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ABSTRACT

Acyclic Monte Carlo: Efficient multi-level sampling of undirected
graphical models through fast marginalization

by
Jakub K. Kominiarczuk
Doc¢tor of Philosophy in Mathematics
University of California, Berkeley

Professor Alexandre J. Chorin, Chair

We present a method for sampling high-dimensional probability spaces,
applicable to Markov fields with both discrete and continuous variables,
based on an approximate acyclic representation of the probability density.
Our method generalizes and places in a common framework some recent
work on computing renormalized Hamiltonians and §tochastic multigrid
sampling.

An acyclic representation of a probability distribution function (PDF) is
obtained when one chooses an ordering of the variables and writes the
PDF as a product of conditional probabilities, so that the probability of any
variable is conditional only on the variables that precede it in the order-
ing. An acyclic representation makes the sampling efficient, because it
uses the sparsity present in the model. We derive an approximate acyclic
representation for general graphs by finding marginals through a fast
marginalization scheme. The partial derivatives of the logarithm of the
marginal probability are computed approximately through stochastic lin-
ear projection onto a polynomial basis, followed by reconstruction of the
marginal through integration. The projection is based on an optimized in-
ner product, making possible the use of Gaussian quadrature. Probability
distributions involving discrete variables are handled by embedding the
PDFs in differentiable extensions. Our algorithm can be extended to the
evaluation of renormalized Hamiltonians formed using general renormal-
ization schemes.

The approximate acyclic representation of the PDF is then used for sam-
pling. The variables are sampled in a fixed order, producing independent
samples together with their sampling weights. We present an optimized
sampling strategy that uses a maximum amount of information to choose
individual variable values. The samples are further improved using tech-
niques from particle filtering. We also introduce a block Markov chain



Monte Carlo scheme based on the sampling weights. Finally, we present
applications of our methodology to the Ising model.



ABSTRACTUM

Acyclicus Mons Caroli (Monte Carlo): Efficax multisequilibris ratio ad
exempla casualia formarum graphorum efficienda per quadraturam
citam

Tacobus Carolus Kominiarczuk
Ph. do¢tor scientiarum mathematicarum
Universitas Californiensis, Berkeley

Professor Alexandre J. Chorin, qui IJacobum C. Kominiarczuk do¢torem
creat ac renuntiat

Demonstramus rationem exemplorum casualium efficiendorum ex multis
dimensionibus distributionibus probabilitatis, quam possumus usu adhi-
bere ad aream Marcovi iuxta cum quantitatibus variabilibus casualibus
discretis ac variabilibus casualibus continuis, nisam in acyclicam formam
distributionis probabilitatis. Ratio nostra generatim rem exponit atque
communi lingua aliquam partem methodorum calculandi mediocres ha-
miltonianos ac probandi casualiter multis cum modis adhibendis.

Acyclica forma functionis distributivee probabilitatis accipitur dispo-
nendo quantitatum variabilium in electo ordine scribendoque func¢tionem
distributivam ut summam functionis probabilitatis conditionalis indica-
tarum quantitatum variabilium ex multiplicatione effe¢tam. Quibus spe-
cialitas est: probabilitas electee quantitatis variabilis sita est in quantitati-
bus variabilibus, quee exsistebant iam in electo ordine. Usus formee acy-
clicee distributionis propabilitatis dat facultatem fingendi citius exempla
casualia, quoniam utitur paucis inter quantitates variabiles coniunc¢tioni-
bus. Introducimus appropinquatam acyclicam formam distributionis ad-
hibitam usu ad queelibet grapha subiecta per computationem distributio-
nes marginales methodo quadraturee celeris usa. Derivatee particulares
logarithmi marginalis distributionis propabilitatis calculantur modo ap-
propinquato per proiectionem casualem perpendiculatam in basem po-
lynomiorum, postea calculatur distributio marginalis recuperata ex deri-
vatis per quadraturam. Proiectio ab optima producto scalare nitens licet
modo Gaussi quadratura uti. Introducto extensione differentionali ratio
ad distributiones probabilitatis cum quantitatibus variabilibus casualibus
discretis adhibitur. Methodon nostra accomodari potest ad calculandum
mediocres hamiltonianos assecutos variarum rationum gratia.

Calculata acyclica forma distributionis probabilitatis ea utimur ad ex-
empla casualia efficienda. Quantitates variabiles casuales in eleto ordine



probantur atque libera exempla eorumque pondera dant. Demonstramus
optimatum modum ad exempla casualia efficienda a quo maximus nume-
rus informationum ad certam quantitatem variabilem probandam adhibi-
tur. Usis particulas colandi modis qualitas finalium exemplorum casua-
lium in meliorem statum mutatur. Introducimus etiam methodon Mons
Caroli (Monte Carlo) nisam in calculatam a nobis acyclicam formam di-
stributionis probabilitatis ac ponderis exemplorum casualium. Disserta-
tionem finimus demonstrantes eventus accomodandi rationem nostram
ad formam Isingi.



ABSTRAKT
Acykliczne Monte Carlo: Metoda efektywnego probkowania losowego
modeli graficznych poprzez szybkie ubrzegowianie
Jakub K. Kominiarczuk
Doktor nauk matematycznych
Uniwersytet Kalifornijski, Berkeley

Profesor Alexander J. Chorin, Promotor

Przedstawiamy metode tworzenia probek losowych z wielowymiaro-
wych rozkladow prawdopodobienstwa, majacej zastosowanie do pol
Markowa zaréwno o dyskretnych, jak i ciaglych zmiennych, oparta
o acykliczng forme rozkladu prawdopodobienstwa. Nasza metoda
uogolnia i opisuje we wspolnym jezyku pewna klase metod obliczania
zrenormalizowanych hamiltonianéw oraz probkowania losowego z
uzyciem wielu skal.

Acykliczna forma funkcji rozktadu prawdopodobienstwa jest otrzymy-
wana poprzez uszeregowanie zmiennych w wybranym porzadku oraz
zapisanie funkcji rozktadu jako iloczynu funkcji prawdopodobienstwa
warunkowego poszczegélnych zmiennych posiadajacych swoista ceche:
prawdopodobienstwo danej zmiennej jest zalezne jedynie od zmiennych
wystepujacych wczesniej w wybranym porzadku. Uzycie acyklicznej for-
my rozktadu prawdopodobienstwa pozwala na efektywne tworzenie pro-
bek losowych, poniewaz wykorzystuje niska gestos¢ zaleznosci pomie-
dzy zmiennymi losowymi. Wprowadzamy przyblizong acykliczng forme
rozkladu stosowalng w przypadku dowolnych graféw zaleznosci poprzez
obliczanie rozkladow brzegowych z uzyciem metody szybkiego ubrzego-
wiania. Pochodne czgstkowe logarytmu brzegowego rozktadu prawdopo-
dobienstwa sg obliczane w sposéb przyblizony poprzez stochastyczne rzu-
towanie prostopadle na baze wielomianowa, po czym obliczany rozklad
brzegowy jest odzyskiwany z pochodnych poprzez calkowanie. Rzuto-
wanie jest oparte o zoptymalizowany iloczyn skalarny, pozwalajacy na
uzycie calkowania metoda Gaussa. Metoda jest stosowalna do rozktadow
prawdopodobienstwa ze zmiennymi dyskretnymi po wprowadzeniu roz-
szerzenia rozniczkowalnego danego rozktadu. Nasza metoda znajduje za-
stosowanie do obliczania renormalizowanych hamiltonianéw powstatych
przy uzyciu dowolnych metod renormalizacji.



Po obliczeniu acyklicznej formy rozkladu prawdopodobienstwa, uzywa-
my jej do tworzenia probek losowych. Zmienne sg probkowane w usta-
lonym wczesniej porzadku, dajac niezalezne probki oraz ich wagi. Pre-
zentujemy zoptymalizowang strategie probkowania losowego uzywajaca
maksymalng ilo$¢ informacji dostepnych do probkowania danej zmienne;j.
Jakos¢ wynikowych probek losowych jest polepszana z uzyciem technik
filtrowania czasteczek. Wprowadzamy réwniez metode Monte Carlo opar-
ta o obliczong przez nas acykliczng forme rozktadu prawdopodobienstwa
oraz wagi probek losowych. Rozprawe konczy prezentacja wynikéw za-
stosowania naszej metody do modelu Isinga.



INEPIAHYH
AxvkAuca Monte Carlo: Amotelespatikn moAveminedn detypotoAnyio
AKUKALK®OV YPOUPLKOV HOVTEAWV pécw Toxelag eptbwplomoinong Amd
Jakub K. Kominiarczuk
Adktwp Prhocopiog ota Mabnpotikd
[ovemotipo Kalwpodpviag, Mméprel
Kabnyntng Alexander J. Chorin, mpoedpebwv

[Mapovoialovpe pio pébodo derypatoAnyiog xwpwv mbavoTnTag peyd-
Awv daotaoewv, epappooin oe nedio Markov 1600 pe diokpitég 660
Kol ovveyelg petoPfAnTég, PacIopévn oe HIX TPOCEYYLOTLKY OXKUKALKT
AVOTTOPACTHCT) TNG oLVAPTNONG TLkVOTNTRG ThavotnTac. H pébodog
HOG yevikeVel ko Tomobetel oe éva koo TAaiclo TPOGPATEG EpYTieg
OXETIKQ HE TOV LITOAOYLOHO ETTAVOKOVOVLKOTOLNHEVOV XOHUATOVIOVOV
KOl TT) GTOXXOTIKT TTOAVTAEYHOTIKT] detypaTtoAnPic.

Mot otk UKALKT] QvoTapdotact) oG cUVAPTHONG TUKVOTHTOG Thavo-
mtog (0.0t.7.) emtuyydveton otav emiheyel puoe Statakn twv petaPAntov
KoL YPOUPEL 1) G.TT.TT. G YLVOUEVO SeGHEVHEVWV TLOOVOTNTWV, £TOL OOTE N
mBavotnTa k&Be petaPfAnTnig va eEaptdTon povo amd Tig peTaPANTEG TTOVL
mponyovvtol vt oTn dtaEn. Mot akLKALKY avotapdoTaoT Kavel
N SetypotoAn i amoteAeGpATIKY, €TTELDT] XPNOLHOTOLEL TH GTTOPASLKO-
TNTA OV LITAPYXEL 0TO HovTEéNO. EEAYOUE [l TPOGEYYLOTIKY) OKUKALKT
AVOTTOPACTHOT) YLO YEVIKA Ypaerpata Ppickovtoag Tig meplfdpleg ouv-
apTNOELS HEGW EVOG YPNYOPOL cuothpatog meplbwplomoinong. Ot pept-
K€ maphywyol tov Aoyopibpov tng meptbdplag cuvaptnong mboavotn-
Tag LITOAOYLLOVTOL TTPOGEYYLOTIKA HEGW GTOXXOTIKNG YPOUULKAG tpofo-
Mg oe pla ToAvwvupkn Baon, akoAovBolpevn amd TNV AVaKATAoKELT
g meploplag ouvaptnong pécw orokApwong. H mtpofoin Pacileton
o€ évo PEATIOTOTTONHEVO EGMTEPLKO YIVOHEVO, TTOL KabloTd duvatr) T
xpnon twv Gaussian tetpaywvicpov. Ot katavopég mbavotntog mov
a@opovV SLoKPLTEG PETAPANTEG AVTIHETOTILOVTAL HE TNV EVOOHATWOT)
NG 0.7.7. o€ dapopiotpeg emektdoelg. O adyoplOpog pag pwopel va eme-
kTabel otV 0ELOAOYNOT) TOV ETAVOKAVOVIKOTOLNHEVOV XOPULATOVIOVOV
OV OYNUATI(OVTOL XPT|CLHOTOLOVTOG YEVIKES PeBOSOVG emavVaKaVOVLKO-
moinomng.

H mpoceyyloTikn aKUKALKT avamapioTacTt) TG GLUVAPTNONG TUKVO-
TG mOAVOTNTOG XPNOLHOTOLELTAL GTI) GUVEXEL Yia detypatoAnict.



[Maipvoupe detypoto peTafANTOV pe piot CLYKEKPLHEVT CELPA, TOPAYyOV-
tag aveEaptnta deiypata oe cuvdvacpod pe to Papn detypoatoAniog
TOUG. X0 mopovotdlovpe o PeATioTomotpévn otpatnykn detyparto-
ANYlog oL XPNOLHOTOLEL L HEYLGTT TTOGOTNTA TTA POYOPLOG YLK VL ETTL-
Aé€el pepovopéveg TipéG petaPAntov. Ta deiypato PeAtiovovtor Tepot-
TEPW XPNOLHOTOLOVTAG TEXVIKES QIATpapiopatog cwpatdinv. Exiong,
opovstalovpe éva prthok cvotnpa Markov Chain Monte Carlo pe fdon
ta Bapn g Serypatonyiog. Télog, mapovoidlovpe epopproyES TNG Je-
Bodoloylag pag oto povtédo Ising.
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ZUSAMMENFASSUNG
Azyklisches Monte Carlo: die Methode des effizienten stochastischen
Samplings durch schnelle Marginalisierung
Jakub K. Kominiarczuk
Doktor der mathematischen Wissenschaft
Die kalifornische Universitit, Berkeley

Professor Alexander J. Chorin, Betreuer

Wir praesentieren eine Methode um Zufallsvariablen in hoch-
dimensionale Wahrscheinlichkeitsraeumen darzustellen. Die Methode
findet Anwendung in Markov Feldern mit diskreten und kontinuierlichen
Variablen und basiert auf einer angenaeherten, azyklischen Repraesen-
tation der Wahrscheinlichkeitsdichte. Unsere Methode generalisiert und
vereinigt Ansaetze fuer renormalisierte Hamiltonische Systeme und
stochastische Multigrid Verfahren.

Eine azyklische Repraesentation einer Wahrscheinlichkeitsdichte wird
erreicht in dem den Zufallsvariablen eine Ordung zugewiesen wird und
die Wahrscheinlichkeitsdichte als Produkt konditionierter Wahrschein-
lichkeitsdichten geschrieben wird, wobei die Wahrscheinlichkeit einer Va-
riable nur auf jene Zufallsvariablen konditioniert ist die in der gegebenen
Ordnung vorangehen. Die azyklische Representation beschleunigt das
generieren von Realisationen der Variable da die duennbesetzte Modell-
struktur genutzt werden kann. Wir leiten eine Annaeherung an die azy-
klische Representation fuer allgemeine Graphen her, in dem wir schnelle
Marginalisierungen nutzen. Die partiellen Ableitungen des Logarithmus
der Marginale werden durch $tochastische lineare Projektionen auf eine
Polynom-Basis angenaehert, welche dann einfach integriert werden ko-
ennen. Die Projektion basiert auf einem optimalen inneren Produkt, so
das Gauss-Quadratur genutzt werden kann. Differenzierbare Erweiterun-
gen werden fuer diskrete Zufallsvariablen angewendet. Unsere Methode
kann auch zur Auswertung renormalisierter Hamiltonischer Systeme, die
aus generalisierter Renormalisierung hervorgehen, genutzt werden.

Wir nutzen die azyklische Representation der Wahrscheinlichkeitsdich-
te um Stichproben zu generieren. Die Stichproben der einzelnen Zufalls-
variablen werden der gegebenen Ordnung nach erzeugt, so das die Stich-
proben und deren Gewichte unnabhaengig voneinander sind. Wir pre-
sentieren eine optimierte Strategie die maximale Information benutzt um

10



einzelne Stichproben zu generieren. Die Stichproben werden dann mit
Hilfe von Methoden der “particle filter” weiter verbessert. Daneben §tel-
len wir eine Strategie fuer blockweise Markov-Ketten-Monte-Carlo vor
das auf den Gewichten der Stichproben basiert. Schliesslich zeigen wir
die Anwednung unserer Methoden am Ising Modell.
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AHHOTALOUA

Anukinnueckuit Meronq MoHnTe-Kapio: MHOroypoBHeBas BBIOOpKa
MojieJiell Ha HEOpMEeHTMPOBAHHBIX rpadax ImocpexcTBOM OBICTPOTO
MHTETPUPOBAHUS

Axy6 Komuanmapuyxk
Kangunat ¢pusmko-mMareMaTnuecKnx HayK
yHuBepcuret Kanndopuun, Bepxin

[IpencenaTenp quccepTallIOHHON KOMyICCHUY: Tpodeccop AyleKcaHap
Yopun

[IpencraBieH MeTOX BHIOOPKM B MHOTOMEPHBIX BEPOSITHOCTHBIX IIPO-
CTpaHCTBaX, IPMMEHMMBII K MapKOBCKIM IIOJISIM KaK C QUCKPETHBIMI,
TaK U C HeIPephIBHBIMU IIepeMeHHBIMY, OCHOBAHHBIV Ha MPUOJIVIKeH-
HOM alMKJINYECKOM ITpecTaBIeHNy QyHKIUM IIOTHOCTH. [JaHHBII Me-
TOJ 0600111aeT HEKOTOpbIe HeJaBHIE PabOThI 110 BEIUMCIEHNIO peHOpMa-
JM30BaHHBIX TAMIJIBTOHMAHOB 11 BBIDOPOK MHOTOCETOYHBIM METOIOM I
JaeT M HOBYIO MHTepeIIpeTaluio.

AnMKINUecKoe IpeCcTaBlIeHNe BepOSITHOCTHOI (QyHKIIMU pacrpesie-
JIeHVsI TIOJIyJaeTcsl IIPU BBIOOpe IOpSAKa CIeJOBaHVS IepeMEeHHBIX I
3anucy GYHKUUU paclipefiesieHNs KaK IIPOU3BeIeHNs YCIOBHBIX BEpPO-
ATHOCTEJI TaKMM 00pa3oM, UTOOBI yCcIOBHAs (PyHKUMS pacipeesieHNs
Ka’KJI0JI ITepeMeHHOIT 3aBIICeJIa TOJIBKO OT IIPeIIeCTBYIOIINX ITepeMeH-
HBIX. AIMKINUECKOoe IpefcTaBiieHue IoBbImIaeT 3¢¢GeKTUBHOCTb BbI-
OOpKI, TaK KaK OHO UCIIOIb3YyeT Pa3pelIeHHOCTh MCCIIeyeMOil MOIEeJIIL.
C mcrionp3oBaHMEM CXeMBI ¢ OBICTPHIM MHTEIPUPOBAHMEM IS ITOMCKA
IIOJTHBIX BEPOSITHOCTEI ITOJIyUeHO IPUONVDKEHHOE allMKINYeCcKoe IIpe-
CTaBJIeHMe AJIS IIPOM3BOJIBHBIX IpadoB. YacTHbIE IPOU3BOAHBIE JIOTA-
prdMa IMOTHBIX BEPOSTHOCTEN BBHIUNCIISIOTCS MPUOIIHIKEHHO uepes Be-
POSITHOCTHYIO JIMHEHYIO IIPOEKIII0 Ha 6a31C, COCTOSIINI 13 ITOJITHO-
MOB; 3aTeM ITOJIHAs BEPOSTHOCTh BOCCTAHABIVMBAETCS VHTETPUPOBAHN-
em. [Ipoekuus ocHOBaHA HAa ONTUMM3MPOBAHHOM CKAaJISPHOM IIPOV3Be-
IOEHN, TI03BOJISIOIIEM MCII0JIb30BATh METO UMCIEHHOTO MHTETPIPOBa-
Hus Faycca. [I19 BepOSITHOCTHBIX IIPOCTPAHCTB C MUCKPETHBIMU Ilepe-
MEHHBIMI IIPUMEHSETCs BIOKeHUe B quddepeHUnpyeMble paciinpe-
Hust. [IpeyioKeHHbI aJTOPUTM MOXKeT OBITh 000O0IIeH IJIs BBIUMCIIe-
HISI peHOPMAaIM30BaHHBIX [AMUJIBTOHIAHOB, ITOJTYUYE€HHBIX IPYU IIOMO-
IV OOIIMX CXeM PEeHOPMaIN3aHUM.

12



[IpnbniskeHHOE AIMKINYEeCcKoe IpeAcTaBIeHre QYHKINI IIOTHOCTA
3aTeM JMCIIOJIb3yeTCs It BBIOOpKY. BrIOOpKa IepeMeHHBIX ITPOM3BOINAT-
cs B pUKCUPOBAHHOM IIOPSIZIKE, B pe3yJIbTaTe Uero I0JIyUaroTCs He3aBu-
CUMBIe BBIOOPKM C COOTBETCTBYOIIMMY Becamu. [IpencraBieHa onTuMu-
3MpPOBaHHAs CTPATETMS BEIOOPKIA, ICIIOIB3YIOIIasd HanOoJIbIIIee KOJImue-
cTBO MHGOpMALUN A1 BRIOOpA 3HAUEHUIT KaXKI0i1 IepeMeHHOo1. 3aTeM
BBIOOPKU YJIYUIIAIOTCS IIOCPEICTBOM METOHOB (PUIBTPOBAHMS UACTIULI.
Taxxe onmcana cxema Monre-Kapio Ha GI0YHBIX MapKOBCKMX LIETIIX,
JICITONIB3YIOII[ast Beca BEIOOPKIL. B 3aBepiiieHue npeacTaBiieHbI IPUIIOKe-
HIS pa3pabOTaHHBIX METOMIOB K Mojenu V3uHra.

13



OZET
Cevrimsiz Monte Carlo: Yonsiiz grafiklerin ¢ok katli 6rneklenmesi icin
hizli marjinal almaya dayanan etkili bir yontem
Jakub K. Kominiarczuk
Matematik Doktorasi
Kaliforniya Universitesi, Berkeley

Danisman: Profesor Alexandre J. Chorin

Bu tezde, ¢cok boyutlu uzaylarda tanimlanan olasilik dagilimlarindan 6r-
nekleme yapmak i¢in gelistirilen ve hem ayrik hem de siirekli degiskenli
Markov alanlarina uygulanabilen bir yontem sunulmaktadir. Bu yontem,
verilen bir olasilik dagiliminin ¢evrimsiz yaklasik bir gosterimini temel
almaktadir. Yontemimiz, yeniden normalize edilmis Hamiton hesaplama
ve Stokastik cok katmanli 1zgara 6rneklemesi iizerine yapilmis bir takim
giincel caligmalar1 genellemekte, bunlari bir ¢erceve igine almaktadir.

Bir olasilik dagiliminin ¢evrimsiz gosterimi, dagilimdaki degiskenlerin
kosullu olasiliklarinin ¢arpimidir. Bu kosullu olasiliklar, tercih edilen belli
bir siraya gore her bir degiskenin sadece kendinden dnceki degiskenlere
kosullandirilmasindan elde edilir. Cevrimsiz gosterim, verilen bir model-
deki seyrekligi kullanarak érneklemenin verimli olmasini saglayabilir. Bu
calismada, genel grafikler i¢in verilen bir dagilimin marjinalleri bir hizli
marjinal hesaplama yolu ile hesaplanarak bu dagilimin ¢evrimsiz yaklasik
bir gésterimi tiiretilmistir. Marjinal olasiligin logaritmasinin kismi tiirev-
lerinin yaklasik olarak hesaplanmasi ise 6nce bir polinom tabanina yapi-
lan stokastik izdiistim, ardindan da marjinal dagilimin integralle geri ¢atil-
masi iglemleri ile gergeklestirilmistir. S6z konusu izdiistim bir eniyilenmis
i¢ carpima dayanmakta olup, Gauss dérdiintiniin kullanilmasini miimkiin
kilmaktadir. Ayrik degisken iceren olasilik dagilimlari ile, bu dagilimla-
rin tiirevlenebilen uzantilarina gémiilmesi suretiyle calisilmistir. Yonte-
mimiz, genel yeniden normalize etme yollar1 kullanilarak olusturulmus
yeniden normalize edilmis Hamitonlar1 hesaplamak icin de uyarlanabilir.

Olasilik yogunluk dagiliminin yontemimiz ile elde edilen yaklasik gos-
terimi daha sonradan 6rnekleme icin kullanilmaktadir. Degiskenler belli
bir sirayla 6rnekleme agirliklariyla birlikte tiretilmektedir. Tek tek degis-
kenlerin degerlerini se¢cmek i¢in eldeki bilgiyi olasi en yiiksek miktarda
kullanan bir 6rnekleme Stratejisi gelistirilmistir. Elde edilen 6rnekler par-
cacik siizgeci teknikleri kullanilarak bir iyilestirmeye tabi tutulmustur.

14



Ayrica, 6rnekleme agirliklarina dayanan bir blok Markov zinciri Monte
Carlo yontemi tanitilmistir. Son olarak, yontemimizin Ising modeline uy-
gulamasi gosterilmigtir.

15



When we try to pick out anything by itself,
we find that it is bound fast by a thousand
invisible cords that cannot be broken,

to everything in the universe.

— John Muir
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INTRODUCTION

The concept of renormalization arose in the study of critical behavior in
thermodynamical systems, where one is interested in studying the scaling
behavior of the system. Renormalization is often presented in the context
of the Ising model, in which spins — as detailed below — on a regular
Cartesian lattice interact with their nearest neighbors. The Ising model
is then renormalized by integrating away a fraction of the spin variables.
The study of the scaling of various properties of the system allows the
investigation of the properties of the critical transition occurring in the
model.

The random variables xy, of the Ising model live on a Cartesian lattice
V' and can take only two values, either —1 or 1, corresponding to a spin
pointing down or up. The probability of a configuration is given by

P(xy) =exp (% Zwu Z xv> ,
u )

vEN (u

where T is the temperature, J a coupling constant and N (u) the set of
nearest neighbors of the node u. The Ising model can be generalized to an
arbitrary number of dimensions and will be used throughout this work
as an model example, due to the wide array of results available.

1.1 RENORMALIZATION

We begin the discussion with definitions of terms that will be mentioned
throughout the thesis. Let P(x,,) be a probability distribution funétion
defined for a finite vector of random variables x,, which form a lattice
V. Assuming that P(x,,) > 0, ie. it is a Gibbs measure, we define the
Hamiltonian W (x,,) to be the logarithm of the probability distribution,

P(xy) = exp(W(@y)) /7,
where the partition funétion Z,, = [ exp(zy )dx,, is a normalization con-
Stant ensuring that [ P(x, )dz, = 1. For reasons of generality and sim-
plicity of notation, the definition of Hamiltonian used within the present
thesis is the negative of the potential energy of the system and absorbs
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all physical parameters, such as the temperature 7" or coupling $trength
J.

By the Hammersley-Clifford theorem, the Hamiltonian may be decom-
posed into a sum of interactions between the variables. Therefore, we may
write

W(zy) = Zci@i@\/)- (1.1)

7

where the funftions ®,(x, ) represent the interactions between
the random variables «,. The coupling coefficients ¢, specify the
relative Strengths of these interactions and may be written as a
vetor ¢ = (cy,Cq,...,Cx). Among the common interactions are the
nearest-neighbor interaction x,x,, where the nodes v and v are nearest
neighbors on the lattice V, and the plaquette =,z z,x,, with the nodes
u, v, w and ¢ forming a square tile on the lattice.

We renormalize by coarsening the finite system, dividing the original
fine variables x, into subsets and assigning each subset a group variable,
thus obtaining a set of coarse variables ;. Following this coarsening, we
compute the Hamiltonian that defines the probability distribution of the
coarse variables.

For example, under a renormalization rule one may decrease the size of
the lattice by a factor b = 2 through the creation of 2 x 2 blocks of vari-
ables, and assigning a group variable to each block. One obtains a new
set of variables x; that live on a lattice U coarser by a linear factor of
two than the lattice V' occupied by x,. The variables x;; are then related
to &, through a renormalization rule (e.g., decimation and majority rule
defined in detail in Section 6.6) which gives the conditional probability
P(x; | ) of a $tate o, given a configuration x,. The renormaliza-
tion rule describes the connection between the original variables x,, the
renormalized variables x;; and their probabilities; the joint distribution
of the two sets of variables is given by the Bayes’ rule

P(zy,xy) = P(zy | 2y) P(Ty).

Our interest lies in the probability density of the renormalized system x,

P(ey) = [ Play | 2y)P(ey)day.
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We assume that the renormalized probability distribution P(x;;) can be
written as

P(xy) = exp(W(a:U))/ZU'

W () is the renormalized Hamiltonian, which takes the general form

W(zy) = Zcz{q)i(wU>‘ (1.2)

While the interactions @, are frequently of the same functional form on
both the original and renormalized lattices, they need not be. Even when
they are of the same form, typically the renormalized Hamiltonian has
more non-zero coupling constants ¢’ than the original one: e.g., a Hamil-
tonian W (x,,) consisting of only the nearest-neighbor interaction may
produce a renormalized Hamiltonian W (,) that includes both the near-
est neighbor interaction, interactions with second-nearest neighbors, and
the plaquette interaction.

Numerous quantities of physical interest can be computed using renor-
malization techniques. The most basic of those are the renormalized cou-
pling coefficients ¢’. The behavior of these coefficients under renormal-
ization indicates the general behavior of the system; for example, when
the coupling coefficients do not change under renormalization, we are
dealing with a fixed point of the renormalization. A system described by
the fixed point coeflicients does not change under renormalization, which
means that it behaves in the same way at every observable scale. Finding
the fixed points is of great interest as they may be related to phase transi-
tions and can be used to study them.

In principle, performing a marginalization requires the integration of
the joint probability distribution funétion over an enormous number of
variables, a task impossible to perform exactly in case of $tatistical models
of reasonable size. Instead, approximate methods must be used.

The foundations of renormalization methods were laid by Kadanoff
(1966), who proposed to divide the spins of the Ising model into subsets
(cells) and $tudy the interactions between the cells rather than simply be-
tween the individual spins. He used this model to study the Ising model
around the phase transition by calculating the free energy of the system;
however, Kadanoff (1966) did not attempt to compute the renormalized co-
efficients ¢’. In later papers, Kadanoff (1975) and Kadanoff and Houghton
(1975) define the renormalized coupling coefficients and a renormaliza-
tion transformation R : ¢ — ¢’ connecting the two, and use them to
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study the behavior of the Ising model and the renormalized coefficients
with the help of perturbation theory.

Many methods have since been devised to compute the renormalized
coefficients or to direétly find fixed points of the renormalization trans-
formation. Wilson (1971a,b, 1980) attempts to find a set of renormalized
coefficients ¢’ such that the so called correlation functions

(@,(zy) — B,(wy)) = 0

are zero for the two systems, the fine system «,, and the renormalized sys-
tem ;; described by couplings ¢ and ¢’, respectively. Unfortunately, such
amethod is not very efficient and thus limited to special cases (Swendsen,
1984b).

Following Kadanoff (1975) and Kadanoff and Houghton (1975), the
renormalization process can be seen as a mapping R : ¢ — ¢’ of the
original set of coefficients ¢ to the renormalized set ¢’ (Nauenberg and
Nienhuis, 1974b). At the fixed point ¢* we have ¢* = R(c*), while in the
vicinity of the fixed point c* the renormalization transformation R may
be expanded in a Taylor series as

¢ =c"+Alc—c*)+0(lec—c ).

with A being the Jacobian of the renormalization mapping R evaluated at
the fixed point. Nauenberg and Nienhuis (1974a,b) found the location of
the fixed point using a 4 x 4 lattice, finding it to be located at ¢, = 0.307,
¢y = 0.084, ¢ = —0.004 (Nauenberg and Nienhuis, 1974b) or ¢; = 0.300,
¢y = 0.0871, c; = —0.00126 (Nauenberg and Nienhuis, 1974a). However,
the authors do not explain how these values were found; a likely different
method is discussed by Binney et al. (1992), who quote the fixed point
location found by Nauenberg and Nienhuis (1974b).

Ma (1976) took a different approach. He simulated the original lattice
@y, using the Ising probability distribution P(x,) and from each State
x, he generated samples of the group spins x;; using the known con-
ditional probability P(x;, | y ). The renormalized parameters ¢’ could
then obtained by observing the probabilities with which the group spins
flip under different circumstances. The method of Ma (1976) takes the de-
tailed balance equations for the renormalized lattice

P('xu — T, | wU\u) _ eXp(W<_xu7 mU\u) - W<xu’ wU\u))
P<_mu — Ty | mU\u) eXp(W<mu7 mU\u) - W(_mzu mU\u))
= eXp(ZW(—xu, mU\u) o QW(qu, mU\u))
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that can be written for every configuration of the neighboring spins, and
attempts to solve them to obtain the renormalized coupling parameters
c’. The quantity on the left hand side is eStimated using a Monte Carlo
simulation of the renormalized lattice, with samples generated using the
original probability distribution P () and the conditional P(x | x;).
The right hand side is of known form, with W (x;,) given by Equation 1.2,
but with unknown coupling coefficients ¢’. The equation can be rewritten
as

"\ P, oy (20w ) (=0 ®ina) = 2W (0 ®on)
where the right hand side is typically linear in the coupling coefficients.
For example, in the case of only one coupling coefficient related to the
nearest neighbors, the right hand side becomes

2W<_xu7 mU\u) - QW(xu7 mU\u) = _261 Z Ly

N(u)

however, with four spins in the nearest neighbor set NV (u) one can write
ten equations: there are two possible values of z,, and five possible val-
ues of » Ny Tor Therefore, the resulting linear constraints on ¢; must

be solved approximately in the least squares sense due to the inevitable
stochastic errors involved in the estimation of the left hand side through
Monte Carlo simulation.

Using the same linearization of the renormalization mapping R as
Nauenberg and Nienhuis (1974a,b), Swendsen (1979a) introduced the
Monte Carlo Renormalization Group (MCRG) method for studying the crit-
ical exponents of the Ising model. Swendsen found formulas for the ma-
trix elements of the Jacobian A through the use of chain rule applied to
derivatives of the expected interaction §trengths (®;), where one obtains

Y (@@ @i(@y) — (D;(20))(@(@y))) Ay,

= <‘I)j(wv)@k(mU)> - <q)j<wv>><¢)k(wU)>'

The renormalized sy§tem x; is simulated using Monte Carlo in the same
manner as in Ma (1976). The eigenvalues of the matrix A = (A, ) provide
the critical exponents. While the renormalization methods discussed thus
far are frequently termed real-space renormalization, Swendsen (1981) de-
scribes a related method using the momentum-space representation of the
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Hamiltonian, where the variables are the coefficients of Fourier modes on
the lattice; the two formulations are formally equivalent.

Swendsen (1979b) performed a $tudy of the two-dimensional Ising
model with different numbers of coupling coefficients, obtaining v =
0.998, a = 0.004, 8 = 0.1259 and v = 1.744, in good agreement with
the exact valuesof v = 1, a = 0, § = 0.125 and v = 1.750. He also
briefly analyzed the eigenvalues of A coming from the three-state Potts
model in two dimensions. This calculation was then extended in Swend-
sen and Berker (1983), where they computed the renormalized coupling
coefficients and critical exponents for the three-state Potts model in two
dimensions.

Swendsen and Wang (1987) then applies the MCRG method to study the
critical exponents and the location of the phase transition in a +.J spin
glass model in dimensions two, three and four. The critical coupling .J,
is determined as the crossing point of the renormalization group scaling
exponent y(n, J).

Swendsen (1984a,b,c) uses methodology related to the Monte Carlo
Renormalization Group to $tudy the behavior of coupling coefficients un-
der renormalization. Assume one has the ability to sample the renormal-
ized variables exactly, for example using the method used earlier by Ma
(1976) and Swendsen (1979a,b). Let the our current guess for the renormal-
ized coefficients be ¢’ and denote the local interadtions around a variable

~

x, as ®, ; for example, the nearest neighbor term becomes

U0
(I)i,u: E T,
N(u)

With m, being the number of variables showing up in the interaction ®,,
we define

(®,) = m;? <<i>u tanh (Z cj.éj’u) > .
u J

~

Swendsen (1984a) notes that the equality (®,) = (®,) would hold only if
¢’ = ¢/, i.e., the guess couplings were exact. Otherwise, in the vicinity of
the exact coupling ¢’ the difference becomes

@) () =3 2% o),
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which can be solved by matrix inversion for the exact coefficients ¢’. Two
$teps of such iteration are sufficient to obtain good estimates of ¢’. Swend-
sen (1984b) uses this method to compute renormalized coupling coeffi-
cients for the critical (x = 0.440687) two-dimensional Ising model on a
32 x 32 lattice, using both decimation and majority rule renormalization
methods. Using the same method, Swendsen (1984c) computed coupling
coeflicients for the critical (1 = 0.22166) three-dimensional Ising model
on a 32 x 32 x 32 lattice under majority rule renormalization. Finally,
Swendsen (1984a) $tudied the flow of coupling coefficients in the two-
dimensional Ising model on 32 x 32 lattice under majority rule with up
to seven interactions and briefly the three-dimensional Ising model on
32 x 32 x 32 lattice with seventeen interactions.

Using a method similar to that of Swendsen (1984a), Gupta and Cordery
(1984) computed the coupling coefficients of the critical two-dimensional
Ising model under majority rule renormalization. In their method, States
x; are sampled from the probability

wy ~ Pxy | zy)P(xy) X exp (_W(wU>> /2y,

where W(:I:U) is the current guess for the renormalized Hamiltonian, de-
termined by the current guess for the renormalized coupling coefficients
¢’. When ¢’ = ¢/, we obtain

~

eXp(_W<wU>>
| P @)y s, = =2

Since the group variables x;; are independent of each other given xy,, it
follows that

7 [ 2Pl | o) Play) e (-1 (@y)) dey = (@),

For ®,(x,) being even polynomials of the spin variables averaging, this
quantity over x;; yields

(@;(y)) =0 and (D;(xy)®)(xy)) = 2|U‘5ijﬂ

where |U| is the number of lattice sites on the renormalized lattice U. The
latter equation shows that the lattice polynomials are in fa¢t orthogonal
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with respect to the uniform inner produét. When ¢’ # ¢’, in the vicinity
of ¢’ one may use a linear expansion and obtain

(@;(zy)) = Z(‘bi(wU)(I)j(wU»(E} - c;),

J

a linear equation allowing one to solve for ¢’ by matrix inversion and im-
prove the guess ¢’. Repeated iteration quickly leads to the a good approx-
imation of the sought coefficient values. In comparison with the method
with that of Swendsen (1984a), this method is less complicated but leads
to similar coupling coefficient values.

Binney et al. (1992) describe a variation on the method of computing
the renormalized coefficients that requires computing the exat marginal.
They define the marginal Hamiltonian as

W(zy) =tn[ [ Play | o) Pz,

and directly proje¢t W (x,) onto a basis of interactions {®, }, requiring
one to compute

1

€ = 5 /‘I)i(wU) In [/ P(xy | mv)P@v)dwv] dxy

exactly in order to compute the renormalized coeflicients. Their method
works because the basis functions used (polynomials of the lattice vari-
ables) are orthogonal under the uniform inner product. However, Binney
et al. (1992) commits an error by applying it to a 4 x 4 lattice renormalized
to a 2 x 2 lattice and not adjusting the resulting coefficients for double-
counting due to periodicity. A correéted version of this approach is de-
scribed and used to study parameter flow in Chapter 7.

Further developments are due to Brandt and Ron (2001a,b), who com-
puted a representation of the renormalized Hamiltonian W () in a dif-
ferent, but related way. Their approach was to build a table P, (zy,))
that assigns to each possible $tate of the neighborhood @, of the vari-
able x,, the probability that x, = 1. These probabilities are obtained by
sampling xy, using the original probability density and subsequently sam-
pling x;; using the conditional probability, as in Ma (1976), Swendsen
(19792,b, 1984a,b,c) and Gupta and Cordery (1984). The table P, (x ) is
computed by counting the fraction of times the neighborhood was in the
State x v, and z,, = 1. Brandt and Ron (2001a,b) curb the rapid growth
of the table using lattice symmetries and by considering only neighbor-
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hood states whose P, value varies significantly from 1/2; however, this
results in a complicated data structure.

Although the method of Brandt and Ron (2001a,b) at the outset appears
very different from that of the remaining authors, it is in fact closely re-
lated to the method discussed by Binney et al. (1992). Consider the fact
that the tabulated representation may be seen as a series expansion

Pz, =1 mN(u)) = Z Ci(pi(mN(u)> = Z Ci(s(wN(u) - wé\f(u))’

K3 (2

where the basis funtions are the discrete delta funétions, defined as

5(:c—y)={ 1 forx=y

0 otherwise.

The coefficient ¢, is the table entry for P +(:I:é\,w) corresponding to the
state w?wu). The apparent absence of a linear projection or solution of a
linear system is due to the fact that the ¢ basis functions are orthonormal
under every inner product, thus only need a normalizing constant: the
number of times the state wﬁv(u) was observed. However, the cost paid by
using this approach is the inability to handle continuous variables: an ap-
proximate method using a discretization of the continuous variables was
pursued by Shmulyian (1999) and mentioned by Brandt and Ron (2001b),
but was not continued.

Finally, Chorin (2003, 2008) and Okunev (2005) describe a novel method
of computing the renormalized coefficients using an approximate pro-
jection related to that described by Binney et al. (1992); however, their
method is only applicable to decimation because of the required assump-
tion that U C V. After defining the marginal Hamiltonian, Chorin (2003,
2008) and Okunev (2005) differentiate it with respectto x,, foru € U C V,
obtaining the fast marginalization equation

Projeéting the partial derivative OW (x;)/0z,, onto a basis ¢ using least
squares produces a linear system with

oW (xy;) _ oW (zy,)
ox, - [ oz,

u

oW (x
Aij =L [¢z¢j] and b, =T {@%} ;
which satisfies Ac = b. The method is applied to the Ising model by let-
ting the variable x,, be continuous and taking a derivative of the smooth
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Hamiltonian; the discrete renormalized Hamiltonian is recovered by in-
tegration of the approximate partial derivative. However, the references
contain two major errors. The partial derivative OW (x;)/0z,, is explic-
itly required by Chorin (2008) to be a constant function of z,, while
one may in fact show that it is highly non-linear even in the simplest,
one-dimensional Ising model. Additionally, the expectation values used
to construct the linear system ignore the entire interior of the interval
x, € [—1,1]; as a result, the non-linearity of the derivative is not cap-
tured.

Okunev (2005) proposed an exponential projection method that, al-
though similar in spirit to that of Chorin (2003, 2008), was applicable to
discrete variables of the Ising model. He noticed that the function

exp (AuW<mU\u7 Loy _xu>) = exp (W<_mu’ mU\u) - W<xu7 mU\u))

may be written as a conditional expectation given x;, allowing for the use
of the remainder of the fast marginalization methodology in unchanged
form. Because this method does not require making z,, continuous, it does
not suffer from the difficulties faced by the method used by Chorin (2003,
2008). Unfortunately, the exponential projection is much more compli-
cated in practice, because it requires one to approximate an exponential,
which has to be positive. Therefore, finding an approximation using least
squares or other methods is extremely challenging.

1.2 MULTI-SCALE SAMPLING

Although renormalization was long used to compute coefficients of the
marginal probability distributions, the goal of the computation was to ob-
tain quantities of physical interest — such as critical exponents — via scal-
ing arguments. The possibility of using the marginal probability distribu-
tions to sample from the original statistical model was not pursued. One of
the first methods of attempting to use a multi-scale approach to sampling
lattice models was constructed by Goodman and Sokal (1989). They pro-
pose a Monte Carlo method formulated in the language of the multigrid
method (Briggs, Henson, and McCormick, 2000), where the coarse lattices
are composed of blocks of the original, fine variables. In their method the
variables are then updated as blocks, performing large-scale moves on the
very coarse lattices and finer-scaled moves on lattices closer to the origi-
nal. Although their method does indeed improve the convergence of the

Markov Chain Monte Carlo (MCMC) method, it requires that the magni-
tude of the proposed changes be small on the coarse lattice in order to

10
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obtain reasonable acceptance probabilities: the proposal probability dis-
tribution is in fact unrelated to any marginal distribution. Although this
requirement does not preclude application of their method to discrete sys-
tems, Goodman and Sokal suggest that such applications are impractical.

The next approach to sampling lattices is that of Brandt and Ron
(2001a,b), who use their P, table representation of the marginal proba-
bility density to sample states of the two-dimensional Ising model using
the top-down approach. They first compute the P, tables numerically by
sampling the original lattice ¥, = V and computing the P! table de-
scribing the marginal probability density P(xy, ), where V] is a lattice of
majority rule block variables with block size of 2 x 2. Through a finite
recursion, Brandt and Ron (2001a,b) construct a sequence of lattices V;
and tables P! by sampling the lattice V, using P’ and computing the ta-
ble P Their approach has the consequence that the coefficients slowly
drift away from the true values, because the subsequent tables are com-
puted using the already approximate probability distributions; however,
their tests suggest that the errors may be small.

Following the determination of the P, tables, Brandt and Ron (2001a,b)
sample in the reverse direction: first, the coarsest (top) lattice V,, is ran-
domly initialized and sampled using MCMC with the help of the table P",
producing a §tate @y, . Assuming the lattice V;_; has already been sam-
pled, the lattice V; is sampled by assigning the spins &y, random values
that are consiStent with the $tate ,, , i.e, such that the coarsening rule
P(zy, | ®y.) > 0.Subsequently, MOMC is employed to sample from the
joint d1§’[r1but1on P(zy,, @y, ) while holding xy,  constant, thus hav-
ing the effect of samphng from the conditional probab111ty P(zy | Ty, )
see Chapter 6 for an in-depth discussion. Because the table P“r1 is only
an approximation of the true marginal of P!, Brandt and Ron (2001a,b)
employ a post-relaxation Step where the value xy,  is discarded and p
iterations of unconstrained MCMC on the lattice V;, are employed to bring
the probability density of @, closer to the target. They show that very
few post-relaxation sweeps are necessary.

While the sampling method of Brandt and Ron (2001a,b) is shown to
work well with the two-dimensional Ising model, the validation comes
from observed quantities such as the two-point correlation function be-
tween spins located at a distance V/2 on the lattice, which is compared to
values computed using long simulations using the Wolff cluster algorithm
(Wolff, 1989). Therefore, this sampling method is unable to provide infor-
mation about sample quality for previously unstudied statistical models,
cf. Chapter 6.

11
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Ron, Swendsen, and Brandt (2002) describe a variation of their sampling
method that is limited to sampling from the critical point of the renormal-
ization transformation. Let the original model with coupling coefficients
c undergo a series of renormalization §teps. If the repeated application
of the renormalization transformation R maps the initial coupling coeffi-
cients c to the fixed point ¢*, Ron, Swendsen, and Brandt (2002) propose
to reverse this operation for sampling. They compute a large basis approx-
imation of the fixed point ¢* and store it as the table P}. Subsequently,
they sample a sequence of lattices V,,,V, _,,..., V| in a top-down fash-
ion using the same table P} on each lattice. The rationale behind such a
move is that if repeated marginalization brings the coefficients towards
c” and the P, table toward P;, sampling using P} at each lattice implies
that a virtual original lattice was extremely large, to the point that the in-
termediate coefficients between ¢ and c* were eliminated. This way one
may generate high quality states for very large lattices, assuming that
the fixed point coefficients can be approximated accurately and that the
coefficients ¢* do not depend significantly on the size of the original lat-
tice used to compute them. However, since renormalization flows from
multiple points converge onto the fixed point c*, it is unclear what is
the relationship between the samples obtained using this method and the
samples of the original model at criticality.

Weare (2007) constructs an MCMC method utilizing multiple lattices, but
without a top-down approach. Starting with the fine lattice V}, and prob-
ability distribution function P(zy, ), he construéts a sequence of subse-
quently coarser lattices V, D V; D V, D ... D V,, with probability
distributions funétions P(:I:Vi ), 0 < i < m, defined as the approximate
marginals

P(zy,) ~ /P<$V>d$V\Vi'

Each lattice hosts a Markov chain Y;” with transition probability
T,(xzy, — vy ) that leaves P(x, ) invariant. The Markov chains on
the coarser lattices equilibrate much more quickly than those on the
fine lattices; therefore, to speed-up the convergence of the fine chains,
Weare introduces a swap move where the variables x,, are swapped
with the corresponding variables in @y, . Since the invariant probability
diStribution P(zy, ) of the chain Y}, is not an exat marginal
of P(xy ), unconditional swaps would not preserve the invariant
distributions of the chains. In order to leave these distributions invariant,
Weare introduces a swap move acceptance probability that correéts for

the approximate nature of the probabilities P(scvi ). He then continues

12
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to simplify the calculation of the acceptance probability to eliminate the
need of computing P(xy,) entirely, and applies the resulting method to
the problems of bridge path sampling and non-linear filtering.

Lastly, Chorin (2008) and Okunev (2005) use their approximate renor-
malized coupling coefficients to sample spins of the two-dimensional
Ising model and the three dimensional Edwards-Anderson spin glass us-
ing a top-down approach. Their Chainless Monte Carlo (ChMC) method
does not use the MCMC approach at all; instead, the samples are con-
structed using a conditional sampling process: the variables are deter-
mined individually using a probability conditional on the already sam-
pled spins. In contrast to Brandt and Ron (2001a,b), the ChMC produces
a proposal density of each generated sample and thus the approximate
nature of the coefficients may be corrected using importance sampling
by computing weights. Furthermore, it can be shown that the ChMC sam-
pling approach is equivalent to Sequential Importance Sampling (SIS) (cf.
Sections 5.1.1 and 5.2.1), paving the way to the use of advanced particle
filtering techniques for improving the quality of the generated samples.

1.3 GRAPHICAL MODELS

Graphical models provide a natural framework for the marginalization
of lattice models (Airoldi, 2007; Koller and Friedman, 2009). The informa-
tion encoded by the graph provides a natural way to describe sparsity
present in many probability distribution functions, making it possible to
optimally compute exact marginals. For an introduction to graphical mod-
els and their typical applications consult Jordan (2004), Koller and Fried-
man (2009), and Wainwright and Jordan (2008).

We first define graphical models. The conditional independence of ran-
dom variables is a crucial part of this definition.

Definition (Conditional independence). The random variables x,, and x,,
defined on a lattice of variables V, u,v € V, are said to be conditionally
independent given all remaining variables x, , ,,, denoted asx,, 1 z,, |

T\ (u,0}s If and only if

P (22| @) = P (€ | 2 (uny) P (25| vguy)

i.e., the joint conditional probability distribution given all other variables
factors into two functions dependent on x,, and x,, respeétively. If random
variables are not conditionally independent they are said to be dependent.

Intuitively, the above definition captures the fact that variables inter-
act directly only with a limited set of other variables. Similar behavior is

13
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present in other areas of applied mathematics. A natural example is the
heat equation V2u(x) = 0, where knowing the values of the solution
u(x) on a sphere dB(x,r) around a certain point x, uniquely deter-
mines u(x,) (Evans, 1998). In case of the heat equation, the points on the
sphere separate x, from the remainder of the space. Similar separation re-
sult can be found in the case of graphical models, where the interactions
between variables occur through the graph rather than through space,
leading to the following definition.

Definition (Graphical model). The probability distribution P(x,,) is said
to induce a dependency graph G = (V, E). Each variable x,, is assigned a
node u in the set of nodes V. Two nodes u,v € V are not conneéted by an
edge if and only if the variables x,, and ., are conditionally independent, i.e.,
(u,v) ¢ Eiffr, L x,| Xy, ,y- The probability distribution together with
its induced undireéted dependency graph is called an undireéted graphical
model.

Using the Partial Differential Equation (PDE) analogy again, the depen-
dency graph can be thought of as the graph of the matrix discretization
of a differential operator. For example, the heat equation has operator
£ = V?, whose classical discretization in two dimensions

U - 2%3‘ T U Uiy — 2uz‘,j U

Vu(z,y) = = T +0(h?)

has non-zero matrix elements at positions corresponding to the couplings
between the variable u;; and its neighbors on the Cartesian mesh. The
graph of the resulting matrix is incidentally the same as that of the Ising
model.

With the above definition, every probability distribution is also a graph-
ical model. However, the machinery of graphical model theory is only
useful when the resulting dependency graph is sparse. Many physically
motivated statistical models lead to sparse dependency graphs in the same
way that many PDE can be discretized using sparse matrices.

The graphical models will be used throughout the present thesis as the
language used to describe our methodology. Graphical models will be
used mainly in Chapter 3 to show how marginalization of variables alters
the conditional independence relations between the remaining variables,
and in Chapter 4 to motivate the choice of consistent basis functions. Fi-
nally, the dependency graph will define the order of sampling variables
discussed in Chapter 5.
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1.4 RELATED AREAS

There are several areas of current interest that are tangentially related to
the concepts or approaches used within the present thesis. The renormal-
ization of a graphical model is related to the concept of deep architectures
used in the computer learning community, where a seemingly complex
probability distribution is described using a sparse multi-level tructure
involving hidden variables (Poon and Domingos, 2011). The construction
of the acyclic Monte Carlo method, especially using the framework for
general coarsening rules, can indeed be seen as adding auxiliary hidden
variables in order to obtain a new representation for the probability dis-
tribution function.

Because of the similarity between the dependency graph induced by the
probability distribution P(x,, ) and the graph of a matrix A, the marginal-
ization of a probability distribution has links to the process of Gaussian
elimination and LU decomposition (Demmel, 1997). As such, the devel-
opments in algorithms for finding sparsity-preserving variable orderings
are of natural interest (Davis et al., 2004a,b).

Finally, the acyclic Monte Carlo attempts to construct an acyclic rep-
resentation of a given probability distribution funétion P(x,,), which al-
lows for efficient sampling. Such approximate representations are known
in the fields of genetics and automated learning as Conditional Sampling
Distributions (CSDs) or Products of Approximate Conditionals (PACs); the
standard references in the field are Chow and Liu (1968) and Paul and
Song (2010).

1.5 STRUCTURE OF THE PRESENT THESIS

The methodology described within this thesis is named acyclic Monte
Carlo, encompassing both the method for coarsening a graphical model,
the computation of approximate renormalized coupling coefficients, and
the subsequent sampling techniques. The fact that our method transforms
a graphical model with circular dependencies between variables into an
acyclic model is at the intersection of these methods and makes them ef-
ficient. Therefore, it is only fitting that the methodology herein described
bear that name.

The present thesis is structured in the following way. We begin with the
description of the prior work of Chorin (2003, 2008) and Okunev (2005),
discuss a $traightforward method for computing the renormalized coeffi-
cients, and use them for sampling the original model in Chapter 2. While
this straightforward sampler is not intended for practical use, it serves
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INTRODUCTION

the purpose of illustrating the major elements of the methodology with-
out unnecessary complexity.

In Part 1 we present the contributions of this thesis. Chapter 3 opens
the discussion, describing renormalization methodology using the frame-
work of graphical models. We detail the transformation of the undirected
dependency graph induced by a probability distribution into an approx-
imate directed acyclic graph and present related algorithms. The discus-
sion of graphical methods is done separately from the computation of the
resulting coefficients.

The computation of renormalized coupling coefficients forms Chapters
4 and 6, where we describe the fast marginalization algorithm and its gen-
eralized version, respectively. Chapter 4 is concerned with the computa-
tion of approximate renormalized coefficients describing a marginal prob-
ability distribution P(x;), where U C V. Therefore, it does not depend
on the fact that the set U forms a part of a hierarchy of increasingly coarse
lattices; however, it is intended that U be thought of as one of the lattices
V. described in Chapter 3.

The sampling methods using the acyclic form of the probability distri-
bution are discussed in Chapter 5. We discuss the sequential importance
sampler used by Chorin (2008) and Okunev (2005) and improve upon it, us-
ing techniques from particle filtering. We touch on the topic of using the
acyclic form to constru¢t MCMC sampling schemes. Chapter 6 discusses
the sampling techniques compatible with arbitrary coarsening rules.

Part 11 discusses the results obtained using the acyclic Monte Carlo.
In Chapter 7 we describe the application of the fast marginalization al-
gorithm and its generalized version to calculate the parameter flow of
the two-dimensional Ising model, showing the lack of a critical point in
case of decimation. Finally, Chapter 8 benchmarks the performance of the
acyclic Monte Carlo on the two-dimensional Ising model.
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The method of sampling Markov fields described in this thesis is com-
posed of multiple parts. In order to bring together the seemingly discon-
nected components, we present here a description of a simplified version
of the more general sampler discussed in Chapters 3 and 5. This sampler
contains all the parts required by the advanced method and is based on
the earlier work of Okunev (2005) and Chorin (2003, 2008), with several
improvements. As a pedagogical example, we will apply the simple sam-
pler to the Ising model on a Cartesian lattice in one and two dimensions
(Ising, 1925) .

The current chapter is organized as follows. For both the one- and two-
dimensional Ising model, we fir§t describe the components of the algo-
rithm: (i) coarsening of the lattice, (ii) computation of marginal probabil-
ity densities and (iii) a sampling scheme using the produéts of the prior
two parts. Following the description is our analysis and commentary on
the presented material, discussion of the choices made and interpretation
of the method from different vantage points. We hope that the concise
description of the algorithm will allow the reader to learn about the al-
gorithms presented, while the subsequent analysis will provide the nec-
essary discussion and lead the reader toward the main parts of the thesis
contained in Chapters 3, 4 and 5.

We begin by describing decimation of the one-dimensional Ising model,
following the standard approach of Kadanoff (1966, 2002) (cf. Binney et al.,
1992; Migdal, 1975; Murgain, 1975). We describe the decimation process in
the language of graphical models, leading to the concept of graph coars-
ening. We motivate and analyze the choices made during Kadanoff renor-
malization, and finally use the analysis to hint at a possible generalization
of the decimation algorithm to complex graphical models. The renormal-
ization (graph coarsening) produces a ladder of increasingly coarse graph-
ical models, eventually reducing the original Ising lattice to only one vari-
able. We show that this ladder $tructure can be used to efficiently sample
the Ising model and describe the resulting algorithm. Analyzing the sam-
pling algorithm, we show that the ladder structure produces an alterna-
tive graphical model representation of the Ising model: while the origi-
nal graphical model was undireéted and contained cyclical dependencies,
the ladder structure produces an equivalent direé¢ted and acyclic graphical
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model reproducing the same probability density. This directed acyclic rep-
resentation of the probability density is a Bayesian network and therefore
can be sampled efficiently.

The simplified method consists of two $teps, (i) the decimation of the
original Cartesian lattice to a series of coarser lattices through Kadanoff
renormalization (e.g. Binney et al., 1992; Kadanof, 1966, 2002) and (ii) the
sampling of the resulting hierarchy of lattices in the reverse, coarse-to-
fine, direction. The decimation $tep attempts to construét a sequence of
smaller Ising-type lattices by marginalizing (integrating out) a fraction of
random variables at a time. These coarser lattices may be easier to sample
due to their reduced size, albeit at a cost of computing their probability
densities through marginalization. The sampling step uses the coarser lat-
tices and the relationship between their respective probability densities.
Starting at the coarsest lattice, which is assumed to be easy to sample
using an alternative method, such as MCMC or even dire¢t sampling (Liu,
2001) , the lattices are sampled iteratively: the immediately coarser lattice
is sampled using the conditional probabilities P(fine | coarse), which can
be obtained efficiently in a number of ways. We will first discuss the Ising
model in one dimension, where the above procedure may be performed
exactly, and use it to motivate the developments of Chapter 3.

2.1 ISING MODEL IN ONE DIMENSION

We begin with the Ising model defined on a periodic chain of length n =
2™, with m > 2 (see Figure 2.1). The probability distribution defined over
the spins &, = (21, %y, ..., ,,) is

1 =
P(zy) = m eXp |5 Z T (T +Ti0) |
i—1

where p = J /T is the coupling $trength and Z () the partition funétion.
The insight of Kadanoff (1966, 2002) was to notice that changing the value
of a spin x;, while keeping all the other spins fixed, will have a very
limited influence on the probabilities of the remaining spins. In fact, the
conditional probabilities of only two spins will be changed, precisely the
nearest neighbors of z; in the lattice: z; _; and z;_ ;. These spins are said
to be dependent on x;, while all other spins are conditionally independent
of z; given x;_, and x, ;. The conditional independence gives rise to the
graphical tructure depicted on Figure 2.1.
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2.1 ISING MODEL IN ONE DIMENSION

Figure 2.1: Periodic lattice of a one dimensional Ising model of size 8. The nodes
are color coded using the index of the node: node 1 is deep blue, node
5 is green, while node 8 is red.

2.1.1  Coarsening

Kadanoff renormalization or decimation attempts to eliminate, or deci-
mate, random variables to produce a coarser random model. To describe
the renormalization process we introduce the following notation. The
components of the random vector xy, correspond to nodes of the graph
G = (V, E); thus for every node u € V we identify x,, as the correspond-
ing random variable. Given a subset U C V, x; is a vector of dimension
|U| made of components z,, of the original vector x,, for all u € U. For
simplicity of notation we will frequently write U \ u to mean U \ {u}. To
avoid clutter, the probability diStribution over the variables P(x) uses
the same symbol as that of P(x,,); therefore, the precise distribution is
identified by the variables it depends on.

Following the standard approach (Binney et al., 1992; Kadanoff, 1966,
2002; Migdal, 1975; Murman, 1975), we eliminate half of the variables by
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marginalizing them. Let V; = V and decompose V,, into two into two
subsets,

Vi={1,3,5,...,n—1} and V,\V, ={2,4,6,...,n},
which separate the variables in x, into two non-overlapping parts

xy, = {2y, 23,75,...,7, 1} and Ty \y, = {Zy, 24, g, -, T, )

The set V; will represent the renormalized, or coarse, variables. The
marginal probability of x is the integral of the joint probability

P(zy, , Ty, \v,) Over Ty, v,

P<33V1> = /P(wvlamvo\\/l)dmvo\vl-

The resulting probability density is defined for a half of the variables of the
original Ising model, yet a straightforward calculation shows that P(z, )
can be written in the same form as the original Ising model (see Appendix
A):

n/2
1 %
P<33V1> = E; exp {71 Z Tyi1 (Toig + Taip1) | (2.1)
i—1

where p; = 1/21ncosh(2u,) (see Example 2.2). This exact result shows
the effe¢t of eliminating a variable on the graphical structure of the prob-
lem. Indeed, if we look at the graph G; = (V}, ;) induced by P(zy, )
we will again find a circular chain, i.e., the struc¢ture of the graph has not
changed. The effect of marginalizing (integrating out) a variable can be
seen purely in terms of graphs (Section 3.2.1 or Chapter 9 of Koller and
Friedman (2009)): eliminating a node w in a graph requires connecting by
edges all of the neighboring nodes N (u).

The hierarchy of graphical models constructed this way from the origi-
nal Ising model is shown on Figure 2.2. The top-most lattice is composed
of only one variable and therefore has a different graphical structure than
the finer lattices; as such, the general formula shown on Equation 2.1
cannot be used to describe the probability distribution P(zy, ). Instead,
we notice that P(xy, ) is the probability that a single variable in @y, is
positive or negative. Using a symmetry argument it becomes clear that
P(zx, =1)= P(x, = —1)=1/2 which completes the renormaliza-
tion process.
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2.1 ISING MODEL IN ONE DIMENSION
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Figure 2.2: Hierarchy of graphical models produced by the Kadanoff-Midgal
renormalization. The probability distribution of each model is of
Ising-type, with n, = 7 /Qi nodes and inverse temperature p; =
1/21n cosh(2p,_; ). The quoted numbers show approximately the de-
cay of the inverse temperature with renormalization, §tarting from an
arbitrary p = 1.

ExAMPLE 2.1. In the circular graph of Figure 2.1, each variable is connected
to only two other variables; thus, removing node 2 connects the neighbor-
ing nodes, i.e., nodes 1 and 3, while removing node 4 conne¢ts nodes 3 and
5. Initially, node 3 was connected to nodes 2 and 4, but after eliminating
them it is conneéted to nodes 1 and 5. Removing all even numbered nodes
we obtain a graph with nodes 1, 3, 5, and 7 with edges (1, 3), (3,5), (5,7)
and (7, 1). The resulting decimated graph is shown on Figure 2.3. |

Since the result of a Kadanoff renormalization is again a

graphical model, let us consider repeating the procedure. Let
M = (z,,P(xy),G = (V,E)) be a graphical model. The Kadanoff
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Figure 2.3: The graph induced by the probability density P(zy, ).

renormalization (cf. Migdal, 1975; Murman, 1975) can be though of as a
mapping R

M’ = R(M)

between the original graphical model and the renormalized model, speci-
fied using the process described above. Beginning with the original graph-
ical model M, = M, we may define iteratively a hierarchy of graphical
models M; = (:cvi, P(zy,), G, = (V,, E,L)) through

M'+1 = R(M)7

K3 (2

where the resulting model M, , hasn, ; = " /2 = ”/ 2i+1 variables.

Because the probability distribution can be described by a single param-
eter j1;, we can think of the renormalization as a mapping between the
original and renormalized coupling parameters,

fipr = R(p,).
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2.1 ISING MODEL IN ONE DIMENSION

The plot of R(yu,;) is shown on Figure 2.4. Visual analysis of the curve
shows that there exists only one fixed point of the mapping, i.e., the zero-
coupling (infinite temperature) fixed point ; = 0. Additionally, for ;. > 0
the renormalized value R(u) < pu; therefore, the variables on coarse lat-
tices become increasingly decorrelated. These two observations are pre-
cisely the reason for lack of a phase transition in the one-dimensional
Ising model: at large distances the Ising spins become decorrelated, while
at the phase transition correlation length grows infinitely large.

2 L) L) L)

1.5 } -
oot ]
3

05 | -

Il Il Il //L
0
0 0.5 1 1.5 2

2%

Figure 2.4: Mapping of the Ising model in one dimension.

2.1.2  Sampling

The sampling algorithm uses the ladder of lattices in the coarse-to-fine
direction, opposite to that of the coarsening procedure. The sampling pro-
cedure will iterate, filling the variables one level at a time. At each itera-
tion we will assume that variables x,, = are known and those in @y..y. |
need to be sampled. Therefore, we will begin by handling the case of sam-
pling the top lattice V,,, with variables @, separately and follow with a
general coarse-to-fine iteration.

The top lattice V,, is composed of only one variable, thus must be
treated separately in a special manner. Since both values @;, = 1 and
xy, = —1 are equiprobable, we simply choose one at random. Having

m
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Algorithm 2.1 Sampling a one-dimensional Ising model of of n = 2™
spins using the coarsened lattice structure.

The algorithm generates a single state of random variables x,, given the
lattices G = G, Gy, ..., G, and the renormalized coupling constants
tos Hys - s U1~ The top lattice V, has only one spin, therefore by
symmetry both values are equally likely. The funcétion SAMPLESPIN
returns a random spin with the prescribed unnormalized probabilities.

procedure SAMPLEISING1D(m, G, 1t;)
xy, < SAMPLESPIN(1, 1)
fort =m—1—0do
forallu e V;\ 'V,
Wy = i (T 90 + Ty i)
x, < SAMPLESPIN(e Wu eWu)
end for
end for
end procedure

function SAMPLESPIN(p_, D, )
P U[O 1]
if p < == then
return —1
else
return 1
end if
end function

sampled the top lattice V,,,, we may assume that the variables in @, |
have been sampled. Because V; ; C Vj, in order to complete the sam-
pling of variables ;. we must sample the variables @y, . We make
the important observation that for any u,v € V; \ V, 4 the variables x,
and x,, are conditionally independent given @y, .

z, Lz, |z, .

Therefore, the variables to be sampled at level ¢ are conditionally indepen-
dent of each other and can be sampled individually. We contrast this with
sampling the original lattice, which requires determining all variables si-
multaneously, typically using an iterative process such as the Markov
Chain Monte Carlo.
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2.1 ISING MODEL IN ONE DIMENSION

To sample a spin z, € V; \ V,,,, we require the probabilities of both
states, x, = —1 and z,, = 1. Starting with the joint probability of
P(zy,) = P(zy, , %y, v, ), we obtain

7

1 Hi
P<sz’+1 ’ sz\Vpd) - 7 exp [5 Z Ly (xqui + xu+2i)]
i v,
1

= 7 H e€xp |:/1"L'Tu <wu72i + xu+2i):|
v Vi\Via

- H P(m“|mvi+1>’

Vi\Vii1

where Z; is a product of normalization constants for the individual expo-
nents. Defining

Wu = K (xuf2i + xu+2i) )

each x,, for u € V;\V,,; can be sampled using the probability distribution

oW
P = —1 = -
W
Pz, =1)=

e Wu 4 eWu'

The complete sampling procedure is described in Algorithm 2.1. We make
the observation that we can write down the probability of the state =,
generated by Algorithm 2.1, as detailed in the Example 2.2 below.

ExaMPLE 2.2. Consider the Ising model with n = 8 spins described in Ex-
ample 2.1. Given the original coupling coefficient yt = p, and the renor-
malized

g =1/2Incosh2p, and p, =1/21ncosh2p,,

the complete probability distribution may be written as

@2H2T1T5

1
P(mV) = 5 X e—2u2x1 + e?ugxl

eﬂlIB(I1+I5) e—H1337(11+z5)

X
e H1(z1ts) + et1(zyt+Ts) e H1(T1+z5) + et1(z1+Ts)
e#0$2(f'31+333) e—,uocc4(z3+w5)

X X
e Ho(z1tw3) + eto(T1t+T3) e Ho(T3+s) + eto(z3+Ts)
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Algorithm 2.2 A classical greedy algorithm for computing the Maximum
Independent Set (MIS).

function MISGreeDY(G = (V, F))
S0
Q<+V
repeat
u < arg max, NODEORDER(u) for u € Q
Q«Q\u
S+ SUu.
for all v s.t. (u,v) € E do
Q< Q\v
end for
until Q) is empty
return S
end function

etoe(Ts+r) e HoTs(T1+T7)

X
e Ho(Tstm7) + eto(Tst+zr) e Ho(z1+z7) + eto(z1+T7)

Note the special form of the term with p,: since lattice 2 has only two
spins, the coupling between them must be counted twice, hence the extra
factor of two. [ |

2.1.3 Analysis

Having described the standard renormalization of the one dimensional
Ising model and the sampling Algorithm 2.1 that uses the renormalized
lattices, we can analyze the renormalization (coarsening) and subsequent
sampling to understand how the two work and interconnect.

2.1.3.1  Graph coarsening

We begin with the splitting of variables xy, into those that are to be kept
on the coarse lattice xy, =~ and the remainder of variables that are to be
marginalized @\, . From the graphical point of view, the splitting de-
cides which nodes of the graph G, = (V;, E,) are to be kept in the coars-
ened graph G, ; = (V; 4, E;,). The §tandard approach removes every
other variable and can be motivated in multiple ways, however the rea-
soning we employ comes from the requirements of the subsequent sam-
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2.1 ISING MODEL IN ONE DIMENSION

Algorithm 2.3 An improved greedy algorithm for computing the Maxi-
mum Independent Set (MIS) due to Prof. Richard M. Karp (private commu-
nication). The func¢tion FRONTIER produces a set that does not belong to

U, but forms the boundary (frontier) of U in the graph G.

function MISGREEDYKARP(G = (V, E))
S0
Q+V
repeat
u < argmin | FRONTIER(G, S U u) for u C Q
Q< Q\u
S+ SUu.
for all v s.t. (u,v) € F do
QQ\v
end for
until ) is empty
return S
end function

function FRONTIER(G = (V, E), U)
S«
forall v € V do
ifv¢ Uand (v,u) € Est.ueU then
S+ SuUv
end if
end for
return S
end function

pling Step. As we saw, the spins @y,  defined above are conditionally
independent given the values of spins xy, ,

z, La,|zy = forall w,veV;\V,,, (2.2)

which allows the sampling of the components of y,\,, , independently
of each other. Therefore, the variable partition must satisfy Equation 2.2.
Graphically, this condition requires that no two nodes u,v € V; \ V, 4
can be connected by an edge,

(u,v) ¢ B, forall w,veV,\V,,. (2.3)
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A setof nodes U;g C V;inagraph G, = (V;, E;), such that no two nodes
are connected by an edge, is called an Independent Set (IS); conversely,
a set of nodes Uy~ C V,, such that the complement V; \ Uy, is an
independent set, is known as a Vertex Cover (VC).

Using the independence requirement 2.2 we see that the set of variables
that are to be marginalized, @\, , must form an Independent Set (IS)
U, g, while the remaining variables xy,  thatare to be kept for the coarse
lattice must be the matching Vertex Cover (VC) Uy, = V; \ U;s. Because
we wish to remove as many variables from x,, as possible, it is reasonable
to require that U; ¢ be a Maximum Independent Set (MIS): an independent
set of the largest possible size in the graph G,. The complementary task
of finding the smallest vertex cover is known as the Minimum Vertex
Cover (MVC) problem. The graph associated with the one dimensional
Ising model with even number of variables has a special structure: the
graph is bipartite, i.e., the nodes V, may be divided into two subsets such
that there are no edges connecting the nodes within each subset. These
two subsets are the exact solutions to the MIS and MVC problems and may
be computed efficiently through graph coloring. Up to equivalence, the
partition of the set V; into Uy, = V,,; and U;g = V; \ V,,; is

Uye =1{1,3,5,...,n — 1}, Us=1{2,4,6,...,n}

for even n, the same as the partition we chose previously without explana-
tion. Therefore, the division of variables may be generalized by requiring
variables in @,  to form a Minimum Vertex Cover (MVC), while @y, |
form the complementary Maximum Independent Set (MIS). Finding a so-
lution to the MVC or the MIS problem is prohibitively expensive; in fact,
both graphical problems are part of the original twenty-one NP-complete
problems compiled by Karp (1972), thus there are no known polynomial
time algorithms for solving them. InStead, the requirement on @y,  and
Ty must be relaxed. We require that V; be a Minimal Vertex Cover of
G,, i.e., a Vertex Cover that cannot be made smaller by removing a node,
making it a locally optimal solution. Similarly, V; \ V,.; be the comple-
mentary Maximal Independent Set, an Independent Set which cannot be
made larger by adding a node. Both the Minimal Vertex Cover and Maxi-
mal Independent Set can be found quickly using greedy algorithms, such
as Algorithm 2.2 or 2.3.
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2.1 ISING MODEL IN ONE DIMENSION

2.1.3.2 Marginalization

In the above example of the one-dimensional Ising model, the marginal
probability distribution P (:BVM) was computed exactly from the defini-
tion

Plxy, )= /P(mm’wvi\vi+1)d$vi\vi+1’

which in that case is analytically tractable (see Appendix A). While the
computation of the value of the renormalized coupling coefficient 1, , is
complicated, the form of the renormalized Probability Distribution Func-
tion (PDF) can be found easily using arguments from graphical model the-
ory.

We return to the Example 2.2. Consider five consecutive nodes in the
Ising model, z,, x,, x5, z, and x;, where we wish to marginalize x, and
x,. Per previous analysis, removing a node induces dependencies between
all of its neighbors; therefore, removing node z, induces a dependency
between x; and x5, while removing z, induces another one between z,
and z. The conditional probability of =, given all remaining spins,

P(z; | ${1,5,7}> = P(z; | 7y, 75)

simplifies to a function of only =5 and the two dependent variables x; and
x5. Since the components of xy, are binary and can only assume values
of —1 or 1, the probability of x; can be expressed exactly using all the
possible monomial terms involving x,, x5 and z;:

P(zy | 2y, 25) =
exp (al + ayT ) + a3x3 + ayT5

TA5T T3 + AgT Ty + ArTaTs + a8x1$31’5>/2.

The terms a,, a,z,, a,T5; and agzx,zy are constant in x5 and thus can be
arbitrarily set to zero. Due to the symmetries of the Ising lattice, the spins
x, and z are identical from the perspective of x5 and we immediately
obtain that a; = a,. The resulting formula is then written as

P(zy | zqy,25) = €XP <a3x3 + a5r3 (v + 7;5) + a8$1$3x5>/Z.
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Due to the symmetry P(x,,) = P(—x, ), only terms that are even in
components of &, may have non-zero coefficients, requiring a; = ag = 0.
Therefore, the conditional probability of =4 is written as

P(zy | xqy,25) = €XP (lhxs (1 + x5) )/Z,

where 1, was substituted for a;. The complete marginal probability
P(zy,) of Equation 2.1 can be deduced from the conditional probabili-
ties of individual spins.

Unfortunately, in case of models of interest computing the marginal is
impossible due to the complicated nature of the probability distribution
and the size of the space to be integrated over. Instead, approximate meth-
ods must be used. In anticipation of the more advanced method described
in later chapters, we describe a variant of the method of Chorin (2008)
applied to the two-dimensional Ising model in Section 2.2.

2.1.3.3  Sampling

The choice of variables that were to be marginalized was di¢tated by the
goal of using the marginal probability densities for efficient sampling. In-
deed, as Example 2.2 shows, the original probability P(x,,) can be rewrit-
ten in its acyclic form. Following the nomenclature of that example, the
probability P () may be written as

P(zy)

P(z,) x P(zs |z,

T, | 2y, T5)

Ty | 23,.@5)

8 | IB1,1‘7>.

)
P(zy | 2y, 75) X P(
P(zq | @y, 23) X P(
P(zg | z5,2,) x P(x

X X X

The striking feature is that the original distribution required determining
values of all the variables at once due to cyclical dependencies, yet the
acyclic form does not: a value for z; can be determined directly by sam-
pling from its marginal di§tribution, x; ~ P(z). The remaining spins
are then sampled from marginal probabilities conditional on the variables
that have already been determined. In graphical terms, the graphs of the
two representations of P(x,) are different: the original is a circular chain,
while the acyclic representation is a Directed Acyclic Graph (DAG). Visu-
alization of these two graphs for a 32-spin Ising model is shown on Figure
2.5.

Every Directed Acyclic Graph (DAG) induces a partial order on the nodes
of the graph, known as topological order: for every two nodes u,v € V
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Figure 2.5: Graphs of the (a) original graphical model and (b) its acyclic form.

we have u < v if there exists a direted path from u to v. Nodes u, v for
which a diredted path either from u to v or from v to w, but not both,
exist are called comparable, because one can write either v < v or u > v;
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otherwise, the nodes are incomparable. Sampling can be accomplished by
choosing values for variables in the order di¢tated by the partial order.
Following Example 2.2, the partial order is

xl? x57 1‘3, 23'7, xzv Ty, x67 .CES,

where the underlined parts of the order are composed of incomparable
variables. The incomparability of these variables, e.g. x5 and x-, arises
due to the fact that they are conditionally independent of each other;
therefore, given that the variables preceding them in the ordering, i.e. z,
and x5, have been sampled, the variables x5 and 2, may be sampled in an
arbitrary order. This situation arises because the factorization

P(xs, 27 | 2y, 25) = P(xs | 21, 75) X P27 | 71, 25)

implies that the values for x5 and x, can be determined independently
of each other and in arbitrary order. As we will see in later chapters,
this independence is a crucial part of the proposed method and decisive
for its efficiency: the acyclic form of the probability distribution turns
the simultaneous sampling of a large number of random variables into a
sequential sampling of individual variables.

2.2 ISING MODEL IN TWO DIMENSIONS

The two-dimensional Ising model presents a bigger challenge than
the one-dimensional case because exact renormalization cannot be
performed. This statement is frequently mentioned while discussing
Kadanoff renormalization, but should be quantified: exact renormal-
ization of the two- and three-dimensional Ising model changes the
form of its dependency graph, which becomes increasingly dense.
The renormalized probability distributions are described by a rapidly
increasing number of interactions and finding the required coupling
strengths becomes analytically intractable. Computationally, though, it
is possible to perform renormalization approximately or even exactly in
certain cases.

In the following we will describe a modified version of the approximate
algorithm of Chorin (2008) as applied to the two-dimensional Ising model.
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Algorithm 2.4 Coarsening procedure for a two-dimensional Cartesian
lattice graph.

The algorithm may be applied to arbitrary graphs as long as an ap-
propriate metric p(u,v) is supplied. For example, one may define the
distance between two nodes to be the length of the shortest path in the
graph. However, the natural choice of a metric should be used whenever
possible.

procedure GRAPHCOARSENINGCARTESIAN2D(G,; = (V, E;))
U;s < MISGREEDYKARP(G,)
Vi < ViU
E, 1«0
forallu €V, , do
d «+ m;n p(u,v)

forallv e V, ; sit. p(u,v) = ¢ do
Ei < Eipy U(u,v)
end for
end for
end procedure

2.2.1  Coarsening

We begin with the double-periodic Cartesian lattice G, = G of size n x n,
restricting our consideration to cases where n is a power of two. Exact
renormalization of such a graph, showed on Figure 2.6, requires that when
a node u € V is removed from the graph all its neighbors v € N(u)
be connected; unfortunately, in two and three dimensions this process
rapidly produces a clique, a graph where every node is connected to every
other node. At this point, exa¢t computation of the marginal probability
distribution becomes impossible for problems of interest.

Instead, we forgo exact coarsening and from the beginning assume
that the dependency graphs and marginal probability distributions are ap-
proximate. In the crudest approximation, we will assume that the graphs
G, keep their structure and are all Cartesian lattices. Given a graph
G, = (V,, E;), we construct G, ,; = (V,,, E,,;) by removing nodes of
V. in a checkerboard-pattern and connecting the remaining nodes to their
four nearest neighbors, thus preserving the lattice structure. Algorithm
2.4 describes the procedure in detail. We initially find an independent set
U;s C V; that should be removed from V], therefore, V;,, becomes the
vertex set separating the nodes of U;¢. Since GG, was a Cartesian lattice,
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Figure 2.6: Exatt coarsening of a 8 x 8 Cartesian lattice. At each coarsening the
algorithm removes a Minimal Independent Set from the set of nodes.

both the independent set and the vertex cover form a checkerboard pat-
tern. The coarse edge set I, ; is constructed by connecting every node
u € V;,, to the four closest neighbors among other nodes in V;_ ;. An
example with a 8 x 8 initial lattice is shown on Figure 2.7.
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Figure 2.7: Approximate coarsening of a 8 x 8 Cartesian lattice computed using
Algorithm 2.4 with p = 2 metric.

2.2.1.1 Approximate marginalization

Given the coarsened graphs
Go = Vo, Ey), Gy = (V1, Ey), ... .G, = (V. Epy),

for i = 0,1,...,m the set of nodes V, is a subset of the original set of
nodes V' = V|,. Defining /. as the set of all variables that belong to
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the original set of variables V' but are not present in the coarse set V,, our
aim is to obtain for each graph the marginal probability density P(zy,)
defined through

As already remarked, for any practical size it is impossible to compute
the marginal probabilities directly from the definition, therefore we will
use the fast marginalization algorithm of Chorin (2003, 2008) and Okunev
(2005).

fast marginalization is based on the observation that for each u € V,
the logarithmic derivative

3

T\ :/a—%P(mv>de\Vi// P(zy)dzy\y,

is equal to the expected value of the logarithmic derivative of the original
probability distribution, a quantity that can be readily computed through
Monte Carlo simulation. We shall quietly assume that it is possible to dif-
ferentiate a function of discrete variables, leaving the associated technical
difficulty for later.

Assume that for each V; we have P(x,,) > 0, that is the original and
marginal probability distributions are stri¢tly positive. Then

P(ay,) = exp (W(ay,)) /2y,

and the logarithmic derivatives become simply

Ol P(xmy,) OW(xy,) and OlnP(xy) OW(xy)

o or ox or,

u u u u

o]

This function can be subsequently approximated by projeting it onto a
subspace spanned by a basis ¢ consistent with the graph G, = (V,, E,),
that is if ¢ contains only functions of variables z, and x v, that corre-
spond to cliques of the graph G,. The definition of consistency of a basis

For each u € V; we define a function 7 (z, ) through

6lnP(chi) B 8W(wvi) r OW (xy,)
ox - Oz, oz,

F(zy,) =

u u
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will be further discussed in Section 4.1.3.4, because symmetries of the lat-
tice and the translation invariance put further constraints on the allowed
basis funétions.

Write the basis abstractly as

o= {¢17¢27 7¢K}

so that an approximation F (zy,) of F (zy, ) within the space spanned by
funcétions of ¢ becomes

K
F(xy,) = Z ¢;9:(T,, wN(u)>'

The coefficients of the approximation are obtained through linear projec-
tion in an inner product space. We associate with the space spanned by
the basis ¢ the inner product

(1.9) = [ fley)gt@y)Pley)dey, = [fg] 2]

turning the space into an inner product space. Finding the set of coefli-
cients c that is optimal with respect to the above inner produét involves
solving a least squares linear problem Ac = b showed in detail in Figure
2.8. The elements of matrix A, known as the Gram matrix, and veétor b
are

Ay = <¢ka¢l> and b, = <¢k7?>~

The marginal probability density P(xy, ) appearing in the inner product
is not known. However, the special form of the inner product allows these
equations to be written in terms of the expected value with respect to the
original probability density P(x ) as

Ay = <¢k=¢l> = /(bk(m\/i>¢l<wvi)P(m\/i)dw\/;

= /¢k(m%> (/ P(wV)de\‘/i> day,
_ / bi(@y,)bi(@y, ) P(y)da,
=L {(]ﬁk@} (4
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and

oW (xy,)
X (/ or. VI P(xy, dazv\v// (zy) dmvw)

x ( / P(ay)dzyy, ) dx.,
/Cbk C‘3\/ </ %P(wv)dmij dmvi

u

_ /qﬁk(mvi)%mP(azv)dwv

The variable z,, was implicitly made continuous by taking the derivative

ow / Ox,, in the definition of

(2-5)

u

ow
o,

?@Vi) =

Therefore, the function F (zy, ) is continuous in z,, and the basis ¢ onto
which we project F (zy,) must contain continuous functions of x, in
addition to discrete functions of @ ,. Our choice for the basis ¢ is the
outer product of a polynomial basis ¢_. of functions of the continuous
variable z,, and a polynomial basis ¢, of functions of the discrete variables
T y(y)- The basis ¢, is simply

o= fin)

due to the fa¢t that the expectation value E |- | samples only two values of
x,,, thus allowing two degrees of freedom. However, the basis ¢, could be
extended to higher powers of x,, as shown in later chapters. The basis ¢,
on the other hand is restri¢ted by constraints and the only possible choice
is

bq = {1, va},

N(u)
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2.2 ISING MODEL IN TWO DIMENSIONS

due to (i) lattice symmetries, (ii) shift invariance and (iii) consistency with
independence graph G, which will be discussed in detail in Section 4.1.3.
Therefore, the example basis takes the form

O =0, %X Qg
{ S ey a2, Y a }
N(u) N(u)

and the full linear system satisfied by the optimal expansion coefficients
is shown on Figure 2.8. The projection is performed once for each graph
G, = (V,, E,); however, the projettion matrices for all lattices are typi-
cally accumulated simultaneously during a simulation. Additionally, due
to shift invariance of the Ising model it is possible to accumulate the pro-
je€tion matrices by averaging over all spins in &, , as explained in Algo-
rithm 2.5. The expectation values required by Equation 2.8 can be obtained
by sampling the original probability distribution P(xy,).

2.2.1.2  Probability reconstruétion

The coefficients ¢, obtained with Algorithm 2.5 describe the best approxi-
mation of the logarithmic derivative of P(zy, ), ow / Ox,, with respect to

the norm induced by the inner product used. The knowledge of the loga-
rithmic partial derivatives of P(xy, ) uniquely determines the probability
P(zy, ), which we will now show by demonstrating the reconstruction of
the probablhty P(zy, ) from the logarithmic partial derivatives.

To determine the probablhty distribution P(xy,) uniquely one only
needs to know a function proportional to it; that is, knowing a function
P(acvi) = C x P(zy, ) for some constant C' > 0 allows one to compute

P(a’vi) _ P(wvi) — Play,)

/P(mvi)dmvi /P<mV¢,>dii

where the constant and integral disappear since

by definition. Therefore, the probability distribution P(azv) must be
defined up to a multiplicative constant, or equivalently, its logarithm
W (zy, ) must be known up to an additive constant. Our approach to defin-

ing P () will be to construct a function P (zy, ) proportional to P(xy, ).
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Algorithm 2.5 Algorithm for computing expansion coefficients c; using
a weighted sampling scheme GETSAMPLE

procedure ProJECTION(M, G, = (V,, E,), ¢,)
fori =1,2,...,mdo
A, < EmpTYMATRIX(|9;], |9;])
b, < EMPTYVECTOR(|®,])
end for

for all samples do
&y, W <~ GETSAMPLE
fori=1,2,....,mdo
forallu € V, do
f 8W/ oz,
¥ ¢~ EVALUATEBASIS(¢;, U, Ty, )
b, b, +wfuv
A, +— A, + wovT
end for

end for
end for

fori=1,2,..., mdo
c, +— A;'b,
end for
end procedure

We will choose a fixed state yy. such that P(yy,) > 0. Then, we will pro-
duce a function P(a:vi , Yy, ) defined as

_ Pz,
P(mvi,y‘/i) B PE?JV?;'

7

For constant y,, we have

P(yy,) x P(zy,,yy,) = P(xy,),

thus P (zy,, yy,) is proportional to P(zy, ), as required. We will first con-
strut P (zy.,yy,) for two States differing in only one component and
then generalize it to two arbitrary states ¢, and y,,, completing the re-

construdtion process.
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The probability of every state is specified uniquely given a procedure
for computing the ratio P(xy, , yy, ) of probabilities of two states xy, and

yVi’

_ P(xy,
P<wVi’yVi> - PEU\;;

Because probabilities of different states can vary greatly in magnitude,
we would be better off to compute the logarithm of P(xy, ,yy, ) instead,
obtaining

P(yy,)

7

_ B P(my)\
lnP(mVi7yVi> =In = W(wvz) - W(?Jv)-

Consider for a moment the simpler case of @y, and y,, differing by only
one component u € V,, i.e., for any v € V, such that v # u the equality
x, = ¥, holds. In this simple case we have

In P(acvi,yvi) = W(iU\/Z) -~ W(yy,)

3

a quantity known given the coefficients c,.

The general problem of computing In P (v, Yy, ) for arbitrary vectors
xy, andyy, canbe dealt with using the single-component version. Let z,
and y,, differ in multiple components. ConStruct a path of k£ + 1 states

{zo, Ziy ey Zpqs zk}
suchthat z, =y, 2, = ,, and any two consecutive vectors z,and z,

differ by only one component. Additionally, we require that P(z;) > 0
for 0 < j <k, to ensure that the logarithm is finite. Then, we may write

41
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essentially adding up the logarithmic quotients along the path. The case of
strictly positive probability, i.e. P(zy, ) > 0, allows any path between xy,
and y,, that satisfies the single-component differece conStraint, as the path
will automatically satisfy the positivity constraint. In particular, the path
con$tructed by changing each differing component exactly once satisfies
these constraints and is used by the Algorithm 2.6.

The probability of a state x, is then defined through

P@\/i) = P(yvi) X P<wViuyVi>a

with P (zy,,yy,) computed as above by following a path of states con-
necting @y, with y,, . The probability of the fixed state y,, acts here asa
normalization constant, ensuring P (wVi ) is properly normalized. While
P(yy, ) may be computed through

1

P(yV) = _ 3
/P(mwvy\Q)dei

in most actual computations the knowledge of the normalization constant
is not necessary.

2.2.2  Sampling

In order to discuss the sampling procedure it is important to describe the
independence $tructure of the graphs. As we have seen in prior setions,
the graphs were construéted so that for any u, v € V; \ V,_; the variables
z, and z,, are conditionally independent given the variables in xy, , writ-
ten
z, Lz,|zy o
with the conditional independence being with respect to the probability
P(zy, ). That is, assuming that the variables x,, are distributed according
to P(xy, ), the variables x,, and z,, for u,v € V; \ V,,, are conditionally
independent given @y, . Therefore, knowing the values of the variables
xy,  allows to fill-in the remaining variables @y, | individually as they
are independent of each other.
The sampling algorithm proceeds as follows. The top graph G,, =
(Vs E,,) with probability distribution P(zy, ) has to be sampled using
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Algorithm 2.6 Algorithm for computing the logarithmic ratio of marginal
probability densities for two $tates @, and yy,.

function LOGQUOTIENT(Z/, Yy, V, C, @)
Zy < Yy
W<+ 0
forallu € V do
if z, # y,, then
AW < LOGLOCALQUOTIENT(u, 2, C, ¢)
if z, = —1 then

W+ W+ AW
else
W<« W — AW
end if
2y, — Yy,
end if
end for
return W

end function

function LOGLOCALQUOTIENT(u € V/, 2, ¢, @)

m 1
return Z cj/ b (%45 zN(u)) dz,
=1 71

end function

some alternative algorithm: Markov Chain Monte Carlo or even direct
sampling. Thus, we obtain a sample

Ly, ~ P<33Vm)

and begin sampling finer lattices given values of the variables on the im-
mediately coarser lattice. Assume xy, ~has been successfully sampled
and we wish to sample the remaining variables on the immediately finer
lattice V, i.e., sample the variables in Tyav,,,- We obtain

Play,y,, |2y )= [] P,z
ueVi\Vi1

ueVi\Viy

due to conditional independence. By construction, N(u) C V;,, and the
conditional probability P(x, | %)) depends only on one unknown
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value, z,,, making it straightforward to sample. Defining AW, to be the
logarithmic quotient at node v € V; \ V,_; (cf. Algorithm 2.6)

Plz,=1|=

we can further write

AW, "
ifz, =1
AW, AW, u )
eAWu + ¢ u
e—_ZWu (2.6)
ifx, =—1.

AW, + e~ AW,

Thus, sampling the variable z,, involves choosing at random between

z, = —1 and z,, = 1 with probabilities
AW, AW,
AW aw, end Xy AW,
eWu + 72 W eWu + e 2 W

respectively. Sampling all of the variables in @y, ~completes the miss-
ing variables, making all of the variables in ;. known. The top-down
approach ends when all of the original variables in x,, = x,, are sam-
pled.

The above sampling algorithm defines a probability distribution

P (zy) = (wvm) X P(aﬂ'vm,l\vm | wvm) X X
Plxy v, |Zy) X ... X P(mvo | wVO\Vl)v (2.7)

which we will refer to as the trial probability distribution in the impor-
tance sampling framework. In the discussion that follows, we denote with
a hat all approximate quantities; that is, Ais always an approximation of
A. Were the conditional probabilities exact, P_(x,,) would be equal to
P(xy,) and the sampling algorithm would be complete, as was the case
in one dimension. However, due to the necessity of using approximate
marginal distributions, the conditional probabilities are also approximate
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Algorithm 2.7 Algorithm for generating a weighted sample x|, ~ P(xy,)
along with logarithm of its weight Inw. The conditional probability
P(z, | ) is defined through Equation 2.6.

function GeTsamrLE(G, = (V, E,), ¢;, ¢,)
Ly, P(zy )
Inw « In P(wvm )
for i = m — 1 down to 0 do
forallu e V;\ V,, do
z, ~ Pz, | wN(u))
Inw < Inw+In Pz, | T\ ()
end for
end for
Inw <+ InP(xy,) —Inw
return In w, xy,
end function

and in general P_(x,) # P(x ). To corret for the approximation, we
attach a weight

to each generated sample xy,. Therefore, the expected value of a function
f(z,) is written as

a minimal change to the standard Monte Carlo expression.

2.2.3 lIterative improvement

The algorithm for sampling the lattice ladder requires prior knowledge of
the approximate expansion coefficients ¢, for each lattice. While the fast
marginalization algorithm used for computing the expansion coefficients
can utilize any sampling algorithm, the use of an algorithm different than
the one described above defeats its purpose. Instead, following (Chorin,
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2008) we make the sampling algorithm iteratively improve itself through
a fixed point iteration.

Consider the set of expansion coefficients for each lattice, c,. We be-
gin by choosing a reasonable initial guess for the values of all expansion
coefficients for all the lattices. The known values are used to compute ex-
pected values required by the fast marginalization, producing an updated
set of coefficients. Assuming convergence, the process quickly leads to a
stable set of coefficients.

Due to the stochastic nature of the fixed point fundtion it is difficult to
perform a rigorous analysis of conditions leading to convergence of the it-
eration even for the simplest models. However, in practice it is observed
that the iteration converges in at most three iterations under most con-
ditions. The only failure was recorded for very strong couplings, a case
where the fast marginalization algorithm fails due to low variability in
observed $tates leading to singular projection matrices.

2.2.4 Analysis

The two-dimensional Ising model brought important differences from the
one-dimensional case. The graph coarsening cannot be performed exactly,
marginal probabilities must be computed approximately using the fast
marginalization algorithm of Chorin (2003, 2008), and an iterative process
has to be used to determine the expansion coefficients in order to make
the overall scheme an effective sampling algorithm. We analyze these new
elements below.

2.2.4.1 Approximate graph coarsening

As it was the case in one-dimension, at each stage of the coarsening al-
gorithm a graph G; = (V,, E;) with random variables x, described by
marginal probability density P(zy, ) are given. Importantly, the marginal
probability distribution is not known explicitly but only through its defi-
nition. The required output is a coarser graph G,,, = (V,,4, E,,;) such
that V,,, C V; and for any u,v € V;\ V,_, the variables =, and z,, are in-
dependent given @y, . As before, the graph describes the independency
structure, translating the conditional independency into the requirement
that V; ; C V, be a vertex cover of the graph G,.

However, because the marginal probability density P(xy,) is assumed
to be only an approximation of the true marginal, the graph G, is also
only approximate. As a result, the spins in @y, are not independent
of each other as assumed by the sampling Algorithm 2.7.
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2.2.4.2 fa$t marginalization

The fast marginalization algorithm is a necessary step for computing the
approximate marginal densities. While other methods exist for comput-
ing expansion coefficients, they are either applicable to a very limited
number of problems (Brandt and Ron, 2001b) or do not actually compute
the marginal probabilities (Swendsen, 1984b). Therefore, at present there
is no other algorithm capable of performing the computation and it is
imperative to Study it on its own.

fast marginalization computes the best approximation of the derivative

ow / dx, in the norm induced by the inner product used. The particular

choice of the inner product, namely

(1.9 = [ @y )o@y Play ey,

is a crucial step necessary to make the algorithm work. Comparing the
algorithm with the definition of marginalization (cf. Binney et al. 1992),
the sole difference is the presence of the weight P(xy, ). As a result, the
inner product does not attach equal importance to all the possible States,
reducing the pool of important (high weight) states down to a manageable
size.

The appropriate weight performs an additional function. Inspecting the
Equations 2.4 and 2.5 shows that the weight can be used to remove the
unknown marginal probability P(xy ) from the inner products through
careful algebraic manipulation. The result is a series of expected values
with respect to the original, rather than marginal, probability distribu-
tion that can be computed effectively using the same set of samples (cf.
Equation 2.8).

The use of a weighted inner product has a negative side, however, espe-
cially important in the case of approximating the probability distribution.
The use of P(xy, ) as weight skews the approximation toward states of
high probability. While difficult to show rigorously, in pradtice the high-
probability bias leads to incorrect estimation of the ratios of probabilities
of high- and low-probability states. Due to the importance of the partic-
ular choice of weight, tackling this issue is difficult and will be discussed
in later chapters.

In principle, given a very large basis and unlimited samples, the fast
marginalization algorithm would compute expansion coefficients as close
to their true values as desired. However, the fast marginalization algo-
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rithm as stated here and in Chorin (2008) would not produce exact results
due to a technicality. The function

oW (zy, )

?@Vi) T or

is defined over a variable z,,, which was implicitly made continuous. How-
ever, the algorithm samples that variable only at two points, xz,, = —1 or 1,
ignoring the behavior of F (zy ) over the rest of the interval [—1, 1]. The
exact computation carried out in Appendix A can be used to see the exact
behavior of F (xy, ). Indeed, beginning with Equation A.10, we obtain

272

W(zy. ) =In (Z(M> H cosh [ (z, + mv)]>

E;

n
=3 In2—InZ(pu) + ; In cosh [p(x, + x,)]

where the produéts and sums are over all edges (u,v) € E,. Therefore,
the derivative becomes

oW (x
o= 0 S i, 0]

u N(u)

a function plotted on Figure 2.9, which shows clearly that the function
F (@, ) is far from linear in z,,, which was the assumption used in con-
structing the basis ¢. Additionally, due to the weighted inner product, the
linear approximation obtained by the fast marginalization algorithm will
tend to favor the areas of high probability: x,, = 1 in the positive and
z, = —1 in the negative case. While the addition of basis functions of
higher powers in z,, would allow for a better fit, it would require sam-
pling values of x,, at more points than just the endpoints. The solution to

this and other problems will be discussed in the later chapters.

2.2.4.3 Sampling

The sampling Algorithm 2.7 proposed by Chorin (2008) is very Straight-
forward thanks to the careful construction of the lattice ladder during the
graph coarsening stage. While the computation of approximate marginal
probability densities moves bottom-to-top, or from fine to coarse, the sam-
pling moves in the opposite direction, beginning with sampling the coars-
est lattice and systematically filling up the finer lattices. There are two
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Positive

5 Mixed l
Negative
_2 'l L 'l
-1 -0.5 0 0.5 1

Figure 2.9: Plot of the exaét derivative BW/(‘)xu computed for the one-
dimensional Ising model. The curves represent dependence of the
derivative on the continuous variable x, for the three distinguish-
able combinations of the neighboring discrete variables: positive

EN(U) x, > 0, mixed ZN<U> x, = 0, and negative ZN<u> x, < 0.

equally valid ways of looking at the sampling algorithm and I will briefly
describe both.

We begin with the more straightforward. As was shown in Equation
2.7, the sample x,, generated by the sampling process can be described
as coming from the probability distribution P_(x, ) defined through

P (xy) = P(my, ) x P(xy, v, |2y )X .. X

~

Plxy,_ v,

Ty ) X o X Py, | @y, )-

Therefore, the set of approximate marginal probability densities simply
defines a trial proposal density, which one hopes approximates well the
target density P(x, ). At the final stage, once the entire sample has been
seleéted, the target probability P(x,) may be evaluated and the dis-
crepancy between the two corrected by assigning the sample a weight
w = P(xy)/P(x ). Assuming that the proposal density P(x, ) is at
least as broad as the target distribution, i.e., that P(x,) > 0 implies
P_(x) > 0, the weights exatly correct for the mismatch between the
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2.2 ISING MODEL IN TWO DIMENSIONS

two distributions. However, for reasons of efficiency one would hope that
the range of weights is small, as the error in the estimation of expected
value grows with the range of weights.

However, the algorithm could also be analyzed in more detail. Assume
that z,, has been sampled according to P (zy,,,) and we wish to fill
out the remaining values in &, in such a way that the complete sample

xy, is distributed according to P (zy, ). Because the marginalization was
approximate, there is a mismatch between the marginal densities P (zy,)

and P (zy, ) in that the latter is not an exact marginal of the former, but
only an approximate one. Therefore, an error is accumulated not only due
to the mismatch between P (/) and P(x,,), but also due to approxima-
tions at intermediate lattices.

For the moment, assume that the probability P (zy, ) is exact, writing it
P(zy,). Using Bayes’ rule, the exact conditional probability would be

P(xy,)
P<m‘/1',\vi+1 | mViH) - P(CL‘VZ )’

however the exact marginal P(zy, ) is not known. Therefore, the sample
xy, is generated from the probability distribution

Ly, ~ p(w%) = P(wVi\ViH ‘ wVHl)p(wVHl)'

7

Substituting for the conditional, we find that the sample was generated
from the probability

P($Vi+1>

“Plm, )

i+1

thus requiring a correction using weight

in order for the sample to be distributed according to P(xy, ). Here,
P(xy, +1) is the exadt marginal (assuming the probability at level ¢ is ex-

act), while P (xy, +1) is the approximate marginal; the weight w, simply
correlts for this local mismatch between the consecutive lattices. The fi-
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nal weight w is then simply the product of these local weights (cf. Section
5.1.1,

m
W= Wy X Wy X ... XW,, 1 xwm:Hwi.
=1

These weights can only be computed because the expression

P(xy,)
Plxy,y, , [®y, )= Play )
V.

can be computed; in fact, this conditional probability is given in closed
form as

Py, l2v,,)= [ Pz,
Vi\Vii1

i+1

which rests on the faét that variables in V; \ V,., are conditionally inde-
pendent given those in V,_ ;.

The sampling process can thus be seen also as a series of small §teps
between lattices, where an error is committed at each level and the cor-
rections are accumulated as weights. This point of view is very helpful
as it shows how critical is the conditional independence assumption, but
also because it shows a way of reducing weights. Because the final weight
w is a product of lattice-to-lattice weights, if it were possible to correct the
sample at an earlier stage, the final weight could be reduced.

In fadt, this and other weight-reducing strategies are necessary to
achieve good results. Numerical experiments show that the range of
weights in the two-dimensional Ising model grows exponentially with the
number of variables in the model, i.e., at a rate of roughly O (eknz), mak-
ing it virtually impossible to sample even modest lattices of size 32 x 32
using the method of Chorin (2008). These and other modifications will be
discussed in the subsequent chapter.
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In the previous chapter we saw how a ladder of marginal probability den-
sities may be used to efficiently sample from a given probability P(xy,).
This was done in effect by sampling from the acyclic form of P(xy,), writ-
ten as

P(xy) = P(x))P(zy [ 2) ... P(xy) | @1, @95 o 2y 1)

Even when this probability was only approximate, we found that we may
still use it as a trial density through importance sampling. In the present
chapter we will discuss the circumstances that led us earlier to coarsen
the Ising lattice using the checkerboard coarsening pattern and how this
method may be generalized to more complex situations.

3.1 THE SAMPLING MOTIVATION

Suppose we split the variables xy, into two subsets, ;; and the remainder
Ty p- Further assume that we know the values of «;, but may compute
the probability density P () only up to a multiplicative constant; under
what circumstances can we sample the variables zy,,; given the known
values x;;?

The prior chapter showed us that when variables of xy,,;; are condition-
ally independent of each other given x;; we may indeed do so. The reason
for this situation is rather surprising; let

F(zy)
Zy

P(xy) = , where Zy, = /F(wv)dazv

is the unknown normalizing faétor and F'(x, ) is the known unnormal-
ized probability density. When two variables x, and x, are condition-
ally independent given x, for any u,v € V \ U, written formally as
z, L x, | xy, the probability density function factors into two parts,
one depending on x, but not on z, and another dependent only on z,
but not on z,,,

Flxy) F,(z,,zy)F(z,zy)

P = =4 .
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The conditional independence of all variables in V' \ U then implies that
the probability factors as

P<wv>=ZiVFv<wv> [ o).

ueV\U

As a result, the conditional probability P(z; | ;) becomes

P(zy\ s xy)
P(xy\y) | ®y) = w
_ F(mV\U7wU)
fF<mV\U7mU)de\U
o HuEV\U Fu(mim wU)
]‘_‘[UGV\U f FU,(wu’ wU>d':Bu
F(x, x

a produdt of terms that may be easily computed. The multidimensional
integral over ., disappeared as did the problematic normaliza-
tion constant Zy, instead requiring the computation of a series of
one-dimensional integrals. Therefore, if the variables in @y, are
conditionally independent given x; we may compute their properly
normalized conditional probability and thus efficiently sample from it.

If x;, were sampled according to the exaét marginal density P(x,),
the sampling algorithm would be complete, since the complete State x,
would be sampled according to

P<wU)P<mV\U | zy) = P<xV\U7wU) = P(zy),

as we would hope. Since we were successful in splitting &, into @y, ;; and
x;, perhaps we could repeat this procedure and split x;; into yet smaller
subsets? Unfortunately, we do not know anything about the conditional
independencies present in the marginal density P(x;;) and thus do not
know how zx;; could be split. To gather this information we will require
posing the problem using the formulation of graphical models, seeking to
tackle it using graph manipulation rather than algebra.
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3.2 GRAPHICAL MODEL REPRESENTATION

The conditional independence between variables is at the core of the
framework of graphical models. While posing a probability distribution
as a graphical model does not add any new information about the prob-
ability distribution, it allows for very convenient ways of manipulating
the existing information. As a result, we see this framework solely as a
useful extension or way of thinking.

For any given probability density P(x,) we may define a dependence
graph G, composed of a set of nodes V' and a set of edges £, denoted
G = (V, E). Each variable z,, is assigned a unique node u € V. The undi-
rected edges (u, v) forming the set F are used to represent the conditional
independence relations between the variables of x, in the following man-
ner. For u,v € V,if an edge (u, v) in F does not exist then the variables
and z, are conditionally independent given all other variables, z- 1, .-
Formally,

(U,U) ¢ EU = Ty 1 Ly ‘ CCV\{u,v}'

In case of the Ising model the edges signified dire¢t couplings between
the random variables and we may informally think of edges in the depen-
dency graph G to imply such couplings.

3.2.1 Marginalization on a graph

The graphical framework allows us to perform operations involving
changes in the conditional independence $tructure simply by operating
on the graph, making algebraic operations on the probability distribution
more visual and easier to grasp. In particular, the marginalization of a
variable is a Straightforward operation on the dependency graph.

Consider anode u € V with a set of neighbors N (u), i.e., a set of nodes
v € V such that an edge (u,v) € E exists. Marginalizing the variable z,,
means, algebraically, the computation of

P(ey,) = [ Pley)ds,.
Since we know that the only variables that are not conditionally indepen-
dent of z,, given the remaining nodes are those of ), we obtain that

P(x,,) factors as

P(zy) = Fa(mV\u)Fu(xu7wN(u)>/ZV'
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This result is a manifestation of conditional independence, the fa¢t that
once & v, are known the values of the remaining variables @, v, have
no impact on the conditional probability of x,,.

Substituting this factorization into the integral we obtain

P(ey,) = [ Pley)ds,
= /Fa<wV\u>Fu('ru7 wN(u)>dxu/ZV
= Foz(wV\u> /Fu($u7 CcN(u))daj‘u/zv

The first term remains unchanged, appearing the same in P(x, ), show-
ing that all independence relations between variables of @y, v, remain
unchanged. However, we are unable to say anything about the term

Fﬁ<mN(u)) = /Fu(xu7mN(u))dmu7

which as a function of only x v, suggests that the variables x ) may
no longer be conditionally independent.

The above rather involved derivation may be encoded more simply us-
ing the graphical approach. When a node « € V' is marginalized, both the
node and all edges incident upon it are removed from the graph. However,
all nodes v € N (u) are then connected to each another, forming a clique.
This approach represents the possible loss of conditional independence
among nodes of N (u), thus encoding the worst possible scenario.
ExAMPLE 3.1. Consider a PDF P(xy,) = P(xy, x4, x5, T,, 5, Ts) that fac-
tors as

1
P(xy) = Z_Flz(-f’flv5132>F13(3717373)F23($2> )
1%
X Fyuy(@g, m4) Fog(wy, T6) Fys (24, T5)-
Because of this factorization, we see that the dependency graph G =
(V, E') must have a set of edges

E = {(17 2)5 (173>7 (273>7 (274)7 <2a6>’ (475>}’

as shown on Figure 3.10a. When variable x, is marginalized, we must
remove it from the graph along with edges (2,4) and (4, 5); instead, the
nodes of N(4) = {2,5} are connected to form a clique, requiring only
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(a) Original graph (b) Marginalized x 4 (c) Marginalized z

Figure 3.10: Graph from Example 3.1, both original and after marginalizing vari-
ables x, or z.

one new edge (2,5). The resulting graph shown of Figure 3.10b is not
significantly denser than the original.

Instead of z,, consider marginalizing variable z,. This time we remove
node 2 and edges containing it, noticing that the set of nodes that must
be reconneéted has grown significantly and is N (2) = {1, 3,4, 6}. Recon-
necting the nodes requires (§) = 6 edges, increasing the density of the
resulting graph shown on Figure 3.10c. |

The graph G = (V, E) encodes not only the conditional independence
relations of P(x,,), but also the dependencies of the conditional probabil-
ity of every variable u € V,

P(mV\u7 xu)
P(wV\u)

The variable x,, is dependent only on the variables x y,,, allowing us to
write the fatorization of P(x,,) as

1
P(zy) = Z_Fa(wV\u>Fﬁ(mN(u);$u>-
1%

Inserting it into the conditional probability formula we obtain

P@V\w*%)
P(mV\u)
F (wV\u)Fﬁ<wN r,)/ Zy
fF wV\u>F,8(wN z,)dz, [ Zy
Fﬁ<mN (u)r L T,)
fFB T ()5 T r,)dz,’

showing that the conditional probability density of x, given all the re-
maining variables @, depends only on the varlables Z (., that neigh-
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bor the node u on the graph G = (V, E). Therefore, sampling of =, may
be accomplished when the variables x y,,, are known, a fact we shall need
in future sections.

Using the graphical framework we may now say something about the
conditional independence $truture of the marginal density P(x;;) with-
out the need to know the values of P(x;); instead, we compute symboli-
cally its worst-case factorization stru¢ture. However, we do not know how
to use the graphical description of the independence §tructure to split the
variables.

3.2.2 Conditional independence of a set of variables

The question arises whether the set V' \ U had any special properties on
the graph G = (V, E) that allowed us to easily compute the conditional
probability P(zy.;; | @;). We have in fact mentioned this in Section
2.1.3.1, namely that the set V' \ U forms a so-called independent set within
G. The fact that all variables in &/, ;; are conditionally independent given
@, implies that there are no edges between the nodes of V' \ U, which is
the definition of an independent set.

The remaining nodes U form the matching vertex cover, defined as a set
of nodes whose removal from a graph leaves a totally disconnected graph,
i.e., a graph with no edges. A vertex cover matches a particular indepen-
dent set, because — by definition — the complement of an independent
set is a vertex cover and vice versa.

The property that U forms a vertex cover within the graph while V'\ U is
the matching independent set solves our conundrum. Given the probabil-
ity P(xz,) we construéted a graph G = (V, E) encoding its conditional
independence structure and chose to split V' into two subsets, U C V
forming a vertex cover and the complementary independent set V'\ U. The
variables @y, ;; are conditionally independent given @, therefore allow-
ing us to efficiently compute the conditional probability P(zy. s | )
therefore, the variables @, ;; may be marginalized, leaving @, with prob-
ability density P(x;). The conditional independence $truture may be
obtained from the graph G by rules of marginalization, giving a modi-
fied graph G; = (U, E;) describing the worst-case conditional indepen-
dence $truéture of P(x,), allowing us to repeat the procedure.

3.3 EXACT COARSENING

The exact coarsening algorithm is based on repeated splitting of the set
of nodes into an independent set and the matching vertex cover, followed
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3.3 EXACT COARSENING

by marginalization of the variables contained in the independent set and
repeating the algorithm on the remaining variables. Given the original set
of variables V' and the original dependence graph G = (V, E') we define
Vo = V and G, = G, then recursively generate a ladder of increasingly
coarse graphs.

At §tep ¢ we have the set of variables V, and graph G, = (V,, E,). We
find a vertex cover U; C V; that is a proper subset of V; and define V, | =
U,. The edges of F; , are defined by stating that two nodes u,v € V,_,
are conneted by an edge (u,v) € E,  if (i) they were conneted by
an edge (u,v) € E, on the graph G, or (ii) there exi$ts a removed node
w € V; \ V., such that both (u,w) € E; and (v,w) € E,, that is if the
nodes u, v shared a common neighbor on the graph G,. Finally, we let
G = Vi1, E;. ), completing the recursion.

Since the original graph G is assumed to be finite and V;, is always
a proper subset of V, after a finite number of coarsening steps we will
obtain a ladder of lattices

V=V,oVDoV,D>..DOV,

with the property that it is computationally feasible to compute the con-
ditional probability P(zy,y, , | @y, ) given that the unnormalized
marginal probability density P(zy, ) is known. This results in Algorithm
3.1.

3.3.1 Relation of exacl coarsening to the LU decomposition

Algorithm 3.1 shares its graphical structure with another widely known
algorithm from linear algebra, the LU factorization of an invertible, sym-
metrically patterned matrix A. The random variables correspond to di-
mensions of the vector space, with nodes representing each. If the entry
Aij # 0 then the two nodes 1 < i, j < n are connected by an edge. Per-
forming a step of the LU decomposition corresponds to a marginalization
of a variable, completing the similarities.

In the LU algorithm the L and U factors are obtained by Gaussian elim-
ination, with L Storing the weights used to eliminate sub-diagonal non-
zero entries and U being the upper triangular matrix leftover after per-
forming Gaussian elimination. Therefore, to show the symbolic equiva-
lence of the LU decomposition to marginalization of random variables in
a graphical model it suffices to show that a single step of Gaussian elimi-
nation is equivalent to the marginalization of a single random variable.
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Algorithm 3.1 Exact coarsening algorithm.

function ExacTCoARSENING(G,; = (V}, E)))
Vi1 < MIS(G))
B0
forallu €V, , do
forallv € Ng (u) do
if ve V, , then
E, .+ E_1U(u,v)
end if
forallw € N (v) do
if we V,,, and w # u then
B« EyqU(u,w)
end if
end for
end for
end for
return G,y < (Viyy, Ejyy)
end function

At step ¢, the matrix A has zeros below the diagonal in all columns to
the left of column . Therefore, by symmetry of the non-zero pattern of
A, the variable i is connefted to a set of variables N (i), such that for
i < jfor j € N(i). Therefore, the only sub-diagonal non-zero entries in
column i are A, for j € N(i). Consider eliminating one of these non-
zeros; denoting the i'" row of the matrix A as a; we obtain an update
equation

As a result, the updated j*® row may contain non-zero entries only when
either A;; # 0 or A;; # 0; therefore, the updated matrix A’ will have
the variable j connected with all of its original neighbors (A, # 0) and
all the neighbors of the variable i (4;, # 0), sans the variable i because
by construction the entry A’ = 0. Since all variables j € N (i) undergo
such operation, the variable ¢ is effectively removed from the graph while
all variables in N (i) are connected to each another, precisely as was the
case with marginalization of a random variable.

It is rather well-known that the LU algorithm applied to sparse matri-
ces causes fill-in, that is the number of non-zero entries in the factors L
and U is generally higher than that of the original matrix A. Because the
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number and location of the non-zero entries is determined entirely by
the graphical §tructure of the matrix A, the same phenomenon will occur
while performing coarsening of a graph describing the conditional inde-
pendence relations of a probability distribution. As the increased density
of the LU factors leads to increased storage needs and slower computa-
tions involving the factors, many approaches were developed to combat
this phenomenon. Among the most widely known are sparsity-preserving
variable permutations (Davis et al., 2004a) and incomplete LU factoriza-
tions (Chan and van der Vorst, 1997; Saad, 2003).

Incomplete factorizations make use of the fact that not all non-zero en-
tries are equally important, hoping that ignoring some of the additional
entries will have small effect on the LU factors. Multiple strategies were
devised (Kershaw, 1978; Meijerink and van der Vorst, 1977; Watts, 1981),
including the ILU(k) technique of only allowing fill-in to propagate k
times before being rejeéted (Saad, 2003, p. 296); for example, ILU(0) only
allows fill-in at positions of non-zero entries of the original matrix A
(Saad, 2003, p. 293), while ILU(1) allows fill-in due to elimination of a
non-zero entry that existed in the original matrix A, but not due to elim-
ination of a non-zero entry that was subsequently added as fill-in. Other
techniques attempt to ignore certain entries based on magnitude, treating
A;; as if it were zero if the magnitude |A;;| < T is less than a threshold
(Munksgaard, 1980; Zlatev, Wasniewski, and Schaumburg, 1982).

Sparsity-preserving variable permutations use a different feature of the
problem. It was found that the order in which variables are eliminated
has a significant effect on the amount of fill-in generated by factorization,
leading to algorithms such as COLAMD (Column Approximate Minimum
Degree ordering, Davis et al., 2004b). Unfortunately, the task of finding
the optimal ordering for a general matrix A is an NP-complete problem
(Heggernes et al., 2001), requiring the use of heuristics and approximate
algorithms based on simplified assumptions.

While these techniques allow for handling exa¢t LU factorizations of
matrices with tens of thousands of variables on desktop computers (Davis,
2004), the costs of computing the marginal distributions respecting the ex-
act dependency graphs generated by equivalent algorithms are far beyond
the available computational capabilities. Therefore, it becomes necessary
for any practical coarsening algorithm to instead produce approximate
dependency graphs, where the number of edges incident upon each node
is kept under control. In the following sections we discuss a class of such
approximate algorithms and possible ways of obtaining the highest qual-
ity approximation possible.
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3.4 APPROXIMATE COARSENING

The strict requirement from the exact coarsening was that the nodes V,
must be split into a vertex cover U, and a matching independent set V,\ U,.
The independent set V, \ U, was subsequently marginalized, while the
vertex cover became the next node set in the ladder, V; ; = U,. However,
the step involving forming the set of edges E;  ; among the nodes of V,_;
did not have any $tri¢t requirements and may be modified, though at a
cost of leading to an approximate conditional independence $tructure.
Any coarsening algorithm will thus be composed of two parts:

« the choice of a suitable splitting of V; into a vertex cover and a
matching independent set,

+ the re-creation of edges between the kept variables V,_ ;.

The splitting phase must choose a particular pair of an independent set
and a matching vertex cover out of many that typically exist. While many
optimality criteria may be chosen to make such choice unique, it appears
natural to attempt to marginalize as many variables as possible, leading
to the requirement that the independent set be a Maximum Independent
Set (MI1S). The complementary vertex cover becomes then the smallest pos-
sible vertex cover, or Minimum Vertex Cover (MVC). The maximum inde-
pendent set on a Cartesian lattice divides the graph into a checkerboard
pattern, recovering the coarsening pattern used by Chorin (2008) while
also generalizing naturally to arbitrary graphs.

The latter stage involving reconnecting nodes of V, ; is unfortunately a
far less studied and more problem-dependent part of the algorithm. While
the exact choice is known, it is unfortunately generally unfeasible and
instead we recommend that nodes of V,_ ; be connected only if they pass
a distance criterion. Assuming a metric p : V,;,; x V;,; — R is defined,
we only allow edges to be formed between nodes u,v € V; ; such that
p(u,v) < T;, , where T, , is a user-provided threshold.

The complete approximate graph coarsening algorithm is provided as
Algorithm 3.2, whose possible sub-components are discussed in what fol-
lows.

3.4.1  Optimality condition
The computation of a MIS is one of the most difficult problems of theoret-

ical computer science. Just as the problem of finding the optimal variable
ordering, the MIS problem is NP-complete, thus any algorithm solving it in
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Algorithm 3.2 Approximate coarsening.

function APPROXIMATECOARSENING(G,; = (V, E,), C)
Vi1 < MIS(G))
Pis1 & m;n p(u,v) foru,v € V, 4

E_ ,+0
forallu €V, , do
forallv €V, ; do
if u # v and p(u,v) < Cp,,, then
By < Ei U(u,v)
end if
end for
end for
return G,y < (Viq, Biyy)
end function

polynomial time will also be able to solve every other NP-complete prob-
lem in polynomial time. In faét, the MIS problem is one of the original 21
NP-complete problems of Karp (1972) and there are no known polynomial
time algorithms for solving them.

This difficulty necessitates relaxing the optimality condition. Instead of
requiring the maximum independent set, we ask for a maximal indepen-
dent set, that is an independent set that cannot be made larger by adding
other nodes. Multiple heuristic algorithms exist and produce maximal in-
dependent sets. We recommend the algorithm suggested by Prof. Richard
M. Karp in a personal communication, listed as Algorithm 2.3, due to the
fact that on Cartesian lattice graphs it closely reproduces the expected
checkerboard pattern yet is applicable to arbitrary graphs.

3.4.2 Reconnecting V;

Consider a metric p : V;,; x V;.; — R. The natural choice of a recon-
neting algorithm is to form an edge (u, v) for every pair of u and v such
that

p(ua ’U) S /I'iJrla

where T}, is a user-prescribed threshold. The threshold should ideally
scale with the distance between nodes on the lattice and be automatically
adjusted. A good choice is to let T}, ; be a multiple of the smallest distance
between two nodesin V, ;.
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Alternatively, if the dependency graph is highly inhomogeneous
the threshold must be adjusted on a per-node basis, requiring an
automated determination of a suitable threshold, making it highly
problem-dependent.

Note that the reconnedting algorithm must always keep the edges of
E; | being undirected; in other words, if a node u is connected to a node
v, then the node v must also be conneéted to the node w. Failure to do so
would lead to significant problems that make it impossible to compute a

properly defined marginal density P(zy, ).

3.4.3 Choice of metric

Frequently the specification of the original probability density suggests a
choice of a natural metric p : V x V' — R, which in turns defines a metric
on all coarser lattices through restriction. As an example, the Ising model
variables form a Cartesian lattice, thus a metric based on the p-norm may
be considered a natural choice.

In situations where no such metric exists one may use either the graph-
ical structure of the problem or quantities obtained directly from the orig-
inal probability density P(x, ). If the graph G = (V, E) is to be used,
one may define p(u,v) to be the length of the shortest path connecting
the nodes v and v. Efficient algorithms exist and may be used to com-
pute the shortest path distance between individual pairs of nodes (Dijk-
stra, 1959) or between all pairs at once (Cormen et al., 1990, p. 643-700).
The edges forming paths between nodes might be either weighted or un-
weighted in case of homogeneous distributions. When weights are used,
they should be inversely proportional to the coupling strength between
the nodes, ensuring that the distance between two $trongly interacting
variables is smaller than between weekly connected ones.

Alternatively one may be able to extract metric information from the
probability distribution by computing correlations between variables,

defining
o, O

Loy

E[(z, — ) (2, — 1,,)]

Ty

Y

plu,v) = 1/corr(xu,xv) =

where (1, and o, are the average and standard deviation of the variable z,
respectively. This approach is especially useful in case of highly inhomo-
geneous models, where heuristic approaches based on the graph structure
alone may not suffice.
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ExaMmPLE 3.2. Consider a regular Cartesian lattice if size 32 x 32. We define
a natural metric p(u, v) as the 2-norm distance between the nodes on the
original lattice, assuming the distance between the nearest neighbors is
equal to one.

The set of nodes at each step is split by finding an independent set
and the matching vertex cover using Algorithm 2.3. The reconnecting
algorithm connects together all node pairs such that

p(u,v) < Cp,yq,

where p;.; = min,, p(u,v) is the smallest distance between distinct
nodes on lattice V,, ;. The resulting lattice ladders are shown on Figure
3.11 for different values of the distance parameter C. |

3.5 LATERAL DEPENDENCY GRAPH DENSENING

The results of Figure 3.11 shows clearly that increasing the number of re-
connected nodes quickly leads to dense graphs, making the computation
of marginal probabilities a costly enterprise. Additionally, the resulting
lattices lose the regularity and symmetries existing in the original model,
qualities we may wish to preserve during the coarsening process. The least
dense variant is therefore frequently an attractive option, even though the
significant number of missed dependencies between variables results in
low quality of the resulting approximate marginal probabilities. In what
follows we will describe a method for selectively densening an initially
sparse dependency graph, allowing for performing a sparse coarsening
that ensures large cliques are not formed yet attaining good quality.
Consider lattice V, shown on Figure 3.12a obtained during coarsening
of a larger Cartesian lattice and assume that V/ is also a Cartesian lattice,
but of size 8 x 8. The reconnefted graph G, = (V, E;) is very sparse,
with edges joining only the nearest neighbors on the lattice. We continue
coarsening it, finding a vertex cover V,,; C V; (red nodes) that paints
the familiar checkerboard pattern on the lattice G,. Assume all variables
xy,  areknown and we are attempting to sample xy,. .  (yellow nodes)
from the conditional probability P(zy\y, , | y, ). Equation 3.1 shows

i+1

that the conditional probability factors into a product

H Fu(mu7mVi+1)

Pley,y, )2y, )=
Vi\Viia /Fu(:vu,mvm)dmu
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Figure 3.11: Comparison of different distance multiples C' used in the reconnedt-
ing algorithm. Although higher values of C' initially lead to higher
density graphs, they inadvertently form very irregular graphs that
may become disconneéted. This is caused by two neighboring nodes
that are very close on the lattice, although the general inter-node
distances are much larger.
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- H P(x“ | sz‘+1)'

Vi\Vii

Furthermore, using the fa¢t that each z,, is conditionally independent of
all other variables given the values of the neighboring variables  y,,),

z, 1L Ly\N(u) | LN (u)s

we see that the conditional probability of z,, depends only on x y,, rather
than on all of Ty

P<sz‘\Vi+1) | wVHl) - H P(‘T’.u | wN(u))
Vi\Vin

This implicitly assumes that for any v € V; \ V,_; the set N(u) C V, 4,
which is clearly true because V. ; forms a vertex cover in G; = (V, E).
At least one node of every edge in E; belongs to V;, ;; since for (u, v) € E;
the node u ¢ V,_,, it follows that v € N (u) must belong to V,_ ,, proving
N(u) C Vi

3.5.1 Motivating example

The selective increase in the density of the dependency graph is illustrated
by Figure 3.12. The panel 3.12a shows the lattice G, = (V;, F;) with nodes
Vi1 marked red. Determining the remaining variables xy,,,, , marked
yellow, requires only knowing the red variables xy, . Moving to Figure
3.12b, notice that the variables corresponding to nodes marked blue are
far enough from each other that they could safely use both the values of
the red and yellow variables. In other words, we may add diagonal edges
connecting the blue variables and the neighboring yellow variables, form-
ing an increased density graph G, = (V;, E!), shown on the final panel
3.12c: assuming both the red and yellow variables are known, the blue
variables may be sampled using a marginal probability density respect-
ing the denser graph G.

The introduction of the increased density graph requires that we com-
pute a marginal probability density

Pl(zy) = F/@Vi)/Z{/i
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Figure 3.12: Motivation behind selective coarsening: (a) original graph with
known variables marked red and the variables to be sampled using
yellow, (b) original graph with nodes that remain independent after
increasing the edge density marked blue, (c) denser graph used to
sample the blue nodes given values of the red and yellow ones.

that respects the dependence graph G, in addition to the computation of
the regular marginal

P(zy) = F(xvi)/ZVi
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respecting the dependence graph G,. Denoting the blue nodes UP C
V; \ V;,, and the yellow variables U, v C V; \ V;,,, we may write that
an improved conditional probability density P(zcvi .., | v, ) may be
written using a two-stage formula

Py, [ v,
= P(CBU;YamUF | mvi+1>
= P(xys | zpy, 2y, ) Playy | an )
) P(wUB ’ oy, wVH H F,, xu,ZEN(u)>

Fi/v(mwwN’(v)) qu(xu7wN(u))

ot / Bl (2, @) e (7 / Fo (g, )it

Y

where the yellow variables x;y are sampled fir§t using the coarse
marginal P(zy, ), allowing for sampling of the blue variables Zy e using
the denser margmal P’(2y,). The formula for P(xyy | @y, ) is obtained
trivially because zyy L @y 5 | @y, ., thus

P@U}’,mUiB | wX/M) = P<inY | w\/i+1)p<inB | wvm%

by definition. In the two-$tage formula we simply replace P(x 5 | zy. )
with a more accurate approximation that uses a denser dependency graph

G..
3.5.2 General algorithm

While the two-step algorithm already improves upon the sparse depen-
dency graph G, = (V, E,), the above algorithm may be repeated recur-
sively, leading to a lateral sequence of increasingly dense dependency
graphs. Therefore, we leave the color-coded notation and instead intro-
duce a top index 7 to denote the depth of the recursion.

We begin with the sparse dependency graph G, = (V;, E;), defining
G% = (V,,E}) = (V,, E,). Note that the set of nodes does not change
during the lateral recursion, therefore we define a second set of nodes
U? =V, \ V,,; in general, the set U; 7 will contain an independent set
under the graph G7, thus the variables in U7 \ U7 ™" shall be sampled from
a conditional probability computed using the marginal density P’ (zy,)

respecting the dependency graph G{ .
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Assuming the graph Gf = (V, EZJ) and set Uij are known, we seek to
define the successors G¢ " and U7 in terms of G and Uy. The set of

nodes of G?*' remains unchanged from G7, however the set £/ ¢ E/™
should be enriched by adding edges between more distant variables; this
may be accomplished by running the reconnecting algorithm of Section
3.4.2 with varying distance thresholds C';, such that C'; < C}, ;. Specifi-
cation of E*" thus completes the definition of G7 = (V, EY).

Define H?™' as a subgraph of G/, denoted Gg+1|Uf’ obtained by re-

stricting the set of nodes to Uij and keeping only edges of Efl between
the nodes of the restricted set. The set U/ ! is then defined as a maximum
independent set within the graph H} AR

- 1
U™ = MAXIMUMINDEPENDENTSET( H? ™).

In a practical algorithm the optimality condition is relaxed, requiring only
a maximal rather than maximum independent set, a weaker condition (cf.
Section 3.4.1). Due to the finite size of V,, the repeated application of this
recurrence will generate a lateral sequence of lattices G together with
node sets
VAV,,=U’DU}} DU?D>..OU™
such that for any u,v € U the variables x, and x, are conditionally
independent within the marginal density P’ (a:vi ) given T\ i
The nested nature of this lateral sequence implies that all variables
x,;; could be sampled with the use of conditional probability derived

from P’ (zy, ), however the variables ;-1 could be sampled using a §till

denser, more accurate probability P7*!(z,, ). Therefore, the possibly most
accurate sampling order is to sample variables corresponding to nodes
U\ U} using the conditional probability derived from P°(z, ), followed
by the sampling of variables corresponding to nodes U} \ UZ, et cetera,
until the last set of nodes U;™.

The complete description of the lateral graph densening technique is
provided as Algorithm 3.3 together with the brief sampling Algorithm
3.4.

ExaMpLE 3.3. We will illustrate Algorithm 3.3 using the previously de-
scribed example of an 8 x 8 Cartesian lattice G; = (V}, E,), containing
only edges between nearest neighbors. The set V;; takes the form of a
checkerboard pattern, denoted on Figure 3.13 using blue nodes. Progress-
ing from Figure 3.13a toward 3.13f we repeatedly increase the density
of edges by connecting all pairs of nodes separated by at most C, = 1,
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3.5 LATERAL DEPENDENCY GRAPH DENSENING

Algorithm 3.3 Lateral densening.

procedure LATERALDENSENING(G; = (V}, E;), V4, C))
U+ V\ Vi
GY + G,
j<0
while [U7| > 1 do
E™ + Reconnect(V;, C, )
G e (V, BT
H7™" « Suscraru(G™, UY)
U/*' < MaxiMuMmINDEPENDENTSET(H )
JjJ+1
end while
m<—J
end procedure

Algorithm 3.4 Sampling the variables x, given x,,  under lateral dens-
ening.

function LATERALDENSENINGSAMPLING(:UV,H, U?, Pi(xy ), m)
fort=0—m—1do

Pj(fcv.)
Tohvit Y T Z
/Pj(mv)dwvi\m
end for
Pm(@'V)
Py, )dwy,y, |

returnz,, < i
Vi ‘/'H»l U;n:‘o U?

end function

C, = \/§,C2 =2,0C; = V5, C, = \/gandC5 = 3. The sets V,_,,
U =V, \V,,, U2 U} and U} are marked with colors ranging from red,
through yellow to blue.

Figure 3.13a shows the first densening step, where we produce a denser
set of edges E} containing both nearest neighbor and diagonal connec-
tions. A maximum independent set is found within the graph G} re-
§trited to nodes of U = V, \ V,,, and marked with a different color,
becoming the set U}. The process repeats itself, producing sets Uij of de-
creasing size.

Note the special transition between U? and U} shown on Figure 3.13c:
we find that U} = U?. This takes place because the set of edges connect-
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Figure 3.13: Results of the lateral densening algorithm. Figure (a) shows the orig-
inal, sparse graph, where the yellow variables are sampled given the
values of the red variables. We increase the density of edges, i.e.,
the width of the allowed interactions between the variables, creat-
ing subsequently denser graphs in Figures (b) through (f). The colors
show order of sampling, beginning with red (variables sampled on
prior lattices) through yellow and blue.

ing all nodes within distance C'; = /5 of each other is no more re§trictive
than that with C; = 2. As a result one does not need to worry about un-
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used $tages in the algorithm, because if the increase in edge density is
found to be too small the algorithm will automatically skip the unnec-
essary increase. Similarly, the set Uf = Ui4, because the increase from
C, = v/8to C5 = 3 does not create edges between the variables .

While each step of the algorithm improves the quality of the ap;;roxi-
mation used to sample variables, the set of affected variables is steadily
decreasing. Initially we face the task of sampling 32 variables using the
sparse probability density P°(zy, ), however by performing the first step
of the algorithm we produce an improved probability density that might
be used to sample 16 of those variables. In the later steps, an improve-
ment is brought upon 8 and 4 variables, respectively, reaching a point of
diminishing returns.

When sampling according to Algorithm 3.4, the variables will be sam-
pled in the order suggested by node coloring, with the red nodes being
sampled first (assumed known when $tarting the algorithm), continuing
through yellow nodes and finishing with blue nodes. |

3.6 ACYCLIC STRUCTURE

The initial graph G = (V, E) that encodes the conditional independence
$tructure of P(x, ) is an undirected graph, where each edge can be tra-
versed in both directions. Therefore, it contains cycles: paths of depen-
dence between random variables that preclude efficient sampling due to
circular dependencies. Consider the two-dimensional Ising model. The
spin x; ; to be sampled requires the knowledge of the value of the neigh-
boring spins, including the spin z,,, ; since its value is unknown by
proxy it requires the knowledge of the value of the neighbors of =, ;,
including z, ; ; ;. Proceeding further, sampling the unknown value of
T;,1 j+1 requires the knowledge of the value of z, ;. ,, which then finally
requires the value of z, ;. The resulting unbreakable chain of dependen-
cies makes it impossible to sample one of the variables without sampling
all others simultaneously. However, when the probability density P(xy,)
is written in the acyclic form as a product of conditional probabilities

P(xy) = P(a’mn)P(a’vm,l\vm | mvm>

X P<‘1’31/,,L,2\Vm,1 | mvm,l) ---‘D(z'?VO\V1 | xy),
those circular dependencies disappear. Unfortunately, this structure can-
not be represented by an undirected graph due to the fa¢t that undi-

reted edges lack directionality. Instead, we introduce a directed graph
to encode the conditional probabilities. If the PDF P(x,) contains a term
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P(z, | ;) with u C U, then we say that there exists a directed edge, or
arc, (u, v) € A, the set of arcs. Together, the node set V' and the directed
edge/arc set A form a directed graph D = (V, A), also called a digraph.
As the notion of neighbors N (v) of a node v is imprecise in the context of
directed edges, we instead introduce the sets of direct predecessors N, (v)
and dire¢t successors N, (v); in the example of an edge (u, ¥), the node u
is the dire¢t predecessor of v, while v is the direct successor.

Using this definition we find that the conditional probabilities
P(zy.\y, , | @y, ) may be encoded in a straightforward manner. Since
the conditional factorizes according to

P(mVi\ViH ‘ mViH) = H P(a"v | wN(v))a
Vi\Viia

with the neighborhood understood in the sense of the undirected graph
G, = (V,E,), we see that the dire¢ted graph D, encoding this condi-
tional probability is made of the nodes of V, and directed edges pointing
from the neighbors N(v) toward v; therefore, N,(v) = N(v) C V4
and the conditional probabilities may be written as P(x, | @ Np(v)). For
visualizations of example directed graphs see Figure 3.14.

When multiple conditional probabilities are included we obtain a the
complete direted graph D = (V| A), defined as the union of the individ-
ual graphs D, with

m—1 m—1
V=v,uJV\ViandAd =] 4,
1=0

=0 =

that encodes the acyclic form of P(x, ). The word acyclic in the name
of the acyclic Monte Carlo comes from the $tructure of the digraph D,
namely the fact that it does not contain cycles. Graphs of this kind are
known as Directed Acyclic Graphs (DAGs) and occur frequently in appli-
cations that involve the notion of dependence, e.g., scheduling of interde-
pendent tasks, software dependency graphs, parallelization of algorithms.

A feature of DAGs that will be useful to us is the fact that each DAG
induces a partial order on its nodes, known in computer science as the
topological order. For two nodes u,v € V we write uv < v if and only
if there exists a directed path from u to v, i.e., if u is a predecessor of v.
If neither v < v nor v < u the nodes u, v are said to be incomparable,
because the ordering cannot distinguish between them yet they may not
be equal.
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Figure 3.14: Example of a dire¢ted graph D, = (V}, A;) encoding the conditional
probability P(zy,\v, , | @y, ). Directed edges are visualized by
painting a line emanating from (u,v) the predecessor u € N,(v)
toward the successor node v and reaching half the distance between
the two nodes.

Applying topological order to the DAG D defined earlier we obtain
Vm S mel \ Vm S me2 \ mel S S VE) \ Vl?

which is the order in which we may sample the variables using the con-
ditional probabilities. Additionally, for u,v € V; \ V,_; neither u < v nor
v < wu, therefore the nodes of V, \ V,, , are incomparable and cannot be
ordered. This represents the fact that all variables in @y, are condi-
tionally independent of each other given the variables ¢, and may be
sampled independently of each other in any order, as long as the values
of @y,  are already known.

Similarly to the way the conditional probabilities P(zy,\y, , | @y, )
are derived from the marginals P(zy, ), the digraphs D; = (V;, A;) and
their union D = (V, A) are conStructed from the undireéted graphs G,.
More precisely, the directed edges (u,v) € A, of the digraph D, are
defined using the undirected edges (u,v) € E; of G,, with the direction
pointing from v € V., toward v € V; \ V,_ ;. Therefore the digraph D =
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(V, A) contains all the conditional independence information contained
by the collection of graphs G; and additionally encodes the precedence
among its nodes.

This fa¢t makes the digraph D very useful both from a theoretical point
of view and as an element of a practical software implementation. From
the theoretical standpoint, the digraph is the glue connecting the seem-
ingly disconnected lattices G, and explaining the benefits of the entire
methodology. Equally importantly the fact that the dependency informa-
tion is encoded in a single structure of relative simplicity is of tremendous
help, because independently of how complex the coarsening algorithm
might be, its final product is the digraph D.

3.7 DISCUSSION

We have described how an arbitrary probability density P(x, ) may be
described using the language of graphical models. We used this frame-
work to study the conditional independence relations between the vari-
ables of x|, by encoding them using a dependency graph G = (V| E). We
showed how marginalization affe¢ts the dependencies between variables
and used the dependency graph to follow those changes without the need
of computing the marginal probability distributions.

We used these developments to construct a class of algorithms for com-
puting symbolically a ladder of nested subsets V; and the related depen-
dency graphs G, = (V,, E;), such that the knowledge of the marginal
density P(xy, ) allows for efficient computation of the conditional proba-
bility density P(xy\y, , | @y, ). The variables may therefore be sampled
using the acyclic form of P (). Unfortunately, the exat algorithm for
computing the dependency graph is not feasible due to the extreme com-
putational cost of computing exat marginal distributions. Instead, the de-
scribed class of algorithms performs an approximate calculation, requir-
ing the tuning of various components to suit the problem at hand. To
simplify the at times complex description, we provide below a suggested
algorithm that should be used as an initial choice.

3.7.1 Recommended algorithm

There are four parts that need to be combined in order to construct a
working coarsening algorithm:

« independent set algorithm,

» reconnecting algorithm,
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« Stopping criterion,
« lateral densening,

with the last one being optional.

The choice of the algorithm for finding an independent set is fairly
clear, with the Algorithm 2.3 due to Prof. Richard M. Karp being both
fast, relatively straightforward and able to reproduce the expected results
in the case of Cartesian lattices.

The reconnecting algorithm is used to decide which nodes of the newly
found set of nodes V;,; should be connected by edges. In other words,
it attempts to decide which random variables in xy,  should affect each
other. While the vast literature on renormalization did not consider the
problem from the point of view of graphical models (Brandt and Ron,
2001b; Chorin, 2008), all published papers unwittingly chose to connect
nodes based on a distance criterion scaled by the smallest distance be-
tween nodes, with edges formed between nodes u,v € V;_; such that

p(u,v) < C;,; min p(a,b).
‘/i#»l
Therefore, we recommend that the same condition be used, with p : V' x
V' — R being the natural metric typically associated with the problem
at hand, such as a p-metric for Cartesian latices. In cases where no such
metric exists, we recommend using the shortest path distance between
nodes u and v as computed on the original graph G = (V, E).

The Stopping criterion refers to the choice of the final lattice V,, at
which point the coarsening procedure ends with a marginal density
P(xy, ).Due to the fact that the graph G,, = (V,,,, E,,,) is not acyclic, we
recommend to end coarsening at a point when only a single variable re-
mains. This particular choice greatly simplifies the algorithm because the
State ¢y, may be determined by sampling a single variable and the com-
putation of the marginal distribution P(zy, ) is frequently particularly
straightforward.

Finally, the lateral densening may or may not be included. While it does
complicate the code due to the extra lateral recursion, in addition to the
already existing vertical one, we recommend that it is included in any
serious implementation. The costs associated with the need to compute
multiple marginal densities P’ (zy,) may be reduced to those of comput-
ing only one such density, as explained in the later chapters. Additionally,
there exists a synergy with the particle filtering algorithm described in
Chapter 5, allowing one to reuse these marginal densities to further im-
prove sampling quality. Finally, the implementation difficulties may be
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solved by requesting that the entire coarsening algorithm produce a Di-
rected Acyclic Graph (DAG) D = (V, A) rather than a lattice of graphs
G, = (V,, E,), thus hiding the complexity of the coarsening procedure.
We recommend that one or two passes of the lateral densening be per-
formed, as further improvements are limited to affe¢t no more than !/16
of the variables in y, .
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MARGINALIZATION

In the previous chapter, we $tudied the marginal density

Plzy) = /P(wU7wV\U)d$V\U (4.1)

from the point of view of its graphical structure. We have found that
the conditional independence $tructure, thus also the fatorization, of
the marginal probability density can be read from the dependency graph
Gy = (U, Ey;) obtained from the dependency graph G = (V, E) describ-
ing the original probability distribution P(x,). For u,v € U, the fact that
there is no edge connecting the two nodes direétly, i.e. (u,v) ¢ E, im-
plies that the variables z,, and x,, are conditionally independent given the
remaining variables , ,, ..y, and can be written as

('LL,’U) ¢ EU = Ty 1 Ly ‘ wU\{u,v}‘

This is equivalent to the fa¢t that the probability density P(x;,) factorizes
according to

Plxy) = ZLUFu (7020 guap) B (200 T0 ) -

We will find useful a corollary of the above, namely that for any v € U, the
set of neighbors N (u) in the graph G, = (U, E|;) shields the variable z,,
from the influence of the remaining variables. More rigorously, we may
write

1
P<wU) = Z_Fu(l‘uﬂ wN(u))Fa<wU\u) (42)
U

splitting the probability into two parts, with only F, (z,, Zy,)) depen-
dent on z,. Armed with this observation, we move on to the main topic
of this chapter: the computation of an approximation to the marginal den-
sity P(x;) forany U C V.

Computing the marginal probability P(x;) from the definition (Equa-
tion 4.1) is a futile enterprise in most situations, because the integral in-
volved is of very high dimensionality and the integrand is extremely com-
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plicated. Additionally, it would require re-computing the expensive inte-
gral for every value of x;, further increasing the computational costs.

An entirely different approach is needed and comes from the work of
Chorin, Hald, and Kupferman (2000) on optimal prediction in the face of
unknown data (Chorin, 2003; Chorin, Hald, and Kupferman, 2000, 2002;
Chorin and Stinis, 2005). They noticed that the logarithmic derivative of
a probability density becomes an expected value, a quantity much easier
to compute approximately than the marginal probability density. Chorin
(2003) expanded upon this observation, creating the fast marginalization
method (Chorin, 2008; Okunev, 2005).

Because of the differences between the cases of distributions defined
over continuous and discrete variables, we will discuss them separately,
beginning with the continuous case.

4.1 THE CASE OF CONTINUOUS VARIABLES

Consider a variable =, for v € U C V. By definition, the marginal
probability density P(x;) is

P(zy) = P(%»CUU\u) = /P(%,wU\u,QUV\U)di\U-

Make the mild assumption that P(x;;) > 0. This allows us to define the
Hamiltonian W () associated with the probability distribution P(x ;)

by
P(xy,) = eXP<W(‘13U)>/ZU.

Substituting it into the definition of the marginal density P(x ;) yields
eXp(W(mU))/ZU - /P(fcw T\ Ty\v)dTy\p-

We apply the logarithmic derivative (8 / axu) In to both sides,

0

P [W(xu, T ,,) — In ZU]

0
= 8_:c'u [ln (/ P<$uawU\uawV\U>de\U>] )
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obtaining
0 p p
OW(z,, zn,) O, (T Tyyus Ty ATy
ox o
“ /P<xu7wU\u7wV\U>de\U

Simplifying further using Equation 4.2, we have

1 /6Fu('xu’$N(u)>

OW (@, Tyn,) - Z_v Oz, Fo(xpw, Byvyp)dayy
Ox B
“ /P(xu’wU\uva:V\U)di\U
/aFu<mu7wN(u)> f)<xu?azU\u7wV\U)d£c
8xu Fu(xu7 wN(u)) VY

/P(xuawU\qqu\U)de\U
aFu(‘ru’wN(u)) ]
$U 3

oo,/ Ful@u @)
which is a generalization of the primary result of Chorin (2003, 2008) and
Okunev (2005).

Henceforth we always use the Lagrange notation f’'(z,) to imply a
derivative with respect to x,,. All other derivatives will be using the Leib-
nitz notation df(x,)/0x, to avoid confusion. The graphical $tructure of
the marginal probability distribution P(x,) discussed in Chapter 3 $tates
which variables among @, the derivative W'(z,,, 5, ) may depend on.
We obtain the equivalent results here using an algebraic argument. Com-
pute the derivative W'(z,,, ;) by taking a logarithmic derivative of
the marginal probability distribution P(x). Using a splitting analogous
to that of Equation 4.2, we obtain

, 0
w (xll,’mU\u) = aTlnP<mU)

u

0
0
ox

u

In Fg(%a wN(u))

Therefore, W'(x,, ®y,) is a funétion of only x, and the variables
Z n(,) that are in the neighborhood of the node u on the dependency
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graph G, = (U, E;), a result consistent with the graphical arguments
of the previous chapter. Thus, we may write W’(z,,, @ y,,) instead of
W/($u7 wU\u)

This observation affects the choice of basis described in Section 4.1.3.
If W'(x;) were a function of variables beyond @y ,), the probability
distribution P(x ;) would not have a conditional independence $tructure
consistent with the graph G, = (U, Ey;). Therefore, the approximation
of W'(x,;) must respet these constraints.

4.1.1  Projeltion

Let the vector spaces X, and X; be the spaces of functions of x,, and
x;, respectively. We wish to find an approximation of W' (z y,)) € Xy
within the subspace X, < Xi; of functions spanned by a basis ¢,

M=

flzy) e X, = flzy)= c;0:(xy),

=1

where K' = dim X is the size of the basis and the dimension of the
subspace X ;. We leave the discussion of the particular choice of ¢ until
Seltion 4.1.3.

We want to find the best approximation in the least squares sense. We
define an inner product through

P(xy)
Qzy)
where Q(x;;) > 0 is a weight discussed in Section 4.1.2. We define the

distance between W' (xy,,) € X, and its approximation W/(a: Nw) €
X4 to be

dzy;, (4.3)

(frg) = / Fe)g(xy)

p(W/ W) =W —W'|?
= (W W, W W)’
K K 2
= <W/ - Zci¢i7 W’ — Zcz¢z> .
=1 i—1

This is minimal when

~

op(W’', W) 0
oc; O,

7

K K 2
<W/ - Z i W — Z chbj>
j=1 j=1
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K
=2 <W’ =D ¢i>

Jj=1

=2 [<W/7 ¢;) — Z C; <¢j7 ¢1>] )

J=1

are equal to zero for each ; thus, we obtain a set of K linear equations

M=

Cj<¢j7 ¢’L> = <W/7 ¢z>

=1

Writing ¢ = (¢, Co, ..., Cx) and b = (by, by, ..., by ) we obtain a linear
system Ac = b, where A = (A;;), A;; = (¢;, ¢,), is the K x K symmetric
positive definite Gram matrix for the basis ¢ and b, = (W', ¢,).

We compute the terms A,; and b, from the definition of the inner prod-
uct. The simpler term of the two, Aij becomes

Aij = <¢m ¢J>

The crucial $tep in the derivation is the change from an expected value
with respeét to P(x;;) to an expected value with respect to the original
probability distribution P(x, ). This allows us to approximate the inner
produét without the knowledge of the marginal density P (), but sim-
ply through sampling $tates x,, from the original probability distribution
P(xy).
The projection vector b presents us with a bit more difficulty.
by =W’ ¢;)
P(xy)

= /W/(mN(u))d)i(mU)mdwU
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_ / b,(wy) /P<wv>de\U Q@)

The denominator is the marginal density of x;;,

/P(wv)dch\U = P(zy),
so that

| OF (@, @y,
b‘:/ E,( ot ) pa ),

Since this is an expected value with respect to the original probability
density P(x,, ), sampling from the original model allows us to compute
the terms of the least squares equation.

The resulting linear system Ac = b can be solved using the Cholesky
decomposition A = LL", the QR decomposition A = QR or the Singu-
lar Value Decomposition A = UX V™. Practice shows that for §trongly
coupled systems, such as the Ising model with large s, the matrix A is fre-
quently numerically singular. The QR or SV decompositions help handle
these degenerate cases gracefully. Using the solution vector ¢ we obtain
a series

=1

which can be integrated to obtain an approximation of the Hamiltonian
W (), and hence of the marginal probability density P(x;).

4.1.2 The weight factor Q(x;)

Throughout the derivations we have kept track of the factor 1 / Q(x;) that

was present in the inner product definition. The motivation for introduc-
ing Q () comes from the observation that the inner produ¢t used in the
least squares approximation above is inherently biased. The weight is pro-
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4.1 THE CASE OF CONTINUOUS VARIABLES

portional to P () and typically W’ (x,,) is small around the maximum
of P(x), causing the bias in the approximation.

The bias is not present, however, when the basis ¢ is orthogonal with
respect to the inner product. The use of an orthogonal basis has additional
advantages, because projection onto an orthogonal basis ¢ would be more
stable numerically, cheaper computationally, and would make the expan-
sion coefficients c independent of the size of the basis. Unfortunately, due
to the weight factor P(x ), the orthogonal basis is problem dependent,
and in general, would have to be computed numerically. The orthogonal-
ization of the basis ¢ would necessarily reduce to the QR decomposition
(Francis, 1961, 1962; Kublanovskaya, 1962; Ky6manosckas, 1961) of the
Gram matrix A, leading to an orthogonal basis ¢’. Computing an up-
dated Gram matrix A, using the same random samples as those used to
compute A & indeed leads to a diagonal matrix, but it does not affe¢t the
errors due to the use of a truncated basis. That is, although the functions
included in the basis ¢" are orthogonal, the remaining functions that are
beyond the basis are not orthogonal to those in ¢’; therefore, their biasing
influence remains.

An improvement to the above is the use of a weight factor Q(x,) that
partially eliminates the weight P(x), at the cost of a broader weight
distribution. Using Q(x;) = P(x;) would make the inner produét uni-
form and allow for the use of an orthogonal basis (Binney et al., 1992),
however the resulting weights would span an enormous range. Instead,
we note that using Q(x;) = P(Ty,)) also allows achieving a uniform
inner product. Substituting this particular choice into the definition of the
inner produ¢t from Equation 4.3 leads to

P(xy)
) = [ Fomoisenn) o i
_ f wN(u)>g<wN(u))
/ P(x) (/ P(wU>dwU\N(u)> A )

turning the weighted inner product into a uniform inner produ¢t for func-
tions of @y, This choice of Q(x;) makes it possible to use an orthogo-
nal basis ¢ that is not specific to the statistical model under study.

The use of the weight factor Q(x,,) works differently from choosing a
numerically computed orthogonal basis using the QR decomposition. The
QR decomposition does not achieve more than simply solving the original
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linear syStem A c = b. On the other hand, the application of the factor
Q(x;;) modifies the inner produét used and partially removes its bias.

The weight factor Q(x;;) does not have to be exadt; in fact, using an ap-
proximate Q(x,) = P(x N(u))> Obtained e.g. using the fast marginaliza-
tion method, also leads to a marked improvement. However, the benefits
decay with the size of the neighborhood N (u). Computing the marginal
of the set of nearest neighbors of the node u is often sufficient.

The computation of the Q(x,) fattor is frequently costly and adds com-
plexity to the fast marginalization method. For example, if the nearest
neighborhood N (u) consisting of five nodes is used to compute the fac-
tor Q (), the number of linear projections to be performed grows by a
factor of five as well. However, we find that the use of this correftion is
necessary to overcome the bias caused by the inner product.

4.1.3 Choice of a basis

Thus far we have assumed that the basis ¢ is given. The choice of ¢ is
generally very straightforward, but with a few important caveats. We
open with the description of a polynomial basis and move on to discuss
requirements for the basis terms that may be used. Finally, we discuss
an algorithm that constructs a basis given the information obtained by
the graph coarsening algorithm described in Chapter 3: the dependency
digraph D = (V, A) and the collettion of subgraphs G,, = (N(u), E,)
foreachu € V.

4.1.3.1 Basis functions

We use here basis funétions which are monomials in @y, eg.

" Ty’ T . The number of terms of order n in m variables is given by

+m—1
<”m7ﬁ1 )’

#n,m -

growing very quickly with the number of variables and the order of the
terms. The basis funé¢tions must be limited to low order monomials.
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4.1 THE CASE OF CONTINUOUS VARIABLES

4.1.3.2 Integrability condition

The approximation W’(a: N()) of the derivative of the Hamiltonian
W’ (x ) must satisfy an important consistency condition to ensure

that a unique function W () exits, such that

8W(wU) 77

“ow, W (xy,)
for every u € U. This integrability condition is equivalent to requiring
that the Hessian of W (x ;) be symmetric, that is,

0 aw(wﬁ(u)) 0 GVAV(CUN(U))

oz oz ozx oz

v u u v

for any u, v € U. This is not immediately satisfied by the approximation
W’ because the derivatives are obtained independently using a stochastic
algorithm.

With our choice of basis, the integrability condition translates into the
following two requirements. Denote the basis at nodes u,v € U as ¢,
and ¢,, respectively; similarly, let ¢* and ¢” be the expansion coefficients
for the partial derivatives of W () with respeét to the variables x,,
and z,. The fir§t requirement is that if the basis ¢, contains a function
¢, o< P~ 1x4, then the basis ¢, must contain the funétion ¢, P it
Secondly, the coefficients ;' and ¢i must satisfy

These relations are a consequence of the theorem of Hammersley and
Clifford (1971):

Theorem (Hammersley-Clifford). A probability distribution P(x,,) is both
(i) $tri¢tly positive and (ii) respeclts the conditional independence Structure
encoded by the graph G = (V, E) if and only if it factors over the cliques
of G.

The requirement about the conditional independence $§tructure can be
written as z,, L x, | @y, if and only if (u,v) ¢ E, while the factor-
ization means that one may write

P(xy) = HFC(C‘?C)
c
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for all subsets C' C V for which the subgraph G|, is a clique. As a
corollary, the Hamiltonian W (x,,) factors as

Wi(zy) = Z In Fe(z ).
c

Since P(x;;) > 0, by the Hammersley-Clifford theorem, we may write
that if (u,v) € Ey, it follows that there exist terms of the form ca?xz?
in the expansion of W (x;) in the basis ®, where ¢ = c(yn ) 1s
independent of z,, and z,,. Take such a term and call it &, = caPxd. The
terms 09, /0zx, = cpzP~ 'zl and 0P, /Ox, = cqrPz?! must therefore
appear in the expansions of the partial derivatives of W (x ;) with respect
to =, and z,, respectively. Letting ¢ = 2P~ 127 and o5 = P97 we see
that they represent the same term in the expansion of W (), and thus
the coefficients ¢ = cp and ¢ = cq must satisty the relationship above.

4.1.3.3 Reduction by symmetry

Probabilistic models defined on regular lattices frequently involve symme-
tries. For example, the Ising model on a square lattice inherits the com-
plete set of symmetries of the underlying Cartesian lattice: rotation by
/2, m and 37/2, refle¢tions about the major, 7/4 and 37/4 axes, translation,
and their arbitrary compositions. Many basis functions can thus be seen
as images of each other under symmetry transformations.

Choose two cliques C',C” C U and construct two basis functions @
and ®., of the same functional form. If the clique C” is an image of C'
under the symmetry transformation -, written as C’ = ~(C), then the
two basis functions must be equivalent, that is, their coefficients in the ex-
pansion of W (x;) in the basis & must be equal. For example, in the Ising
model the only cliques are edges and all edges have the same coupling co-
efficient 1, because each edge can be mapped onto any other edge by the
symmetry transformations. This observation allows one to link certain ba-
sis functions, because their expansion coefficients must be the same, thus
reducing the size of the needed basis.

EXAMPLE 4.1. In the Ising model example, consider the linear basis func-
tions ;.4 ;, @ z; ;+1 and z; ; ; appearing in the basis ¢ for the ex-
pansion of oW (zy) / 633”.. By the Hammersley-Clifford theorem, these

basis funétions correspond to the terms ;1 ;, ©;;T; 1 j, T;;; ;11 and
T,;x; ;, appearing in the expansion of W (x;). The subsets of nodes U
these terms correspond to are clearly equivalent under symmetry trans-
formations and their basis coefficients must be equal. We combine them

into a single basis funétion =, ; + z;  ; + x; ;1 + 7, ;_; that corre-

i_lmj’
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4.1 THE CASE OF CONTINUOUS VARIABLES

Algorithm 4.1 Basis reduction algorithm using the equivalences between
basis functions due to symmetry transformations ~.

function SYMMETRYREDUCTION(¢, )
¢ =0
for all ¢, do
¢ ¢\ &
for all Yy do
¢i A 7j(¢i)
for all ¢, do
if ¢/ = ¢, then
Y+ o
end if
end for
end for
¢ ¢ U
end for
return ¢’
end function

sponds to the term @, (v, ; +2; ; ; +, ;1 +2;; ;) in the expansion
of W(x,;). We have reduced the basis by three functions without reduc-
ing the size of the subspace X ;. This reduction is not possible if the graph
G, = (U, Ey) is not symmetric, even if the original graph G = (V, E)
was. |

4.1.3.4 Consistency and dependencies

The fact that the images of basis functions under symmetry transforma-
tions ¢ = ,(¢;), defined in Algorithm 4.1, may be functions of variables
beyond those of x y,, is of crucial importance and is mentioned by Ron
and Swendsen (2002). Following their example, we make the point in a
simple context. Consider the Ising model and an approximate renormal-
ized graph G; = (U, E;;) where the nodes U form a regular lattice and
edges are formed only between the nearest neighbors. Because of the as-
sumption made in the graph G; that the variable z;; depends only on the
variables x; .y ;,x; ; ;,; ;;; and x; ; ;, a naive algorithm for construct-
ing the basis ¢ would produce a basis containing all the polynomials in
the neighboring variables,

1, =z

X X

it1,50 INESR i+1,jTi,j+15
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Lix1,j%i-10  Liv1,Ti-1,50  Lijr1Tij-15

Lit1,5%i-1,3%i 5415 Tiz1,5%i5-1%i 415
where the absence of the variable z;; is explained in later se(tions.
Consider the cubic funétion ¢, = ., ;% ,,,%; ;; shown on Fig-
ure 4.15. Because of the consistency requirement, the function ¢; =
Tiy1%; j12; 1, must belong to the basis of the node x, ; ;. However,
the graph Gy, assumed that the variable z, ;,, depends only on its
nearest neighbors x; , ;.1,%;4 ;41,%; ;41 and ;. Due to the consis-
tency requirements, the choice of a basis function x,; 4 ;z; ;. 12, ; ; at
the node x,; forces additional dependency relations between the nodes

T; ;11> Ty 5 and T, ; that are inconsistent with G, because the edges

(G410, 41,9)), (G +1), (i=1,5)) and ((i=1,5), (i+1,j) ) do
not belong to E;. Therefore, the highest order basis function consistent
with G, is the linear term. Inclusion of higher order terms leads to break-
ing the consistency requirement and thus lack of a Hamiltonian W(a:U)
consitent with the partial derivatives W’ (x N(u))> While expansion of the
basis to include the additional basis functions required by the consistency
requirement causes a break in the dependency graph G/;. This is a funda-
mental failure, because the renormalized coupling coefficients obtained
using an inconsistent basis cannot be used to reliably approximate the
marginal probability P(x;). In practice it is found that an inconsistent
basis may bias the probability distribution of the Ising model so that only
states of positive magnetization have significant probability densities.

The solution to this troubling development is to respect the dependency
graph G; and remove the basis functions that would cause consistency
issues. Take the subgraph G|y, consisting of the node u and its neigh-
borhood. To ensure that the basis is consistent with the dependency graph,
we allow only basis functions

k
¢ = H Ty®

veC

such that the set C'is a clique of the subgraph G ;|- This requirement
guarantees that adding the above basis function ¢, does not form addi-
tional edges in the dependency graph G ;, because all possible edges be-
tween the variables v € C already exist. Therefore, the graph GG; remains
unchanged and the basis ¢ is consistent.
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4.1 THE CASE OF CONTINUOUS VARIABLES

(b)

Figure 4.15: The cubic basis function (a) x; ;1 ;jz; j112,_1 ; and its equivalent
funétion, (b) =; 11 j 112, j11%;-1, j+1- The node z;; is marked red,
while the remaining nodes of the particular basis funétion are col-
ored blue.

4.1.3.5 Praétical basis construétion algorithm

The above restri¢tions placed on the possible basis choices are combined
to create an algorithm for constructing a basis, described in Algorithm
4.2. The main feature of the algorithm is the outer loop. We loop over
the cliques of GG, and consider each such clique C' separately. Within the
clique C' we are free to consider all combinations of variables x,, v €
C. We choose to form all possible monomials of variables x . that have
order smaller or equal to m, with the monomial defined by the powers
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Algorithm 4.2 Algorithm for construéting a basis ¢ for W’ (x,) at node
uel.
function BAsisCONSTRUCTION(G,, = G7| (s 1 M, T}, )
¢+ 0
for all cliques C' € G,
for i = 0 to m do

C|<ndo

c|
for all ky, ky, ..., ko with Y "k, =i do
j=1

=
C" ={v;|v; € Cand k; > 0}
if 7(C”) < T, then
o ouU ] =
v,;€C’
end if
end for
end for
end for
¢ — ELIMINATEDUPLICATES( )
¢ < SYMMETRYREDUCTION (¢, )
return ¢
end function

ki k ko .
ki koo s kiop as To o) . xv“c“. Because the number of such monomials

may be very large, we allow only those that involve nodes forming a
sub-clique C” of radius 7(C”) < T, where T, is the maximum radius
for monomials of order i.

The Algorithm 4.2 will constru¢t certain functions multiple times. Dupli-
cations will occur when two cliques C' and C” have an interseétion, with
the trivial interse¢tion C' N C” = () leading to the generation of a constant
function once for each clique. The duplicate functions are eliminated once
the entire basis is formed. Reduction of the basis using symmetries is ap-
plied as the last step of Algorithm 4.1.

4.1.4 Representation of the marginal probability

The fast marginalization method does not produce an approximation of
the marginal probability density P () directly. Instead, it gives us an
approximation to the partial derivative of the Hamiltonian, W’(m N(u))-
This approximation may be used to compute various quantities of interest,
with different levels of difficulty. We discuss the three most important: (i)
the energy difference between two states x;; and vy, (ii) the conditional
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probability of z,, given the remaining variables &, ,, and (iii) the unnor-
malized marginal probability density P(x,).
4.1.4.1 Energy difference

The energy difference between the states x;; and y;; is the difference in
the value of the Hamiltonian W evaluated at the two states,

AWz, yy) = Wyy) — Wixy).

This quantity is of interest, because it is the logarithm of the ratio of
probabilities of the states x;; and y;,

i (i)

) = Plys) ~ 1 Play)

=W(yy) — Wi(zy)
= AW(zy, yy)-

The ratio P(y,)/P(x) appears in the Metropolis-Hastings probability
of accepting a proposed move x;; — y;;

_ Plyy)Plyy — zy)
) = Bl Play 5y

where P(x;; — vy ) is the proposal probability (Liu, 2001; Metropolis
et al., 1953; Robert and Casella, 2004). Our representation allows for an
efficient computation of AW (x;, y;;) when the change between x; and
Yy involves a single variable, that is, when

xU\u = yU\u but Ly, # Yu-

The single-variable energy difference A, W (xn,; %, Y, ), representing
the difference in the value of the Hamiltonian AW(a:U\u, T T v,) =
W(iEU\u, Yu) — W(:BU\U, x, ), may be approximated by

~ Yu |
AuW(mU\u; Lo yu) = w’ (',BN(u)7 S)dS

Loy

Yu K
= [ coen s
T, =1

yu
Ci/ ¢i<wN(u)78)ds'

x

-

Il
—

? u
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The general energy difference AW (x;, y,;) may be decomposed into a
sequence of single-variable energy differences and approximated by their
sum, a technique used later in this chapter to reconstruct the marginal
probability density P(x).

4.1.4.2 Conditional probability

We are interested in a slightly modified form of the above energy dif-
ference. The Chapter 3 ended by construdting a dependency digraph
D = (V, A), which may be used to write the probability density P(xy,)
in the acyclic form

P<m\/) = P(w‘/;n) X P(:Eu\VT”H~1 | mNp<u‘V7n‘+1))X

Ui Uy | wNP(“\V\—l))‘

We would like to compute the conditional probability of x, given its di-
rect predecessor variables xy (), P(z, | wNp<u)). Assuming that u € U,
N,(u) C U and that N(u) C N,(u), where N (u) is the set of neighbors

p

within the graph G, = (U, Ey;) while N, (u) is the set of direct prede-
cessor nodes of v within the digraph D = (V, A); we may compute this
conditional probability very efficiently from the definition

_ P(xu,a:U\u)
/P(t,wU\u)dt
Fu(xu7mN(u)>Fa(wN(u)7mU\N(u))/ZU
/<Fu(t7wN(u))Fa<mN(u)7wU\N(u))/ZU) dt
E, (z,, a:N<u))

/Fu<t7 wN(u))dt

P(:Eu ‘ mNp(u))

Note that in this context we may use N, (u) and N(u) interchangeably.
The funétion F, (z,, Np(u>), appearing earlier in Equation 4.2, is the ex-
ponential of a local part W, (z,,, T y(,)) of the Hamiltonian W (z,,), de-
fined below. Because the probability P(x,) fattorizes as in Equation 4.2,
so does its logarithm, allowing us to write
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4.1 THE CASE OF CONTINUOUS VARIABLES

It follows that W'(z;;) = Wi (z,,®y(,)) We can therefore compute
W, (x,, T y(,) up to an additive constant,

We fix the constant by selecting a reference value of ,, = z*. Then,

F,(z,, fBNp(u)> F,(z", iUNp(u))

/Fu(t7wNp(u)>dt F (2" 2y ()

P<xu ‘ wNp(u)) =

Fu(l‘u, mNp(u)>/Fu(fL’*, wNp(u)>

_/(Fu(t,wNp(u))/Fu(x*,:ch<u>)> dt
exp (AHW<$U\U7$*7:B1L)>

/exp (AUW(QZU\U; x*, t)) dt

Y

where A, W (x ;7" z,) is the single-variable energy difference de-
fined previously. Finally, we may write

K .,
exp (Z Ci/ ¢i(wNp(u)73>d5>
i=1 x*

K t ’
/exp (Z Ci/ (bi(wNp(u)aS)dS) dt
=1zt

which is a self-contained formula for an approximate conditional proba-
bility of x, given the neighboring variables @ ).

~

P<xu ‘ wNp(u)) =

4.1.4.3 Marginal probability

The reconstruction of the marginal probability P(x;) from the approxi-
mation of the derivative W’ (x;;) can be accomplished using the follow-
ing algorithm. Pick a particular $tate x; such that P(x};) > 0 and specify
that the Hamiltonian attains zero at xj;, that is W(w’{]) = 0. While any
State xy; satisfying the above positivity constraint P(x;,) > 0 is allowed,
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numerically it is preferable that a state of average probability be selected,
defined as a State }; such that

2
x} = argmm /W Yy) a:U)dyU> .

This choice ensures that the values of the exponential

~

exp (W(wy)) ~ exp (W(xy,) — W(ap))

can be computed with minimum round-off error.

Given a choice of xj;, we conétrué a sequence of §tates {y};} with
yY = x}; and yU = x;;. The sequence {y},} must have the property that
any two $tates yi; and yi/ ' differ in the value of only a single variable

T, . Therefore,

AW(vay;]Jrl) Ale<y%]7yy 7%“)
We may express the energy difference AW (zy;, ;) as

J—1

AWQBZ'; wU) = Z A W(yU7 yv 7yz;+l)7

=0

giving a natural definition of W (z,) as

~

W (xy) = <wa>+AW<w*U,wU>

b

A, Wyl b, yith),
=0

since W (z},) = 0. Finally, the approximate marginal probability P(x,,)
is defined to be

P(ay) = ex0 (W(@0)) /7, (),

completing the reconstruction. While we do not know the value of the
normalizing constant ZU(:B’{]), its value is determined uniquely by the
choice of the §tate «}, and the approximation W (z,,).
In models considered in this thesis the above approach always produces  Problems could appear if
a well-defined probability density P (). The process consists of a finite i &Uga‘fsr;ze’rﬁefguse

number of steps, thus we do not need to worry about convergence of  then the Hamiltonian
the sum. More importantly, the assumption P(a,,) > 0 implies that the ~"(®v) wouldbe infinite.
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Hamiltonian is always finite; therefore, independently of the choice of the
sequence {y};}, the algorithm will never involve performing undefined
operations, such as co — co. Because of this, the simplest path involving
changing components of x;; in a pre-decided ordering will lead to a cor-
re¢t reconstruction algorithm.

4.2 THE CASE OF DISCRETE VARIABLES

The methods described earlier are mostly compatible with probability dis-
tributions defined over discrete variables, as the algorithms necessary for
graph coarsening and sampling are compatible with both discrete and
continuous variables. However, the fast marginalization algorithm seem-
ingly hits a wall when we need to take a derivative with respect to z,,. In
this section we solve this difficulty by using differentiable extensions.

4.2.1 Projeltion

We want to note that the issues involved in the application of the fast
marginalization method to discrete variables were observed earlier by
Okunev (2005), who suggested that the variables may be made contin-
uous one at a time, producing a hypercube with edges corresponding to
the continuous variables. However, both Okunev (2005) and Chorin (2008)
assumed that the function W, (z,,, ® y,,)) obtained using fast marginaliza-
tion is constant in the continuous variable x,,, which was not the case.

4.2.1.1  Derivative projection

We modify the fast marginalization method through the introduction of
a differentiable extension of P(x, ), allowing for differentiation to take
place. Throughout this setion we denote the differentiable extensions of
otherwise discrete functions using the tilde, e.g. the differentiable exten-
sion of P(x,,) becomes P ().

Assume the probability distribution func¢tion P(x,,) and its marginal
P(x;) are defined over discrete variables. Integrals are to be understood
as summation over the relevant variables. For u € U, extend the variable
x,, to the real line, changing notation from x,, to x,, to reflect this change.
We define a differentiable extension JS(Xu, Ty Typ) of the original
probability density P(x, ) such that

~

P(Xw Zivus Brvv) = P20, Ty Tyyo),
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that is the differentiable extension equals P(z,,, Z{n,,; Ty, ;7)) Whenever

the continuous variable ,, takes one of the original, discrete values.
Having chosen the interpolant P (Xus Tprius Tynp) defining the differ-

entiable extension, we obtain the differentiable extension of the marginal

probability P(x,,) through
P(Xu7mU\u> = /P(XuawU\uamV\U>de\U'

The differentiable extension P (Xu> T1r\u» Typ) uniquely determines the
differentiable extension of the marginal probability distribution, which in
general is a non-linear function of the continuous variable x,. We notice
that P(y,, Zrn,,) is an interpolant of P(x,,, @y, ), since for a discrete X,
taking one of the original values we have

P('Iu?wU\u) = /P(xime\u?wV\U)di\U

= /P(xme\u?mV\U)de\U

= P(‘/EUJ wU\u)

However, while the interpolant used to define P(Xu, Tp s Ty\p) MAY

be a low-order funétion of ,,, the marginal digtribution P(z,,, Trp,,) Will
typically be a highly non-linear function of x,,.

The derivation of the fast marginalization equation follows directly the
steps discussed in Section 4.1, where we use the differentiable extension in
place of the probability distribution function. Denoting the differentiable
extension of F),(z,,®y,)) of Equation 4.2 as E(z, N(u))» the final
result becomes

which is precisely equivalent to that obtained for the continuous variables.

~

ow , aﬁu(Xu’ € u) ~
8X 8Xu u\Auwr “V\u

u

Therefore, we may approximate W’(Xu, T ,) through fast marginaliza-
tion.
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In a step absent from the continuous case, we recover the discrete
W (z,, z(n,) by integrating W' (x,, @;n,,) between the original discrete
values, obtaining

b
AuW(wU\u’ a, b) = w’ (Xu7 wU\u)qu

= W(b,zp,) = Wiz,
= W(b7 mU\u) - W((l, wU\u)

for two discrete values a and b of z,. Because the value of the inte-
gral is fixed, the method does not depend on the particular form of
the differentiable extension (cf. Section 6.6.5). Although the function

ﬁ/’(xu, x ) will depend on the choice of the differentiable extension

~

P(Xy» s Ty ), the integral will not. However, we stress that the val-

ues of the function W’(Xu, T(n,) are not independent of the choice of
interpolant, which has a major influence on the performance of the nu-
merical method.

4.2.1.2 Natural interpolants

The probability distribution P(x, ) may be interpolated in multiple ways.
If the variable z, takes only two values, z, € {a,b}, the probability
distribution may be interpolated linearly as

“’ Xy — @ Xu — @
P(Xua$V\U> = (1 T h—a )P(aaiBV\U> + mp(b7mV\U)v

which can be differentiated with respect to x,,, yielding

aﬁ(XQM wV\U) 1
dx T h—_a <P<bﬂmV\U> - P(a7wV\U)) :

u

This formula may then be used directly in the above fast marginalization
equation. However, frequently there exists a natural interpolant, since the
probability distribution P(x, ) is defined through a formula that may
be extended to continuous variables; therefore, the formula ats as the
interpolant. For example, in case of the Ising model we have

P('mN(u)) X exp (:uwu Z xv) )

vEN (u)
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which may be trivially extended to continuous values by replacing z,,
with x,,, giving

aﬁu(Xu’ wV\u)

8Xu /Fu(XuJ mV\u) =H Z Ly-

veN (u)

This choice reduces the method above to that of Chorin (2003, 2008) and
Okunev (2005).

4.2.2  Choice of a basis

Having explained the machinery used to taking a derivative
W (X, Z;p ), we return to the question of how W (X, ) should be
represented and introduce the mixed continuous-discrete representation.

4.2.3 Mixed projeétion

While the variables @, remain discrete, the variable x,, is continuous.
It does not have the same limits in terms of indistinguishableness of poly-
nomials, therefore the complete basis for the funétions of x,, and @y, is
the outer product
¢ = {1, Xus X X5 s Xy @ {1z, }
®{lz,}®..®{l, xv‘N(u)‘}

for vy, vg, ..., V() € N(u). However, after computing the expansion,
we are only interested in the energy difference

AuW(wU\u’ a, b) = W(xu = b7mU\u> o W(xu = a, wU\u)

b

Therefore, the basis functions {1, x,,, X2, X3, ..., x™} are immediately in-
tegrated out, suggesting that a more efficient approach may be employed.
4.2.3.1 Mixed representation

Numerical integration of a function requires us that we know its value at a
set of quadrature modes. Therefore, instead of representing W (X, © x(,))
continuously at all possible values of x, we find a set of approximations
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4.2 THE CASE OF DISCRETE VARIABLES

for y, taking values from the set of quadrature nodes {t,,t,,...,%,}. In
other words, inStead of the series

~

W’ (X $N(u)> = Z ¢;9:(Xus mN(u))

we will expand W (x,,, x N(u)) I a series

~

W,(qu wN(u)) = Z cz(Xu)¢z(wN(u))a

%

capturing the continuity of the variable ,, in the expansion coefficients.
Thus, the basis ¢ is composed of functions of the discrete variables @y,
only.

At each integration node we find a set of coefficients c(t,) that repre-

sents the closest match to W’ (t;> @ n(u))- Then, the discrete approximation
to the difference A, W (z;,,; a,b) becomes

AuW(wU\u’ a, b) = W(xu = b7wU\u> o W(zu = a, wU\u)

b
ab
= [ S atus @iy,

b
= Z@(ivmu))/ ¢;(Xu)dX

a

~ Z 0:i(T () Z ¢;(t;)w;

where the integrals of the coefficients ¢;(,,) are approximated using an
appropriate quadrature rule composed of the integration nodes ¢; and
weights w;. Therefore, we eliminate the continuous variable y,,, recover-
ing a discrete approximation of the Hamiltonian W (x;).

4.2.3.2 Node-wise approximation via fast marginalization

The fast marginalization performs a linear least squares projection of the
function

~

6W<Xu7 mU\u)
ox

‘,)T<Xu7 wN(u)) =

U
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onto a basis ¢. As with continuous variables, we must develop a suitable
inner product that will allow us to perform this projetion node-wise, i.e.,
separately for each value y,, = t;. We want to turn the conditional ex-
pectation above into expected values with respect to the original proba-
bility distribution P(x ); however, in the case of discrete variables we
face the additional difficulty that the variable =, has been made contin-
uous, requiring sampling from the differentiable extension P(y,, Tyry)-
We solve this issue below using an approach akin to importance sampling.

Consider finding the optimal approximation of the function
F (Xu» ®rn,) in the least squares sense for a fixed value x, = t;. We
project it on a basis ¢ of functions of x,), thus requiring the inner
produét to be

aFu(Xu? mN(u) ~
/Fu(Xu7 wN(u))

~

P(S, CUU\u)é(S o Xu)
Q(S7wU\u)

~

P<Xu’ wU\u)
Q(Xu7 mU\u)

<f7 g>Xu = /f(sva\u>g(vaU\u> dewU\u

- / £ Ot )9 (X E01) T

Following the derivation of the projection equation from Section 4.1.1, we
compute the Gram matrix A(y,, ) and the right hand side proje¢tion veétor
b(x, ), which are now funétions of the continuous variable x,. The Gram
matrix becomes

~

Pi(®nw)Pi(Enw)  Fu(Xu Tw)
7m u

Aij(Xu) =L

Similarly, the formula for the right hand side projection vector b(y,,) is
found to be

~

aqu (Xu7 wN(u))
¢i(T N () OXy,

Q(Xu’wU\“) /Fu<xu7mN(u)>dxu

bi(x.,) =E

These equations show a remarkable feature. At the cost of an additional
factor of ([ F,,(z,,, Nw) )dz,,) ! we turned the equations requiring sam-
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4.2 THE CASE OF DISCRETE VARIABLES

Algorithm 4.3 Algorithm for computing the fast marginalization approx-
imation of the energy difference W (b, a:U\u) — W(a, CIIU\u) using mixed
projection. We assume that all variables x;; have specified bases ¢,, of
size K,, = |¢,,|-
procedure MIXEDPROJECTION(®,,, )
for all variables and quadrature nodes do
A, (t;) < EmpTYMATRIX(K,, K,)
b,(t;) < EMPTYVECTOR(K,)
end for

for all samples do
&/, W < GETSAMPLE
forall wand¢; do

¥ — EVALUATEBASIS(®,,, N<u))
b, (t;) < by(t;) + w F (@, t;)v
A, (L) = A (t) + w F(my,, t))v0"
end for
end for

for all v and t do
c,(t;) < AN (t;)b,(t;)
end for

for all © and t do
end for
end procedure

pling from an extended model with continuous variable , into the above,
requiring only samples from the original distribution P(x, ). Therefore,
the funétions A(x,) and b(x,) may be determined simultaneously us-
ing the same set of random samples, differing only in the yx,, dependent
weights. The resulting procedure is summarized as Algorithm 4.3.

4.2.4 Symmetrization

Frequently, the probabilistic model has a great deal of symmetries due
to various physical properties. These physical symmetries manifest them-
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selves as symmetries of the Hamiltonian W (x,,). For example, the Ising
Hamiltonian in the absence of an external magnetic field,

WISlng wV ’u Z:’E Z Ty

uEV vEN (u

has even symmetry in xy,, since Wi, (®y,) = Wi, (—xy ). Thus, odd
functions — such as linear, cubic or quintic polynomials — cannot ap-
pear in the expansion of Wi, . (/). Similarly, the marginal Hamiltonian
W (x;) defined for the Ising model

W(wU) — ln (/ eWIsing<mU’mV\U)da'}V\U) + ]_n ZU
/ Wstng —TyusTTV\U di\U> + 111 ZU

ln </ WIsmg —Ty,Yv\u dyV\U> + an
(

=W(—xy)

is also even. The differentiable extension W (x,, Trn,,) similarly is even,
making its derivative odd,

~

OW (=X Tir\u) ~O(—x,) 5W(_Xma7U\u)
dX, O, A(—x.)
aw(_XuawU\u)
(—Xu)
6W(Xu7$U\u>
ox '

u

Therefore, the expansion of W’(Xu, x;5,) may only consist of odd func-
tions.

In the case of continuous variables we could simply remove the irrele-
vant, even functions from the basis ¢; however, in the mixed projection
approach we break this symmetry by fixing the value of x,,. Thus the ex-
pansion of W' (x,,, xrn,) in functions of xy;, is asymmetric. Consider
the expansion

W Xu?wU\u ZC Xu mU\u +ZC Xu ) wU\u)
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4.2 THE CASE OF DISCRETE VARIABLES

where we split the basis into even and odd parts ¢ and ¢, respectively.
Using the odd symmetry of W’ (x,,, 7n.,),

~

W/(in mU\u) = _W/(_Xu7 _ajU\u>7

we obtain

D ()5 (@) + > (X (T 0n,)

=— Z i (=Xu) b5 (=) — Z P (—=Xu) 5 (=T )-

1

We eliminate —z,,,, with the help of the even and odd symmetries of ¢;
and ¢7, respectively, and equate terms to find

qbf(wU\u) : Cf(Xu) = _C?(_Xu)v
¢?(wU\u) : C’LO(X’U,) = C?(_Xu)

Therefore, the even basis funétion coefficients ¢ (,, ) must be odd func-
tions of y,,, while the odd basis function coefficients ¢?(x,, ) must be even.
Although the coefficients for the irrelevant even basis functions are non-
zero, they integrate out to zero when the discrete Hamiltonian W (x;)
is reconstructed. They are important and must be included in the basis,
yet their computation is an ultimately lost effort. In this section we dis-
cuss a way of symmetrizing the inner product and the projected function
F (Xu» T n(y)) to ensure that the irrelevant part is discarded and the odd
symmetric part remains conserved.

The method described here amounts to splitting the function

F (Xu» T n(y)) into parts that are even and odd symmetric in x,,,

F X ) =

+ o=
/N

N | —

then projecting the former, since we are interested in the coefficients
c$(x,) that are even in y,. However, both could be projected and the
resulting method remains applicable to general models, where it may be
used to lower the computational cost of this method by a half. Presently
we restrict ourselves to the case when the relevant part of 7 (x,,, T n(.))
has an odd symmetry.
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4.2.4.1 Partial symmetrization

The main part of the algorithm that we have assumed to be set in §tone is
the projected function. In all cases, we considered the approximation of

~

OW (Xu> Tuvu)
F Xus BN () = 5 U\

u

or the equivalent formula in the case of continuous variables. However,
since the relevant part of # (x,,, © N<u)) is even in Y, we may project only
its even part,

1
‘,)Te<Xu7mN(u)) = 5 (?(Xuva(u)> + ?<_Xu7mN(u))) :

The result is that the basis ¢ may be limited to include only odd funétions
of T y,), reducing the size of the matrix A(x,,) by a factor of approxi-
mately four.

Define a correction factor R(x,,, T ,)) through

P<Xu7 CCU\u)
P(_Xu’ mU\u)

X'LL
= exp (/ W/(s,wN(u))ds> .
~Xu

Subétituting into the formula for the right hand side vector b(x,, ), we
obtain

R(Xu’ wN(u)) =

bi(X.) =

5 Q(Xu’ wU\u) f Fu('xu7 wN(u))d'Tu

X
ox

1[E [ ¢i(33N(u)> 1

u

aFu(_X'w wN(u))
Xy, '
Therefore, at the cost of computing a weight function of ,, and the neigh-
boring variables  y,, we may now project the odd symmetric part of
F (Xus T n(u))- This allows us to use only the odd polynomials as the basis,
reducing the size of the basis by a factor of approximately two and, more
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4.2 THE CASE OF DISCRETE VARIABLES

importantly, the size of the matrix A(y,,) by a fattor of approximately
four.

4.2.4.2  Full symmetrization

We notice that the Equation 4.6 detailing the partial symmetrization of
the projected function F (x,,, @y ,,) is asymmetric in the correction. The
symmetrizing term R(X,,, Tyy,)) is only applied to the F (—x,, Ty (,))
part of the formula, possibly leading to a bias due to the approxima-
tions used. In the present section we develop a fully symmetrized pro-
jection, where both the projected function 7 (x,,, T y(,)) and the weight

P(x,, T ,,) are symmetrized.

The lack of symmetry in Equation 4.6 arises because the weight coming
from the inner product contained a term P(x,, ®y,)), i-e., was positive
in x,,. Therefore, let us employ an inner product even in x,,, defined as

)y = / £(5,20)9(5, T

y 15(5, :BU\U) (s —x,) +0(s+ x,)
Q(vaU\u> 2

1
- 2 /f(Xu’wU\u)g(Xu’wU\“)

P(x,, x w P(— ws T
><< (Xu U\) (—x U\ )>dwU\u‘

dsdx,

Q(szwU\u) Q(_XuawU\u)

Because of the change in the inner produét, the full symmetrization affects
both the formulae for A(y,,) and b(x,, ). Beginning with A(x,, ), we obtain

b, ($N< )>¢ (mN(u))
JF (2, 2y w)de,

(uawN ) ﬁu(_XU’mN(U))
( Q(Xu> Trra) * Q(—Xus Trru) )]

Similarly, we obtain the fully-symmetrized vector b(,,) as

Aij(Xu) 1[ [

1

b(x.,) = 0 ¢i<33N(u)>

fFu(xu7wN(u))dxu
R(—Xus TN (u 815u ws T N(u
x(( (—Xu N())+ 1 )x (Xu> TN ()

Q<_Xu7mU\u> Q(Xu?mU\u) aX

u
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Table 4.1: Values of the renormalized coefficients obtained using no symmetriza-
tion by renormalizing under decimation a 16 x 16 Ising lattice at

T = 2.269185.

Xu (X ¢ (Xu) ¢3(Xu) cs(Xu) ¢5(Xu)
-0.949 0.250885 0.090069 -0.011387 -0.678121 0.031801
-0.742 0.269774 0.093073 -0.020850 -0.539799 0.026770
-0.406  0.294252 0.095408 -0.035109 -0.301255 0.015796
0.000  0.300469 0.095871 -0.042884 -0.000279 0.000014
0.406  0.294488 0.095376 -0.035348 0.300623 -0.015759
0.742  0.270104 0.093048 -0.021208 0.539073 -0.026720
0.949 0.251230 0.090058 -0.011773 0.677363 -0.031747

c; 0.284457 0.094150 -0.029794 -0.000330 0.000020

R(X s TN(w 1 8ﬁ’u— ws TN(u
+<(X N())Jr ) (X N()))]_

Q(Xu? wU\u) Q(_Xu7 wU\u) 8Xu
(4.7)

Note that, by definition,

1
R(—Xur BNw) = Zr———
N R(Xus wN(u))
requiring the computation of R(x,,, Z ) only once.
Unfortunately, there is a hidden cost to both partial and full symmetriza-
tion. The fast marginalization equation becomes implicit, because comput-
ing R(x,, Z y(y)) requires the knowledge of the solution, that is the expan-

sion of W’ (Xu> T N () )- We solve the resulting equation using a fixed-point
iteration, repeating the projection with K (x,,, & y(,)) computed using the
current guess of the expansion coefficients ¢(x,, ).

4.2.4.3 Performance of symmetrization

We close the description of the symmetrization approaches by consider-
ing an example computation of the expansion coefficients. Consider the
Ising model ona 16 x 16 lattice V" at critical coupling 11, = In (1 + \/5) /2
and let the sub-lattice U C V be the 8 x 8 lattice obtained by choosing
nodes whose both coordinates are divisible by 2; both lattices are shown
on Figure 4.16. We perform twelve steps of fixed-point iteration with
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Figure 4.16: Visualization of the arrangement of nodes, showing (a) the original
lattice V' and (b) the sublattice U. The nodes U C V are marked
green on both images.



MARGINALIZATION

0.31
0.3
0.29
"3 028
5
5 027
.26 N
o2 No symmetrization
0.25 Partial symmetrization
Full symmetrization
0.24 . . .
-1 -0.5 o 0.5 1
X’M
(@)
0.16
0.14 [ - R
0.12 —
— 0.1 - ]
5 0.08 |- 1
=
© 0.06 | B
0.04 - No symmetrization —— 7
0.02 F Partial symmetrization ]
Full symmetrization ——
° . . .
-1 -0.5 o 0.5 1
X’ll
(b)
0.04

No symrﬁetrization —
0.02 | Partial symmetrization
Full symmetrization

-0.02
-0.04

c3(Xu)

-0.06
-0.08

-0.1

-0.12 L L

©

Figure 4.17: The x,, dependence of selected basis funétion coefficients ¢; (x,, ) un-
der (a) no symmetrization, (b) partial symmetrization and (c) full
symmetrization.

Robbins-Monro smoothing, with the results reported after the twelfth
step.

We use the mixed projection method using (i) no symmetrization, (ii)
partial symmetrization and (iii) full symmetrization, depending on the
example. We compute the expansion coefficients ¢(x,,) at 84 integration
nodes obtained by dividing the interval x,, € [—1,1] into 21 subinter-
vals and placing four Gaussian quadrature nodes within each, showing
the shapes of the coefficients ¢(,, ). Additionally, we compute them sep-
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Table 4.2: Values of the renormalized coefficients obtained using partial sym-
metrization by renormalizing under decimation a 16 x 16 Ising lattice
at T = 2.269185.

Xu ¢1(Xu) ca(Xu) ¢3(Xu)
-0.949 0.261661 0.091275 -0.019786
-0.742 0.278050 0.093267 -0.027802
-0.406 0.297655 0.095232 -0.038125
0.000 0.306621 0.095976 -0.043125
0.406 0.297612 0.095249 -0.038100
0.742 0.277859 0.093342 -0.027709
0.949 0.261329 0.091409 -0.019640

c; 0.289328 0.094348 -0.033881

Table 4.3: Values of the renormalized coefficients obtained using full symmetriza-
tion by renormalizing under decimation a 16 x 16 Ising lattice at

T = 2.269185.

Xu ¢1(Xu) ca(Xu) ¢3(Xu)
-0.949 0.261325 0.091449 -0.019641
-0.742 0.277813 0.093390 -0.027706
-0.406 0.297516 0.095304 -0.033084
0.000 0.306509 0.096032 -0.043104
0.406 0.297516 0.095304 -0.038084
0.742 0.277813 0.093390 -0.027706
0.949 0.261325 0.091449 -0.019641

c; 0.289198 0.094421 -0.033842

arately at seven Gaussian quadrature nodes, with values presented in Ta-
bles 4.1, 4.2 and 4.3.

Figure 4.17 clearly shows that the projected coefficients ¢(x,,) are sym-
metric. In particular, the irrelevant coefficients corresponding to even ba-
sis functions have odd symmetry, therefore integrate out to zero. How-
ever, in case of the partially and fully symmetrized schemes the irrele-
vant coefficients are eliminated completely. This is extremely important
in face of the fact that the magnitude of the relevant coefficients is fre-

113



MARGINALIZATION

quently dwarfed by that of the irrelevant coefficients ¢, (x,,) and ¢5(x,,),
cf. Table 4.1.

114



SAMPLING

Thus far we considered the task of computing the marginal probability
density of a subset x;; of the original variables x,. We discussed the
graphical underpinnings of that process and a numerical procedure for
the efficient approximate computation of the marginal probability den-
sity P(x;;). We now turn to the task of using the marginal probabilities
defining the approximate acyclic representation of the original probabil-
ity density P(x, ) to generate random samples distributed according to
P(xy).

The acyclic representation is a tool that can be used to generate samples
in numerous ways. Instead of trying to describe all possibilities, we will
instead explain in detail a method most closely resembling that of Chorin
(2008) and suggest variations that enhance it in various ways. However,
the importance sampling approach remains the core of nearly all methods
considered in this chapter.

The chapter is structured as follows. We begin with the importance
sampling method of Chorin (2008), analyzing the method in detail in Sec-
tion 5.1. Chorin’s method is as an example of Sequential Importance Sam-
pling (s1S) and we describe a method of improving the weight distribution
by particle filtering in Section 5.2, closing with a description of a practi-
cal Partial Rejection Control (PRC) algorithm in Section 5.2.5. In Section
5.3 we discuss a widely different approach, sampling the acyclic represen-
tation of the probability distribution P () using Markov Chain Monte
Carlo (MCMC). We begin with a $traightforward transformation of the im-
portance sampling scheme into an MCMC algorithm in 5.3.1 and continue
to describe a generalized Gibbs sampler in 5.3.2. Finally, we close with a
discussion of the described sampling methods.

5.1 IMPORTANCE SAMPLING

We begin with the Chainless Monte Carlo (ChMC) method of Chorin (2003,
2008) and Okunev (2005). Their method relies on the fact that the variables
xy.\y,,, are conditionally independent given x,, . The variables may be
separated and sampled individually, making this method potentially very
efficient. The ChMC method consists of two parts: the ascent involving
computation of the approximate marginal densities, followed by the de-
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scent phase where the individual variables are sampled, starting with the
top of the lattice ladder.

The goal of the sampling routine is to generate a vector x,, with proba-
bility P(x,, ). The approach we take is that of importance sampling (Liu,
2001; Robert and Casella, 2004): we will produce a state x,, with probabil-
ity P_(xy,), which hopefully is close to the original probability P(x,,) in
the sense that

w(xy,) = P<mv>/P%(a;V) ~ 1.

The ratio w(x,,) is called the weight of the sample x, and represents the
amount of mismatch between the target distribution P(x,,) and the trial
distribution P_(x,).

Starting from the top lattice V,,,, we generate a random sample

Ly~ P<$Vm)

using a method of our choice. The approximate marginal distribution
P (azvm) is known, having been computed during the ascent phase, and
the size of the final lattice |V, | is expected to be small compared to that
of the original |V|. Therefore, even though the probability distribution
Za(azvm) contains circular dependencies between variables, it may be sam-
pled efficiently. Depending on the size of the final lattice, we may use one
of two approaches:

« direct sampling: list all possible $tates of the variables ,, and com-

pute their normalized probabilities ﬁ(wvm); then, choose one of
those states at random with the appropriate probability;

+ Monte Carlo: sample $tates ¢, using Markov Chain Monte Carlo
(MCMC) and $top the updates at regular intervals; for each generated
State x, sample the remainder of the variables @y, using the
conditional probabilities.

The choice between the two depends on the size of the final lattice. As the
number of possible states grows rapidly with the number of dimensions,
the dire¢t sampling method quickly becomes infeasible; it is also difficult
to use with continuous variables. Markov Chain Monte Carlo (MCMC),
on the other hand, is very efficient for small systems and handles both
continuous and discrete systems. MCMC in the simplest case requires only
the ability to compute

oy, yy,) = PO [Pz, ) = exp (AW 2y, L uy, ).
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where xy, and y,, differ by a single component z,,, u € V,,; there-
fore, MCMC can directly use the representation of the marginal distribu-
tion P(xy ) produced by the fast marginalization algorithm described in
Chapter 4.

We obtain a state x,, together with the probability of generating
it, PLV"J(me) = f’(mvm), or an approximation of the latter if MCMC
is used. From there we begin an iterative descent down the Directed
Acyclic Graph (DAG) D = (V, A), with variables sampled in the par-
tial order implied by D. Let a particular topological ordering be an or-

dered sequence of nodes u; € V, T = (uy,usy,...,u)y), and denote
subsets of the first i nodes in the ordering as T, = (u,,us, ..., u,). For
i = |Vl +1,[V,|+2,....,|V| we sample the random variable x,, from

wui ~ P("Euz ’ wNp(ui)) (51)

where IV (u; ) is the set of direct predecessors of the node u, in the directed
graph D = (V, A), with the property that u; € N, (u;) implies u; < u,.
Simultaneously we update P.(x. ) via

Pi(z,) = P

u; wNp(ui)>P;71 (a‘:Ti,l%

where the conditional probability P (z,, | = Np(ui)> is an approximation
of the true conditional probability of =, given all the variables that came
before it in the topological ordering 7T'. After sampling the entire set of
variables we obtain the probability of generating the state «y, using our
sampling method, with the trial probability

P (zy) = P\ (my)
\4

=P(xy,) [ Pla,

1
i=|V,, |+1

TN (u;)-

The values P_(x,/) are unnormalized, with the unknown normalizing
constant Z_ equal to the normalizing constant of the unnormalized den-
sity P (zy, ). This is due to the faét that the conditional densities used to
sample the variables u,; are properly normalized, thus the normalization
constant va of the final marginal density P (zy, ) is propagated down

to the fine lattice. Therefore, as long as the method of computing ﬁ(a:vm)
produces values normalized to the same normalization constant va in-

dependent of ¢, — that is if the values of f)(mvm) are consistent — the
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Algorithm 5.1 Sequential importance sampling algorithm.
function SISampLING(D = (V, A), P(zy ), P(z, | wNp<u>))
Ly, P<33Vm)
v -
VUl Play, )
T = (ulval, Uy, |42 7U|V\) < ToPOLOGICALORDER(D)
fori=|V, |+ 1|V, +2,..,|V]do
xui ~ P(:Euz ’ wNp(ui)>
Pl PP, | oy )
end for

P(zy)
Vi

w(@xy,) <

return (., ww(wv))
end function

resulting trial probability will also be consistent, so that they can be used
to compute weights in the importance sampling scheme.

We stress at this point the importance of the fact that the variables
are conditionally independent of each other, and thus can be sampled
individually. If they were not, as indeed they are not when one samples via
more general renormalization methods such as the majority rule used by
Brandt and Ron (2001b) and Ron and Swendsen (2001), the computation
of the conditional probability P(z,, |z Np(ui)) would not be possible, as
the normalization factor would be computationally intractable.

Once all variables are sampled, we proceed with the correction of the
trial probability density. The weight

is computed and used to correct the expected value. For a sequence of
random §tates !, is generated with weights w(x!,), the expected value
of a funétion f(x, ) becomes

Y, f@ (e
T S u)

where the sum of the weights a¢ts to counter the fact that neither the trial
nor the target probabilities are properly normalized.

ELf]
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5.1.1 Analysis of the weights

In preparation for the coming Section 5.2 that describes a method for im-
proving the basic method outlined above, let us pause and analyze the
process of generating the state xy,, and especially its trial probability. This
is interesting because the state x, is constructed by exchanging informa-
tion between a collection of unrelated probability densities.

The quantity P.(x; ) that is computed together with the variables is
the probability of samphng the partially complete $tate @, . It is an ap-
proximation of the marginal probability P(x. ) of the variables that pre-
cede u; in the ordering 7" and x,, , however one’s inability to compute
the margmal exactly even for known values of x;, makes it impossible
to judge the quality of the approximation. Only the complete sample x,
has a computable weight w(x,,).

Although it might look like the weight appears suddenly at the end of
the sampling process, this is not true. Let us look in more detail at the
process of updating the trial probability and the errors committed at each
step. In terms of the exact marginal probabilities,

P<sz—> = P(xui |wTi71)P(wTi71)7 (5-2)

while the approximate version used by the update of the trial density takes
the form

Write the approximations to the marginal densities P(zr. ) and P(zr,_ )
as P(z;,) and P(z4, ), respectively. Let PZ ' (xy ) = P(z4,_ ), mean-
ing that the state &,  was sampled from P (7, ). The only discrepancy
between P (z,) and P. (. ) will thus come from the error due to a mis-
match between ﬁ’(wT> and f)(wTH ).

Consider computing a weight w; (4, ) that measures how well PZ(z. )
approximates P (z7, ), or equivalently, what correction factor must be ap-

plied to the state due to the mismatch between the two approximations
P (:BT) and P (ztr;Tii1 ). Using the definition of P;(ch) we obtain

w, (@) = 15<33Ti,1) _ P(“’T) (5.4)
T Plen) Pl Jop, P @r) >

(3
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Because the conditional probability is computed using the approximation
P(zr,), we obtain through Bayes’ formula that

]B(wT)

P(x Ty () = ; (5:5)
/P(mTi)dxui

uUg

the integral term representing the exact marginal of P (z7, ). Substituting
back to Equation 5.4 we find

P(wT)
P(x Lo, ’wN( ))Pl 1($T)
Pla,, | @y ) / Play)d,

15( Lo, ‘wN( )Pl 1(53T>

/ P(zy,)dz,

Pi_1<mTi)

wi(wTi> =

i

Therefore, the weight wi(a:Ti) that has to be applied due to the mismatch
between the successful marginals is the ratio of the exa¢t marginal of the
approximation P(:BT ) and the separate approximation P (7, ). Infact,
looking slightly dlfferently at the trial density update formula

we see that the update formula recognizes the fa¢t that the two approxi-
mations do not agree and applies a correcting weight, which is recovered
in Equation 5.5. Extending this equation to the full sample =, we find

P (xzy) = (Hw T, ) )
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here the trial density becomes a product of the corretive weights col-
lected during the sampling. Indeed, the product of these becomes the final
weight

P(x,,
wlay) = #DV)) = [T

Because the errors are multiplicative, it is easy to see that the total weight
grows exponentially with the number of variables. Therefore, the errors
must be caught early and not allowed to plague the later computation.

5.2 PARTICLE FILTERING

The sampling described in Section 5.1 can be seen as an example of Se-
quential Importance Sampling (SIS), with the ordering index i serving as
discrete time. We may therefore use the particle filtering methods to im-
prove the weights as they appear using one of the many algorithms devel-
oped in that field (Doucet, de Freitas, and Gordon, 2001). In this section we
set up a common framework for performing particle filtering and describe
two particular algorithms, the Sequential Importance Resampling (SIR)
and Partial Rejection Control (PRC).

5.2.1 Sequential Importance Sampling

Consider the partial sample x;, and assume that we have computed a

probability P, (z7, ) that approximates the exact marginal density P(x ).
We could compute a weight

w,(xg,) =

obtaining a measure of the correction that needs to be applied to the state
x .. We only assume that the weight can be computed for a specific value
of T, .

Let each sample we generate by the implicit sampling be a particle, in-
dexed by a parameter j = 1,2, ..., M as w% Thus far we have been gen-
erating these particles separately, effeéﬁvelg/ using M = 1, but consider
executing the sampling algorithm in an almost unchanged form, simulta-
neously for M > 1 at a time. At the coarsest level we generate M samples

z, ~ P
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and perform the conditional sampling separately, using Equation 5.1 to
reach a set of particles 7, ~ P_ (7, ). Because we know an approxima-

tion P, (aijl) of the true marginal P(w%), we may compute weights for
each particle
. (@T,)

-ﬁ) 7
w*(wTi) P%<w%~1)
Were the trial P_(xJ, ) and corretive distributions P,(z7,) exa®, the
weights would be all équal to one another. In practice, the lweights will
be spanning a wide range of values, with particles having high weights
being under-sampled by the trial distribution P (:BZ[) and those with low
weights being over-sampled. To correct this imbalance we will perform
resampling, that is we will remove particles that were oversampled and,
in their §tead, place copies of those particles that were under-sampled.

The resampling procedure should be seen as sampling from an approx-
imation of ]5* (z7, ). The particles and their attached weights define a dis-

crete approximation P*(CBTZ) of the target distribution P*(a:Ti),

Note that this approximation is non-zero only for ;. equal to one of the
particles a:ﬁ_p Through resampling, we obtain an updated colletion of
particles that follow P, (x,), which in the limit of M — oo is equivalent
to P, (z7 ).

The discrete nature of the approximate distribution P, (:I:T) means that
the resampling step will lead to a less diverse set of particles, because
States . that are not among those represented by the particles a:JT will
not be sampled at all. We still benefit from the resampling, however, be-
cause the initially exact copies will differentiate during the subsequent
sampling Steps when the remaining variables @, ;. are determined.

There are multiple algorithms for performing resampling, but they all
attempt to do the same thing, namely to reduce the variance of weights
by sampling from the discrete approximation of the target distribution
(Doucet, de Freitas, and Gordon, 2001). We summarize two of those algo-
rithms below, beginning with the SIR algorithm.
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5.2.2  Sequential Importance Resampling

The Sequential Importance Resampling (SIR) algorithm adds a resampling
stage to the SIS, which partially correéts the weights by sampling from a
discrete approximation of the target distribution. Following Se¢tion 11.3.1
of Liu, Chen, and Logvinenko (2001), we choose the transformed weight
a,(xJ.) to be a monotone increasing function of w, (7, ). This flexibility
allows for balancing the needs of reducing weight variance and keeping
a diverse set of particles; thus, a generic choice is the square root trans-

form a*(aﬁ[) = ,/w*(w{fi). The resampling $tage replaces the original
collection of particles w{pz with yl}i by selecting M particles from among

the original particles 932[1 with probability dependent on the transformed
weights.

5.2.2.1 Reallocation

One method is reallocation, where the resampled particles y:’“p are formed

by choosing them at random from among the ijl For each particle we
compute an effective fraction 4 that is what fraction the M particles it
is worth, given by

4G =

> a.(@r)

J=1

a.(@},)
£r

A particle j is intuitively worth Mg, particles, but it is important to handle
correctly the cases when Mg; < 1.

Following Liu, Chen, and Logvinenko (2001), for M q > 1 we
keep LM qjj copies of the particle a:JT and assign an updated weight
w*(a:JTZ)/LMq]J to each copy. In case Mq; < 1, we keep the particle
with probability Mg;; if the particle survives, we assign it an updated
weight w, (x7. )/ Mg;.

5.2.2.2 Low variance resampling

The downside of the previous method is that the number of particles fluc-
tuates after resampling, complicating the code by requiring a form of con-
trol to ensure that a similar number is generated each time.

Instead, we will choose M particles randomly from among the existing
ones. Each particle will have a probability of being selected equal to ¢,
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Algorithm 5.2 Reallocation particle filtering algorithm for improving the
quality of the batch of particles X,.

function REarLOCATION(X f, = {(mJT, P;(:BZ[)})
Y, < 0
for all 5 do )
. P, x
w, () 8
¢ Pz( Ti)
a,(x7,) + Jw.(ah,)
end for

for all j do

a,(z7,)

g

> a.(@)

=1
if q; > 1 then
fork=1,2,..., [qJ do

J
Y, < Yp, U (o7, w.(@7,)/ g
end for
else
p ~U[0,1]
if p < ¢, then
Yy, Y, U (x%;aw*@j@)/qj)
end if
end if
end for

return Y,
1
end function

defined as above. However, choosing the resampled particles entirely ran-
domly does not always work well. Consider for example the case where all
weights are equal to each other. Nothing should change because ¢; =1/m
and each particle should be sampled once, but due to the stochastic nature
of the process some particles will be invariably selected twice while some
others won’t be selected at all.

To combat these potential issues we will select the M new particles in
the following way. The g;’s specify the probabilities of the M particles
and we put them together in a box. We sele¢t M particles by choosing a
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random number p € U|[0, 1/m] and selecting particles whose parts contain
the numbers

ryr+YMmyor 2 M r R vy ML

As a result, each particle is selected with the appropriate probability yet
the algorithm behaves corretly in the limit of all equal weights. The
weights of the resampled particles are updated by dividing the weight of
the original sample w, (ac%ﬂl) by the probability of choosing it Mg;. If the
resampled particle y'r}i corresponds to an original particle :1:%1, we obtain
ek

a.(a7,)

(3

5.2.2.3 Trial density update
Once the resampled particles are selected we need to compute the proba-
bility of generating the resampled particles using the algorithm, P;(y%)
Consider a resampled particle y%_ which is a copy of the particle mﬁ

In the reallocation algorithm, for Mg; > 1 we obtain LM qu copies
of the particle, thus the probability of generating the State y% = zc]T
increased \_M qjj -fold:

Pi(yh) = |Mq;| Pi(],).

On the other hand, when Mg; < 1, the particle survives with probability
Mg, reducing the trial probability

Pi(yh) = Mq,Pi(x},).

J ~

Both formulas are very similar and reflect the changed weight of the par-
ticle. Therefore, in the case of low variance resampling, we simply obtain

Pi(yh) = Mq,Pi(x},),

reflecting the fa¢t that the expedted number of copies of the state :UJT is

Mg;.
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5.2.3 Rejeétion control

The reallocation and resampling algorithms invariably suffer from parti-
cle impoverishment, because the resampling stage reduces the diversity of
generated samples. This process is referred to as particle degeneracy and
in extreme situations causes the batch to collapse onto a single particle
(Berzuini et al., 1997; Gordon, Salmond, and Ewing, 1995). The above meth-
ods address this issue using the transformed weights a, (27, ), which re-

duce the weight variance less aggressively than the weights w, (a:JT ); how-
ever, this change does not eliminate the particle impoverishment I;roblem
completely.

Here we describe two related algorithms for eliminating poor samples
that do not produce multiple copies of existing states. Instead, they condi-
tionally reject particles deemed to be of low weight and replace them with
new ones. The most common variants, the Full Reje¢tion Control (FRC) and
Partial Rejection Control (PRC), differ in the way the new particles are cre-
ated: the FRC recreates the lost particles from scratch, while PRC from the
most recent check-point. Because the FRC algorithm is very costly, we de-
scribe here the more moderate PRC (Liu, Chen, and Logvinenko, 2001, p.

233).
5.2.3.1 Partial reje¢tion control

Similarly to the Sequential Importance Resampling (SIR) described above,
consider the particles :/lr;ﬁ[Z at a check-point where the weights

() = P, (x7,)
S Piag)

7

may be computed. Select a weight threshold c; and accept particles with
probability

¢; = min (l,w*@jﬁ)/ci) .

The accepted particles are assigned an updated weight

w(x), ) = max (w*(x%q), ci) :

(3

Any rejected particle a:JTZ is then replaced with a regenerated particle

x7. . We begin by selecting a partial particle az’j‘il from a previous check-
point [ at random, with probability proportional to its weight after that
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checkpoint w*(m% ). This partial regenerated particle is assigned the trial
probability

, M
Play) = 57— Pi(ah,).

> w, ()

m=1

The missing variables iji\Tl are sampled, producing a fully regenerated
particle @7, with trial probability P;(:ci[z) The regenerated particle re-
places the rejected particle :BZ_F and undergoes rejection control at the
check-point 7;. The regeneratilon process is repeated until a particle is
accepted, thus keeping a constant batch size M.

The PRC algorithm improves upon the simple resampling algorithm, be-
cause it goes back to previously accepted particles to construét the re-
sampled particle set instead of using particles present at the check-point.
At the cost of significantly increased computation time, the FRC, which
regenerates the rejected particles from scratch, produces nearly indepen-
dent, non-degenerate particles.

5.2.4 Dense marginal probabilities

The resampling stage described above attempts to correct the trial proba-
bility density P’ (z7,) so that it is closer to the density P*(le) It is im-
perative that the corrective density f’* (z7, ) be closer to the true marginal
density P(xr) than the trial density, as otherwise the resampling step
will actually make the matters worse.

The quality of an approximation to the marginal density is directly re-
lated to the number of basis functions used by the approximation. Typi-
cally, the bigger the basis the better the approximation may potentially
be, but the size of the basis is severely limited by the need to keep the
dependency graph as sparse as possible. Since sparse dependency graphs
are necessary to prevent the dependency graph from quickly becoming a
clique, forming a denser proposal density is very difficult. However, the
approximation ]5*(93:@) is only to be evaluated, rather than used to sam-

ple using conditional probabilities, thus the dependency graph of P, (z.)
may be arbitrarily dense and thus more accurate than P;(a:T)
Consider the simple case of a two-dimensional Cartesian lattice and let
the blue variables in Figure 5.18 be already sampled. When sampling the
yellow variables, the densest dependency graph that $till respects the con-
ditional independence between yellow variables given the blue variables

127



SAMPLING

Algorithm 5.3 Partial rejection control algorithm for improving the qual-
ity of a batch of particles X, regenerating the particles from an earlier
checkpoint 7}, where the batch of particles was X .

function PARTIALREJECTIONCONTROL(X -, X Tz)
1

Yy 0
for all j do
repeat R 4
J
w,(a}) oot
“ Pi(zr)
¢; ¢ min <1, w*(w%“)/cl>
b~ U[07 1]

if p < ¢, then

Yy < Y U (:c%, max (w*(m§), cz))
else

ko~ w, (@)

T, X,

until p < ¢;
end for
return Y,
end function

is the graph on Figure 5.18a, which includes only nearest neighbor inter-
actions. Because of this severely limiting choice, the resulting approxima-
tion may be rather poor.

Adding the second- and third-nearest neighbor interaction increases
the complexity of the approximation, producing the graph on Figure 5.18b.
Because yellow variables are now dependent on each other, an approxi-
mation of the marginal density of these variables cannot be used to sam-
ple the yellow variables given the blue ones. It may, however, be used to
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(a) Nearest neighbor interaction (b) Nearest, second- and third-nearest interactions

Figure 5.18: Two dependency graphs respeted by (a) the approximation
Pi(ZUTi) and (b) the approximation P, (z 1, ).

approximately evaluate the marginal density given the values of all vari-
ables &, , making the dense approximation ﬁ* (z7,) useful in computing
weights.

Denote the probability, whose conditional independence $tructure re-
spects the graph on Figure 5.18a by P.(x;, ), while that respecting the

denser graph on Figure 5.18b by P, (z7, ). Using the first one for sampling,
while the latter is used solely for later resampling, allows for approxi-
mately sampling from the denser probability while keeping the benefits
of the sparser dependency graphs used to produce the sampling density
P (x7, ). Of course the dense approximation may include further interac-
tions, such as the interaction with third-nearest neighbors, being limited
only by the available computing power and the fa¢t that a very good re-
sampling algorithm will still fail to correct a poor trial probability.

5.2.5 Pradétical particle filtering algorithm

The single-stage resampling algorithms described above are not robust
enough to lead to much improvement. Here we describe a practical, multi-
stage algorithm.

We define a set of check-points, defined as a set of indexes R =
{Ry, Ry, ..., R, } of topological ordering T'. Therefore, as soon as the vari-
able associated with node up_has been sampled, the i check-point has
been reached. The i*® location R, attempts to improve all variables sam-
pled thus far, that is the variables Ty, - A set of dense approximations

ﬁ*(wTR_) must be computed using the fast marginalization algorithm of
Chapter 4 in order to do so. The final node of each lattice V; is a recom-
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mended candidate for the check-point 1?,. Note that the approximation
used in lateral densening might be shared and used as P, (z 1, ).

The samples are generated in batches of M samples (particlés) at once,
with separate batches being independent of each other. As the particles in
a batch reach a check-point 2;, the weights w,(x7, ) are computed for

each particle. Then, the normalized weights are computed via

bl

J
7_2) (ij ) _ 'U}* <wTRZ—>
* R

) M j
TSN (e, )

allowing for the computation of an effective number of particles (Liu,
Chen, and Logvinenko, 2001, p. 232),

1
M~ T .

M ¢+ can be intuitively understood as the equivalent number of indepen-
dently distributed particles. In case the effective number M g is smaller
than a pre-defined threshold M, ;. , the particles undergo a Partial Rejec-
tion Control (PRC) algorithm from Section 5.2.3.1. Whenever a resampling
stage occurred or not, the particles continue being sampled until the next
stopping point R, ; or until all variables are sampled.

The weight thresholds ¢, are determined in a short sampling run ahead
of the main computation. A single large batch of particles is generated.

When the particles reach the check-point R;, the threshold ¢y is selected
based on the distribution of the weights w*(m%R_ ). A practical formula

Mff:

€

suggested by Liu, Chen, and Wong (1998) is the weighted average

Cn, = P i (,(@F,)) + Procan mean (w, (5, ))
J J ¢

k3

+ Dinax max <w*(w2_FRi ))

with p i+ Prean T Pmax = 1. Once the threshold is selected, the particles
undergo rejection and the process continues. The set of thresholds cp
is then fixed and does not change during the main computation, thus
ensuring that different batches are properly normalized.
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5.3 WEIGHT-BASED MONTE CARLO ALGORITHMS

The Markov Chain Monte Carlo (MCMC) algorithm resembles importance
sampling: states that are visited less frequently by the trial distribution
than demanded by the target distribution are more difficult to leave, ef-
fectively multiplying the number of times the particular state will appear.
It comes then as no surprise that the importance sampling scheme may
be quickly turned into an MCMC algorithm. We present here two develop-
ments: the straightforward MCMC algorithm and a more advanced Gener-
alized Gibbs sampler.

5.3.1 Markov Chain Monte Carlo

Consider a complete $tate x, together with the attached weight w(x,,) =
P(xy)/P.(x,) generated by the importance sampler described above.
Generate a second state y,, with weight w(y,,). The two $tates were gen-
erated from the proposal density P_, therefore the classical Metropolis-
Hastings algorithm (Liu, 2001; Metropolis et al., 1953; Robert and Casella,
2004) conditionally accepts the move from x, to y,, with probability

P (zy)P(yy)
P (yy)P(zy)

a(xy,yy) =

The resulting equation has a straightforward interpretation, since the
transition from a state with a lower weight into a state with a larger
weight should be easier than the opposite.

Since the MCMC scheme does not do anything beyond the eliminating
weights by rejection sampling, the performance of the original impor-
tance sampling and the MCMC algorithms is expected to be very similar.

5.3.2 Generalized Gibbs sampler

The Gibbs sampler or heat-bath MCMC splits the nodes of a lattice V' =
U UV \ U and samples the variables x, using the exact conditional
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probability. Starting with the state x,, the algorithm creates a proposal
state y,, given by

Yv\v = Twv\u

Yy ~ P(yU‘yV\U) = P<yU’yV\U)// P(ywyv\U)dyU’

where the subset of variables y,; is resampled using the conditional prob-
ability. The subset U must be small in order for the computation of the
exact marginal density in the denumerator to be feasible. Because the pro-
posal density is the exact conditional probability, the acceptance proba-
bility is equal to one and the proposed move is always accepted. In order
to sample the entire space, the choice of the set U is changed at random
between MCMC moves.

For a set U consisting of a single variable we recover the slice sampler,
whose name comes from the fact that it updates the state x, one dimen-
sion (slice) at a time. Larger sizes of U are also possible and allow for
larger moves and quicker mixing rates, but the added performance comes
at the cost of increased computational cost, growing exponentially in the
number of variables x;;.

Because the variables in x;; are sampled using their conditional prob-
ability given the remaining variables, we see that the method is related
to the acyclic representation of P(x,,/) we have con$tructed. In fact, the
splitting V- = U U V' \ U is similar to the fir§t step of the coarsening al-
gorithm. Indeed, the variables @y, \y, are sampled using conditional prob-
abilities computed using the exact density P(xy, ) = P(zy ), therefore
those variables are indeed sampled using the one-dimensional Gibbs sam-
pler. However, for variables appearing earlier in the dependency digraph
D = (V, A) the conne¢tion is less clear.

5.3.2.1 Overview

We proceed in the following way. Starting with a random node u € V we
build a proposal sample using the approximate conditional probability
P_(x,,). Having at the node u, we subsequently sample the nodes whose
approximate conditional probabilities depend on the node w, iteratively
building the updated set U. Because the proposal density of the new state
is not exact, we recover P(x,,) as the §tationary distribution through the
use of a rejection step, described below, producing a Markov Chain Monte
Carlo method.
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5.3.2.2 Constructing the proposal $tate

Select an arbitrary node u € V, referred to thereafter as the head node,
and consider the set of nodes whose approximate conditional probabili-
ties depend on the value of the variable associated with the head node w.
Given the dependency digraph D = (V| A) we see that this set is simply
the set of dire¢t successors (children) of the head node u, written N (u).
When the variables associated with the nodes in N (u) are sampled to
reflect the change in their conditional distributions, the set of variables
affected by the change in the variable associated with u grows; if the pro-
cess is repeated recursively, the set of nodes affected by the change in the
variable associated with the head node u becomes the set of successors

S(u) defined as
S(u):{U€V|u§v},

i.e. the set of nodes v € V such that there exists a directed path from u
to v. Given the DAG D = (V| A), the set S(u) may be found quickly by
recursively following the direted edges emanating from the head node u
and collecting all visited nodes.

Call the initial state x,, and assume we have computed a list of approxi-
mate conditional probabilities P (z,, | Np(ui)) from Equation 5.3, where
1 is the index of the topological ordering 7". We choose a head node v € V
and produce a proposal state y,, defined through

Yv\Su) = Tv\S(u)

yS(u) ~ P<yS(u)|yV\S(u))v

where the conditional probability of yg,, given the remaining variables
is given by

P(:ys(u)’yV\S(u)) = H P(y, | pr(v)>‘
veS(u)

Additionally, produce an updated list of approximate conditional probabil-
ities, keeping the existing x,, values for nodes V'\ S(u) and recomputing
the conditionals for the nodes in S(u) using the newly sampled values

Yy
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5.3.2.3 Rejection

Finally, we perform the rejection step and accept the proposed state y,,
with acceptance probability

(@) = P (@ g1y s(0)) P (@11 500)) P ()

P~<ys(u)|y\/\s ))Pm(yV\S(u)>P zy)

. Pz<mS(u)|mV\S(u)>P<yv>

a Pz(y |yV\S(u))P( Ty )

. Pz<w5(u |wV\S(u)> P(yy)

B P(zy) Pz<y5(u)|yV\S(u)>
w(yy)

a w(zy)’

which is the same weight ratio as in the MCMC method above. However,
since the change due to the proposed move is limited to a fradtion of
the set of variables, there will be a significant cancellation between the
two weights. Using the decomposition of the total weight w(x,,) into per-
variable weights w, (z,) defined in Equation 5.4, we obtain

Hw xy) H w;(xy,) H w;(xy).

v; EV v, €S(u v, €V\S(u)

Since the variables @y, g(,,) and Yy g(,,) are by definition the same, so must
be their trial probabilities and partial weights. Through cancellation we

finally have

Oé(mv, yv) — (HviGS(u) wi(yv>) (HviQV\S(u) wi(’!/v))
(H”i65<“> wi(wV)) (Hu en\s(u) (“’v))
)

When S(u) is small, the proposed move will be small as well, resulting in
a large probability of acceptance.

5.3.2.4 Head node selection

The remaining question regards the particular manner in which the head
nodes u defining the heat baths should be selected. Figure 5.19 shows the
expected size of a move given that u € V; \ V,, for different values of
t. In the limit # = 0 we recover the exact proposal density and the slice
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(@ueVy\Vy b)ue Vi \Vy

QueVy\V; DueVy\Vy

(e)ue Vy\Vs H)ueVs\ Vs

Figure 5.19: Visualizations of the set of successors S(u) for head nodes u lying on
different lattices obtained by a checkerboard coarsening of a 32 x 32
Cartesian lattice. Nodes are colored by the number of links from
the initiating node, marked red, through yellow to green. The nodes
which are not accessible from the head node u are marked blue.

sampler, achieving acceptance probability a(x,,, y,,) = 1 but very small
move size. In the opposite limit 7 = m, we find the reverse situation of a
very large move, but at the cost of a very low acceptance probability. At a

135



SAMPLING

10000 1

1000 }

0.1
Q
e Cluster size =
g 100 } Expedted cluster size E
E Acceptance probability S
&} A
{ ooz
10 f
/
1 . . . . . 0.001
[ 2 4 6 8 10 12

Lattice number

Figure 5.20: Size of the affected subset S(u), proposed move acceptance proba-
bility and the resulting average move size in the case of a 64 x 64
Ising model at critical coupling.
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Figure 5.21: Autocorrelation in the case of the 32 x 32 Ising model at critical cou-
pling. The lines show the initial lattice used to choose head nodes, in-
cluding both the first renormalized lattice V; and the optimal lattice
V. Although the number of variables where a change is attempted is
quite large in the case of V,, mo$t of the variables remain unaltered
due to the very $trong pull of the unchanged variables v/ ), re-
sulting in a long autocorrelation time.

point in between the two limits we usually find the optimum lattice that
maximizes the expected move size.
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Since the union of the sets of successors of all nodes on any V, covers
the whole set of variables,

U S(u) =1V,

ueV;

we may select the head nodes u only from nodes of the optimal lattice.
The resulting sampling will nonetheless have the opportunity to alter the
values of all variables and the resulting Markov chain will sample the
entire state space with the optimal mixing speed.

5.3.2.5 Performance

While the algorithm is very promising as it specifies a general family of
algorithms and selects the optimum, the influence of the unchanged vari-
ables '\ g, is frequently very large, resulting in only very few variables
being changed during the partial sampling algorithm. Figure 5.21 clearly
shows that the autocorrelation remain high, even for the optimal method.
Experimental evidence that the strong pull of the unchanged variables
could only be broken by very large moves starting from a very coarse
lattice, a process leading to low acceptance probabilities.

5.4 DISCUSSION

The chainless sampling described here has many interesting features. First
of all, in its purest form — when the top lattice consists of a single variable
and no particle filtering is used — the method involves no Markov chains,
generating truly independent samples. This may be unfortunately be at
the cost of a very wide range of corrective weights, especially for high-
dimensional problems.

The weights of the generated samples may be improved through the
sacrifice of the complete sample independence. In general the $tate of the
art implementation of the method should follow the following $teps.

+ Optimize the choice of the top lattice, i.e., the stopping criterion of
the graph coarsening algorithm from Chapter 3. The choice of the
stopping point allows one to optimize the trade-off between the dif-
ficulty of sampling the top lattice and the number and size of errors
committed by sampling individual variables using the conditional
probabilities. At the possible end-points of the spetrum one may
use a pure Markov Chain Monte Carlo (MCMC) method when no
coarsening is performed, or the pure chain-less Monte Carlo when
only a single variable remains on the top lattice; the optimal method
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is usually somewhere in between, with the precise location being
problem-dependent.

+ Use a sound method of resampling that utilizes dense approxima-
tions of the marginal distributions to compute weights.

« Utilize lateral densening described in Section 3.5 to produce the
most accurate trial probability possible.

While the Monte Carlo methods based on the above may be potentially
useful, they do not represent any advantages over the weight-based algo-
rithms and should not be used unless necessary.

The complete acyclic Monte Carlo method, including the graph coarsen-
ing described in Chapter 3, the computation of the approximate marginal
densities of Chapter 4 and the importance sampling/particle filtering
method above of generating random samples will be benchmarked in the
chapters making up Part 11 of this thesis. We apply the method to the Ising
model in Chapter 8 to compare the performance of the method with the
existing literature.
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The method we have completely described in the prior Chapters 3, 4 and 5
is in some sense unsatisfying, because the coarser graphs V, are composed
of subsets of the fine variables V|, = V. As a result, as the sampling pro-
ceeds, the variables already determined are frozen and cannot be changed,
even if this could lead to an improvement. This is because changing their
values would invalidate the entire acyclic structure and the resulting trial
probability P_(x,).

In the setting of other existing methods utilizing the multi-level
paradigm — the most well known being the multigrid method for the
iterative solution if linear equations (Briggs, Henson, and McCormick,
2000) — this choice of coarse variables is indeed uncommon. In multigrid,
the coarse variables are actually distinét from the fine variables and
linked together by a certain rule, the prolongation operator. Frequently
called the interpolation operator, the prolongation operator attempts to
smooth the errors in the solution, although it does not necessarily reflect
geometrical smoothness. There are many choices for these operators
and it would strike one as unusual that in our method there is no such
freedom.

The second reason for our uneasiness is the fact that the literature on
renormalization methods is thus far mostly incompatible with the acyclic
Monte Carlo method, because the methodology described in the earlier
chapters depends on the fact that coarse variables are subsets of the origi-
nal, fine variables. Thus, there is no possibility of introducing coarse vari-
ables defined using interpolation rules, such as the majority rule for spin
systems.

In this chapter we develop a more general theory of renormalization
based on conditional probability distributions joining subsequent levels
of variables, much as the prolongation operator joins together levels of
the multigrid method.

6.1 THE TWO-LATTICE METHOD
We begin with a two-lattice method, which may be extended in a straight-

forward manner to a full multi-lattice approach, similarly to how a two-
grid method can be turned into a multigrid method. Let G = (V, E) be
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the undirected graph encoding the independence structure of the original
probability distribution P(x,,), with each node of V' corresponding to a
component of T, .

Consider a method of dividing V' into a collection S of disjoint subsets
{U,,U,,...,U,} that cover V, that is

U,NU; =0fori+ jand UUi:V.

=1

Therefore, the subsets {U,, U,, ..., U, } form a partition of V" and are typ-
ically selected so that nodes v € U, are close in some respect, but this is
not $trictly necessary. To each subset s € S we assign a new auxiliary
variable, x,, which did not exist among the original variables x,. Using
the one-dimensional Ising model as an example, the graphical $tructure
of this situation is shown on Figure 6.22a.

Thus far there is no relation between the variables of x|, and those of ¢,
apart from our mental association. We formalize the connection between
x, and T ¢ by defining a probability distribution over x4 conditional on
T, giving us a joint probability

P(zy,xzg) = P(xy)P(zg | Tv,).

The conditional probability P(x | @) specifies a probabilistic rule as-
signing values to variables in & ¢ based on the values of xy,, similarly to
the prolongation operator of the multigrid method.

We will assume that the conditional probability factorizes as

P(xg | zy) = HP(a:S | wU5>7

ses

where U, is the subset of V' to which the variable x, was assigned. Due
to this fatorization, the graphical structure becomes that of Figure 6.22b,
with the lines connecting the new variables representing formal depen-
dence: the variables z, L z, | #;; andx, L z, | @ for u # v due to
the factorization. The choice of the coarsening rule that specifies the con-
ditional probability P(z, | ;) is nearly arbitrary, but common choices
include decimation and majority rule will be mentioned later on.

The subsequent step in the cons$truction is the computation of a
marginal probability density, which we obtain from the joint distribution
P(xy,xg) using the definition

P(es) = [ Play.as)dey = [ Pley)Plag | 2y)day.
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(a) The graph just after the auxiliary variables are
introduced; notice the lack of connections be-
tween the original and auxiliary variables.

(b) Edges are added between the original and aux-
iliary variables to reflect the conditional proba-
bility P(z g | /).

(c) The coarse graph with exactly reconnected coarse
nodes after the original variables acy, were
marginalized.

Figure 6.22: Variables and the dependence graph G = (V,FE) of the one-
dimensional Ising model (turquoise nodes), together with the aux-
iliary variables x g (red nodes).

As before, performing the integration is computationally intractable in
most cases and we will return to this problem while discussing the gener-
alized fast marginalization algorithm. Presently we are interested in the
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graphical structure implied by this definition. We know from Chapter 3
that removing a node in the graph by integrating out the corresponding
variable induces edges between the neighboring variables.

The resulting dependency graph describing the marginal density
P(xg), shown on Figure 6.22¢, is a clique, a completely connected
graph where each node is directly linked to every other node. Even if
the original graph G = (V,E) was sparse, the immediately coarser
graph becomes fully connected, making it computationally intractable to
compute exact marginal densities for even the simplest models, such as
the one-dimensional Ising model shown here.

Assume for now that it is possible to generate a sample g ~ P(xg).
Because xy, are no longer conditionally independent given xg, it is no
longer possible to sample the variables of «,, individually. Instead, all vari-
ables in xy, mus be sampled simultaneously, making MCMC the method
of choice. However, the use of MCMC makes it impossible to use advanced
techniques such as importance sampling or particle filtering, because the
exact trial probability cannot be computed.

While the prospects of this approach appear to be bleak, it turns out
that they represent the worst case scenario. Indeed, we will show that
the acyclic Monte Carlo is a special case achieved through the choice of
decimation as the coarsening rule.

We will describe the generalized acyclic Monte Carlo method using
the example of the Ising model undergoing coarsening under the most
commonly used coarsening rule, the majority rule. We will describe how
to construdt a ladder of coarse graphical models, then explain the com-
putation of approximate marginal densities using the generalized fast
marginalization approach. We will finish with a description of how the
structure obtained may be used to sample the original probability distri-
bution P(xy,).

6.2 COARSENING

We begin with the initial set of variables and graph G, = (V, E,) =
(V, E) encoding the independence $tructure of the original probability
distribution P(zy; ). Assume the set of variables V; is known. We divide
it into a collection S; of disjoint subsets {U,} of V; that form a partition
of V,, that is

UNU,=0 for j#k and UUj:m.
J
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We define the joint probability of ¢, and x4 through
P("?\/;amsi) = P(*’BV)P(msi |33vi)a

leading to the natural definition of the marginal density

Ples) = [ Pley,@s )day, = [ Play)Plas, |@y)day,

We rename S; by V, | = §,, so that the marginal becomes

P(es) = P(ey,,) = [ Play)Play,, |oy)dey,

Because the conditional independence Structure induced by P(zy, +1)
is that of a fully connected graph, we must immediately approximate it.
Therefore, the set of edges I, ; is reconstructed by reconnecting nodes
that are nearby in the sense of a metric of choice, see Chapter 3 for a more
detailed discussion. In the case of the Ising model, the original lattice is
endowed with a set of Cartesian coordinates, which may be passed on to
the coarser levels by computing the average position of the nodes within
the subset U,. The diStance between the nodes provides a natural metric
in this case.

For each u,v € V,,, such that the metric p(u,v) < T, we form
an edge (u,v) € E,, ,, thus completing the specification of the graph
Gig = (Vg Eipy).

The above iterative construction builds a ladder of successively coarser
lattices with node sets V' = V|, V}, V,, ..., V,, which stops when the set
of variables V, , is deemed sufficiently small.

The complete coarsening process is shown on Figure 6.23. We begin
with a regular two-dimensional Cartesian lattice of the Ising model and
divide it into subsets of 2 x 2 nodes. Larger or irregular subsets are al-
lowed when needed. The process continues until a small enough lattice is
achieved.

The connections are added up to a distance of the third nearest neighbor,
resulting in a dense graph. However, this is not a difficulty because the
variables will be sampled together using MCMC rather than individually
using conditional probabilities.
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(c) (d)

Figure 6.23: Complete coarsening process of a two-dimensional Cartesian lattice
of initial size 8 X 8. The nodes of the lattice are divided into subsets
of size 2 X 2, decreasing the number of nodes by a factor of 4 dur-
ing each coarsening step. Although the lattices are two-dimensional,
height was used to represent the coarsening level, with nodes higher
up belonging to the coarser lattices.

6.3 GENERALIZED FAST MARGINALIZATION

Consider the marginal probability density for lattice V,

P(a:Vi) = /P(a:vo)P(a:V1 | chO) ...P(a:vi \ wvi,l)dwvodwvl wdzy,
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If necessary, we define a differentiable extension P(sz | Ty, ), which
in turn defines uniquely a differentiable extension of the marginal,

~

analogously to the technique used in Chapter 4.
Assume that P(xy, ) > 0 is strictly positive and can thus be written as

P(:cvi) = exp (W(wv))/ZV
For u € V, we wish to obtain an approximation to

oW (zy, ) G,
ox - Ox In P(@y,)

u u

within the space spanned by a basis ¢. Plugging in the definition of the
marginal density P(x,, ) we obtain the generalized fast marginalization
equation

ow 0
oz, Oz,

OP(xy,
ox

In P(zy,)

T 1)
Vi /P(CL'VZ- m‘/i] .

The remaining work closely resembles previous developments. We project
the target function

" Ty, )

8P(a:vi wVH>
oz /P(wVi

u

Flzy,) =L

V.

K3

Ty, )T

in the least squares sense onto the basis ¢ by constructing a matrix
A = (Ay), Ay = (&, @), and right hand side veétor b, = (F, ).
To simplify notation, define

P<wv0,mv1a---7wv.> = P(mvo)P(mvl |33V0>---P(wvi |$Vi,1)-

%

Using the inner product defined in Se¢tion 4.1.1 we obtain

Ay = (dp, 1)
- [a@paten) (Pav) foG,) ) de,
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:/ %(wv)(ﬁz(mv)
Q(wvi)
></P(:cvo,:nvl,---,ini)diﬂvo,v1 ,,,,, v,

- Qﬁk(wvi)@(fcvi)
-t [ Ql

:cvi)

where the marginal distribution P(zy, ) is replaced with its definition. The
right hand side vector becomes

=(F, bp)

/Cbkmv )( mV/Q33v)dmv

:/%(mvi) (ﬁ)

Py, |y, |)
3 i—1
f P<wV0’ le’ ’mvi) ( Plxy, |y, |) ) deO’Vl ,,,, Vi d
>< 3 11— w .
Vi
f P<wV07 wvla 7w\@)dwvo,v1 ,,,,, \

Notice that the denumerator, coming from F(xy ), is equal to the
marginal P(zy, ). Canceling the two out yields

= [ s | o me
(

v,
X<leV’xV )>dw
P(zy |y, 1) YoV Vs
g | e @y 1)]
Q P(wv ’mv )

showing again that the weight P(z,, ) in the inner product definition is
necessary to transform A;; and b, into expetations over the complete set
of variables xy, ,xy ,..., Ty .

0 1 i

6.3.1 The case of discrete variables
We meet the challenge of handling probabilities defined over discrete vari-

ables in a manner very similar to the original fast marginalization. We ex-
tend x,, for u € V, to take real values, renaming it ,, to avoid confusion,
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and define a differentiable extension P(x,,, Zy\, | Ty, ) of the coarsen-
ing rule P(zy,. | zy, ) that agrees with the original rule whenever Y,
takes any of the original discrete values.

We use the mixed continuous-discrete representation described in Sec-
tion 4.2.3. Therefore, the matrix A;(x,,) and b, (x,,) are funétions of the
continuous variable y,,, which is to take values equal to Gaussian integra-
tion nodes. Using an inner product

f7 :/ Ly\u Xu Lyus Xu : dm“
(f:9)x., @y Xa)9(®y0 X )Q(mvi\u,xu) v\
we have

A (Xu) = (Pp ¢l>xu

= qbk(mVi\U)Cbl(33\/;;\7) -
- [ Q(a:Vi\quu> P(wVi\WXu | mVi_1>] .

Similarly, the formula for b, (x,,) becomes

b(Xy,) = <5F7¢k>xu

¢k<m\/-\u’ Xu) =
— [E Z—P/ xT s X’LL xr : 5

which is equivalent to the continuous formula except for the fa¢t that
X, 1is fixed. Solving the linear system A(x,,)c(x,) = b(x,) yields renor-
malized coupling coefficients ¢(x,, ), whose integral allows one to recover
the discrete energy difference A, W(xy,,; a, b) and hence a the marginal
probability distribution P(xy, ), as in Section 4.1.4.

6.3.2 Computing the expected values

The fact that the coarse variables @y, , i > 0, are not a subset of the orig-
inal variables @y, causes a mild difficulty when computing the expected
values. The expected values defined above are defined not over the orig-
inal probability density, but over the extended probability density that
includes the coarse variables zy, fori > 0,

P<mV07wV17"'7mVi> = P(wVO)P(wVI |33V0)-~~P(33V; |33Vi_1)-

If the coarse densities are not yet available, the coarse variables may be
sampled given the original variables, following the method used since
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Ma (1976). This sampling direction is the easier one, assuming that we
can sample from P(xy, ).

We begin by sampling @y, ~ P(zy,) using a method such as the
Markov Chain Monte Carlo (MCMC). The coarser levels are then sampled
consecutively using the coarsening rules,

a task accomplished easily because all variables within @, are condition-
ally independent of each other given the values of z,, ,

z, Lz, |z, foranyu,veV,.

This makes both the sampling from the extended probability distribu-
tion and computation of the expected values required by generalized fast
marginalization a straightforward enterprise.

6.3.3 Symmetrization

The handling of discrete PDFs through differentiable extension leads to the
appearance of basis functions that do not satisfy the symmetry constraints
expected of W (zy, ). We eliminate this difficulty through symmetrization,
similarly to what was done in the original fast marginalization algorithm
in Seétion 4.2.4.

We provide here the fully-symmetrized formulae. Assume that the
Hamiltonian W (z, ) is even; we project the even function

1(P /(wVi\ua Xu)

e ——
T @) = 3 ( ~ + o >>

under the x,,-dependent inner product

~

1
(f19)y, = §/f<$vi\u)g<a3vi\u> (Q@Vi\u’xu) Q(Ty\us —Xu)

Because of the different in the inner produét, both the A;(x,,) and b, (x,,)
formulae change. The matrix entry A,,(x,,) becomes

Akl(Xu) = <¢ka ¢l>xu
1
- 5 /¢k<xVi\u7 XU>¢l<mVi\u7 X“)

148



6.3 GENERALIZED FAST MARGINALIZATION

Py . Plevie—.
( @) | Play, x))d%\u

1

P(w\/;\”mXu ’ wVi_l) P<mVi\u7 —Xu | CBVZ-_I)
X + .

The derivation of the right hand side vector entry b, (,, ) is more involved,
but we obtain

1

x | P’

( (wVZ‘\’UJXu ’ wVi—l) (Q(CIJVZ\“,X“) + Q(mvl\u, —Xu>
- 1 R(Xus T, (w)

+ P (wVi\uﬂ ~Xu | wVi,l) ( + - .

1 ‘%<_Xu7mNVi(u))>

Q(wvi\qu _Xu) Q(wVi\QNXu)

While the derivation of the formulae appears discouragingly complex, in
practice its use amounts to a minor correction to the non-symmetrized
method. Similarly as in Section 4.2.4.1, the terms

Xu ~
R(qu wNVi(u)) = exXp (/ W/(wVi\uu S>d8>
—Xu

must be computed approximately using the approximation of
I/T/’(:L'Vi\u, X, ) obtained using generalized fast marginalization. Thus,
the equations of the symmetrized generalized fast marginalization are
implicit, requiring an iterative solution. As in fast marginalization, we
solve them using a fixed-point iteration.

The function W’(a:vi\u, X, ) may have a difficult to integrate shape: the
majority of the mass of the funétion may be concentrated within a small
region of the x,, interval, or it may develop integrable singularities. There-
fore, the shape of W’(mvi \us Xy) must be inspected for such difficulties
and may require a specialized quadrature rule.
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6.4 SAMPLING

We begin with an in-depth analysis of the transition between two levels
of the lattice formed by the generalized acyclic Monte Carlo. Assume that
we have already sampled the variables .y, ,know the value of the trial
probability density P (xy, ) and the Jomt d1§‘[r1but1on of P(zy,, @y, )
Given these assumptions, we show that — while it is possible to sample
xy, given the values of &y, = — itis computationally infeasible to compute
the trial probability P_ (a:v ).

In order to obtain . we need to sample x,, from P(zy, | zy, )
satisfying

P(‘”V;H)P( M) = P(wV)P(mVHl ’wv)

The infeasibility lies in the fact that the marginal density P(zy, )
is known only approximately as P%(acvi+1 ). The exa&t value may
be computed by summing the known joint probability distribution
P(xy,)P(xy,, | @y, ) over all possible states @y, , which is infeasible.

The result is that it is impossible to compute the probability P (:l:V ) of
generating a State @y, by sampling the ladder of lattices. Therefore the
trial probability P_(xy,) can be neither corrected through importance
sampling nor improved through particle filtering. However, we may §till
sample from the trial distribution, as described below (see also Brandt and
Ron, 2001b).

6.4.1 Ladder sampling

Although the conditional probability P(zy, | @, ) cannot be computed,
it may be evaluated up to a factor dependent only on x, ,

P(‘L'V-P("BV.+ | zy,)
Plav lov,) = =55, 5

Since the denumerator is constant in @y, , a sampling method may ignore
itifzy,  isknown and held constant. Therefore, we sample 'y, from the
joint probablhty distribution

P(mVi’sz‘ﬂ) - P(sz‘P(wViﬂ | mVi>

150



6.4 SAMPLING

using MCMC, keeping @y, = constant. The most Straightforward method

proceeds in two phases. An initial §tate ¥, is seletted at random with
the constraint that

P(ay,. 2y, ) #0.

In the terminology of Brandt and Ron (2001b), the States z,, and ', ,, are
said to be compatible. During the second phase the initial tate «9, is it-
eratively updated using MCMC. The number of steps n necessary to reach
a state xy, , distributed according to a probability distribution closely ap-
proximatiilg P(zy,, zy. ), is typically small, because of the §trong influ-
ence of the conditional term P(zy, | @y, ) (Brandt and Ron, 2001b). As
in the multigrid method of linear algebra, the long-range correlations be-
tween variables are eliminated by the coarser variables x, ,leaving only
short-range correlations that can be relaxed quickly using local MCMC up-
dates.

6.4.2 Post-relaxation

Ladder sampling produces samples from a trial probability distribution
Px(wV()?le’ 733Vm> = Pz(wvm)Pz@vm,l | wvm) Px(wVO | wvl)a

which cannot be computed even up to a multiplicative constant. Therefore,
the trial probability distribution cannot be corrected using the importance
sampling algorithm. Instead, Brandt and Ron (2001b) suggest a technique
called posi-relaxation for correcting the trial distribution without knowing
it.

The source of the errors in the trial probability is that the variables
of the coarser level @y, ~were sampled from a probability distribution
P(zy, ) that was an approx1mate marginal of P(zy,, @y, ). Therefore,
holdmg the variables ¢,  introduces a bias that must be removed. Post-
relaxation does this by performmg MCMC sweeps from P(zy, ), ignoring
the constraints imposed by the values of @y, |

The difficulty in using post-relaxation is the fa& that the difference be-
tween the trial distribution P_(zy, ) and the approximate marginal dis-
tribution P(zy, +1> is not known. Therefore, the number of required post-
relaxation sweeps must be estimated experimentally.
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6.5 REDUCTION TO ACYCLIC MONTE CARLO

In what follows we will show that the original acyclic Monte Carlo is a
special case of the generalized acyclic Monte Carlo, obtained when the
coarsening rule is

Pz, |zy ) =6(z,—x,) forafixed ueU,

also known as decimation. The most straightforward way to prove the
equivalence is by showing that the expected value

{ (*’BVO Ly, Ly, )}

/f wVO Ly, - VZ)P(CBVO?:L.VN'“mVi)deO,Vl ,,,,, V;

reduces to an expected value over the original probability distribution
P(zy, ). For ease of notation, consider the case of only two levels, V;, and
Vi, and let U, C V|, be the subset of 1/, that can be mapped bijectively to
the nodes of V;. The expected value with respect to P(xy, , @, ) simplifies

E [y, @] = [ fley, @) Py Py, | 2,)dey dey,
— [ fav ) Pay)bey, - e, )iy day,
_ / ( / f(@y, @y, )o(@y, —wUO)dwvl) P(wy, )day,
— [ #ay, 0, Play,day,

= [EP(mVO) [f(a:VO?mU())} )

reducing itself to an expected value with respect to the original distribu-
tion. An example with more lattice levels may be constructed analogously,
with the ¢ distribution used to remove the coarse lattice variables by re-
placing with the appropriate subsets of the fine variables x, .

In particular, the function projected in the generalized fast marginaliza-
tion framework is

f(m\q) =L

(6.1)

=F|———" |z, |,
5(5Uv1 _wUO) Vl]
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6.6 MAJORITY RULE AND THE ISING MODEL
where ¢’ is the derivative of the § distribution defined through

/ 5 (@ — y)f(@)dz = ['(y).

Equation 6.1 is only a formal expectation and an abuse of notation. How-
ever, expanding the definition of the conditional expected value we obtain

/5 Ty, — gy, )Py, )dzy,

[ Py, ey,

/5/@\/1 _mUO)P<:BVO\U07wU())deodiO\Uo
/P(va\Uo)é(wvl _mU())dondeO\Uo

/P/(wVO\Uoﬂwvl)diO\Uo

/P(wvo\vl)dwvo\uo

wvl

Y

which matches the fast marginalization equation of Section 4.1.

6.6 MAJORITY RULE AND THE ISING MODEL

We close the discussion of the generalized acyclic Monte Carlo with a
complete example of the generalized acyclic Monte Carlo applied to the
Ising model in two dimensions, coarsened under the majority rule.

The majority rule is an interpolation rule designed for discrete variables
and used widely in the physics community (see, e.g. Brandt and Ron,
2001b; Gupta and Cordery, 1984; Ron and Swendsen, 2001). Setting the
coarse variable z, to the average value of x;; would cause the coarse
variable to take on a wider set of values than the orlgmal variables, leading
to an increased complexity. Instead, the majority rule forces the coarse
variable to take the value that occurs most frequently among the fine
variables xy in case of a tie, one of the values is chosen at random.
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Table 6.4: Values of the majority coarsening rule P(zy | Z?Zl x;) for the

two-dimensional Ising model. The differentiable extension 13()(5 |
Z?:l x;) and its partial derivative with respet to x5 is also included.

4 S 4 4
sz‘ r (% ;%) P (X5 sz) P <X5 sz)
‘ i=1 i=1

1=1

1 p p—1
O L
2 2 2 )
1+X5>p p<1+X5>p_
2 1 —
: (= 3 (5
0 1/2 1/2 1/2 0
1— P 1— p—1
_9 1 0 < X5) _1_7( X5>
2 2 2 )
_ p _ p—
0 () B0
2 2 2

6.6.1  Coarsening rule

Consider a two-dimensional lattice of size 16 x 16. We coarsen it by di-
viding the original variables V' into subsets of size 2 x 2, leading to a set
of 16 x 16 coarse nodes U. The coarsening block is build of 2 x 2 4 1 vari-
ables, the 4 fine variables x,, z,, 4, x, and the assigned coarse variable
x5, which is subsequently made continuous and denoted ;.

Since the variables may only take the values of —1 or 1, there are
2° = 32 possible $tates of the coarsening block. Therefore, we define
P(zy | xy,x9,x4,2,) for each of the 32 States; however, due to the
symmetries present in the problem, there are only 10 distinguishable
states that depend on the sum of the fine variables Zf_l x,; and the
value of th coarse variable z;. The values of the conditional probability
Pz | 2?71 x;) are summarized in Table 6.4.

The differentiable extension P <f5 Zj: . mz> is then constructed as a

simple polynomial passing through the given values for Z; = —1 and
1. The additional parameter p is included for additional flexibility. We
use it in Section 6.6.5 to show that the generalized fast marginalization
is independent of the choice of differentiable extension.
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6.6 MAJORITY RULE AND THE ISING MODEL

6.6.2 Generalized fast marginalization

The generalized fast marginalization formulae may be evaluated by substi-
tuting the formulae from Table 6.4 into the equations developed in Se¢tion
6.3.

6.6.2.1 Non-symmetrized projection

Let the basis function ¢}, for a node u € U, be the basis function ¢,
centered around the node u. Given a sequence of MCMC samples x¥, ;,
for k = 1,2,...,n, we compute a matrix A(x, ), on the lattice U and for
each Gaussian integration node, using the formula

%)= g 3 D etla)on ) Plek, x, o).

uelU k=1

We take advantage of the fa¢t that the Ising model and our renormalized
models are translation invariant; thus we may average the expected val-
ues over all variables on the given lattice.

Since the projection is performed on the lattice U with seven Gaussian
integration nodes, we need to compute a total of seven projection ma-
trices. Similarly, the right hand side vector b,(x,,) is eStimated from the
random samples through

b Xu |U| ZZ¢U P/ iBUaXu,le)

uelU k=1

As above, the set of variables zy U, C V, has the variable x,,, u € U,
assigned as the coarse variable. Note that the normalization conétant is
the same in both A4,,(x,,) and b;(x,,), so that it cancels out.

6.6.2.2  Partially-symmetrized projection

In the partially-symmetrized case, the linear projection equations include
the correction formula R(x,,, T y(,)- It must be evaluated numerically us-
ing the current approximation of the coefficients ¢,(x,, ). Given a sequence
of samples x¥, ;, for k = 1,2, ..., n, we compute the matrices A(x,) at
each Gaussian integration node x,, using the formula

%)= g 3 D et o) Plek, x, ).

uelU k=1
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Similarly, the right hand side vector b,(,,) is estimated from the random
samples through

= S 5 S ety

ueV, k=

X Pl(ml[f]u7Xu | wV) (1 + ‘W(XQN:BN(U))) :

6.6.2.3  Fully-symmetrized projection

In the fully-symmetrized case, the linear projection equations become
slightly more involved. Given a sequence of samples x¥, ,;, for k =
1,2,...,n, we compute the matrices A(y,,) at each Gaussian integration
node x,, using the formula

111
4506) = 3177 ZZ& o (=)

uelU k=
X (P(CEU X | @) + P(af, _Xu|wV)>

Similarly, the right hand side vetor b,(x,,) is eStimated from the random
samples through

111
bi(Xu) = 4|U| ZZ¢“mw

ueV, k=

6.6.3 Choice of basis

We select the basis functions to ensure that the coefficients are comparable
with the literature. As a result we will include linear and cubic func¢tions of
the lattice spins reaching up to a ditance of v/2, forming a neighborhood
P,, in the notation of Brandt and Ron (2001b).

The probability distribution of the Ising model on a square Cartesian
lattice is invariant with respect to rotations by 7/2, m and 37/2, and flips
along the 0, 7/4, 7/2 and 37/4 axes. As a result, the number of basis func-
tions reduces significantly. For example, the four nearest neighbor basis
functions

1_ 2 _
1= Lit1,5 1 =, 4
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6.6 MAJORITY RULE AND THE ISING MODEL

3 _ 4 _
1= T j+1s 1 = Lij—1

reduce to the single basis function ¢1 () = ;1 + 7,1 ; + T, 51 +
x,; ; 4. For a node u at position (3, j) the complete set of basis functions
used in this example calculation becomes:

(bqf(mN(u)) =Tyt T T T T

D3 () = Ti1 it Tir o1 + Ty o1+ Tisjo1

P (T N(w)) = Tis1,jTi1,j01%i 41 T Tij1Ti1,j+1%io1,5
T T %1, 51T -1 T Ty 1T j—1T 41

(bZ(wN(u)) = 17

O3 (TN(w) = Tijo1Tis1; T Ty jr1Tict o1 T Tin j i1 j1
T T3 51T, T Ty 1 Tig1 1 T Tim1 jTi1,j—1
T X 1T g1 T Ty T 1 T T T

T T 51T o1 T i1 5T 1 T Ty T g

Because the last two interactions are even, they are omitted in case of
the symmetrized projection schemes: the symmetrized projection obtains
the odd part of the projected function, thus ensuring that the coefficients
corresponding to these functions are zero. Our basis has been generated
automatically by considering interactions whose radius is at most /2. We
then reduce the resulting set of basis functions using lattice symmetries,
following the Algorithms 4.1 and 4.2.

6.6.4 Computational results

We use a fixed-point iteration with Robbins-Monro smoothing to com-
pute the coefficients, beginning with all coefficients equal to zero (Rob-
bins and Monro, 1951). Therefore, no symmetrization correction is applied
initially. After three iterations the coefficients begin to stabilize, with fur-
ther changes due only to the stochastic nature of the algorithm. The final
values are collected in Tables 6.5, 6.6 and 6.7; they are analyzed in more
detail and compared with the literature in Section 8.1.2.

6.6.4.1 Decimation coefficients

As a final Step we show the ease with which the code may be adapted to
different coarsening rules. We will implement the decimation rule, which
recovers the coefficients that would be obtained using the original fast
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Figure 6.24: Visualization of the arrangement of nodes, showing (a) the original
lattice V' and (b) the sublattice U. The nodes U C V are marked
green on both images.
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Figure 6.25: Convergence of the coefficients c; of the relevant basis functions un-
der no symmetrization, partial symmetrization and full symmetriza-
tion.

marginalization algorithm. The relevant coarsening rule and its differen-
tiable extension are summarized in Table 6.8.
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Figure 6.26: The x,, dependence of the coefficients ¢;(y,,) of the relevant basis
functions under (a) no symmetrization, (b) partial symmetrization
and (c) full symmetrization.

The resulting coefficients are colle¢ted in Tables 6.9, 6.10 and 6.11, while
a comparison with the results of Swendsen (1984b) is performed in Setion
8.1.1.
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Table 6.5: Values of the renormalized coefficients obtained using no symmetriza-
tion by renormalizing under majority rule a 16 x 16 Ising lattice at

T = 2.269185.

Xu 1 (Xu) CQ(XU) C3<Xu> C4(Xu) C5(Xu>
-0.949  0.100056 0.037053 0.024955 -0.743498 0.032430
-0.742  0.244595 0.096873 0.086138 -0.618440 0.102021
-0.406  0.367577 0.107234 0.014835 -0.352476 0.079631
0.000  0.426543 0.096211 -0.061058 -0.003591 0.000394
0.406  0.371591 0.105524 0.012482 0.351198 -0.079562
0.742  0.245755 0.096303 0.087381 0.627242 -0.103484
0.949  0.100249 0.036878 0.025596 0.746029 -0.032889

c; 0.311802 0.092527 0.019995 0.000401 -0.000139

Table 6.6: Values of the renormalized coefficients obtained using partial sym-
metrization by renormalizing under majority rule a 16 x 16 Ising lattice
at T' = 2.269185.

Xu ¢1(Xu) ca(Xu) ¢3(Xu)
-0.949 0.117745 0.028566 0.023626
-0.742 0.313385 0.059362 0.066247
-0.406 0.423380 0.082639 -0.013794
0.000 0.426708 0.096146 -0.061208
0.406 0.423297 0.082874 -0.013998
0.742 0.313297 0.060108 0.065578
0.949 0.117662 0.028889 0.023343

c; 0.353701 0.072120 0.003380

6.6.5 Differentiable extension independence

We close this chapter with a demonstration that the generalized fast
marginalization algorithm is independent of the particular choice of the
differentiable extension of the coarsening rule. As a corollary, the same
holds for the original fast marginalization, which is a special case of the
generalized algorithm.

We do so by considering the values of the basis coefficients at multiple
values of the parameter p, varied between p = 0.1 and 10. The results
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Table 6.7: Values of the renormalized coefficients obtained using full symmetriza-
tion by renormalizing under majority rule a 16 x 16 Ising lattice at

T = 2.269185.

Xu ¢1(Xu) ca(Xu) ¢3(Xu)
-0.949 0.118157 0.028355 0.023367
-0.742 0.314594 0.058797 0.065563
-0.406 0.424079 0.082218 -0.014110
0.000 0.427073 0.095902 -0.061364
0.406 0.424079 0.082218 -0.014110
0.742 0.314594 0.058797 0.065563
0.949 0.118157 0.028355 0.023367

c; 0.354469 0.071552 0.003152

Table 6.8: Values of the decimation coarsening rule P(x5 | z;) for the two-
dimensional Ising model. The differentiable extension P (x5 | ;) and
its partial derivative with respect to x5 is also included.

P (x5 | 2q) - =,
Ty o1 P(X5 | 7,) P (X5 | |7y)
1 p 1 p—1
T )
1— p 1— p—1
. 1 0 ( X5> _B( X5>
2 2 2

shown on Figure 6.28 show that the coefficients indeed plateau in 1 <
p < 3, but change rapidly beyond those values. Closer analysis shows
this is due to the shape of the x,-dependence of those coefficients shown
on Figure 6.29, as the Gaussian quadrature with five integration nodes is
ill-equipped for handling them.

For p < 1, the coefficients develop integrable singularities at x, = +1.
They are mild and could be handled using an appropriate Gauss-Jacobi
quadrature. In the case of p > 1, the coefficients instead produce a hump
around x,, = 0, which becomes increasingly steep as p grows. For p > 3,
the peak is no longer captured well by the quadrature nodes, leading to
significant integration errors.

These results confirm that the generalized fast marginalization method
is independent of the particular choice of the differentiable extension,
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Figure 6.27: Convergence of the coefficients c; of the relevant basis functions un-
der no symmetrization, partial symmetrization and full symmetriza-
tion.

however, its numerical performance is not: different choices of extension
lead to different shapes of ¢;(x, ), which may require sophisticated inte-
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Table 6.9: Values of the renormalized coefficients obtained using no symmetriza-
tion by renormalizing under decimation a 16 x 16 Ising lattice at

T = 2.269185.

Xu (X ¢ (Xu) ¢3(Xu) cs(Xu) ¢5(Xu)
-0.949 0.026599 0.011800 0.008686 -0.974539 0.011677
-0.742  0.157752 0.068127 0.038562 -0.813903 0.061917
-0.406  0.332249 0.129183 -0.018009 -0.444314 0.070220
0.000  0.411021 0.147812 -0.102014 -0.002758 0.000273
0.406  0.334217 0.128856 -0.019396 0.440596 -0.070014
0.742  0.158838 0.068065 0.038513 0.813693 -0.062261
0.949  0.026788 0.011802 0.008734 0.974595 -0.011769

c; 0.260866 0.100728 -0.016553 -0.001312 0.000042

Table 6.10: Values of the renormalized coefficients obtained using partial sym-
metrization by renormalizing under decimation a 16 x 16 Ising lattice
at T' = 2.269185.

Xu ¢1(Xu) ca(Xu) ¢3(Xu)
-0.949 0.037882 0.009924 0.000329
-0.742 0.201795 0.056809 0.022310
-0.406 0.374388 0.119285 -0.045461
0.000 0.411420 0.147539 -0.102164
0.406 0.374460 0.119166 -0.045411
0.742 0.202063 0.056327 0.022439
0.949 0.038240 0.009313 0.000427

c; 0.290354 0.093424 -0.032392

gration methods. Therefore it is of utmost importance that the coefficients
¢;(x,) are integrated correétly, as otherwise the iterative search may fail
to converge.
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Table 6.11:

6.6 MAJORITY RULE AND THE ISING MODEL

Values of the renormalized coefficients obtained using full sym-
metrization by renormalizing under decimation a 16 x 16 Ising lattice
at T = 2.269185.

Xu c1(Xu) ca(Xu) c3(Xu)
-0.949 0.038241 0.009295 0.000458
-0.742 0.201152 0.056953 0.022479
-0.406 0.373502 0.119936 -0.045382
0.000 0.410840 0.148085 -0.102168
0.406 0.373502 0.119936 -0.045382
0.742 0.201152 0.056953 0.022479
0.949 0.038241 0.009295 0.000458

c; 0.289686 0.093875 -0.032332

Coefficient value

10

p

Figure 6.28: Dependence of the renormalized coupling coefficients ¢; on the

choice of the parameter p when integrated using the five-point Gaus-
sian quadrature rule. The differences between values for different p
are caused by the inadequate number of integration nodes.
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Figure 6.29: Shape of the coupling coefficients ¢;(x,,) for different values of the
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RENORMALIZATION AND PARAMETER FLOW

In this chapter we will briefly discuss the parameter flow induced by
renormalization. Parameter flows are often described in the literature, but
often without much theoretical grounding. We begin by discussing one of
the few rigorously definable cases of parameter flow, the one-dimensional
Ising model undergoing coarsening under decimation. In later sections,
we generalize this notion using linear projection and investigate the pa-
rameter flow of the two-dimensional Ising model under different coars-
ening rules.

7.1 EXACT PARAMETER FLOW

Appendix A shows in detail that a one-dimensional Ising model does not
change its graphical stru¢ture when coarsened using decimation. The sole
changes are the reduction in the number of variables and modification of
the coupling constant, with the coarse constant i linked to the original
coupling p via

1
w =R(p) = 3 In cosh 2.

This function is a map R : R — R, transforming the coefficient y in the
original, fine probability ditribution to the coefficient i’ of the coarse,
renormalized probability distribution. Since we may think of R(u) as
moving the system in phase space, we are interested in the change in
the coefficients caused by an application of R(u). We say that the map
R(u) induces a vector field F'(11) defined as

which describes the change in the coefficients due to the application of
R(+) to a sy§tem described by . In the case of the one-dimensional Ising
model the vector field reduces to a pseudo-scalar field. The vector field
F(p) specifies the direction and magnitude of the change in the coupling
parameters. We will hereafter use F'(u) to describe the parameter flow
under renormalization. Figures 7.30a and 7.30b show the map R(y) and
the resulting parameter flow field F'(1). From the above figures we see

169



RENORMALIZATION AND PARAMETER FLOW
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Figure 7.30: Coefficient mapping R(u) and the induced parameter flow vector
field F'().

that the parameter flow gives useful information about the probabilistic
model, in this case the one-dimensional Ising model. Since R(u) < p,
the vettor field F'(11) always points toward smaller couplings. As a re-
sult, the spins at subsequently coarser scales appear less and less coupled,
eventually becoming entirely uncoupled as ;1 — 0. The mapping R(u)
possesses only one fixed point 1, = 0, defined as the point p, where

R(u,) = p, or, equivalently, F(u,)=0.

As seen on Figure 7.30b, all the flow from all other coupling coefficients
leads towards the zero coupling fixed point, decreasing the coupling.
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7.2 PROJECTED PARAMETER FLOW

The fixed points are the most interesting object that may be studied us-
ing the parameter flow, because they describe the behavior of the model
at macroscopic scales. In $tatistical physics, unstable fixed points (Arnold,
1973; Coddington and Levinson, 1955), referred to as critical points, are
of special interest. Their presence of indicates abrupt changes in the be-
havior of the system under study, e.g. phase transitions.

The one-dimensional Ising model has only one fixed point at p, = 0.
Since the fixed point is $table, that is, a perturbed system with 1 = €
returns to the fixed point when the mapping R(u) is repeatedly applied
to it. Therefore, there are no critical points and the one-dimensional Ising
model is free of phase transitions.

7.2 PROJECTED PARAMETER FLOW

The R(p) may be also defined in a general setting where the map can
no longer be obtained in closed form. We proceed in the following order.
First, we define the fine and coarse probability distributions using the ap-
proach used in Chapter 6. The couplings p and p” are then defined as the
coefficients of expansions of the Hamiltonians associated with the fine
and coarse lattices, respectively. In the following we consider a general-
ized Ising model P(xy,) that allows further interactions in addition to
the typical nearest neighbor coupling.

Let the fine probability distribution P(zy, ) describe a translation in-
variant probabilistic spin model on a square Cartesian lattice of size n x n,
n a power of two, with periodic boundary conditions. Define a set of
coarse variables ¢, by assigning a coarse variable to each subset of 2 x 2
fine variables @y, and let the conditional probability of the coarse vari-
ables x, , given the fine variables xy, , be P(zy, | xy, ). The joint proba-
bility distribution of ¢, and x,, is then

P(wvovwvl) = P(wv())P(le ’wv()),

allowing us to define the coarse probability P(zy, ) as the marginal prob-
ability distribution

P<wv1> = /P(:cvo,asvl)dwvo

= /P(a:VO)P(:ch | @y, )y, .
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Consider the case where the conditional probability factors as

P<33V1 |33v0> = H Pz, | mUu>7

ueVy

with U, being the 2 x 2 subset of V|, that was assigned z,,, u € V,, as its
coarse variable. Assuming that the probability P(z,, | @;; ) has the same
fun¢tional form for all w € V, the translation invariance of the origi-
nal probability P(zy, ) implies that P(zy, ) is also translation invariant.
Consider the case where both P(zy,) > 0 and P(zy,) > 0. Thus, we
define the Hamiltonians Wy (zy, ) and W, (zy, ) as the logarithms of the
respective probability densities,

Wo(zy,) =InP(zy,) and Wi(zy ) =InP(zy,).

Let X, and X, be the vector spaces of functions over the fine variables
Ty, and the coarse variables Ty, respectively, and let them have bases &
and x. For any u € V|, and v € V, define the functions

f<wV0> = WO(:UVO\IU Loy = 1) o WO<wVO\u7xu = _1)
and
f/<m\/1> = Wl (wvl\'u? Ly = 1) - W1<mV1\v7$v = _1)

Let f € X, and f’ € X, be written as

dim X, dim X,
fley)= > mw& and  flmy,)= > plx;
=1 =1

in terms of the basis functions of the spaces X, and X, respectively.
Finally, define the mapping R by

where n = ('ulnu/27 7MdimXU) and l’l'/ = (Mi?ﬁbéa nuélile)- Given a
fixed choice of bases 1 and &, p and p” are uniquely determined.

While the parameter flow of one-dimensional Ising model could be stud-
ied rigorously, this is not generally possible in the case of more complex
models. The process of renormalization, i.e., marginalization of coarse
variables leads to increased connectivity of the dependence graph and
vastly increased number of functions necessary to describe P(zy, ). There-
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fore, numerical approximations are necessary for the study of parameter
flows.

The numerical $tudies available in literature implicitly restrict R(u) to
a subspace of X; N X, and we shall proceed in a similar fashion (Binney
et al., 1992; Gupta and Cordery, 1984; Nauenberg and Nienhuis, 1974b;
Nienhuis and Nauenberg, 1975). Let X, be vector space of dimension K
spanned by a basis of functions ¢ = {¢,, ¢, ..., @i }, such that X, is a
subspace of both X, and X, written as X, < X, N X. Finally, define
a projection operator P X, X — X, projecting vectors of X onto X .

We can define a restricted map R:RKX — RK asa projection of the
original map R,

R(p) = Py, R(p).

The projection operator P X, will be chosen later, depending on the avail-

able tools. The resulting mapping R transforms the subspace X , spanned
by the basis ¢ onto itself, allowing us to study its behavior using numeri-
cal methods.

Before we continue, we ask what may be the relation between the
fixed points of the true mapping R and of the projected mapping R.Un-
fortunately, a $traightforward example visualized in Figure 7.31 shows
that there may indeed be no relation between the two at all. Consider
projecting the vector field onto the marked line, representing a one-
dimensional subspace of the two-dimensional space. The projected vector
field F'(t) = R(t) — ¢ will only exhibit one fixed point where the ve¢tor
field F(x) = R(x)— x is orthogonal to the subspace, however that fixed
point will not correspond to any true fixed point.

However, notice that although the bottom-left fixed point does not be-
long to the subspace, it lies close to it and therefore the projected vector
field has low magnitude there. Thus, assuming that the distance between
the marginal probability distribution and its projection onto the subspace
X o 18 sufficiently small, one should be able to observe the main features

of the true map R using the approximation R.In particular, as X, — X
we will see that the approximate map approaches the true map, R = R.

7.2.1  Direét projeétion

We study the map and its induced parameter flow using two methods. The
subspace X, is spanned by a basis ¢ composed of three basis functions,
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Figure 7.31: An example two-dimensional map visualized by its induced vector
field. The dots mark the only finite fixed points of the original vetor
field, located at the centers of the swirling vortices. The projeéted
vector field, visualized using red arrows, shows that it may be at
times a poor approximation of the true vector field.

« nearest neighbor

1 ‘/l z+17.7 Z_lv.j 7'7.7+1 7'7.7_17
« second-nearest neighbor

2 \% i+1,5+1 i+1,5—1 i—1,5+1 i—1,5—1>
« plaquette

u —
o3 (fcvl> = T i1 1T 1 T Ty 1T j+1Ti—1
Tl T 11T o1 T T 1T jo1 T
This is the biggest basis for which we may visualize the parameter flow in

three dimensions; it was used by Binney et al. (1992) and Nauenberg and
Nienhuis (1974b) to study the fixed points of the renormalization map R.
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We will use the subspace X spanned by this basis in the remainder of
this chapter.

We begin with an exact projection of P(zy, ) onto an orthonormal basis.
Following Binney et al. (1992, pp. 147-153), we proje¢t the coarse Hamil-
tonian

Wi (v, ) = In P(ay, ) = In / P(zy,)P(ay, | oy )dzy, (1)

onto the subspace X, using a uniform inner produ¢t. We define the pro-
jection operator P x, as

[Px(bf(mvl) = argmin/ (f(a:vl) —g(zcvl))Zdwvl,

geXy

leading to
i =2"" /W1($V1>¢i<wvl>dwvl (7.2)

=2 /gbi(:cvl) (hﬂ/P(:cVO)P(a:V1 \ on)da:VO> dxy, .

The resulting formula may be evaluated on very small lattices V|, e.g. 4 x4
lattices, where it requires the summation over 24*4+2%2 = 1,048, 576 pos-
sible States. Larger lattice sizes, e.g. 6 x 6 lattices, are beyond computa-
tional capabilities, showing clearly the limitations of the direct projection
approach.

We perform the computation using a computer program that we de-
scribe here to illustrate some nuances due to the periodic boundary con-
ditions and degeneracy that occurs on these small lattices. We define an
4 x 4 fine lattice V) and an 2 x 2 coarse lattice V;. The variables are ar-
ranged row-firs§t, with numbers growing left-to-right and top-to-bottom,
as shown on Figure 7.32. As a result, the coarse spin 0 is the group variable
for the fine spins 0, 1,4 and 5, as shown on Figure 7.32b.

The joint probability of the two lattices P(xy, , @y, ) is computed in two
Stages. The probability distribution P(xy, ) is computed as the exponent
of the Hamiltonian W (xy, ) defined through

M1
W(xy,) = 5 E T (g j+ @+ @0+ 2)
%]
Ho
+ o E 2 (T o F T T 2 )

j
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® O ® 6 @ @
@ @ @ @ 4) 5 6 7
® a 8 9) (10—(1
@ (O 123 1@5

(a) Fine lattice V; (b) Coarse lattice V;

Figure 7.32: Arrangement of spins on the fine lattice V[, and the coarse lattice V.
Periodic neighborhood is shown in lighter gray.

M3
+ 1 E Ty [xiJrl,j <$i+1,j+1xi,j+1 + xiﬂ,jﬂxz',jq)
iJ

TT; g ("L)ifl,j#lxi,yﬁrl + xifl,jflxi,jfl)] .

The factors 1/2 and 1/4 account for double- and quad-counting, because
each interaction is included oner per each variable it involves. Thus,
the quadratic terms are double-counted, while the quartic term is quad-
counted.

The unnormalized joint probability of the fine and coarse variables is
computed as

P(xy, ,xy,) = exp (Wo(w\/o)) P, (zy, | zy,),

where P(z,, mod xy, ) is a family of coarsening rules parametrized by
v € [0, 1]. The value v = 0 corresponds to decimation rule, v = 1 to
majority rule, while values in between to the linear combination of the
two

Pu(le | wV()) = VPmajority(wvl ’ wVO>+(1_V)Pdecimation<wvl | wVO)'

The conditional probabilities for decimation and majority rule are speci-
fied in Tables 6.8 and 6.4, respective. The use of the parameter v € [0, 1]
allows us to §tudy both rules, especially the transition between the them.

176



7.2 PROJECTED PARAMETER FLOW

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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(a) Full view (b) pto—tt1 plane

(¢) po—p plane (d) pt1—po plane

Figure 7.33: Exa¢t computation of the parameter flow for a 4 x 4 lattice V|, and
under v = 0 coarsening rule (decimation).

2 0.3 0.4 0.5 0.6 0.7 0.8
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(c) po—po plane (d) p1—po plane

Figure 7.34: Exa¢t computation of the parameter flow for a 4 x 4 lattice V|, and
under v = 1/2 coarsening rule.
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Figure 7.35: Exa¢t computation of the parameter flow for a 4 x 4 lattice V|, and
under v = 1 coarsening rule (majority rule).

The projected coefficients p’ = (u, 5, 15) are computed using two
loops. The inner loop computes the logarithm of the marginal of the joint
distribution by recursively generating all possible states x,, for a given
State @y, , collecting the sum from Equation 7.1. The outer loop computes
the actual projection of Equation 7.2 by recursively visiting all possible
States @y, and performing the inner loop on each such $tate. This corre-
sponds to computing the outer sum of

[ o) (1 [ PPy, [2y)dey,) doy,.

Once the complete integral is computed for a given i, we perform normal-
ization, dividing each coefficient by 2”2, the constant that makes the basis
functions orthonormal. Importantly, we also correct an over-counting er-
ror made by Binney et al. (1992). Figure 7.32b shows that the right-hand-
side neighbor of node o is node 1, but the left-hand-side neighbor is also
node 1. Therefore, the two coarse basis funétions z, ;. ; and z,;x; ; ;
cannot be distinguished by the projection algorithm and the resulting co-
efficient p] is in fact twice as large as it should have been. We have in fac
seen this situation in the exact computation of the Ising model, where a
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lattice of four spins is reduced to only two spins. In that situation, the
final coefficient becomes

/

1
@ =Incosh(2u) ratherthan ' = 5 In cosh(2u).

The situation is similar with the diagonal intera¢tion z,;x,, ;. ;. In this
case, this interaction connects nodes o and 3, but the equivalent inter-
actions x;;x;, 1 ; 1, T;;T; 4 ;4 and x;;x; 4 ;4 all connect nodes o and
3. Similarly, the plaquette term connects the same set of four spins four
times. Therefore, the coefficients ;5 and 5 obtained by the projection
algorithm are four times as large as they should be. We corre¢t the over-
counting errors by dividing x7 by two, while 5 and p5 are both divided
by four.

Our code computes the projected coefficients for an entire list of origi-
nal coefficient sets. The results presented here sample uniformly the rect-

angular cuboid defined by the bounding box

(g™, ] @ [, ] @ [pb™, ps]
= [~0.05,0.8] ® [—0.05, 0.45] ® [—0.45,0.05],

with each side subdivided into 30 intervals, with N = 31 points. There-
fore, the code probes N? = 29, 791 sets of initial coefficients p by com-
puting the mapping p" = R(pu) and veétor F(pu) = R(p) — p for each
one. The results are then saved as Visualization Toolkit (VTK) files for later
visualization.

Figures 7.33, 7.34 and 7.35 show the results of the computation. The flow
field is visualized by a set of Streamlines, that is paths followed by mass-
less marker particles flowing through the flow field. Notice that in all the
images there is a clear $table fixed point at . = (0,0, 0), corresponding
to a zero-coupling $tate where variables are uncorrelated. When v > 0
an unstable fixed point, i.e. a critical point, suddenly appears and moves
continuously toward the location of the fixed point of the majority rule
as v — 1.In all cases the critical point is a saddle (Arnold, 1973; Codding-
ton and Levinson, 1955), where the streamlines enter the critical point
along two directions corresponding to the negative eigenvalues of the Ja-
cobian of the map R () at u,. These critical §treamlines flow out of the
critical point along the single direction corresponding to the lone positive
eigenvalue, pushing the system either toward the zero coupling $tate or
an infinite coupling.

Classically, the flow with an unstable fixed point implies the existence of
a phase transition. If the microscopic system lies in the basin of attraction
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of the zero coupling state, the resulting macroscopic system, represent-
ing the microscopic system after multiple applications of the coarsening
rule, is uncorrelated and unmagnetized. However, when the parameters
p describing the system cross the boundary of the basin, the macroscopic
system is instead pushed toward high couplings, resulting in a $trongly
correlated and magnetized state. Thus, the location of the boundary be-
tween the two attraction basins corresponds to the location of the phase
transition. Since the original Ising model corresponds to a set of parame-
ters (14, 0,0), we would expect set point p, = (0.44068, 0, 0) to initiate
a streamline passing through the critical point. Instead, however, we find
that the continuous streamlines cannot be used to represent the evolu-
tion of the coupling coefficients undergoing subsequent steps renormal-
ization, a discrete process. Therefore, the parameter flow under repeated
renormalization can only be observed by the calculation of renormalized
coefficients using a very large fine lattice and a sequence of successively
smaller lattices; see, e.g., Table 8.19.

We turn to the study of the dependence of the position of the critical
point g, () on the coarsening rule, as the initial tudy has shown that dec-
imation appears not to have a critical point at all. The critical point ., (/)
is at the closest point to the zero coupling in case of majority rule (v = 0)
and Steadily moves away when the coarsening rule becomes decimation,
i.e. as v — 0. Nauenberg and Nienhuis (1974a,b) reported the location of
the v = 1 critical point to be . (1) = (0.307,0.084, —0.004) (Nauenberg
and Nienhuis, 1974b) or p, (1) = (0.300,0.0871,—0.00126) (Nauenberg
and Nienhuis, 1974a). Using the dire¢t projection method described above
we have re-computed the location of the critical point using an iterative
approach. Linearizing the parameter flow F'(u) around the critical point
W, we obtain

F(p)=F(p,) +A(p—p,) +O(||p — 1, |]?)
= A(p —p,) + 0| — .| ?),

where A is the Jacobian of the vector field at the critical point. Therefore,
we iteratively solve for the critical point g, using

pitt =l — A(pl) T F(pl),

where A(u?) is approximated numerically. For v = 1, $tart-
ing from the initial location u? = (0.307,0.084,—0.004)
we converge to the value pu, = (0.29976120070883128,
0.087094327207973096,  —0.0012586333545222166), at  which
point the change [|u?tt — u”||> < 1072 becomes negligible. These
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values seem to agree well with the value reported by Nauenberg and
Nienhuis (1974a).

After determining the critical point u, for majority rule (v = 1), we
vary v and compute the funttion pu,(v) for v € [0, 1]. This may be done
as long as the $tarting point ! is close to the fixed point; therefore, we
first find the value of i, (1) and slowly decrease v, using the value p, (v +
€) as the $tarting point for the p,(v) iteration. Figure 7.36 presents the
dependence of the three components of p,(v) = (uy(v), ps(v), ps(v))
on the coarsening rule used. Around the initial value of v = 1, the fixed
point p,(v) changes smoothly; however, as v — 0 the position of the
critical point appears to diverge.

We posit that the Ising model in two dimensions under decimation
does not have a finite critical point, because further approximate stud-
ies of larger lattices, described below, show a similar behavior. Because
of the wide-spread belief in the connecdtion between the critical point of
the renormalization transformation and the phase transitions of the un-
derlying system, further studies of the topic appear much needed.

7.2.2  Approximate projeétion

The direct projection method described in the previous section is unable
to provide us with a truthful description of the parameter flow, due to the
very small lattice size that can be handled. As we have seen above, this
restriction is severe because results are dominated by finite size effedts.
Computing the renormalized probability distribution using a larger lattice
necessitates an approximate approach.

We apply the generalized fast marginalization method and define the
parameter map R as the outcome of the projection performed by the re-
sulting algorithm. Let [ly)‘g; be the projection operator

Py fay,) = arguin [ (F@y,00) ~ o)

g€X¢
X (P(fcvl\uv Xu) + P<mV1\u? _Xu>> deI\'w

for v € V,, which we previously used in the fully-symmetrized gener-
alized fast marginalization. We define the projection operator P x,asa
sum

Py, f(zy,) = /[P?;f(wvl)dxu,
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Figure 7.36: Dependence of the critical point location pu, () on the coarsening
rule. The critical couplings p, () diverge logarithmically as v — 0,
a fat made clear by the logarithmic fits on Figure (b).
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where the integral may be approximated using a quadrature rule.

Lattices are coarsened by dividing the nodes into subsets of size 2 x 2,
thus we reproduce the prior $tructure through renormalization of an x n
lattice to a /2 x /2 lattice. The variables @, are sampled using a straight-
forward Gibbs sampler, while the coarser lattice is sampled using the con-
ditional probability P(zxy, | z,,) defining the particular coarsening rule
being used.

We compute the matrices A(t;) and right hand side vectors b(t,) at a
set of seven Gaussian quadrature nodes ¢; using multiple Markov chams
running in parallel, averaging over the chains. We take advantage of the
translation invariance by performing an averaging over all spins on a
given lattice. LAPACK routines are used to solve the symmetric positive
definite systems

at each Gaussian quadrature node. The final coupling parameters g are
then recovered through integration as

1
u’z/ (xu)dx, = Zu

-1

The coefficients p(x,) are also integrated between the symmetrically
placed quadrature nodes —t; and ¢, producing a set of coefficients

tj
Wi = / 1 (X)X

which are used to compute the correction terms

Xu Xu
exp( W/(CBVi\u,S)deS) and exp (—/ W’(a:vi\u,s)ds>

—Xu ~Xu

required by the full symmetrization scheme.

Because the fully-symmetrized generalized fast marginalization equa-
tion satisfied by the parameters p’ is implicit, we solve it using fixed-
point iteration with Robbins-Monro smoothing, repeating the algorithm
for 50 iterations, with each iteration consisting of 10,000 random samples.
Note that the fixed-point iteration is not related to the fixed points of the
mapping R.
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Figure 7.37: Approximate computation of the parameter flow for a 4 x 4 lattice
V, and under v = 0 coarsening rule (decimation).

The compute code computes the renormalized coefficients p” for a set
of original coupling coefficients p, again sampling a rectangular cuboid
defined by

[, o] @ (™, p5™] @ [, ]
= [~0.05,0.8] ® [—0.05, 0.45] ® [—0.45, 0.05).

Due to the much greater computational resources needed to compute the
approximate coefficients, we only subdivide each dimension into 6 inter-
vals using N = 7 points. Thus, N 3 = 343 sets of initial coefficients are
considered, producing a much lower resolution that the exa¢t computa-
tion of previous section.

We firét attempt to use a small lattice with n = 4, reproducing the
previous computation. As we can see, Figures 7.37, 7.38 and 7.39 are very
similar to Figures 7.33, 7.34 and 7.35, respectively, confirming that the
approximate method works correétly: in the case of a 4 x 4 fine lattice,
the basis ¢ is exact on the 2 x 2 coarse lattice, thus the two methods must
agree up to the Stochastic errors in the computation of expected values.

The only major difference we see occurs under majority rule on Figure
7.39, where a part of the visualization is missing. This is due to the fa¢t that
the projection method is limited to relatively weak couplings. Intuitively,
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Figure 7.38: Approximate computation of the parameter flow for a 4 x 4 lattice
V,, and under v = 1/2 coarsening rule.
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Figure 7.39: Approximate computation of the parameter flow for a 4 x 4 lattice
Vy and under v = 1 coarsening rule (majority rule).
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Figure 7.40: Approximate computation of the parameter flow for a 8 x 8 lattice
V, and under v = 0 coarsening rule (decimation).
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Figure 7.41: Approximate computation of the parameter flow for a 8 x 8 lattice
V,, and under v = 1/2 coarsening rule.
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Figure 7.42: Approximate computation of the parameter flow for a 8 x 8 lattice
V, and under v = 1 coarsening rule (majority rule).
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Figure 7.43: Approximate computation of the parameter flow for a 16 x 16 lattice
Vp and under v = 0 coarsening rule (decimation).
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Figure 7.44: Approximate computation of the parameter flow for a 16 x 16 lattice
V,, and under v = 1/2 coarsening rule.
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Figure 7.45: Approximate computation of the parameter flow for a 16 x 16 lattice
Vy and under v = 1 coarsening rule (majority rule).
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when the couplings are $trong the spins are correlated and basis functions
always take the same values. Therefore, the Gram matrices A(x,, ) become
singular for large ||, limiting the usability of projection to the relatively
small values of |p|.

Moving to larger lattice sizes, we produce a set of visualizations cor-
responding to the results obtained using exact coarsening. Qualitatively,
the behavior of the parameter flow on larger lattices does not change, as
shown by the visualizations obtained using 8 x 8 and 16 x 16 lattices.

The parameter flow under decimation, shown on Figures 7.40 and 7.43,
does not have a critical point. Instead, the coefficients p appear to collapse
onto a single curve leading to the sole fixed point at £ = 0. On the other
hand, the coarsening rules with v = 1/4 and 1 (majority rule) both produce
a critical point, as was the case on the 4 x 4 lattice: see Figures 7.41, 7.42,

7.44 and 7.45.
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ISING MODEL

The Ising model is a classic model of statistical physics due to Wilhelm
Lenz (1920), but named after his student Ernst Ising (1925), who solved
the one-dimensional model in his doctoral thesis. The model describes
simplified interactions between grains of a ferromagnetic material. In the
Ising model those grains are represented by the so-called Ising spins: dis-
crete variables allowed to take values of either 1 or —1 — representing
spin up or down — arranged in a regular Cartesian lattice with periodic
boundary conditions. These variables intera¢t with each other through
nearest-neighbor interactions, where each pair of neighboring variables
contributes either —.J or J to the potential energy of the syStem H(x,,),
depending on whether the two variables are the same or different, respec-
tively. Therefore, the potential energy H(x, ) may be written as

Hiwy) =5 DI

where the fir§t sum is over all nodes u on the lattice, while the latter over
the neighbors v of the node u. The resulting probability distribution over
x, is a Gibbs measure

P(xy) = %exp (—H(;V>) = %exp (% qu Z :cv> ,

\%4 N(u)

where one typically specifies the system using the coupling parameter
w = J /T, also called the inverse temperature when J = 1.

The main feature of the Ising model is the phase transition that occurs in
the two- and three-dimensional Ising model at a finite coupling 1., whose
value depends on the dimension of the model. The two-dimensional Ising
model has been solved exactly by Onsager (1944), thus the exact location
of the phase transition is known to be p, = In(1 4 v/2) /2 ~ 0.44068679.
For y1 < p, the coupling is weak and the spins are uncorrelated, yielding
an unmagnetized state: one, where the average magnetization

M(p) =E, [% zu:xu]
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is zero. However, for ;o > pu, the magnetization M (p) rises sharply, be-
cause the spins break the symmetry and undergo spontaneous magneti-
zation. The actual phase transition occurs only in the case of an infinite
lattice, but the behavior of the finite Ising model converges quickly to that
of the infinite case. As shown on Figure 8.46a rapid change in magneti-
zation M (p) can be observed around p &~ p,, with the change becom-
ing more abrupt as the lattice size increases. However, the exact position
of the phase transition is usually determined using the Binder cumulant

Us(p),
2 4_
L, ﬁzmu
- 2_
3L, ﬁzxu

which has the property that at y the value U,(p,.) is independent of the
lattice size n. As a result, the precise location of the phase transition may
be determined from the intersection of the Binder cumulant curves for
lattices of different size, shown on Figure 8.46b.

The Ising model has long been studied theoretically and computation-
ally, making it de faéto the standard model for studying properties of nu-
merical methods. The available literature on numerical renormalization
and its use in sampling deals virtually exclusively with the Ising model
at critical temperature; therefore, the examples shown within this chap-
ter will always show the square-lattice Ising model at critical temperature.
Although our methodology remains completely general, in the remainder
of this chapter we restric¢t ourselves to the two-dimensional Ising model
defined over a regular, square Cartesian lattice. We further assume that
the lattice is of size n x n, where n is a power of 2, and doubly-periodic
boundary conditions are used.

The present chapter is divided into two parts. We begin by applying the
fast marginalization method to the Ising model to obtain the renormalized
coupling coeflicients p; on coarse lattices V, ¢ > 0. These renormalized
coupling coefficients will later be used to construct a proposal density for
sampling the Ising model, however we begin the discussion of the numeri-
cal methods developed in this thesis by comparing our renormalized cou-
pling coeflicients to the values reported in the literature. Subsequently,
we use the numerically computed coupling coefficients to construct ran-
dom samples from the Ising model using the importance sampling frame-

Uyp) =1—
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(a) Absolute average magnetization.
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Figure 8.46: Dependency of the (a) absolute average magnetization M, () =
E, [% |Zu Z,, ] a slight modification of the average magnetiza-
tion M (u) defined above, and (b) Binder cumulant U, (u) of the
two-dimensional Ising model on the coupling parameter p. As the
coupling increases and reaches the critical coupling p, = In(1 +
V/2)/2 ~ 0.44068679 (solid black line), the magnetization begins to
grow rapidly and plateaus for p above (.. The larger the lattice the
more abrupt the change, eventually converging to a first order phase
transition. The Binder cumulant also abruptly changes value in the
vicinity of the phase transition, but the precise location of the tran-
sition is indicated by the intersection of the curves corresponding to
different lattice sizes.

work and compare the results obtained using the Sequential Importance
Sampling (SIs) and Partial Rejection Control (PRC) methods.
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8.1 RENORMALIZED COEFFICIENTS

The original lattice V' = V/; of size n x n may be coarsened by dividing
the lattice into subsets of 2 X 2 nodes and retaining only one node out
of each. For the purposes of this se¢tion, we keep nodes at positions (7, )
such that both ¢ and j are even. The resulting coarsened lattice V; of size
n/2 x n/2 together with the marginal probability density

P<33V1> = /P(f‘UvO)dil’vo\v1

have all the symmetry properties of the original Ising model. Repeating
this coarsening procedure produces a sequence of lattices V;,V,, ..., V.,
for which we will compute the renormalized coupling coefficients.

We will approximate the marginal probability density using a number
of interactions ¢, writing

OP(xy,)
‘o ()o@
Play )~ On Z @)

where N (u) is the set of neighbors of the node u € V,,. Following the
literature, we choose ¢, to be polynomial functions in the neighbors of
the node u. The basis funtions ¢,, are defined on Figure 8.47.

The initial five funétions correspond to interactions between pairs of
variables, with the interactions that are equivalent under lattice symme-
tries reduced due to form a single function. The functions are sorted by
the distance between the variables, thus ¢, is the interaction between
variables at distance 1, ¢, at distance V2, ¢4 at distance 2, ¢, at dis-
tance /5 and @5 at distance V/8. The remaining three terms are the four-
variable interactions. ¢, has never been included in the literature, though
it is the interaction between closest neighboring variables arranged in an
isosceles right-angle triangle with hypothenuse of length 2. The final two
functions are called plaquettes, because the variables participating in the
interaction are arranged into a square tile: ¢, forms tiles of side length
1 while ¢4 of side length v/2. This choice of ¢, matches closely that of
Swendsen (1984b), allowing for a dire¢t comparison of results; however,
Swendsen (1984b) neglected the term ¢4, while our computations show
that this terms is indeed significant.

We computed the coeflicients using the fully-symmetrized generalized
fast marginalization method with Q(x) = 1, as described in Chapter 6.
We ran a Markov Chain Monte Carlo (MCMC) computation with a Gibbs
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Figure 8.47: The interactions ¢, used in the computation of the renormalized
coupling coefficients. The first five functions are linear terms corre-
sponding to interactions between pairs of variables, while the latter
three functions are cubic and correspond to four-variable interac-
tions.
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sampler that outputted a new sample every 10n? individual variable flips.
We collected the projection matrix and vector at seven Gaussian quadra-
ture nodes using data from 1,000,000 samples. Additionally, we averaged
the projection matrices over all variables on the given lattice. We com-
puted the final coefficients iteratively using the fixed point algorithm, con-
tinuing for eight iterations. In order to smooth the convergence and make
use of multiple iterations, we applied the Robbins-Monro algorithm with
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Table 8.12: Values of the renormalized coefficients obtained by renormalizing
under decimation 7 times a 16 x 16 Ising lattice at 7 = 2.269185.

1k K=1 K=3 K=6 K=7 K=8
1 0.346401 0.288902 0.279622 0.276477 0.275903
2 _ 0.094588 0.094831 0.086260 0.085956
3 _ _ 0.029574 0.021264 0.020447
. 4 _ _ _ 0.009208 0.008111
5 _ _ _ _ 0.003502
6 _ _ -0.010100 -0.009640 -0.009701
7 —_— -0.033852 -0.016972 -0.016388 -0.015977
8 —_— —_— -0.003974 -0.001904 -0.001690
1 0.291618 0.230339 0.215358 0.206900 0.205304
2 _ 0.119443 0.121750 0.107456 0.105085
3 —_— —_— 0.041268 0.034173 0.034290
5 4 _ _ _ 0.013505 0.012678
5 _ _ _ _ 0.003980
6 _ _ -0.016778 -0.015379 -0.015410
7 _ -0.057560 -0.020709 -0.020471 -0.019059
8 —_— —_— -0.012023 -0.009063 -0.008864

a; = 1fori < 3 and a;, = 1/(i — 2) for the following iterations (Robbins
and Monro, 1951). The resulting decimation coeflicients are presented in
Tables 8.12, 8.13 and 8.14, while the majority rule coefficients are colleéted
in Tables 8.16, 8.17, 8.18 and 8.19.

8.1.1  Decimation coefficients

The renormalized coefficients obtained using decimation exhibit three
main features. It appears that they depend not on the absolute size of the
lattice, but on the size relative to that of the original lattice. For example,
the coupling coeflicients are nearly identical for a given 7 independently
of the size of the initial lattice: the calculations performed with the 16 x 16,
32 x 32 and 64 x 64 lattices show very similar results. The coefficients de-
cay slowly with distance; in fact, the higher the value of i the slower the
decay, thus the approximation of W (x, ) becomes increasingly difficult
as 7 grows larger.
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Table 8.13: Values of the renormalized coefficients obtained by renormalizing
under decimation ¢ times a 32 x 32 Ising lattice at 7" = 2.269185.

1k K=1 K=3 K=6 K=7 K=8
1 0.344981 0.288067 0.280326 0.276859 0.276752
2 _ 0.093201 0.093756 0.085901 0.085580
3 _ _ 0.029034 0.020627 0.020019
. 4 _ _ _ 0.009286 0.008123
5 _ _ _ _ 0.003456
6 _ _ -0.010067 -0.009697 -0.009629
7 —_— -0.031002 -0.017165 -0.016364 -0.016419
8 —_— —_— -0.002861 -0.001185 -0.001190
1 0.288819 0.228331 0.212335 0.203475 0.202416
2 _ 0.116334 0.113115 0.098318 0.096379
3 _ _ 0.048998 0.035229 0.032997
5 4 _ _ _ 0.017582 0.014884
5 _ _ _ _ 0.009857
6 _ _ -0.015527 -0.014409 -0.014033
7 _ -0.050593 -0.021712 -0.020305 -0.020196
8 —_— —_— -0.008226 -0.004709 -0.004165
1 0.252836 0.194676 0.179348 0.165180 0.163611
2 _— 0.119176 0.119295 0.103769 0.102385
3 _ _ 0.047423 0.038987 0.038312
4 _ _ _ 0.017965 0.016255
3 5 _ _ _ _ 0.006571
6 _ _ -0.018624 -0.016662 -0.016473
7 _ -0.057689 -0.019758 -0.016735 -0.017108
8 —_— —_— -0.015346 -0.013995 -0.013548

Finally, the coefficients show the the functions ¢, have a large overlap,
that is, the addition of a basis function changes the coefficients of the
existing functions. For example, the introduction of ¢, and ¢, to the basis
reduces the coefficient of ¢, from approximately 0.344 to 0.289 (Table
8.13). As a result, the coefficients depend very strongly on the included
basis func¢tions.
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Table 8.14: Values of the renormalized coefficients obtained by renormalizing
under decimation ¢ times a 64 x 64 Ising lattice at 7" = 2.269185.

1k K=1 K=3 K=6 K=7 K=8
1 0.343977 0.287808 0.280288 0.277232 0.277182
2 _ 0.092388 0.093850 0.085924 0.085389
3 _ _ 0.028849 0.020365 0.019747
. 4 _ _ _ 0.009194 0.008152
5 _ _ _ _ 0.003306
6 _ _ -0.010055 -0.009623 -0.009620
7 —_— -0.029689 -0.017062 -0.016510 -0.016395
8 —_— —_— -0.002616 -0.001091 -0.000831
1 0.286261 0.226996 0.213783 0.205286 0.204718
2 _ 0.113933 0.112134 0.097888 0.096586
3 _ _ 0.047901 0.033834 0.032365
5 4 _ _ _ 0.017436 0.014895
5 _ _ _ _ 0.008640
6 _ _ -0.015477 -0.014263 -0.014054
7 _ -0.046073 -0.022136 -0.020860 -0.021064
8 —_— —_— -0.006497 -0.003525 -0.003162
1 0.247946 0.191938 0.175508 0.160796 0.158770
2 _ 0.115576 0.110295 0.091722 0.088631
3 _ _ 0.057092 0.040212 0.037747
4 _ _ _ 0.024137 0.020366
’ 5 EE— EE— EE— EE— 0.014774
6 _— _— -0.017170 -0.015058 -0.014644
7 _ -0.049786 -0.020119 -0.018067 -0.017405
8 —_— —_— -0.010253 -0.006706 -0.005995
1 0.219973 0.166162 0.154218 0.138876 0.138025
2 _ 0.112112 0.111370 0.0960414 0.093371
3 —_— —_— 0.045458 0.037541 0.038424
4 _ _ _ 0.019895 0.018156
! 5 _ _ _ _ 0.006643
6 _ _ -0.018248 -0.015924 -0.016262
7 _ -0.048858 -0.016361 -0.015139 -0.014694
8 _ _ -0.013955 -0.013071 -0.012467
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Table 8.15: Comparison of the values of the renormalized coefficients obtained
by renormalizing under decimation ¢ times a 32 x 32 Ising lattice at
T = 2.269185 with those reported in the literature.

i k Results Swendsen (1984b)
1 0.276752 0.254
2 0.085580 0.086
3 0.020019 0.015
) 4 0.008123 0.008
5 0.003456 0.004
6 -0.009629 _
7 -0.016419 -0.018
8 -0.001190 -0.009
1 0.202416 0.186
2 0.096379 0.089
3 0.032997 0.028
" 4 0.014884 0.016
5 0.009857 0.012
6 -0.014033 _—
7 -0.020196 -0.031
8 -0.004165 -0.013
1 0.163611 0.146
2 0.102385 0.097
3 0.038312 0.033
4 0.016255 0.019
> 5 0.006571 0.010
6 -0.016473 _—
7 -0.017108 -0.043
8 -0.013548 -0.028

Our decimation coefficients are compared with available literature in
Figure 8.15. The only other work that reported these coefficients, to the
best of our knowledge, is Swendsen (1984b). The coeflicients obtained
in the present thesis agree about the order of magnitude with those of
Swendsen (1984b), however there is no numerical agreement regarding
the particular values. However, the related majority rule coefficients of
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Table 8.16: Values of the renormalized coefficients obtained by renormalizing
under majority rule ¢ times a 16 x 16 Ising lattice at T' = 2.269185.

ik K=1 K=3 K=6 K=7 K=8
1 0.426782 0.354804 0.356047 0.356727 0.356738
2 0.072394 0.073559 0.077015 0.077122
3 _ _ -0.017775 -0.014005 -0.013779

. 4 _ _ _ -0.003554 -0.003064
5 _ _ _ _ -0.001327
6 _ _ 0.010337 0.010236 0.010228
7 —_— 0.005076 -0.011266 -0.011373 -0.011377
8 —_— —_— -0.008944 -0.009725 -0.009787
1 0424890 0.340252 0.345553 0.347499 0.347679
2 _ 0.081485 0.083042 0.088580 0.089148
3 —_— —_— -0.019416 -0.016448 -0.016454

5 4 _ _ _ -0.004458 -0.003831
5 _ _ _ _ -0.001822
6 _ _ 0.009943 0.009826 0.009795
7 _ 0.007344 -0.013781 -0.014185 -0.014171
8 —_— —_— -0.005204 -0.006162 -0.006292

Swendsen (1984b) do not agree well with those of other authors and thus
we consider these results to be less accurate than ours.

8.1.2  Majority rule coefficients

The majority rule is not used elsewhere within this thesis, because it does
not allow one to construct a sequential importance sampling algorithm.
This is due to the fa¢t that it is not possible to evaluate the conditional
probability P(zy, .y | @y, ) and thus compute the proposal density.
However, the generalized fast marginalization algorithm is a generaliza-
tion of the fast marginalization algorithm and makes it possible to com-
pute the majority rule coefficients on coarse lattices using the same ma-
chinery. We do so because the majority rule is the preferred coarsening
rule used in the physics community and has been §tudied much more thor-
oughly; as a result, a larger set of published coefficients exists than it is
the case with decimation.
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Table 8.17: Values of the renormalized coefficients obtained by renormalizing
under majority rule ¢ times a 32 x 32 Ising lattice at T' = 2.269185.

ik K=1 K=3 K=6 K=7 K=8
1 0.425698 0.355706 0.355919 0.356533 0.356544
2 0.073928 0.073784 0.077057 0.077240
3 _ _ -0.017491 -0.013736 -0.013570
. 4 _ _ _ -0.003615 -0.003076
5 _ _ _ _ -0.001424
6 _ _ 0.010470 0.010379 0.010390
7 —_— 0.002901 -0.011286 -0.011384 -0.011427
8 —_— —_— -0.009519 -0.010078 -0.010148
1 0423128 0.341905 0.344757 0.345758 0.345681
2 _ 0.084371 0.086143 0.090010 0.090329
3 —_— —_— -0.020645 -0.016450 -0.016188
5 4 _ _ _ -0.004079 -0.003657
5 _ _ _ _ -0.001225
6 _ _ 0.010349 0.010224 0.010206
7 _ 0.003576 -0.013364 -0.013654 -0.013484
8 _— _— -0.007447 -0.008262 -0.008440
1 0.424534 0.338215 0.344130 0.345500 0.345963
2 0.083864 0.084834 0.090862 0.091553
3 _ _ -0.020585 -0.017721 -0.017352
4 _ _ _ -0.004581 -0.003961
3 5 _ _ _ _ -0.001468
6 _ _ 0.010252 0.010193 0.009931
7 _ 0.007091 -0.014292 -0.014254 -0.014654
8 —_— —_— -0.004931 -0.006153 -0.006170

The parameter flow of majority rule exhibits a unique critical point,
while that of decimation does not (see Chapter 7 and Swendsen, 1984b);
thus the renormalized coefficients obtained using the Ising model at
1 = p, will tend toward the critical point. Because the critical point can
be described fairly well using only a few coefficients, the renormalized
majority rule coefficients corresponding to long-range interactions do not
increase significantly with ¢ as it was the case with decimation. In other
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Table 8.18: Values of the renormalized coefficients obtained by renormalizing
under majority rule ¢ times a 64 x 64 Ising lattice at T' = 2.269185.

ik K=1 K=3 K=6 K=7 K=8
1 0.425072 0.356183 0.355889 0.356539 0.356582
2 0.074743 0.073844 0.077079 0.077240
3 EE— EE— -0.017377 -0.013599 -0.013475
. 4 _ _ -0.003689 -0.003085
5 _ _ _ -0.001503
6 _ _ 0.010534 0.010443 0.010440
7 0.001773 -0.011325 -0.011423 -0.011481
8 —_— —_— -0.009686 -0.010179 -0.010265
1 0421838 0.343139 0.344742 0.345637 0.345632
2 _ 0.085869 0.086379 0.090110 0.090398
3 _ _ -0.020371 -0.015994 -0.015913
5 4 _ _ -0.004195 -0.003776
5 _ _ _ -0.001228
6 _ _ 0.010423 0.010305 0.010285
7 _ 0.001180 -0.013391 -0.013632 -0.013551
8 —_— —_— -0.007968 -0.008638 -0.008712
1 0.422866 0.340279 0.343127 0.344367 0.344322
2 0.086489 0.088301 0.092366 0.092674
3 —_— —_— -0.021662 -0.017274 -0.017217
4 _ _ _ -0.004362 -0.003802
3 5 _ _ _ _ -0.001386
6 _ _ 0.010509 0.010344 0.010379
7 _ 0.003155 -0.013757 -0.014040 -0.014079
8 —_— —_— -0.007237 -0.007883 -0.008145
1 0.424249 0.337158 0.344022 0.344948 0.345885
2 0.083406 0.083958 0.091255 0.092082
3 _ _ -0.021205 -0.017573 -0.017512
4 _ _ _ -0.004910 -0.004577
! 5 _ _ _ _ -0.001947
6 _ _ 0.010211 0.010229 0.010268
7 _ 0.008248 -0.013713 -0.014741 -0.015177
8 _ _ -0.003730 -0.005589 -0.005825
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Table 8.19: Values of the renormalized coefficients obtained by renormalizing
under majority rule ¢ times a 128 x 128 Ising lattice at 7" = 2.269185.

1k K=1 K=3 K=6 K=7 K=8
1 0.424708 0.356423 0.355920 0.356561 0.356566
2 _ 0.075169 0.073876 0.077084 0.077229
3 _ -0.017316 -0.013532 -0.013365
. 4 _ _ -0.003700 -0.003093
5 _ _ _ -0.001570
6 _ 0.010554 0.010474 0.010463
7 —_— 0.001168 -0.011370 -0.011468 -0.011476
8 —_— -0.009790 -0.010276 -0.010303
1 0.421002 0.343751 0.344703 0.345572 0.345585
2 _ 0.086742 0.086516 0.090238 0.090391
3 —_— -0.020168 -0.015822 -0.015655
5 4 _ _ -0.004279 -0.003702
5 _ _ _ -0.001490
6 _ 0.010466 0.010359 0.010353
7 _ -0.000187 -0.013447 -0.013561 -0.013605
8 —_— -0.008274 -0.008863 -0.008884
1 0.421189 0.341537 0.343116 0.344262 0.344234
2 0.088135 0.088629 0.092622 0.092651
3 _— -0.021442 -0.016884 -0.016677
4 _ _ -0.004517 -0.003922
3 5 _ _ _ -0.001544
6 _ 0.010614 0.010479 0.010487
7 _ 0.000442 -0.013777 -0.014012 -0.013921
8 —_— -0.007858 -0.008508 -0.008497
1 0.421893 0.339862 0.343443 0.344360 0.344318
2 _ 0.087017 0.087936 0.092540 0.092686
3 —_ -0.022491 -0.017645 -0.017764
4 _ _ -0.004998 -0.004250
! 5 _ _ _ -0.001854
6 _ 0.010636 0.010515 0.010663
7 _ 0.002643 -0.013968 -0.013939 -0.013948
8 _ -0.006826 -0.007546 -0.007642
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Table 8.20: Comparison of the values of the renormalized coefficients obtained
by renormalizing under majority rule ¢ times a 32 x 32 Ising lattice
at T' = 2.269185 with those reported in the literature.

i k Results Swendsen (1984b)
1 0.356544 0.3643
2 0.077240 0.0814
3 -0.013570 -0.0068
) 4 -0.003076 -0.0038
5 -0.001424 -0.0023
6 0.010390 _—
7 -0.011427 -0.0008
8 -0.010148 -0.0026
1 0.345681 0.3527
2 0.090329 0.0944
3 -0.016188 -0.0094
" 4 -0.003657 -0.0046
5 -0.001225 -0.0019
6 0.010206 _—
7 -0.013484 -0.0075
8 -0.008440 0.0043
1 0.345963 0.3530
2 0.091553 0.0950
3 -0.017352 -0.0130
4 -0.003961 -0.0020
> 5 -0.001468 -0.0050
6 0.009931 _—
7 -0.014654 -0.0040
8 -0.006170 0.0050

words, the marginal Hamiltonian W (zy, ) obtained using the majority
rule can be represented more compactly, requiring fewer basis functions.

Our coefficients compare favorably with those in the literature. The
renormalized coefficients obtained using a fine lattice of size 32 X 32 agree
qualitatively with Swendsen (1984b), though significant discrepancies ex-
ist, especially with regard to the long range and multi-variable interac-
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Table 8.21: Comparison of the values of the renormalized coefficients obtained
by renormalizing under majority rule ¢ times a 64 x 64 Ising lattice
at T' = 2.269185 with those reported in the literature.

i k Results Gupta and Cordery (1984)
1 0.356582 0.35357
2 0.077240 0.07528
3 -0.013475 -0.00756
) 4 -0.003085 -0.00621
5 -0.001503 -0.00269
6 0.010440 0.00763
7 -0.011481 -0.01515
8 -0.010265 -0.00592

Table 8.22: Comparison of the values of the renormalized coefficients obtained
by renormalizing under majority rule ¢ times a 128 x 128 Ising lattice
at T' = 2.269185 with those reported in the literature.

ik Results Ron et al. (2001) Gupta et al. (1984)
1 0.356566 0.351436 0.35358
2 0.077229 0.076717 0.07488
3 -0.013365 -0.008779 -0.00758

) 4 -0.003093 -0.006560 -0.00618
5 -0.001570 -0.00293
6 0.010463 0.006493 0.00760
7 -0.011476 -0.014245 -0.01522
8 -0.010303 -0.004410 -0.00582
1 0.345585 0.340138 0.34608
2 0.090391 0.089627 0.08845
3 -0.015655 -0.010948 -0.00929

5 4 -0.003702 -0.007155 -0.00700
5 -0.001490 -0.00273
6 0.010353 0.006018 0.00733
7 -0.013605 -0.017328 -0.01895
8 -0.008884 -0.003119 -0.00524
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tions. Values obtained by Gupta and Cordery (1984) using the 64 x 64
base lattice agree to a greater extent, however there are significant devia-
tions in case of the long range and multi-variable interactions. The same
difficulties appear in case of the 128 x 128 base lattice comparison with
Gupta and Cordery (1984) and Ron and Swendsen (2001), however the
reason is unclear.

8.2 SAMPLING

We move to the main results of this thesis, namely sampling a graphical
model using a sequence of subsequently coarse renormalized graphical
models. After the brief change to the coarsening scheme used in the pre-
vious section, where we coarsened the lattice by a fixed geometrical con-
struction, in this setion we construct the coarse lattice V, ; by letting
V.1 be a Minimum Vertex Cover (MVC) of the set V; as described in detail
in Chapter 3.

The coarsening algorithm proceeds as follows. Given a graph G, =
(V;, E,), the graph G, ., = (V,,,E;) is constructed so that V, , is
the MVC of V; within the graph G,. Subsequently, the edges F,, are
formed to connect all pairs of nodes u,v € V, ; such that p(u,v) <
Cmin,, p(u,v), with C = 1. This step guarantees that the conditional
probability P(zy,\y, , |y, ) canbe evaluated.

In order to improve the sparse dependency structure of E;, a lateral
densening step is employed. Because the structure of the lattice is known
a priori, we selected the lateral graphs to be constructed using Algorithm
3.3 with C’j equal to 1, V2,2, v/5, v/8 and 3; the maximum diStance was
varied between computations as it is the main force driving the accuracy
of the method. The densest lateral graph G7, i.e. the one with the highest
C}, was then used to construct a corrective probability density P, (zy)
that could be used to improve the quality of samples through particle fil-
tering. Figure 8.48 presents a visualization of a representative dependency
directed acyclic graph D = (V, A) conétructed using the algorithm.

The basis used was a polynomial basis constructed using Algorithm 4.2,
using polynomials of order one and three. The third order polynomials
were limited such that the radius of the associated clique does not exceed
/2, therefore the only cubic basis funétion was typically the plaquette.
Even-order polynomials were removed from the basis because the deriva-
tive of the Ising model Hamiltonian is odd-symmetric. Although the Ising
model does exhibit a great number of symmetries, the lattice symmetries
were not used in any way; that is, the SYMMETRYREDUCTION( ¢, 7y) rou-
tine was not used to construét the basis functions. As a result, on regular
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lattices each node had a basis of length up to 12, 16, 24, 28 or 32, depend-
ing on the choice of maximum basis width €. Additionally, the nodes
were considered not to be equivalent and thus the basis coefficients of
otherwise equivalent nodes differ from each other: the renormalized co-
efficients were not assumed to be translation invariant. However, we have
employed an equalization $tep in order to average the coefficients corre-
sponding to the same interaction on the lattice; consult Section 4.1.3.4 for
details.

The renormalized coupling coefficients were obtained using the fully-
symmetrized fast marginalization scheme with Q(z.) = P(xy,)). We
used the mixed discrete-continuous representation and performed pro-
jection at five Gaussian quadrature nodes. The membership of the set
N (u) was determined as u and its neighbors within the sparse graph
G, = (V,, E;) without any lateral densening; however, the set of edges be-
tween these nodes was taken from the densest laterally coarsened graph
G} = (V;,E’). The coefficients describing the individual conditional
probabilities, the corrective marginal densities P, (z, ) and the weights
Q(xy,) were obtained simultaneously using a fixed-point iteration run-
ning for six iterations, with 20,000 random samples generated per itera-
tion. The Robbins-Monro algorithm (Robbins and Monro, 1951) was also
used with a; = 1 for i < 3 and a; = 1/(i — 2) during the following
iterations.

8.2.1 Sequential importance sampler

The basic sampler we are comparing against is the sequential importance
sampler using direétly the dependency graph D = (V, A) and the as-
sociated conditional probabilities. Although the conditional probability
used by this sampler is much improved, the sampler itself is the same
as that used originally by Okunev (2005) and Chorin (2008). The SIS al-
gorithm produces a sample x|, with proposal density P_(x, ) calculated
using the conditional probabilities of the individual variables z,,. To cor-
rect for the difference between the proposal density and the target den-
sity P(x,, ), the sample x,, is given a weight w(x,,) equal to the ratio
w(xy,) = P(x)/P,(xy ). The weight ensures that

N

> flah (i)
lim | = E[f(zy)]-
PRC
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(a) A two-dimensional projection of the dependency graph.

(b) A three-dimensional rendering of the dependency graph.

Figure 8.48: Visualization of the directed acyclic graph D = (V, A) representing
the dependencies between variables, constructed for a 64 x 64 Ising
lattice using three Stages of lateral densening. The nodes are color-
coded according to the order in which they are sampled; red nodes
are sampled first, followed by green and finally the blue nodes. Cylin-
ders represent directed arcs (u,v) € A, where an arc (u,v) from u
to v implies that the node v depends on the value of the node w.
The overwhelming complexity of the resulting structure shows how
complicated are the algorithms and their results even for seemingly
straightforward, regular graphical models.

We apply the sequential importance sampler to a two-dimensional Ising
lattice at critical coupling and vary the accuracy & cost of the method by
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Figure 8.49: Performance of the sequential importance sampler on a 8 x 8 Ising

lattice at critical coupling p = .

changing the maximum distance reached by the lateral densening graphs,
varying from two lateral stages in case of distance /2 to six lateral §tages
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Figure 8.50: Performance of the sequential importance sampler on a 16 x 16 Ising
lattice at critical coupling p = .

in case of distance 3. Beginning with a small lattice of size 8 x 8, we
observe behavior described by the Figure 8.49. The three plots show, in
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Figure 8.51: Performance of the sequential importance sampler on a 32 x 32 Ising
lattice at critical coupling p = .

order, (a) the histogram of magnetization and the average absolute mag-

netization M ;.

generated by (b) the proposal density and (c) the weight-
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corrected proposal density. Figures (c) through (g) show further weight-
related benchmarks.

Figure 8.49a shows the distribution of magnetization among $tates pro-
duced from the target probability density sampled using MCMC and com-
pares to it the distribution obtained from the states generated by the
uncorrected proposal density P_(xy ) (SIS). Also shown is the weight-
corrected distribution (Correéted SIS), which should be exactly equal to
the MCMC line. Multiple lines correspond to the different accuracy levels,
with the distance referring to the maximum distance between variables
included in the basis.

Figures 8.49b and 8.49c summarize the data for all lattices V; by provid-
ing us with the average absolute magnetization computed either using the
unweighted or weight-corrected proposal density. These curves are com-
pared against the exact values obtained by sampling the original lattice V,,
through MCMC and computing the relevant quantities using the restricted
lattices V;, ¢ > 0. The figure 8.49b shows the actual performance of the
sampler, while 8.49c describes how well those results could be corrected
at each stage of the computation using the corredtive probability densities
P (zy,).

Finally, the Figure 8.49d shows the overall distribution of weights, while
Figures 8.49e through 8.49g present the joint distribution of weights and
magnetizations for different basis widths. The range spanned by weights
is indicative of the performance of the method, with a wide range suggest-
ing that the proposal density is not a good approximation of the target
density. The joint distribution suggests whether the weights are depen-
dent on magnetization, showing areas that are under- or over-sampled
by the proposal density: large weights suggest under-sampling, while low
weights suggest over-sampling.

The close proximity between the magnetization curves on Figure 8.49b
and the virtually indistinguishable distributions of weights on Figure
8.52d show that the increased accuracy of the proposal density obtained
through lateral densening has little practical effe¢t on the quality of the
proposal density. This behavior is expected, as the increased accuracy
coming from a wider basis is utilized by a small number of variables; see
Section 3.5 for a detailed discussion. However, Figure 8.49c shows on the
other hand that the corrective probability densities P, (xy, ) computed on
the densest lateral graph Gg indeed improve our ability to correct the
results: as the basis width increases, so does the quality of the weight-
correted approximation on lattices V;, 7 > 0, where the weights can be
computed only approximately.

Lattice o corresponds to
the original, fine lattice.
The higher the lattice
number the coarser the
lattice, with the number
of variables decreasing
roughly by a faétor of two
with each step.
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As the size of the original lattice increases to 16 x 16 (Figure 8.50)
and 32 x 32 (Figure 8.51), the proposal density begins to produce a his-
togram that varies markedly from that obtained using the target distri-
bution. It appears that the proposal density consistently underestimates
the strength of the interactions between variables, producing samples of
lower magnetization than expected: the histograms on Figures 8.50a and
8.51a are too flat compared to the correct shape. This can be seen clearly
from the weights alone. Figures 8.50e-8.50g and 8.51e-8.51g, where the
histograms take a characteristic butterfly shape: low magnetization States
(middle of the graph) are over-sampled, while high magnetization $tates
(extremes, or wings, of the graph) are under-sampled.

In the case of the 32 x 32 lattice, the sequential importance sampler
no longer performs acceptably. In fact, the corrected histogram on Fig-
ure 8.51a is extremely noisy. The relatively poor sample quality can be
observed dire¢tly through inspection of the weight distribution on Fig-
ure 8.51d: the ratio of the largest to the average weight is of the order of
e'% ~ 22000. Therefore, each of these very large weight samples equals
approximately 22000 average samples, causing the noisy behavior ob-
served on the magnetization histogram. Additional increases in the size
of the original lattice decrease the performance even further, making it
no longer possible to use weights to satisfactorily correct the mismatch
between the proposal density and the target density.

We focus our attention on Figures 8.51b and 8.51c¢ to point out two
important observations. The magnetization curves of Figure 8.51b are of
higher quality than some of those corrected using the dense corrective
probability distributions P, (xy, ). In particular, the correttive probability

distribution using basis of width v/2 performs worse than the uncorrected
proposal density for lattices V, with 2 < 7 < 7. This suggests that the
influence of the variables sampled on the coarsest lattices remains very
strong, since it keeps the magnetization level above what would be ob-
tained using the approximate marginals alone.

The use of a wider basis in the computation of P,(xy, ) allows for an
improvement over the states produced by the sequential importance sam-
pler. Looking at the graph 8.51c, the bases of width v/8 and 3 produce
states whose magnetization never falls below 0.6, while the sequential
sampler produces magnetization of the order of 0.5 and lower. Therefore,
correcting the samples generated using the sequential sampler during the
process of conditional sampling should bring a significant improvement.
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Figure 8.52: Performance of the partial rejection control sampler on a 8 x 8 Ising
lattice at critical coupling p = .

8.2.2  Partial rejection control sampler

The partial rejetion control sampler is an extension of the above sampler

using particle filtering to improve the samples at intermediate lattices
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Figure 8.53: Performance of the partial rejection control sampler on a 16 x 16
Ising lattice at critical coupling i1 = p,..

(Doucet, de Freitas, and Gordon, 2001, p. 233). In order to facilitate this
improvement, at each intermediate lattice V, we use the densest lateral
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Figure 8.54: Performance of the partial rejection control sampler on a 32 x 32
Ising lattice at critical coupling i1 = p,..

graph Gf to construct a corrective probability density P, (zy, ). This cor-
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Figure 8.55: Performance of the partial rejection control sampler on a 64 x 64
Ising lattice at critical coupling i1 = p,..

rective probability density is obtained together with the proposal density
P_(xy,) using the fast marginalization method.
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Figure 8.56: Correlation between the approximate weights w*(mvi ) and the fi-
nal weights w(xy,) computed using a basis of width 3 on a 32 x 32
Ising lattice at ;t = p.., showing the predictive value of the approxi-
mate weights. If the prediction were exact, the points would form a
straight line; however, the strength of the correlation is limited due
to the approximate nature of the weights w*(asvi ) and changes in
the proposal density.

Assume for now that for each lattice V, we have an unnormalized cor-
rective probability density P, (xy. ) and a weight threshold c;. We begin by
sampling M samples x}, on the coarsest lattice V,, forp = 1,2, ..., M.
These individual samplesm are referred to as particles and are assumed to
follow the probability P (:cvm), thus we assign each particle the proposal
density P_(x}, ) = P(«%, ). With the assumption that the lattice V,_,
has been sampfgd, the transition to lattice V. proceeds as follows. We sam-
ple the variables m’xj,i Vi for each particle using the usual sequential im-
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portance sampler, obtaining a completed $tate o}, with proposal density
P_ (%, ). For each particle we compute the corrective weight

P (zv,)
P_(x% )

7

w,(zy,) =

If the weight w, (xy, ) > c;, the particle is accepted unconditionally. Oth-
erwise, the particle is accepted with probability min {1, w, (2%, )/¢;}, in
which case the proposal density is updated to P,(x}, )/c;. '

If the particle is rejected, we return to the lattice’ Vi1 and choose at
random a particle a:“],m, 1 < g < M, with probability proportional to its
weight w*(m({,m). We then assign the resampled particle @7, ,, an initial
proposal density

Z W (mIXC/ZUA )

Puay, )= 50— FB(=h,)
k=1

and complete the state by sampling the variables a:Q/Z \v,,, using the se-
quential importance sampler, obtaining a regenerated particle i, with
proposal density P_(xy, ). Finally, we set i, = =z, and P (zy,) =
P_(xy, ) and repeat the rejection step with weight threshold ¢;. The regen-
eration and rejection process continues until the particle «f, is accepted.

The weight thresholds c; are determined ahead of time b§/ sampling a
single, very large batch of approximately 1000 particles. When the parti-
cles reach a lattice V;, we compute the weights w*(a:?,i) and choose the

threshold c¢; to be

C98<w*<‘131\)/i>) Qz(w*(w%» + Qs(w*@z{/))
10 ’ 2 ’

c; = max

where C,(-) and Q,(-) are the k'™ percentile and k' quantile of the
weights, respectively. Once ¢, is computed, the particles undergo a re-
jection step, with the accepted particles and proceeding further. Once the
thresholds ¢, are known for all the lattices V}, including the the original
lattice V|, we sample particles in batches of 4o particles and perform re-
sampling on every lattice V.

Figure 8.52 shows the performance of the partial rejetion control sam-
pler on the 8 x 8 Ising lattice. Comparing it with the analogous Figure 8.49
describing the performance of the sequential importance sampler, we see
an immediate improvement. The weights span a much smaller range and

219



ISING MODEL

the uncorrected histogram shown on Figure 8.52a is almost exact. Perfor-
mance remains similar in case of the 16 x 16 lattice.

The 32 x 32 lattice remains more difficult. We observe that weights
span the range of about €® ~ 150, which causes the noise visible in
the histogram on Figure 8.54a. Increasing the width of the basis helps
in reducing the ratio between the largest and smallest weights. Finally,
Figure 8.55 shows that the sampler begins to fail in the case of the 64 x 64
lattice, where the weights span the range of about e!? ~ 22000, marking
the limits of applicability of the sampling method.

8.3 DISCUSSION

The performance of the acyclic Monte Carlo method applied to the Ising
model is far from satisfactory, given that the 64 x 64 Ising lattice can be
sampled quite successfully using the Markov Chain Monte Carlo (MCMC)
method. The aim of the acyclic Monte Carlo method is not, however, to
replace the cluster method of Wolff (1989) or other specialized methods;
instead, we hoped to apply it to the Ising model in order to $tudy its
behavior in this relatively simple scenario.

The largest source of error is caused by the values of the numerically
computed renormalized coupling coefficients. We found that the renor-
malized coefficients are continuous functions of the original couplings
and thus do not undergo a rapid change across the phase transition, while
the observable quantities vary significantly. Therefore, a relatively small
error in the estimated coefficients leads to a large change in the behavior
of the model, resulting in large sampling errors. This is visible especially
strongly in the Ising model, where spins act in a coherent manner and thus
the errors committed in the calculation of the renormalized coefficients
tend to drive the system in the same direction: e.g. the magnetization is
consistently underestimated because the coupling coefficients are consis-
tently too low.

There are a number of approaches that proved successful in improving
this situation. We find that with Q(zy,) = 1 enlarging the basis does
not bring a significant improvement to the quality of the approximate
marginal probability density. Our suspicion is that this is due to the nature
of the weighted inner product being used, which attempts to find an ap-
proximation to the derivative of the marginal Hamiltonian OW (v, ) /0,
that minimizes the approximation error in areas where the probability
P(zy,) — hence also the Hamiltonian W (zy, ) — is large. The unintended
consequence of this fact is that such an approximation consistently under-
estimates the true values of the derivative, because OW (zy,)/0x, and
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W (zy, ) are anti-correlated. We find that using Q(zy, ) = P(zy,)) flat-
tens the weights and improves the renormalized coefficients, partially re-
moving the bias introduced by the inner product. We saw in Table 8.14
that as the lattice becomes coarser, the relative strength of the long-range
interactions increases as well. Therefore, it may become necessary to use
a larger neighborhood of the node u € V; in the flattening factor Q(xy, )
in order for it to be equally useful as on finer lattices.

The increased range of interactions is a property of the coarsening rule
used. Within the present thesis we used decimation, as it is the only
coarsening rule that allows for using sequential importance sampling and
other advanced sampling techniques. When this premise is abandoned,
the generalized fast marginalization could be used to compute renormal-
ized coupling coefficients for arbitrary coarsening rules, in particular for
a coarsening rule optimized for basis size. The frequently used majority
rule in particular has a relatively small basis: Brandt and Ron (2001b) re-
port that a basis constructed over a 20-node neighborhood (basis width
of v/5) already produces a very good approximation to the renormalized
Hamiltonian, which in the case of decimation is not quite large enough.
Therefore, the renormalized Hamiltonians computed using the general-
ized fast marginalization could be used together with a Markov Chain
Monte Carlo (MCMC) sampling scheme described in Chapter 6 to sample
the original probability distribution in the same way as the method of
Brandt and Ron (2001b), however with the ability to use the method in a
natural manner for both discrete and continuous systems. However, using
general coarsening rules removes the ability to gauge the performance of
the sampling method through analysis of the weight distribution, mak-
ing it less appealing in more difficult applications, where no benchmark
results might be known.

The acyclic Monte Carlo has two significant strengths. The samples gen-
erates by our method are entirely independent of each other, with the
caveat that the particles within each batch are correlated due to the pres-
ence of the resampling stage. Therefore, the method does not suffer be-
cause of critical slowing down or long autocorrelation times. At the same
time the method is very general and does not use any special properties
of the Ising model, making us hopeful that other statistical models, where
the errors committed by the method have a chance to cancel out, will see
better performance than that observed in the case of the Ising model.
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APPENDICES






CALCULATION OF THE EXACT RENORMALIZATION
OF THE ISING MODEL IN ONE DIMENSION

As in Chapter 2, we begin with the Ising model defined on a periodic
chain of length n = 2™, with m > 2. The spins « = (x4, x5, ..., x,,), with
x; € {—1, 1}, have a probability distribution

P@)= yrsew (53 n @+ o) | ()
=1

where © = 1/7 and Z(p) are the inverse temperature and the partition
function. Split the variables in & by putting the even-index variables into
Z and odd-index into Z,

T ={xy, 04, 2g,...,2,} and &= {z|,23,T5,...,7, 1}. (A2)

To obtain the behavior of the coarse lattice & we define the marginal
probability of & as an integral of the joint probability P(&, &) over &,

P(z) = / P(z,#)d%. (A3)

The variables are discrete, thus the integral becomes a sum. We rewrite
the probability as

1 n
P(x) = Z00) exp [g ;xl (z, 4 +7;01) (Ag)
1
i x@ exp [ux; (,_; + 2;,1)] - (As)

Performing the sum over & € = {—1,1}", we obtain

P() =) P&, %) (A.6)
= ZLN) Z _eXP (s 2y + 341)] (A7)
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1
B Z(n) =y’ [exp [t (25 + 23]
+exp [~ (T g + 244)]] (A.8)
1
- Z(n) ey 2cosh [p (g + 541)] (A.9)
- Z(n) s cosh [ (251 +2314)]- (A.10)

The transition between Eq. A.7 to A.8 can be seen clearly in a simpler
example:

anz(xz) :ZZZfl@l)fz(%)fs(%) (A1)

T, Ty T3

=33 filwy) folwa) f5(—1)

Jlimemmmm (A12)
= ;ifj(ivl)fz(mz) [f3(=1) + f3(1)] (A.13)
= Z ff(%) [f2(=1) + fo (D] [f3(=1) + f5(1)] (A.14)
= [2(—1) + AW + LMD + (0] (Aas)
= lj [f:(=1) + f:(1)]. (A.16)

Unfortunately, the final result in Eq. A.10 is not in the same form as Eq.
A.1. However, because the formulas must only agree at discrete values
x; = +1, we may attempt to write

Cexp (Az;_1T;,,) = cosh (p (2,4 +24,) ) (A17)

and choose the values of /i and C to ensure the two functions are equal at
all possible combinations of z; ; and z, . There are four combinations,
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(7,4, xi+1) cosh (p (w;_; + 33¢+1)) Cexp (/jxiflxi+1)

(—1,—1) cosh (2u) Cexp(f1)

(—1,1) | C exp(—f)
(1,-1) | Cexp(—f)
(1,1) cosh (2u) Cexp(f1)

where the symmetry cosh(—z) = cosh(x) and value cosh(0) = 1 are
used. From the middle equations we obtain C' = exp(j1), while the re-
maining equation gives

exp(2/1) = cosh (2u) = [ =1/2In[cosh (2u)], (A.18)

the classical result quoted in Chapter 2.
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