝑃(𝒙𝑉 ) only up to a multiplicative constant; under
what circumstances can we sample the variables 𝑥𝑉 \𝑈 given the known
values 𝒙𝑈?
e prior chapter showed us that when variables of 𝑥𝑉 \𝑈 are condition-

ally independent of each other given 𝒙𝑈 wemay indeed do so.e reason
for this situation is rather surprising; let

𝑃(𝒙𝑉 ) = 𝐹(𝒙𝑉 )
𝑍𝑉

, where 𝑍𝑉 = ∫ 𝐹(𝒙𝑉 )𝑑𝒙𝑉

is the unknown normalizing faor and 𝐹(𝒙𝑉 ) is the known unnormal-
ized probability density. When two variables 𝑥𝑢 and 𝑥𝑣 are condition-
ally independent given 𝒙𝑈 for any 𝑢, 𝑣 ∈ 𝑉 \ 𝑈 , wrien formally as
𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣ 𝒙𝑈 , the probability density funion faors into two parts,
one depending on 𝑥𝑢 but not on 𝑥𝑣 and another dependent only on 𝑥𝑣
but not on 𝑥𝑢,

𝑃(𝒙𝑉 ) = 𝐹(𝒙𝑉 )
𝑍𝑉

= 𝐹𝑢(𝒙𝑢, 𝒙𝑈)𝐹𝑣(𝒙𝑣, 𝒙𝑈)
𝑍𝑉

.
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e conditional independence of all variables in 𝑉 \ 𝑈 then implies that
the probability faors as

𝑃(𝒙𝑉 ) = 1
𝑍𝑉

𝐹𝑉 (𝒙𝑉 ) ∏
𝑢∈𝑉 \𝑈

𝐹𝑢(𝒙𝑢, 𝒙𝑈).

As a result, the conditional probability 𝑃(𝒙𝑉 \𝑈 ∣ 𝒙𝑈) becomes

𝑃(𝒙𝑉 \𝑈) ∣ 𝒙𝑈) =
𝑃(𝒙𝑉 \𝑈 , 𝒙𝑈)

𝑃 (𝒙𝑈)

=
𝐹(𝒙𝑉 \𝑈 , 𝒙𝑈)

∫ 𝐹(𝒙𝑉 \𝑈 , 𝒙𝑈)𝑑𝒙𝑉 \𝑈

=
∏𝑢∈𝑉 \𝑈 𝐹𝑢(𝒙𝑢, 𝒙𝑈)

∏𝑢∈𝑉 \𝑈 ∫ 𝐹𝑢(𝒙𝑢, 𝒙𝑈)𝑑𝑥𝑢

= ∏
𝑢∈𝑉 \𝑈

𝐹𝑢(𝒙𝑢, 𝒙𝑈)
∫ 𝐹𝑢(𝒙𝑢, 𝒙𝑈)𝑑𝑥𝑢

, (.)

a produ of terms that may be easily computed. e multidimensional
integral over 𝒙𝑉 \𝑈 disappeared as did the problematic normaliza-
tion constant 𝑍𝑉 , instead requiring the computation of a series of
one-dimensional integrals. erefore, if the variables in 𝒙𝑉 \𝑈 are
conditionally independent given 𝒙𝑈 we may compute their properly
normalized conditional probability and thus efficiently sample from it.
If 𝒙𝑈 were sampled according to the exa marginal density 𝑃(𝒙𝑈),

the sampling algorithm would be complete, since the complete state 𝒙𝑉
would be sampled according to

𝑃(𝒙𝑈)𝑃 (𝒙𝑉 \𝑈 ∣ 𝒙𝑈) = 𝑃(𝒙𝑉 \𝑈 , 𝒙𝑈) = 𝑃(𝒙𝑉 ),

as we would hope. Since we were successful in spliing 𝒙𝑉 into 𝒙𝑉 \𝑈 and
𝒙𝑈 , perhaps we could repeat this procedure and split 𝒙𝑈 into yet smaller
subsets? Unfortunately, we do not know anything about the conditional
independencies present in the marginal density 𝑃(𝒙𝑈) and thus do not
know how 𝒙𝑈 could be split. To gather this information we will require
posing the problem using the formulation of graphical models, seeking to
tackle it using graph manipulation rather than algebra.
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e conditional independence between variables is at the core of the
framework of graphical models. While posing a probability distribution
as a graphical model does not add any new information about the prob-
ability distribution, it allows for very convenient ways of manipulating
the existing information. As a result, we see this framework solely as a
useful extension or way of thinking.
For any given probability density 𝑃(𝒙𝑉 ) we may define a dependence

graph 𝐺, composed of a set of nodes 𝑉 and a set of edges 𝐸, denoted
𝐺 = (𝑉 , 𝐸). Each variable 𝑥𝑢 is assigned a unique node 𝑢 ∈ 𝑉 . e undi-
reed edges (𝑢, 𝑣) forming the set 𝐸 are used to represent the conditional
independence relations between the variables of 𝒙𝑉 in the followingman-
ner. For 𝑢, 𝑣 ∈ 𝑉 , if an edge (𝑢, 𝑣) in𝐸 does not exist then the variables 𝑥𝑢
and 𝑥𝑣 are conditionally independent given all other variables, 𝑥𝑉 \{𝑢,𝑣}.
Formally,

(𝑢, 𝑣) ∉ 𝐸𝑈 ⟹ 𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣ 𝑥𝑉 \{𝑢,𝑣}.

In case of the Ising model the edges signified dire couplings between
the random variables and we may informally think of edges in the depen-
dency graph 𝐺 to imply such couplings.

.. Marginalization on a graph

e graphical framework allows us to perform operations involving
changes in the conditional independence struure simply by operating
on the graph, making algebraic operations on the probability distribution
more visual and easier to grasp. In particular, the marginalization of a
variable is a straightforward operation on the dependency graph.
Consider a node 𝑢 ∈ 𝑉 with a set of neighbors 𝑁(𝑢), i.e., a set of nodes

𝑣 ∈ 𝑉 such that an edge (𝑢, 𝑣) ∈ 𝐸 exists. Marginalizing the variable 𝑥𝑢
means, algebraically, the computation of

𝑃(𝒙𝑉 \𝑢) = ∫ 𝑃(𝒙𝑉 )𝑑𝑥𝑢.

Since we know that the only variables that are not conditionally indepen-
dent of 𝑥𝑢 given the remaining nodes are those of 𝒙𝑁(𝑢), we obtain that
𝑃(𝒙𝑉 ) faors as

𝑃(𝒙𝑉 ) = 𝐹𝛼(𝒙𝑉 \𝑢)𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))/𝑍𝑉 .
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is result is a manifestation of conditional independence, the fa that
once 𝒙𝑁(𝑢) are known the values of the remaining variables 𝒙𝑉 \𝑁̄(𝑢) have
no impa on the conditional probability of 𝑥𝑢.
Substituting this faorization into the integral we obtain

𝑃(𝒙𝑉 \𝑢) = ∫ 𝑃(𝒙𝑉 )𝑑𝑥𝑢

= ∫ 𝐹𝛼(𝒙𝑉 \𝑢)𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢/𝑍𝑉

= 𝐹𝛼(𝒙𝑉 \𝑢) ∫ 𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢/𝑍𝑉 .

e first term remains unchanged, appearing the same in 𝑃(𝒙𝑉 ), show-
ing that all independence relations between variables of 𝒙𝑉 \𝑁̄(𝑢) remain
unchanged. However, we are unable to say anything about the term

𝐹𝛽(𝒙𝑁(𝑢)) = ∫ 𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢,

which as a funion of only 𝒙𝑁(𝑢) suggests that the variables 𝒙𝑁(𝑢) may
no longer be conditionally independent.
e above rather involved derivation may be encoded more simply us-

ing the graphical approach. When a node 𝑢 ∈ 𝑉 is marginalized, both the
node and all edges incident upon it are removed from the graph. However,
all nodes 𝑣 ∈ 𝑁(𝑢) are then conneed to each another, forming a clique.
is approach represents the possible loss of conditional independence
among nodes of 𝑁(𝑢), thus encoding the worst possible scenario.
E .. Consider a PDF 𝑃(𝒙𝑉 ) = 𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) that fac-
tors as

𝑃(𝒙𝑉 ) = 1
𝑍𝑉

𝐹12(𝑥1, 𝑥2)𝐹13(𝑥1, 𝑥3)𝐹23(𝑥2, 𝑥3)

× 𝐹24(𝑥2, 𝑥4)𝐹26(𝑥2, 𝑥6)𝐹45(𝑥4, 𝑥5).

Because of this faorization, we see that the dependency graph 𝐺 =
(𝑉 , 𝐸) must have a set of edges

𝐸 = {(1, 2), (1, 3), (2, 3), (2, 4), (2, 6), (4, 5)},

as shown on Figure .a. When variable 𝑥4 is marginalized, we must
remove it from the graph along with edges (2, 4) and (4, 5); instead, the
nodes of 𝑁(4) = {2, 5} are conneed to form a clique, requiring only
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(a) Original graph (b) Marginalized 𝑥4 (c) Marginalized 𝑥2

Figure .: Graph from Example ., both original and aer marginalizing vari-
ables 𝑥2 or 𝑥4.

one new edge (2, 5). e resulting graph shown of Figure .b is not
significantly denser than the original.
Instead of 𝑥4, consider marginalizing variable 𝑥2. is time we remove

node  and edges containing it, noticing that the set of nodes that must
be reconneed has grown significantly and is 𝑁(2) = {1, 3, 4, 6}. Recon-
neing the nodes requires (42) = 6 edges, increasing the density of the
resulting graph shown on Figure .c. ■
e graph 𝐺 = (𝑉 , 𝐸) encodes not only the conditional independence

relations of 𝑃(𝒙𝑉 ), but also the dependencies of the conditional probabil-
ity of every variable 𝑢 ∈ 𝑉 ,

𝑃 (𝑥𝑢 ∣ 𝒙𝑉 \𝑢) =
𝑃(𝒙𝑉 \𝑢, 𝑥𝑢)

𝑃 (𝒙𝑉 \𝑢) .

e variable 𝑥𝑢 is dependent only on the variables 𝒙𝑁(𝑢), allowing us to
write the faorization of 𝑃(𝒙𝑉 ) as

𝑃(𝒙𝑉 ) = 1
𝑍𝑉

𝐹𝛼(𝒙𝑉 \𝑢)𝐹𝛽(𝒙𝑁(𝑢), 𝑥𝑢).

Inserting it into the conditional probability formula we obtain

𝑃 (𝑥𝑢 ∣ 𝒙𝑉 \𝑢) =
𝑃(𝒙𝑉 \𝑢, 𝑥𝑢)

𝑃 (𝒙𝑉 \𝑢)

=
𝐹𝛼(𝒙𝑉 \𝑢)𝐹𝛽(𝒙𝑁(𝑢), 𝑥𝑢)/𝑍𝑉

∫ 𝐹𝛼(𝒙𝑉 \𝑢)𝐹𝛽(𝒙𝑁(𝑢), 𝑥𝑢)𝑑𝑥𝑢/𝑍𝑉

=
𝐹𝛽(𝒙𝑁(𝑢), 𝑥𝑢)

∫ 𝐹𝛽(𝒙𝑁(𝑢), 𝑥𝑢)𝑑𝑥𝑢
,

showing that the conditional probability density of 𝑥𝑢 given all the re-
maining variables 𝒙𝑉 \𝑢 depends only on the variables 𝒙𝑁(𝑢) that neigh-
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bor the node 𝑢 on the graph 𝐺 = (𝑉 , 𝐸). erefore, sampling of 𝑥𝑢 may
be accomplished when the variables 𝒙𝑁(𝑢) are known, a fawe shall need
in future seions. e extension of the

conditional formula to a
set of variables 𝒙𝑈 is
given by Equation ..

Using the graphical framework we may now say something about the
conditional independence struure of the marginal density 𝑃(𝒙𝑈) with-
out the need to know the values of 𝑃(𝒙𝑈); instead, we compute symboli-
cally its worst-case faorization struure. However, we do not know how
to use the graphical description of the independence struure to split the
variables.

.. Conditional independence of a set of variables

e question arises whether the set 𝑉 \ 𝑈 had any special properties on
the graph 𝐺 = (𝑉 , 𝐸) that allowed us to easily compute the conditional
probability 𝑃(𝒙𝑉 \𝑈 ∣ 𝒙𝑈). We have in fa mentioned this in Seion
..., namely that the set 𝑉 \𝑈 forms a so-called independent set within
𝐺. e fa that all variables in 𝒙𝑉 \𝑈 are conditionally independent given
𝒙𝑈 implies that there are no edges between the nodes of 𝑉 \ 𝑈 , which is
the definition of an independent set.
e remaining nodes 𝑈 form the matching vertex cover, defined as a set

of nodes whose removal from a graph leaves a totally disconneed graph,
i.e., a graph with no edges. A vertex cover matches a particular indepen-
dent set, because — by definition — the complement of an independent
set is a vertex cover and vice versa.
e property that𝑈 forms a vertex coverwithin the graphwhile𝑉 \𝑈 is

the matching independent set solves our conundrum. Given the probabil-
ity 𝑃(𝒙𝑉 ) we construed a graph 𝐺 = (𝑉 , 𝐸) encoding its conditional
independence struure and chose to split 𝑉 into two subsets, 𝑈 ⊂ 𝑉
forming a vertex cover and the complementary independent set 𝑉 \𝑈 .e
variables 𝒙𝑉 \𝑈 are conditionally independent given 𝒙𝑈 , therefore allow-
ing us to efficiently compute the conditional probability 𝑃(𝒙𝑉 \𝑈 ∣ 𝒙𝑈);
therefore, the variables 𝒙𝑉 \𝑈 may be marginalized, leaving 𝒙𝑈 with prob-
ability density 𝑃(𝒙𝑈). e conditional independence struure may be
obtained from the graph 𝐺 by rules of marginalization, giving a modi-
fied graph 𝐺𝑈 = (𝑈, 𝐸𝑈) describing the worst-case conditional indepen-
dence struure of 𝑃(𝒙𝑈), allowing us to repeat the procedure.

.  

e exa coarsening algorithm is based on repeated spliing of the set
of nodes into an independent set and the matching vertex cover, followed
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by marginalization of the variables contained in the independent set and
repeating the algorithm on the remaining variables. Given the original set
of variables 𝑉 and the original dependence graph 𝐺 = (𝑉 , 𝐸) we define
𝑉0 = 𝑉 and 𝐺0 = 𝐺, then recursively generate a ladder of increasingly
coarse graphs.
At step 𝑖 we have the set of variables 𝑉𝑖 and graph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖). We

find a vertex cover 𝑈𝑖 ⊂ 𝑉𝑖 that is a proper subset of 𝑉𝑖 and define 𝑉𝑖+1 =
𝑈𝑖. e edges of 𝐸𝑖+1 are defined by stating that two nodes 𝑢, 𝑣 ∈ 𝑉𝑖+1
are conneed by an edge (𝑢, 𝑣) ∈ 𝐸𝑖+1 if (i) they were conneed by
an edge (𝑢, 𝑣) ∈ 𝐸𝑖 on the graph 𝐺𝑖 or (ii) there exists a removed node
𝑤 ∈ 𝑉𝑖 \ 𝑉𝑖+1 such that both (𝑢, 𝑤) ∈ 𝐸𝑖 and (𝑣, 𝑤) ∈ 𝐸𝑖, that is if the
nodes 𝑢, 𝑣 shared a common neighbor on the graph 𝐺𝑖. Finally, we let
𝐺𝑖+1 = (𝑉𝑖+1, 𝐸𝑖+1), completing the recursion.
Since the original graph 𝐺 is assumed to be finite and 𝑉𝑖+1 is always

a proper subset of 𝑉𝑖, aer a finite number of coarsening steps we will
obtain a ladder of laices

𝑉 = 𝑉0 ⊃ 𝑉1 ⊃ 𝑉2 ⊃ … ⊃ 𝑉𝑚

with the property that it is computationally feasible to compute the con-
ditional probability 𝑃(𝒙𝑉𝑖\𝑉𝑖+1

∣ 𝒙𝑉𝑖+1
) given that the unnormalized

marginal probability density 𝑃(𝒙𝑉𝑖
) is known. is results in Algorithm

..

.. Relation of exa coarsening to the LU decomposition

Algorithm . shares its graphical struure with another widely known
algorithm from linear algebra, the LU faorization of an invertible, sym-
metrically paerned matrix 𝐴. e random variables correspond to di-
mensions of the veor space, with nodes representing each. If the entry
𝐴𝑖𝑗 ≠ 0 then the two nodes 1 ≤ 𝑖, 𝑗 ≤ 𝑛 are conneed by an edge. Per-
forming a step of the LU decomposition corresponds to a marginalization
of a variable, completing the similarities.
In the LU algorithm the 𝐿 and 𝑈 faors are obtained by Gaussian elim-

ination, with 𝐿 storing the weights used to eliminate sub-diagonal non-
zero entries and 𝑈 being the upper triangular matrix leover aer per-
forming Gaussian elimination. erefore, to show the symbolic equiva-
lence of the LU decomposition to marginalization of random variables in
a graphical model it suffices to show that a single step of Gaussian elimi-
nation is equivalent to the marginalization of a single random variable.
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Algorithm . Exa coarsening algorithm.
function EC(𝐺𝑖 = (𝑉𝑖, 𝐸𝑖))

𝑉𝑖+1 ← MIS(𝐺𝑖)
𝐸𝑖+1 ← ∅
for all 𝑢 ∈ 𝑉𝑖+1 do

for all 𝑣 ∈ 𝑁𝐺𝑖
(𝑢) do

if 𝑣 ∈ 𝑉𝑖+1 then
𝐸𝑖+1 ← 𝐸𝑖+1 ∪ (𝑢, 𝑣)

end if
for all 𝑤 ∈ 𝑁𝐺𝑖

(𝑣) do
if 𝑤 ∈ 𝑉𝑖+1 and 𝑤 ≠ 𝑢 then

𝐸𝑖+1 ← 𝐸𝑖+1 ∪ (𝑢, 𝑤)
end if

end for
end for

end for
return 𝐺𝑖+1 ← (𝑉𝑖+1, 𝐸𝑖+1)

end function

At step 𝑖, the matrix 𝐴 has zeros below the diagonal in all columns to
the le of column 𝑖. erefore, by symmetry of the non-zero paern of
𝐴, the variable 𝑖 is conneed to a set of variables 𝑁(𝑖), such that for
𝑖 < 𝑗 for 𝑗 ∈ 𝑁(𝑖). erefore, the only sub-diagonal non-zero entries in
column 𝑖 are 𝐴𝑗𝑖 for 𝑗 ∈ 𝑁(𝑖). Consider eliminating one of these non-
zeros; denoting the 𝑖th row of the matrix 𝐴 as 𝒂𝑖 we obtain an update
equation

𝒂′
𝑗 = 𝒂𝑗 − 𝐴𝑗𝑖

𝐴𝑖𝑖
𝒂𝑖.

As a result, the updated 𝑗th row may contain non-zero entries only when
either 𝐴𝑗𝑘 ≠ 0 or 𝐴𝑖𝑘 ≠ 0; therefore, the updated matrix 𝐴′ will have
the variable 𝑗 conneed with all of its original neighbors (𝐴𝑗𝑘 ≠ 0) and
all the neighbors of the variable 𝑖 (𝐴𝑖𝑘 ≠ 0), sans the variable 𝑖 because
by construion the entry 𝐴′

𝑗𝑖 = 0. Since all variables 𝑗 ∈ 𝑁(𝑖) undergo
such operation, the variable 𝑖 is effeively removed from the graph while
all variables in 𝑁(𝑖) are conneed to each another, precisely as was the
case with marginalization of a random variable.
It is rather well-known that the LU algorithm applied to sparse matri-

ces causes fill-in, that is the number of non-zero entries in the faors 𝐿
and 𝑈 is generally higher than that of the original matrix 𝐴. Because the
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number and location of the non-zero entries is determined entirely by
the graphical struure of the matrix 𝐴, the same phenomenon will occur
while performing coarsening of a graph describing the conditional inde-
pendence relations of a probability distribution. As the increased density
of the LU faors leads to increased storage needs and slower computa-
tions involving the faors, many approaches were developed to combat
this phenomenon. Among themostwidely known are sparsity-preserving
variable permutations (Davis et al., a) and incomplete LU faoriza-
tions (Chan and van der Vorst, ; Saad, ).
Incomplete faorizations make use of the fa that not all non-zero en-

tries are equally important, hoping that ignoring some of the additional
entries will have small effe on the LU faors. Multiple strategies were
devised (Kershaw, ; Meijerink and van der Vorst, ; Was, ),
including the ILU(𝑘) technique of only allowing fill-in to propagate 𝑘
times before being rejeed (Saad, , p. ); for example, ILU(0) only
allows fill-in at positions of non-zero entries of the original matrix 𝐴
(Saad, , p. ), while ILU(1) allows fill-in due to elimination of a
non-zero entry that existed in the original matrix 𝐴, but not due to elim-
ination of a non-zero entry that was subsequently added as fill-in. Other
techniques aempt to ignore certain entries based on magnitude, treating
𝐴𝑖𝑗 as if it were zero if the magnitude |𝐴𝑖𝑗| < 𝑇 is less than a threshold
(Munksgaard, ; Zlatev, Wasniewski, and Schaumburg, ).
Sparsity-preserving variable permutations use a different feature of the

problem. It was found that the order in which variables are eliminated
has a significant effe on the amount of fill-in generated by faorization,
leading to algorithms such as COLAMD (Column Approximate Minimum
Degree ordering, Davis et al., b). Unfortunately, the task of finding
the optimal ordering for a general matrix 𝐴 is an NP-complete problem
(Heggernes et al., ), requiring the use of heuristics and approximate
algorithms based on simplified assumptions.
While these techniques allow for handling exa LU faorizations of

matrices with tens of thousands of variables on desktop computers (Davis,
), the costs of computing the marginal distributions respeing the ex-
a dependency graphs generated by equivalent algorithms are far beyond
the available computational capabilities. erefore, it becomes necessary
for any praical coarsening algorithm to instead produce approximate
dependency graphs, where the number of edges incident upon each node
is kept under control. In the following seions we discuss a class of such
approximate algorithms and possible ways of obtaining the highest qual-
ity approximation possible.
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e stri requirement from the exa coarsening was that the nodes 𝑉𝑖
must be split into a vertex cover 𝑈𝑖 and amatching independent set 𝑉𝑖\𝑈𝑖.
e independent set 𝑉𝑖 \ 𝑈𝑖 was subsequently marginalized, while the
vertex cover became the next node set in the ladder, 𝑉𝑖+1 = 𝑈𝑖. However,
the step involving forming the set of edges 𝐸𝑖+1 among the nodes of 𝑉𝑖+1
did not have any stri requirements and may be modified, though at a
cost of leading to an approximate conditional independence struure.
Any coarsening algorithm will thus be composed of two parts:

• the choice of a suitable spliing of 𝑉𝑖 into a vertex cover and a
matching independent set,

• the re-creation of edges between the kept variables 𝑉𝑖+1.

e spliing phase must choose a particular pair of an independent set
and a matching vertex cover out of many that typically exist. While many
optimality criteria may be chosen to make such choice unique, it appears
natural to aempt to marginalize as many variables as possible, leading
to the requirement that the independent set be a Maximum Independent
Set (MIS).e complementary vertex cover becomes then the smallest pos-
sible vertex cover, or Minimum Vertex Cover (MVC). e maximum inde-
pendent set on a Cartesian laice divides the graph into a checkerboard
paern, recovering the coarsening paern used by Chorin () while
also generalizing naturally to arbitrary graphs.
e laer stage involving reconneing nodes of 𝑉𝑖+1 is unfortunately a

far less studied andmore problem-dependent part of the algorithm.While
the exa choice is known, it is unfortunately generally unfeasible and
instead we recommend that nodes of 𝑉𝑖+1 be conneed only if they pass
a distance criterion. Assuming a metric 𝜌 ∶ 𝑉𝑖+1 × 𝑉𝑖+1 → ℝ is defined,
we only allow edges to be formed between nodes 𝑢, 𝑣 ∈ 𝑉𝑖+1 such that
𝜌(𝑢, 𝑣) < 𝑇𝑖+1, where 𝑇𝑖+1 is a user-provided threshold.
e complete approximate graph coarsening algorithm is provided as

Algorithm ., whose possible sub-components are discussed in what fol-
lows.

.. Optimality condition

e computation of a MIS is one of the most difficult problems of theoret-
ical computer science. Just as the problem of finding the optimal variable
ordering, theMIS problem is NP-complete, thus any algorithm solving it in
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Algorithm . Approximate coarsening.
function AC(𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), 𝐶)

𝑉𝑖+1 ← MIS(𝐺𝑖)
𝜌𝑖+1 ← min

𝑢≠𝑣
𝜌(𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝑉𝑖+1

𝐸𝑖+1 ← ∅
for all 𝑢 ∈ 𝑉𝑖+1 do

for all 𝑣 ∈ 𝑉𝑖+1 do
if 𝑢 ≠ 𝑣 and 𝜌(𝑢, 𝑣) ≤ 𝐶𝜌𝑖+1 then

𝐸𝑖+1 ← 𝐸𝑖+1 ∪ (𝑢, 𝑣)
end if

end for
end for
return 𝐺𝑖+1 ← (𝑉𝑖+1, 𝐸𝑖+1)

end function

polynomial time will also be able to solve every other NP-complete prob-
lem in polynomial time. In fa, the MIS problem is one of the original 
NP-complete problems of Karp () and there are no known polynomial
time algorithms for solving them.
is difficulty necessitates relaxing the optimality condition. Instead of

requiring the maximum independent set, we ask for a maximal indepen-
dent set, that is an independent set that cannot be made larger by adding
other nodes. Multiple heuristic algorithms exist and produce maximal in-
dependent sets. We recommend the algorithm suggested by Prof. Richard
M. Karp in a personal communication, listed as Algorithm ., due to the
fa that on Cartesian laice graphs it closely reproduces the expeed
checkerboard paern yet is applicable to arbitrary graphs.

.. Reconneing 𝑉𝑖+1

Consider a metric 𝜌 ∶ 𝑉𝑖+1 × 𝑉𝑖+1 → ℝ. e natural choice of a recon-
neing algorithm is to form an edge (𝑢, 𝑣) for every pair of 𝑢 and 𝑣 such
that

𝜌(𝑢, 𝑣) ≤ 𝑇𝑖+1,

where 𝑇𝑖+1 is a user-prescribed threshold. e threshold should ideally
scale with the distance between nodes on the laice and be automatically
adjusted. A good choice is to let 𝑇𝑖+1 be a multiple of the smallest distance
between two nodes in 𝑉𝑖+1.
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Alternatively, if the dependency graph is highly inhomogeneous
the threshold must be adjusted on a per-node basis, requiring an
automated determination of a suitable threshold, making it highly
problem-dependent.
Note that the reconneing algorithm must always keep the edges of

𝐸𝑖+1 being undireed; in other words, if a node 𝑢 is conneed to a node
𝑣, then the node 𝑣 must also be conneed to the node 𝑢. Failure to do so
would lead to significant problems that make it impossible to compute a
properly defined marginal density 𝑃(𝒙𝑉𝑖+1

).

.. Choice of metric

Frequently the specification of the original probability density suggests a
choice of a natural metric 𝜌 ∶ 𝑉 ×𝑉 → ℝ, which in turns defines a metric
on all coarser laices through restriion. As an example, the Ising model
variables form a Cartesian laice, thus a metric based on the 𝑝-norm may
be considered a natural choice.
In situations where no such metric exists one may use either the graph-

ical struure of the problem or quantities obtained direly from the orig-
inal probability density 𝑃(𝒙𝑉 ). If the graph 𝐺 = (𝑉 , 𝐸) is to be used,
one may define 𝜌(𝑢, 𝑣) to be the length of the shortest path conneing
the nodes 𝑢 and 𝑣. Efficient algorithms exist and may be used to com-
pute the shortest path distance between individual pairs of nodes (Dijk-
stra, ) or between all pairs at once (Cormen et al., , p. –).
e edges forming paths between nodes might be either weighted or un-
weighted in case of homogeneous distributions. When weights are used,
they should be inversely proportional to the coupling strength between
the nodes, ensuring that the distance between two strongly interaing
variables is smaller than between weekly conneed ones.
Alternatively one may be able to extra metric information from the

probability distribution by computing correlations between variables,
defining

𝜌(𝑢, 𝑣) = 1/corr(𝑥𝑢, 𝑥𝑣) =
𝜎𝑥𝑢

𝜎𝑥𝑣

𝔼 [(𝑥𝑢 − 𝜇𝑥𝑢
)(𝑥𝑣 − 𝜇𝑥𝑢

)]
,

where 𝜇𝑥 and 𝜎𝑥 are the average and standard deviation of the variable 𝑥,
respeively. is approach is especially useful in case of highly inhomo-
geneous models, where heuristic approaches based on the graph struure
alone may not suffice.
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E .. Consider a regular Cartesian laice if size 32×32. We define
a natural metric 𝜌(𝑢, 𝑣) as the -norm distance between the nodes on the
original laice, assuming the distance between the nearest neighbors is
equal to one.
e set of nodes at each step is split by finding an independent set

and the matching vertex cover using Algorithm .. e reconneing
algorithm connes together all node pairs such that

𝜌(𝑢, 𝑣) ≤ 𝐶𝜌𝑖+1,

where 𝜌𝑖+1 = min𝑢≠𝑣 𝜌(𝑢, 𝑣) is the smallest distance between distin
nodes on laice 𝑉𝑖+1. e resulting laice ladders are shown on Figure
. for different values of the distance parameter 𝐶 . ■
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e results of Figure . shows clearly that increasing the number of re-
conneed nodes quickly leads to dense graphs, making the computation
of marginal probabilities a costly enterprise. Additionally, the resulting
laices lose the regularity and symmetries existing in the original model,
qualitieswemaywish to preserve during the coarsening process.e least
dense variant is therefore frequently an araive option, even though the
significant number of missed dependencies between variables results in
low quality of the resulting approximate marginal probabilities. In what
follows we will describe a method for seleively densening an initially
sparse dependency graph, allowing for performing a sparse coarsening
that ensures large cliques are not formed yet aaining good quality.
Consider laice 𝑉𝑖 shown on Figure .a obtained during coarsening

of a larger Cartesian laice and assume that 𝑉𝑖 is also a Cartesian laice,
but of size 8 × 8. e reconneed graph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) is very sparse,
with edges joining only the nearest neighbors on the laice. We continue
coarsening it, finding a vertex cover 𝑉𝑖+1 ⊂ 𝑉𝑖 (red nodes) that paints
the familiar checkerboard paern on the laice 𝐺𝑖. Assume all variables
𝒙𝑉𝑖+1

are known and we are aempting to sample 𝒙𝑉𝑖\𝑉𝑖+1
(yellow nodes)

from the conditional probability 𝑃(𝒙𝑉𝑖\𝑉𝑖+1
∣ 𝒙𝑉𝑖+1

). Equation . shows
that the conditional probability faors into a produ

𝑃(𝒙𝑉𝑖\𝑉𝑖+1
) ∣ 𝒙𝑉𝑖+1

) = ∏
𝑉𝑖\𝑉𝑖+1

𝐹𝑢(𝒙𝑢, 𝒙𝑉𝑖+1
)

∫ 𝐹𝑢(𝒙𝑢, 𝒙𝑉𝑖+1
)𝑑𝑥𝑢
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(a) 𝐶 = 1 (b) 𝐶 =
√

2 (c) 𝐶 = 2

Figure .: Comparison of different distance multiples 𝐶 used in the reconne-
ing algorithm. Although higher values of 𝐶 initially lead to higher
density graphs, they inadvertently form very irregular graphs that
may become disconneed. is is caused by two neighboring nodes
that are very close on the laice, although the general inter-node
distances are much larger.
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= ∏
𝑉𝑖\𝑉𝑖+1

𝑃(𝑥𝑢 ∣ 𝒙𝑉𝑖+1
).

Furthermore, using the fa that each 𝑥𝑢 is conditionally independent of
all other variables given the values of the neighboring variables 𝒙𝑁(𝑢),

𝑥𝑢 ⟂⟂ 𝒙𝑉𝑖\𝑁̄(𝑢) ∣ 𝒙𝑁(𝑢),

we see that the conditional probability of 𝑥𝑢 depends only on 𝒙𝑁(𝑢) rather
than on all of 𝒙𝑉𝑖+1

,

𝑃(𝒙𝑉𝑖\𝑉𝑖+1
) ∣ 𝒙𝑉𝑖+1

) = ∏
𝑉𝑖\𝑉𝑖+1

𝑃(𝑥𝑢 ∣ 𝒙𝑁(𝑢)).

is implicitly assumes that for any 𝑢 ∈ 𝑉𝑖 \ 𝑉𝑖+1 the set 𝑁(𝑢) ⊆ 𝑉𝑖+1,
which is clearly true because 𝑉𝑖+1 forms a vertex cover in 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖).
At least one node of every edge in 𝐸𝑖 belongs to 𝑉𝑖+1; since for (𝑢, 𝑣) ∈ 𝐸𝑖
the node 𝑢 ∉ 𝑉𝑖+1, it follows that 𝑣 ∈ 𝑁(𝑢) must belong to 𝑉𝑖+1, proving
𝑁(𝑢) ⊆ 𝑉𝑖+1.

.. Motivating example

e seleive increase in the density of the dependency graph is illustrated
by Figure ..e panel .a shows the laice 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) with nodes
𝑉𝑖+1 marked red. Determining the remaining variables 𝑥𝑉𝑖\𝑉𝑖+1

, marked
yellow, requires only knowing the red variables 𝑥𝑉𝑖+1

. Moving to Figure
.b, notice that the variables corresponding to nodes marked blue are
far enough from each other that they could safely use both the values of
the red and yellow variables. In other words, we may add diagonal edges
conneing the blue variables and the neighboring yellow variables, form-
ing an increased density graph 𝐺′

𝑖 = (𝑉𝑖, 𝐸′
𝑖), shown on the final panel

.c: assuming both the red and yellow variables are known, the blue
variables may be sampled using a marginal probability density respe-
ing the denser graph 𝐺′

𝑖.
e introduion of the increased density graph requires that we com-

pute a marginal probability density

𝑃 ′(𝒙𝑉𝑖
) = 𝐹 ′(𝒙𝑉𝑖

)/𝑍′
𝑉𝑖
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(a)

(b) (c)

Figure .: Motivation behind seleive coarsening: (a) original graph with
known variables marked red and the variables to be sampled using
yellow, (b) original graph with nodes that remain independent aer
increasing the edge density marked blue, (c) denser graph used to
sample the blue nodes given values of the red and yellow ones.

that respes the dependence graph 𝐺′
𝑖, in addition to the computation of

the regular marginal

𝑃(𝒙𝑉𝑖
) = 𝐹(𝒙𝑉𝑖

)/𝑍𝑉𝑖
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respeing the dependence graph 𝐺𝑖. Denoting the blue nodes 𝑈𝐵
𝑖 ⊂

𝑉𝑖 \ 𝑉𝑖+1 and the yellow variables 𝑈𝑌
𝑖 ⊂ 𝑉𝑖 \ 𝑉𝑖+1, we may write that

an improved conditional probability density 𝑃(𝒙𝑉𝑖\𝑉𝑖+1
∣ 𝒙𝑉𝑖+1

) may be
wrien using a two-stage formula In the following, note that

𝑁(𝑢) ⊆ 𝑉𝑖+1, while
𝑁′(𝑣) ⊆ 𝑉𝑖+1 ∪ 𝑈𝑌

𝑖
because the blue nodes
𝑈𝐵

𝑖 depend on the yellow
nodes 𝑈𝑌

𝑖 .

𝑃(𝒙𝑉𝑖\𝑉𝑖+1
∣ 𝒙𝑉𝑖+1

)
= 𝑃(𝒙𝑈𝑌

𝑖
, 𝒙𝑈𝐵

𝑖
∣ 𝒙𝑉𝑖+1

)
= 𝑃(𝒙𝑈𝐵

𝑖
∣ 𝒙𝑈𝑌

𝑖
, 𝒙𝑉𝑖+1

)𝑃 (𝒙𝑈𝑌
𝑖

∣ 𝒙𝑉𝑖+1
)

= 𝑃(𝒙𝑈𝐵
𝑖

∣ 𝒙𝑈𝑌
𝑖

, 𝒙𝑉𝑖+1
) ∏
𝑢∈𝑈𝑌

𝑖

𝐹𝑖𝑢(𝑥𝑢, 𝒙𝑁(𝑢))

∫ 𝐹𝑖𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢

= ∏
𝑣∈𝑈𝐵

𝑖

𝐹 ′
𝑖𝑣(𝑥𝑣, 𝒙𝑁′(𝑣))

∫ 𝐹 ′
𝑖𝑣(𝑥𝑣, 𝒙𝑁′(𝑣))𝑑𝑥𝑣

∏
𝑢∈𝑈𝑌

𝑖

𝐹𝑖𝑢(𝑥𝑢, 𝒙𝑁(𝑢))

∫ 𝐹𝑖𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢

,

where the yellow variables 𝒙𝑈𝑌
𝑖

are sampled first using the coarse
marginal 𝑃(𝒙𝑉𝑖

), allowing for sampling of the blue variables 𝒙𝑈𝐵
𝑖

using
the denser marginal 𝑃 ′(𝒙𝑉𝑖

). e formula for 𝑃(𝒙𝑈𝑌
𝑖

∣ 𝒙𝑉𝑖+1
) is obtained

trivially because 𝒙𝑈𝑌
𝑖

⟂⟂ 𝒙𝑈𝐵
𝑖

∣ 𝒙𝑉𝑖+1
, thus

𝑃(𝒙𝑈𝑌
𝑖

, 𝒙𝑈𝐵
𝑖

∣ 𝒙𝑉𝑖+1
) = 𝑃(𝒙𝑈𝑌

𝑖
∣ 𝒙𝑉𝑖+1

)𝑃 (𝒙𝑈𝐵
𝑖

∣ 𝒙𝑉𝑖+1
),

by definition. In the two-stage formula we simply replace 𝑃(𝒙𝑈𝐵
𝑖

∣ 𝒙𝑉𝑖+1
)

with a more accurate approximation that uses a denser dependency graph
𝐺′

𝑖.

.. General algorithm

While the two-step algorithm already improves upon the sparse depen-
dency graph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), the above algorithm may be repeated recur-
sively, leading to a lateral sequence of increasingly dense dependency
graphs. erefore, we leave the color-coded notation and instead intro-
duce a top index 𝑗 to denote the depth of the recursion.
We begin with the sparse dependency graph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), defining

𝐺0
𝑖 = (𝑉𝑖, 𝐸𝑗

𝑖 ) = (𝑉𝑖, 𝐸𝑖). Note that the set of nodes does not change
during the lateral recursion, therefore we define a second set of nodes
𝑈0

𝑖 = 𝑉𝑖 \ 𝑉𝑖+1; in general, the set 𝑈 𝑗
𝑖 will contain an independent set

under the graph 𝐺𝑗
𝑖 , thus the variables in 𝑈 𝑗

𝑖 \𝑈 𝑗+1
𝑖 shall be sampled from

a conditional probability computed using the marginal density 𝑃 𝑗(𝒙𝑉𝑖
)

respeing the dependency graph 𝐺𝑗
𝑖 .
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Assuming the graph 𝐺𝑗
𝑖 = (𝑉𝑖, 𝐸𝑗

𝑖 ) and set 𝑈 𝑗
𝑖 are known, we seek to

define the successors 𝐺𝑗+1
𝑖 and 𝑈 𝑗+1

𝑖 in terms of 𝐺𝑗
𝑖 and 𝑈 𝑗

𝑖 . e set of
nodes of 𝐺𝑗+1

𝑖 remains unchanged from 𝐺𝑗
𝑖 , however the set 𝐸𝑗

𝑖 ⊂ 𝐸𝑗+1
𝑖

should be enriched by adding edges between more distant variables; this
may be accomplished by running the reconneing algorithm of Seion
.. with varying distance thresholds 𝐶𝑗, such that 𝐶𝑗 < 𝐶𝑗+1. Specifi-
cation of 𝐸𝑗+1

𝑖 thus completes the definition of 𝐺𝑗
𝑖 = (𝑉𝑖, 𝐸𝑗

𝑖 ).
Define 𝐻𝑗+1

𝑖 as a subgraph of 𝐺𝑗+1
𝑖 , denoted 𝐺𝑗+1

𝑖 |𝑈𝑗
𝑖
, obtained by re-

striing the set of nodes to 𝑈 𝑗
𝑖 and keeping only edges of 𝐸𝑗+1

𝑖 between
the nodes of the restried set. e set 𝑈 𝑗+1

𝑖 is then defined as a maximum
independent set within the graph 𝐻𝑗+1

𝑖 ,

𝑈 𝑗+1
𝑖 = MIS(𝐻𝑗+1

𝑖 ).

In a praical algorithm the optimality condition is relaxed, requiring only
a maximal rather than maximum independent set, a weaker condition (cf.
Seion ..). Due to the finite size of 𝑉𝑖, the repeated application of this
recurrence will generate a lateral sequence of laices 𝐺𝑗

𝑖 together with
node sets

𝑉𝑖 \ 𝑉𝑖+1 = 𝑈0
𝑖 ⊃ 𝑈1

𝑖 ⊃ 𝑈2
𝑖 ⊃ … ⊃ 𝑈𝑚

𝑖

such that for any 𝑢, 𝑣 ∈ 𝑈 𝑗
𝑖 the variables 𝑥𝑢 and 𝑥𝑣 are conditionally

independent within the marginal density 𝑃 𝑗(𝒙𝑉𝑖
) given 𝒙𝑉𝑖\𝑈𝑗

𝑖
.

e nested nature of this lateral sequence implies that all variables
𝒙𝑈𝑗

𝑖
could be sampled with the use of conditional probability derived

from 𝑃 𝑗(𝒙𝑉𝑖
), however the variables 𝒙𝑈𝑗+1

𝑖
could be sampled using a still

denser, more accurate probability 𝑃 𝑗+1(𝒙𝑉𝑖
).erefore, the possiblymost

accurate sampling order is to sample variables corresponding to nodes
𝑈0

𝑖 \𝑈1
𝑖 using the conditional probability derived from 𝑃 0(𝒙𝑉𝑖

), followed
by the sampling of variables corresponding to nodes 𝑈1

𝑖 \ 𝑈2
𝑖 , et cetera,

until the last set of nodes 𝑈𝑚
𝑖 .

e complete description of the lateral graph densening technique is
provided as Algorithm . together with the brief sampling Algorithm
..
E .. We will illustrate Algorithm . using the previously de-
scribed example of an 8 × 8 Cartesian laice 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), containing
only edges between nearest neighbors. e set 𝑉𝑖+1 takes the form of a
checkerboard paern, denoted on Figure . using blue nodes. Progress-
ing from Figure .a toward .f we repeatedly increase the density
of edges by conneing all pairs of nodes separated by at most 𝐶0 = 1,
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Algorithm . Lateral densening.
procedure LD(𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), 𝑉𝑖+1, 𝐶𝑗)

𝑈0
𝑖 ← 𝑉𝑖 \ 𝑉𝑖+1

𝐺0
𝑖 ← 𝐺𝑖

𝑗 ← 0
while |𝑈 𝑗

𝑖 | > 1 do
𝐸𝑗+1

𝑖 ← R(𝑉𝑖, 𝐶𝑗+1)
𝐺𝑗+1

𝑖 ← (𝑉𝑖, 𝐸𝑗+1
𝑖 )

𝐻𝑗+1
𝑖 ← S(𝐺𝑗+1

𝑖 , 𝑈 𝑗
𝑖 )

𝑈 𝑗+1
𝑖 ← MIS(𝐻𝑗+1

𝑖 )
𝑗 ← 𝑗 + 1

end while
𝑚 ← 𝑗

end procedure

Algorithm . Sampling the variables 𝒙𝑉𝑖
given 𝒙𝑉𝑖+1

under lateral dens-
ening.
function LDS(𝒙𝑉𝑖+1

, 𝑈 𝑗
𝑖 , 𝑃 𝑗(𝒙𝑉𝑖

), 𝑚)
for 𝑖 = 0 → 𝑚 − 1 do

𝑥𝑈𝑗
𝑖 \𝑈𝑗+1

𝑖
∼ 𝑃 𝑗(𝒙𝑉𝑖

)
∫ 𝑃 𝑗(𝒙𝑉𝑖

)𝑑𝒙𝑉𝑖\𝑉𝑖+1

end for

𝑥𝑈𝑚
𝑖

∼ 𝑃 𝑚(𝒙𝑉𝑖
)

∫ 𝑃 𝑚(𝒙𝑉𝑖
)𝑑𝒙𝑉𝑖\𝑉𝑖+1

return 𝑥𝑉𝑖
← 𝒙𝑉𝑖+1 ⋃𝑚

𝑗=0 𝑈𝑗
𝑖

end function

𝐶1 =
√

2, 𝐶2 = 2, 𝐶3 =
√

5, 𝐶4 =
√

8 and 𝐶5 = 3. e sets 𝑉𝑖+1,
𝑈0

𝑖 = 𝑉𝑖 \ 𝑉𝑖+1, 𝑈2
𝑖 , 𝑈3

𝑖 and 𝑈4
𝑖 are marked with colors ranging from red,

through yellow to blue.
Figure .a shows the first densening step, where we produce a denser

set of edges 𝐸1
𝑖 containing both nearest neighbor and diagonal connec-

tions. A maximum independent set is found within the graph 𝐺1
𝑖 re-

stried to nodes of 𝑈0
𝑖 = 𝑉𝑖 \ 𝑉𝑖+1 and marked with a different color,

becoming the set 𝑈1
𝑖 . e process repeats itself, producing sets 𝑈 𝑗

𝑖 of de-
creasing size.
Note the special transition between 𝑈2

𝑖 and 𝑈3
𝑖 shown on Figure .c:

we find that 𝑈3
𝑖 = 𝑈2

𝑖 . is takes place because the set of edges conne-
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(a) (b)

(c) (d)

(e) ()

Figure .: Results of the lateral densening algorithm. Figure (a) shows the orig-
inal, sparse graph, where the yellow variables are sampled given the
values of the red variables. We increase the density of edges, i.e.,
the width of the allowed interaions between the variables, creat-
ing subsequently denser graphs in Figures (b) through (). e colors
show order of sampling, beginning with red (variables sampled on
prior laices) through yellow and blue.

ing all nodes within distance 𝐶3 =
√

5 of each other is no more restriive
than that with 𝐶2 = 2. As a result one does not need to worry about un-
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used stages in the algorithm, because if the increase in edge density is
found to be too small the algorithm will automatically skip the unnec-
essary increase. Similarly, the set 𝑈5

𝑖 = 𝑈4
𝑖 , because the increase from

𝐶4 =
√

8 to 𝐶5 = 3 does not create edges between the variables 𝒙𝑈4
𝑖
.

While each step of the algorithm improves the quality of the approxi-
mation used to sample variables, the set of affeed variables is steadily
decreasing. Initially we face the task of sampling  variables using the
sparse probability density 𝑃 0(𝒙𝑉𝑖

), however by performing the first step
of the algorithm we produce an improved probability density that might
be used to sample  of those variables. In the later steps, an improve-
ment is brought upon  and  variables, respeively, reaching a point of
diminishing returns.
When sampling according to Algorithm ., the variables will be sam-

pled in the order suggested by node coloring, with the red nodes being
sampled first (assumed known when starting the algorithm), continuing
through yellow nodes and finishing with blue nodes. ■

.  

e initial graph 𝐺 = (𝑉 , 𝐸) that encodes the conditional independence
struure of 𝑃(𝒙𝑉 ) is an undireed graph, where each edge can be tra-
versed in both direions. erefore, it contains cycles: paths of depen-
dence between random variables that preclude efficient sampling due to
circular dependencies. Consider the two-dimensional Ising model. e
spin 𝑥𝑖,𝑗 to be sampled requires the knowledge of the value of the neigh-
boring spins, including the spin 𝑥𝑖+1,𝑗; since its value is unknown by
proxy it requires the knowledge of the value of the neighbors of 𝑥𝑖+1,𝑗,
including 𝑥𝑖+1,𝑗+1. Proceeding further, sampling the unknown value of
𝑥𝑖+1,𝑗+1 requires the knowledge of the value of 𝑥𝑖,𝑗+1, which then finally
requires the value of 𝑥𝑖,𝑗. e resulting unbreakable chain of dependen-
cies makes it impossible to sample one of the variables without sampling
all others simultaneously. However, when the probability density 𝑃(𝒙𝑉 )
is wrien in the acyclic form as a produ of conditional probabilities

𝑃(𝒙𝑉 ) = 𝑃(𝒙𝑉𝑚
)𝑃 (𝒙𝑉𝑚−1\𝑉𝑚

∣ 𝒙𝑉𝑚
)

× 𝑃(𝒙𝑉𝑚−2\𝑉𝑚−1
∣ 𝒙𝑉𝑚−1

) … 𝑃 (𝒙𝑉0\𝑉1
∣ 𝒙1),

those circular dependencies disappear. Unfortunately, this struure can-
not be represented by an undireed graph due to the fa that undi-
reed edges lack direionality. Instead, we introduce a direed graph
to encode the conditional probabilities. If the PDF 𝑃(𝒙𝑉 ) contains a term
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𝑃(𝑥𝑣 ∣ 𝒙𝑈) with 𝑢 ⊂ 𝑈 , then we say that there exists a direed edge, or
arc, ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑢, 𝑣) ∈ 𝐴, the set of arcs. Together, the node set 𝑉 and the direed
edge/arc set 𝐴 form a direed graph 𝐷 = (𝑉 , 𝐴), also called a digraph.
As the notion of neighbors 𝑁(𝑣) of a node 𝑣 is imprecise in the context of
direed edges, we instead introduce the sets of dire predecessors 𝑁𝑝(𝑣)
and dire successors 𝑁𝑠(𝑣); in the example of an edge ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑢, 𝑣), the node 𝑢
is the dire predecessor of 𝑣, while 𝑣 is the dire successor.
Using this definition we find that the conditional probabilities

𝑃(𝒙𝑉𝑖\𝑉𝑖+1
∣ 𝒙𝑉𝑖+1

) may be encoded in a straightforward manner. Since
the conditional faorizes according to

𝑃(𝒙𝑉𝑖\𝑉𝑖+1
∣ 𝒙𝑉𝑖+1

) = ∏
𝑉𝑖\𝑉𝑖+1

𝑃(𝑥𝑣 ∣ 𝒙𝑁(𝑣)),

with the neighborhood understood in the sense of the undireed graph
𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), we see that the direed graph 𝐷𝑖 encoding this condi-
tional probability is made of the nodes of 𝑉𝑖 and direed edges pointing
from the neighbors 𝑁(𝑣) toward 𝑣; therefore, 𝑁𝑝(𝑣) = 𝑁(𝑣) ⊂ 𝑉𝑖+1
and the conditional probabilities may be wrien as 𝑃(𝑥𝑣 ∣ 𝒙𝑁𝑝(𝑣)). For
visualizations of example direed graphs see Figure ..
When multiple conditional probabilities are included we obtain a the

complete direed graph 𝐷 = (𝑉 , 𝐴), defined as the union of the individ-
ual graphs 𝐷𝑖 with

𝑉 = 𝑉𝑚 ∪
𝑚−1
⋃
𝑖=0

𝑉𝑖 \ 𝑉𝑖+1 and 𝐴 =
𝑚−1
⋃
𝑖=0

𝐴𝑖,

that encodes the acyclic form of 𝑃(𝒙𝑉 ). e word acyclic in the name
of the acyclic Monte Carlo comes from the struure of the digraph 𝐷,
namely the fa that it does not contain cycles. Graphs of this kind are
known as Direed Acyclic Graphs (DAGs) and occur frequently in appli-
cations that involve the notion of dependence, e.g., scheduling of interde-
pendent tasks, soware dependency graphs, parallelization of algorithms.
A feature of DAGs that will be useful to us is the fa that each DAG

induces a partial order on its nodes, known in computer science as the
topological order. For two nodes 𝑢, 𝑣 ∈ 𝑉 we write 𝑢 ≤ 𝑣 if and only
if there exists a direed path from 𝑢 to 𝑣, i.e., if 𝑢 is a predecessor of 𝑣.
If neither 𝑢 ≤ 𝑣 nor 𝑣 ≤ 𝑢 the nodes 𝑢, 𝑣 are said to be incomparable,
because the ordering cannot distinguish between them yet they may not
be equal.
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Figure .: Example of a direed graph 𝐷𝑖 = (𝑉𝑖, 𝐴𝑖) encoding the conditional
probability 𝑃(𝒙𝑉𝑖\𝑉𝑖+1 ∣ 𝒙𝑉𝑖+1). Direed edges are visualized by
painting a line emanating from ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑢, 𝑣) the predecessor 𝑢 ∈ 𝑁𝑝(𝑣)
toward the successor node 𝑣 and reaching half the distance between
the two nodes.

Applying topological order to the DAG 𝐷 defined earlier we obtain

𝑉𝑚 ≤ 𝑉𝑚−1 \ 𝑉𝑚 ≤ 𝑉𝑚−2 \ 𝑉𝑚−1 ≤ … ≤ 𝑉0 \ 𝑉1,

which is the order in which we may sample the variables using the con-
ditional probabilities. Additionally, for 𝑢, 𝑣 ∈ 𝑉𝑖 \ 𝑉𝑖+1 neither 𝑢 ≤ 𝑣 nor
𝑣 ≤ 𝑢, therefore the nodes of 𝑉𝑖 \ 𝑉𝑖+1 are incomparable and cannot be
ordered. is represents the fa that all variables in 𝒙𝑉𝑖\𝑉𝑖+1

are condi-
tionally independent of each other given the variables 𝒙𝑉𝑖+1

and may be
sampled independently of each other in any order, as long as the values
of 𝒙𝑉𝑖+1

are already known.
Similarly to the way the conditional probabilities 𝑃(𝒙𝑉𝑖\𝑉𝑖+1

∣ 𝒙𝑉𝑖+1
)

are derived from the marginals 𝑃(𝒙𝑉𝑖
), the digraphs 𝐷𝑖 = (𝑉𝑖, 𝐴𝑖) and

their union 𝐷 = (𝑉 , 𝐴) are construed from the undireed graphs 𝐺𝑖.
More precisely, the direed edges ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑢, 𝑣) ∈ 𝐴𝑖 of the digraph 𝐷𝑖 are
defined using the undireed edges (𝑢, 𝑣) ∈ 𝐸𝑖 of 𝐺𝑖, with the direion
pointing from 𝑢 ∈ 𝑉𝑖+1 toward 𝑣 ∈ 𝑉𝑖 \ 𝑉𝑖+1. erefore the digraph 𝐷 =





 

(𝑉 , 𝐴) contains all the conditional independence information contained
by the colleion of graphs 𝐺𝑖 and additionally encodes the precedence
among its nodes.
is fa makes the digraph 𝐷 very useful both from a theoretical point

of view and as an element of a praical soware implementation. From
the theoretical standpoint, the digraph is the glue conneing the seem-
ingly disconneed laices 𝐺𝑖 and explaining the benefits of the entire
methodology. Equally importantly the fa that the dependency informa-
tion is encoded in a single struure of relative simplicity is of tremendous
help, because independently of how complex the coarsening algorithm
might be, its final produ is the digraph 𝐷.

. 

We have described how an arbitrary probability density 𝑃(𝒙𝑉 ) may be
described using the language of graphical models. We used this frame-
work to study the conditional independence relations between the vari-
ables of 𝒙𝑉 by encoding them using a dependency graph 𝐺 = (𝑉 , 𝐸). We
showed how marginalization affes the dependencies between variables
and used the dependency graph to follow those changes without the need
of computing the marginal probability distributions.
We used these developments to constru a class of algorithms for com-

puting symbolically a ladder of nested subsets 𝑉𝑖 and the related depen-
dency graphs 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), such that the knowledge of the marginal
density 𝑃(𝒙𝑉𝑖

) allows for efficient computation of the conditional proba-
bility density 𝑃(𝒙𝑉𝑖\𝑉𝑖+1

∣ 𝒙𝑉𝑖+1
).e variables may therefore be sampled

using the acyclic form of 𝑃(𝒙𝑉 ). Unfortunately, the exa algorithm for
computing the dependency graph is not feasible due to the extreme com-
putational cost of computing examarginal distributions. Instead, the de-
scribed class of algorithms performs an approximate calculation, requir-
ing the tuning of various components to suit the problem at hand. To
simplify the at times complex description, we provide below a suggested
algorithm that should be used as an initial choice.

.. Recommended algorithm

ere are four parts that need to be combined in order to constru a
working coarsening algorithm:

• independent set algorithm,

• reconneing algorithm,
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• stopping criterion,

• lateral densening,

with the last one being optional.
e choice of the algorithm for finding an independent set is fairly

clear, with the Algorithm . due to Prof. Richard M. Karp being both
fast, relatively straightforward and able to reproduce the expeed results
in the case of Cartesian laices.
e reconneing algorithm is used to decide which nodes of the newly

found set of nodes 𝑉𝑖+1 should be conneed by edges. In other words,
it aempts to decide which random variables in 𝒙𝑉𝑖+1

should affe each
other. While the vast literature on renormalization did not consider the
problem from the point of view of graphical models (Brandt and Ron,
b; Chorin, ), all published papers unwiingly chose to conne
nodes based on a distance criterion scaled by the smallest distance be-
tween nodes, with edges formed between nodes 𝑢, 𝑣 ∈ 𝑉𝑖+1 such that

𝜌(𝑢, 𝑣) ≤ 𝐶𝑖+1 min
𝑉𝑖+1

𝜌(𝑎, 𝑏).

erefore, we recommend that the same condition be used, with 𝜌 ∶ 𝑉 ×
𝑉 → ℝ being the natural metric typically associated with the problem
at hand, such as a 𝑝-metric for Cartesian latices. In cases where no such
metric exists, we recommend using the shortest path distance between
nodes 𝑢 and 𝑣 as computed on the original graph 𝐺 = (𝑉 , 𝐸).
e stopping criterion refers to the choice of the final laice 𝑉𝑚, at

which point the coarsening procedure ends with a marginal density
𝑃(𝒙𝑉𝑚

). Due to the fa that the graph 𝐺𝑚 = (𝑉𝑚, 𝐸𝑚) is not acyclic, we
recommend to end coarsening at a point when only a single variable re-
mains. is particular choice greatly simplifies the algorithm because the
state 𝒙𝑉𝑚

may be determined by sampling a single variable and the com-
putation of the marginal distribution 𝑃(𝒙𝑉𝑚

) is frequently particularly
straightforward.
Finally, the lateral densening may or may not be included. While it does

complicate the code due to the extra lateral recursion, in addition to the
already existing vertical one, we recommend that it is included in any
serious implementation. e costs associated with the need to compute
multiple marginal densities 𝑃 𝑗(𝒙𝑉𝑖

) may be reduced to those of comput-
ing only one such density, as explained in the later chapters. Additionally,
there exists a synergy with the particle filtering algorithm described in
Chapter , allowing one to reuse these marginal densities to further im-
prove sampling quality. Finally, the implementation difficulties may be





 

solved by requesting that the entire coarsening algorithm produce a Di-
reed Acyclic Graph (DAG) 𝐷 = (𝑉 , 𝐴) rather than a laice of graphs
𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), thus hiding the complexity of the coarsening procedure.
We recommend that one or two passes of the lateral densening be per-
formed, as further improvements are limited to affe no more than 1/16
of the variables in 𝒙𝑉𝑖

.
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4
MARG INAL IZAT ION

In the previous chapter, we studied the marginal density

𝑃(𝒙𝑈) = ∫ 𝑃(𝒙𝑈 , 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈 (.)

from the point of view of its graphical struure. We have found that
the conditional independence struure, thus also the faorization, of
the marginal probability density can be read from the dependency graph
𝐺𝑈 = (𝑈, 𝐸𝑈) obtained from the dependency graph 𝐺 = (𝑉 , 𝐸) describ-
ing the original probability distribution 𝑃(𝒙𝑉 ). For 𝑢, 𝑣 ∈ 𝑈 , the fa that
there is no edge conneing the two nodes direly, i.e. (𝑢, 𝑣) ∉ 𝐸𝑈 , im-
plies that the variables 𝑥𝑢 and 𝑥𝑣 are conditionally independent given the
remaining variables 𝒙𝑈\{𝑢,𝑣}, and can be wrien as

(𝑢, 𝑣) ∉ 𝐸𝑈 ⟹ 𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣ 𝒙𝑈\{𝑢,𝑣}.

is is equivalent to the fa that the probability density 𝑃(𝒙𝑈) faorizes
according to

𝑃(𝒙𝑈) = 1
𝑍𝑈

𝐹𝑢 (𝑥𝑢, 𝒙𝑈\{𝑢,𝑣}) 𝐹𝑣 (𝑥𝑣, 𝒙𝑈\{𝑢,𝑣}) .

Wewill find useful a corollary of the above, namely that for any𝑢 ∈ 𝑈 , the
set of neighbors 𝑁(𝑢) in the graph 𝐺𝑈 = (𝑈, 𝐸𝑈) shields the variable 𝑥𝑢
from the influence of the remaining variables. More rigorously, we may
write

𝑃(𝒙𝑈) = 1
𝑍𝑈

𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝐹𝛼(𝒙𝑈\𝑢) (.)

spliing the probability into two parts, with only 𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢)) depen-
dent on 𝑥𝑢. Armed with this observation, we move on to the main topic
of this chapter: the computation of an approximation to the marginal den-
sity 𝑃(𝒙𝑈) for any 𝑈 ⊆ 𝑉 .
Computing the marginal probability 𝑃(𝒙𝑈) from the definition (Equa-

tion .) is a futile enterprise in most situations, because the integral in-
volved is of very high dimensionality and the integrand is extremely com-
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plicated. Additionally, it would require re-computing the expensive inte-
gral for every value of 𝒙𝑈 , further increasing the computational costs.
An entirely different approach is needed and comes from the work of

Chorin, Hald, and Kupferman () on optimal prediion in the face of
unknown data (Chorin, ; Chorin, Hald, and Kupferman, , ;
Chorin and Stinis, ). ey noticed that the logarithmic derivative of
a probability density becomes an expeed value, a quantity much easier
to compute approximately than the marginal probability density. Chorin
() expanded upon this observation, creating the fast marginalization
method (Chorin, ; Okunev, ).
Because of the differences between the cases of distributions defined

over continuous and discrete variables, we will discuss them separately,
beginning with the continuous case.

.     

Consider a variable 𝑥𝑢 for 𝑢 ∈ 𝑈 ⊆ 𝑉 . By definition, the marginal
probability density 𝑃(𝒙𝑈) is

𝑃(𝒙𝑈) = 𝑃 (𝑥𝑢, 𝒙𝑈\𝑢) = ∫ 𝑃 (𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈 .

Make the mild assumption that 𝑃(𝒙𝑈) > 0. is allows us to define the
Hamiltonian 𝑊(𝒙𝑈) associated with the probability distribution 𝑃(𝒙𝑈)
by

𝑃(𝒙𝑈) = exp(𝑊(𝒙𝑈))/𝑍𝑈 .

Substituting it into the definition of the marginal density 𝑃(𝒙𝑈) yields

exp(𝑊(𝒙𝑈))/𝑍𝑈 = ∫ 𝑃(𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈 .

We apply the logarithmic derivative (𝜕/𝜕𝑥𝑢) ln to both sides,

𝜕
𝜕𝑥𝑢

[𝑊(𝑥𝑢, 𝒙𝑈\𝑢) − ln 𝑍𝑈]

= 𝜕
𝜕𝑥𝑢

[ln (∫ 𝑃(𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈)] ,
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obtaining

𝜕𝑊(𝑥𝑢, 𝒙𝑈\𝑢)
𝜕𝑥𝑢

=

𝜕
𝜕𝑥𝑢

∫ 𝑃 (𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈

∫ 𝑃(𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈

.

Simplifying further using Equation ., we have

𝜕𝑊(𝑥𝑢, 𝒙𝑈\𝑢)
𝜕𝑥𝑢

=

1
𝑍𝑉

∫
𝜕𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))

𝜕𝑥𝑢
𝐹𝛼(𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈

∫ 𝑃 (𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈

=
∫

𝜕𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))
𝜕𝑥𝑢

𝑃(𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)
𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))

𝑑𝒙𝑉 \𝑈

∫ 𝑃(𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈

= 𝔼 [
𝜕𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))

𝜕𝑥𝑢
/𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))∣𝒙𝑈] ,

which is a generalization of the primary result of Chorin (, ) and
Okunev ().
Henceforth we always use the Lagrange notation 𝑓 ′(𝑥𝑢) to imply a

derivative with respe to 𝑥𝑢. All other derivatives will be using the Leib-
nitz notation 𝜕𝑓(𝑥𝑢)/𝜕𝑥𝑢 to avoid confusion. e graphical struure of
the marginal probability distribution 𝑃(𝒙𝑈) discussed in Chapter  states
which variables among 𝒙𝑈 the derivative 𝑊 ′(𝑥𝑢, 𝒙𝑈\𝑢) may depend on.
We obtain the equivalent results here using an algebraic argument. Com-
pute the derivative 𝑊 ′(𝑥𝑢, 𝒙𝑈\𝑢) by taking a logarithmic derivative of
the marginal probability distribution 𝑃(𝒙𝑈). Using a spliing analogous
to that of Equation ., we obtain

𝑊 ′(𝑥𝑢, 𝒙𝑈\𝑢) = 𝜕
𝜕𝑥𝑢

ln 𝑃 (𝒙𝑈)

= 𝜕
𝜕𝑥𝑢

ln [ 1
𝑍𝑈

𝐹 𝑈
𝑢 (𝑥𝑢, 𝒙𝑁(𝑢))𝐹 𝑈

𝛼 (𝒙𝑁(𝑢), 𝒙𝑈\𝑁̄(𝑢))]

= 𝜕
𝜕𝑥𝑢

ln 𝐹 𝑈
𝑢 (𝑥𝑢, 𝒙𝑁(𝑢))

erefore, 𝑊 ′(𝑥𝑢, 𝒙𝑈\𝑢) is a funion of only 𝑥𝑢 and the variables
𝒙𝑁(𝑢) that are in the neighborhood of the node 𝑢 on the dependency







graph 𝐺𝑈 = (𝑈, 𝐸𝑈), a result consistent with the graphical arguments
of the previous chapter. us, we may write 𝑊 ′(𝑥𝑢, 𝒙𝑁(𝑢)) instead of
𝑊 ′(𝑥𝑢, 𝒙𝑈\𝑢).
is observation affes the choice of basis described in Seion ...

If 𝑊 ′(𝒙𝑈) were a funion of variables beyond 𝒙𝑁̄(𝑢), the probability
distribution 𝑃(𝒙𝑈) would not have a conditional independence struure
consistent with the graph 𝐺𝑈 = (𝑈, 𝐸𝑈). erefore, the approximation
of 𝑊 ′(𝒙𝑈) must respe these constraints.

.. Projeion

Let the veor spaces 𝑋𝑉 and 𝑋𝑈 be the spaces of funions of 𝒙𝑉 and
𝒙𝑈 , respeively. We wish to find an approximation of 𝑊 ′(𝒙𝑁̄(𝑢)) ∈ 𝑋𝑈
within the subspace 𝑋𝜙 ≤ 𝑋𝑈 of funions spanned by a basis 𝜙,

𝑓(𝒙𝑈) ∈ 𝑋𝜙 ⇒ 𝑓(𝒙𝑈) =
𝐾

∑
𝑖=1

𝑐𝑖𝜙𝑖(𝒙𝑈),

where 𝐾 = dim 𝑋𝜙 is the size of the basis and the dimension of the
subspace 𝑋𝜙. We leave the discussion of the particular choice of 𝜙 until
Seion ...
We want to find the best approximation in the least squares sense. We

define an inner produ through

⟨𝑓, 𝑔⟩ = ∫ 𝑓(𝒙𝑈)𝑔(𝒙𝑈)𝑃 (𝒙𝑈)
𝑄(𝒙𝑈)𝑑𝒙𝑈 , (.)

where 𝑄(𝒙𝑈) > 0 is a weight discussed in Seion ... We define the
distance between 𝑊 ′(𝒙𝑁̄(𝑢)) ∈ 𝑋𝑈 and its approximation 𝑊̂ ′(𝒙𝑁̄(𝑢)) ∈
𝑋𝜙 to be

𝜌(𝑊 ′, 𝑊̂ ′) = ||𝑊 ′ − 𝑊̂ ′||2

= ⟨𝑊 ′ − 𝑊̂ ′, 𝑊 ′ − 𝑊̂ ′⟩2

= ⟨𝑊 ′ −
𝐾

∑
𝑖=1

𝑐𝑖𝜙𝑖, 𝑊 ′ −
𝐾

∑
𝑖=1

𝑐𝑖𝜙𝑖⟩
2

.

is is minimal when

𝜕𝜌(𝑊 ′, 𝑊̂ ′)
𝜕𝑐𝑖

= 𝜕
𝜕𝑐𝑖

⟨𝑊 ′ −
𝐾

∑
𝑗=1

𝑐𝑗𝜙𝑗, 𝑊 ′ −
𝐾

∑
𝑗=1

𝑐𝑗𝜙𝑗⟩
2
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= −2 ⟨𝑊 ′ −
𝐾

∑
𝑗=1

𝑐𝑗𝜙𝑗, 𝜙𝑖⟩

= −2 [⟨𝑊 ′, 𝜙𝑖⟩ −
𝐾

∑
𝑗=1

𝑐𝑗 ⟨𝜙𝑗, 𝜙𝑖⟩] ,

are equal to zero for each 𝑖; thus, we obtain a set of 𝐾 linear equations

𝐾
∑
𝑗=1

𝑐𝑗⟨𝜙𝑗, 𝜙𝑖⟩ = ⟨𝑊 ′, 𝜙𝑖⟩.

Writing 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝐾) and 𝒃 = (𝑏1, 𝑏2, … , 𝑏𝐾) we obtain a linear
system 𝐴𝒄 = 𝒃, where 𝐴 = (𝐴𝑖𝑗), 𝐴𝑖𝑗 = ⟨𝜙𝑖, 𝜙𝑗⟩, is the 𝐾×𝐾 symmetric
positive definite Gram matrix for the basis 𝜙 and 𝑏𝑖 = ⟨𝑊 ′, 𝜙𝑖⟩.
We compute the terms 𝐴𝑖𝑗 and 𝑏𝑖 from the definition of the inner prod-

u. e simpler term of the two, 𝐴𝑖𝑗 becomes

𝐴𝑖𝑗 = ⟨𝜙𝑖, 𝜙𝑗⟩

= ∫ 𝜙𝑖(𝒙𝑈)𝜙𝑗(𝒙𝑈)𝑃 (𝒙𝑈)
𝑄(𝒙𝑈)𝑑𝒙𝑈

= ∫ 𝜙𝑖(𝒙𝑈)𝜙𝑗(𝒙𝑈)
𝑄(𝒙𝑈) 𝑃 (𝒙𝑉 )𝑑𝒙𝑉

= 𝔼 [𝜙𝑖(𝒙𝑈)𝜙𝑗(𝒙𝑈)
𝑄(𝒙𝑈) ] .

e crucial step in the derivation is the change from an expeed value
with respe to 𝑃(𝒙𝑈) to an expeed value with respe to the original
probability distribution 𝑃(𝒙𝑉 ). is allows us to approximate the inner
produ without the knowledge of the marginal density 𝑃(𝒙𝑈), but sim-
ply through sampling states 𝒙𝑉 from the original probability distribution
𝑃(𝒙𝑉 ).
e projeion veor 𝒃 presents us with a bit more difficulty.

𝑏𝑖 = ⟨𝑊 ′, 𝜙𝑖⟩

= ∫ 𝑊 ′(𝒙𝑁̄(𝑢))𝜙𝑖(𝒙𝑈)𝑃 (𝒙𝑈)
𝑄(𝒙𝑈)𝑑𝒙𝑈
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= ∫ 𝜙𝑖(𝒙𝑈)
∫

𝜕𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))
𝜕𝑥𝑢

𝑃(𝒙𝑉 )
𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))

𝑑𝒙𝑉 \𝑈

∫ 𝑃 (𝒙𝑉 )𝑑𝒙𝑉 \𝑈

𝑃(𝒙𝑈)
𝑄(𝒙𝑈)𝑑𝒙𝑈 .

e denominator is the marginal density of 𝒙𝑈 ,

∫ 𝑃(𝒙𝑉 )𝑑𝒙𝑉 \𝑈 = 𝑃(𝒙𝑈),

so that

𝑏𝑖 = ∫ 𝜙𝑖(𝒙𝑈)
𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑄(𝒙𝑈)

𝜕𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))
𝜕𝑥𝑢

𝑃(𝒙𝑉 )𝑑𝒙𝑉

= 𝔼 [ 𝜙𝑖(𝒙𝑈)
𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑄(𝒙𝑈)

𝜕𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))
𝜕𝑥𝑢

] .

Since this is an expeed value with respe to the original probability
density 𝑃(𝒙𝑉 ), sampling from the original model allows us to compute
the terms of the least squares equation.
e resulting linear system 𝐴𝒄 = 𝒃 can be solved using the Cholesky

decomposition 𝐴 = 𝐿𝐿T, the QR decomposition 𝐴 = 𝑄𝑅 or the Singu-
lar Value Decomposition 𝐴 = 𝑈Σ𝑉 T. Praice shows that for strongly
coupled systems, such as the Ising model with large 𝜇, the matrix 𝐴 is fre-
quently numerically singular. e QR or SV decompositions help handle
these degenerate cases gracefully. Using the solution veor 𝒄 we obtain
a series

𝑊̂ ′(𝒙𝑁̄(𝑢)) =
𝐾

∑
𝑖=1

𝑐𝑖𝜙𝑖(𝒙𝑁̄(𝑢)),

which can be integrated to obtain an approximation of the Hamiltonian
𝑊(𝒙𝑈), and hence of the marginal probability density 𝑃(𝒙𝑈).

.. e weight faor 𝑄(𝒙𝑈)

roughout the derivationswe have kept track of the faor 1/𝑄(𝒙𝑈) that
was present in the inner produ definition. e motivation for introduc-
ing 𝑄(𝒙𝑈) comes from the observation that the inner produ used in the
least squares approximation above is inherently biased.e weight is pro-
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portional to 𝑃(𝒙𝑈) and typically 𝑊 ′(𝒙𝑈) is small around the maximum
of 𝑃(𝒙𝑈), causing the bias in the approximation.
e bias is not present, however, when the basis 𝜙 is orthogonal with

respe to the inner produ.e use of an orthogonal basis has additional
advantages, because projeion onto an orthogonal basis 𝜙 would bemore
stable numerically, cheaper computationally, and would make the expan-
sion coefficients 𝒄 independent of the size of the basis. Unfortunately, due
to the weight faor 𝑃(𝒙𝑈), the orthogonal basis is problem dependent,
and in general, would have to be computed numerically. e orthogonal-
ization of the basis 𝜙 would necessarily reduce to the QR decomposition
(Francis, , ; Kublanovskaya, ; Кублановская, ) of the
Gram matrix 𝐴𝜙, leading to an orthogonal basis 𝜙′. Computing an up-
dated Gram matrix 𝐴𝜙′ using the same random samples as those used to
compute 𝐴𝜙′ indeed leads to a diagonal matrix, but it does not affe the
errors due to the use of a truncated basis. at is, although the funions
included in the basis 𝜙′ are orthogonal, the remaining funions that are
beyond the basis are not orthogonal to those in 𝜙′; therefore, their biasing
influence remains.
An improvement to the above is the use of a weight faor 𝑄(𝒙𝑈) that

partially eliminates the weight 𝑃(𝒙𝑈), at the cost of a broader weight
distribution. Using 𝑄(𝒙𝑈) = 𝑃(𝒙𝑈) would make the inner produ uni-
form and allow for the use of an orthogonal basis (Binney et al., ),
however the resulting weights would span an enormous range. Instead,
we note that using 𝑄(𝒙𝑈) = 𝑃(𝒙𝑁̄(𝑢)) also allows achieving a uniform
inner produ. Substituting this particular choice into the definition of the
inner produ from Equation . leads to

⟨𝑓, 𝑔⟩ = ∫ 𝑓(𝒙𝑁̄(𝑢))𝑔(𝒙𝑁̄(𝑢))
𝑃 (𝒙𝑈)

𝑃 (𝒙𝑁̄(𝑢))
𝑑𝒙𝑈

= ∫
𝑓(𝒙𝑁̄(𝑢))𝑔(𝒙𝑁̄(𝑢))

𝑃 (𝒙𝑁̄(𝑢))
(∫ 𝑃 (𝒙𝑈)𝑑𝒙𝑈\𝑁̄(𝑢)) 𝑑𝒙𝑁̄(𝑢)

= ∫ 𝑓(𝒙𝑁̄(𝑢))𝑔(𝒙𝑁̄(𝑢))𝑑𝒙𝑁̄(𝑢),

turning the weighted inner produ into a uniform inner produ for func-
tions of 𝒙𝑁̄(𝑢). is choice of 𝑄(𝒙𝑈) makes it possible to use an orthogo-
nal basis 𝜙 that is not specific to the statistical model under study.
e use of the weight faor 𝑄(𝒙𝑈) works differently from choosing a

numerically computed orthogonal basis using the QR decomposition.e
QR decomposition does not achievemore than simply solving the original
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linear system 𝐴𝜙𝒄 = 𝒃. On the other hand, the application of the faor
𝑄(𝒙𝑈) modifies the inner produ used and partially removes its bias.
e weight faor 𝑄(𝒙𝑈) does not have to be exa; in fa, using an ap-

proximate 𝑄(𝒙𝑈) = ̂𝑃 (𝒙𝑁̄(𝑢)), obtained e.g. using the fast marginaliza-
tion method, also leads to a marked improvement. However, the benefits
decay with the size of the neighborhood ̄𝑁(𝑢). Computing the marginal
of the set of nearest neighbors of the node 𝑢 is oen sufficient.
e computation of the 𝑄(𝒙𝑈) faor is frequently costly and adds com-

plexity to the fast marginalization method. For example, if the nearest
neighborhood ̄𝑁(𝑢) consisting of five nodes is used to compute the fac-
tor 𝑄(𝒙𝑈), the number of linear projeions to be performed grows by a
faor of five as well. However, we find that the use of this correion is
necessary to overcome the bias caused by the inner produ.

.. Choice of a basis

us far we have assumed that the basis 𝜙 is given. e choice of 𝜙 is
generally very straightforward, but with a few important caveats. We
open with the description of a polynomial basis and move on to discuss
requirements for the basis terms that may be used. Finally, we discuss
an algorithm that construs a basis given the information obtained by
the graph coarsening algorithm described in Chapter : the dependency
digraph 𝐷 = (𝑉 , 𝐴) and the colleion of subgraphs 𝐺𝑢 = ( ̄𝑁(𝑢), 𝐸𝑢)
for each 𝑢 ∈ 𝑉 .

... Basis funions

We use here basis funions which are monomials in 𝒙𝑁̄(𝑢), e.g.
𝑥𝑘𝑢𝑢 𝑥𝑘𝑣𝑣 𝑥𝑘𝑤𝑤 . e number of terms of order 𝑛 in 𝑚 variables is given by

#𝑛,𝑚 = (𝑛 + 𝑚 − 1
𝑚 − 1 ),

growing very quickly with the number of variables and the order of the
terms. e basis funions must be limited to low order monomials.
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... Integrability condition

e approximation 𝑊̂ ′(𝒙𝑁̄(𝑢)) of the derivative of the Hamiltonian
𝑊 ′(𝒙𝑁̄(𝑢)) must satisfy an important consistency condition to ensure
that a unique funion 𝑊̂ (𝒙𝑈) exists, such that

𝜕𝑊̂(𝒙𝑈)
𝜕𝑥𝑢

= 𝑊̂ ′(𝒙𝑁̄(𝑢))

for every 𝑢 ∈ 𝑈 . is integrability condition is equivalent to requiring
that the Hessian of 𝑊̂ (𝒙𝑈) be symmetric, that is,

𝜕
𝜕𝑥𝑣

𝜕𝑊̂(𝒙𝑁̄(𝑢))
𝜕𝑥𝑢

= 𝜕
𝜕𝑥𝑢

𝜕𝑊̂(𝒙𝑁̄(𝑣))
𝜕𝑥𝑣

for any 𝑢, 𝑣 ∈ 𝑈 . is is not immediately satisfied by the approximation
𝑊̂ ′ because the derivatives are obtained independently using a stochastic
algorithm.
With our choice of basis, the integrability condition translates into the

following two requirements. Denote the basis at nodes 𝑢, 𝑣 ∈ 𝑈 as 𝜙𝑢
and 𝜙𝑣, respeively; similarly, let 𝒄𝑢 and 𝒄𝑣 be the expansion coefficients
for the partial derivatives of 𝑊(𝒙𝑈) with respe to the variables 𝑥𝑢
and 𝑥𝑣. e first requirement is that if the basis 𝜙𝑢 contains a funion
𝜙𝑖 ∝ 𝑥𝑝−1

𝑢 𝑥𝑞
𝑣, then the basis 𝜙𝑣 must contain the funion 𝜙𝑗 ∝ 𝑥𝑝

𝑢𝑥𝑞−1
𝑣 .

Secondly, the coefficients 𝑐𝑢
𝑖 and 𝑐𝑣

𝑗 must satisfy

𝑐𝑢
𝑖
𝑝 = 𝑐𝑣

𝑗
𝑞 .

ese relations are a consequence of the theorem of Hammersley and
Clifford ():

eorem (Hammersley-Clifford). A probability distribution𝑃(𝒙𝑉 ) is both
(i) strily positive and (ii) respes the conditional independence struure
encoded by the graph 𝐺 = (𝑉 , 𝐸) if and only if it faors over the cliques
of 𝐺.

e requirement about the conditional independence struure can be
wrien as 𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣ 𝑥𝑉 \{𝑢,𝑣} if and only if (𝑢, 𝑣) ∉ 𝐸, while the faor-
ization means that one may write

𝑃(𝒙𝑉 ) = ∏
𝐶

𝐹𝐶(𝒙𝐶)
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for all subsets 𝐶 ⊂ 𝑉 for which the subgraph 𝐺|𝐶 is a clique. As a
corollary, the Hamiltonian 𝑊(𝒙𝑉 ) faors as

𝑊(𝒙𝑉 ) = ∑
𝐶

ln 𝐹𝐶(𝒙𝐶).

Since 𝑃(𝒙𝑈) > 0, by the Hammersley-Clifford theorem, we may write
that if (𝑢, 𝑣) ∈ 𝐸𝑈 , it follows that there exist terms of the form 𝑐𝑥𝑝

𝑢𝑥𝑞
𝑣

in the expansion of 𝑊(𝒙𝑈) in the basis Φ, where 𝑐 = 𝑐(𝒙𝑈\{𝑢,𝑣}) is
independent of 𝑥𝑢 and 𝑥𝑣. Take such a term and call it Φ𝑘 = 𝑐𝑥𝑝

𝑢𝑥𝑞
𝑣. e

terms 𝜕Φ𝑘/𝜕𝑥𝑢 = 𝑐𝑝𝑥𝑝−1
𝑢 𝑥𝑞

𝑣 and 𝜕Φ𝑘/𝜕𝑥𝑣 = 𝑐𝑞𝑥𝑝
𝑢𝑥𝑞−1

𝑣 must therefore
appear in the expansions of the partial derivatives of 𝑊(𝒙𝑈) with respe
to 𝑥𝑢 and 𝑥𝑣, respeively. Leing 𝜙𝑢

𝑖 = 𝑥𝑝−1
𝑢 𝑥𝑞

𝑣 and 𝜙𝑣
𝑗 = 𝑥𝑝

𝑢𝑥𝑞−1
𝑣 , we see

that they represent the same term in the expansion of 𝑊(𝒙𝑈), and thus
the coefficients 𝑐𝑢

𝑖 = 𝑐𝑝 and 𝑐𝑣
𝑗 = 𝑐𝑞 must satisfy the relationship above.

... Reduion by symmetry

Probabilisticmodels defined on regular laices frequently involve symme-
tries. For example, the Ising model on a square laice inherits the com-
plete set of symmetries of the underlying Cartesian laice: rotation by
𝜋/2, 𝜋 and 3𝜋/2, refleions about the major, 𝜋/4 and 3𝜋/4 axes, translation,
and their arbitrary compositions. Many basis funions can thus be seen
as images of each other under symmetry transformations.
Choose two cliques 𝐶, 𝐶′ ⊂ 𝑈 and constru two basis funions Φ𝐶

and Φ𝐶′ of the same funional form. If the clique 𝐶′ is an image of 𝐶
under the symmetry transformation 𝛾, wrien as 𝐶′ = 𝛾(𝐶), then the
two basis funions must be equivalent, that is, their coefficients in the ex-
pansion of 𝑊(𝒙𝑈) in the basis Φ must be equal. For example, in the Ising
model the only cliques are edges and all edges have the same coupling co-
efficient 𝜇, because each edge can be mapped onto any other edge by the
symmetry transformations.is observation allows one to link certain ba-
sis funions, because their expansion coefficients must be the same, thus
reducing the size of the needed basis.
E .. In the Ising model example, consider the linear basis func-
tions 𝑥𝑖+1,𝑗, 𝑥𝑖−1,𝑗, 𝑥𝑖,𝑗+1 and 𝑥𝑖,𝑗−1 appearing in the basis 𝜙 for the ex-
pansion of 𝜕𝑊(𝒙𝑈)/𝜕𝑥𝑖𝑗. By the Hammersley-Clifford theorem, these
basis funions correspond to the terms 𝑥𝑖𝑗𝑥𝑖+1,𝑗, 𝑥𝑖𝑗𝑥𝑖−1,𝑗, 𝑥𝑖𝑗𝑥𝑖,𝑗+1 and
𝑥𝑖𝑗𝑥𝑖,𝑗−1 appearing in the expansion of 𝑊(𝒙𝑈). e subsets of nodes 𝑈
these terms correspond to are clearly equivalent under symmetry trans-
formations and their basis coefficients must be equal. We combine them
into a single basis funion 𝑥𝑖+1,𝑗 + 𝑥𝑖−1,𝑗 + 𝑥𝑖,𝑗+1 + 𝑥𝑖,𝑗−1 that corre-
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Algorithm . Basis reduion algorithm using the equivalences between
basis funions due to symmetry transformations 𝛾.
function SR(𝜙, 𝛾)

𝜙′ = ∅
for all 𝜙𝑖 do

𝜓 ← 𝜙𝑖
𝜙 ← 𝜙 \ 𝜙𝑖
for all 𝛾𝑗 do

𝜙𝑗
𝑖 ← 𝛾𝑗(𝜙𝑖)

for all 𝜙𝑘 do
if 𝜙𝑗

𝑖 = 𝜙𝑘 then
𝜓 ← 𝜓 + 𝜙𝑘

end if
end for

end for
𝜙′ ← 𝜙′ ∪ 𝜓

end for
return 𝜙′

end function

sponds to the term 𝑥𝑖𝑗(𝑥𝑖+1,𝑗 + 𝑥𝑖−1,𝑗 + 𝑥𝑖,𝑗+1 + 𝑥𝑖,𝑗−1) in the expansion
of 𝑊(𝒙𝑈). We have reduced the basis by three funions without reduc-
ing the size of the subspace 𝑋𝜙. is reduion is not possible if the graph
𝐺𝑈 = (𝑈, 𝐸𝑈) is not symmetric, even if the original graph 𝐺 = (𝑉 , 𝐸)
was. ■

... Consistency and dependencies

e fa that the images of basis funions under symmetry transforma-
tions 𝜙𝑗

𝑖 = 𝛾𝑗(𝜙𝑖), defined in Algorithm ., may be funions of variables
beyond those of 𝒙𝑁̄(𝑢) is of crucial importance and is mentioned by Ron
and Swendsen (). Following their example, we make the point in a
simple context. Consider the Ising model and an approximate renormal-
ized graph 𝐺𝑈 = (𝑈, 𝐸𝑈) where the nodes 𝑈 form a regular laice and
edges are formed only between the nearest neighbors. Because of the as-
sumption made in the graph 𝐺𝑈 that the variable 𝑥𝑖𝑗 depends only on the
variables 𝑥𝑖+1,𝑗, 𝑥𝑖−1,𝑗, 𝑥𝑖,𝑗+1 and 𝑥𝑖,𝑗−1, a naive algorithm for constru-
ing the basis 𝜙 would produce a basis containing all the polynomials in
the neighboring variables,

1, 𝑥𝑖±1,𝑗, 𝑥𝑖,𝑗±1, 𝑥𝑖±1,𝑗𝑥𝑖,𝑗+1,
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𝑥𝑖±1,𝑗𝑥𝑖,𝑗−1, 𝑥𝑖+1,𝑗𝑥𝑖−1,𝑗, 𝑥𝑖,𝑗+1𝑥𝑖,𝑗−1,
𝑥𝑖+1,𝑗𝑥𝑖−1,𝑗𝑥𝑖,𝑗±1, 𝑥𝑖±1,𝑗𝑥𝑖,𝑗−1𝑥𝑖,𝑗+1,

where the absence of the variable 𝑥𝑖𝑗 is explained in later seions.
Consider the cubic funion 𝜙𝑘 = 𝑥𝑖+1,𝑗𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗 shown on Fig-
ure .. Because of the consistency requirement, the funion 𝜙′

𝑘 =
𝑥𝑖+1,𝑗𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗 must belong to the basis of the node 𝑥𝑖,𝑗+1. However,
the graph 𝐺𝑈 assumed that the variable 𝑥𝑖,𝑗+1 depends only on its
nearest neighbors 𝑥𝑖−1,𝑗+1, 𝑥𝑖+1,𝑗+1, 𝑥𝑖,𝑗+1 and 𝑥𝑖𝑗. Due to the consis-
tency requirements, the choice of a basis funion 𝑥𝑖+1,𝑗𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗 at
the node 𝑥𝑖𝑗 forces additional dependency relations between the nodes
𝑥𝑖,𝑗+1, 𝑥𝑖+1,𝑗 and 𝑥𝑖−1,𝑗 that are inconsistent with 𝐺𝑈 , because the edges
((𝑖, 𝑗 +1), (𝑖+1, 𝑗)), ((𝑖, 𝑗 +1), (𝑖−1, 𝑗)) and ((𝑖−1, 𝑗), (𝑖+1, 𝑗)) do
not belong to 𝐸𝑈 . erefore, the highest order basis funion consistent
with 𝐺𝑈 is the linear term. Inclusion of higher order terms leads to break-
ing the consistency requirement and thus lack of a Hamiltonian 𝑊̂ (𝒙𝑈)
consistent with the partial derivatives 𝑊̂ ′(𝒙𝑁̄(𝑢)), while expansion of the
basis to include the additional basis funions required by the consistency
requirement causes a break in the dependency graph 𝐺𝑈 . is is a funda-
mental failure, because the renormalized coupling coefficients obtained
using an inconsistent basis cannot be used to reliably approximate the
marginal probability 𝑃(𝒙𝑈). In praice it is found that an inconsistent
basis may bias the probability distribution of the Ising model so that only
states of positive magnetization have significant probability densities.
e solution to this troubling development is to respe the dependency

graph 𝐺𝑈 and remove the basis funions that would cause consistency
issues. Take the subgraph 𝐺𝑈 |𝑁̄(𝑢) consisting of the node 𝑢 and its neigh-
borhood. To ensure that the basis is consistentwith the dependency graph,
we allow only basis funions

𝜙𝑘 = ∏
𝑣∈𝐶

𝑥𝑘𝑣𝑣

such that the set 𝐶 is a clique of the subgraph 𝐺𝑈 |𝑁̄(𝑢). is requirement
guarantees that adding the above basis funion 𝜙𝑘 does not form addi-
tional edges in the dependency graph 𝐺𝑈 , because all possible edges be-
tween the variables 𝑣 ∈ 𝐶 already exist.erefore, the graph 𝐺𝑈 remains
unchanged and the basis 𝜙 is consistent.
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(a)

(b)

Figure .: e cubic basis funion (a) 𝑥𝑖+1,𝑗𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗 and its equivalent
funion, (b) 𝑥𝑖+1,𝑗+1𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗+1. e node 𝑥𝑖𝑗 is marked red,
while the remaining nodes of the particular basis funion are col-
ored blue.

... Praical basis construion algorithm

e above restriions placed on the possible basis choices are combined
to create an algorithm for construing a basis, described in Algorithm
.. e main feature of the algorithm is the outer loop. We loop over
the cliques of 𝐺𝑢 and consider each such clique 𝐶 separately. Within the
clique 𝐶 we are free to consider all combinations of variables 𝑥𝑣, 𝑣 ∈
𝐶 . We choose to form all possible monomials of variables 𝒙𝐶 that have
order smaller or equal to 𝑚, with the monomial defined by the powers
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Algorithm . Algorithm for construing a basis 𝜙 for 𝑊 ′(𝒙𝑈) at node
𝑢 ∈ 𝑈 .
function BC(𝐺𝑢 = 𝐺𝑈 |𝑁̄(𝑢), 𝑛, 𝑚, 𝑇𝑖, 𝛾)

𝜙 ← ∅
for all cliques 𝐶 ∈ 𝐺𝑢, |𝐶| ≤ 𝑛 do

for 𝑖 = 0 to 𝑚 do

for all 𝑘1, 𝑘2, … , 𝑘|𝐶| with
|𝐶|
∑
𝑗=1

𝑘𝑗 = 𝑖 do

𝐶′ = {𝑣𝑗 ∣ 𝑣𝑗 ∈ 𝐶 and 𝑘𝑗 > 0}
if 𝑟(𝐶′) < 𝑇𝑖 then

𝜙 ← 𝜙 ∪ ∏
𝑣𝑗∈𝐶′

𝑥𝑘𝑗
𝑣𝑗

end if
end for

end for
end for
𝜙 ← ED(𝜙)
𝜙 ← SR(𝜙, 𝛾)
return 𝜙

end function

𝑘1, 𝑘2, … , 𝑘|𝐶| as 𝑥𝑘1𝑣1 𝑥𝑘2𝑣2 … 𝑥𝑘|𝐶|
𝑣|𝐶| . Because the number of such monomials

may be very large, we allow only those that involve nodes forming a
sub-clique 𝐶′ of radius 𝑟(𝐶′) < 𝑇𝑖, where 𝑇𝑖 is the maximum radius
for monomials of order 𝑖.
eAlgorithm . will constru certain funionsmultiple times. Dupli-

cations will occur when two cliques 𝐶 and 𝐶′ have an interseion, with
the trivial interseion 𝐶 ∩𝐶′ = ∅ leading to the generation of a constant
funion once for each clique.e duplicate funions are eliminated once
the entire basis is formed. Reduion of the basis using symmetries is ap-
plied as the last step of Algorithm ..

.. Representation of the marginal probability

e fast marginalization method does not produce an approximation of
the marginal probability density 𝑃(𝒙𝑈) direly. Instead, it gives us an
approximation to the partial derivative of the Hamiltonian, 𝑊̂ ′(𝒙𝑁̄(𝑢)).
is approximationmay be used to compute various quantities of interest,
with different levels of difficulty. We discuss the three most important: (i)
the energy difference between two states 𝒙𝑈 and 𝒚𝑈 , (ii) the conditional
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probability of 𝑥𝑢 given the remaining variables 𝒙𝑈\𝑢, and (iii) the unnor-
malized marginal probability density 𝑃(𝒙𝑈).

... Energy difference

e energy difference between the states 𝒙𝑈 and 𝒚𝑈 is the difference in
the value of the Hamiltonian 𝑊 evaluated at the two states,

Δ𝑊(𝒙𝑈 , 𝒚𝑈) = 𝑊(𝒚𝑈) − 𝑊(𝒙𝑈).

is quantity is of interest, because it is the logarithm of the ratio of
probabilities of the states 𝒙𝑈 and 𝒚𝑈 ,

ln (𝑃(𝒚𝑈)
𝑃 (𝒙𝑈)) = ln 𝑃(𝒚𝑈) − ln 𝑃(𝒙𝑈)

= 𝑊(𝒚𝑈) − 𝑊(𝒙𝑈)
= Δ𝑊(𝒙𝑈 , 𝒚𝑈).

e ratio 𝑃(𝒚𝑈)/𝑃 (𝒙𝑈) appears in the Metropolis-Hastings probability
of accepting a proposed move 𝒙𝑈 → 𝒚𝑈

𝛼(𝒙𝑈 , 𝒚𝑈) = 𝑃(𝒚𝑈)𝑃 (𝒚𝑈 → 𝒙𝑈)
𝑃 (𝒙𝑈)𝑃 (𝒙𝑈 → 𝒚𝑈) ,

where 𝑃(𝒙𝑈 → 𝒚𝑈) is the proposal probability (Liu, ; Metropolis
et al., ; Robert and Casella, ). Our representation allows for an
efficient computation of Δ𝑊(𝒙𝑈 , 𝒚𝑈) when the change between 𝒙𝑈 and
𝒚𝑈 involves a single variable, that is, when

𝑥𝑈\𝑢 = 𝑦𝑈\𝑢 but 𝑥𝑢 ≠ 𝑦𝑢.

e single-variable energy difference Δ𝑢𝑊(𝒙𝑈\𝑢; 𝑥𝑢, 𝑦𝑢), representing
the difference in the value of the Hamiltonian Δ𝑊(𝒙𝑈\𝑢, 𝑥𝑢; 𝒙𝑈\𝑢, 𝑦𝑢) =
𝑊(𝒙𝑈\𝑢, 𝑦𝑢) − 𝑊(𝒙𝑈\𝑢, 𝑥𝑢), may be approximated by

Δ𝑢𝑊̂ (𝒙𝑈\𝑢; 𝑥𝑢, 𝑦𝑢) = ∫
𝑦𝑢

𝑥𝑢

𝑊̂ ′(𝒙𝑁(𝑢), 𝑠)𝑑𝑠

= ∫
𝑦𝑢

𝑥𝑢

𝐾
∑
𝑖=1

𝑐𝑖𝜙𝑖(𝒙𝑁(𝑢), 𝑠)𝑑𝑠

=
𝐾

∑
𝑖=1

𝑐𝑖 ∫
𝑦𝑢

𝑥𝑢

𝜙𝑖(𝒙𝑁(𝑢), 𝑠)𝑑𝑠.
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e general energy difference Δ𝑊(𝒙𝑈 , 𝒚𝑈) may be decomposed into a
sequence of single-variable energy differences and approximated by their
sum, a technique used later in this chapter to reconstru the marginal
probability density 𝑃(𝒙𝑈).

... Conditional probability

We are interested in a slightly modified form of the above energy dif-
ference. e Chapter  ended by construing a dependency digraph
𝐷 = (𝑉 , 𝐴), which may be used to write the probability density 𝑃(𝒙𝑉 )
in the acyclic form

𝑃(𝒙𝑉 ) = 𝑃(𝒙𝑉𝑚
) × 𝑃(𝑥𝑢|𝑉𝑚|+1

∣ 𝒙𝑁𝑝(𝑢|𝑉𝑚|+1))×
× … 𝑃(𝑥𝑢𝑖

∣ 𝒙𝑁𝑝(𝑢𝑖−1)) … × 𝑃(𝑥𝑢|𝑉 |
∣ 𝒙𝑁𝑃 (𝑢|𝑉 |−1)).

We would like to compute the conditional probability of 𝑥𝑢 given its di-
re predecessor variables 𝒙𝑁𝑝(𝑢), 𝑃(𝑥𝑢 ∣ 𝒙𝑁𝑝(𝑢)). Assuming that 𝑢 ∈ 𝑈 ,
𝑁𝑝(𝑢) ⊂ 𝑈 and that 𝑁(𝑢) ⊆ 𝑁𝑝(𝑢), where 𝑁(𝑢) is the set of neighbors
within the graph 𝐺𝑈 = (𝑈, 𝐸𝑈) while 𝑁𝑝(𝑢) is the set of dire prede-
cessor nodes of 𝑢 within the digraph 𝐷 = (𝑉 , 𝐴); we may compute this
conditional probability very efficiently from the definition

𝑃 (𝑥𝑢 ∣ 𝒙𝑁𝑝(𝑢)) =
𝑃(𝑥𝑢, 𝒙𝑈\𝑢)

∫ 𝑃(𝑡, 𝒙𝑈\𝑢)𝑑𝑡

=
𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝐹𝛼(𝒙𝑁(𝑢), 𝒙𝑈\𝑁̄(𝑢))/𝑍𝑈

∫ (𝐹𝑢(𝑡, 𝒙𝑁(𝑢))𝐹𝛼(𝒙𝑁(𝑢), 𝒙𝑈\𝑁̄(𝑢))/𝑍𝑈) 𝑑𝑡

=
𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))

∫ 𝐹𝑢(𝑡, 𝒙𝑁(𝑢))𝑑𝑡
.

Note that in this context we may use 𝑁𝑝(𝑢) and 𝑁(𝑢) interchangeably.
e funion 𝐹𝑢(𝑥𝑢, 𝒙𝑁𝑝(𝑢)), appearing earlier in Equation ., is the ex-
ponential of a local part 𝑊𝑢(𝑥𝑢, 𝒙𝑁(𝑢)) of the Hamiltonian 𝑊(𝒙𝑈), de-
fined below. Because the probability 𝑃(𝒙𝑈) faorizes as in Equation .,
so does its logarithm, allowing us to write

𝑊(𝒙𝑈) = 𝑊𝑢(𝑥𝑢, 𝒙𝑁(𝑢)) + 𝑊𝛼(𝒙𝑁(𝑢), 𝒙𝑈\𝑁̄(𝑢)). (.)





.     

It follows that 𝑊 ′(𝒙𝑈) = 𝑊 ′
𝑢(𝑥𝑢, 𝒙𝑁(𝑢)). We can therefore compute

𝑊𝑢(𝑥𝑢, 𝒙𝑁(𝑢)) up to an additive constant,

𝑊𝑢(𝑥𝑢, 𝒙𝑁(𝑢)) = ∫ 𝑊 ′
𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢 + 𝐶(𝒙𝑈\𝑢).

We fix the constant by seleing a reference value of 𝑥𝑢 = 𝑥∗. en,

𝑃(𝑥𝑢 ∣ 𝒙𝑁𝑝(𝑢)) =
𝐹𝑢(𝑥𝑢, 𝒙𝑁𝑝(𝑢))

∫ 𝐹𝑢(𝑡, 𝒙𝑁𝑝(𝑢))𝑑𝑡

𝐹𝑢(𝑥∗, 𝒙𝑁𝑝(𝑢))
𝐹𝑢(𝑥∗, 𝒙𝑁𝑝(𝑢))

=
𝐹𝑢(𝑥𝑢, 𝒙𝑁𝑝(𝑢))/𝐹𝑢(𝑥∗, 𝒙𝑁𝑝(𝑢))

∫ (𝐹𝑢(𝑡, 𝒙𝑁𝑝(𝑢))/𝐹𝑢(𝑥∗, 𝒙𝑁𝑝(𝑢))) 𝑑𝑡

=
exp (Δ𝑢𝑊(𝒙𝑈\𝑢; 𝑥∗, 𝑥𝑢))

∫ exp (Δ𝑢𝑊(𝒙𝑈\𝑢; 𝑥∗, 𝑡)) 𝑑𝑡
,

where Δ𝑢𝑊(𝒙𝑈\𝑢; 𝑥∗, 𝑥𝑢) is the single-variable energy difference de-
fined previously. Finally, we may write

̂𝑃 (𝑥𝑢 ∣ 𝒙𝑁𝑝(𝑢)) =
exp (

𝐾
∑
𝑖=1

𝑐𝑖 ∫
𝑥𝑢

𝑥∗
𝜙𝑖(𝒙𝑁𝑝(𝑢), 𝑠)𝑑𝑠)

∫ exp (
𝐾

∑
𝑖=1

𝑐𝑖 ∫
𝑡

𝑥∗
𝜙𝑖(𝒙𝑁𝑝(𝑢), 𝑠)𝑑𝑠) 𝑑𝑡

,

which is a self-contained formula for an approximate conditional proba-
bility of 𝑥𝑢 given the neighboring variables 𝒙𝑁𝑝(𝑢).

... Marginal probability

e reconstruion of the marginal probability 𝑃(𝒙𝑈) from the approxi-
mation of the derivative 𝑊 ′(𝒙𝑈) can be accomplished using the follow-
ing algorithm. Pick a particular state 𝒙∗

𝑈 such that 𝑃(𝒙∗
𝑈) > 0 and specify

that the Hamiltonian aains zero at 𝒙∗
𝑈 , that is 𝑊̂ (𝒙∗

𝑈) ≡ 0. While any
state 𝒙∗

𝑈 satisfying the above positivity constraint 𝑃(𝒙∗
𝑈) > 0 is allowed,
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numerically it is preferable that a state of average probability be seleed,
defined as a state 𝒙∗

𝑈 such that

𝒙∗
𝑈 = arg min

𝒙𝑈
(∫ 𝑊(𝒚𝑈) − 𝑊(𝒙𝑈)𝑑𝒚𝑈)

2
.

is choice ensures that the values of the exponential

exp (𝑊̂(𝒙𝑈)) ≈ exp (𝑊(𝒙𝑈) − 𝑊(𝒙∗
𝑈))

can be computed with minimum round-off error.
Given a choice of 𝒙∗

𝑈 , we constru a sequence of states {𝒚𝑖
𝑈} with

𝒚0
𝑈 = 𝒙∗

𝑈 and 𝒚𝑗
𝑈 = 𝒙𝑈 . e sequence {𝒚𝑖

𝑈} must have the property that
any two states 𝒚𝑖

𝑈 and 𝒚𝑖+1
𝑈 differ in the value of only a single variable

𝑥𝑣𝑖
. erefore,

Δ𝑊(𝒚𝑖
𝑈 , 𝒚𝑖+1

𝑈 ) = Δ𝑣𝑖
𝑊(𝒚𝑖

𝑈 ; 𝑦𝑖
𝑣𝑖

, 𝑦𝑖+1
𝑣𝑖

).

We may express the energy difference Δ𝑊(𝒙∗
𝑈 , 𝒙𝑈) as

Δ𝑊(𝒙∗
𝑈 , 𝒙𝑈) =

𝑗−1
∑
𝑖=0

Δ𝑣𝑖
𝑊(𝒚𝑖

𝑈 ; 𝑦𝑖
𝑣𝑖

, 𝑦𝑖+1
𝑣𝑖

),

giving a natural definition of 𝑊̂ (𝒙𝑈) as

𝑊̂ (𝒙𝑈) = 𝑊̂(𝒙∗
𝑈) + Δ𝑊̂(𝒙∗

𝑈 , 𝒙𝑈)

=
𝑗−1
∑
𝑖=0

Δ𝑣𝑖
𝑊̂ (𝒚𝑖

𝑈 ; 𝑦𝑖
𝑣𝑖

, 𝑦𝑖+1
𝑣𝑖

),

since 𝑊̂ (𝒙∗
𝑈) ≡ 0. Finally, the approximate marginal probability ̂𝑃 (𝒙𝑈)

is defined to be

̂𝑃 (𝒙𝑈) ≡ exp (𝑊̂(𝒙𝑈))/ ̂𝑍𝑈(𝒙∗
𝑈),

completing the reconstruion. While we do not know the value of the
normalizing constant ̂𝑍𝑈(𝒙∗

𝑈), its value is determined uniquely by the
choice of the state 𝒙∗

𝑈 and the approximation 𝑊̂ (𝒙𝑈).
In models considered in this thesis the above approach always produces Problems could appear if

𝑃(𝒙𝑈) were zero for
some states 𝒙𝑈 , because
then the Hamiltonian
𝑊(𝒙𝑈) would be infinite.

a well-defined probability density ̂𝑃 (𝒙𝑈). e process consists of a finite
number of steps, thus we do not need to worry about convergence of
the sum. More importantly, the assumption 𝑃(𝒙𝑉 ) > 0 implies that the
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Hamiltonian is always finite; therefore, independently of the choice of the
sequence {𝒚𝑖

𝑈}, the algorithm will never involve performing undefined
operations, such as ∞ − ∞. Because of this, the simplest path involving
changing components of 𝒙𝑈 in a pre-decided ordering will lead to a cor-
re reconstruion algorithm.

.     

e methods described earlier are mostly compatible with probability dis-
tributions defined over discrete variables, as the algorithms necessary for
graph coarsening and sampling are compatible with both discrete and
continuous variables. However, the fast marginalization algorithm seem-
ingly hits a wall when we need to take a derivative with respe to 𝑥𝑢. In
this seion we solve this difficulty by using differentiable extensions.

.. Projeion

We want to note that the issues involved in the application of the fast
marginalization method to discrete variables were observed earlier by
Okunev (), who suggested that the variables may be made contin-
uous one at a time, producing a hypercube with edges corresponding to
the continuous variables. However, both Okunev () and Chorin ()
assumed that the funion 𝑊 ′

𝑢(𝑥𝑢, 𝒙𝑁(𝑢)) obtained using fastmarginaliza-
tion is constant in the continuous variable 𝑥𝑢, which was not the case.

... Derivative projeion

We modify the fast marginalization method through the introduion of
a differentiable extension of 𝑃(𝒙𝑉 ), allowing for differentiation to take
place. roughout this seion we denote the differentiable extensions of
otherwise discrete funions using the tilde, e.g. the differentiable exten-
sion of 𝑃(𝒙𝑉 ) becomes ̃𝑃 (𝒙𝑉 ).
Assume the probability distribution funion 𝑃(𝒙𝑉 ) and its marginal

𝑃(𝒙𝑈) are defined over discrete variables. Integrals are to be understood
as summation over the relevant variables. For 𝑢 ∈ 𝑈 , extend the variable
𝑥𝑢 to the real line, changing notation from 𝑥𝑢 to 𝜒𝑢 to refle this change.
We define a differentiable extension ̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈) of the original
probability density 𝑃(𝒙𝑉 ) such that

̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈) = 𝑃(𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈),
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that is the differentiable extension equals 𝑃(𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈) whenever
the continuous variable 𝜒𝑢 takes one of the original, discrete values.
Having chosen the interpolant ̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈) defining the differ-

entiable extension, we obtain the differentiable extension of the marginal
probability ̃𝑃 (𝒙𝑈) through

̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢) = ∫ ̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈 .

e differentiable extension ̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈) uniquely determines the
differentiable extension of the marginal probability distribution, which in
general is a non-linear funion of the continuous variable 𝜒𝑢. We notice
that ̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢) is an interpolant of 𝑃(𝑥𝑢, 𝒙𝑈\𝑢), since for a discrete 𝜒𝑢
taking one of the original values we have

̃𝑃 (𝑥𝑢, 𝒙𝑈\𝑢) = ∫ ̃𝑃 (𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈

= ∫ 𝑃(𝑥𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈

= 𝑃(𝑥𝑢, 𝒙𝑈\𝑢).

However, while the interpolant used to define ̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈) may
be a low-order funion of 𝜒𝑢, the marginal distribution ̃𝑃 (𝑥𝑢, 𝒙𝑈\𝑢) will
typically be a highly non-linear funion of 𝜒𝑢.
e derivation of the fast marginalization equation follows direly the

steps discussed in Seion ., wherewe use the differentiable extension in
place of the probability distribution funion. Denoting the differentiable
extension of 𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢)) of Equation . as ̃𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢)), the final
result becomes

𝜕𝑊̃(𝜒𝑢, 𝒙𝑈\𝑢)
𝜕𝜒𝑢

= 𝔼 ⎡⎢
⎣

𝜕 ̃𝐹𝑢(𝜒𝑢, 𝒙𝑉 \𝑢)
𝜕𝜒𝑢

/ ̃𝐹𝑢(𝜒𝑢, 𝒙𝑉 \𝑢)∣𝒙𝑈
⎤⎥
⎦

,

which is precisely equivalent to that obtained for the continuous variables.
erefore, we may approximate 𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢) through fast marginaliza-
tion.
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In a step absent from the continuous case, we recover the discrete
𝑊(𝑥𝑢, 𝒙𝑈\𝑢) by integrating 𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢) between the original discrete
values, obtaining

Δ𝑢𝑊(𝒙𝑈\𝑢; 𝑎, 𝑏) = ∫
𝑏

𝑎
𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢)𝑑𝜒𝑢

= 𝑊̃(𝑏, 𝒙𝑈\𝑢) − 𝑊̃(𝑎, 𝒙𝑈\𝑢)
= 𝑊(𝑏, 𝒙𝑈\𝑢) − 𝑊(𝑎, 𝒙𝑈\𝑢)

for two discrete values 𝑎 and 𝑏 of 𝑥𝑢. Because the value of the inte-
gral is fixed, the method does not depend on the particular form of
the differentiable extension (cf. Seion ..). Although the funion
𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢) will depend on the choice of the differentiable extension

̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢, 𝒙𝑉 \𝑈), the integral will not. However, we stress that the val-
ues of the funion 𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢) are not independent of the choice of
interpolant, which has a major influence on the performance of the nu-
merical method.

... Natural interpolants

e probability distribution 𝑃(𝒙𝑉 ) may be interpolated in multiple ways.
If the variable 𝑥𝑢 takes only two values, 𝑥𝑢 ∈ {𝑎, 𝑏}, the probability
distribution may be interpolated linearly as

̃𝑃 (𝜒𝑢, 𝒙𝑉 \𝑈) = (1 − 𝜒𝑢 − 𝑎
𝑏 − 𝑎 ) 𝑃(𝑎, 𝒙𝑉 \𝑈) + 𝜒𝑢 − 𝑎

𝑏 − 𝑎 𝑃(𝑏, 𝒙𝑉 \𝑈),

which can be differentiated with respe to 𝜒𝑢, yielding

𝜕 ̃𝑃 (𝜒𝑢, 𝒙𝑉 \𝑈)
𝜕𝜒𝑢

= 1
𝑏 − 𝑎 (𝑃(𝑏, 𝒙𝑉 \𝑈) − 𝑃(𝑎, 𝒙𝑉 \𝑈)) .

is formula may then be used direly in the above fast marginalization
equation. However, frequently there exists a natural interpolant, since the
probability distribution 𝑃(𝒙𝑉 ) is defined through a formula that may
be extended to continuous variables; therefore, the formula as as the
interpolant. For example, in case of the Ising model we have

𝑃(𝒙𝑁̄(𝑢)) ∝ exp (𝜇𝑥𝑢 ∑
𝑣∈𝑁(𝑢)

𝑥𝑣) ,
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which may be trivially extended to continuous values by replacing 𝑥𝑢
with 𝜒𝑢, giving

𝜕 ̃𝐹𝑢(𝜒𝑢, 𝒙𝑉 \𝑢)
𝜕𝜒𝑢

/ ̃𝐹𝑢(𝜒𝑢, 𝒙𝑉 \𝑢) = 𝜇 ∑
𝑣∈𝑁(𝑢)

𝑥𝑣.

is choice reduces the method above to that of Chorin (, ) and
Okunev ().

.. Choice of a basis

Having explained the machinery used to taking a derivative
𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢), we return to the question of how 𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢) should be
represented and introduce the mixed continuous-discrete representation.

.. Mixed projeion

While the variables 𝒙𝑁(𝑢) remain discrete, the variable 𝜒𝑢 is continuous.
It does not have the same limits in terms of indistinguishableness of poly-
nomials, therefore the complete basis for the funions of 𝜒𝑢 and 𝒙𝑁(𝑢) is
the outer produ

𝜙 = {1, 𝜒𝑢, 𝜒2
𝑢, 𝜒3

𝑢, … , 𝜒𝑚
𝑢 } ⊗ {1, 𝑥𝑣1

}
⊗ {1, 𝑥𝑣2

} ⊗ … ⊗ {1, 𝑥𝑣|𝑁(𝑢)|
}

for 𝑣1, 𝑣2, … , 𝑣|𝑁(𝑢)| ∈ 𝑁(𝑢). However, aer computing the expansion,
we are only interested in the energy difference

Δ𝑢𝑊(𝒙𝑈\𝑢; 𝑎, 𝑏) = 𝑊(𝑥𝑢 = 𝑏, 𝒙𝑈\𝑢) − 𝑊(𝑥𝑢 = 𝑎, 𝒙𝑈\𝑢)

= ∫
𝑏

𝑎
𝑊̃ (𝜒𝑢, 𝒙𝑁(𝑢))𝑑𝜒𝑢.

erefore, the basis funions {1, 𝜒𝑢, 𝜒2
𝑢, 𝜒3

𝑢, … , 𝜒𝑚
𝑢 } are immediately in-

tegrated out, suggesting that a more efficient approach may be employed.

... Mixed representation

Numerical integration of a funion requires us that we know its value at a
set of quadrature modes.erefore, instead of representing 𝑊̃ (𝜒𝑢, 𝒙𝑁(𝑢))
continuously at all possible values of 𝜒𝑢 we find a set of approximations





.     

for 𝜒𝑢 taking values from the set of quadrature nodes {𝑡1, 𝑡2, … , 𝑡𝑛}. In
other words, instead of the series

𝑊̂ ′(𝜒𝑢, 𝒙𝑁(𝑢)) = ∑
𝑖

𝑐𝑖𝜙𝑖(𝜒𝑢, 𝒙𝑁(𝑢))

we will expand 𝑊̃ (𝜒𝑢, 𝒙𝑁(𝑢)) in a series

𝑊̂ ′(𝜒𝑢, 𝒙𝑁(𝑢)) = ∑
𝑖

𝑐𝑖(𝜒𝑢)𝜙𝑖(𝒙𝑁(𝑢)),

capturing the continuity of the variable 𝜒𝑢 in the expansion coefficients.
us, the basis 𝜙 is composed of funions of the discrete variables 𝒙𝑁(𝑢)
only.
At each integration node we find a set of coefficients 𝒄(𝑡𝑗) that repre-

sents the closestmatch to 𝑊̃ ′(𝑡𝑗, 𝒙𝑁(𝑢)).en, the discrete approximation
to the difference Δ𝑢𝑊(𝒙𝑈\𝑢; 𝑎, 𝑏) becomes

Δ𝑢𝑊(𝒙𝑈\𝑢; 𝑎, 𝑏) = 𝑊(𝑥𝑢 = 𝑏, 𝒙𝑈\𝑢) − 𝑊(𝑥𝑢 = 𝑎, 𝒙𝑈\𝑢)

= ∫
𝑏

𝑎
𝑊̃ (𝜒𝑢, 𝒙𝑁(𝑢))𝑑𝜒𝑢

= ∫
𝑏

𝑎
∑

𝑖
𝑐𝑖(𝜒𝑢)𝜙𝑖(𝒙𝑁(𝑢))𝑑𝜒𝑢

= ∑
𝑖

𝜙𝑖(𝒙𝑁(𝑢)) ∫
𝑏

𝑎
𝑐𝑖(𝜒𝑢)𝑑𝜒𝑢

≈ ∑
𝑖

𝜙𝑖(𝒙𝑁(𝑢)) ∑
𝑗

𝑐𝑖(𝑡𝑗)𝑤𝑗

where the integrals of the coefficients 𝑐𝑖(𝜒𝑢) are approximated using an
appropriate quadrature rule composed of the integration nodes 𝑡𝑗 and
weights 𝑤𝑗. erefore, we eliminate the continuous variable 𝜒𝑢, recover-
ing a discrete approximation of the Hamiltonian 𝑊(𝒙𝑈).

... Node-wise approximation via fast marginalization

e fast marginalization performs a linear least squares projeion of the
funion

ℱ(𝜒𝑢, 𝒙𝑁(𝑢)) =
𝜕𝑊̃(𝜒𝑢, 𝒙𝑈\𝑢)

𝜕𝜒𝑢
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= 𝔼 ⎡⎢
⎣

𝜕 ̃𝐹𝑢(𝜒𝑢, 𝒙𝑁(𝑢)
𝜕𝜒𝑢

/ ̃𝐹𝑢(𝜒𝑢, 𝒙𝑁(𝑢))∣𝒙𝑈
⎤⎥
⎦

onto a basis 𝜙. As with continuous variables, we must develop a suitable
inner produ that will allow us to perform this projeion node-wise, i.e.,
separately for each value 𝜒𝑢 = 𝑡𝑗. We want to turn the conditional ex-
peation above into expeed values with respe to the original proba-
bility distribution 𝑃(𝒙𝑉 ); however, in the case of discrete variables we
face the additional difficulty that the variable 𝑥𝑢 has been made contin-
uous, requiring sampling from the differentiable extension ̃𝑃 (𝜒𝑢, 𝒙𝑉 \𝑢).
We solve this issue below using an approach akin to importance sampling.

Consider finding the optimal approximation of the funion
ℱ(𝜒𝑢, 𝒙𝑈\𝑢) in the least squares sense for a fixed value 𝜒𝑢 = 𝑡𝑗. We
proje it on a basis 𝜙 of funions of 𝒙𝑁(𝑢), thus requiring the inner
produ to be

⟨𝑓, 𝑔⟩𝜒𝑢
= ∫ 𝑓(𝑠, 𝒙𝑈\𝑢)𝑔(𝑠, 𝒙𝑈\𝑢)

̃𝑃 (𝑠, 𝒙𝑈\𝑢)𝛿(𝑠 − 𝜒𝑢)
𝑄(𝑠, 𝒙𝑈\𝑢) 𝑑𝑠𝑑𝒙𝑈\𝑢

= ∫ 𝑓(𝜒𝑢, 𝒙𝑈\𝑢)𝑔(𝜒𝑢, 𝒙𝑈\𝑢)
̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢)

𝑄(𝜒𝑢, 𝒙𝑈\𝑢)𝑑𝒙𝑈\𝑢.

Following the derivation of the projeion equation from Seion .., we
compute the Grammatrix 𝐴(𝜒𝑢) and the right hand side projeion veor
𝒃(𝜒𝑢), which are now funions of the continuous variable 𝜒𝑢. e Gram
matrix becomes

𝐴𝑖𝑗(𝜒𝑢) = 𝔼
⎡
⎢⎢
⎣

𝜙𝑖(𝒙𝑁(𝑢))𝜙𝑗(𝒙𝑁(𝑢))
𝑄(𝜒𝑢, 𝒙𝑈\𝑢)

̃𝐹𝑢(𝜒𝑢, 𝒙𝑁(𝑢))

∫ 𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢

⎤
⎥⎥
⎦

.

Similarly, the formula for the right hand side projeion veor 𝒃(𝜒𝑢) is
found to be

𝑏𝑖(𝜒𝑢) = 𝔼
⎡
⎢⎢⎢
⎣

𝜙𝑖(𝒙𝑁(𝑢))
𝑄(𝜒𝑢, 𝒙𝑈\𝑢)

𝜕 ̃𝐹𝑢(𝜒𝑢, 𝒙𝑁(𝑢))
𝜕𝜒𝑢

∫ 𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢

⎤
⎥⎥⎥
⎦

.

ese equations show a remarkable feature. At the cost of an additional
faor of (∫ 𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢)−1 we turned the equations requiring sam-
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Algorithm . Algorithm for computing the fast marginalization approx-
imation of the energy difference 𝑊(𝑏, 𝒙𝑈\𝑢) − 𝑊(𝑎, 𝒙𝑈\𝑢) using mixed
projeion. We assume that all variables 𝒙𝑈 have specified bases 𝜙𝑢 of
size 𝐾𝑢 = |𝜙𝑢|.
procedure MP(𝜙𝑢, 𝑡𝑗)

for all variables and quadrature nodes do
𝐴𝑢(𝑡𝑗) ← (𝐾𝑢, 𝐾𝑢)
𝒃𝑢(𝑡𝑗) ← (𝐾𝑢)

end for

for all samples do
𝒙𝑉 , 𝑤 ← 
for all 𝑢 and 𝑡𝑗 do

𝑤′ ← 𝑤/∫ 𝐹(𝒙𝑉 \𝑢, 𝑥𝑢)𝑑𝑥𝑢

𝒗 ← (𝜙𝑢, 𝒙𝑁(𝑢))
𝒃𝑢(𝑡𝑗) ← 𝒃𝑢(𝑡𝑗) + 𝑤′ ̃𝐹 ′(𝒙𝑉 \𝑢, 𝑡𝑗)𝒗
𝐴𝑢(𝑡𝑗) ← 𝐴𝑢(𝑡𝑗) + 𝑤′ ̃𝐹 (𝒙𝑉 \𝑢, 𝑡𝑗)𝒗𝒗T

end for
end for

for all 𝑢 and 𝑡𝑗 do
𝒄𝑢(𝑡𝑗) ← 𝐴−1

𝑢 (𝑡𝑗)𝒃𝑢(𝑡𝑗)
end for

for all 𝑢 and 𝑡𝑗 do
𝒄𝑢 ← ∑𝑗 𝑤𝑗𝑐𝑢(𝑡𝑗)

end for
end procedure

pling from an extendedmodel with continuous variable 𝜒𝑢 into the above,
requiring only samples from the original distribution 𝑃(𝒙𝑉 ). erefore,
the funions 𝐴(𝜒𝑢) and 𝒃(𝜒𝑢) may be determined simultaneously us-
ing the same set of random samples, differing only in the 𝜒𝑢 dependent
weights. e resulting procedure is summarized as Algorithm ..

.. Symmetrization

Frequently, the probabilistic model has a great deal of symmetries due
to various physical properties. ese physical symmetries manifest them-
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selves as symmetries of the Hamiltonian 𝑊(𝒙𝑉 ). For example, the Ising
Hamiltonian in the absence of an external magnetic field,

𝑊Ising(𝒙𝑉 ) = 𝜇
2 ∑

𝑢∈𝑉
𝑥𝑢 ∑

𝑣∈𝑁(𝑢)
𝑥𝑣,

has even symmetry in 𝒙𝑉 , since 𝑊Ising(𝒙𝑉 ) = 𝑊Ising(−𝒙𝑉 ). us, odd
funions — such as linear, cubic or quintic polynomials — cannot ap-
pear in the expansion of 𝑊Ising(𝒙𝑉 ). Similarly, the marginal Hamiltonian
𝑊(𝒙𝑈) defined for the Ising model e lack of the minus sign

is due to the change in
integration limits.

𝑊(𝒙𝑈) = ln (∫ e𝑊Ising(𝒙𝑈,𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈) + ln 𝑍𝑈

= ln (∫ e𝑊Ising(−𝒙𝑈,−𝒙𝑉 \𝑈)𝑑𝒙𝑉 \𝑈) + ln 𝑍𝑈

= ln (∫ e𝑊Ising(−𝒙𝑈,𝒚𝑉 \𝑈)𝑑𝒚𝑉 \𝑈) + ln 𝑍𝑈

= 𝑊(−𝒙𝑈)

is also even. e differentiable extension 𝑊̃ (𝜒𝑢, 𝒙𝑈\𝑢) similarly is even,
making its derivative odd,

𝜕𝑊̃(−𝜒𝑢, 𝒙𝑈\𝑢)
𝜕𝜒𝑢

= 𝜕(−𝜒𝑢)
𝜕𝜒𝑢

𝜕𝑊̃(−𝜒𝑢, 𝒙𝑈\𝑢)
𝜕(−𝜒𝑢)

= −
𝜕𝑊̃(−𝜒𝑢, 𝒙𝑈\𝑢)

𝜕(−𝜒𝑢)

= −
𝜕𝑊̃(𝜒𝑢, 𝒙𝑈\𝑢)

𝜕𝜒𝑢
.

erefore, the expansion of 𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢) may only consist of odd func-
tions.
In the case of continuous variables we could simply remove the irrele-

vant, even funions from the basis 𝜙; however, in the mixed projeion
approach we break this symmetry by fixing the value of 𝜒𝑢. us the ex-
pansion of 𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢) in funions of 𝒙𝑈\𝑢 is asymmetric. Consider
the expansion

𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢) = ∑
𝑖

𝑐e
𝑖 (𝜒𝑢)𝜙e

𝑖(𝒙𝑈\𝑢) + ∑
𝑖

𝑐o
𝑖 (𝜒𝑢)𝜙o

𝑖 (𝒙𝑈\𝑢),
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where we split the basis into even and odd parts 𝜙e
𝑖 and 𝜙o

𝑖 , respeively.
Using the odd symmetry of 𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢),

𝑊̃ ′(𝜒𝑢, 𝒙𝑈\𝑢) = −𝑊̃ ′(−𝜒𝑢, −𝒙𝑈\𝑢),

we obtain

∑
𝑖

𝑐e
𝑖 (𝜒𝑢)𝜙e

𝑖(𝒙𝑈\𝑢) + ∑
𝑖

𝑐o
𝑖 (𝜒𝑢)𝜙o

𝑖 (𝒙𝑈\𝑢)

= − ∑
𝑖

𝑐e
𝑖 (−𝜒𝑢)𝜙e

𝑖(−𝒙𝑈\𝑢) − ∑
𝑖

𝑐o
𝑖 (−𝜒𝑢)𝜙o

𝑖 (−𝒙𝑈\𝑢).

We eliminate −𝒙𝑈\𝑢 with the help of the even and odd symmetries of 𝜙e
𝑖

and 𝜙o
𝑖 , respeively, and equate terms to find

𝜙e
𝑖(𝒙𝑈\𝑢) ∶ 𝑐e

𝑖 (𝜒𝑢) = −𝑐e
𝑖 (−𝜒𝑢),

𝜙o
𝑖 (𝒙𝑈\𝑢) ∶ 𝑐o

𝑖 (𝜒𝑢) = 𝑐o
𝑖 (−𝜒𝑢).

erefore, the even basis funion coefficients 𝑐o
𝑖 (𝜒𝑢) must be odd func-

tions of 𝜒𝑢, while the odd basis funion coefficients 𝑐o
𝑖 (𝜒𝑢) must be even.

Although the coefficients for the irrelevant even basis funions are non-
zero, they integrate out to zero when the discrete Hamiltonian 𝑊(𝒙𝑈)
is reconstrued. ey are important and must be included in the basis,
yet their computation is an ultimately lost effort. In this seion we dis-
cuss a way of symmetrizing the inner produ and the projeed funion
ℱ(𝜒𝑢, 𝒙𝑁(𝑢)) to ensure that the irrelevant part is discarded and the odd
symmetric part remains conserved.
e method described here amounts to spliing the funion

ℱ(𝜒𝑢, 𝒙𝑁(𝑢)) into parts that are even and odd symmetric in 𝜒𝑢,

ℱ(𝜒𝑢, 𝒙𝑁(𝑢)) = 1
2 (ℱ(𝜒𝑢, 𝒙𝑁(𝑢)) + ℱ(−𝜒𝑢, 𝒙𝑁(𝑢)))

+ 1
2 (ℱ(𝜒𝑢, 𝒙𝑁(𝑢)) − ℱ(−𝜒𝑢, 𝒙𝑁(𝑢))) ,

then projeing the former, since we are interested in the coefficients
𝑐e

𝑖 (𝜒𝑢) that are even in 𝜒𝑢. However, both could be projeed and the
resulting method remains applicable to general models, where it may be
used to lower the computational cost of this method by a half. Presently
we restri ourselves to the case when the relevant part of ℱ(𝜒𝑢, 𝒙𝑁(𝑢))
has an odd symmetry.
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... Partial symmetrization

e main part of the algorithm that we have assumed to be set in stone is
the projeed funion. In all cases, we considered the approximation of

ℱ(𝜒𝑢, 𝒙𝑁(𝑢)) =
𝜕𝑊̃(𝜒𝑢, 𝒙𝑈\𝑢)

𝜕𝜒𝑢

or the equivalent formula in the case of continuous variables. However,
since the relevant part of ℱ(𝜒𝑢, 𝒙𝑁(𝑢)) is even in 𝜒𝑢, we may proje only
its even part,

ℱe(𝜒𝑢, 𝒙𝑁(𝑢)) = 1
2 (ℱ(𝜒𝑢, 𝒙𝑁(𝑢)) + ℱ(−𝜒𝑢, 𝒙𝑁(𝑢))) .

e result is that the basis 𝜙 may be limited to include only odd funions
of 𝒙𝑁(𝑢), reducing the size of the matrix 𝐴(𝜒𝑢) by a faor of approxi-
mately four.
Define a correion faor ℛ(𝜒𝑢, 𝒙𝑁(𝑢)) through

ℛ(𝜒𝑢, 𝒙𝑁(𝑢)) =
̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢)

̃𝑃 (−𝜒𝑢, 𝒙𝑈\𝑢)

= exp (∫
𝜒𝑢

−𝜒𝑢

𝑊 ′(𝑠, 𝒙𝑁(𝑢))𝑑𝑠) .

Substituting into the formula for the right hand side veor 𝒃(𝜒𝑢), we
obtain

𝑏𝑖(𝜒𝑢) = 1
2𝔼 [

𝜙𝑖(𝒙𝑁(𝑢))
𝑄(𝜒𝑢, 𝒙𝑈\𝑢)

1
∫ 𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢

× (
𝜕 ̃𝐹𝑢(𝜒𝑢, 𝒙𝑁(𝑢))

𝜕𝜒𝑢

+ℛ(𝜒𝑢, 𝒙𝑁(𝑢))
𝜕 ̃𝐹𝑢(−𝜒𝑢, 𝒙𝑁(𝑢))

𝜕𝜒𝑢
)] . (.)

erefore, at the cost of computing a weight funion of 𝜒𝑢 and the neigh-
boring variables 𝒙𝑁(𝑢) we may now proje the odd symmetric part of
ℱ(𝜒𝑢, 𝒙𝑁(𝑢)). is allows us to use only the odd polynomials as the basis,
reducing the size of the basis by a faor of approximately two and, more
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importantly, the size of the matrix 𝐴(𝜒𝑢) by a faor of approximately
four.

... Full symmetrization

We notice that the Equation . detailing the partial symmetrization of
the projeed funion ℱ(𝜒𝑢, 𝒙𝑁(𝑢)) is asymmetric in the correion. e
symmetrizing term ℛ(𝜒𝑢, 𝒙𝑁(𝑢)) is only applied to the ℱ(−𝜒𝑢, 𝒙𝑁(𝑢))
part of the formula, possibly leading to a bias due to the approxima-
tions used. In the present seion we develop a fully symmetrized pro-
jeion, where both the projeed funion ℱ(𝜒𝑢, 𝒙𝑁(𝑢)) and the weight

̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢) are symmetrized.
e lack of symmetry in Equation . arises because the weight coming

from the inner produ contained a term 𝑃 (𝜒𝑢, 𝒙𝑁(𝑢)), i.e., was positive
in 𝜒𝑢. erefore, let us employ an inner produ even in 𝜒𝑢, defined as

⟨𝑓, 𝑔⟩𝜒𝑢
= ∫ 𝑓(𝑠, 𝒙𝑈\𝑢)𝑔(𝑠, 𝒙𝑈\𝑢)

×
̃𝑃 (𝑠, 𝒙𝑈\𝑢)

𝑄(𝑠, 𝒙𝑈\𝑢)
𝛿(𝑠 − 𝜒𝑢) + 𝛿(𝑠 + 𝜒𝑢)

2 𝑑𝑠𝑑𝒙𝑈\𝑢

= 1
2 ∫ 𝑓(𝜒𝑢, 𝒙𝑈\𝑢)𝑔(𝜒𝑢, 𝒙𝑈\𝑢)

× (
̃𝑃 (𝜒𝑢, 𝒙𝑈\𝑢)

𝑄(𝜒𝑢, 𝒙𝑈\𝑢) +
̃𝑃 (−𝜒𝑢, 𝒙𝑈\𝑢)

𝑄(−𝜒𝑢, 𝒙𝑈\𝑢)) 𝑑𝒙𝑈\𝑢.

Because of the change in the inner produ, the full symmetrization affes
both the formulae for 𝐴(𝜒𝑢) and 𝒃(𝜒𝑢). Beginning with 𝐴(𝜒𝑢), we obtain

𝐴𝑖𝑗(𝜒𝑢) = 1
2𝔼 [

𝜙𝑖(𝒙𝑁(𝑢))𝜙𝑗(𝒙𝑁(𝑢))
∫ 𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢

(
̃𝐹𝑢(𝜒𝑢, 𝒙𝑁(𝑢))

𝑄(𝜒𝑢, 𝒙𝑈\𝑢) +
̃𝐹𝑢(−𝜒𝑢, 𝒙𝑁(𝑢))

𝑄(−𝜒𝑢, 𝒙𝑈\𝑢) )] .

Similarly, we obtain the fully-symmetrized veor 𝒃(𝜒𝑢) as

𝑏𝑖(𝜒𝑢) = 1
4𝔼 [

𝜙𝑖(𝒙𝑁(𝑢))
∫ 𝐹𝑢(𝑥𝑢, 𝒙𝑁(𝑢))𝑑𝑥𝑢

× ((
ℛ(−𝜒𝑢, 𝒙𝑁(𝑢))
𝑄(−𝜒𝑢, 𝒙𝑈\𝑢) + 1

𝑄(𝜒𝑢, 𝒙𝑈\𝑢)) ×
𝜕 ̃𝐹𝑢(𝜒𝑢, 𝒙𝑁(𝑢))

𝜕𝜒𝑢
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Table .: Values of the renormalized coefficients obtained using no symmetriza-
tion by renormalizing under decimation a 16 × 16 Ising laice at
𝑇 = 2.269185.

𝜒𝑢 𝑐1(𝜒𝑢) 𝑐2(𝜒𝑢) 𝑐3(𝜒𝑢) 𝑐4(𝜒𝑢) 𝑐5(𝜒𝑢)
-. . . -. -. .
-. . . -. -. .
-. . . -. -. .
. . . -. -. .
. . . -. . -.
. . . -. . -.
. . . -. . -.

𝑐𝑖 . . -. -. .

+ (
ℛ(𝜒𝑢, 𝒙𝑁(𝑢))
𝑄(𝜒𝑢, 𝒙𝑈\𝑢) + 1

𝑄(−𝜒𝑢, 𝒙𝑈\𝑢))
𝜕 ̃𝐹𝑢(−𝜒𝑢, 𝒙𝑁(𝑢))

𝜕𝜒𝑢
)] .

(.)

Note that, by definition,

ℛ(−𝜒𝑢, 𝒙𝑁(𝑢)) = 1
ℛ(𝜒𝑢, 𝒙𝑁(𝑢))

,

requiring the computation of ℛ(𝜒𝑢, 𝒙𝑁(𝑢)) only once.
Unfortunately, there is a hidden cost to both partial and full symmetriza-

tion.e fastmarginalization equation becomes implicit, because comput-
ingℛ(𝜒𝑢, 𝒙𝑁(𝑢)) requires the knowledge of the solution, that is the expan-
sion of 𝑊̂ ′(𝜒𝑢, 𝒙𝑁(𝑢)).We solve the resulting equation using a fixed-point
iteration, repeating the projeion with ℛ(𝜒𝑢, 𝒙𝑁(𝑢)) computed using the
current guess of the expansion coefficients 𝒄(𝜒𝑢).

... Performance of symmetrization

We close the description of the symmetrization approaches by consider-
ing an example computation of the expansion coefficients. Consider the
Isingmodel on a 16×16 laice 𝑉 at critical coupling𝜇𝑐 = ln (1 +

√
2) /2

and let the sub-laice 𝑈 ⊂ 𝑉 be the 8 × 8 laice obtained by choosing
nodes whose both coordinates are divisible by 2; both laices are shown
on Figure .. We perform twelve steps of fixed-point iteration with
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(a)

(b)

Figure .: Visualization of the arrangement of nodes, showing (a) the original
laice 𝑉 and (b) the sublaice 𝑈 . e nodes 𝑈 ⊂ 𝑉 are marked
green on both images.
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.
.
.
.
.
.
.

.

- -.  . 

𝑐 1
(𝜒

𝑢)

𝜒𝑢

No symmetrization
Partial symmetrization

Full symmetrization

(a)


.
.
.
.
.

.
.
.

- -.  . 

𝑐 2
(𝜒

𝑢)

𝜒𝑢

No symmetrization
Partial symmetrization

Full symmetrization

(b)

-.
-.

-.
-.
-.
-.


.
.

- -.  . 

𝑐 3
(𝜒

𝑢)

𝜒𝑢

No symmetrization
Partial symmetrization

Full symmetrization

(c)

Figure .: e 𝜒𝑢 dependence of seleed basis funion coefficients 𝑐𝑖(𝜒𝑢) un-
der (a) no symmetrization, (b) partial symmetrization and (c) full
symmetrization.

Robbins-Monro smoothing, with the results reported aer the twelh
step.
We use the mixed projeion method using (i) no symmetrization, (ii)

partial symmetrization and (iii) full symmetrization, depending on the
example. We compute the expansion coefficients 𝒄(𝜒𝑢) at  integration
nodes obtained by dividing the interval 𝜒𝑢 ∈ [−1, 1] into  subinter-
vals and placing four Gaussian quadrature nodes within each, showing
the shapes of the coefficients 𝒄(𝜒𝑢). Additionally, we compute them sep-
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Table .: Values of the renormalized coefficients obtained using partial sym-
metrization by renormalizing under decimation a 16 × 16 Ising laice
at 𝑇 = 2.269185.

𝜒𝑢 𝑐1(𝜒𝑢) 𝑐2(𝜒𝑢) 𝑐3(𝜒𝑢)
-. . . -.
-. . . -.
-. . . -.
. . . -.
. . . -.
. . . -.
. . . -.

𝑐𝑖 . . -.

Table .: Values of the renormalized coefficients obtained using full symmetriza-
tion by renormalizing under decimation a 16 × 16 Ising laice at
𝑇 = 2.269185.

𝜒𝑢 𝑐1(𝜒𝑢) 𝑐2(𝜒𝑢) 𝑐3(𝜒𝑢)
-. . . -.
-. . . -.
-. . . -.
. . . -.
. . . -.
. . . -.
. . . -.

𝑐𝑖 . . -.

arately at seven Gaussian quadrature nodes, with values presented in Ta-
bles ., . and ..
Figure . clearly shows that the projeed coefficients 𝒄(𝜒𝑢) are sym-

metric. In particular, the irrelevant coefficients corresponding to even ba-
sis funions have odd symmetry, therefore integrate out to zero. How-
ever, in case of the partially and fully symmetrized schemes the irrele-
vant coefficients are eliminated completely. is is extremely important
in face of the fa that the magnitude of the relevant coefficients is fre-
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quently dwarfed by that of the irrelevant coefficients 𝑐4(𝜒𝑢) and 𝑐5(𝜒𝑢),
cf. Table ..
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5
SAMPL ING

us far we considered the task of computing the marginal probability
density of a subset 𝒙𝑈 of the original variables 𝒙𝑉 . We discussed the
graphical underpinnings of that process and a numerical procedure for
the efficient approximate computation of the marginal probability den-
sity 𝑃(𝒙𝑈). We now turn to the task of using the marginal probabilities
defining the approximate acyclic representation of the original probabil-
ity density 𝑃(𝒙𝑉 ) to generate random samples distributed according to
𝑃(𝒙𝑉 ).
e acyclic representation is a tool that can be used to generate samples

in numerous ways. Instead of trying to describe all possibilities, we will
instead explain in detail a method most closely resembling that of Chorin
() and suggest variations that enhance it in various ways. However,
the importance sampling approach remains the core of nearly all methods
considered in this chapter.
e chapter is struured as follows. We begin with the importance

sampling method of Chorin (), analyzing the method in detail in Sec-
tion .. Chorin’s method is as an example of Sequential Importance Sam-
pling (SIS) and we describe a method of improving the weight distribution
by particle filtering in Seion ., closing with a description of a prai-
cal Partial Rejeion Control (PRC) algorithm in Seion ... In Seion
. we discuss a widely different approach, sampling the acyclic represen-
tation of the probability distribution 𝑃(𝒙𝑉 ) using Markov Chain Monte
Carlo (MCMC). We begin with a straightforward transformation of the im-
portance sampling scheme into an MCMC algorithm in .. and continue
to describe a generalized Gibbs sampler in ... Finally, we close with a
discussion of the described sampling methods.

.  

We begin with the Chainless Monte Carlo (ChMC) method of Chorin (,
) and Okunev ().eir method relies on the fa that the variables
𝒙𝑉𝑖\𝑉𝑖+1

are conditionally independent given 𝒙𝑉𝑖+1
. e variables may be

separated and sampled individually, making this method potentially very
efficient. e ChMC method consists of two parts: the ascent involving
computation of the approximate marginal densities, followed by the de-
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scent phase where the individual variables are sampled, starting with the
top of the laice ladder.
e goal of the sampling routine is to generate a veor 𝒙𝑉 with proba-

bility 𝑃(𝒙𝑉 ). e approach we take is that of importance sampling (Liu,
; Robert and Casella, ): we will produce a state 𝒙𝑉 with probabil-
ity 𝑃≈(𝒙𝑉 ), which hopefully is close to the original probability 𝑃(𝒙𝑉 ) in
the sense that

𝑤(𝒙𝑉 ) = 𝑃(𝒙𝑉 )/𝑃≈(𝒙𝑉 ) ≈ 1.

e ratio 𝑤(𝒙𝑉 ) is called the weight of the sample 𝒙𝑉 and represents the
amount of mismatch between the target distribution 𝑃(𝒙𝑉 ) and the trial
distribution 𝑃≈(𝒙𝑉 ).
Starting from the top laice 𝑉𝑚, we generate a random sample

𝒙𝑉𝑚
∼ ̂𝑃 (𝒙𝑉𝑚

)

using a method of our choice. e approximate marginal distribution
̂𝑃 (𝒙𝑉𝑚

) is known, having been computed during the ascent phase, and
the size of the final laice |𝑉𝑚| is expeed to be small compared to that
of the original |𝑉 |. erefore, even though the probability distribution

̂𝑃 (𝒙𝑉𝑚
) contains circular dependencies between variables, it may be sam-

pled efficiently. Depending on the size of the final laice, we may use one
of two approaches:

• dire sampling: list all possible states of the variables 𝒙𝑉𝑚
and com-

pute their normalized probabilities ̂𝑃 (𝒙𝑉𝑚
); then, choose one of

those states at random with the appropriate probability;

• Monte Carlo: sample states 𝒙𝑉𝑚
using Markov Chain Monte Carlo

(MCMC) and stop the updates at regular intervals; for each generated
state 𝒙𝑉𝑚

sample the remainder of the variables 𝒙𝑉 \𝑉𝑚
using the

conditional probabilities.

e choice between the two depends on the size of the final laice. As the
number of possible states grows rapidly with the number of dimensions,
the dire sampling method quickly becomes infeasible; it is also difficult
to use with continuous variables. Markov Chain Monte Carlo (MCMC),
on the other hand, is very efficient for small systems and handles both
continuous and discrete systems. MCMC in the simplest case requires only
the ability to compute

𝛼(𝒙𝑉𝑚
, 𝒚𝑉𝑚

) = ̂𝑃 (𝒚𝑉𝑚
)/ ̂𝑃 (𝒙𝑉𝑚

) = exp (Δ𝑊(𝒙𝑉𝑚
, 𝒚𝑉𝑚

)) ,
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where 𝒙𝑉𝑚
and 𝒚𝑉𝑚

differ by a single component 𝒙𝑢, 𝑢 ∈ 𝑉𝑚; there-
fore, MCMC can direly use the representation of the marginal distribu-
tion 𝑃(𝒙𝑉𝑚

) produced by the fast marginalization algorithm described in
Chapter .
We obtain a state 𝒙𝑉𝑚

together with the probability of generating
it, 𝑃 |𝑉𝑚|

≈ (𝒙𝑉𝑚
) = ̂𝑃 (𝒙𝑉𝑚

), or an approximation of the laer if MCMC
is used. From there we begin an iterative descent down the Direed
Acyclic Graph (DAG) 𝐷 = (𝑉 , 𝐴), with variables sampled in the par-
tial order implied by 𝐷. Let a particular topological ordering be an or-
dered sequence of nodes 𝑢𝑖 ∈ 𝑉 , 𝑇 = (𝑢1, 𝑢2, … , 𝑢|𝑉 |), and denote
subsets of the first 𝑖 nodes in the ordering as 𝑇𝑖 = (𝑢1, 𝑢2, … , 𝑢𝑖). For
𝑖 = |𝑉𝑚| + 1, |𝑉𝑚| + 2, … , |𝑉 |, we sample the random variable 𝑥𝑢𝑖

from

𝑥𝑢𝑖
∼ ̂𝑃 (𝑥𝑢𝑖

∣ 𝒙𝑁𝑝(𝑢𝑖)) (.)

where𝑁𝑝(𝑢𝑖) is the set of dire predecessors of the node𝑢𝑖 in the direed
graph 𝐷 = (𝑉 , 𝐴), with the property that 𝑢𝑗 ∈ 𝑁𝑝(𝑢𝑖) implies 𝑢𝑗 ≤ 𝑢𝑖.
Simultaneously we update 𝑃 𝑖

≈(𝒙𝑇𝑖
) via

𝑃 𝑖
≈(𝒙𝑇𝑖

) = ̂𝑃 (𝑥𝑢𝑖
∣ 𝒙𝑁𝑝(𝑢𝑖))𝑃 𝑖−1

≈ (𝒙𝑇𝑖−1
),

where the conditional probability ̂𝑃 (𝑥𝑢𝑖
∣ 𝒙𝑁𝑝(𝑢𝑖)) is an approximation

of the true conditional probability of 𝑥𝑢𝑖
given all the variables that came

before it in the topological ordering 𝑇 . Aer sampling the entire set of
variables we obtain the probability of generating the state 𝒙𝑉 using our
sampling method, with the trial probability

𝑃≈(𝒙𝑉 ) = 𝑃 |𝑉 |
≈ (𝒙𝑉 )

= ̂𝑃 (𝒙𝑉𝑚
)

|𝑉 |
∏

𝑖=|𝑉𝑚|+1

̂𝑃 (𝑥𝑢𝑖
∣ 𝒙𝑁𝑝(𝑢𝑖)).

e values 𝑃≈(𝒙𝑉 ) are unnormalized, with the unknown normalizing
constant 𝑍≈ equal to the normalizing constant of the unnormalized den-
sity ̂𝑃 (𝒙𝑉𝑚

). is is due to the fa that the conditional densities used to
sample the variables 𝑢𝑖 are properly normalized, thus the normalization
constant ̂𝑍𝑉𝑚

of the final marginal density ̂𝑃 (𝒙𝑉𝑚
) is propagated down

to the fine laice. erefore, as long as the method of computing ̂𝑃 (𝒙𝑉𝑚
)

produces values normalized to the same normalization constant ̂𝑍𝑉𝑚
in-

dependent of 𝒙𝑉𝑚
— that is if the values of ̂𝑃 (𝒙𝑉𝑚

) are consistent — the
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Algorithm . Sequential importance sampling algorithm.

function SIS(𝐷 = (𝑉 , 𝐴), 𝑃 (𝒙𝑉𝑚
), ̂𝑃 (𝑥𝑢 ∣ 𝒙𝑁𝑝(𝑢)))

𝒙𝑉𝑚
∼ ̂𝑃 (𝒙𝑉𝑚

)
𝑃 |𝑉𝑚|

≈ ← ̂𝑃(𝒙𝑉𝑚
)

𝑇 = (𝑢|𝑉𝑚|+1, 𝑢|𝑉𝑚|+2, … , 𝑢|𝑉 |) ← TO(𝐷)
for 𝑖 = |𝑉𝑚| + 1, |𝑉𝑚| + 2, … , |𝑉 | do

𝑥𝑢𝑖
∼ ̂𝑃 (𝑥𝑢𝑖

∣ 𝒙𝑁𝑝(𝑢𝑖))
𝑃 𝑖

≈ ← 𝑃 𝑖−1
≈ ̂𝑃 (𝑥𝑢𝑖

∣ 𝒙𝑁𝑝(𝑢𝑖))
end for
𝑤(𝒙𝑉 ) ← 𝑃(𝒙𝑉 )

𝑃 |𝑉 |
≈

return (𝒙𝑉 , 𝑤(𝒙𝑉 ))
end function

resulting trial probability will also be consistent, so that they can be used
to compute weights in the importance sampling scheme.
We stress at this point the importance of the fa that the variables

are conditionally independent of each other, and thus can be sampled
individually. If theywere not, as indeed they are not when one samples via
more general renormalization methods such as the majority rule used by
Brandt and Ron (b) and Ron and Swendsen (), the computation
of the conditional probability ̂𝑃 (𝑥𝑢𝑖

∣ 𝒙𝑁𝑝(𝑢𝑖)) would not be possible, as
the normalization faor would be computationally intraable.
Once all variables are sampled, we proceed with the correion of the

trial probability density. e weight

𝑤(𝒙𝑉 ) = 𝑃(𝒙𝑉 )
𝑃≈(𝒙𝑉 )

is computed and used to corre the expeed value. For a sequence of
random states 𝒙𝑖

𝑉 is generated with weights 𝑤(𝒙𝑖
𝑉 ), the expeed value

of a funion 𝑓(𝒙𝑉 ) becomes

𝔼 [𝑓] =
∑𝑖 𝑓(𝒙𝑖

𝑉 )𝑤(𝒙𝑖
𝑉 )

∑𝑖 𝑤(𝒙𝑖
𝑉 ) ,

where the sum of the weights as to counter the fa that neither the trial
nor the target probabilities are properly normalized.
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.. Analysis of the weights

In preparation for the coming Seion . that describes a method for im-
proving the basic method outlined above, let us pause and analyze the
process of generating the state 𝒙𝑉 , and especially its trial probability.is
is interesting because the state 𝒙𝑉 is construed by exchanging informa-
tion between a colleion of unrelated probability densities.
e quantity 𝑃 𝑖

≈(𝒙𝑇𝑖
) that is computed together with the variables is

the probability of sampling the partially complete state 𝒙𝑇𝑖
. It is an ap-

proximation of the marginal probability 𝑃(𝒙𝑇𝑖
) of the variables that pre-

cede 𝑢𝑖 in the ordering 𝑇 and 𝑥𝑢𝑖
, however one’s inability to compute

the marginal exaly even for known values of 𝒙𝑇𝑖
makes it impossible

to judge the quality of the approximation. Only the complete sample 𝒙𝑉
has a computable weight 𝑤(𝒙𝑉 ).
Although it might look like the weight appears suddenly at the end of

the sampling process, this is not true. Let us look in more detail at the
process of updating the trial probability and the errors commied at each
step. In terms of the exa marginal probabilities,

𝑃(𝒙𝑇𝑖
) = 𝑃(𝑥𝑢𝑖

∣ 𝒙𝑇𝑖−1
)𝑃 (𝒙𝑇𝑖−1

), (.)

while the approximate version used by the update of the trial density takes
the form

𝑃 𝑖
≈(𝒙𝑇𝑖

) = ̂𝑃 (𝑥𝑢𝑖
∣ 𝒙𝑃(𝑢𝑖))𝑃 𝑖−1

≈ (𝒙𝑇𝑖
). (.)

Write the approximations to the marginal densities 𝑃(𝒙𝑇𝑖
) and 𝑃(𝒙𝑇𝑖−1

)
as ̂𝑃 (𝒙𝑇𝑖

) and ̂𝑃 (𝒙𝑇𝑖−1
), respeively. Let 𝑃 𝑖−1

≈ (𝒙𝑇𝑖
) = ̂𝑃 (𝒙𝑇𝑖−1

), mean-
ing that the state 𝒙𝑇𝑖−1

was sampled from ̂𝑃 (𝒙𝑇𝑖−1
). e only discrepancy

between ̂𝑃 (𝒙𝑇𝑖
) and 𝑃 𝑖

≈(𝒙𝑇𝑖
) will thus come from the error due to a mis-

match between ̂𝑃 (𝒙𝑇𝑖
) and ̂𝑃 (𝒙𝑇𝑖−1

).
Consider computing a weight 𝑤𝑖(𝒙𝑇𝑖

) that measures how well 𝑃 𝑖
≈(𝒙𝑇𝑖

)
approximates ̂𝑃 (𝒙𝑇𝑖

), or equivalently, what correion faor must be ap-
plied to the state due to the mismatch between the two approximations

̂𝑃 (𝒙𝑇𝑖
) and ̂𝑃 (𝒙𝑇𝑖−1

). Using the definition of 𝑃 𝑖
≈(𝒙𝑇𝑖

), we obtain

𝑤𝑖(𝒙𝑇𝑖
) =

̂𝑃 (𝒙𝑇𝑖−1
)

𝑃 𝑖
≈(𝒙𝑇𝑖

) =
̂𝑃 (𝒙𝑇𝑖

)
̂𝑃 (𝑥𝑢𝑖

∣ 𝒙𝑃(𝑢𝑖))𝑃 𝑖−1
≈ (𝒙𝑇𝑖

)
. (.)
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Because the conditional probability is computed using the approximation
̂𝑃 (𝒙𝑇𝑖

), we obtain through Bayes’ formula that

̂𝑃 (𝑥𝑢𝑖
∣ 𝒙𝑁𝑝(𝑢𝑖)) =

̂𝑃 (𝒙𝑇𝑖
)

∫ ̂𝑃 (𝒙𝑇𝑖
)𝑑𝑥𝑢𝑖

, (.)

the integral term representing the exa marginal of ̂𝑃 (𝒙𝑇𝑖
). Substituting

back to Equation . we find

𝑤𝑖(𝒙𝑇𝑖
) =

̂𝑃 (𝒙𝑇𝑖
)

̂𝑃 (𝑥𝑢𝑖
∣ 𝒙𝑁𝑝(𝑢𝑖))𝑃 𝑖−1

≈ (𝒙𝑇𝑖
)

=
̂𝑃 (𝑥𝑢𝑖

∣ 𝒙𝑁𝑝(𝑢𝑖)) ∫ ̂𝑃 (𝒙𝑇𝑖
)𝑑𝑥𝑢𝑖

̂𝑃 (𝑥𝑢𝑖
∣ 𝒙𝑁𝑝(𝑢𝑖))𝑃 𝑖−1

≈ (𝒙𝑇𝑖
)

=
∫ ̂𝑃 (𝒙𝑇𝑖

)𝑑𝑥𝑢𝑖

𝑃 𝑖−1
≈ (𝒙𝑇𝑖

) .

erefore, the weight 𝑤𝑖(𝒙𝑇𝑖
) that has to be applied due to the mismatch

between the successful marginals is the ratio of the exa marginal of the
approximation ̂𝑃 (𝒙𝑇𝑖

) and the separate approximation ̂𝑃 (𝒙𝑇𝑖−1
). In fa,

looking slightly differently at the trial density update formula

𝑃 𝑖
≈(𝒙𝑇𝑖

) = ̂𝑃 (𝑥𝑢𝑖
∣ 𝒙𝑃(𝑢𝑖))𝑃 𝑖−1

≈ (𝒙𝑇𝑖
)

= ( ̂𝑃 (𝒙𝑇𝑖
)/∫ ̂𝑃 (𝒙𝑇𝑖

)𝑑𝑥𝑢𝑖
) 𝑃 𝑖−1

≈ (𝒙𝑇𝑖
)

= ̂𝑃 (𝒙𝑇𝑖
) (𝑃 𝑖−1

≈ (𝒙𝑇𝑖
)/∫ ̂𝑃 (𝒙𝑇𝑖

)𝑑𝑥𝑢𝑖
)

= ̂𝑃 (𝒙𝑇𝑖
)/𝑤𝑖(𝒙𝑇𝑖

),

we see that the update formula recognizes the fa that the two approxi-
mations do not agree and applies a correing weight, which is recovered
in Equation .. Extending this equation to the full sample 𝒙𝑉 we find

𝑃≈(𝒙𝑉 ) = 𝑃(𝒙𝑉 ) (∏
𝑖

𝑤𝑖(𝒙𝑇𝑖
))

−1

,
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here the trial density becomes a produ of the correive weights col-
leed during the sampling. Indeed, the produ of these becomes the final
weight

𝑤(𝒙𝑉 ) = 𝑃(𝒙𝑉 )
𝑃≈(𝒙𝑉 ) = ∏

𝑖
𝑤𝑖(𝒙𝑇𝑖

).

Because the errors are multiplicative, it is easy to see that the total weight
grows exponentially with the number of variables. erefore, the errors
must be caught early and not allowed to plague the later computation.

.  

e sampling described in Seion . can be seen as an example of Se-
quential Importance Sampling (SIS), with the ordering index 𝑖 serving as
discrete time. We may therefore use the particle filtering methods to im-
prove the weights as they appear using one of the many algorithms devel-
oped in that field (Doucet, de Freitas, and Gordon, ). In this seionwe
set up a common framework for performing particle filtering and describe
two particular algorithms, the Sequential Importance Resampling (SIR)
and Partial Rejeion Control (PRC).

.. Sequential Importance Sampling

Consider the partial sample 𝒙𝑇𝑖
and assume that we have computed a

probability ̂𝑃∗(𝒙𝑇𝑖
) that approximates the examarginal density 𝑃(𝒙𝑇𝑖

). e precise choice of 𝑃̂∗
will be le for later, but
the goal is to use a
funion more accurate
than 𝑃≈.

We could compute a weight

𝑤∗(𝒙𝑇𝑖
) =

̂𝑃∗(𝒙𝑇𝑖
)

𝑃≈(𝒙𝑇𝑖
) ,

obtaining a measure of the correion that needs to be applied to the state
𝒙𝑇𝑖

. We only assume that the weight can be computed for a specific value
of 𝒙𝑇𝑖

.
Let each sample we generate by the implicit sampling be a particle, in-

dexed by a parameter 𝑗 = 1, 2, … , 𝑀 as 𝒙𝑗
𝑇𝑖
. us far we have been gen-

erating these particles separately, effeively using 𝑀 = 1, but consider
executing the sampling algorithm in an almost unchanged form, simulta-
neously for 𝑀 ≥ 1 at a time. At the coarsest level we generate 𝑀 samples

𝒙𝑗
𝑉𝑚

∼ ̂𝑃 (𝒙𝑗
𝑉𝑚

)
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and perform the conditional sampling separately, using Equation . to
reach a set of particles 𝒙𝑗

𝑇𝑖
∼ 𝑃≈(𝒙𝑗

𝑇𝑖
). Because we know an approxima-

tion ̂𝑃∗(𝒙𝑗
𝑇𝑖

) of the true marginal 𝑃(𝒙𝑗
𝑇𝑖

), we may compute weights for
each particle

𝑤∗(𝒙𝑗
𝑇𝑖

) =
̂𝑃∗(𝒙𝑗

𝑇𝑖
)

𝑃≈(𝒙𝑗
𝑇𝑖

)
.

Were the trial 𝑃≈(𝒙𝑗
𝑇𝑖

) and correive distributions ̂𝑃∗(𝒙𝑗
𝑇𝑖

) exa, the
weights would be all equal to one another. In praice, the weights will
be spanning a wide range of values, with particles having high weights
being under-sampled by the trial distribution 𝑃≈(𝒙𝑗

𝑇𝑖
) and those with low

weights being over-sampled. To corre this imbalance we will perform
resampling, that is we will remove particles that were oversampled and,
in their stead, place copies of those particles that were under-sampled.
e resampling procedure should be seen as sampling from an approx-

imation of ̂𝑃∗(𝒙𝑇𝑖
). e particles and their aached weights define a dis-

crete approximation ̄𝑃∗(𝒙𝑇𝑖
) of the target distribution ̂𝑃∗(𝒙𝑇𝑖

),

̄𝑃∗(𝒙𝑇𝑖
) =

𝑀
∑
𝑗=1

𝑤∗(𝒙𝑗
𝑇𝑖

)𝑃≈(𝒙𝑗
𝑇𝑖

)𝛿(𝒙𝑇𝑖
− 𝒙𝑗

𝑇𝑖
).

Note that this approximation is non-zero only for 𝒙𝑇𝑖
equal to one of the

particles 𝒙𝑗
𝑇𝑖
. rough resampling, we obtain an updated colleion of

particles that follow ̄𝑃∗(𝒙𝑇𝑖
), which in the limit of 𝑀 → ∞ is equivalent

to ̂𝑃∗(𝒙𝑇𝑖
).

e discrete nature of the approximate distribution ̄𝑃∗(𝒙𝑇𝑖
) means that

the resampling step will lead to a less diverse set of particles, because
states 𝒙𝑇𝑖

that are not among those represented by the particles 𝒙𝑗
𝑇𝑖

will
not be sampled at all. We still benefit from the resampling, however, be-
cause the initially exa copies will differentiate during the subsequent
sampling steps when the remaining variables 𝒙𝑇 \𝑇𝑖

are determined.
ere are multiple algorithms for performing resampling, but they all

aempt to do the same thing, namely to reduce the variance of weights
by sampling from the discrete approximation of the target distribution
(Doucet, de Freitas, and Gordon, ). We summarize two of those algo-
rithms below, beginning with the SIR algorithm.


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.. Sequential Importance Resampling

e Sequential Importance Resampling (SIR) algorithm adds a resampling
stage to the SIS, which partially corres the weights by sampling from a
discrete approximation of the target distribution. Following Seion ..
of Liu, Chen, and Logvinenko (), we choose the transformed weight
𝑎∗(𝒙𝑗

𝑇𝑖
) to be a monotone increasing funion of 𝑤∗(𝒙𝑗

𝑇𝑖
). is flexibility

allows for balancing the needs of reducing weight variance and keeping
a diverse set of particles; thus, a generic choice is the square root trans-
form 𝑎∗(𝒙𝑗

𝑇𝑖
) = √𝑤∗(𝒙𝑗

𝑇𝑖
). e resampling stage replaces the original

colleion of particles 𝒙𝑗
𝑇𝑖

with 𝒚𝑘
𝑇𝑖

by seleing 𝑀 particles from among
the original particles 𝒙𝑗

𝑇𝑖
with probability dependent on the transformed

weights.

... Reallocation

Onemethod is reallocation, where the resampled particles 𝒚𝑘
𝑇𝑖

are formed
by choosing them at random from among the 𝒙𝑗

𝑇𝑖
. For each particle we

compute an effeive fraion 𝑞𝑗, that is what fraion the 𝑀 particles it
is worth, given by

𝑞𝑗 =
𝑎∗(𝒙𝑗

𝑇𝑖
)

𝑀
∑
𝑗=1

𝑎∗(𝒙𝑗
𝑇𝑖

)
.

Aparticle 𝑗 is intuitivelyworth𝑀𝑞𝑗 particles, but it is important to handle
correly the cases when 𝑀𝑞𝑗 < 1.
Following Liu, Chen, and Logvinenko (), for 𝑀𝑞𝑗 ≥ 1 we

keep ⌊𝑀𝑞𝑗⌋ copies of the particle 𝒙𝑗
𝑇𝑖

and assign an updated weight
𝑤∗(𝒙𝑗

𝑇𝑖
)/⌊𝑀𝑞𝑗⌋ to each copy. In case 𝑀𝑞𝑗 < 1, we keep the particle

with probability 𝑀𝑞𝑗; if the particle survives, we assign it an updated
weight 𝑤∗(𝒙𝑗

𝑇𝑖
)/𝑀𝑞𝑗.

... Low variance resampling

e downside of the previous method is that the number of particles fluc-
tuates aer resampling, complicating the code by requiring a form of con-
trol to ensure that a similar number is generated each time.
Instead, we will choose 𝑀 particles randomly from among the existing

ones. Each particle will have a probability of being seleed equal to 𝑞𝑗


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Algorithm . Reallocation particle filtering algorithm for improving the
quality of the batch of particles 𝑋𝑇𝑖

.

function R(𝑋𝑇𝑖
= {(𝒙𝑗

𝑇𝑖
, 𝑃 𝑖

≈(𝒙𝑗
𝑇𝑖

)})
𝑌𝑇𝑖

← ∅
for all 𝑗 do

𝑤∗(𝒙𝑗
𝑇𝑖

) ←
̂𝑃∗(𝒙𝑗

𝑇𝑖
)

𝑃≈(𝒙𝑗
𝑇𝑖

)
𝑎∗(𝒙𝑗

𝑇𝑖
) ← √𝑤∗(𝒙𝑗

𝑇𝑖
)

end for

for all 𝑗 do

𝑞𝑗 ←
𝑎∗(𝒙𝑗

𝑇𝑖
)

𝑀
∑
𝑗=1

𝑎∗(𝒙𝑗
𝑇𝑖

)

if 𝑞𝑗 ≥ 1 then
for 𝑘 = 1, 2, … , ⌊𝑞𝑗⌋ do

𝑌𝑇𝑖
← 𝑌𝑇𝑖

∪ (𝑥𝑗
𝑇𝑖

, 𝑤∗(𝒙𝑗
𝑇𝑖

)/⌊𝑞𝑗⌋)
end for

else
𝑝 ∼ 𝑈[0, 1]
if 𝑝 < 𝑞𝑗 then

𝑌𝑇𝑖
← 𝑌𝑇𝑖

∪ (𝑥𝑗
𝑇𝑖

, 𝑤∗(𝒙𝑗
𝑇𝑖

)/𝑞𝑗)
end if

end if
end for

return 𝑌𝑇𝑖
end function

defined as above. However, choosing the resampled particles entirely ran-
domly does not alwaysworkwell. Consider for example the casewhere all
weights are equal to each other. Nothing should change because 𝑞𝑗 = 1/𝑀
and each particle should be sampled once, but due to the stochastic nature
of the process some particles will be invariably seleed twice while some
others won’t be seleed at all.
To combat these potential issues we will sele the 𝑀 new particles in

the following way. e 𝑞𝑗’s specify the probabilities of the 𝑀 particles
and we put them together in a box. We sele 𝑀 particles by choosing a
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randomnumber 𝑝 ∈ 𝑈[0, 1/𝑀] and seleing particleswhose parts contain
the numbers

𝑟, 𝑟 + 1/𝑀, 𝑟 + 2/𝑀, … , 𝑟 + 𝑘/𝑀, … , , 𝑟 + 𝑀−1/𝑀.

As a result, each particle is seleed with the appropriate probability yet
the algorithm behaves correly in the limit of all equal weights. e
weights of the resampled particles are updated by dividing the weight of
the original sample 𝑤∗(𝒙𝑗

𝑇𝑖
) by the probability of choosing it 𝑀𝑞𝑗. If the

resampled particle 𝒚𝑘
𝑇𝑖

corresponds to an original particle 𝒙𝑗
𝑇𝑖
, we obtain

𝑤∗(𝒚𝑘
𝑇𝑖

) =
𝑤∗(𝒙𝑗

𝑇𝑖
)

𝑎∗(𝒙𝑗
𝑇𝑖

)
.

... Trial density update

Once the resampled particles are seleed we need to compute the proba-
bility of generating the resampled particles using the algorithm, 𝑃 𝑖

≈(𝒚𝑘
𝑇𝑖

).
Consider a resampled particle 𝒚𝑘

𝑇𝑖
which is a copy of the particle 𝒙𝑗

𝑇𝑖
.

In the reallocation algorithm, for 𝑀𝑞𝑗 ≥ 1 we obtain ⌊𝑀𝑞𝑗⌋ copies
of the particle, thus the probability of generating the state 𝒚𝑘

𝑇𝑖
= 𝒙𝑗

𝑇𝑖
increased ⌊𝑀𝑞𝑗⌋-fold:

𝑃 𝑖
≈(𝒚𝑘

𝑇𝑖
) = ⌊𝑀𝑞𝑗⌋𝑃 𝑖

≈(𝒙𝑗
𝑇𝑖

).

On the other hand, when 𝑀𝑞𝑗 < 1, the particle survives with probability
𝑀𝑞𝑗, reducing the trial probability

𝑃 𝑖
≈(𝒚𝑘

𝑇𝑖
) = 𝑀𝑞𝑗𝑃 𝑖

≈(𝒙𝑗
𝑇𝑖

).

Both formulas are very similar and refle the changed weight of the par-
ticle. erefore, in the case of low variance resampling, we simply obtain

𝑃 𝑖
≈(𝒚𝑘

𝑇𝑖
) = 𝑀𝑞𝑗𝑃 𝑖

≈(𝒙𝑗
𝑇𝑖

),

refleing the fa that the expeed number of copies of the state 𝒙𝑗
𝑇𝑖

is
𝑀𝑞𝑗.
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.. Rejeion control

e reallocation and resampling algorithms invariably suffer from parti-
cle impoverishment, because the resampling stage reduces the diversity of
generated samples. is process is referred to as particle degeneracy and
in extreme situations causes the batch to collapse onto a single particle
(Berzuini et al., ; Gordon, Salmond, and Ewing, ).e abovemeth-
ods address this issue using the transformed weights 𝑎∗(𝒙𝑗

𝑇𝑖
), which re-

duce theweight variance less aggressively than theweights𝑤∗(𝒙𝑗
𝑇𝑖

); how-
ever, this change does not eliminate the particle impoverishment problem
completely.
Here we describe two related algorithms for eliminating poor samples

that do not produce multiple copies of existing states. Instead, they condi-
tionally reje particles deemed to be of lowweight and replace themwith
new ones.emost common variants, the Full RejeionControl (FRC) and
Partial Rejeion Control (PRC), differ in the way the new particles are cre-
ated: the FRC recreates the lost particles from scratch, while PRC from the
most recent check-point. Because the FRC algorithm is very costly, we de-
scribe here the more moderate PRC (Liu, Chen, and Logvinenko, , p.
).

... Partial rejeion control

Similarly to the Sequential Importance Resampling (SIR) described above,
consider the particles 𝒙𝑗

𝑇𝑖
at a check-point where the weights

𝑤∗(𝒙𝑗
𝑇𝑖

) =
̂𝑃∗(𝒙𝑗

𝑇𝑖
)

𝑃 𝑖
≈(𝒙𝑗

𝑇𝑖
)

may be computed. Sele a weight threshold 𝑐𝑖 and accept particles with
probability

𝑞𝑗 = min (1, 𝑤∗(𝒙𝑗
𝑇𝑖

)/𝑐𝑖) .

e accepted particles are assigned an updated weight

𝑤′
∗(𝒙𝑗

𝑇𝑖
) = max (𝑤∗(𝒙𝑗

𝑇𝑖
), 𝑐𝑖) .

Any rejeed particle 𝒙𝑗
𝑇𝑖

is then replaced with a regenerated particle
𝒙′

𝑇𝑖
. We begin by seleing a partial particle 𝒙𝑘

𝑇𝑙
from a previous check-

point 𝑙 at random, with probability proportional to its weight aer that
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checkpoint 𝑤∗(𝒙𝑘
𝑇𝑙

). is partial regenerated particle is assigned the trial
probability

𝑃 𝑙
≈(𝒙′

𝑇𝑙
) = 𝑀

𝑀
∑
𝑚=1

𝑤∗(𝒙𝑚
𝑇𝑙

)
𝑃 𝑙

≈(𝒙𝑘
𝑇𝑙

).

e missing variables 𝒙𝑗
𝑇𝑖\𝑇𝑙

are sampled, producing a fully regenerated
particle 𝒙′

𝑇𝑖
with trial probability 𝑃 𝑖

≈(𝒙′
𝑇𝑖

). e regenerated particle re-
places the rejeed particle 𝒙𝑗

𝑇𝑖
and undergoes rejeion control at the

check-point 𝑇𝑖. e regeneration process is repeated until a particle is
accepted, thus keeping a constant batch size 𝑀 .
e PRC algorithm improves upon the simple resampling algorithm, be-

cause it goes back to previously accepted particles to constru the re-
sampled particle set instead of using particles present at the check-point.
At the cost of significantly increased computation time, the FRC, which
regenerates the rejeed particles from scratch, produces nearly indepen-
dent, non-degenerate particles.

.. Dense marginal probabilities

e resampling stage described above aempts to corre the trial proba-
bility density 𝑃 𝑖

≈(𝒙𝑇𝑖
) so that it is closer to the density ̂𝑃∗(𝒙𝑇𝑖

). It is im-
perative that the correive density ̂𝑃∗(𝒙𝑇𝑖

) be closer to the true marginal
density 𝑃(𝒙𝑇𝑖

) than the trial density, as otherwise the resampling step
will aually make the maers worse.
e quality of an approximation to the marginal density is direly re-

lated to the number of basis funions used by the approximation. Typi-
cally, the bigger the basis the beer the approximation may potentially
be, but the size of the basis is severely limited by the need to keep the
dependency graph as sparse as possible. Since sparse dependency graphs
are necessary to prevent the dependency graph from quickly becoming a
clique, forming a denser proposal density is very difficult. However, the
approximation ̂𝑃∗(𝒙𝑇𝑖

) is only to be evaluated, rather than used to sam-
ple using conditional probabilities, thus the dependency graph of ̂𝑃∗(𝒙𝑇𝑖

)
may be arbitrarily dense and thus more accurate than 𝑃 𝑖

≈(𝒙𝑇𝑖
).

Consider the simple case of a two-dimensional Cartesian laice and let
the blue variables in Figure . be already sampled. When sampling the
yellow variables, the densest dependency graph that still respes the con-
ditional independence between yellow variables given the blue variables
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Algorithm . Partial rejeion control algorithm for improving the qual-
ity of a batch of particles 𝑋𝑇𝑖

, regenerating the particles from an earlier
checkpoint 𝑇𝑙, where the batch of particles was 𝑋𝑇𝑙

.
function PRC(𝑋𝑇𝑖

, 𝑋𝑇𝑙
)

𝑌𝑇𝑖
← ∅

for all 𝑗 do
repeat

𝑤∗(𝒙𝑗
𝑇𝑖

) ←
̂𝑃∗(𝒙𝑗

𝑇𝑖
)

𝑃 𝑖
≈(𝒙𝑗

𝑇𝑖
)

𝑞𝑗 ← min (1, 𝑤∗(𝒙𝑗
𝑇𝑖

)/𝑐𝑖)
𝑝 ∼ 𝑈[0, 1]
if 𝑝 < 𝑞𝑗 then

𝑌𝑇𝑖
← 𝑌𝑇𝑖

∪ (𝑥𝑗
𝑇𝑖

, max (𝑤∗(𝒙𝑗
𝑇𝑖

), 𝑐𝑖))
else

𝑘 ∼ 𝑤∗(𝒙𝑘
𝑇𝑙

)
𝒙′

𝑇𝑙
← 𝒙𝑘

𝑇𝑙

𝑃 𝑙
≈ (𝒙′

𝑇𝑙
) ← 𝑀

𝑀
∑
𝑚=1

𝑤∗(𝒙𝑚
𝑇𝑙

)
𝑃 𝑙

≈(𝒙𝑘
𝑇𝑙

)

𝒙′
𝑇𝑖\𝑇𝑙

∼ ̂𝑃 (𝒙′
𝑇𝑖\𝑇𝑙

∣ 𝒙′
𝑇𝑙

)
𝑃 𝑖

≈ (𝒙′
𝑇𝑖

) ← ̂𝑃 (𝒙′
𝑇𝑖\𝑇𝑙

∣ 𝒙′
𝑇𝑙

) 𝑃 𝑖
≈ (𝒙′

𝑇𝑙
)

𝒙𝑗
𝑇𝑖

← 𝒙′
𝑇𝑖

𝑷 𝑖
≈ (𝑥𝑗

𝑇𝑖
) ← 𝑷 𝑖

≈ (𝒙′
𝑇𝑖

)
end if

until 𝑝 < 𝑞𝑗
end for
return 𝑌𝑇𝑖

end function

is the graph on Figure .a, which includes only nearest neighbor inter-
aions. Because of this severely limiting choice, the resulting approxima-
tion may be rather poor.
Adding the second- and third-nearest neighbor interaion increases

the complexity of the approximation, producing the graph on Figure .b.
Because yellow variables are now dependent on each other, an approxi-
mation of the marginal density of these variables cannot be used to sam-
ple the yellow variables given the blue ones. It may, however, be used to
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(a) Nearest neighbor interaion (b) Nearest, second- and third-nearest interaions

Figure .: Two dependency graphs respeed by (a) the approximation
𝑃 𝑖

≈(𝒙𝑇𝑖) and (b) the approximation ̂𝑃∗(𝒙𝑇𝑖).

approximately evaluate the marginal density given the values of all vari-
ables 𝒙𝑇𝑖

, making the dense approximation ̂𝑃∗(𝒙𝑇𝑖
) useful in computing

weights.
Denote the probability, whose conditional independence struure re-

spes the graph on Figure .a by 𝑃 𝑖
≈(𝒙𝑇𝑖

), while that respeing the
denser graph on Figure .b by ̂𝑃∗(𝒙𝑇𝑖

). Using the first one for sampling,
while the laer is used solely for later resampling, allows for approxi-
mately sampling from the denser probability while keeping the benefits
of the sparser dependency graphs used to produce the sampling density
𝑃 𝑖

≈(𝒙𝑇𝑖
). Of course the dense approximation may include further interac-

tions, such as the interaion with third-nearest neighbors, being limited
only by the available computing power and the fa that a very good re-
sampling algorithm will still fail to corre a poor trial probability.

.. Praical particle filtering algorithm

e single-stage resampling algorithms described above are not robust
enough to lead to much improvement. Here we describe a praical, multi-
stage algorithm.
We define a set of check-points, defined as a set of indexes 𝑅 =

{𝑅1, 𝑅2, … , 𝑅𝐿} of topological ordering 𝑇 . erefore, as soon as the vari-
able associated with node 𝑢𝑅𝑖

has been sampled, the 𝑖th check-point has
been reached. e 𝑖th location 𝑅𝑖 aempts to improve all variables sam-
pled thus far, that is the variables 𝒙𝑇𝑅𝑖

. A set of dense approximations
̂𝑃∗(𝒙𝑇𝑅𝑖

) must be computed using the fast marginalization algorithm of
Chapter  in order to do so. e final node of each laice 𝑉𝑖 is a recom-







mended candidate for the check-point 𝑅𝑖. Note that the approximation
used in lateral densening might be shared and used as ̂𝑃∗(𝒙𝑇𝑅𝑖

).
e samples are generated in batches of 𝑀 samples (particles) at once,

with separate batches being independent of each other. As the particles in
a batch reach a check-point 𝑅𝑖, the weights 𝑤∗(𝒙𝑗

𝑇𝑅𝑖
) are computed for

each particle. en, the normalized weights are computed via

𝑤̂∗(𝒙𝑗
𝑇𝑅𝑖

) =
𝑤∗(𝒙𝑗

𝑇𝑅𝑖
)

∑𝑀
𝑗=1 𝑤∗(𝒙𝑗

𝑇𝑅𝑖
)
,

allowing for the computation of an effeive number of particles (Liu,
Chen, and Logvinenko, , p. ),

𝑀eff = 1
∑𝑀

𝑗=1 𝑤̂∗(𝒙𝑗
𝑇𝑅𝑖

)
.

𝑀eff can be intuitively understood as the equivalent number of indepen-
dently distributed particles. In case the effeive number 𝑀eff is smaller
than a pre-defined threshold 𝑀min, the particles undergo a Partial Rejec-
tion Control (PRC) algorithm from Seion .... Whenever a resampling
stage occurred or not, the particles continue being sampled until the next
stopping point 𝑅𝑖+1 or until all variables are sampled.
eweight thresholds 𝑐𝑅𝑖

are determined in a short sampling run ahead
of the main computation. A single large batch of particles is generated.
When the particles reach the check-point 𝑅𝑖, the threshold 𝑐𝑅𝑖

is seleed
based on the distribution of the weights 𝑤∗(𝒙𝑗

𝑇𝑅𝑖
). A praical formula

suggested by Liu, Chen, and Wong () is the weighted average

𝑐𝑅𝑖
= 𝑝min min

𝑗
(𝑤∗(𝒙𝑗

𝑇𝑅𝑖
)) + 𝑝mean mean

𝑗
(𝑤∗(𝒙𝑗

𝑇𝑅𝑖
))

+ 𝑝max max
𝑗

(𝑤∗(𝒙𝑗
𝑇𝑅𝑖

))

with 𝑝min +𝑝mean +𝑝max = 1. Once the threshold is seleed, the particles
undergo rejeion and the process continues. e set of thresholds 𝑐𝑅𝑖
is then fixed and does not change during the main computation, thus
ensuring that different batches are properly normalized.
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e Markov Chain Monte Carlo (MCMC) algorithm resembles importance
sampling: states that are visited less frequently by the trial distribution
than demanded by the target distribution are more difficult to leave, ef-
feively multiplying the number of times the particular state will appear.
It comes then as no surprise that the importance sampling scheme may
be quickly turned into an MCMC algorithm. We present here two develop-
ments: the straightforward MCMC algorithm and a more advanced Gener-
alized Gibbs sampler.

.. Markov Chain Monte Carlo

Consider a complete state𝒙𝑉 togetherwith the aachedweight𝒘(𝒙𝑉 ) =
𝑃(𝒙𝑉 )/𝑃≈(𝒙𝑉 ) generated by the importance sampler described above.
Generate a second state 𝒚𝑉 with weight 𝒘(𝒚𝑉 ). e two states were gen-
erated from the proposal density 𝑃≈, therefore the classical Metropolis-
Hastings algorithm (Liu, ; Metropolis et al., ; Robert and Casella,
) conditionally accepts the move from 𝒙𝑉 to 𝒚𝑉 with probability

𝛼(𝒙𝑉 , 𝒚𝑉 ) = 𝑃≈(𝒙𝑉 )𝑃 (𝒚𝑉 )
𝑃≈(𝒚𝑉 )𝑃 (𝒙𝑉 )

= 𝑃(𝒚𝑉 )
𝑃≈(𝒚𝑉 )

𝑃≈(𝒙𝑉 )
𝑃 (𝒙𝑉 )

= 𝑤(𝒚𝑉 )
𝑤(𝒙𝑉 ) .

e resulting equation has a straightforward interpretation, since the
transition from a state with a lower weight into a state with a larger
weight should be easier than the opposite.
Since the MCMC scheme does not do anything beyond the eliminating

weights by rejeion sampling, the performance of the original impor-
tance sampling and the MCMC algorithms is expeed to be very similar.

.. Generalized Gibbs sampler

e Gibbs sampler or heat-bath MCMC splits the nodes of a laice 𝑉 =
𝑈 ∪ 𝑉 \ 𝑈 and samples the variables 𝒙𝑈 using the exa conditional
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probability. Starting with the state 𝒙𝑉 the algorithm creates a proposal
state 𝒚𝑉 given by

𝒚𝑉 \𝑈 = 𝒙𝑉 \𝑈

𝒚𝑈 ∼ 𝑃(𝒚𝑈 |𝒚𝑉 \𝑈) = 𝑃(𝒚𝑈 , 𝒚𝑉 \𝑈)/∫ 𝑃(𝒚𝑈 , 𝒚𝑉 \𝑈)𝑑𝒚𝑈 ,

where the subset of variables 𝒚𝑈 is resampled using the conditional prob-
ability. e subset 𝑈 must be small in order for the computation of the
examarginal density in the denumerator to be feasible. Because the pro-
posal density is the exa conditional probability, the acceptance proba-
bility is equal to one and the proposed move is always accepted. In order
to sample the entire space, the choice of the set 𝑈 is changed at random
between MCMC moves.
For a set 𝑈 consisting of a single variable we recover the slice sampler,

whose name comes from the fa that it updates the state 𝒙𝑉 one dimen-
sion (slice) at a time. Larger sizes of 𝑈 are also possible and allow for
larger moves and quicker mixing rates, but the added performance comes
at the cost of increased computational cost, growing exponentially in the
number of variables 𝒙𝑈 .
Because the variables in 𝒙𝑈 are sampled using their conditional prob-

ability given the remaining variables, we see that the method is related
to the acyclic representation of 𝑃(𝒙𝑉 ) we have construed. In fa, the
spliing 𝑉 = 𝑈 ∪ 𝑉 \ 𝑈 is similar to the first step of the coarsening al-
gorithm. Indeed, the variables 𝒙𝑉0\𝑉1

are sampled using conditional prob-
abilities computed using the exa density 𝑃(𝒙𝑉0

) = 𝑃(𝒙𝑉 ), therefore
those variables are indeed sampled using the one-dimensional Gibbs sam-
pler. However, for variables appearing earlier in the dependency digraph
𝐷 = (𝑉 , 𝐴) the conneion is less clear.

... Overview

We proceed in the following way. Starting with a random node 𝑢 ∈ 𝑉 we
build a proposal sample using the approximate conditional probability
𝑃≈(𝒙𝑉 ). Having at the node 𝑢, we subsequently sample the nodes whose
approximate conditional probabilities depend on the node 𝑢, iteratively
building the updated set 𝑈 . Because the proposal density of the new state
is not exa, we recover 𝑃(𝒙𝑉 ) as the stationary distribution through the
use of a rejeion step, described below, producing aMarkov ChainMonte
Carlo method.
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... Construing the proposal state

Sele an arbitrary node 𝑢 ∈ 𝑉 , referred to thereaer as the head node,
and consider the set of nodes whose approximate conditional probabili-
ties depend on the value of the variable associated with the head node 𝑢.
Given the dependency digraph 𝐷 = (𝑉 , 𝐴) we see that this set is simply
the set of dire successors (children) of the head node 𝑢, wrien 𝑁𝑠(𝑢).
When the variables associated with the nodes in 𝑁𝑠(𝑢) are sampled to
refle the change in their conditional distributions, the set of variables
affeed by the change in the variable associated with 𝑢 grows; if the pro-
cess is repeated recursively, the set of nodes affeed by the change in the
variable associated with the head node 𝑢 becomes the set of successors
𝑆(𝑢) defined as

𝑆(𝑢) = {𝑣 ∈ 𝑉 ∣ 𝑢 ≤ 𝑣},

i.e. the set of nodes 𝑣 ∈ 𝑉 such that there exists a direed path from 𝑢
to 𝑣. Given the DAG 𝐷 = (𝑉 , 𝐴), the set 𝑆(𝑢) may be found quickly by
recursively following the direed edges emanating from the head node 𝑢
and colleing all visited nodes.
Call the initial state 𝒙𝑉 and assume we have computed a list of approxi-

mate conditional probabilities ̂𝑃 (𝑥𝑢𝑖
∣ 𝒙𝑁𝑝(𝑢𝑖)) from Equation ., where

𝑖 is the index of the topological ordering 𝑇 . We choose a head node 𝑢 ∈ 𝑉
and produce a proposal state 𝒚𝑉 defined through

𝒚𝑉 \𝑆(𝑢) = 𝒙𝑉 \𝑆(𝑢)

𝒚𝑆(𝑢) ∼ ̂𝑃 (𝒚𝑆(𝑢)|𝒚𝑉 \𝑆(𝑢)),

where the conditional probability of 𝒚𝑆(𝑢) given the remaining variables
is given by

̂𝑃 (𝒚𝑆(𝑢)|𝒚𝑉 \𝑆(𝑢)) = ∏
𝑣∈𝑆(𝑢)

̂𝑃 (𝑦𝑣 ∣ 𝒚𝑁𝑃 (𝑣)).

Additionally, produce an updated list of approximate conditional probabil-
ities, keeping the existing 𝒙𝑉 values for nodes 𝑉 \𝑆(𝑢) and recomputing
the conditionals for the nodes in 𝑆(𝑢) using the newly sampled values
𝒚𝑉 .
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... Rejeion

Finally, we perform the rejeion step and accept the proposed state 𝒚𝑉
with acceptance probability

𝛼(𝒙𝑉 , 𝒚𝑉 ) =
𝑃≈(𝒙𝑆(𝑢)|𝒙𝑉 \𝑆(𝑢))𝑃≈(𝒙𝑉 \𝑆(𝑢))𝑃 (𝒚𝑉 )
𝑃≈(𝒚𝑆(𝑢)|𝒚𝑉 \𝑆(𝑢))𝑃≈(𝒚𝑉 \𝑆(𝑢))𝑃 (𝒙𝑉 )

=
𝑃≈(𝒙𝑆(𝑢)|𝒙𝑉 \𝑆(𝑢))𝑃 (𝒚𝑉 )
𝑃≈(𝒚𝑆(𝑢)|𝒚𝑉 \𝑆(𝑢))𝑃 (𝒙𝑉 )

=
𝑃≈(𝒙𝑆(𝑢)|𝒙𝑉 \𝑆(𝑢))

𝑃 (𝒙𝑉 )
𝑃 (𝒚𝑉 )

𝑃≈(𝒚𝑆(𝑢)|𝒚𝑉 \𝑆(𝑢))

= 𝑤(𝒚𝑉 )
𝑤(𝒙𝑉 ) ,

which is the same weight ratio as in the MCMC method above. However,
since the change due to the proposed move is limited to a fraion of
the set of variables, there will be a significant cancellation between the
two weights. Using the decomposition of the total weight 𝑤(𝒙𝑉 ) into per-
variable weights 𝑤𝑖(𝒙𝑉 ) defined in Equation ., we obtain

𝑤(𝒙𝑉 ) = ∏
𝑣𝑖∈𝑉

𝑤𝑖(𝒙𝑉 ) = ∏
𝑣𝑖∈𝑆(𝑢)

𝑤𝑖(𝒙𝑉 ) ∏
𝑣𝑖∈𝑉 \𝑆(𝑢)

𝑤𝑖(𝒙𝑉 ).

Since the variables 𝒙𝑉 \𝑆(𝑢) and 𝒚𝑉 \𝑆(𝑢) are by definition the same, somust
be their trial probabilities and partial weights. rough cancellation we
finally have

𝛼(𝒙𝑉 , 𝒚𝑉 ) =
(∏𝑣𝑖∈𝑆(𝑢) 𝑤𝑖(𝒚𝑉 )) (∏𝑣𝑖∈𝑉 \𝑆(𝑢) 𝑤𝑖(𝒚𝑉 ))

(∏𝑣𝑖∈𝑆(𝑢) 𝑤𝑖(𝒙𝑉 )) (∏𝑣𝑖∈𝑉 \𝑆(𝑢) 𝑤𝑖(𝒙𝑉 ))

= ∏
𝑣𝑖∈𝑆(𝑢)

𝑤𝑖(𝒚𝑉 )
𝑤𝑖(𝒙𝑉 ) .

When 𝑆(𝑢) is small, the proposed move will be small as well, resulting in
a large probability of acceptance.

... Head node seleion

e remaining question regards the particular manner in which the head
nodes 𝑢 defining the heat baths should be seleed. Figure . shows the
expeed size of a move given that 𝑢 ∈ 𝑉𝑖 \ 𝑉𝑖+1 for different values of
𝑖. In the limit 𝑖 = 0 we recover the exa proposal density and the slice
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(a) 𝑢 ∈ 𝑉0 \ 𝑉1 (b) 𝑢 ∈ 𝑉1 \ 𝑉2

(c) 𝑢 ∈ 𝑉2 \ 𝑉3 (d) 𝑢 ∈ 𝑉3 \ 𝑉4

(e) 𝑢 ∈ 𝑉4 \ 𝑉5 () 𝑢 ∈ 𝑉5 \ 𝑉6

Figure .: Visualizations of the set of successors𝑆(𝑢) for head nodes 𝑢 lying on
different laices obtained by a checkerboard coarsening of a 32×32
Cartesian laice. Nodes are colored by the number of links from
the initiating node, marked red, through yellow to green. e nodes
which are not accessible from the head node 𝑢 are marked blue.

sampler, achieving acceptance probability 𝛼(𝒙𝑉 , 𝒚𝑉 ) = 1 but very small
move size. In the opposite limit 𝑖 = 𝑚, we find the reverse situation of a
very large move, but at the cost of a very low acceptance probability. At a
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Figure .: Size of the affeed subset 𝑆(𝑢), proposed move acceptance proba-
bility and the resulting average move size in the case of a 64 × 64
Ising model at critical coupling.
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Figure .: Autocorrelation in the case of the 32×32 Ising model at critical cou-
pling.e lines show the initial laice used to choose head nodes, in-
cluding both the first renormalized laice 𝑉1 and the optimal laice
𝑉4. Although the number of variables where a change is aempted is
quite large in the case of 𝑉4, most of the variables remain unaltered
due to the very strong pull of the unchanged variables 𝒙𝑉 \𝑆(𝑢), re-
sulting in a long autocorrelation time.

point in between the two limits we usually find the optimum laice that
maximizes the expeed move size.
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Since the union of the sets of successors of all nodes on any 𝑉𝑖 covers
the whole set of variables,

⋃
𝑢∈𝑉𝑖

𝑆(𝑢) = 𝑉 ,

we may sele the head nodes 𝑢 only from nodes of the optimal laice.
e resulting sampling will nonetheless have the opportunity to alter the
values of all variables and the resulting Markov chain will sample the
entire state space with the optimal mixing speed.

... Performance

While the algorithm is very promising as it specifies a general family of
algorithms and seles the optimum, the influence of the unchanged vari-
ables 𝒙𝑉 \𝑆(𝑢) is frequently very large, resulting in only very few variables
being changed during the partial sampling algorithm. Figure . clearly
shows that the autocorrelation remain high, even for the optimal method.
Experimental evidence that the strong pull of the unchanged variables
could only be broken by very large moves starting from a very coarse
laice, a process leading to low acceptance probabilities.

. 

e chainless sampling described here hasmany interesting features. First
of all, in its purest form—when the top laice consists of a single variable
and no particle filtering is used — the method involves no Markov chains,
generating truly independent samples. is may be unfortunately be at
the cost of a very wide range of correive weights, especially for high-
dimensional problems.
e weights of the generated samples may be improved through the

sacrifice of the complete sample independence. In general the state of the
art implementation of the method should follow the following steps.

• Optimize the choice of the top laice, i.e., the stopping criterion of
the graph coarsening algorithm from Chapter . e choice of the
stopping point allows one to optimize the trade-off between the dif-
ficulty of sampling the top laice and the number and size of errors
commied by sampling individual variables using the conditional
probabilities. At the possible end-points of the sperum one may
use a pure Markov Chain Monte Carlo (MCMC) method when no
coarsening is performed, or the pure chain-less Monte Carlo when
only a single variable remains on the top laice; the optimal method
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is usually somewhere in between, with the precise location being
problem-dependent.

• Use a sound method of resampling that utilizes dense approxima-
tions of the marginal distributions to compute weights.

• Utilize lateral densening described in Seion . to produce the
most accurate trial probability possible.

While the Monte Carlo methods based on the above may be potentially
useful, they do not represent any advantages over the weight-based algo-
rithms and should not be used unless necessary.
e complete acyclic Monte Carlo method, including the graph coarsen-

ing described in Chapter , the computation of the approximate marginal
densities of Chapter  and the importance sampling/particle filtering
method above of generating random samples will be benchmarked in the
chapters making up Part  of this thesis. We apply the method to the Ising
model in Chapter  to compare the performance of the method with the
existing literature.
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6
GENERAL IZED ACYCL IC MONTE CARLO

emethod we have completely described in the prior Chapters ,  and 
is in some sense unsatisfying, because the coarser graphs 𝑉𝑖 are composed
of subsets of the fine variables 𝑉0 = 𝑉 . As a result, as the sampling pro-
ceeds, the variables already determined are frozen and cannot be changed,
even if this could lead to an improvement. is is because changing their
values would invalidate the entire acyclic struure and the resulting trial
probability 𝑃≈(𝒙𝑉 ).
In the seing of other existing methods utilizing the multi-level

paradigm — the most well known being the multigrid method for the
iterative solution if linear equations (Briggs, Henson, and McCormick,
) — this choice of coarse variables is indeed uncommon. In multigrid,
the coarse variables are aually distin from the fine variables and
linked together by a certain rule, the prolongation operator. Frequently
called the interpolation operator, the prolongation operator aempts to
smooth the errors in the solution, although it does not necessarily refle
geometrical smoothness. ere are many choices for these operators
and it would strike one as unusual that in our method there is no such
freedom.
e second reason for our uneasiness is the fa that the literature on

renormalization methods is thus far mostly incompatible with the acyclic
Monte Carlo method, because the methodology described in the earlier
chapters depends on the fa that coarse variables are subsets of the origi-
nal, fine variables. us, there is no possibility of introducing coarse vari-
ables defined using interpolation rules, such as the majority rule for spin
systems.
In this chapter we develop a more general theory of renormalization

based on conditional probability distributions joining subsequent levels
of variables, much as the prolongation operator joins together levels of
the multigrid method.

.   

We begin with a two-laice method, which may be extended in a straight-
forward manner to a full multi-laice approach, similarly to how a two-
grid method can be turned into a multigrid method. Let 𝐺 = (𝑉 , 𝐸) be
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the undireed graph encoding the independence struure of the original
probability distribution 𝑃(𝒙𝑉 ), with each node of 𝑉 corresponding to a
component of 𝒙𝑉 .
Consider a method of dividing 𝑉 into a colleion 𝑆 of disjoint subsets

{𝑈1, 𝑈2, … , 𝑈𝑛} that cover 𝑉 , that is

𝑈𝑖 ∩ 𝑈𝑗 = ∅ for 𝑖 ≠ 𝑗 and
𝑛

⋃
𝑖=1

𝑈𝑖 = 𝑉 .

erefore, the subsets {𝑈1, 𝑈2, … , 𝑈𝑛} form a partition of 𝑉 and are typ-
ically seleed so that nodes 𝑣 ∈ 𝑈𝑖 are close in some respe, but this is
not strily necessary. To each subset 𝑠 ∈ 𝑆 we assign a new auxiliary
variable, 𝑥𝑠, which did not exist among the original variables 𝒙𝑉 . Using
the one-dimensional Ising model as an example, the graphical struure
of this situation is shown on Figure .a.
us far there is no relation between the variables of𝒙𝑉 and those of𝒙𝑆,

apart from our mental association. We formalize the conneion between
𝒙𝑉 and 𝒙𝑆 by defining a probability distribution over 𝒙𝑆 conditional on
𝒙𝑉 , giving us a joint probability

𝑃(𝒙𝑉 , 𝒙𝑆) = 𝑃(𝒙𝑉 )𝑃 (𝒙𝑆 ∣ 𝒙𝑉 ).

e conditional probability 𝑃(𝒙𝑆 ∣ 𝒙𝑉 ) specifies a probabilistic rule as-
signing values to variables in 𝒙𝑆 based on the values of 𝒙𝑉 , similarly to
the prolongation operator of the multigrid method.
We will assume that the conditional probability faorizes as

𝑃(𝒙𝑆 ∣ 𝒙𝑉 ) = ∏
𝑠∈𝑆

𝑃(𝑥𝑠 ∣ 𝒙𝑈𝑠
),

where 𝑈𝑠 is the subset of 𝑉 to which the variable 𝑥𝑠 was assigned. Due
to this faorization, the graphical struure becomes that of Figure .b,
with the lines conneing the new variables representing formal depen-
dence: the variables 𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣ 𝒙𝑈𝑢

and 𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣ 𝒙𝑈𝑣
for 𝑢 ≠ 𝑣 due to

the faorization. e choice of the coarsening rule that specifies the con-
ditional probability 𝑃(𝑥𝑠 ∣ 𝒙𝑈𝑠

) is nearly arbitrary, but common choices
include decimation and majority rule will be mentioned later on.
e subsequent step in the construion is the computation of a

marginal probability density, which we obtain from the joint distribution
𝑃(𝒙𝑉 , 𝒙𝑆) using the definition

𝑃(𝒙𝑆) = ∫ 𝑃(𝒙𝑉 , 𝒙𝑆)𝑑𝒙𝑉 = ∫ 𝑃(𝒙𝑉 )𝑃 (𝒙𝑆 ∣ 𝒙𝑉 )𝑑𝒙𝑉 .
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(a) e graph just aer the auxiliary variables are
introduced; notice the lack of conneions be-
tween the original and auxiliary variables.

(b) Edges are added between the original and aux-
iliary variables to refle the conditional proba-
bility 𝑃(𝒙𝑆 ∣ 𝒙𝑉 ).

(c) e coarse graph with exaly reconneed coarse
nodes aer the original variables 𝒙𝑉 were
marginalized.

Figure .: Variables and the dependence graph 𝐺 = (𝑉 , 𝐸) of the one-
dimensional Ising model (turquoise nodes), together with the aux-
iliary variables 𝒙𝑆 (red nodes).

As before, performing the integration is computationally intraable in
most cases and we will return to this problem while discussing the gener-
alized fast marginalization algorithm. Presently we are interested in the
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graphical struure implied by this definition. We know from Chapter 
that removing a node in the graph by integrating out the corresponding
variable induces edges between the neighboring variables.
e resulting dependency graph describing the marginal density

𝑃(𝒙𝑆), shown on Figure .c, is a clique, a completely conneed
graph where each node is direly linked to every other node. Even if
the original graph 𝐺 = (𝑉 , 𝐸) was sparse, the immediately coarser
graph becomes fully conneed, making it computationally intraable to
compute exa marginal densities for even the simplest models, such as
the one-dimensional Ising model shown here.
Assume for now that it is possible to generate a sample 𝒙𝑆 ∼ 𝑃(𝒙𝑆).

Because 𝒙𝑉 are no longer conditionally independent given 𝒙𝑆 , it is no
longer possible to sample the variables of 𝒙𝑉 individually. Instead, all vari-
ables in 𝒙𝑉 mus be sampled simultaneously, making MCMC the method
of choice. However, the use of MCMC makes it impossible to use advanced
techniques such as importance sampling or particle filtering, because the
exa trial probability cannot be computed.
While the prospes of this approach appear to be bleak, it turns out

that they represent the worst case scenario. Indeed, we will show that
the acyclic Monte Carlo is a special case achieved through the choice of
decimation as the coarsening rule.
We will describe the generalized acyclic Monte Carlo method using

the example of the Ising model undergoing coarsening under the most
commonly used coarsening rule, the majority rule. We will describe how
to constru a ladder of coarse graphical models, then explain the com-
putation of approximate marginal densities using the generalized fast
marginalization approach. We will finish with a description of how the
struure obtained may be used to sample the original probability distri-
bution 𝑃(𝒙𝑉 ).

. 

We begin with the initial set of variables and graph 𝐺0 = (𝑉0, 𝐸0) =
(𝑉 , 𝐸) encoding the independence struure of the original probability
distribution 𝑃(𝒙𝑉0

). Assume the set of variables 𝑉𝑖 is known. We divide
it into a colleion 𝑆𝑖 of disjoint subsets {𝑈𝑗} of 𝑉𝑖 that form a partition
of 𝑉𝑖, that is

𝑈𝑗 ∩ 𝑈𝑘 = ∅ for 𝑗 ≠ 𝑘 and ⋃
𝑗

𝑈𝑗 = 𝑉𝑖.
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We define the joint probability of 𝒙𝑉𝑖
and 𝒙𝑆𝑖

through

𝑃(𝒙𝑉𝑖
, 𝒙𝑆𝑖

) = 𝑃(𝒙𝑉𝑖
)𝑃 (𝒙𝑆𝑖

∣ 𝒙𝑉𝑖
),

leading to the natural definition of the marginal density

𝑃 (𝒙𝑆𝑖
) = ∫ 𝑃(𝒙𝑉𝑖

, 𝒙𝑆𝑖
)𝑑𝒙𝑉𝑖

= ∫ 𝑃(𝒙𝑉𝑖
)𝑃 (𝒙𝑆𝑖

∣ 𝒙𝑉𝑖
)𝑑𝒙𝑉𝑖

.

We rename 𝑆𝑖 by 𝑉𝑖+1 = 𝑆𝑖, so that the marginal becomes

𝑃(𝒙𝑆𝑖
) = 𝑃(𝒙𝑉𝑖+1

) = ∫ 𝑃(𝒙𝑉𝑖
)𝑃 (𝒙𝑉𝑖+1

∣ 𝒙𝑉𝑖
)𝑑𝒙𝑉𝑖

.

Because the conditional independence struure induced by 𝑃(𝒙𝑉𝑖+1
)

is that of a fully conneed graph, we must immediately approximate it.
erefore, the set of edges 𝐸𝑖+1 is reconstrued by reconneing nodes
that are nearby in the sense of a metric of choice, see Chapter  for a more
detailed discussion. In the case of the Ising model, the original laice is
endowed with a set of Cartesian coordinates, which may be passed on to
the coarser levels by computing the average position of the nodes within
the subset 𝑈𝑗. e distance between the nodes provides a natural metric
in this case.
For each 𝑢, 𝑣 ∈ 𝑉𝑖+1 such that the metric 𝜌(𝑢, 𝑣) ≤ 𝑇𝑖+1 we form

an edge (𝑢, 𝑣) ∈ 𝐸𝑖+1, thus completing the specification of the graph
𝐺𝑖+1 = (𝑉𝑖+1, 𝐸𝑖+1).
e above iterative construion builds a ladder of successively coarser

laices with node sets 𝑉 = 𝑉0, 𝑉1, 𝑉2, …, 𝑉𝑚, which stops when the set
of variables 𝑉𝑚 is deemed sufficiently small.
e complete coarsening process is shown on Figure .. We begin

with a regular two-dimensional Cartesian laice of the Ising model and
divide it into subsets of 2 × 2 nodes. Larger or irregular subsets are al-
lowed when needed. e process continues until a small enough laice is
achieved.
e conneions are added up to a distance of the third nearest neighbor,

resulting in a dense graph. However, this is not a difficulty because the
variables will be sampled together using MCMC rather than individually
using conditional probabilities.
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(a) (b)

(c) (d)

Figure .: Complete coarsening process of a two-dimensional Cartesian laice
of initial size 8 × 8. e nodes of the laice are divided into subsets
of size 2 × 2, decreasing the number of nodes by a faor of 4 dur-
ing each coarsening step. Although the laices are two-dimensional,
height was used to represent the coarsening level, with nodes higher
up belonging to the coarser laices.

.   

Consider the marginal probability density for laice 𝑉𝑖,

𝑃(𝒙𝑉𝑖
) = ∫ 𝑃(𝒙𝑉0

)𝑃 (𝒙𝑉1
∣ 𝒙𝑉0

) … 𝑃 (𝒙𝑉𝑖
∣ 𝒙𝑉𝑖−1

)𝑑𝒙𝑉0
𝑑𝒙𝑉1

… 𝑑𝒙𝑉𝑖−1
.
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If necessary, we define a differentiable extension ̃𝑃 (𝒙𝑉𝑖
∣ 𝒙𝑉𝑖−1

), which
in turn defines uniquely a differentiable extension of the marginal,

̃𝑃 (𝒙𝑉𝑖
) = ∫ 𝑃(𝒙𝑉0

)𝑃 (𝒙𝑉1
∣ 𝒙𝑉0

) … ̃𝑃 (𝒙𝑉𝑖
∣ 𝒙𝑉𝑖−1

)𝑑𝒙𝑉0
𝑑𝒙𝑉1

… 𝑑𝒙𝑉𝑖−1
,

analogously to the technique used in Chapter .
Assume that 𝑃(𝒙𝑉𝑖

) > 0 is strily positive and can thus be wrien as

𝑃(𝒙𝑉𝑖
) = exp (𝑊(𝒙𝑉𝑖

))/𝑍𝑉𝑖
.

For 𝑢 ∈ 𝑉𝑖 we wish to obtain an approximation to

𝜕𝑊(𝒙𝑉𝑖
)

𝜕𝑥𝑢
= 𝜕

𝜕𝑥𝑢
ln 𝑃 (𝒙𝑉𝑖

)

within the space spanned by a basis 𝜙. Plugging in the definition of the
marginal density 𝑃(𝒙𝑉𝑖

) we obtain the generalized fast marginalization
equation

𝜕𝑊
𝜕𝑥𝑢

= 𝜕
𝜕𝑥𝑢

ln 𝑃 (𝒙𝑉𝑖
)

= 𝔼 [
𝜕𝑃(𝒙𝑉𝑖

∣ 𝒙𝑉𝑖−1
)

𝜕𝑥𝑢
/𝑃 (𝒙𝑉𝑖

∣ 𝒙𝑉𝑖−1
)∣𝒙𝑉𝑖

] .

e remainingwork closely resembles previous developments.We proje
the target funion

ℱ(𝒙𝑉𝑖
) = 𝔼 [

𝜕𝑃(𝒙𝑉𝑖
∣ 𝒙𝑉𝑖−1

)
𝜕𝑥𝑢

/𝑃 (𝒙𝑉𝑖
∣ 𝒙𝑉𝑖−1

)∣𝒙𝑉𝑖
]

in the least squares sense onto the basis 𝜙 by construing a matrix
𝐴 = (𝐴𝑘𝑙), 𝐴𝑘𝑙 = ⟨𝜙𝑘, 𝜙𝑙⟩, and right hand side veor 𝑏𝑘 = ⟨ℱ, 𝜙𝑘⟩.
To simplify notation, define

𝑃 (𝒙𝑉0
, 𝒙𝑉1

, … , 𝒙𝑉𝑖
) = 𝑃(𝒙𝑉0

)𝑃 (𝒙𝑉1
∣ 𝒙𝑉0

) … 𝑃(𝒙𝑉𝑖
∣ 𝒙𝑉𝑖−1

).

Using the inner produ defined in Seion .. we obtain

𝐴𝑘𝑙 = ⟨𝜙𝑘, 𝜙𝑙⟩

= ∫ 𝜙𝑘(𝒙𝑉𝑖
)𝜙𝑙(𝒙𝑉𝑖

) (𝑃 (𝒙𝑉𝑖
)/𝑄(𝒙𝑉𝑖

)) 𝑑𝒙𝑉𝑖
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= ∫ (
𝜙𝑘(𝒙𝑉𝑖

)𝜙𝑙(𝒙𝑉𝑖
)

𝑄(𝒙𝑉𝑖
) )

× ∫ 𝑃(𝒙𝑉0
, 𝒙𝑉1

, … , 𝒙𝑉𝑖
)𝑑𝒙𝑉0,𝑉1,…,𝑉𝑖

= 𝔼 [
𝜙𝑘(𝒙𝑉𝑖

)𝜙𝑙(𝒙𝑉𝑖
)

𝑄(𝒙𝑉𝑖
) ] ,

where themarginal distribution𝑃(𝒙𝑉𝑖
) is replacedwith its definition.e

right hand side veor becomes

𝑏𝑘 = ⟨ℱ, 𝜙𝑘⟩

= ∫ 𝜙𝑘(𝒙𝑉𝑖
)ℱ(𝒙𝑉𝑖

) (𝑃(𝒙𝑉𝑖
)/𝑄(𝒙𝑉𝑖

)) 𝑑𝒙𝑉𝑖

= ∫ 𝜙𝑘(𝒙𝑉𝑖
) (

𝑃(𝒙𝑉𝑖
)

𝑄(𝒙𝑉𝑖
))

×
∫ 𝑃(𝒙𝑉0

, 𝒙𝑉1
, … , 𝒙𝑉𝑖

) (𝑃 ′(𝒙𝑉𝑖 ∣𝒙𝑉𝑖−1 )
𝑃(𝒙𝑉𝑖 ∣𝒙𝑉𝑖−1 ) ) 𝑑𝒙𝑉0,𝑉1,…,𝑉𝑖−1

∫ 𝑃(𝒙𝑉0
, 𝒙𝑉1

, … , 𝒙𝑉𝑖
)𝑑𝒙𝑉0,𝑉1,…,𝑉𝑖−1

𝑑𝒙𝑉𝑖
.

Notice that the denumerator, coming from ℱ(𝒙𝑉𝑖
), is equal to the

marginal 𝑃(𝒙𝑉𝑖
). Canceling the two out yields

𝑏𝑘 = ∫
𝜙𝑘(𝒙𝑉𝑖

)
𝑄(𝒙𝑉𝑖

) ∫ 𝑃(𝒙𝑉0
, 𝒙𝑉1

, … , 𝒙𝑉𝑖
)

× (
𝑃 ′(𝒙𝑉𝑖

∣ 𝒙𝑉𝑖−1
)

𝑃 (𝒙𝑉𝑖
∣ 𝒙𝑉𝑖−1

) ) 𝑑𝒙𝑉0,𝑉1,…,𝑉𝑖

= 𝔼 [𝜙𝑘
𝑄

𝑃 ′(𝒙𝑉𝑖
∣ 𝒙𝑉𝑖−1

)
𝑃 (𝒙𝑉𝑖

∣ 𝒙𝑉𝑖−1
) ] ,

showing again that the weight 𝑃(𝒙𝑉𝑖
) in the inner produ definition is

necessary to transform 𝐴𝑘𝑙 and 𝑏𝑘 into expeations over the complete set
of variables 𝒙𝑉0

, 𝒙𝑉1
, … , 𝒙𝑉𝑖

.

.. e case of discrete variables

Wemeet the challenge of handling probabilities defined over discrete vari-
ables in a manner very similar to the original fast marginalization. We ex-
tend 𝑥𝑢 for 𝑢 ∈ 𝑉𝑖 to take real values, renaming it 𝜒𝑢 to avoid confusion,
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and define a differentiable extension ̃𝑃 (𝜒𝑢, 𝒙𝑉𝑖\𝑢 ∣ 𝒙𝑉𝑖−1
) of the coarsen-

ing rule 𝑃(𝒙𝑉𝑖
∣ 𝒙𝑉𝑖−1

) that agrees with the original rule whenever 𝜒𝑢
takes any of the original discrete values.
We use the mixed continuous-discrete representation described in Sec-

tion ... erefore, the matrix 𝐴𝑘𝑙(𝜒𝑢) and 𝑏𝑘(𝜒𝑢) are funions of the
continuous variable 𝜒𝑢, which is to take values equal to Gaussian integra-
tion nodes. Using an inner produ

⟨𝑓, 𝑔⟩𝜒𝑢
= ∫ 𝑓(𝒙𝑉𝑖\𝑢, 𝜒𝑢)𝑔(𝒙𝑉𝑖\𝑢, 𝜒𝑢)

̃𝑃 (𝒙𝑉𝑖\𝑢, 𝜒𝑢)
𝑄(𝒙𝑉𝑖\𝑢, 𝜒𝑢)𝑑𝒙𝑉𝑖\𝑢

we have

𝐴𝑘𝑙(𝜒𝑢) = ⟨𝜙𝑘, 𝜙𝑙⟩𝜒𝑢

= 𝔼 [
𝜙𝑘(𝒙𝑉𝑖\𝑢)𝜙𝑙(𝒙𝑉𝑖\𝑢)

𝑄(𝒙𝑉𝑖\𝑢, 𝜒𝑢)
̃𝑃 (𝒙𝑉𝑖\𝑢, 𝜒𝑢 ∣ 𝒙𝑉𝑖−1

)] .

Similarly, the formula for 𝑏𝑘(𝜒𝑢) becomes

𝑏𝑘(𝜒𝑢) = ⟨ℱ, 𝜙𝑘⟩𝜒𝑢

= 𝔼 [
𝜙𝑘(𝒙𝑉𝑖\𝑢, 𝜒𝑢)
𝑄(𝒙𝑉𝑖\𝑢, 𝜒𝑢)

̃𝑃 ′(𝒙𝑉𝑖\𝑢, 𝜒𝑢 ∣ 𝒙𝑉𝑖−1
)] ,

which is equivalent to the continuous formula except for the fa that
𝜒𝑢 is fixed. Solving the linear system 𝐴(𝜒𝑢)𝒄(𝜒𝑢) = 𝒃(𝜒𝑢) yields renor-
malized coupling coefficients 𝒄(𝜒𝑢), whose integral allows one to recover
the discrete energy difference Δ𝑢𝑊(𝒙𝑉𝑖\𝑢; 𝑎, 𝑏) and hence a themarginal
probability distribution 𝑃(𝒙𝑉𝑖

), as in Seion ...

.. Computing the expeed values

e fa that the coarse variables 𝒙𝑉𝑖
, 𝑖 > 0, are not a subset of the orig-

inal variables 𝒙𝑉0
causes a mild difficulty when computing the expeed

values. e expeed values defined above are defined not over the orig-
inal probability density, but over the extended probability density that
includes the coarse variables 𝒙𝑉𝑖

for 𝑖 > 0,

𝑃(𝒙𝑉0
, 𝒙𝑉1

, … , 𝒙𝑉𝑖
) = 𝑃(𝒙𝑉0

)𝑃 (𝒙𝑉1
∣ 𝒙𝑉0

) … 𝑃(𝒙𝑉𝑖
∣ 𝒙𝑉𝑖−1

).

If the coarse densities are not yet available, the coarse variables may be
sampled given the original variables, following the method used since
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Ma (). is sampling direion is the easier one, assuming that we
can sample from 𝑃(𝒙𝑉0

).
We begin by sampling 𝒙𝑉0

∼ 𝑃(𝒙𝑉0
) using a method such as the

Markov Chain Monte Carlo (MCMC). e coarser levels are then sampled
consecutively using the coarsening rules,

𝑥𝑉𝑖
∼ 𝑃 (𝒙𝑉𝑖

∣ 𝒙𝑉𝑖−1
),

a task accomplished easily because all variables within 𝒙𝑉𝑖
are condition-

ally independent of each other given the values of 𝒙𝑉𝑖−1
,

𝑥𝑢 ⟂⟂ 𝑥𝑣 ∣ 𝒙𝑉𝑖−1
for any 𝑢, 𝑣 ∈ 𝑉𝑖.

is makes both the sampling from the extended probability distribu-
tion and computation of the expeed values required by generalized fast
marginalization a straightforward enterprise.

.. Symmetrization

ehandling of discrete PDFs through differentiable extension leads to the
appearance of basis funions that do not satisfy the symmetry constraints
expeed of 𝑊(𝒙𝑉𝑖

). We eliminate this difficulty through symmetrization,
similarly to what was done in the original fast marginalization algorithm
in Seion ...
We provide here the fully-symmetrized formulae. Assume that the

Hamiltonian 𝑊(𝒙𝑉𝑖
) is even; we proje the even funion

ℱ(𝒙𝑉𝑖\𝑢, 𝜒𝑢) = 1
2 (

̃𝑃 ′(𝒙𝑉𝑖\𝑢, 𝜒𝑢)
̃𝑃 (𝒙𝑉𝑖\𝑢, 𝜒𝑢)

+
̃𝑃 ′(𝒙𝑉𝑖\𝑢, −𝜒𝑢)
̃𝑃 (𝒙𝑉𝑖\𝑢, −𝜒𝑢)

)

under the 𝜒𝑢-dependent inner produ

⟨𝑓, 𝑔⟩𝜒𝑢
= 1

2 ∫ 𝑓(𝒙𝑉𝑖\𝑢)𝑔(𝒙𝑉𝑖\𝑢) (
̃𝑃 (𝒙𝑉𝑖\𝑢, 𝜒𝑢)

𝑄(𝒙𝑉𝑖\𝑢, 𝜒𝑢) +
̃𝑃 (𝒙𝑉𝑖\𝑢, −𝜒𝑢)

𝑄(𝒙𝑉𝑖\𝑢, −𝜒𝑢)) .

Because of the different in the inner produ, both the 𝐴𝑘𝑙(𝜒𝑢) and 𝑏𝑘(𝜒𝑢)
formulae change. e matrix entry 𝐴𝑘𝑙(𝜒𝑢) becomes

𝐴𝑘𝑙(𝜒𝑢) = ⟨𝜙𝑘, 𝜙𝑙⟩𝜒𝑢

= 1
2 ∫ 𝜙𝑘(𝒙𝑉𝑖\𝑢, 𝜒𝑢)𝜙𝑙(𝒙𝑉𝑖\𝑢, 𝜒𝑢)
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× (
̃𝑃 (𝒙𝑉𝑖\𝑢, 𝜒𝑢)

𝑄(𝒙𝑉𝑖\𝑢, 𝜒𝑢) +
̃𝑃 (𝒙𝑉𝑖\𝑢, −𝜒𝑢)

𝑄(𝒙𝑉𝑖\𝑢, −𝜒𝑢)) 𝑑𝒙𝑉𝑖\𝑢

= 1
2𝔼[𝜙𝑘(𝒙𝑉𝑖\𝑢, 𝜒𝑢)𝜙𝑙(𝒙𝑉𝑖\𝑢, 𝜒𝑢)

× (
̃𝑃 (𝒙𝑉𝑖\𝑢, 𝜒𝑢 ∣ 𝒙𝑉𝑖−1

)
𝑄(𝒙𝑉𝑖\𝑢, 𝜒𝑢) +

̃𝑃 (𝒙𝑉𝑖\𝑢, −𝜒𝑢 ∣ 𝒙𝑉𝑖−1
)

𝑄(𝒙𝑉𝑖\𝑢, −𝜒𝑢) )] .

ederivation of the right hand side veor entry 𝑏𝑘(𝜒𝑢) is more involved,
but we obtain

𝑏𝑘(𝜒𝑢) = 1
4𝔼[𝜙𝑘(𝒙𝑉𝑖\𝑢, 𝜒𝑢)

× ( ̃𝑃 ′(𝒙𝑉𝑖\𝑢, 𝜒𝑢 ∣ 𝒙𝑉𝑖−1
) ( 1

𝑄(𝒙𝑉𝑖\𝑢, 𝜒𝑢) +
ℛ(−𝜒𝑢, 𝒙𝑁𝑉𝑖 (𝑢))
𝑄(𝒙𝑉𝑖\𝑢, −𝜒𝑢) )

+ ̃𝑃 ′(𝒙𝑉𝑖\𝑢, −𝜒𝑢 ∣ 𝒙𝑉𝑖−1
) ( 1

𝑄(𝒙𝑉𝑖\𝑢, −𝜒𝑢) +
ℛ(𝜒𝑢, 𝒙𝑁𝑉𝑖 (𝑢))
𝑄(𝒙𝑉𝑖\𝑢, 𝜒𝑢) )] .

While the derivation of the formulae appears discouragingly complex, in
praice its use amounts to a minor correion to the non-symmetrized
method. Similarly as in Seion ..., the terms

ℛ(𝜒𝑢, 𝒙𝑁𝑉𝑖 (𝑢)) = exp (∫
𝜒𝑢

−𝜒𝑢

𝑊̃ ′(𝒙𝑉𝑖\𝑢, 𝑠)𝑑𝑠)

must be computed approximately using the approximation of
𝑊̃ ′(𝒙𝑉𝑖\𝑢, 𝜒𝑢) obtained using generalized fast marginalization. us,
the equations of the symmetrized generalized fast marginalization are
implicit, requiring an iterative solution. As in fast marginalization, we
solve them using a fixed-point iteration.
e funion 𝑊̃ ′(𝒙𝑉𝑖\𝑢, 𝜒𝑢) may have a difficult to integrate shape: the

majority of the mass of the funion may be concentrated within a small
region of the 𝜒𝑢 interval, or it may develop integrable singularities.ere-
fore, the shape of 𝑊̃ ′(𝒙𝑉𝑖\𝑢, 𝜒𝑢) must be inspeed for such difficulties
and may require a specialized quadrature rule.
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. 

We begin with an in-depth analysis of the transition between two levels
of the laice formed by the generalized acyclic Monte Carlo. Assume that
we have already sampled the variables 𝒙𝑉𝑖+1

, know the value of the trial
probability density 𝑃≈(𝒙𝑉𝑖+1

) and the joint distribution of 𝑃(𝒙𝑉𝑖
, 𝒙𝑉𝑖+1

).
Given these assumptions, we show that — while it is possible to sample
𝒙𝑉𝑖

given the values of𝒙𝑉𝑖+1
— it is computationally infeasible to compute

the trial probability 𝑃≈(𝒙𝑉𝑖
).

In order to obtain 𝒙𝑉𝑖
we need to sample 𝒙𝑉𝑖

from 𝑃(𝒙𝑉𝑖
∣ 𝒙𝑉𝑖+1

),
satisfying

𝑃(𝒙𝑉𝑖+1
)𝑃 (𝒙𝑉𝑖

∣ 𝒙𝑉𝑖+1
) = 𝑃(𝒙𝑉𝑖

)𝑃 (𝒙𝑉𝑖+1
∣ 𝒙𝑉𝑖

).

e infeasibility lies in the fa that the marginal density 𝑃(𝒙𝑉𝑖+1
)

is known only approximately as 𝑃≈(𝒙𝑉𝑖+1
). e exa value may

be computed by summing the known joint probability distribution
𝑃(𝒙𝑉𝑖

)𝑃 (𝒙𝑉𝑖+1
∣ 𝒙𝑉𝑖

) over all possible states 𝒙𝑉𝑖
, which is infeasible.

e result is that it is impossible to compute the probability 𝑃≈(𝒙𝑉0
) of

generating a state 𝒙𝑉0
by sampling the ladder of laices. erefore, the

trial probability 𝑃≈(𝒙𝑉0
) can be neither correed through importance

sampling nor improved through particle filtering. However, we may still
sample from the trial distribution, as described below (see also Brandt and
Ron, b).

.. Ladder sampling

Although the conditional probability 𝑃(𝒙𝑉𝑖
∣ 𝒙𝑉𝑖+1

) cannot be computed,
it may be evaluated up to a faor dependent only on 𝒙𝑉𝑖+1

,

𝑃(𝒙𝑉𝑖
∣ 𝒙𝑉𝑖+1

) =
𝑃(𝒙𝑉𝑖

𝑃(𝒙𝑉𝑖+1
∣ 𝒙𝑉𝑖

)
𝑃 (𝒙𝑉𝑖+1

) .

Since the denumerator is constant in 𝒙𝑉𝑖
, a sampling method may ignore

it if 𝒙𝑉𝑖+1
is known and held constant. erefore, we sample 𝒙𝑉𝑖

from the
joint probability distribution

𝑃(𝒙𝑉𝑖
, 𝒙𝑉𝑖+1

) = 𝑃(𝒙𝑉𝑖
𝑃(𝒙𝑉𝑖+1

∣ 𝒙𝑉𝑖
)
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using MCMC, keeping 𝒙𝑉𝑖+1
constant. e most straightforward method

proceeds in two phases. An initial state 𝒙0
𝑉𝑖

is seleed at random with
the constraint that

𝑃(𝒙𝑉𝑖
, 𝒙𝑉𝑖+1

) ≠ 0.

In the terminology of Brandt and Ron (b), the states 𝒙𝑉𝑖
and 𝒙𝑉𝑖+1

are
said to be compatible. During the second phase the initial state 𝒙0

𝑉𝑖
is it-

eratively updated using MCMC. e number of steps 𝑛 necessary to reach
a state 𝒙𝑛

𝑉𝑖
, distributed according to a probability distribution closely ap-

proximating 𝑃(𝒙𝑉𝑖
, 𝒙𝑉𝑖+1

), is typically small, because of the strong influ-
ence of the conditional term 𝑃(𝒙𝑉𝑖+1

∣ 𝒙𝑉𝑖
) (Brandt and Ron, b). As

in the multigrid method of linear algebra, the long-range correlations be-
tween variables are eliminated by the coarser variables𝒙𝑉𝑖+1

, leaving only
short-range correlations that can be relaxed quickly using local MCMC up-
dates.

.. Post-relaxation

Ladder sampling produces samples from a trial probability distribution

𝑃≈(𝒙𝑉0
, 𝒙𝑉1

, … , 𝒙𝑉𝑚
) = 𝑃≈(𝒙𝑉𝑚

)𝑃≈(𝒙𝑉𝑚−1
∣ 𝒙𝑉𝑚

) … 𝑃≈(𝒙𝑉0
∣ 𝒙𝑉1

),

which cannot be computed even up to amultiplicative constant.erefore,
the trial probability distribution cannot be correed using the importance
sampling algorithm. Instead, Brandt and Ron (b) suggest a technique
called post-relaxation for correing the trial distributionwithout knowing
it.
e source of the errors in the trial probability is that the variables

of the coarser level 𝒙𝑉𝑖+1
were sampled from a probability distribution

𝑃(𝒙𝑉𝑖+1
) that was an approximate marginal of 𝑃(𝒙𝑉𝑖

, 𝒙𝑉𝑖+1
). erefore,

holding the variables 𝒙𝑉𝑖+1
introduces a bias that must be removed. Post-

relaxation does this by performing MCMC sweeps from 𝑃(𝒙𝑉𝑖
), ignoring

the constraints imposed by the values of 𝒙𝑉𝑖+1
.

e difficulty in using post-relaxation is the fa that the difference be-
tween the trial distribution 𝑃≈(𝒙𝑉𝑖

) and the approximate marginal dis-
tribution 𝑃(𝒙𝑉𝑖+1

) is not known. erefore, the number of required post-
relaxation sweeps must be estimated experimentally.
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In what follows we will show that the original acyclic Monte Carlo is a
special case of the generalized acyclic Monte Carlo, obtained when the
coarsening rule is

𝑃(𝑥𝑣 ∣ 𝒙𝑈𝑣
) = 𝛿(𝑥𝑣 − 𝑥𝑢) for a fixed 𝑢 ∈ 𝑈𝑣,

also known as decimation. e most straightforward way to prove the
equivalence is by showing that the expeed value

𝔼 [𝑓(𝒙𝑉0
, 𝒙𝑉1

, … 𝒙𝑉𝑖
)]

= ∫ 𝑓(𝒙𝑉0
, 𝒙𝑉1

, … 𝒙𝑉𝑖
)𝑃 (𝒙𝑉0

, 𝒙𝑉1
, … 𝒙𝑉𝑖

)𝑑𝒙𝑉0,𝑉1,…,𝑉𝑖

reduces to an expeed value over the original probability distribution
𝑃(𝒙𝑉0

). For ease of notation, consider the case of only two levels, 𝑉0 and
𝑉1, and let 𝑈0 ⊂ 𝑉0 be the subset of 𝑉0 that can be mapped bijeively to
the nodes of 𝑉1.e expeed value with respe to 𝑃(𝒙𝑉0

, 𝒙𝑉1
) simplifies

𝔼 [𝑓(𝒙𝑉0
, 𝒙𝑉1

)] = ∫ 𝑓(𝒙𝑉0
, 𝒙𝑉1

)𝑃 (𝒙𝑉0
)𝑃 (𝒙𝑉1

∣ 𝒙𝑉0
)𝑑𝒙𝑉0

𝑑𝒙𝑉1

= ∫ 𝑓(𝒙𝑉0
, 𝒙𝑉1

)𝑃 (𝒙𝑉0
)𝛿(𝒙𝑉1

− 𝒙𝑈0
)𝑑𝒙𝑉1

𝑑𝒙𝑉0

= ∫ (∫ 𝑓(𝒙𝑉0
, 𝒙𝑉1

)𝛿(𝒙𝑉1
− 𝒙𝑈0

)𝑑𝒙𝑉1
) 𝑃(𝒙𝑉0

)𝑑𝒙𝑉0

= ∫ 𝑓(𝒙𝑉0
, 𝒙𝑈0

)𝑃 (𝒙𝑉0
)𝑑𝒙𝑉0

= 𝔼𝑃(𝒙𝑉0 ) [𝑓(𝒙𝑉0
, 𝒙𝑈0

)] ,

reducing itself to an expeed value with respe to the original distribu-
tion. An example with more laice levels may be construed analogously,
with the 𝛿 distribution used to remove the coarse laice variables by re-
placing with the appropriate subsets of the fine variables 𝒙𝑉0

.
In particular, the funion projeed in the generalized fast marginaliza-

tion framework is

𝑓(𝒙𝑉1
) = 𝔼 [

𝑃 ′(𝒙𝑉1
∣ 𝒙𝑉0

)
𝑃 (𝒙𝑉1

∣ 𝒙𝑉0
) ∣𝒙𝑉1

]

= 𝔼 [
𝛿′(𝒙𝑉1

− 𝒙𝑈0
)

𝛿(𝒙𝑉1
− 𝒙𝑈0

) ∣𝒙𝑉1
] , (.)
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where 𝛿′ is the derivative of the 𝛿 distribution defined through

∫ 𝛿′(𝑥 − 𝑦)𝑓(𝑥)𝑑𝑥 = 𝑓 ′(𝑦).

Equation . is only a formal expeation and an abuse of notation. How-
ever, expanding the definition of the conditional expeed value we obtain

𝑓(𝒙𝑉1
) =

∫ 𝛿′(𝑥𝑉1
− 𝒙𝑈0

)𝑃 (𝒙𝑉0
)𝑑𝒙𝑉0

∫ 𝑃(𝒙𝑉0
)𝛿(𝒙𝑉1

− 𝒙𝑈0
)𝑑𝒙𝑉0

=
∫ 𝛿′(𝑥𝑉1

− 𝒙𝑈0
)𝑃 (𝒙𝑉0\𝑈0

, 𝒙𝑈0
)𝑑𝒙𝑈0

𝑑𝒙𝑉0\𝑈0

∫ 𝑃(𝒙𝑉0\𝑈0
)𝛿(𝒙𝑉1

− 𝒙𝑈0
)𝑑𝒙𝑈0

𝑑𝒙𝑉0\𝑈0

=
∫ 𝑃 ′(𝒙𝑉0\𝑈0

, 𝒙𝑉1
)𝑑𝒙𝑉0\𝑈0

∫ 𝑃(𝒙𝑉0\𝑉1
)𝑑𝒙𝑉0\𝑈0

,

which matches the fast marginalization equation of Seion ..
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We close the discussion of the generalized acyclic Monte Carlo with a
complete example of the generalized acyclic Monte Carlo applied to the
Ising model in two dimensions, coarsened under the majority rule.
emajority rule is an interpolation rule designed for discrete variables

and used widely in the physics community (see, e.g. Brandt and Ron,
b; Gupta and Cordery, ; Ron and Swendsen, ). Seing the
coarse variable 𝑥𝑣 to the average value of 𝒙𝑈𝑣

would cause the coarse
variable to take on awider set of values than the original variables, leading
to an increased complexity. Instead, the majority rule forces the coarse
variable to take the value that occurs most frequently among the fine
variables 𝒙𝑈𝑣

; in case of a tie, one of the values is chosen at random.
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Table .: Values of the majority coarsening rule 𝑃(𝑥5 ∣ ∑4
𝑖=1 𝑥𝑖) for the

two-dimensional Ising model. e differentiable extension ̃𝑃 (𝜒5 ∣
∑4

𝑖=1 𝑥𝑖) and its partial derivative with respe to 𝜒5 is also included.

4
∑
𝑖=1

𝑥𝑖
𝑃 (𝑥5∣

4
∑
𝑖=1

𝑥𝑖) ̃𝑃 (𝜒5∣
4

∑
𝑖=1

𝑥𝑖) ̃𝑃 ′ (𝜒5∣
4

∑
𝑖=1

𝑥𝑖)

𝑥5 = −1 𝑥5 = 1

4 0 1 (1 + 𝜒5
2 )

𝑝 𝑝
2 (1 + 𝜒5

2 )
𝑝−1

2 0 1 (1 + 𝜒5
2 )

𝑝 𝑝
2 (1 + 𝜒5

2 )
𝑝−1

0 1/2 1/2 1/2 0
−2 1 0 (1 − 𝜒5

2 )
𝑝

−𝑝
2 (1 − 𝜒5

2 )
𝑝−1

−4 1 0 (1 − 𝜒5
2 )

𝑝
−𝑝

2 (1 − 𝜒5
2 )

𝑝−1

.. Coarsening rule

Consider a two-dimensional laice of size 16 × 16. We coarsen it by di-
viding the original variables 𝑉 into subsets of size 2 × 2, leading to a set
of 16 × 16 coarse nodes 𝑈 . e coarsening block is build of 2 × 2 + 1 vari-
ables, the 4 fine variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 and the assigned coarse variable
𝑥5, which is subsequently made continuous and denoted 𝜒5.
Since the variables may only take the values of −1 or 1, there are

25 = 32 possible states of the coarsening block. erefore, we define
𝑃(𝑥5 ∣ 𝑥1, 𝑥2, 𝑥3, 𝑥4) for each of the 32 states; however, due to the
symmetries present in the problem, there are only 10 distinguishable
states that depend on the sum of the fine variables ∑4

𝑖=1 𝑥𝑖 and the
value of th coarse variable 𝑥5. e values of the conditional probability
𝑃(𝑥5 ∣ ∑4

𝑖=1 𝑥𝑖) are summarized in Table ..

e differentiable extension ̃𝑃 ( ̃𝑥5∣ ∑4
𝑖=1 𝑥𝑖) is then construed as a

simple polynomial passing through the given values for ̃𝑥5 = −1 and
1. e additional parameter 𝑝 is included for additional flexibility. We
use it in Seion .. to show that the generalized fast marginalization
is independent of the choice of differentiable extension.
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.. Generalized fast marginalization

egeneralized fastmarginalization formulaemay be evaluated by substi-
tuting the formulae fromTable . into the equations developed in Seion
..

... Non-symmetrized projeion

Let the basis funion 𝜙𝑢
𝑖 , for a node 𝑢 ∈ 𝑈 , be the basis funion 𝜙𝑖

centered around the node 𝑢. Given a sequence of MCMC samples 𝒙𝑘
𝑉 ∪𝑈 ,

for 𝑘 = 1, 2, … , 𝑛, we compute a matrix 𝐴(𝜒𝑢), on the laice 𝑈 and for
each Gaussian integration node, using the formula

𝐴𝑖𝑗(𝜒𝑢) = 1
|𝑈|

1
𝑛 ∑

𝑢∈𝑈

𝑛
∑
𝑘=1

𝜙𝑢
𝑖 (𝒙𝑘

𝑈)𝜙𝑢
𝑗 (𝒙𝑘

𝑈) ̃𝑃 (𝒙𝑘
𝑈𝑢

, 𝜒𝑢 ∣ 𝒙𝑉 ).

We take advantage of the fa that the Ising model and our renormalized
models are translation invariant; thus we may average the expeed val-
ues over all variables on the given laice.
Since the projeion is performed on the laice 𝑈 with seven Gaussian

integration nodes, we need to compute a total of seven projeion ma-
trices. Similarly, the right hand side veor 𝑏𝑖(𝜒𝑢) is estimated from the
random samples through

𝑏𝑖(𝜒𝑢) = 1
|𝑈|

1
𝑛 ∑

𝑢∈𝑈

𝑛
∑
𝑘=1

𝜙𝑢
𝑖 (𝒙𝑘

𝑈) ̃𝑃 ′(𝒙𝑘
𝑈𝑢

, 𝜒𝑢 ∣ 𝒙𝑉 ).

As above, the set of variables 𝒙𝑈𝑢
, 𝑈𝑢 ⊂ 𝑉 , has the variable 𝑥𝑢, 𝑢 ∈ 𝑈 ,

assigned as the coarse variable. Note that the normalization constant is
the same in both 𝐴𝑖𝑗(𝜒𝑢) and 𝑏𝑖(𝜒𝑢), so that it cancels out.

... Partially-symmetrized projeion

In the partially-symmetrized case, the linear projeion equations include
the correion formula ℛ(𝜒𝑢, 𝒙𝑁(𝑢)). It must be evaluated numerically us-
ing the current approximation of the coefficients 𝑐𝑖(𝜒𝑢). Given a sequence
of samples 𝒙𝑘

𝑉 ∪𝑈 , for 𝑘 = 1, 2, … , 𝑛, we compute the matrices 𝐴(𝜒𝑢) at
each Gaussian integration node 𝜒𝑢 using the formula

𝐴𝑖𝑗(𝜒𝑢) = 1
|𝑈|

1
𝑛 ∑

𝑢∈𝑈

𝑛
∑
𝑘=1

𝜙𝑢
𝑖 (𝒙𝑘

𝑈)𝜙𝑢
𝑗 (𝒙𝑘

𝑈) ̃𝑃 (𝒙𝑘
𝑈𝑢

, 𝜒𝑢 ∣ 𝒙𝑉 ).
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Similarly, the right hand side veor 𝑏𝑖(𝜒𝑢) is estimated from the random
samples through

𝑏𝑖(𝜒𝑢) = 1
2

1
|𝑈|

1
𝑛 ∑

𝑢∈𝑉𝑙

𝑛
∑
𝑘=1

𝜙𝑢
𝑖 (𝒙𝑘

𝑉𝑙
)

× ̃𝑃 ′(𝒙𝑘
𝑈𝑢

, 𝜒𝑢 ∣ 𝒙𝑉 ) (1 + ℛ(𝜒𝑢, 𝒙𝑁(𝑢))) .

... Fully-symmetrized projeion

In the fully-symmetrized case, the linear projeion equations become
slightly more involved. Given a sequence of samples 𝒙𝑘

𝑉 ∪𝑈 , for 𝑘 =
1, 2, … , 𝑛, we compute the matrices 𝐴(𝜒𝑢) at each Gaussian integration
node 𝜒𝑢 using the formula

𝐴𝑖𝑗(𝜒𝑢) = 1
2

1
|𝑈|

1
𝑛 ∑

𝑢∈𝑈

𝑛
∑
𝑘=1

𝜙𝑢
𝑖 (𝒙𝑘

𝑈)𝜙𝑢
𝑗 (𝒙𝑘

𝑈)

× ( ̃𝑃 (𝒙𝑘
𝑈𝑢

, 𝜒𝑢 ∣ 𝒙𝑉 ) + ̃𝑃 (𝒙𝑘
𝑈𝑢

, −𝜒𝑢 ∣ 𝒙𝑉 )) .

Similarly, the right hand side veor 𝑏𝑖(𝜒𝑢) is estimated from the random
samples through

𝑏𝑖(𝜒𝑢) = 1
4

1
|𝑈|

1
𝑛 ∑

𝑢∈𝑉𝑙

𝑛
∑
𝑘=1

𝜙𝑢
𝑖 (𝒙𝑘

𝑉𝑙
)

× ( ̃𝑃 ′(𝒙𝑘
𝑈𝑢

, 𝜒𝑢 ∣ 𝒙𝑉 ) (1 + ℛ(𝜒𝑢, 𝒙𝑁(𝑢)))
+ ̃𝑃 ′(𝒙𝑘

𝑈𝑢
, −𝜒𝑢 ∣ 𝒙𝑉 ) (1 + ℛ(−𝜒𝑢, 𝒙𝑁(𝑢)))) .

.. Choice of basis

We sele the basis funions to ensure that the coefficients are comparable
with the literature. As a result wewill include linear and cubic funions of
the laice spins reaching up to a distance of

√
2, forming a neighborhood

𝑃12 in the notation of Brandt and Ron (b).
e probability distribution of the Ising model on a square Cartesian

laice is invariant with respe to rotations by 𝜋/2, 𝜋 and 3𝜋/2, and flips
along the 0, 𝜋/4, 𝜋/2 and 3𝜋/4 axes. As a result, the number of basis func-
tions reduces significantly. For example, the four nearest neighbor basis
funions

𝜙1
1 = 𝑥𝑖+1,𝑗, 𝜙2

1 = 𝑥𝑖−1,𝑗
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𝜙3
1 = 𝑥𝑖,𝑗+1, 𝜙4

1 = 𝑥𝑖,𝑗−1

reduce to the single basis funion 𝜙𝑢
1 (𝒙𝑁(𝑢)) = 𝑥𝑖+1,𝑗 + 𝑥𝑖−1,𝑗 + 𝑥𝑖,𝑗+1 +

𝑥𝑖,𝑗−1. For a node 𝑢 at position (𝑖, 𝑗) the complete set of basis funions
used in this example calculation becomes:

𝜙𝑢
1 (𝒙𝑁(𝑢)) = 𝑥𝑖+1,𝑗 + 𝑥𝑖−1,𝑗 + 𝑥𝑖,𝑗+1 + 𝑥𝑖,𝑗−1

𝜙𝑢
2 (𝒙𝑁(𝑢)) = 𝑥𝑖+1,𝑗+1 + 𝑥𝑖+1,𝑗−1 + 𝑥𝑖−1,𝑗+1 + 𝑥𝑖−1,𝑗−1,

𝜙𝑢
3 (𝒙𝑁(𝑢)) = 𝑥𝑖+1,𝑗𝑥𝑖+1,𝑗+1𝑥𝑖,𝑗+1 + 𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗+1𝑥𝑖−1,𝑗

+ 𝑥𝑖−1,𝑗𝑥𝑖−1,𝑗−1𝑥𝑖,𝑗−1 + 𝑥𝑖,𝑗−1𝑥𝑖+1,𝑗−1𝑥𝑖+1,𝑗,
𝜙𝑢

4 (𝒙𝑁(𝑢)) = 1,
𝜙𝑢

5 (𝒙𝑁(𝑢)) = 𝑥𝑖,𝑗−1𝑥𝑖−1,𝑗 + 𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗+1 + 𝑥𝑖+1,𝑗𝑥𝑖+1,𝑗−1

+ 𝑥𝑖,𝑗−1𝑥𝑖+1,𝑗 + 𝑥𝑖,𝑗+1𝑥𝑖+1,𝑗+1 + 𝑥𝑖−1,𝑗𝑥𝑖−1,𝑗−1
+ 𝑥𝑖,𝑗−1𝑥𝑖−1,𝑗−1 + 𝑥𝑖−1,𝑗𝑥𝑖,𝑗+1 + 𝑥𝑖+1,𝑗𝑥𝑖+1,𝑗+1
+ 𝑥𝑖,𝑗−1𝑥𝑖+1,𝑗−1 + 𝑥𝑖+1,𝑗𝑥𝑖,𝑗+1 + 𝑥𝑖−1,𝑗𝑥𝑖−1,𝑗+1.

Because the last two interaions are even, they are omied in case of
the symmetrized projeion schemes: the symmetrized projeion obtains
the odd part of the projeed funion, thus ensuring that the coefficients
corresponding to these funions are zero. Our basis has been generated
automatically by considering interaions whose radius is at most

√
2. We

then reduce the resulting set of basis funions using laice symmetries,
following the Algorithms . and ..

.. Computational results

We use a fixed-point iteration with Robbins-Monro smoothing to com-
pute the coefficients, beginning with all coefficients equal to zero (Rob-
bins andMonro, ).erefore, no symmetrization correion is applied
initially. Aer three iterations the coefficients begin to stabilize, with fur-
ther changes due only to the stochastic nature of the algorithm. e final
values are colleed in Tables ., . and .; they are analyzed in more
detail and compared with the literature in Seion ...

... Decimation coefficients

As a final step we show the ease with which the code may be adapted to
different coarsening rules. We will implement the decimation rule, which
recovers the coefficients that would be obtained using the original fast
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(a)

(b)

Figure .: Visualization of the arrangement of nodes, showing (a) the original
laice 𝑉 and (b) the sublaice 𝑈 . e nodes 𝑈 ⊂ 𝑉 are marked
green on both images.
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Figure .: Convergence of the coefficients 𝑐𝑖 of the relevant basis funions un-
der no symmetrization, partial symmetrization and full symmetriza-
tion.

marginalization algorithm. e relevant coarsening rule and its differen-
tiable extension are summarized in Table ..
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Figure .: e 𝜒𝑢 dependence of the coefficients 𝑐𝑖(𝜒𝑢) of the relevant basis
funions under (a) no symmetrization, (b) partial symmetrization
and (c) full symmetrization.

e resulting coefficients are colleed in Tables ., . and ., while
a comparisonwith the results of Swendsen (b) is performed in Seion
...
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Table .: Values of the renormalized coefficients obtained using no symmetriza-
tion by renormalizing under majority rule a 16 × 16 Ising laice at
𝑇 = 2.269185.

𝜒𝑢 𝑐1(𝜒𝑢) 𝑐2(𝜒𝑢) 𝑐3(𝜒𝑢) 𝑐4(𝜒𝑢) 𝑐5(𝜒𝑢)
-. . . . -. .
-. . . . -. .
-. . . . -. .
. . . -. -. .
. . . . . -.
. . . . . -.
. . . . . -.

𝑐𝑖 . . . . -.

Table .: Values of the renormalized coefficients obtained using partial sym-
metrization by renormalizing undermajority rule a 16×16 Ising laice
at 𝑇 = 2.269185.

𝜒𝑢 𝑐1(𝜒𝑢) 𝑐2(𝜒𝑢) 𝑐3(𝜒𝑢)
-. . . .
-. . . .
-. . . -.
. . . -.
. . . -.
. . . .
. . . .

𝑐𝑖 . . .

.. Differentiable extension independence

We close this chapter with a demonstration that the generalized fast
marginalization algorithm is independent of the particular choice of the
differentiable extension of the coarsening rule. As a corollary, the same
holds for the original fast marginalization, which is a special case of the
generalized algorithm.
We do so by considering the values of the basis coefficients at multiple

values of the parameter 𝑝, varied between 𝑝 = 0.1 and 10. e results
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Table .: Values of the renormalized coefficients obtained using full symmetriza-
tion by renormalizing under majority rule a 16 × 16 Ising laice at
𝑇 = 2.269185.

𝜒𝑢 𝑐1(𝜒𝑢) 𝑐2(𝜒𝑢) 𝑐3(𝜒𝑢)
-. . . .
-. . . .
-. . . -.
. . . -.
. . . -.
. . . .
. . . .

𝑐𝑖 . . .

Table .: Values of the decimation coarsening rule 𝑃(𝑥5 ∣ 𝑥1) for the two-
dimensional Ising model. e differentiable extension ̃𝑃 (𝜒5 ∣ 𝑥1) and
its partial derivative with respe to 𝜒5 is also included.

𝑥1
𝑃 (𝑥5 ∣ 𝑥1) ̃𝑃 (𝜒5 ∣ 𝑥1) ̃𝑃 ′ (𝜒5 ∣ |𝑥1)

𝑥5 = −1 𝑥5 = 1

1 0 1 (1 + 𝜒5
2 )

𝑝 𝑝
2 (1 + 𝜒5

2 )
𝑝−1

−1 1 0 (1 − 𝜒5
2 )

𝑝
−𝑝

2 (1 − 𝜒5
2 )

𝑝−1

shown on Figure . show that the coefficients indeed plateau in 1 ≤
𝑝 ≤ 3, but change rapidly beyond those values. Closer analysis shows
this is due to the shape of the 𝜒𝑢-dependence of those coefficients shown
on Figure ., as the Gaussian quadrature with five integration nodes is
ill-equipped for handling them.
For 𝑝 < 1, the coefficients develop integrable singularities at 𝜒𝑢 = ±1.

ey are mild and could be handled using an appropriate Gauss-Jacobi
quadrature. In the case of 𝑝 > 1, the coefficients instead produce a hump
around 𝜒𝑢 = 0, which becomes increasingly steep as 𝑝 grows. For 𝑝 > 3,
the peak is no longer captured well by the quadrature nodes, leading to
significant integration errors.
ese results confirm that the generalized fast marginalization method

is independent of the particular choice of the differentiable extension,
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Figure .: Convergence of the coefficients 𝑐𝑖 of the relevant basis funions un-
der no symmetrization, partial symmetrization and full symmetriza-
tion.

however, its numerical performance is not: different choices of extension
lead to different shapes of 𝑐𝑖(𝜒𝑢), which may require sophisticated inte-
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   

Table .: Values of the renormalized coefficients obtained using no symmetriza-
tion by renormalizing under decimation a 16 × 16 Ising laice at
𝑇 = 2.269185.

𝜒𝑢 𝑐1(𝜒𝑢) 𝑐2(𝜒𝑢) 𝑐3(𝜒𝑢) 𝑐4(𝜒𝑢) 𝑐5(𝜒𝑢)
-. . . . -. .
-. . . . -. .
-. . . -. -. .
. . . -. -. .
. . . -. . -.
. . . . . -.
. . . . . -.

𝑐𝑖 . . -. -. .

Table .: Values of the renormalized coefficients obtained using partial sym-
metrization by renormalizing under decimation a 16×16 Ising laice
at 𝑇 = 2.269185.

𝜒𝑢 𝑐1(𝜒𝑢) 𝑐2(𝜒𝑢) 𝑐3(𝜒𝑢)
-. . . .
-. . . .
-. . . -.
. . . -.
. . . -.
. . . .
. . . .

𝑐𝑖 . . -.

grationmethods.erefore it is of utmost importance that the coefficients
𝑐𝑖(𝜒𝑢) are integrated correly, as otherwise the iterative search may fail
to converge.
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Table .: Values of the renormalized coefficients obtained using full sym-
metrization by renormalizing under decimation a 16×16 Ising laice
at 𝑇 = 2.269185.

𝜒𝑢 𝑐1(𝜒𝑢) 𝑐2(𝜒𝑢) 𝑐3(𝜒𝑢)
-. . . .
-. . . .
-. . . -.
. . . -.
. . . -.
. . . .
. . . .

𝑐𝑖 . . -.
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Figure .: Dependence of the renormalized coupling coefficients 𝑐𝑖 on the
choice of the parameter 𝑝 when integrated using the five-point Gaus-
sian quadrature rule. e differences between values for different 𝑝
are caused by the inadequate number of integration nodes.
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Figure .: Shape of the coupling coefficients 𝑐𝑖(𝜒𝑢) for different values of the
parameter 𝑝, showcasing the strong dependency on 𝑝. e optimal
value of 𝑝 leading to the least-complex shape is dependent on the
coupling 𝜇 of the original model.
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7
RENORMAL IZAT ION AND PARAMETER FLOW

In this chapter we will briefly discuss the parameter flow induced by
renormalization. Parameter flows are oen described in the literature, but
oen without much theoretical grounding. We begin by discussing one of
the few rigorously definable cases of parameter flow, the one-dimensional
Ising model undergoing coarsening under decimation. In later seions,
we generalize this notion using linear projeion and investigate the pa-
rameter flow of the two-dimensional Ising model under different coars-
ening rules.

.   

Appendix A shows in detail that a one-dimensional Ising model does not
change its graphical struure when coarsened using decimation.e sole
changes are the reduion in the number of variables and modification of
the coupling constant, with the coarse constant 𝜇′ linked to the original
coupling 𝜇 via

𝜇′ = 𝑅(𝜇) = 1
2 ln cosh 2𝜇.

is funion is a map 𝑅 ∶ ℝ ⟶ ℝ, transforming the coefficient 𝜇 in the
original, fine probability distribution to the coefficient 𝜇′ of the coarse,
renormalized probability distribution. Since we may think of 𝑅(𝜇) as
moving the system in phase space, we are interested in the change in
the coefficients caused by an application of 𝑅(𝜇). We say that the map
𝑅(𝜇) induces a veor field 𝐹(𝜇) defined as

𝐹(𝜇) = 𝑅(𝜇) − 𝜇,

which describes the change in the coefficients due to the application of
𝑅(⋅) to a system described by 𝜇. In the case of the one-dimensional Ising
model the veor field reduces to a pseudo-scalar field. e veor field
𝐹(𝜇) specifies the direion and magnitude of the change in the coupling
parameters. We will hereaer use 𝐹(𝜇) to describe the parameter flow
under renormalization. Figures .a and .b show the map 𝑅(𝜇) and
the resulting parameter flow field 𝐹(𝜇). From the above figures we see


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











     

𝜇′

𝜇
(a) Coefficient mapping 𝑅(𝜇) and the identity mapping.

     
𝜇

(b) Veor field 𝐹(𝜇).

Figure .: Coefficient mapping 𝑅(𝜇) and the induced parameter flow veor
field 𝐹(𝜇).

that the parameter flow gives useful information about the probabilistic
model, in this case the one-dimensional Ising model. Since 𝑅(𝜇) ≤ 𝜇,
the veor field 𝐹(𝜇) always points toward smaller couplings. As a re-
sult, the spins at subsequently coarser scales appear less and less coupled,
eventually becoming entirely uncoupled as 𝜇 ⟶ 0. e mapping 𝑅(𝜇)
possesses only one fixed point 𝜇∗ = 0, defined as the point 𝜇∗ where

𝑅(𝜇∗) = 𝜇∗ or, equivalently, 𝐹(𝜇∗) = 0.

As seen on Figure .b, all the flow from all other coupling coefficients
leads towards the zero coupling fixed point, decreasing the coupling.


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e fixed points are the most interesting obje that may be studied us-
ing the parameter flow, because they describe the behavior of the model
at macroscopic scales. In statistical physics, unstable fixed points (Arnold,
; Coddington and Levinson, ), referred to as critical points, are
of special interest. eir presence of indicates abrupt changes in the be-
havior of the system under study, e.g. phase transitions.
e one-dimensional Ising model has only one fixed point at 𝜇∗ = 0.

Since the fixed point is stable, that is, a perturbed system with 𝜇 = 𝜖
returns to the fixed point when the mapping 𝑅(𝜇) is repeatedly applied
to it. erefore, there are no critical points and the one-dimensional Ising
model is free of phase transitions.

.   

e 𝑅(𝝁) may be also defined in a general seing where the map can
no longer be obtained in closed form. We proceed in the following order.
First, we define the fine and coarse probability distributions using the ap-
proach used in Chapter . e couplings 𝝁 and 𝝁′ are then defined as the
coefficients of expansions of the Hamiltonians associated with the fine
and coarse laices, respeively. In the following we consider a general-
ized Ising model 𝑃(𝒙𝑉0

) that allows further interaions in addition to
the typical nearest neighbor coupling.
Let the fine probability distribution 𝑃(𝒙𝑉0

) describe a translation in-
variant probabilistic spin model on a square Cartesian laice of size 𝑛×𝑛,
𝑛 a power of two, with periodic boundary conditions. Define a set of
coarse variables 𝒙𝑉1

by assigning a coarse variable to each subset of 2×2
fine variables 𝒙𝑉0

and let the conditional probability of the coarse vari-
ables 𝒙𝑉1

, given the fine variables 𝒙𝑉0
, be 𝑃(𝒙𝑉1

∣ 𝒙𝑉0
). e joint proba-

bility distribution of 𝒙𝑉0
and 𝒙𝑉1

is then

𝑃(𝒙𝑉0
, 𝒙𝑉1

) = 𝑃(𝒙𝑉0
)𝑃 (𝒙𝑉1

∣ 𝒙𝑉0
),

allowing us to define the coarse probability 𝑃(𝒙𝑉1
) as the marginal prob-

ability distribution

𝑃 (𝒙𝑉1
) = ∫ 𝑃(𝒙𝑉0

, 𝒙𝑉1
)𝑑𝒙𝑉0

= ∫ 𝑃(𝒙𝑉0
)𝑃 (𝒙𝑉1

∣ 𝒙𝑉0
)𝑑𝒙𝑉0

.


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Consider the case where the conditional probability faors as

𝑃(𝒙𝑉1
∣ 𝒙𝑉0

) = ∏
𝑢∈𝑉1

𝑃(𝒙𝑢 ∣ 𝒙𝑈𝑢
),

with 𝑈𝑢 being the 2 × 2 subset of 𝑉0 that was assigned 𝑥𝑢, 𝑢 ∈ 𝑉1, as its
coarse variable. Assuming that the probability 𝑃(𝒙𝑢 ∣ 𝒙𝑈𝑢

) has the same
funional form for all 𝑢 ∈ 𝑉1, the translation invariance of the origi-
nal probability 𝑃(𝒙𝑉0

) implies that 𝑃(𝒙𝑉1
) is also translation invariant.

Consider the case where both 𝑃(𝒙𝑉0
) > 0 and 𝑃(𝒙𝑉1

) > 0. us, we
define the Hamiltonians 𝑊0(𝒙𝑉0

) and 𝑊1(𝒙𝑉1
) as the logarithms of the

respeive probability densities,

𝑊0(𝒙𝑉0
) = ln 𝑃(𝒙𝑉0

) and 𝑊1(𝒙𝑉0
) = ln 𝑃(𝒙𝑉1

).

Let 𝑋0 and 𝑋1 be the veor spaces of funions over the fine variables
𝒙𝑉0

and the coarse variables 𝒙𝑉1
, respeively, and let them have bases 𝝃

and 𝝌. For any 𝑢 ∈ 𝑉0 and 𝑣 ∈ 𝑉1 define the funions

𝑓(𝒙𝑉0
) = 𝑊0(𝒙𝑉0\𝑢, 𝑥𝑢 = 1) − 𝑊0(𝒙𝑉0\𝑢, 𝑥𝑢 = −1)

and

𝑓 ′(𝒙𝑉1
) = 𝑊1(𝒙𝑉1\𝑣, 𝑥𝑣 = 1) − 𝑊1(𝒙𝑉1\𝑣, 𝑥𝑣 = −1).

Let 𝑓 ∈ 𝑋0 and 𝑓 ′ ∈ 𝑋1 be wrien as

𝑓(𝒙𝑉0
) =

dim 𝑋0

∑
𝑖=1

𝜇𝑖𝜉𝑖 and 𝑓 ′(𝒙𝑉1
) =

dim 𝑋1

∑
𝑖=1

𝜇′
𝑖𝜒𝑖

in terms of the basis funions of the spaces 𝑋0 and 𝑋1, respeively.
Finally, define the mapping 𝑅 by

𝑅(𝝁) = 𝝁′,

where 𝝁 = (𝜇1, 𝜇2, … , 𝜇dim 𝑋0
) and 𝝁′ = (𝜇′

1, 𝜇′
2, … , 𝜇′

dim 𝑋1
). Given a

fixed choice of bases 𝝍 and 𝝃, 𝝁 and 𝝁′ are uniquely determined.
While the parameter flow of one-dimensional Isingmodel could be stud-

ied rigorously, this is not generally possible in the case of more complex
models. e process of renormalization, i.e., marginalization of coarse
variables leads to increased conneivity of the dependence graph and
vastly increased number of funions necessary to describe𝑃(𝒙𝑉1

).ere-


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fore, numerical approximations are necessary for the study of parameter
flows.
e numerical studies available in literature implicitly restri 𝑅(𝝁) to

a subspace of 𝑋0 ∩ 𝑋1 and we shall proceed in a similar fashion (Binney
et al., ; Gupta and Cordery, ; Nauenberg and Nienhuis, b;
Nienhuis and Nauenberg, ). Let 𝑋𝜙 be veor space of dimension 𝐾
spanned by a basis of funions 𝜙 = {𝜙1, 𝜙2, … , 𝜙𝐾}, such that 𝑋𝜙 is a
subspace of both 𝑋0 and 𝑋1, wrien as 𝑋𝜙 ≤ 𝑋0 ∩ 𝑋1. Finally, define
a projeion operator ℙ𝑋𝜙

∶ 𝑋 ⟶ 𝑋𝜙 projeing veors of 𝑋 onto 𝑋𝜙.
We can define a restried map 𝑅̂ ∶ ℝ𝐾 ⟶ ℝ𝐾 as a projeion of the
original map 𝑅,

𝑅̂(𝝁) = ℙ𝑋𝜙
𝑅(𝝁).

e projeion operator ℙ𝑋𝜙
will be chosen later, depending on the avail-

able tools. e resulting mapping 𝑅̂ transforms the subspace 𝑋𝜙 spanned
by the basis 𝜙 onto itself, allowing us to study its behavior using numeri-
cal methods.
Before we continue, we ask what may be the relation between the

fixed points of the true mapping 𝑅 and of the projeed mapping 𝑅̂. Un-
fortunately, a straightforward example visualized in Figure . shows
that there may indeed be no relation between the two at all. Consider
projeing the veor field onto the marked line, representing a one-
dimensional subspace of the two-dimensional space. e projeed veor
field ̂𝐹 (𝑡) = 𝑅̂(𝑡) − 𝑡 will only exhibit one fixed point where the veor
field 𝑭 (𝒙) = 𝑅(𝒙) − 𝒙 is orthogonal to the subspace, however that fixed
point will not correspond to any true fixed point.
However, notice that although the boom-le fixed point does not be-

long to the subspace, it lies close to it and therefore the projeed veor
field has low magnitude there. us, assuming that the distance between
the marginal probability distribution and its projeion onto the subspace
𝑋𝜙 is sufficiently small, one should be able to observe the main features
of the true map 𝑅 using the approximation 𝑅̂. In particular, as 𝑋𝜙 → 𝑋1
we will see that the approximate map approaches the true map, 𝑅̂ → 𝑅.

.. Dire projeion

Westudy the map and its induced parameter flow using twomethods.e
subspace 𝑋𝜙 is spanned by a basis 𝜙 composed of three basis funions,


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Figure .: An example two-dimensional map visualized by its induced veor
field. e dots mark the only finite fixed points of the original veor
field, located at the centers of the swirling vortices. e projeed
veor field, visualized using red arrows, shows that it may be at
times a poor approximation of the true veor field.

• nearest neighbor

𝜙𝑢
1 (𝒙𝑉𝑙

) = 𝑥𝑖+1,𝑗 + 𝑥𝑖−1,𝑗 + 𝑥𝑖,𝑗+1 + 𝑥𝑖,𝑗−1,

• second-nearest neighbor

𝜙𝑢
2 (𝒙𝑉𝑙

) = 𝑥𝑖+1,𝑗+1 + 𝑥𝑖+1,𝑗−1 + 𝑥𝑖−1,𝑗+1 + 𝑥𝑖−1,𝑗−1,

• plaquee

𝜙𝑢
3 (𝒙𝑉𝑙

) = 𝑥𝑖+1,𝑗𝑥𝑖+1,𝑗+1𝑥𝑖,𝑗+1 + 𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗+1𝑥𝑖−1,𝑗

+ 𝑥𝑖−1,𝑗𝑥𝑖−1,𝑗−1𝑥𝑖,𝑗−1 + 𝑥𝑖,𝑗−1𝑥𝑖+1,𝑗−1𝑥𝑖+1,𝑗.

is is the biggest basis for which we may visualize the parameter flow in
three dimensions; it was used by Binney et al. () and Nauenberg and
Nienhuis (b) to study the fixed points of the renormalization map 𝑅.


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We will use the subspace 𝑋𝜙 spanned by this basis in the remainder of
this chapter.
We begin with an exa projeion of 𝑃(𝒙𝑉1

) onto an orthonormal basis.
Following Binney et al. (, pp. –), we proje the coarse Hamil-
tonian

𝑊1(𝒙𝑉1
) = ln 𝑃(𝒙𝑉1

) = ln ∫ 𝑃(𝒙𝑉0
)𝑃 (𝒙𝑉1

∣ 𝒙𝑉0
)𝑑𝒙𝑉0

(.)

onto the subspace 𝑋𝜙 using a uniform inner produ. We define the pro-
jeion operator ℙ𝑋𝜙

as

ℙ𝑋𝜙
𝑓(𝒙𝑉1

) = arg min
𝑔∈𝑋𝜙

∫ (𝑓(𝒙𝑉1
) − 𝑔(𝒙𝑉1

))2 𝑑𝒙𝑉1
,

leading to

𝜇′
𝑖 = 2−𝑛2 ∫ 𝑊1(𝒙𝑉1

)𝜙𝑖(𝒙𝑉1
)𝑑𝒙𝑉1

(.)

= 2−𝑛2 ∫ 𝜙𝑖(𝒙𝑉1
) (ln ∫ 𝑃(𝒙𝑉0

)𝑃 (𝒙𝑉1
∣ 𝒙𝑉0

)𝑑𝒙𝑉0
) 𝑑𝒙𝑉1

.

e resulting formula may be evaluated on very small laices 𝑉0, e.g. 4×4
laices, where it requires the summation over 24×4+2×2 = 1, 048, 576 pos-
sible states. Larger laice sizes, e.g. 6 × 6 laices, are beyond computa-
tional capabilities, showing clearly the limitations of the dire projeion
approach.
We perform the computation using a computer program that we de-

scribe here to illustrate some nuances due to the periodic boundary con-
ditions and degeneracy that occurs on these small laices. We define an
4 × 4 fine laice 𝑉0 and an 2 × 2 coarse laice 𝑉1. e variables are ar-
ranged row-first, with numbers growing le-to-right and top-to-boom,
as shown on Figure .. As a result, the coarse spin 0 is the group variable
for the fine spins 0, 1, 4 and 5, as shown on Figure .b.
e joint probability of the two laices 𝑃 (𝒙𝑉0

, 𝒙𝑉1
) is computed in two

stages. e probability distribution 𝑃(𝒙𝑉0
) is computed as the exponent

of the Hamiltonian 𝑊(𝒙𝑉0
) defined through

𝑊(𝒙𝑉0
) = 𝜇1

2 ∑
𝑖𝑗

𝑥𝑖𝑗 (𝑥𝑖+1,𝑗 + 𝑥𝑖−1,𝑗 + 𝑥𝑖,𝑗+1 + 𝑥𝑖,𝑗−1)

+ 𝜇2
2 ∑

𝑖𝑗
𝑥𝑖𝑗 (𝑥𝑖+1,𝑗+1 + 𝑥𝑖+1,𝑗−1 + 𝑥𝑖−1,𝑗+1 + 𝑥𝑖−1,𝑗−1)
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(a) Fine laice 𝑉0
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Figure .: Arrangement of spins on the fine laice 𝑉0 and the coarse laice 𝑉1.
Periodic neighborhood is shown in lighter gray.

+ 𝜇3
4 ∑

𝑖𝑗
𝑥𝑖𝑗 [𝑥𝑖+1,𝑗 (𝑥𝑖+1,𝑗+1𝑥𝑖,𝑗+1 + 𝑥𝑖+1,𝑗−1𝑥𝑖,𝑗−1)

+𝑥𝑖−1,𝑗 (𝑥𝑖−1,𝑗+1𝑥𝑖,𝑗+1 + 𝑥𝑖−1,𝑗−1𝑥𝑖,𝑗−1)] .

e faors 1/2 and 1/4 account for double- and quad-counting, because
each interaion is included oner per each variable it involves. us,
the quadratic terms are double-counted, while the quartic term is quad-
counted.
e unnormalized joint probability of the fine and coarse variables is

computed as

𝑃(𝒙𝑉0
, 𝒙𝑉1

) = exp (𝑊0(𝒙𝑉0
)) 𝑃𝜈(𝒙𝑉1

∣ 𝒙𝑉0
),

where 𝑃(𝒙𝑉1
mod 𝒙𝑉0

) is a family of coarsening rules parametrized by
𝜈 ∈ [0, 1]. e value 𝜈 = 0 corresponds to decimation rule, 𝜈 = 1 to
majority rule, while values in between to the linear combination of the
two

𝑃𝜈(𝒙𝑉1
∣ 𝒙𝑉0

) = 𝜈𝑃majority(𝒙𝑉1
∣ 𝒙𝑉0

)+(1−𝜈)𝑃decimation(𝒙𝑉1
∣ 𝒙𝑉0

).

e conditional probabilities for decimation and majority rule are speci-
fied in Tables . and ., respeive. e use of the parameter 𝜈 ∈ [0, 1]
allows us to study both rules, especially the transition between the them.
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Figure .: Exa computation of the parameter flow for a 4 × 4 laice 𝑉0 and
under 𝜈 = 0 coarsening rule (decimation).
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Figure .: Exa computation of the parameter flow for a 4 × 4 laice 𝑉0 and
under 𝜈 = 1/2 coarsening rule.
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Figure .: Exa computation of the parameter flow for a 4 × 4 laice 𝑉0 and
under 𝜈 = 1 coarsening rule (majority rule).

e projeed coefficients 𝝁′ = (𝜇′
1, 𝜇′

2, 𝜇′
3) are computed using two

loops. e inner loop computes the logarithm of the marginal of the joint
distribution by recursively generating all possible states 𝒙𝑉0

for a given
state 𝒙𝑉1

, colleing the sum from Equation .. e outer loop computes
the aual projeion of Equation . by recursively visiting all possible
states 𝒙𝑉1

and performing the inner loop on each such state. is corre-
sponds to computing the outer sum of

∫ 𝜙𝑖(𝒙𝑉1
) (ln ∫ 𝑃(𝒙𝑉0

)𝑃 (𝒙𝑉1
∣ 𝒙𝑉0

)𝑑𝒙𝑉0
) 𝑑𝒙𝑉1

.

Once the complete integral is computed for a given 𝑖, we perform normal-
ization, dividing each coefficient by 2𝑛2 , the constant that makes the basis
funions orthonormal. Importantly, we also corre an over-counting er-
ror made by Binney et al. (). Figure .b shows that the right-hand-
side neighbor of node  is node , but the le-hand-side neighbor is also
node . erefore, the two coarse basis funions 𝑥𝑖𝑗𝑥𝑖+1,𝑗 and 𝑥𝑖𝑗𝑥𝑖−1,𝑗
cannot be distinguished by the projeion algorithm and the resulting co-
efficient 𝜇′

1 is in fa twice as large as it should have been. We have in fa
seen this situation in the exa computation of the Ising model, where a


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laice of four spins is reduced to only two spins. In that situation, the
final coefficient becomes

𝜇′ = ln cosh(2𝜇) rather than 𝜇′ = 1
2 ln cosh(2𝜇).

e situation is similar with the diagonal interaion 𝑥𝑖𝑗𝑥𝑖+1,𝑗+1. In this
case, this interaion connes nodes  and , but the equivalent inter-
aions 𝑥𝑖𝑗𝑥𝑖+1,𝑗−1, 𝑥𝑖𝑗𝑥𝑖−1,𝑗−1 and 𝑥𝑖𝑗𝑥𝑖−1,𝑗+1 all conne nodes  and
. Similarly, the plaquee term connes the same set of four spins four
times. erefore, the coefficients 𝜇′

2 and 𝜇′
3 obtained by the projeion

algorithm are four times as large as they should be. We corre the over-
counting errors by dividing 𝜇′

1 by two, while 𝜇′
2 and 𝜇′

3 are both divided
by four.
Our code computes the projeed coefficients for an entire list of origi-

nal coefficient sets. e results presented here sample uniformly the re-
angular cuboid defined by the bounding box

[𝜇min
0 , 𝜇max

0 ] ⊗ [𝜇min
1 , 𝜇max

1 ] ⊗ [𝜇min
2 , 𝜇max

2 ]
= [−0.05, 0.8] ⊗ [−0.05, 0.45] ⊗ [−0.45, 0.05],

with each side subdivided into 30 intervals, with 𝑁 = 31 points. ere-
fore, the code probes 𝑁3 = 29, 791 sets of initial coefficients 𝝁 by com-
puting the mapping 𝝁′ = 𝑅(𝝁) and veor 𝑭 (𝝁) = 𝑅(𝝁) − 𝝁 for each
one.e results are then saved as Visualization Toolkit (VTK) files for later
visualization.
Figures ., . and . show the results of the computation.e flow

field is visualized by a set of streamlines, that is paths followed by mass-
less marker particles flowing through the flow field. Notice that in all the
images there is a clear stable fixed point at 𝝁 = (0, 0, 0), corresponding
to a zero-coupling state where variables are uncorrelated. When 𝜈 > 0
an unstable fixed point, i.e. a critical point, suddenly appears and moves
continuously toward the location of the fixed point of the majority rule
as 𝜈 → 1. In all cases the critical point is a saddle (Arnold, ; Codding-
ton and Levinson, ), where the streamlines enter the critical point
along two direions corresponding to the negative eigenvalues of the Ja-
cobian of the map 𝑅(𝝁) at 𝝁∗. ese critical streamlines flow out of the
critical point along the single direion corresponding to the lone positive
eigenvalue, pushing the system either toward the zero coupling state or
an infinite coupling.
Classically, the flowwith an unstable fixed point implies the existence of

a phase transition. If the microscopic system lies in the basin of araion


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of the zero coupling state, the resulting macroscopic system, represent-
ing the microscopic system aer multiple applications of the coarsening
rule, is uncorrelated and unmagnetized. However, when the parameters
𝝁 describing the system cross the boundary of the basin, the macroscopic
system is instead pushed toward high couplings, resulting in a strongly
correlated and magnetized state. us, the location of the boundary be-
tween the two araion basins corresponds to the location of the phase
transition. Since the original Ising model corresponds to a set of parame-
ters (𝜇0, 0, 0), we would expe set point 𝝁𝑐 = (0.44068, 0, 0) to initiate
a streamline passing through the critical point. Instead, however, we find
that the continuous streamlines cannot be used to represent the evolu-
tion of the coupling coefficients undergoing subsequent steps renormal-
ization, a discrete process. erefore, the parameter flow under repeated
renormalization can only be observed by the calculation of renormalized
coefficients using a very large fine laice and a sequence of successively
smaller laices; see, e.g., Table ..
We turn to the study of the dependence of the position of the critical

point 𝝁∗(𝜈) on the coarsening rule, as the initial study has shown that dec-
imation appears not to have a critical point at all. e critical point 𝝁∗(𝜈)
is at the closest point to the zero coupling in case of majority rule (𝜈 = 0)
and steadily moves away when the coarsening rule becomes decimation,
i.e. as 𝜈 → 0. Nauenberg and Nienhuis (a,b) reported the location of
the 𝜈 = 1 critical point to be 𝝁∗(1) = (0.307, 0.084, −0.004) (Nauenberg
and Nienhuis, b) or 𝝁∗(1) = (0.300, 0.0871, −0.00126) (Nauenberg
and Nienhuis, a). Using the dire projeion method described above
we have re-computed the location of the critical point using an iterative
approach. Linearizing the parameter flow 𝑭 (𝝁) around the critical point
𝝁∗, we obtain

𝑭 (𝝁) = 𝑭 (𝝁∗) + 𝐴(𝝁 − 𝝁∗) + 𝒪(||𝝁 − 𝝁∗||2)
= 𝐴(𝝁 − 𝝁∗) + 𝒪(||𝝁 − 𝝁∗||2),

where 𝐴 is the Jacobian of the veor field at the critical point. erefore,
we iteratively solve for the critical point 𝝁∗ using

𝝁𝑛+1
∗ = 𝝁𝑛

∗ − 𝐴(𝝁𝑛
∗ )−1𝑭 (𝝁𝑛

∗ ),

where 𝐴(𝝁𝑛
∗ ) is approximated numerically. For 𝜈 = 1, start-

ing from the initial location 𝝁0
∗ = (0.307, 0.084, −0.004)

we converge to the value 𝝁∗ = (0.29976120070883128,
0.087094327207973096, −0.0012586333545222166), at which
point the change ||𝜇𝑛+1

∗ − 𝜇𝑛
∗ ||2 ≤ 10−12 becomes negligible. ese
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values seem to agree well with the value reported by Nauenberg and
Nienhuis (a).
Aer determining the critical point 𝜇∗ for majority rule (𝜈 = 1), we

vary 𝜈 and compute the funion 𝜇∗(𝜈) for 𝜈 ∈ [0, 1]. is may be done
as long as the starting point 𝜇0

∗ is close to the fixed point; therefore, we
first find the value of 𝜇∗(1) and slowly decrease 𝜈, using the value 𝜇∗(𝜈 +
𝜖) as the starting point for the 𝜇∗(𝜈) iteration. Figure . presents the
dependence of the three components of 𝝁∗(𝜈) = (𝜇1(𝜈), 𝜇2(𝜈), 𝜇3(𝜈))
on the coarsening rule used. Around the initial value of 𝜈 = 1, the fixed
point 𝝁∗(𝜈) changes smoothly; however, as 𝜈 → 0 the position of the
critical point appears to diverge.
We posit that the Ising model in two dimensions under decimation

does not have a finite critical point, because further approximate stud-
ies of larger laices, described below, show a similar behavior. Because
of the wide-spread belief in the conneion between the critical point of
the renormalization transformation and the phase transitions of the un-
derlying system, further studies of the topic appear much needed.

.. Approximate projeion

e dire projeion method described in the previous seion is unable
to provide us with a truthful description of the parameter flow, due to the
very small laice size that can be handled. As we have seen above, this
restriion is severe because results are dominated by finite size effes.
Computing the renormalized probability distribution using a larger laice
necessitates an approximate approach.
We apply the generalized fast marginalization method and define the

parameter map 𝑅̂ as the outcome of the projeion performed by the re-
sulting algorithm. Let ℙ𝜒𝑢

𝑋𝜙
be the projeion operator

ℙ𝜒𝑢
𝑋𝜙

𝑓(𝒙𝑉1
) = arg min

𝑔∈𝑋𝜙
∫ (𝑓(𝒙𝑉1\𝑢, 𝜒𝑢) − 𝑔(𝒙𝑉1\𝑢, 𝜒𝑢))2

× (𝑃(𝒙𝑉1\𝑢, 𝜒𝑢) + 𝑃(𝒙𝑉1\𝑢, −𝜒𝑢)) 𝑑𝒙𝑉1\𝑢,

for 𝑢 ∈ 𝑉1, which we previously used in the fully-symmetrized gener-
alized fast marginalization. We define the projeion operator ℙ𝑋𝜙

as a
sum

ℙ𝑋𝜙
𝑓(𝒙𝑉1

) = ∫ ℙ𝜒𝑢
𝑋𝜙

𝑓(𝒙𝑉1
)𝑑𝜒𝑢,
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Figure .: Dependence of the critical point location 𝜇∗(𝜈) on the coarsening
rule. e critical couplings 𝜇∗(𝜈) diverge logarithmically as 𝜈 → 0,
a fa made clear by the logarithmic fits on Figure (b).
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where the integral may be approximated using a quadrature rule.
Laices are coarsened by dividing the nodes into subsets of size 2 × 2,

thus we reproduce the prior struure through renormalization of a 𝑛×𝑛
laice to a 𝑛/2×𝑛/2 laice.e variables 𝒙𝑉0

are sampled using a straight-
forward Gibbs sampler, while the coarser laice is sampled using the con-
ditional probability 𝑃(𝒙𝑉1

∣ 𝒙𝑉0
) defining the particular coarsening rule

being used.
We compute the matrices 𝐴(𝑡𝑗) and right hand side veors 𝒃(𝑡𝑗) at a

set of seven Gaussian quadrature nodes 𝑡𝑗 using multiple Markov chains
running in parallel, averaging over the chains. We take advantage of the
translation invariance by performing an averaging over all spins on a
given laice. LAPACK routines are used to solve the symmetric positive
definite systems

𝐴(𝑡𝑗)𝝁′(𝑡𝑗) = 𝒃(𝑡𝑗)

at each Gaussian quadrature node. e final coupling parameters 𝝁 are
then recovered through integration as

𝝁′ = ∫
1

−1
𝝁′(𝜒𝑢)𝑑𝜒𝑢 = ∑

𝑗
𝝁′(𝑡𝑗)𝑤𝑗.

e coefficients 𝝁(𝜒𝑢) are also integrated between the symmetrically
placed quadrature nodes −𝑡𝑗 and 𝑡𝑗, producing a set of coefficients

𝝁′
𝑗 = ∫

𝑡𝑗

−𝑡𝑗

𝝁′(𝜒𝑢)𝑑𝜒𝑢,

which are used to compute the correion terms

exp (∫
𝜒𝑢

−𝜒𝑢

𝑊 ′(𝒙𝑉𝑖\𝑢, 𝑠)𝑑𝑠) and exp (− ∫
𝜒𝑢

−𝜒𝑢

𝑊 ′(𝒙𝑉𝑖\𝑢, 𝑠)𝑑𝑠)

required by the full symmetrization scheme.
Because the fully-symmetrized generalized fast marginalization equa-

tion satisfied by the parameters 𝝁′ is implicit, we solve it using fixed-
point iteration with Robbins-Monro smoothing, repeating the algorithm
for  iterations, with each iteration consisting of , random samples.
Note that the fixed-point iteration is not related to the fixed points of the
mapping 𝑅̂.
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Figure .: Approximate computation of the parameter flow for a 4 × 4 laice
𝑉0 and under 𝜈 = 0 coarsening rule (decimation).

e compute code computes the renormalized coefficients 𝝁′ for a set
of original coupling coefficients 𝝁, again sampling a reangular cuboid
defined by

[𝜇min
1 , 𝜇max

1 ] ⊗ [𝜇min
2 , 𝜇max

2 ] ⊗ [𝜇min
3 , 𝜇max

3 ]
= [−0.05, 0.8] ⊗ [−0.05, 0.45] ⊗ [−0.45, 0.05].

Due to the much greater computational resources needed to compute the
approximate coefficients, we only subdivide each dimension into  inter-
vals using 𝑁 = 7 points. us, 𝑁3 = 343 sets of initial coefficients are
considered, producing a much lower resolution that the exa computa-
tion of previous seion.
We first aempt to use a small laice with 𝑛 = 4, reproducing the

previous computation. As we can see, Figures ., . and . are very
similar to Figures ., . and ., respeively, confirming that the
approximate method works correly: in the case of a 4 × 4 fine laice,
the basis 𝜙 is exa on the 2 × 2 coarse laice, thus the two methods must
agree up to the stochastic errors in the computation of expeed values.
e only major difference we see occurs under majority rule on Figure

., where a part of the visualization is missing.is is due to the fa that
the projeion method is limited to relatively weak couplings. Intuitively,
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Figure .: Approximate computation of the parameter flow for a 4 × 4 laice
𝑉0 and under 𝜈 = 1/2 coarsening rule.
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Figure .: Approximate computation of the parameter flow for a 4 × 4 laice
𝑉0 and under 𝜈 = 1 coarsening rule (majority rule).
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Figure .: Approximate computation of the parameter flow for a 8 × 8 laice
𝑉0 and under 𝜈 = 0 coarsening rule (decimation).
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Figure .: Approximate computation of the parameter flow for a 8 × 8 laice
𝑉0 and under 𝜈 = 1/2 coarsening rule.
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Figure .: Approximate computation of the parameter flow for a 8 × 8 laice
𝑉0 and under 𝜈 = 1 coarsening rule (majority rule).
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Figure .: Approximate computation of the parameter flow for a 16×16 laice
𝑉0 and under 𝜈 = 0 coarsening rule (decimation).
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Figure .: Approximate computation of the parameter flow for a 16×16 laice
𝑉0 and under 𝜈 = 1/2 coarsening rule.
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Figure .: Approximate computation of the parameter flow for a 16×16 laice
𝑉0 and under 𝜈 = 1 coarsening rule (majority rule).





.   

when the couplings are strong the spins are correlated and basis funions
always take the same values.erefore, the Grammatrices 𝐴(𝜒𝑢) become
singular for large |𝝁|, limiting the usability of projeion to the relatively
small values of |𝝁|.
Moving to larger laice sizes, we produce a set of visualizations cor-

responding to the results obtained using exa coarsening. alitatively,
the behavior of the parameter flow on larger laices does not change, as
shown by the visualizations obtained using 8 × 8 and 16 × 16 laices.
e parameter flow under decimation, shown on Figures . and .,

does not have a critical point. Instead, the coefficients 𝝁 appear to collapse
onto a single curve leading to the sole fixed point at 𝝁 = 0. On the other
hand, the coarsening rules with 𝜈 = 1/4 and 1 (majority rule) both produce
a critical point, as was the case on the 4 × 4 laice: see Figures ., .,
. and ..
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8
I S ING MODEL

e Ising model is a classic model of statistical physics due to Wilhelm
Lenz (), but named aer his student Ernst Ising (), who solved
the one-dimensional model in his dooral thesis. e model describes
simplified interaions between grains of a ferromagnetic material. In the
Ising model those grains are represented by the so-called Ising spins: dis-
crete variables allowed to take values of either 1 or −1 — representing
spin up or down — arranged in a regular Cartesian laice with periodic
boundary conditions. ese variables intera with each other through
nearest-neighbor interaions, where each pair of neighboring variables
contributes either −𝐽 or 𝐽 to the potential energy of the system 𝐻(𝒙𝑉 ),
depending on whether the two variables are the same or different, respec-
tively. erefore, the potential energy 𝐻(𝒙𝑉 ) may be wrien as

𝐻(𝒙𝑉 ) = −𝐽
2 ∑

𝑉
𝑥𝑢 ∑

𝑁(𝑢)
𝑥𝑣,

where the first sum is over all nodes 𝑢 on the laice, while the laer over
the neighbors 𝑣 of the node 𝑢. e resulting probability distribution over
𝒙𝑉 is a Gibbs measure

𝑃(𝒙𝑉 ) = 1
𝑍 exp (−𝐻(𝒙𝑉 )

𝑇 ) = 1
𝑍 exp ( 𝐽

2𝑇 ∑
𝑉

𝑥𝑢 ∑
𝑁(𝑢)

𝑥𝑣) ,

where one typically specifies the system using the coupling parameter
𝜇 = 𝐽/𝑇 , also called the inverse temperature when 𝐽 = 1.
emain feature of the Isingmodel is the phase transition that occurs in

the two- and three-dimensional Ising model at a finite coupling 𝜇𝑐, whose
value depends on the dimension of the model. e two-dimensional Ising
model has been solved exaly by Onsager (), thus the exa location
of the phase transition is known to be 𝜇𝑐 = ln(1 +

√
2)/2 ≈ 0.44068679.

For 𝜇 < 𝜇𝑐 the coupling is weak and the spins are uncorrelated, yielding
an unmagnetized state: one, where the average magnetization

ℳ(𝜇) = 𝔼𝜇 [ 1
𝑛2 ∑

𝑢
𝑥𝑢]
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is zero. However, for 𝜇 > 𝜇𝑐 the magnetization ℳ(𝜇) rises sharply, be-
cause the spins break the symmetry and undergo spontaneous magneti-
zation. e aual phase transition occurs only in the case of an infinite
laice, but the behavior of the finite Ising model converges quickly to that
of the infinite case. As shown on Figure .a rapid change in magneti-
zation ℳ(𝜇) can be observed around 𝜇 ≈ 𝜇𝑐, with the change becom-
ing more abrupt as the laice size increases. However, the exa position
of the phase transition is usually determined using the Binder cumulant
𝑈4(𝜇),

𝑈4(𝜇) = 1 −
𝔼𝜇 [ 1

𝑛2 ∑
𝑢

𝑥4
𝑢]

3𝔼𝜇 [ 1
𝑛2 ∑

𝑢
𝑥2

𝑢]
2 ,

which has the property that at 𝜇𝑐 the value 𝑈4(𝜇𝑐) is independent of the
laice size 𝑛. As a result, the precise location of the phase transition may
be determined from the interseion of the Binder cumulant curves for
laices of different size, shown on Figure .b.
e Ising model has long been studied theoretically and computation-

ally, making it de fao the standard model for studying properties of nu-
merical methods. e available literature on numerical renormalization
and its use in sampling deals virtually exclusively with the Ising model
at critical temperature; therefore, the examples shown within this chap-
ter will always show the square-laice Ising model at critical temperature.
Although our methodology remains completely general, in the remainder
of this chapter we restri ourselves to the two-dimensional Ising model
defined over a regular, square Cartesian laice. We further assume that
the laice is of size 𝑛 × 𝑛, where 𝑛 is a power of 2, and doubly-periodic
boundary conditions are used.
e present chapter is divided into two parts. We begin by applying the

fastmarginalizationmethod to the Isingmodel to obtain the renormalized
coupling coefficients 𝝁𝑖 on coarse laices 𝑉𝑖, 𝑖 > 0. ese renormalized
coupling coefficients will later be used to constru a proposal density for
sampling the Isingmodel, however we begin the discussion of the numeri-
cal methods developed in this thesis by comparing our renormalized cou-
pling coefficients to the values reported in the literature. Subsequently,
we use the numerically computed coupling coefficients to constru ran-
dom samples from the Ising model using the importance sampling frame-
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(a) Absolute average magnetization.
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(b) Binder cumulant

Figure .: Dependency of the (a) absolute average magnetization ℳabs(𝜇) =
𝔼𝜇 [ 1𝑛 ∣∑𝑢 𝑥𝑢∣], a slight modification of the average magnetiza-
tion ℳ(𝜇) defined above, and (b) Binder cumulant 𝑈4(𝜇) of the
two-dimensional Ising model on the coupling parameter 𝜇. As the
coupling increases and reaches the critical coupling 𝜇𝑐 = ln(1 +√

2)/2 ≈ 0.44068679 (solid black line), the magnetization begins to
grow rapidly and plateaus for 𝜇 above 𝜇𝑐. e larger the laice the
more abrupt the change, eventually converging to a first order phase
transition. e Binder cumulant also abruptly changes value in the
vicinity of the phase transition, but the precise location of the tran-
sition is indicated by the interseion of the curves corresponding to
different laice sizes.

work and compare the results obtained using the Sequential Importance
Sampling (SIS) and Partial Rejeion Control (PRC) methods.





 

.  

e original laice 𝑉 = 𝑉0 of size 𝑛 × 𝑛 may be coarsened by dividing
the laice into subsets of 2 × 2 nodes and retaining only one node out
of each. For the purposes of this seion, we keep nodes at positions (𝑖, 𝑗)
such that both 𝑖 and 𝑗 are even. e resulting coarsened laice 𝑉1 of size
𝑛/2 × 𝑛/2 together with the marginal probability density

𝑃(𝒙𝑉1
) = ∫ 𝑃 (𝒙𝑉0

)𝑑𝒙𝑉0\𝑉1

have all the symmetry properties of the original Ising model. Repeating
this coarsening procedure produces a sequence of laices 𝑉1, 𝑉2, … , 𝑉𝑚
for which we will compute the renormalized coupling coefficients.
We will approximate the marginal probability density using a number

of interaions 𝜙𝑘, writing

𝜕𝑃(𝒙𝑉𝑖
)

𝜕𝜒𝑢
𝑃(𝒙𝑉𝑚

) =
𝜕𝑊(𝒙𝑉𝑖

)
𝜕𝜒𝑢

=
𝐾

∑
𝑘=1

𝑐(𝜒𝑢)𝜙𝑘(𝒙𝑁(𝑢)),

where 𝑁(𝑢) is the set of neighbors of the node 𝑢 ∈ 𝑉𝑚. Following the
literature, we choose 𝜙𝑘 to be polynomial funions in the neighbors of
the node 𝑢. e basis funions 𝜙𝑘 are defined on Figure ..
e initial five funions correspond to interaions between pairs of

variables, with the interaions that are equivalent under laice symme-
tries reduced due to form a single funion. e funions are sorted by
the distance between the variables, thus 𝜙1 is the interaion between
variables at distance 1, 𝜙2 at distance

√
2, 𝜙3 at distance 2, 𝜙4 at dis-

tance
√

5 and 𝜙5 at distance
√

8. e remaining three terms are the four-
variable interaions. 𝜙6 has never been included in the literature, though
it is the interaion between closest neighboring variables arranged in an
isosceles right-angle triangle with hypothenuse of length 2. e final two
funions are called plaquees, because the variables participating in the
interaion are arranged into a square tile: 𝜙7 forms tiles of side length
1 while 𝜙8 of side length

√
2. is choice of 𝜙𝑘 matches closely that of

Swendsen (b), allowing for a dire comparison of results; however,
Swendsen (b) negleed the term 𝜙6, while our computations show
that this terms is indeed significant.
We computed the coefficients using the fully-symmetrized generalized

fast marginalization method with 𝑄(𝒙) = 1, as described in Chapter .
We ran a Markov Chain Monte Carlo (MCMC) computation with a Gibbs
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Figure .: e interaions 𝜙𝑘 used in the computation of the renormalized
coupling coefficients. e first five funions are linear terms corre-
sponding to interaions between pairs of variables, while the laer
three funions are cubic and correspond to four-variable interac-
tions.

𝜙1 = 𝑥𝑖,𝑗−1 + 𝑥𝑖,𝑗+1 + 𝑥𝑖−1,𝑗 + 𝑥𝑖+1,𝑗
𝜙2 = 𝑥𝑖−1,𝑗−1 + 𝑥𝑖+1,𝑗+1 + 𝑥𝑖+1,𝑗−1 + 𝑥𝑖−1,𝑗+1
𝜙3 = 𝑥𝑖,𝑗−2 + 𝑥𝑖,𝑗+2 + 𝑥𝑖−2,𝑗 + 𝑥𝑖+2,𝑗
𝜙4 = 𝑥𝑖−1,𝑗−2 + 𝑥𝑖+1,𝑗+2 + 𝑥𝑖+1,𝑗−2 + 𝑥𝑖−1,𝑗+2

+ 𝑥𝑖−2,𝑗−1 + 𝑥𝑖+2,𝑗+1 + 𝑥𝑖+2,𝑗−1 + 𝑥𝑖−2,𝑗+1
𝜙5 = 𝑥𝑖−2,𝑗−2 + 𝑥𝑖+2,𝑗+2 + 𝑥𝑖+2,𝑗−2 + 𝑥𝑖−2,𝑗+2
𝜙6 = 𝑥𝑖,𝑗−1𝑥𝑖−1,𝑗𝑥𝑖+1,𝑗 + 𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗+1𝑥𝑖+1,𝑗+1

+ 𝑥𝑖+1,𝑗𝑥𝑖+1,𝑗−1𝑥𝑖+2,𝑗 + 𝑥𝑖−1,𝑗𝑥𝑖−1,𝑗−1𝑥𝑖−2,𝑗
+ 𝑥𝑖,𝑗−1𝑥𝑖−1,𝑗𝑥𝑖,𝑗+1 + 𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗+1𝑥𝑖,𝑗+2
+ 𝑥𝑖+1,𝑗𝑥𝑖+1,𝑗−1𝑥𝑖+1,𝑗+1 + 𝑥𝑖,𝑗−1𝑥𝑖−1,𝑗−1𝑥𝑖,𝑗−2
+ 𝑥𝑖,𝑗−1𝑥𝑖+1,𝑗𝑥𝑖,𝑗+1 + 𝑥𝑖,𝑗+1𝑥𝑖+1,𝑗+1𝑥𝑖,𝑗+2
+ 𝑥𝑖−1,𝑗𝑥𝑖−1,𝑗−1𝑥𝑖−1,𝑗+1 + 𝑥𝑖,𝑗−1𝑥𝑖+1,𝑗−1𝑥𝑖,𝑗−2
+ 𝑥𝑖,𝑗−1𝑥𝑖−1,𝑗−1𝑥𝑖+1,𝑗−1 + 𝑥𝑖−1,𝑗𝑥𝑖+1,𝑗𝑥𝑖,𝑗+1
+ 𝑥𝑖+1,𝑗𝑥𝑖+1,𝑗+1𝑥𝑖+2,𝑗 + 𝑥𝑖−1,𝑗𝑥𝑖−1,𝑗+1𝑥𝑖−2,𝑗

𝜙7 = 𝑥𝑖,𝑗−1𝑥𝑖−1,𝑗𝑥𝑖−1,𝑗−1 + 𝑥𝑖−1,𝑗𝑥𝑖,𝑗+1𝑥𝑖−1,𝑗+1
+ 𝑥𝑖,𝑗−1𝑥𝑖+1,𝑗𝑥𝑖+1,𝑗−1 + 𝑥𝑖+1,𝑗𝑥𝑖,𝑗+1𝑥𝑖+1,𝑗+1

𝜙8 = 𝑥𝑖−1,𝑗−1𝑥𝑖+1,𝑗−1𝑥𝑖,𝑗−2 + 𝑥𝑖+1,𝑗−1𝑥𝑖+1,𝑗+1𝑥𝑖+2,𝑗
+ 𝑥𝑖−1,𝑗−1𝑥𝑖−1,𝑗+1𝑥𝑖−2,𝑗 + 𝑥𝑖−1,𝑗+1𝑥𝑖+1,𝑗+1𝑥𝑖,𝑗+2

sampler that outpued a new sample every 10𝑛2 individual variable flips.
We colleed the projeion matrix and veor at seven Gaussian quadra-
ture nodes using data from ,, samples. Additionally, we averaged
the projeion matrices over all variables on the given laice. We com-
puted the final coefficients iteratively using the fixed point algorithm, con-
tinuing for eight iterations. In order to smooth the convergence and make
use of multiple iterations, we applied the Robbins-Monro algorithm with
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Table .: Values of the renormalized coefficients obtained by renormalizing
under decimation 𝑖 times a 16 × 16 Ising laice at 𝑇 = 2.269185.

𝑖 𝑘 𝐾 = 1 𝐾 = 3 𝐾 = 6 𝐾 = 7 𝐾 = 8



 . . . . .
 . . . .
 . . .
 . .
 .
 -. -. -.
 -. -. -. -.
 -. -. -.



 . . . . .
 . . . .
 . . .
 . .
 .
 -. -. -.
 -. -. -. -.
 -. -. -.

𝑎𝑖 = 1 for 𝑖 < 3 and 𝑎𝑖 = 1/(𝑖 − 2) for the following iterations (Robbins
and Monro, ). e resulting decimation coefficients are presented in
Tables ., . and ., while the majority rule coefficients are colleed
in Tables ., ., . and ..

.. Decimation coefficients

e renormalized coefficients obtained using decimation exhibit three
main features. It appears that they depend not on the absolute size of the
laice, but on the size relative to that of the original laice. For example,
the coupling coefficients are nearly identical for a given 𝑖 independently
of the size of the initial laice: the calculations performedwith the 16×16,
32×32 and 64×64 laices show very similar results. e coefficients de-
cay slowly with distance; in fa, the higher the value of 𝑖 the slower the
decay, thus the approximation of 𝑊(𝒙𝑉𝑖

) becomes increasingly difficult
as 𝑖 grows larger.
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Table .: Values of the renormalized coefficients obtained by renormalizing
under decimation 𝑖 times a 32 × 32 Ising laice at 𝑇 = 2.269185.

𝑖 𝑘 𝐾 = 1 𝐾 = 3 𝐾 = 6 𝐾 = 7 𝐾 = 8



 . . . . .
 . . . .
 . . .
 . .
 .
 -. -. -.
 -. -. -. -.
 -. -. -.



 . . . . .
 . . . .
 . . .
 . .
 .
 -. -. -.
 -. -. -. -.
 -. -. -.



 . . . . .
 . . . .
 . . .
 . .
 .
 -. -. -.
 -. -. -. -.
 -. -. -.

Finally, the coefficients show the the funions 𝜙𝑘 have a large overlap,
that is, the addition of a basis funion changes the coefficients of the
existing funions. For example, the introduion of 𝜙2 and 𝜙7 to the basis
reduces the coefficient of 𝜙1 from approximately . to . (Table
.). As a result, the coefficients depend very strongly on the included
basis funions.
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Table .: Values of the renormalized coefficients obtained by renormalizing
under decimation 𝑖 times a 64 × 64 Ising laice at 𝑇 = 2.269185.

𝑖 𝑘 𝐾 = 1 𝐾 = 3 𝐾 = 6 𝐾 = 7 𝐾 = 8



 . . . . .
 . . . .
 . . .
 . .
 .
 -. -. -.
 -. -. -. -.
 -. -. -.



 . . . . .
 . . . .
 . . .
 . .
 .
 -. -. -.
 -. -. -. -.
 -. -. -.



 . . . . .
 . . . .
 . . .
 . .
 .
 -. -. -.
 -. -. -. -.
 -. -. -.



 . . . . .
 . . . .
 . . .
 . .
 .
 -. -. -.
 -. -. -. -.
 -. -. -.


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Table .: Comparison of the values of the renormalized coefficients obtained
by renormalizing under decimation 𝑖 times a 32 × 32 Ising laice at
𝑇 = 2.269185 with those reported in the literature.

𝑖 𝑘 Results Swendsen (b)



 . .
 . .
 . .
 . .
 . .
 -.
 -. -.
 -. -.



 . .
 . .
 . .
 . .
 . .
 -.
 -. -.
 -. -.



 . .
 . .
 . .
 . .
 . .
 -.
 -. -.
 -. -.

Our decimation coefficients are compared with available literature in
Figure .. e only other work that reported these coefficients, to the
best of our knowledge, is Swendsen (b). e coefficients obtained
in the present thesis agree about the order of magnitude with those of
Swendsen (b), however there is no numerical agreement regarding
the particular values. However, the related majority rule coefficients of


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Table .: Values of the renormalized coefficients obtained by renormalizing
under majority rule 𝑖 times a 16 × 16 Ising laice at 𝑇 = 2.269185.

𝑖 𝑘 𝐾 = 1 𝐾 = 3 𝐾 = 6 𝐾 = 7 𝐾 = 8



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.

Swendsen (b) do not agree well with those of other authors and thus
we consider these results to be less accurate than ours.

.. Majority rule coefficients

emajority rule is not used elsewhere within this thesis, because it does
not allow one to constru a sequential importance sampling algorithm.
is is due to the fa that it is not possible to evaluate the conditional
probability 𝑃(𝒙𝑉𝑖−1\𝑉𝑖

∣ 𝒙𝑉𝑖
) and thus compute the proposal density.

However, the generalized fast marginalization algorithm is a generaliza-
tion of the fast marginalization algorithm and makes it possible to com-
pute the majority rule coefficients on coarse laices using the same ma-
chinery. We do so because the majority rule is the preferred coarsening
rule used in the physics community and has been studiedmuchmore thor-
oughly; as a result, a larger set of published coefficients exists than it is
the case with decimation.


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Table .: Values of the renormalized coefficients obtained by renormalizing
under majority rule 𝑖 times a 32 × 32 Ising laice at 𝑇 = 2.269185.

𝑖 𝑘 𝐾 = 1 𝐾 = 3 𝐾 = 6 𝐾 = 7 𝐾 = 8



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.

e parameter flow of majority rule exhibits a unique critical point,
while that of decimation does not (see Chapter  and Swendsen, b);
thus the renormalized coefficients obtained using the Ising model at
𝜇 = 𝜇𝑐 will tend toward the critical point. Because the critical point can
be described fairly well using only a few coefficients, the renormalized
majority rule coefficients corresponding to long-range interaions do not
increase significantly with 𝑖 as it was the case with decimation. In other


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Table .: Values of the renormalized coefficients obtained by renormalizing
under majority rule 𝑖 times a 64 × 64 Ising laice at 𝑇 = 2.269185.

𝑖 𝑘 𝐾 = 1 𝐾 = 3 𝐾 = 6 𝐾 = 7 𝐾 = 8



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.


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Table .: Values of the renormalized coefficients obtained by renormalizing
under majority rule 𝑖 times a 128×128 Ising laice at 𝑇 = 2.269185.

𝑖 𝑘 𝐾 = 1 𝐾 = 3 𝐾 = 6 𝐾 = 7 𝐾 = 8



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 -. -. -. -.
 -. -. -.



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.



 . . . . .
 . . . .
 -. -. -.
 -. -.
 -.
 . . .
 . -. -. -.
 -. -. -.


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Table .: Comparison of the values of the renormalized coefficients obtained
by renormalizing under majority rule 𝑖 times a 32 × 32 Ising laice
at 𝑇 = 2.269185 with those reported in the literature.

𝑖 𝑘 Results Swendsen (b)



 . .
 . .
 -. -.
 -. -.
 -. -.
 .
 -. -.
 -. -.



 . .
 . .
 -. -.
 -. -.
 -. -.
 .
 -. -.
 -. .



 . .
 . .
 -. -.
 -. -.
 -. -.
 .
 -. -.
 -. .

words, the marginal Hamiltonian 𝑊(𝒙𝑉𝑖
) obtained using the majority

rule can be represented more compaly, requiring fewer basis funions.
Our coefficients compare favorably with those in the literature. e

renormalized coefficients obtained using a fine laice of size 32×32 agree
qualitatively with Swendsen (b), though significant discrepancies ex-
ist, especially with regard to the long range and multi-variable interac-


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Table .: Comparison of the values of the renormalized coefficients obtained
by renormalizing under majority rule 𝑖 times a 64 × 64 Ising laice
at 𝑇 = 2.269185 with those reported in the literature.

𝑖 𝑘 Results Gupta and Cordery ()



 . .
 . .
 -. -.
 -. -.
 -. -.
 . .
 -. -.
 -. -.

Table .: Comparison of the values of the renormalized coefficients obtained
by renormalizing under majority rule 𝑖 times a 128×128 Ising laice
at 𝑇 = 2.269185 with those reported in the literature.

𝑖 𝑘 Results Ron et al. () Gupta et al. ()



 . . .
 . . .
 -. -. -.
 -. -. -.
 -. -.
 . . .
 -. -. -.
 -. -. -.



 . . .
 . . .
 -. -. -.
 -. -. -.
 -. -.
 . . .
 -. -. -.
 -. -. -.


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tions. Values obtained by Gupta and Cordery () using the 64 × 64
base laice agree to a greater extent, however there are significant devia-
tions in case of the long range and multi-variable interaions. e same
difficulties appear in case of the 128 × 128 base laice comparison with
Gupta and Cordery () and Ron and Swendsen (), however the
reason is unclear.

. 

We move to the main results of this thesis, namely sampling a graphical
model using a sequence of subsequently coarse renormalized graphical
models. Aer the brief change to the coarsening scheme used in the pre-
vious seion, where we coarsened the laice by a fixed geometrical con-
struion, in this seion we constru the coarse laice 𝑉𝑖+1 by leing
𝑉𝑖+1 be a Minimum Vertex Cover (MVC) of the set 𝑉𝑖 as described in detail
in Chapter .
e coarsening algorithm proceeds as follows. Given a graph 𝐺𝑖 =

(𝑉𝑖, 𝐸𝑖), the graph 𝐺𝑖+1 = (𝑉𝑖+1, 𝐸𝑖) is construed so that 𝑉𝑖+1 is
the MVC of 𝑉𝑖 within the graph 𝐺𝑖. Subsequently, the edges 𝐸𝑖+1 are
formed to conne all pairs of nodes 𝑢, 𝑣 ∈ 𝑉𝑖+1 such that 𝜌(𝑢, 𝑣) ≤
𝐶 min𝑢≠𝑣 𝜌(𝑢, 𝑣), with 𝐶 = 1. is step guarantees that the conditional
probability 𝑃(𝒙𝑉𝑖\𝑉𝑖+1

∣ 𝒙𝑉𝑖+1
) can be evaluated.

In order to improve the sparse dependency struure of 𝐸𝑖, a lateral
densening step is employed. Because the struure of the laice is known
a priori, we seleed the lateral graphs to be construed using Algorithm
. with 𝐶𝑗 equal to 1,

√
2, 2,

√
5,

√
8 and 3; the maximum distance was

varied between computations as it is the main force driving the accuracy
of the method. e densest lateral graph 𝐺𝑗

𝑖 , i.e. the one with the highest
𝐶𝑗, was then used to constru a correive probability density 𝑃∗(𝒙𝑉𝑖

)
that could be used to improve the quality of samples through particle fil-
tering. Figure . presents a visualization of a representative dependency
direed acyclic graph 𝐷 = (𝑉 , 𝐴) construed using the algorithm.
e basis used was a polynomial basis construed using Algorithm .,

using polynomials of order one and three. e third order polynomials
were limited such that the radius of the associated clique does not exceed√

2, therefore the only cubic basis funion was typically the plaquee.
Even-order polynomials were removed from the basis because the deriva-
tive of the Ising model Hamiltonian is odd-symmetric. Although the Ising
model does exhibit a great number of symmetries, the laice symmetries
were not used in any way; that is, the SR(𝜙, 𝛾) rou-
tine was not used to constru the basis funions. As a result, on regular


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laices each node had a basis of length up to , , ,  or , depend-
ing on the choice of maximum basis width 𝐶𝑗. Additionally, the nodes
were considered not to be equivalent and thus the basis coefficients of
otherwise equivalent nodes differ from each other: the renormalized co-
efficients were not assumed to be translation invariant. However, we have
employed an equalization step in order to average the coefficients corre-
sponding to the same interaion on the laice; consult Seion ... for
details.
e renormalized coupling coefficients were obtained using the fully-

symmetrized fast marginalization scheme with 𝑄(𝒙𝑉𝑖
) = 𝑃(𝒙𝑁̄(𝑢)). We

used the mixed discrete-continuous representation and performed pro-
jeion at five Gaussian quadrature nodes. e membership of the set

̄𝑁(𝑢) was determined as 𝑢 and its neighbors within the sparse graph
𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) without any lateral densening; however, the set of edges be-
tween these nodes was taken from the densest laterally coarsened graph
𝐺𝑗

𝑖 = (𝑉𝑖, 𝐸𝑗
𝑖 ). e coefficients describing the individual conditional

probabilities, the correive marginal densities 𝑃∗(𝒙𝑉𝑖
) and the weights

𝑄(𝒙𝑉𝑖
) were obtained simultaneously using a fixed-point iteration run-

ning for six iterations, with , random samples generated per itera-
tion. e Robbins-Monro algorithm (Robbins and Monro, ) was also
used with 𝑎𝑖 = 1 for 𝑖 < 3 and 𝑎𝑖 = 1/(𝑖 − 2) during the following
iterations.

.. Sequential importance sampler

e basic sampler we are comparing against is the sequential importance
sampler using direly the dependency graph 𝐷 = (𝑉 , 𝐴) and the as-
sociated conditional probabilities. Although the conditional probability
used by this sampler is much improved, the sampler itself is the same
as that used originally by Okunev () and Chorin (). e SIS al-
gorithm produces a sample 𝒙𝑉 with proposal density 𝑃≈(𝒙𝑉 ) calculated
using the conditional probabilities of the individual variables 𝑥𝑢. To cor-
re for the difference between the proposal density and the target den-
sity 𝑃(𝒙𝑉 ), the sample 𝒙𝑉 is given a weight 𝑤(𝒙𝑉 ) equal to the ratio
𝑤(𝒙𝑉 ) = 𝑃(𝒙𝑉 )/𝑃≈(𝒙𝑉 ). e weight ensures that

lim
𝑁→∞

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑁
∑
𝑖=1

𝑓(𝒙𝑖
𝑉 )𝑤(𝒙𝑖

𝑉 )

𝑁
∑
𝑖=1

𝑤(𝒙𝑖
𝑉 )

⎞⎟⎟⎟⎟⎟⎟
⎠

= 𝔼[𝑓(𝒙𝑉 )].
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(a) A two-dimensional projeion of the dependency graph.

(b) A three-dimensional rendering of the dependency graph.

Figure .: Visualization of the direed acyclic graph 𝐷 = (𝑉 , 𝐴) representing
the dependencies between variables, construed for a 64 × 64 Ising
laice using three stages of lateral densening. e nodes are color-
coded according to the order in which they are sampled; red nodes
are sampled first, followed by green and finally the blue nodes. Cylin-
ders represent direed arcs (𝑢, 𝑣) ∈ 𝐴, where an arc (𝑢, 𝑣) from 𝑢
to 𝑣 implies that the node 𝑣 depends on the value of the node 𝑢.
e overwhelming complexity of the resulting struure shows how
complicated are the algorithms and their results even for seemingly
straightforward, regular graphical models.

We apply the sequential importance sampler to a two-dimensional Ising
laice at critical coupling and vary the accuracy & cost of the method by


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(b) Uncorreed average magnetization.
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(c) Weight-correed average magnetization.
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(d) Distribution of weights.
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Figure .: Performance of the sequential importance sampler on a 8 × 8 Ising
laice at critical coupling 𝜇 = 𝜇𝑐.

changing the maximum distance reached by the lateral densening graphs,
varying from two lateral stages in case of distance

√
2 to six lateral stages
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(b) Uncorreed average magnetization.
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(c) Weight-correed average magnetization.
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(d) Distribution of weights.
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Figure .: Performance of the sequential importance sampler on a 16×16 Ising
laice at critical coupling 𝜇 = 𝜇𝑐.

in case of distance . Beginning with a small laice of size 8 × 8, we
observe behavior described by the Figure .. e three plots show, in
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(b) Uncorreed average magnetization.
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(c) Weight-correed average magnetization.
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(d) Distribution of weights.
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Figure .: Performance of the sequential importance sampler on a 32×32 Ising
laice at critical coupling 𝜇 = 𝜇𝑐.

order, (a) the histogram of magnetization and the average absolute mag-
netization ℳabs generated by (b) the proposal density and (c) the weight-
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correed proposal density. Figures (c) through (g) show further weight-
related benchmarks.
Figure .a shows the distribution of magnetization among states pro-

duced from the target probability density sampled using MCMC and com-
pares to it the distribution obtained from the states generated by the
uncorreed proposal density 𝑃≈(𝒙𝑉 ) (SIS). Also shown is the weight-
correed distribution (Correed SIS), which should be exaly equal to
the MCMC line. Multiple lines correspond to the different accuracy levels,
with the distance referring to the maximum distance between variables
included in the basis.
Figures .b and .c summarize the data for all laices 𝑉𝑖 by provid- Laice  corresponds to

the original, fine laice.
e higher the laice
number the coarser the
laice, with the number
of variables decreasing
roughly by a faor of two
with each step.

ing uswith the average absolutemagnetization computed either using the
unweighted or weight-correed proposal density. ese curves are com-
pared against the exa values obtained by sampling the original laice 𝑉0
through MCMC and computing the relevant quantities using the restried
laices 𝑉𝑖, 𝑖 > 0. e figure .b shows the aual performance of the
sampler, while .c describes how well those results could be correed
at each stage of the computation using the correive probability densities
𝑃∗(𝒙𝑉𝑖

).
Finally, the Figure .d shows the overall distribution of weights, while

Figures .e through .g present the joint distribution of weights and
magnetizations for different basis widths. e range spanned by weights
is indicative of the performance of the method, with a wide range suggest-
ing that the proposal density is not a good approximation of the target
density. e joint distribution suggests whether the weights are depen-
dent on magnetization, showing areas that are under- or over-sampled
by the proposal density: large weights suggest under-sampling, while low
weights suggest over-sampling.
e close proximity between the magnetization curves on Figure .b

and the virtually indistinguishable distributions of weights on Figure
.d show that the increased accuracy of the proposal density obtained
through lateral densening has lile praical effe on the quality of the
proposal density. is behavior is expeed, as the increased accuracy
coming from a wider basis is utilized by a small number of variables; see
Seion . for a detailed discussion. However, Figure .c shows on the
other hand that the correive probability densities 𝑃∗(𝒙𝑉𝑖

) computed on
the densest lateral graph 𝐺𝑗

𝑖 indeed improve our ability to corre the
results: as the basis width increases, so does the quality of the weight-
correed approximation on laices 𝑉𝑖, 𝑖 > 0, where the weights can be
computed only approximately.
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As the size of the original laice increases to 16 × 16 (Figure .)
and 32 × 32 (Figure .), the proposal density begins to produce a his-
togram that varies markedly from that obtained using the target distri-
bution. It appears that the proposal density consistently underestimates
the strength of the interaions between variables, producing samples of
lower magnetization than expeed: the histograms on Figures .a and
.a are too flat compared to the corre shape. is can be seen clearly
from the weights alone. Figures .e–.g and .e–.g, where the
histograms take a charaeristic buerfly shape: low magnetization states
(middle of the graph) are over-sampled, while high magnetization states
(extremes, or wings, of the graph) are under-sampled.
In the case of the 32 × 32 laice, the sequential importance sampler

no longer performs acceptably. In fa, the correed histogram on Fig-
ure .a is extremely noisy. e relatively poor sample quality can be
observed direly through inspeion of the weight distribution on Fig-
ure .d: the ratio of the largest to the average weight is of the order of
e10 ≈ 22000. erefore, each of these very large weight samples equals
approximately 22000 average samples, causing the noisy behavior ob-
served on the magnetization histogram. Additional increases in the size
of the original laice decrease the performance even further, making it
no longer possible to use weights to satisfaorily corre the mismatch
between the proposal density and the target density.
We focus our aention on Figures .b and .c to point out two

important observations. e magnetization curves of Figure .b are of
higher quality than some of those correed using the dense correive
probability distributions 𝑃∗(𝒙𝑉𝑖

). In particular, the correive probability
distribution using basis of width

√
2 performs worse than the uncorreed

proposal density for laices 𝑉𝑖 with 2 ≤ 𝑖 ≤ 7. is suggests that the
influence of the variables sampled on the coarsest laices remains very
strong, since it keeps the magnetization level above what would be ob-
tained using the approximate marginals alone.
e use of a wider basis in the computation of 𝑃∗(𝒙𝑉𝑖

) allows for an
improvement over the states produced by the sequential importance sam-
pler. Looking at the graph .c, the bases of width

√
8 and 3 produce

states whose magnetization never falls below 0.6, while the sequential
sampler produces magnetization of the order of 0.5 and lower. erefore,
correing the samples generated using the sequential sampler during the
process of conditional sampling should bring a significant improvement.





 



.

.

.

.

.

.

- -.  . 

Fr
eq

ue
nc

y

Magnetization

MCMC
PRC Distance

√
2

PRC Distance 2
PRC Distance

√
5

PRC Distance
√

8
PRC Distance 3

Correed PRC Distance
√

2
Correed PRC Distance 2

Correed PRC Distance
√

5
Correed PRC Distance

√
8

Correed PRC Distance 3
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(b) Uncorreed average magnetization.
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(c) Weight-correed average magnetization.
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Figure .: Performance of the partial rejeion control sampler on a 8 × 8 Ising
laice at critical coupling 𝜇 = 𝜇𝑐.

.. Partial rejeion control sampler

e partial rejeion control sampler is an extension of the above sampler
using particle filtering to improve the samples at intermediate laices
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(b) Uncorreed average magnetization.
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(c) Weight-correed average magnetization.
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(g) Distribution of weights and magnetization for ba-
sis width 3.

Figure .: Performance of the partial rejeion control sampler on a 16 × 16
Ising laice at critical coupling 𝜇 = 𝜇𝑐.

(Doucet, de Freitas, and Gordon, , p. ). In order to facilitate this
improvement, at each intermediate laice 𝑉𝑖 we use the densest lateral
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(b) Uncorreed average magnetization.
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(c) Weight-correed average magnetization.

e-

e-

.

.

.

.





-. - -.  .  .  .  .

Fr
eq

ue
nc

y

ln(𝑤)

Distance
√

2
Distance 2

Distance
√

5
Distance

√
8

Distance 3

(d) Distribution of weights.
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Figure .: Performance of the partial rejeion control sampler on a 32 × 32
Ising laice at critical coupling 𝜇 = 𝜇𝑐.

graph 𝐺𝑗
𝑖 to constru a correive probability density 𝑃∗(𝒙𝑉𝑖

). is cor-
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(b) Uncorreed average magnetization.

.

.

.

.

.

.

.

      

Av
er
ag

e
m
ag

ne
tiz

at
io
n

Laice number

MCMC
Distance

√
5

Distance
√

8
Distance 3

(c) Weight-correed average magnetization.
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(d) Distribution of weights.
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Figure .: Performance of the partial rejeion control sampler on a 64 × 64
Ising laice at critical coupling 𝜇 = 𝜇𝑐.

reive probability density is obtained together with the proposal density
𝑃≈(𝒙𝑉 ) using the fast marginalization method.
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(d) 𝑤∗(𝒙𝑉4 )

Figure .: Correlation between the approximate weights 𝑤∗(𝒙𝑉𝑖) and the fi-
nal weights 𝑤(𝒙𝑉 ) computed using a basis of width  on a 32 × 32
Ising laice at 𝜇 = 𝜇𝑐, showing the prediive value of the approxi-
mate weights. If the prediion were exa, the points would form a
straight line; however, the strength of the correlation is limited due
to the approximate nature of the weights 𝑤∗(𝒙𝑉𝑖) and changes in
the proposal density.

Assume for now that for each laice 𝑉𝑖 we have an unnormalized cor-
reive probability density 𝑃∗(𝒙𝑉𝑖

) and aweight threshold 𝑐𝑖. We begin by
sampling 𝑀 samples 𝒙𝑝

𝑉𝑚
on the coarsest laice 𝑉𝑚 for 𝑝 = 1, 2, … , 𝑀 .

ese individual samples are referred to as particles and are assumed to
follow the probability 𝑃(𝒙𝑉𝑚

), thus we assign each particle the proposal
density 𝑃≈(𝒙𝑝

𝑉𝑚
) = 𝑃(𝒙𝑝

𝑉𝑚
). With the assumption that the laice 𝑉𝑖+1

has been sampled, the transition to laice 𝑉𝑖 proceeds as follows. We sam-
ple the variables 𝒙𝑝

𝑉𝑖\𝑉𝑖+1
for each particle using the usual sequential im-
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portance sampler, obtaining a completed state 𝒙𝑝
𝑉𝑖

with proposal density
𝑃≈(𝒙𝑝

𝑉𝑖
). For each particle we compute the correive weight

𝑤∗(𝒙𝑝
𝑉𝑖

) =
𝑃∗(𝒙𝑝

𝑉𝑖
)

𝑃≈(𝒙𝑝
𝑉𝑖

) .

If the weight 𝑤∗(𝒙𝑝
𝑉𝑖

) > 𝑐𝑖, the particle is accepted unconditionally. Oth-
erwise, the particle is accepted with probability min {1, 𝑤∗(𝒙𝑝

𝑉𝑖
)/𝑐𝑖}, in

which case the proposal density is updated to 𝑃∗(𝒙𝑝
𝑉𝑖

)/𝑐𝑖.
If the particle is rejeed, we return to the laice 𝑉𝑖+1 and choose at

random a particle 𝒙𝑞
𝑉𝑖+1

, 1 ≤ 𝑞 ≤ 𝑀 , with probability proportional to its
weight 𝑤∗(𝒙𝑞

𝑉𝑖+1
). We then assign the resampled particle 𝒙′

𝑉𝑖+1
an initial

proposal density

𝑃≈(𝒙′
𝑉𝑖+1

) = 𝑀
𝑀

∑
𝑘=1

𝑤∗(𝒙𝑘
𝑉𝑖+1

)
𝑃≈(𝒙𝑞

𝑉𝑖+1
)

and complete the state by sampling the variables 𝒙′
𝑉𝑖\𝑉𝑖+1

using the se-
quential importance sampler, obtaining a regenerated particle 𝒙′

𝑉𝑖
with

proposal density 𝑃≈(𝒙′
𝑉𝑖

). Finally, we set 𝒙𝑝
𝑉𝑖

= 𝒙′
𝑉𝑖

and 𝑃≈(𝒙𝑝
𝑉𝑖

) =
𝑃≈(𝒙′

𝑉𝑖
) and repeat the rejeion step with weight threshold 𝑐𝑖. e regen-

eration and rejeion process continues until the particle 𝒙𝑝
𝑉𝑖

is accepted.
e weight thresholds 𝑐𝑖 are determined ahead of time by sampling a

single, very large batch of approximately  particles. When the parti-
cles reach a laice 𝑉𝑖, we compute the weights 𝑤∗(𝒙𝑝

𝑉𝑖
) and choose the

threshold 𝑐𝑖 to be

𝑐𝑖 = max {
𝐶98(𝑤∗(𝒙𝑝

𝑉𝑖
))

10 ,
𝑄2(𝑤∗(𝒙𝑝

𝑉𝑖
)) + 𝑄3(𝑤∗(𝒙𝑝

𝑉𝑖
))

2 } ,

where 𝐶𝑘(⋅) and 𝑄𝑘(⋅) are the 𝑘th percentile and 𝑘th quantile of the
weights, respeively. Once 𝑐𝑖 is computed, the particles undergo a re-
jeion step, with the accepted particles and proceeding further. Once the
thresholds 𝑐𝑖 are known for all the laices 𝑉𝑖, including the the original
laice 𝑉0, we sample particles in batches of  particles and perform re-
sampling on every laice 𝑉𝑖.
Figure . shows the performance of the partial rejeion control sam-

pler on the 8×8 Ising laice. Comparing it with the analogous Figure .
describing the performance of the sequential importance sampler, we see
an immediate improvement. e weights span a much smaller range and
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the uncorreed histogram shown on Figure .a is almost exa. Perfor-
mance remains similar in case of the 16 × 16 laice.
e 32 × 32 laice remains more difficult. We observe that weights

span the range of about e5 ≈ 150, which causes the noise visible in
the histogram on Figure .a. Increasing the width of the basis helps
in reducing the ratio between the largest and smallest weights. Finally,
Figure . shows that the sampler begins to fail in the case of the 64×64
laice, where the weights span the range of about e10 ≈ 22000, marking
the limits of applicability of the sampling method.

. 

e performance of the acyclic Monte Carlo method applied to the Ising
model is far from satisfaory, given that the 64 × 64 Ising laice can be
sampled quite successfully using the Markov Chain Monte Carlo (MCMC)
method. e aim of the acyclic Monte Carlo method is not, however, to
replace the cluster method of Wolff () or other specialized methods;
instead, we hoped to apply it to the Ising model in order to study its
behavior in this relatively simple scenario.
e largest source of error is caused by the values of the numerically

computed renormalized coupling coefficients. We found that the renor-
malized coefficients are continuous funions of the original couplings
and thus do not undergo a rapid change across the phase transition, while
the observable quantities vary significantly. erefore, a relatively small
error in the estimated coefficients leads to a large change in the behavior
of the model, resulting in large sampling errors. is is visible especially
strongly in the Isingmodel, where spins a in a coherentmanner and thus
the errors commied in the calculation of the renormalized coefficients
tend to drive the system in the same direion: e.g. the magnetization is
consistently underestimated because the coupling coefficients are consis-
tently too low.
ere are a number of approaches that proved successful in improving

this situation. We find that with 𝑄(𝒙𝑉𝑖
) = 1 enlarging the basis does

not bring a significant improvement to the quality of the approximate
marginal probability density. Our suspicion is that this is due to the nature
of the weighted inner produ being used, which aempts to find an ap-
proximation to the derivative of themarginal Hamiltonian 𝜕𝑊(𝒙𝑉𝑖

)/𝜕𝑥𝑢
that minimizes the approximation error in areas where the probability
𝑃(𝒙𝑉𝑖

) — hence also the Hamiltonian 𝑊(𝒙𝑉𝑖
) — is large.e unintended

consequence of this fa is that such an approximation consistently under-
estimates the true values of the derivative, because 𝜕𝑊(𝒙𝑉𝑖

)/𝜕𝑥𝑢 and
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𝑊(𝒙𝑉𝑖
) are anti-correlated. We find that using 𝑄(𝒙𝑉𝑖

) = 𝑃(𝒙𝑁̄(𝑢)) flat-
tens the weights and improves the renormalized coefficients, partially re-
moving the bias introduced by the inner produ. We saw in Table .
that as the laice becomes coarser, the relative strength of the long-range
interaions increases as well. erefore, it may become necessary to use
a larger neighborhood of the node 𝑢 ∈ 𝑉𝑖 in the flaening faor 𝑄(𝒙𝑉𝑖

)
in order for it to be equally useful as on finer laices.
e increased range of interaions is a property of the coarsening rule

used. Within the present thesis we used decimation, as it is the only
coarsening rule that allows for using sequential importance sampling and
other advanced sampling techniques. When this premise is abandoned,
the generalized fast marginalization could be used to compute renormal-
ized coupling coefficients for arbitrary coarsening rules, in particular for
a coarsening rule optimized for basis size. e frequently used majority
rule in particular has a relatively small basis: Brandt and Ron (b) re-
port that a basis construed over a -node neighborhood (basis width
of

√
5) already produces a very good approximation to the renormalized

Hamiltonian, which in the case of decimation is not quite large enough.
erefore, the renormalized Hamiltonians computed using the general-
ized fast marginalization could be used together with a Markov Chain
Monte Carlo (MCMC) sampling scheme described in Chapter  to sample
the original probability distribution in the same way as the method of
Brandt and Ron (b), however with the ability to use the method in a
natural manner for both discrete and continuous systems. However, using
general coarsening rules removes the ability to gauge the performance of
the sampling method through analysis of the weight distribution, mak-
ing it less appealing in more difficult applications, where no benchmark
results might be known.
e acyclic Monte Carlo has two significant strengths.e samples gen-

erates by our method are entirely independent of each other, with the
caveat that the particles within each batch are correlated due to the pres-
ence of the resampling stage. erefore, the method does not suffer be-
cause of critical slowing down or long autocorrelation times. At the same
time the method is very general and does not use any special properties
of the Ising model, making us hopeful that other statistical models, where
the errors commied by the method have a chance to cancel out, will see
beer performance than that observed in the case of the Ising model.
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Part III

APPEND ICES





A
CALCULAT ION OF THE EXACT RENORMAL IZAT ION
OF THE I S ING MODEL IN ONE D IMENS ION

As in Chapter , we begin with the Ising model defined on a periodic
chain of length 𝑛 = 2𝑚, with 𝑚 ≥ 2. e spins 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛), with
𝑥𝑖 ∈ {−1, 1}, have a probability distribution

𝑃(𝒙) = 1
𝑍(𝜇) exp [𝜇

2
𝑛

∑
𝑖=1

𝑥𝑖 (𝑥𝑖−1 + 𝑥𝑖+1)] , (A.)

where 𝜇 = 1/𝑇 and 𝑍(𝜇) are the inverse temperature and the partition
funion. Split the variables in 𝒙 by puing the even-index variables into
𝒙̃ and odd-index into 𝒙̂,

𝒙̃ = {𝑥2, 𝑥4, 𝑥6, … , 𝑥𝑛} and 𝒙̂ = {𝑥1, 𝑥3, 𝑥5, … , 𝑥𝑛−1}. (A.)

To obtain the behavior of the coarse laice 𝒙̂ we define the marginal
probability of 𝒙̂ as an integral of the joint probability 𝑃(𝒙̂, 𝒙̃) over 𝒙̃,

𝑃(𝒙̂) = ∫ 𝑃(𝒙̂, 𝒙̃)𝑑𝒙̃. (A.)

e variables are discrete, thus the integral becomes a sum. We rewrite
the probability as

𝑃(𝒙) = 1
𝑍(𝜇) exp [𝜇

2
𝑛

∑
𝑖=1

𝑥𝑖 (𝑥𝑖−1 + 𝑥𝑖+1)] (A.)

= 1
𝑍(𝜇) ∏

𝑥𝑖∈𝒙̃
exp [𝜇𝑥𝑖 (𝑥𝑖−1 + 𝑥𝑖+1)] . (A.)

Performing the sum over 𝒙̃ ∈ Ω = {−1, 1}𝑛, we obtain

𝑃(𝒙̂) = ∑
𝒙̃

𝑃(𝒙̂, 𝒙̃) (A.)

= 1
𝑍(𝜇) ∑

𝒙̃
∏

𝑥𝑖∈𝒙̃
exp [𝜇𝑥𝑖 (𝑥𝑖−1 + 𝑥𝑖+1)] (A.)
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= 1
𝑍(𝜇) ∏

𝑥𝑖∈𝒙̃
[exp [𝜇 (𝑥𝑖−1 + 𝑥𝑖+1)]

+ exp [−𝜇 (𝑥𝑖−1 + 𝑥𝑖+1)]] (A.)

= 1
𝑍(𝜇) ∏

𝑥𝑖∈𝒙̃
2 cosh [𝜇 (𝑥𝑖−1 + 𝑥𝑖+1)] (A.)

= 2𝑛/2

𝑍(𝜇) ∏
𝑥𝑖∈𝒙̃

cosh [𝜇 (𝑥𝑖−1 + 𝑥𝑖+1)] . (A.)

e transition between Eq. A. to A. can be seen clearly in a simpler
example:

∑
𝒙

3
∏
𝑖=1

𝑓𝑖(𝑥𝑖) = ∑
𝑥1

∑
𝑥2

∑
𝑥3

𝑓1(𝑥1)𝑓2(𝑥2)𝑓3(𝑥3) (A.)

= ∑
𝑥1

∑
𝑥2

𝑓1(𝑥1)𝑓2(𝑥2)𝑓3(−1)

+ ∑
𝑥1

∑
𝑥2

𝑓2(𝑥1)𝑓2(𝑥2)𝑓3(−1) (A.)

= ∑
𝑥1

∑
𝑥2

𝑓1(𝑥1)𝑓2(𝑥2) [𝑓3(−1) + 𝑓3(1)] (A.)

= ∑
𝑥1

𝑓1(𝑥1) [𝑓2(−1) + 𝑓2(1)] [𝑓3(−1) + 𝑓3(1)] (A.)

= [𝑓1(−1) + 𝑓1(1)] [𝑓2(−1) + 𝑓2(1)] [𝑓3(−1) + 𝑓3(1)] (A.)

=
3

∏
𝑖=1

[𝑓𝑖(−1) + 𝑓𝑖(1)] . (A.)

Unfortunately, the final result in Eq. A. is not in the same form as Eq.
A.. However, because the formulas must only agree at discrete values
𝑥𝑖 = ±1, we may aempt to write

𝐶 exp ( ̂𝜇𝑥𝑖−1𝑥𝑖+1) = cosh (𝜇 (𝑥𝑖−1 + 𝑥𝑖+1) ) (A.)

and choose the values of ̂𝜇 and 𝐶 to ensure the two funions are equal at
all possible combinations of 𝑥𝑖−1 and 𝑥𝑖+1. ere are four combinations,
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(𝑥𝑖−1, 𝑥𝑖+1) cosh (𝜇 (𝑥𝑖−1 + 𝑥𝑖+1)) 𝐶 exp ( ̂𝜇𝑥𝑖−1𝑥𝑖+1)
(−1, −1) cosh (2𝜇) 𝐶 exp( ̂𝜇)
(−1, 1) 1 𝐶 exp(− ̂𝜇)
(1, −1) 1 𝐶 exp(− ̂𝜇)
(1, 1) cosh (2𝜇) 𝐶 exp( ̂𝜇)

where the symmetry cosh(−𝑥) = cosh(𝑥) and value cosh(0) = 1 are
used. From the middle equations we obtain 𝐶 = exp( ̂𝜇), while the re-
maining equation gives

exp(2 ̂𝜇) = cosh (2𝜇) ⇒ ̂𝜇 = 1/2 ln [cosh (2𝜇)] , (A.)

the classical result quoted in Chapter .


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