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Abstract—In this paper, a new transmissibility analysis method 

is proposed for the detection and location of damage via nonlinear 
features in Multi-Degree-Of-Freedom (MDOF) structural 
systems. The method is derived based on the transmissibility of 
Nonlinear Output Frequency Response Functions (NOFRFs), a 
concept recently proposed to extend the traditional 
transmissibility concept to the nonlinear case. The 
implementation of the method is only based on measured system 
output responses and by evaluating and analyzing the 
transmissibility of these system responses at super-harmonics. 
This overcomes the problems with available techniques which 
assume there is one damaged component with nonlinear features 
in the system, and require specific testing or assume loading on 
inspected structural systems is measurable. Both numerical 
simulation studies and experimental data analysis have been 
conducted to verify the effectiveness and demonstrate the 
potential practical applications of the new method. 
 

Index Terms—Damage detection and location, Nonlinear 
Output Frequency Response Functions (NOFRFs), 
Transmissibility analysis  
 

I. INTRODUCTION 
N engineering practice the behaviors of many mechanical 
and civil structural systems, such as, rotary machineries 

[1-3], multi-storey buildings [4-6] and multi-span bridges [7, 8], 
should be described by more than one set of coordinates and 
can, therefore, be modeled by multi-degree-of-freedom 
(MDOF) systems. All such structural systems are prone to 
suffering certain damage due to long service time, improper use 
or hostile working environments. Therefore, more and more 
efforts have been made by researchers to address the problems 
of damage detection and location in MDOF systems [1, 2, 
9-11]. One class of the most popular techniques is the 
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transmissibility based damage detection and location methods 
[5, 12-15].  

The transmissibility is traditionally defined as the ratio of the 
spectra of two different system outputs, has been 
comprehensively studied, and is widely used for damage 
detection and fault diagnosis. For example, Zhu [16] 
investigated the sensitivity of the transmissibility and 
concluded that both mass and stiffness damage could induce a 
significant change in the system transmissibility. Cao [17] 
investigated the rate of change of both the system 
transmissibility and the system frequency response functions 
(FRF) when a damage occurred, and found that the 
transmissibility was much more sensitive to the damage than 
the FRF. Maia [8] conducted a comprehensive research on a 
transmissibility based fault diagnosis technique, and proposed a 
DRQ (Detection and Relative Damage Quantification) 
Indicator, which was the correlation between the measured 
system response and the response estimated from the 
undamaged transmissibility function. He also proposed the 
concept of TDI (Transmissibility Damage Indicator) in 
[12][13], which was defined as the correlation between the 
transmissibility of an undamaged system and the 
transmissibility of a damaged system. The performance of these 
transmissibility based indicators in fault diagnosis has been 
verified by experimental studies. In addition to damage 
detection, the transmissibility has also been used for damage 
location; Zhang [18] studied the influence of damage on the 
transmissibility, and found that the transmissibility near the 
damaged area could incur a more significant change. 
Consequently, he proposed several damage indicators based on 
translation transmissibility and curvature transmissibility and 
verified that these damage indicators could help to find the 
location of damage correctly by both simulation studies and 
experimental tests. Jonson [13, 15, 19] analyzed the 
characteristics of the transmissibility response function and 
concluded that transmissibility response function was entirely 
independent of the poles but solely dependent on the zeros of 
the system transfer function so that the damage could be 
trapped and identified. Sampaio and Maia [14] pointed out that 
the summation of the difference between the damaged and the 
undamaged transmissibility may mask the true damage location 
if the frequency range was inappropriate. This is because the 
transmissibility difference near the resonances and 
anti-resonances was much larger than that in the other 
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frequency ranges. They counted the occurrences of maximum 
transmissibility difference at different frequencies and 
considered the result as a damage indicator. But if the location 
of operational forces changes, the transmissibility between 
responses at two fixed points will also change making such 
techniques become invalid. Devriendt [20] found that the 
transmissibility around the natural resonance frequencies 
changed slightly when the location of operational forces 
changed. So he considered the occurrence times of maximum 
transmissibility around the resonance frequencies as a damage 
location indicator and demonstrated its effectiveness by 
simulation and experimental studies. 

Because the transmissibility is basically a linear system 
concept, all the techniques above assume the systems behave 
linearly. However, in MDOF structural systems, certain types 
of damage often manifest themselves as the introduction of 
non-linearity into an otherwise linear system. Examples include 
post-buckled structures (Duffing non-linearity), rattling joints 
(impacting system with discontinuities), or breathing cracks 
(bilinear stiffness) etc. and such damage has been referred to as 
damage with nonlinear features [21]. Han [22, 23] studied 
rub-impact faults in rotor systems, and found that 
super-harmonic components appeared in both dual-disk rotor 
systems and dual-rotor systems when rub-impact damage 
occurred; and the more serious the damage is, the more 
abundant harmonic components can be observed. Reference 
[24] also indicated that high order harmonic components 
appear when a bolt on a pedestal became loose and such 
harmonic responses change with the variation of looseness 
clearance. Furthermore, if a cracked object is excited by a 
harmonic loading, the existence of super-harmonic components 
can be discovered [25-29]. In addition, cracks in a beam [10] 
can introduce nonlinear stiffness [30] and may therefore induce 
nonlinear behaviours into the whole system [26, 29, 31]. 

In order to extend the transmissibility based damage 
detection and location approaches to MDOF structural systems 
which can behave nonlinearly due to the occurrences of damage 
with nonlinear features, several methods have recently been 
developed [5, 25, 26, 32-37]. These methods are based on the 
concept of Non-linear Output Frequency Response Functions 
(NOFRFs) [38, 39] and use the system response signals to 
deterministic inputs including sinusoids to detect and locate 
such damage in the systems. Moreover, Lang et al. [5] proposed 
the concept of transmissibility of the NOFRFs. The 
transmissibility of the NOFRFs systematically extends the 
transmissibility concept to the nonlinear case, and has been 
used to develop a technique that can detect and locate damage 
of linear and/or non-linear features in MDOF structural 
systems. The effectiveness of the technique has been verified 
by both numerical simulation studies and experimental tests 
[5]. However there are two limitations in these recently 
developed techniques. First, these methods all assume that 
when damage occurs in a MDOF system and makes the system 
behave nonlinearly, there is only one nonlinear component in 
the system. In addition, these methods either require specific 
testing on inspected structures or assume the loading on the 
structural systems is measurable. 

The present study is concerned with the development of a 
new and more general transmissibility analysis method for the 
detection and location of damage via nonlinear features in 
MDOF structural systems. By evaluating and analyzing the 
transmissibility at super-harmonics - a concept that will be 
introduced in the paper for MDOF nonlinear structural systems, 
the method can deal with more than one nonlinearly damaged 
component in the system, does not need specific tests, and does 
not require that the loading on inspected structural systems is 
measurable. The objectives are to extend the basic principles of 
the NOFRF transmissibility based damage detection and 
location to more practical situations to enable these ideas to be 
literally applied in engineering practice.  

The paper is organized as follows. Section II provides a brief 
introduction of the basic concepts of NOFRFs and the 
transmissibility of the NOFRFs for single-input multi-output 
(SIMO) nonlinear systems. In Section III, some important 
properties of the NOFRFs transmissibility for a class of MDOF 
nonlinear structural systems are described; the concept of the 
transmissibility at super-harmonics is introduced; and the 
relationship between the NOFRFs transmissibility and the 
transmissibility at super-harmonics is derived. Based on these 
results, a novel method is developed in Section IV for the 
detection and location of damage via nonlinear features in 
MDOF structural systems. In Sections V and VI, the 
effectiveness of the new method is verified by numerical 
simulation and experimental studies, respectively. Finally, the 
conclusions are presented in Section VII. 

 

II. THE NOFRFS AND NOFRFS TRANSMISSIBILITY OF 
SINGLE-INPUT MULTI-OUTPUT NONLINEAR SYSTEMS 

For the SIMO (Single-Input-Multiple-Output) nonlinear 
systems which are stable at zero equilibrium, the system 
outputs around the equilibrium can be represented by the 
Volterra series [40] 

ሻݐ௜ሺݔ ൌ ∑ ׬ …ஶ
ିஶ

ே
௡തୀଵ ׬ ݄ሺ௜,௡തሻሺ߬ଵ,… , ߬௡ሻ

ஶ
ିஶ

∏ ݐሺݑ െ ߬௜ሻ௡ത
௜ୀଵ ݀߬௜   ݅ ൌ 1,2,… , ݊  (1) 

where ݔ௜ሺݐሻ and ݑሺݐሻ are the ݅th output and the input of the 
system, respectively; ݊ is the number of the system output; ܰ is 
the maximum order of the system nonlinearity; ݄ሺ௜,௡തሻሺ߬ଵ, … , ߬௡ሻ 
is the ത݊th order Volterra kernel associated with the ݅th system 
output. 

The output frequency responses of system (1) to a general 
input can be described by [41] 

൝
௜ܺሺ݆߱ሻ ൌ ∑ ܺሺ௜,௡തሻሺ݆߱ሻே

௡തୀଵ ߱ ׊ ݎ݋݂  

ܺሺ௜,௡തሻሺ݆߱ሻ ൌ
ଵ √௡ത⁄

ሺଶగሻ೙ഥషభ
׬ ,ሺ௜,௡തሻሺ݆߱ଵܪ … , ݆߱௡തሻ∏ ܷሺ݆߱௜ሻ௡ത

௜ୀଵ ାఠ೙ഥୀఠڮ௡തఠఠభାߪ݀

 (2) 

Here ܺ௜ሺ݆߱ሻ  and ܷሺ݆߱ሻ are the spectra of the ݅ th system 
output and the system input, respectively; ܺሺ௜,௡തሻሺ݆߱ሻ denotes 
the ത݊th order frequency response of the system’s ݅th output, 
and 

,ሺ௜,௡തሻሺ݆߱ଵܪ … , ݆߱௡തሻ ൌ ׬ …ஶ
ିஶ ׬ ݄ሺ௜,௡തሻሺ߬ଵ,… , ߬௡ሻ݁ିሺఠభఛభାڮାఠ೙ഥఛ೙ഥሻ

ஶ
ିஶ ݀߬ଵ …݀߬௡ത   (3) 

is known as the ത݊th order Generalized Frequency Response 
Function(GFRF) associated with the ݅th system output, which 
is the extension of the frequency response functions of a SIMO 
linear system to the ത݊th order nonlinear case. In (2), 
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න …,ሺ௜,௡തሻሺ݆߱ଵܪ , ݆߱௡തሻෑܷሺ݆߱௜ሻ
௡ത

௜ୀଵ

௡തఠߪ݀
ఠభାڮାఠ೙ഥୀఠ

 

represents the integration of ܪሺ௜,௡തሻሺ݆߱ଵ,… , ݆߱௡തሻ∏ ܷሺ݆߱௜ሻ௡ത
௜ୀଵ  

over the ത݊-dimensional hyper-plane ߱ଵ ൅ڮ൅߱௡ത ൌ ߱. 
The concept of NOFRFs was firstly proposed by Lang and 

Billings [38]. For the SIMO nonlinear system (1), the NOFRFs 
are defined as 

ሺ௜,௡തሻሺ݆߱ሻܩ ൌ
׬ ுሺ೔,೙ഥሻሺ௝ఠభ,…,௝ఠ೙ഥሻ∏ ௎ሺ௝ఠ೔ሻ

೙ഥ
೔సభ ௗఙ೙ഥഘഘభశڮశഘ೙ഥసഘ

׬ ∏ ௎ሺ௝ఠ೔ሻ೙ഥ
೔సభ ௗఙ೙ഥഘഘభశڮశഘ೙ഥసഘ

, ത݊ ൌ ,1, … , ܰ, ݅ ൌ 1,… , ݊  (4) 

under the condition that 
׬ ∏ ܷሺ݆߱௜ሻ௡ത

௜ୀଵ ାఠ೙ഥୀఠڮ௡തఠఠభାߪ݀
് 0                         (5) 

From (2) and (4), it can be shown that the output frequency 
response of SIMO nonlinear systems can be represented using 
the NOFRFs as 

ቊ ௜ܺሺ݆߱ሻ ൌ ∑ ܺሺ௜,௡തሻሺ݆߱ሻே
௡തୀଵ   ݅ ൌ 1,… , ݊

ܺሺ௜,௡തሻሺ݆߱ሻ ൌ ሺ௜,௡തሻሺ݆߱ሻܩ ௡ܷതሺ݆߱ሻ
                       (6) 

where 
ܷ௡തሺ݆߱ሻ ൌ

ଵ √௡ത⁄
ሺଶగሻ೙ഥషభ

׬ ∏ ܷሺ݆߱௜ሻ௡ത
௜ୀଵ ାఠ೙ഥୀఠڮ௡തఠఠభାߪ݀

              (7) 
which is the Fourier Transform of ݑ௡തሺݐሻ. 

The concept of the transmissibility of the NOFRFs between 
the ݅th and ݇th outputs of system (1) was introduced in [5] as 

௜ܶ,௞
ே௅ሺ݆߱ሻ ൌ

ீሺ೔,ಿሻሺ௝ఠሻ

ீሺೖ,ಿሻሺ௝ఠሻ
                               (8) 

where  ݅, ݇ א ሼ1,… , ݊ሽ . It can be observed that that when 
ܰ ൌ 1, the transmissibility of the NOFRFs as defined in (8) 
reduces to the traditional concept of transmissibility for linear 
systems. In addition, as the NOFRFs are independent of the 
change of the system input amplitude [33, 37], the NOFRF 
transmissibility also does not change with the system input 
amplitude. This property is the same as the input amplitude 
independent property with the traditional transmissibility 
concept. 

 

III. THE TRANSMISSIBILITY OF MDOF NONLINEAR 
STRUCTURAL SYSTEMS AT SUPER-HARMONICS 

A. MDOF nonlinear structural systems 
Consider the typical MDOF system shown in Fig. 1 where 

the motion of all masses is one-dimensional and the input force 
 .th massܮ is applied on the ݑ

 
Fig. 1. The MDOF nonlinear structural system considered in the present study 

If all the springs and dampers in the system in Fig.1 are linear, 
then the system is a linear MDOF system with governing 
equation  

ࡹ ሷ࢞ ൅ ࡯ ሶ࢞ ൅ ࢞ࡷ ൌ  ሻ                      (9)ݐሺࡲ
where ࡲ ,ࡷ ,࡯ ,ࡹ and ࢞ are the system mass matrix, damping 
matrix, stiffness matrix, force vector and displacement vector, 
respectively. 
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ሻݐሺࡲ ൌ ቂ0 … 0ᇩᇭᇭᇪᇭᇭᇫ
௅ିଵ

ሻݐሺݑ    0 . . . 0ᇩᇭᇭᇪᇭᇭᇫ
௡ି௅

ቃ
்
, ࢞ ൌ ሾݔଵ, … ,  .௡ሿ்ݔ

When there are ܬҧሺܬҧ ൒ 1ሻ nonlinear springs/dampers in the 
system which are located between the ܬሺ݅ሻ െ 1  and ܬሺ݅ሻ th 
masses, namely ܬሺ݅ሻth springs/dampers, (݅ ൌ 1, 2, … , ܬ ҧ), and 
the first spring and damper, which are connected to the fixed 
ground, are not nonlinear, that is, ܬሺ1ሻ ൐ 1, the restoring forces 
of these nonlinear springs/dampers are the nonlinear functions 
of the deformation/the deformation derivative. Assume these 
nonlinear functions can be approximated by a polynomial of the 
form, 

ቐ
௦݂ሺ݅ሻ ൌ ∑ ሺ௃ሺ௜ሻ,௡തሻேഥݎ

௡തୀଶ ቀݔ௃ሺ௜ሻሺݐሻ െ ሻቁݐ௃ሺ௜ሻିଵሺݔ
௡ത

ௗ݂ሺ݅ሻ ൌ ∑ ሺ௃ሺ௜ሻ,௡തሻݓ
ேഥ
௡തୀଶ ቀݔሶ௃ሺ௜ሻሺݐሻ െ ሻቁݐሶ௃ሺ௜ሻିଵሺݔ

௡ത   ݅ ൌ 1,… , ܬ ҧ       (10) 

where ௦݂ሺ݅ሻ and  ௗ݂ሺ݅ሻ are extra nonlinear terms produced by 
nonlinear components; ( )( ),J i nr  and ( )( ),J i nw  are coefficients of 

the polynomial, and denote 
݂݊ሺ݅ሻ ൌ ൤0 … 0ᇩᇭᇭᇪᇭᇭᇫ

௃ሺ௜ሻିଶ

െ൫ ௦݂ሺ݅ሻ ൅ ௗ݂ሺ݅ሻ൯ ௦݂ሺ݅ሻ ൅ ௗ݂ሺ݅ሻ   0 … 0ᇩᇭᇭᇪᇭᇭᇫ
௡ି௃ሺ௜ሻ

൨
்

      (11) 
and 

ሻݐሺࡲࡺ ൌ ∑ ݂݊ሺ݅ሻ௃ҧ
௜ୀଵ        (12) 

Then, the motion of the MDOF system in Fig.1 can be 
described by 

ࡹ ሷ࢞ ൅ ࡯ ሶ࢞ ൅ ࢞ࡷ ൌ ሻݐሺࡲ ൅  ሻ     (13)ݐሺࡲࡺ
Equation (13) represents a class of SIMO nonlinear systems 

with the input and outputs being ݑሺݐሻ and ݅ݔሺݐሻ,݅ ൌ 1,… ,2, 
respectively. 

The basic issues to be addressed in the present study are to 
detect whether there exist nonlinear components in system (13) 
and then, if this is the case, to determine the location of these 
nonlinear components only from the system output responses 
measured on the masses. Because, in many practical situations, 
the existence of nonlinear components indicates the existence 
of structural damage with nonlinear features such as  breathing 
crack, pedestal looseness and rub-impact etc, the detection and 
location of  nonlinear components in system  (13) is equivalent 
to detecting and locating a wide class of damage in the system 
and therefore has significant implications in engineering 
practices. 

B. The properties of the NOFRF transmissibility 
According to [37], it is known that if the outputs of system 

(13) can also be represented by the Volterra series (1), the 
transmissibility of the NOFRFs of the system as defined in (8) 
has the following properties. 
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(i) When  ܬҧ ൐ 1, that is, there are more than one nonlinear 
components in the system, 

ە
ۖ
۔

ۖ
ۓ ௜ܶ,௞

ே௅ሺ݆߱ሻ ൌ
ீሺ೔,೙ഥሻሺ௝ఠሻ

ீሺೖ,೙ഥሻሺ௝ఠሻ
ൌ തܳ௜,௞ሺ݆߱ሻ , ത݊ א ሼ2, …ܰ െ 1ሽ ;        

 ݂݅ 1 ൑ ݅ ൏ ݇ ൑ ሺ1ሻܬ  െ ܬሺܬ  ݎ݋  1 ҧሻ ൑ ݅ ൏ ݇ ൑ ݊    

௜ܶ,௞
ே௅ሺ݆߱ሻ ്

ீሺ೔,೙ഥሻሺ௝ఠሻ

ீሺೖ,೙ഥሻሺ௝ఠሻ
  , ത݊ א ሼ2, …ܰ െ 1ሽ.                Otherwise  

   (14) 

where തܳ௜,௞ሺ݆߱ሻ is only dependent on the ܥ ,ܯ, and ܭ, that is, the 
linear characteristic parameters of system (13). 

(ii) When ܬҧ ൌ 1 , that is, there is only one nonlinear 
component in system (13), 

௜ܶ,௞
ே௅ሺ݆߱ሻ ൌ ீሺ೔,೙ഥሻሺ௝ఠሻ

ீሺೖ,೙ഥሻሺ௝ఠሻ
ൌ ധܳ௜,௞ሺ݆߱ሻ, ത݊ א ሼ2,…ܰ െ 1ሽ ; ݂݅ ݅, ݇ א ሼ1,…݊ሽ and ݅ ൏ ݇  (15) 

In addition,  if ܮ ൒  ,ሺ1ሻܬ 

ە
ۖۖ
۔

ۖۖ
ۓ ௜ܶ,௞

௅ ሺ݆߱ሻ ൌ
ீሺ೔,భሻሺ௝ఠሻ

ீሺೖ,భሻሺ௝ఠሻ
ൌ ܳ௜,௞ሺ݆߱ሻ ൌ

ீሺ೔,೙ഥሻሺ௝ఠሻ

ீሺೖ,೙ഥሻሺ௝ఠሻ
ൌ ௜ܶ,௞

ே௅ሺ݆߱ሻ, ത݊ א ሼ2, …ܰ െ 1ሽ; 

݂݅ 1 ൑ ݅ ൏ ݇ ൑ ሺ1ሻܬ   െ ܮ ݎ݋  1 ൑ ݅ ൏ ݇ ൑ ݊

௜ܶ,௞
௅ ሺ݆߱ሻ ൌ

ீሺ೔,భሻሺ௝ఠሻ

ீሺೖ,భሻሺ௝ఠሻ
ൌ ܳ௜,௞ሺ݆߱ሻ ്

ீሺ೔,೙ഥሻሺ௝ఠሻ

ீሺೖ,೙ഥሻሺ௝ఠሻ
ൌ ௜ܶ,௞

ே௅ሺ݆߱ሻ, ത݊ א ሼ2, …ܰ െ 1ሽ;    

otherwise                           

(16) 

and if ܮ ൏  ,ሺ1ሻܬ

ە
ۖ
۔

ۖ
ۓ ௜ܶ,௞

௅ ሺ݆߱ሻ ൌ
ீሺ೔,భሻሺ௝ఠሻ

ீሺೖ,భሻሺ௝ఠሻ
ൌ ܳ௜,௞ሺ݆߱ሻ ൌ

ீሺ೔,೙ഥሻሺ௝ఠሻ

ீሺೖ,೙ഥሻሺ௝ఠሻ
ൌ ௜ܶ,௞

ே௅ሺ݆߱ሻ  , ത݊ א ሼ2,…ܰ െ 1ሽ;  

݂݅ 1 ൑ ݅ ൏ ݇ ൑ ሺ1ሻܬ ݎ݋  ܮ  ൑ ݅ ൏ ݇ ൑ ݊

௜ܶ,௞
௅ ሺ݆߱ሻ ൌ

ீሺ೔,భሻሺ௝ఠሻ

ீሺೖ,భሻሺ௝ఠሻ
ൌ ܳ௜,௞ሺ݆߱ሻ ്

ீሺ೔,೙ഥሻሺ௝ఠሻ

ீሺೖ,೙ഥሻሺ௝ఠሻ
ൌ ௜ܶ,௞

ே௅ሺ݆߱ሻ, ത݊ א ሼ2, …ܰ െ 1ሽ;      

otherwise                           

(17) 

In equations (15) - (17),   ௜ܶ,௞௅ ሺ݆߱ሻ  is the traditional 
transmissibility; ܳ௜,௞ሺ݆߱ሻ and ധܳ௜,௞ሺ݆߱ሻ are also only dependent 
on ܥ ,ܯ, and ܭ. 

In [5], Property (ii) of the NOFRF transmissibility has been 
exploited to develop a method for detection and location of 
damage in MDOF system (13) when there is only one nonlinear 
component in the system, and the system input ݑሺݐሻ  is 
measurable so can be used for damage detection and location 
purpose. The present study is motivated by the need to extend 
the results achieved in [5] to more practical situations including 
the case where there are more than one nonlinear components 
in the system; Property (i) of the NOFRF transmissibility is an 
important basis for addressing these more complicated 
problems. 

C. Transmissibility at super-harmonics 
In order to more clearly explain the basic ideas, the present 

study assumes that the input force ݑሺݐሻ to system (13) is a 
sinusoidal and the location ܮ  where the input is applied is 
known a priori.  Under this assumption, the system output 
frequency response can be represented using the system 
NOFRF as described in Proposition 1 below. 
Proposition 1  

Under the condition that the outputs of system (13) can be 
represented by the Volterra series (1) and the input to the 
system is a harmonic input 

ሻݐሺݑ ൌ ݐሺ߱ிݏ݋ܿܣ ൅  ሻ                         (18)ߚ
the range of the system output frequencies are Ω ൌ
ሼ0,േ1߱ி,േ2߱ி,… ,േܰ߱ிሽ and the system output responses 
at the harmonic frequencies can be determined by  

ە
ۖۖ
۔

ۖۖ
ۓ ௜ܺሺ݆߱ிሻ ൌ ሺ௜,ଵሻሺ݆߱ிሻܩ ଵܷሺ݆߱ிሻ ൅ ሺ௜,ଷሻሺ݆߱ிሻܩ ଷܷሺ݆߱ிሻ ൅

…൅ ሺ௜,ேሻሺ݆߱ிሻܷேሺ݆߱ிሻܩ
௜ܺሺ݆2߱ிሻ ൌ ሺ௜,ଶሻሺ݆2߱ிሻܩ ଶܷሺ݆2߱ிሻ ൅ ሺ௜,ସሻሺ݆2߱ிሻܩ ସܷሺ2݆߱ிሻ ൅

…൅ ሺ௜,ேିଵሻሺ݆2߱ிሻܷேିଵሺ݆2߱ிሻܩ
…  …  …

௜ܺሺ݆ܰ߱ிሻ ൌ ሺ௜,ேሻሺ݆ܰ߱ிሻܷேሺ݆ܰ߱ிሻܩ

       (19) 

for ݅ ൌ 1,… , ݊ when ܰ is odd or  

ە
ۖۖ
۔

ۖۖ
ۓ ௜ܺሺ݆߱ிሻ ൌ ሺ௜,ଵሻሺ݆߱ிሻܩ ଵܷሺ݆߱ிሻ ൅ ሺ௜,ଷሻሺ݆߱ிሻܩ ଷܷሺ݆߱ிሻ ൅

…൅ ሺ௜,ேିଵሻሺ݆߱ிሻܷேିଵሺ݆߱ிሻܩ
௜ܺሺ݆2߱ிሻ ൌ ሺ௜,ଶሻሺ݆2߱ிሻܩ ଶܷሺ݆2߱ிሻ ൅ ሺ௜,ସሻሺ݆2߱ிሻܩ ସܷሺ2݆߱ிሻ ൅

…൅ ሺ௜,ேሻሺ݆2߱ிሻܷேሺ݆2߱ிሻܩ
…  …  …

௜ܺሺ݆ܰ߱ிሻ ൌ ሺ௜,ேሻሺ݆ܰ߱ிሻܷேሺ݆ܰ߱ிሻܩ

        (20) 

when ܰ is even. 
Proof: See Appendix A1. 
From Proposition 1, it is known that, in the cases considered 

in the present study, the output frequency responses of system 
(13) include not only the component at the base frequency  ߱ி 
but also the components at  2߱ி, 3߱ி,… etc super-harmonics. 
The transmissibility at super-harmonics is defined as the ratio 
of the super-harmonic responses on two consecutive masses, 
that is 

 ܵܶ௜,௜ାଵሺ݆݇߱ிሻ ൌ
௑೔ሺ௝௞ఠಷሻ

௑೔శభሺ௝௞ఠಷሻ
  ݇ ൌ 2,… , ܰ ܽ݊݀ ݅ ൌ 1,… , ݊ െ 1       (21) 

From the properties of the NOFRF transmissibility described 
in B above and Proposition 1, the relationship between the 
transmissibility at super-harmonics as defined in (21) and the 
NOFRFs transmissibility can be derived. The result is 
summarized in Proposition 2 as follows. 
Proposition 2 

Under the same condition of Proposition 1, 
(i) When there are more than one nonlinear components in 

system (13), that is  ܬ ҧ ൐ 1, if two consecutive masses of the 
system are all on the left or right side of the nonlinear 
components, namely, 1 ൑ ݅ ൑ ሺ1ሻܬ  െ 2 or ܬሺܬ ҧሻ ൑ ݅ ൑ ݊ െ 1 , 
then 

ܵܶ௜,௜ାଵሺ݆݇߱ிሻ ൌ ௜ܶ,௜ାଵ
ே௅ ሺ݆݇߱ிሻ ൌ തܳ௜,௜ାଵሺ݆݇߱ிሻ, ݇ ൌ 2,… , ܰ            (22) 

If at least one mass is within the range of nonlinear 
components, namely,  ܬሺ1ሻ െ 1 ൑ ݅ ൑ ܬሺܬ   ҧሻ െ 1, then 

ܵܶ௜,௜ାଵሺ݆݇߱ிሻ ് ௜ܶ,௜ାଵ
ே௅ ሺ݆݇߱ிሻ  ݇ ൌ 2,… , ܰ         (23) 

(ii) When there is only one nonlinear component in the 
system, that is ܬ ҧ ൌ 1 , then 
ܵܶ௜,௜ାଵሺ݆݇߱ிሻ ൌ ௜ܶ,௜ାଵ

ே௅ ሺ݆݇߱ிሻ ൌ ധܳ௜,௜ାଵሺ݆݇߱ிሻ, ݅ ൌ 1, . . . , ݊ െ 1, ݇ ൌ 2,… , ܰ (24) 
and  

ە
ۖ
۔

ۖ
ۓ ܵܶ

௜,௜ାଵሺ݆߱ிሻ ൌ ௜ܶ,௜ାଵ
௅ ሺ݆߱ிሻ ൌ ܳ௜,௜ାଵሺ݆߱ிሻ,                                          

if  1 ൑ ݅ ൑ ሺ1ሻܬ െ ܮ ݎ݋  2 ൑ ݅ ൏ ݊ െ 1 when ܮ ൒  ; ሺ1ሻܬ 
1   ݂݅  ݎ݋ ൑ ݅ ൑ ܮ െ ሺ1ሻܬ ݎ݋  1 ൑ ݅ ൏ ݊ െ 1 when ܮ ൏ ሺ1ሻܬ

ܵܶ௜,௜ାଵሺ݆߱ிሻ ് ௜ܶ,௜ାଵ
௅ ሺ݆߱ிሻ ൌ ܳ௜,௜ାଵሺ݆߱ிሻ                                             

otherwise

   (25) 

(iii) Results (i) and (ii) above hold for ݇ ൌ 2,4… , ܰ if  ݇ 
and ܰ are all even; for ݇ ൌ 3,5, … , ܰ, if ݇ and ܰ are all odd; 
for ݇ ൌ 2,4, . . . , ܰ െ 1  if ݇  is even but ܰ  is odd; and for 
݇ ൌ 3,5, . . . , ܰ െ 1 if ݇ is odd but ܰ is even. 

Proof: See Appendix A2. 
Result (i) of Proposition 2 indicates that if there are more 

than one nonlinear components in the system and the two 
consecutive masses involved in the transmissibility evaluation 
are located both on the same side of the nonlinear components, 
then the transmissibility at super-harmonics only depend on the 
system linear characteristic parameters and is, therefore, 
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independent from the system input. Otherwise, that is, when the 
two masses involved in the transmissibility evaluation are 
located inside the area of system nonlinear components, the 
transmissibility at super-harmonics may be dependent on the 
system input. On the other hand, Result (ii) of Proposition 2 
indicates that if there is only one nonlinear component in the 
system, the transmissibility at super-harmonics is completely 
dependent on the system linear characteristic parameters and 
independent from the system input. In addition, if there is only 
one nonlinear component in the system, and the two 
consecutive masses involved in the transmissibility evaluation 
are not located between this nonlinear component and the mass 
where an input excitation is applied, the transmissibility at 
driving frequency also only depends on the system linear 
characteristic parameters and is independent from the system 
input. These significant properties of the transmissibility at 
either super-harmonics or driving frequency with system (13) 
will be exploited to propose a more general approach for the 
detection and location of damage with nonlinear features for 
MDOF structural system (13) in the next section. 

IV. DETECTION AND LOCATION OF DAMAGE VIA NONLINEAR 
FEATURES USING A NEW TRANSMISSIBILITY ANALYSIS METHOD 

A. Basic ideas 
According to [23, 24, 26], the damage with nonlinear 

features in MDOF systems can make the whole system behave 
nonlinearly and, particularly, produce super-harmonics. So the 
higher order harmonics can be used to determine whether there 
exists such damage in the system. 

When damage with nonlinear features has been detected in 
system (13), the results of Proposition 2 can be used to find out 
whether there is only one or more than one damage with 
nonlinear features in the system and the locations of the 
damage. This is based on the following observations. 

First, equation (24) in (ii) , Proposition 2 indicates that when 
there is only one nonlinear component in MDOF system (13), 
the transmissibility at super-harmonics depends only on the 
system parameters ܥ,ܯ, ܭ  and does not change with the 
system input. This is a very distinctive feature and can be used, 
if damage with nonlinear features has been detected in system 
(13), to determine whether there is only one nonlinear 
component in the system or not. 

Secondly,  if there is only one nonlinear component in the 
system, equation (25) in (ii), Proposition 2 indicates that 
whether the transmissibility at base frequency  ߱ி varies with a 
change in the system input depends on the location of the two 
masses involved in the transmissibility evaluation. This 
property can be exploited to find the location of the only 
nonlinear component in the system. 

Finally, if there are more than one nonlinear components in 
system (13), equations (22) and (23) in (i), Proposition 2, 
indicate that whether the transmissibility at super-harmonics 
varies with a change in the system input depends on the location 
of the two masses involved in the transmissibility evaluation. 
This can be used to find the locations of nonlinear components 
in the system. 

B. The method 
From the super-harmonic analysis based damage detection 

idea, and the above observations from Proposition 2, a new 
transmissibility analysis method for the detection and location 
of damage with nonlinear features in system (13) can be 
proposed under the following two assumptions. 

a) The system output responses to two different sinusoidal 
inputs 

ሻݐଵሺݑ ൌ ݐிݓሺ݊݅ݏଵܣ ൅ ሻݐଶሺݑ   ଵሻ  andߚ ൌ ݐிݓሺ݊݅ݏଶܣ ൅  ଶሻ              (26)ߚ
can be obtained  so that  two sets of  transmissibility analysis 
results  

ە
ۖ
۔

ۖ
1௜,௜ାଵሺ݆݇߱ிሻܶܵۓ ൌ

௑೔
భሺ௝௞ఠಷሻ

௑೔శభ
భ ሺ௝௞ఠಷሻ

ൌ ௑೔ሺ௝௞ఠಷሻ

௑೔శభሺ௝௞ఠಷሻ
ቚ
௨ሺ௧ሻୀ௨భሺ௧ሻୀ஺భ ୱ୧୬ሺఠಷ௧ାఉభሻ

ܵܶ2௜,௜ାଵሺ݆݇߱ிሻ ൌ
௑೔
మሺ௝௞ఠಷሻ

௑೔శభ
మ ሺ௝௞ఠಷሻ

ൌ ௑೔ሺ௝௞ఠಷሻ

௑೔శభሺ௝௞ఠಷሻ
ቚ
௨ሺ௧ሻୀ௨మሺ௧ሻୀ஺మ௦௜௡ሺఠಷ௧ାఉమሻ     

     (27) 

and their differences 
௜,௜ାଵሺ݆݇߱ிሻߜܵ ൌ หܵܶ1௜,௜ାଵሺ݆݇߱ிሻ െ ܵܶ2௜,௜ାଵሺ݆݇߱ிሻห                      (28) 

can be determined. Here, ݅ ൌ 1, … , ݊ െ 1;  ݇ ൌ 1,2, …ܰ . In 
(27), ܺ݅

1ሺ݆݇߱ܨሻ and   ܺ݅2ሺ݆݇߱ܨሻ  are the spectra of the ݇ th 
harmonic responses of the system to input  1ݑሺݐሻ and 2ݑሺݐሻ, 
respectively, and  1ܣ ്  .2ܣ

b) The location where the input force ݑሺݐሻ is applied to the 
system, that is, mass number  ܮ is known a priori. 

The detailed procedures of the new method can be described 
as follows. 

(1). Evaluate the spectra of the output responses of 
system (13) to inputs 1ݑሺݐሻ and 2ݑሺݐሻ, respectively, 
and determine the amplitudes of these spectra at all 
the harmonics, that is,  ܺ݅

1ሺ݆݇߱ܨሻ and ܺ݅
2ሺ݆݇߱ܨሻ, 

for ݅ ൌ 1,… , ݊  and ݇ ൌ 2,… ,ܰ . Here, ܰ  can be 
determined as the highest order at which the 
harmonics are observed in the system outputs. 
Determine the value of index ܦܰܫଵ as defined below 
to represent the strength of higher order harmonics in 
the system output responses    

ଵܦܰܫ ൌ max ൜ฬ௑೔
భሺ௝௞ఠಷሻ

௑೔
భሺ௝ఠಷሻ

ฬ , ฬ௑೔
మሺ௝௞ఠಷሻ

௑೔
మሺ௝ఠಷሻ

ฬ , ݅ ൌ 1,… , ݊, and ݇ ൌ 2,… , ܰൠ  (29) 
If  

ଵܦܰܫ  ൒  ଵ      (30)ߝ
then it can be  concluded that there exists  damage 
with nonlinear feature in the system. Otherwise, 
there is no such damage in the system. In (30), 
 .a threshold to be determined a priori ݏ݅ ଵߝ

(2). If Step (1) indicates there is damage with nonlinear 
features in the system, select a ത݇ א ሼ2, … , ܰሽ   such 
that both ܺ݅

1ሺ݆ത݇߱ܨሻ ݅ ൌ 1, … , ݊  and ܺ݅
2ሺ݆ത݇߱ܨሻ ݅ ൌ

1,… , ݊  have significant amplitudes. Calculate  
ܵܶ1݅,݅൅1ሺ݆ത݇߱ܨሻ, ܵܶ2

݅,݅൅1ሺ݆ത݇߱ܨሻ, and  ܵ݅ߜ,݅൅1ሺ݆ത݇߱ܨሻ 
for ݅ ൌ 1,… , ݊ െ 1  using (27) and (28). Then, 
evaluate 

୫ୟ୶ሺߜܵ ത݇ሻ ൌ max൛Sߜ௜,௜ାଵ൫݆ ത݇߱ி൯, ݅ א ሼ1,2,… , ݊ െ 1ሽ ൟ  (31) 
to see whether  

୫ୟ୶ሺത݇ሻߜܵ  ൑    ଶ      (32)ߝ
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where ߝଶ ݅ݏ another a priori determined threshold. If 
(32) holds, it can be concluded that there exist only 
one damaged component with nonlinear features in 
the system. Otherwise, there are more than one 
damaged components with nonlinear features.   

(3). If Step (2) indicates there exist only one damaged 
component with nonlinear features, calculate 
ܵܶ1݅,݅൅1ሺ݆߱ܨሻ, ܵܶ2݅,݅൅1ሺ݆߱ܨሻ, and ܵ݅ߜ,݅൅1ሺ݆߱ܨሻ for 
݅ ൌ 1,… , ݊ െ 1 using (27) and (28). Then evaluate  

୫ୟ୶ሺ1ሻߜܵ ൌ max ቄSߜ௜,௜ାଵሺ݆߱ிሻ, ݅ א ሼ1,2,… , ݊ െ 1ሽቅ    (33) 
and 

തതത௜,௜ାଵሺ݆߱ிሻߜܵ ൌ
ௌఋ೔,೔శభሺ௝ఠಷሻ

ௌఋౣ౗౮ሺଵሻ
݅ ݎ݋݂   ൌ 1,… , ݊ െ 1         (34) 

to find those i’s such that  
തതത௜,௜ାଵሺ݆߱ிሻߜܵ   ൒  ଷ     (35)ߝ

where ߝଷ is again a priori determined threshold.   
Denote those i’s such that (35) holds are  

 ݅ᇱ, ݅ᇱ ൅ 1,… , ݅ᇱ ൅ ݉Ԣ െ 1         
where  ݉Ԣ ൒ 1. 
Then, there are only two possibilities which are 
ܮ ൌ ݅ᇱ or  ܮ  ൌ ݅ᇱ ൅ ݉Ԣ.   If  ܮ ൌ ݅ᇱ , it can be 
concluded that the only nonlinear component is 
located between mass ( ݅ᇱ ൅ ݉Ԣ െ 1ሻ  and mass 
ሺ݅ᇱ ൅ ݉Ԣሻ.  Otherwise, ܮ ൌ ݅ᇱ ൅ ݉Ԣ , and  it can be 
concluded that the only nonlinear component is 
located between mass ݅ᇱ and mass ሺ݅ᇱ ൅ 1ሻ. 

(4). If Step (2) indicates there exist more than one 
damaged components with nonlinear features in the 
system, evaluate  

തതത௜,௜ାଵ൫݆ߜܵ ത݇߱ி൯ ൌ
ௌఋ೔,೔శభሺ௝௞തఠಷሻ

ௌఋౣ౗౮ሺ௞ത ሻ
 for ݅ ൌ 1,… , ݊ െ 1        (36) 

to find those i’s such that  
തതത௜,௜ାଵ൫݆ߜܵ ത݇߱ி൯ ൒  ସ                  (37)ߝ

where ߝସ is also  a priori determined threshold. 
Denote those i’s such that (37) hold are  

݅ᇱᇱ, ݅ᇱᇱ ൅ 1,… , ݅ᇱᇱ ൅ ݉ԢԢ െ 1        
where  ݉ᇱᇱ ൐ 1. 
Then, it can be concluded that these nonlinear 
components are located between mass ݅ԢԢ  and mass 
݅ԢԢ ൅ ݉ԢԢ. 

C. Remarks 
For the new method described above, following remarks can 

be made regarding the theoretical basis of relevant steps and the 
choice of the parameters that are required to be determined a 
priori. 
a) Step 1) of the method is based on the well-known fact that 

nonlinearity will generate harmonics in the system output 
response. Step 2) exploits the property of system (13) 
described in the first point of Result (ii), Proposition 2,  
which indicates if there is only one nonlinear component 
in the system,  the transmissibility at super-harmonics is 
completely determined by the system linear characteristic 
parameters and, therefore , independent of the system 
input. The theoretical basis of Step 3) is the second point 
of Result (ii), Proposition 2, which reveals an important 
relationship between the transmissibility at base 
frequency and the location of the only nonlinear 

component in the system. Step 4) makes use of the 
property of the transmissibility at super-harmonics of 
system (13) described by Result (i), Proposition 2, which 
shows where the transmissibility at super-harmonics is 
only dependent on the system linear characteristic 
parameters and, therefore, independent of the system 
input and where this is not the case.  

b) ߝଵ, ,ଶߝ ,ଷߝ  ସߝ  are four parameters in the method. 
Theoretically, these parameters are zeros. But, in practice 
they are thresholds that should be determined a priori from 
experimental data using statistical analyses. This allows 
the effects of noise, un-modeled dynamics, and inherent 
but less significant system non-linearity to be omitted 
when the method is used in practice. For example, ߝଵ 
should be a small number associated with a noise 
threshold in a case where the system basically behaves 
linearly. So ߝଵ can be determined from the statistics (such 
as mean and standard deviation etc) of the values of 
ଵܦܰܫ in the situations when there is no damage with 
nonlinear features in the system.  

c) The determination of ܰ  and ത݇  can be achieved by 
observing the spectra of the system outputs. The details 
will be demonstrated in Section VI.  

In the next sections, simulation and experimental studies will 
be conducted to demonstrate the performance of the proposed 
method and its potential in practical applications. 

V. Simulation studies 
In order to verify the effectiveness of the proposed method, 

simulation studies are conducted in this section. For this 
purpose, a 10 DOF system as described by (13) is considered 
where 

݉ଵ ൌ ݉ଶ ൌ ڮ ൌ ݉ଵ଴ ൌ 1,  
݇ଵ ൌ ݇ଶ ൌ ڮ ൌ ݇ହ ൌ ݇ଵ଴ ൌ 3.6 ൈ 10ସ, ݇଺ ൌ ݇଻ ൌ ଼݇ ൌ 0.8݇ଵ, ݇ଽ ൌ 0.9݇ଵ,  
ߤ ൌ ܥ ,0.01 ൌ  ,ܭߤ

and the parameters of the nonlinear springs and dampers are 
ഥܰ ൌ ሺ௃ሺ௜ሻ,ଶሻݎ ,3 ൌ 0.8݇ଵଶ, ݎሺ௃ሺ௜ሻ,ଷሻ ൌ 0.4݇ଵଷ, ݓሺ௃ሺ௜ሻ,ଶሻ ൌ ሺ௃ሺ௜ሻ,ଷሻݓ ൌ 0, ݅ ൌ 1,… , ܬ ҧ 

. 
where ܬ ҧ, the number of nonlinear components in the system, are taken 
as  ܬ ҧ ൌ 3 and ܬ ҧ ൌ 1, respectively,  in the two cases of simulation 
studies considered below. 

A. Simulation Study Case 1 
In this case, there are three (ܬ ҧ ൌ 3 ሻ nonlinear components in 

the system, which are the 3rd, 5th and 6th springs. Two loading 
conditions are considered where the input forces are 

ሻݐଵሺݑ ൌ ሻݐଶሺݑ   ሻ  andݐߨሺ40݊݅ݏ10 ൌ  ሻݐߨሺ40݊݅ݏ20
respectively, and are applied on the 7th mass, that is, ܮ ൌ 7. The 
new method was applied to the spectra of the output responses 
of the system under the two loading conditions, that is, 

௜ܺ
ଵሺ݆݇߱ிሻ and ௜ܺ

ଶሺ݆݇߱ிሻ,  ݅ ൌ 1,… ,10 , ݇ ൌ 1,…ܰ. 
where ܰ  was determined as 4  and the four threshold 
parameters  1ߝ, ,2ߝ ,3ߝ  .in the method all taken as 2%=0.02 4ߝ
The results obtained in each step are given as follows. 

Step (1) 
In this case, the index ܦܰܫଵ was evaluated using (29) as 
ଵܦܰܫ ൌ maxቊቤ ௜ܺ

ଵሺ݆݇߱ிሻ

௜ܺ
ଵሺ݆߱ிሻ

ቤ , ቤ ௜ܺ
ଶሺ݆݇߱ிሻ

௜ܺ
ଶሺ݆߱ிሻ

ቤ , ݅ ൌ 1,… ,10, and ݇ ൌ 2,… ,4ቋ  
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=0.0287 ൒ ଵߝ ൌ 0.02 
Therefore, it is concluded that damage with nonlinear feature 

exists in the system. 
Step (2) 
At this step, ത݇  was determined as ത݇ ൌ 2. So 

ܵܶ1௜,௜ାଵሺ݆2߱ிሻ, ܵܶ2
௜,௜ାଵሺ݆2߱ிሻ, and ܵߜ௜,௜ାଵሺ݆2߱ிሻ ݅ ൌ 1,… ,9 

were evaluated using (27) and (28).  Then, ܵߜ୫ୟ୶ሺ2ሻ  was 
determined using (31); the result is 

୫ୟ୶ሺ2ሻߜܵ ൌ 1.5349 ൐ ଶߝ ൌ 0.02 
So it is known that there are more than one nonlinear 

components in the system.  
Step (4)  
As Step (2) has shown that there are more than one nonlinear 

components in the system, Step (4) rather than Step (3) of the 
proposed method are needed in this case. At this step, 
തതത௜,௜ାଵ൫݆ߜܵ ത݇߱ி൯ = ܵߜതതത௜,௜ାଵሺ݆2߱ிሻ , ݅ ൌ 1,… ,9   were evaluated 
using (36). The results are shown in Table I, in which it can be 
observed that 

തതത௜,௜ାଵሺ݆2߱ிሻߜܵ ൒ 0.02 ൌ ݅ ,ସߝ ൌ 2,3,4,5 

Therefore ݅ԢԢ ൌ 2 and  ݉ԢԢ ൌ 4 , and it can be concluded that 
nonlinear components are located between mass ݅ԢԢ ൌ 2 and 
mass ݅ᇱᇱ ൅ ݉ᇱᇱ ൌ 6  in the system. 

TABLE I  
THE VALUE OF ܵߜതതത௜,௜ାଵሺ݆2߱ிሻ WHEN THE 3RD, 5TH AND 6TH SPRINGS 

ARE NONLINEAR 
തതത௜,௜ାଵሺ݆2߱ிሻߜܵ ݅ തതത௜,௜ାଵሺ݆2߱ிሻߜܵ ݅ തതത௜,௜ାଵሺ݆2߱ிሻߜܵ ݅

1 5.16ൈ 10ିହ 4 1 7 0.000133 

2 0.109899 5 0.340627  8 8.63ൈ 10ିହ

3 0.071504  6 9.63ൈ 10ିହ 9 9.59ൈ 10ି଺

Obviously, the conclusions reached at each step are all 
consistent with the real situation of the simulated system. So the 
effectiveness of the proposed method is verified by this 
simulation study. 

B. Simulation Study Case 2 
In this case, there is only one (ܬ ҧ ൌ 1 ሻ nonlinear component in 

the system, which is the 8th spring. The same two loading 
conditions as in Simulation Study Case 1 were considered and 
the input force was applied on the 3rd mass, that is, ܮ ൌ 3. The 
new method was again applied to the spectra of the output 
responses of the system under the two loading conditions. 
Again, ܰ  was determined as 4 and the four threshold 
parameters  ߝଵ, ,ଶߝ ,ଷߝ  .ସ in the method were taken as 2%=0.02ߝ
The results obtained in each step are given as follows.  

Step (1) 
In this case, the index ܦܰܫଵ was evaluated by (29) as 
ଵܦܰܫ ൌ max ቊቤ ௜ܺ

ଵሺ݆݇߱ிሻ

௜ܺ
ଵሺ݆߱ிሻ

ቤ , ቤ ௜ܺ
ଶሺ݆݇߱ிሻ

௜ܺ
ଶሺ݆߱ிሻ

ቤ , ݅ ൌ 1,… ,10, and ݇ ൌ 2,… ,4ቋ 

=0.0387൒ ଵߝ ൌ 0.02 
So, damage with nonlinear feature exists in the system. 
Step (2) 
At this step, ത݇ is again determined as  ത݇ ൌ 2. Therefore, in 

the same way as in Step (2), Simulation Case Study 1, 
 ୫ୟ୶ሺ2ሻ was determined; the result isߜܵ

୫ୟ୶ሺ2ሻߜܵ ൌ 6.7163 ൈ 10ିସ ൏ ଶߝ ൌ 0.02 
So it is known that there is only one nonlinear component in 

the system. 
Step (3)  

Because Step (2) indicates there is only one nonlinear 
component in the system, Step (3) of the proposed method was 
followed to evaluate  ܵܶ1௜,௜ାଵሺ݆߱ிሻ , ܵܶ2௜,௜ାଵሺ݆߱ிሻ , and 
௜,௜ାଵሺ݆߱ிሻߜܵ  for ݅ ൌ 1, … ,9  using (27) and (28). Then, 
തതത௜,௜ାଵሺ݆߱ிሻߜܵ  for ݅ ൌ 1, … ,9  were evaluated using (33) and 
(34). The results are shown in Table II indicating  

തതത௜,௜ାଵሺ݆߱ிሻߜܵ ൒ ଷߝ ൌ 0.02, ݅ ൌ 3,… ,7 
So ݅ᇱ ൌ 3  and  ݉ᇱ ൌ 5. As ܮ ൌ 3 ൌ ݅ᇱ, it is known that the 

only nonlinear component is located between mass (݅ᇱ ൅ ݉Ԣ െ
1ሻ ൌ 7 and mass ሺ݅ᇱ ൅ ݉Ԣሻ ൌ 8 

 
 
 

TABLE II 

THE VALUE OF ܵߜതതത௜,௜ାଵሺ݆߱ிሻ WHEN ONLY THE EIGHTH SPRING IS 
NONLINEAR 

 തതത௜,௜ାଵሺ݆߱ிሻߜܵ ݅ തതത௜,௜ାଵሺ݆߱ிሻߜܵ ݅ തതത௜,௜ାଵሺ݆߱ிሻߜܵ ݅
1 2.2 ൈ 10ି଺ 4 0.112423 7 1 

2 3.56 ൈ 10ି଺ 5 0.305335  8 5.79ൈ 10ି଺ 
3 0.076072  6 0.986996 9 3.44ൈ 10ି଺ 
Again, the conclusions reached at each step above are all 

consistent with the real situation of the simulated system. So the 
effectiveness of the proposed method is further verified by the 
second simulation study. 

 

VI. EXPERIMENTAL STUDIES 

A. Experimental setup 
In order to demonstrate the potential of the new 

transmissibility analysis based damage dectection and location 
method in practical applications, the method was applied to 
analyse the experimental data from testing a three-storey 
building structure shown in Fig.2. The structure consists of 
aluminum columns and plates, assembled using bolted joints 
with a rigid base. The structure slides on rails that allow 
movement in only one direction. At each floor, four columns 
are connected to the top and bottom aluminum plates, which 
form a four degree-of-freedom system. Additionally, a center 
column can be suspended from the top of each floor, which is 
used to induce nonlinear behaviors when the column contacts a 
bumper mounted on the next floor. The position of the bumper 
can be adjusted to vary the extent of the nonlinearity. This 
source of nonlinearity can, for example, simulate the fatigue 
cracks that subsequently open and close under operational,  
environmental, or loading conditions. An electromagnetic 
shaker provides the excitation to the ground floor of the 
structure. Four accelerometers are attached to each floor at the 
opposite side from the excitation source to measure the 
response from each floor. Fig. 4 shows the spring-damper 
model of the three-storey building structure which is clearly a 
specific case of the nDOF model in Fig.1. 
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Fig. 2. Three-storey building structure used for the experimental studies 

 
 

Fig. 3  4DOF system model of the three-storey building structure 

B. Experiments and experimental data analyses 
Data were collected from four different experiments on the 

three-story building structure. The details of the experiments 
are summarized in Table III.  Two different state conditions of 
the structure were investigated.  These are the structural state 
condition under Experiments #1 and #2, and the structural state 
condition under Experiments #3 and #4, respectively. So data 
collected from Experiments #1 and #2 were used to determine 
the situation of state condition 1, and data collected from 
Experiments #3 and #4 were used to determine the situation of 
state condition 2. The objectives of the experimental data 
analysis were to apply the method proposed in the present study 
for each state condition to detect whether there exists a 
nonlinear component in the experimental system and, if this is 
the case, determine the location of the nonlinear component in 
the system.  

The results of the experimental data analyses are given in 
Table IV where ܰ ൌ 3 and   ത݇ ൌ 3  were determined from 
observing the spectra of the system outputs in the four 
experiments shown in Figs 4-7.  In these analyses, 
,ଵߝ ,ଶߝ ,ଷߝ    .ସ are all taken as 0.02ߝ

Because ܦܰܫଵ=0.3453>ߝଵ ൌ 0.02 in state condition 1 and 
ଵߝ<ଵ=0.1714ܦܰܫ ൌ 0.02  in state condition 2, it was concluded 
that there exits nonlinear damage in the structural system in 
both state conditions.  

Moreover, because     
୫ୟ୶൫ത݇൯ߜܵ ൌ ୫ୟ୶ሺ3ሻߜܵ ൌ 0.016 ൏ ଶߝ ൌ 0.02 

in state condition 1 and, 
୫ୟ୶൫ത݇൯ߜܵ ൌ ୫ୟ୶ሺ3ሻߜܵ ൌ 0.013 ൏ ଶߝ ൌ 0.02 

in state condition 2, it was concluded that there is only one 
nonlinear component in both state conditions. Therefore, Step 3 
rather than Step 4 of the proposed method should be used to 
find the location of the nonlinear component.  

The last row of Table IV shows the data analysis results for 
the two state conditions in Step 3.  The analysis results for state 
condition 1 indicate  

തതത௜,௜ାଵሺ݆߱ிሻߜܵ ൒ ଷߝ ൌ 0.02, ݅ ൌ 2,3 
So ݅ᇱ ൌ 2  and   ݅ᇱ ൅ ݉ᇱ െ 1 ൌ 3 ՜ ݉ᇱ ൌ 2. Because ܮ ൌ 4 ൌ
݅ᇱ ൅ ݉ᇱ in this case, it is known that the nonlinear component is 
located between mass  ݅ᇱ ൌ 2  and mass ݅ᇱ ൅ 1 ൌ 3  in state 
condition 1. 

The analysis results for state condition 2 indicate  
തതത௜,௜ାଵሺ݆߱ிሻߜܵ ൒ ଷߝ ൌ 0.02, ݅ ൌ 1,2,3 

So ݅ᇱ ൌ 1  and   ݅ᇱ ൅ ݉ᇱ െ 1 ൌ 3 ՜ ݉ᇱ ൌ 3 . Because again 
ܮ ൌ 4 ൌ ݅ᇱ ൅ ݉ᇱ  in this case, it is known that the nonlinear 
component is located between mass  ݅ᇱ ൌ 1 and mass ݅ᇱ ൅ 1 ൌ
2 in state condition 2. 

Obviously, the conclusions reached by the analysis of the 
experimental data from the two state conditions of the 
experimental system using the proposed method are completely 
consistent with the real situations of the system. Therefore, the 
potential of the proposed method in engineering applications 
have been verified. 

TABLE III 
DETAILS OF THE EXPERIMENTS 

Experiment 

Input excitation 
applied by 

shaker control 
computer 

Structure state condition under which 
experiment was conducted 

Experiment #1 
25 Hz sinusoidal 
with amplitude 

2 
State Condition 1: A 0.13mm gap was 

introduced between the column and 
bumper on the first floor to generate a 

nonlinear effect. Experiment #2 
25 Hz sinusoidal 
with amplitude 

2.5 

Experiment #3 
25 Hz sinusoidal 
with amplitude 

2 
State Condition 2: A 0.20mm gap was 

introduced between the column and 
bumper on the second (top) floor to 

generate a nonlinear effect. Experiment #4 
25 Hz sinusoidal 
with amplitude 

2.5 
 

TABLE IV 
DETAILS OF THE EXPERIMENTAL DATA ANALYSYS RESUTS  

 

The experimental data 
analysis results for the 

three-story building structure  
under  state condition 1 

The experimental data 
analysis results for the 

three-story building 
structure  under  state 

condition 2 
ܰ 3 3 

ଵ 0.3453ܦܰܫ ൐ ଵߝ ൌ 0.02 0.1747 ൐ ଵߝ ൌ 0.02 
ത݇ 3 3 

୫ୟ୶ሺത݇ሻ 0.016൏ߜܵ ଶߝ ൌ 0.02 0.013൏ ଶߝ ൌ 0.02 

 ௜,௜ାଵሺ݆߱ிሻߜܵ
for ݅ ൌ
1,… ,3 
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Fig. 4 Output spectra of the outputs of the 3 story building structure in 

Experiment 1 
 

 

 
Fig. 5 Output spectra of the outputs of the 3 story building structure in 

Experiment 2 
 

 
Fig. 6 Output spectra of the outputs of the 3 story building structure in 

Experiment 3 
 

 
Fig. 7 Output spectra of the outputs of the 3 story building structure in 

Experiment 4 

VII. CONCLUSIONS 
Transmissibility analysis is a well-established method and 

has been widely applied in structural analysis including damage 
detection and fault diagnosis. But, traditional transmissibility is 

a linear system concept which cannot be directly applied to the 
analysis of nonlinear structural systems. Recently, the concept 
of transmissibility of the Nonlinear Output Frequency 
Response Functions (NOFRFs) has been introduced to extend 
the transmissibility concept to the nonlinear case, and the 
NOFRF transmissibility based/related techniques have been 
developed to detect and locate damage in MDOF structural 
systems. However, these techniques assume there is only one 
nonlinear component in a damaged system, and either require 
specific testing or assume that the loading on inspected 
structural systems is measurable. To address these issues so as 
to enable NOFRF transmissibility based damage detection and 
location to be applicable in engineering practice, a new 
transmissibility analysis method has been developed in the 
present study for the detection and location of damage via 
nonlinear features in MDOF structural systems. The new 
method is derived using the NOFRF transmissibility concept 
and can be implemented by evaluation and analysis of the 
transmissibility of the system responses at super-harmonics.  
Both numerical simulation studies and experimental data 
analysis have been conducted to verify the effectiveness and 
demonstrate the potential practical applications of the new 
technique.  Although, for convenience of introducing main 
ideas, sinusoidal loadings are considered in the present study, 
the method can readily be extended to more general band 
limited loading cases and, therefore, has potential to be applied 
in practice to tackle nonlinear damage detection and location 
problems. 

APPENDIX A1 PROOF OF PROPOSITION 1 
According to [41], the ത݊th order frequency response of the 

system’s ݅th output can be expressed as 
ܺሺ௜,௡തሻሺ݆߱ሻ ൌ

ଵ
ଶ೙ഥ
∑ …,ሺ௜,௡തሻሺ݆߱ଵܪሺ݆߱௡തሻܣ…ሺ݆߱ଵሻܣ , ݆߱௡തሻఠభାڮାఠ೙ഥୀఠ         (A1.1) 

where 

ሺ݆߱௞ሻܣ ൌ ቐ
௝ఉ    ݂݅ ߱௞݁ܣ ൌ ߱ி

௝ఉ    ݂݅ ߱௞ି݁ܣ ൌ െ߱ி
݁ݏ݅ݓݎ݄݁ݐ݋           0

                            (A1.2) 

Obviously, if  ܾ ሺܾ ג ሼ0,1,2,… , ത݊ሽ ሻ ߱௞Ԣݏ in ߱ଵ,… ,߱௡ത  take the 
value of ߱ி , then the remaining  ሺ ത݊ െ ܾሻ ߱௞Ԣݏ in ߱ଵ,… ,߱௡ത  
take the value of െ߱ி. Consequently, the possible frequency 
components in  ܺሺ௜,௡തሻሺ݆߱ሻ can be obtained as  
Ω௡ത ൌ ሼሺെത݊ ൅ 2ܾሻ߱ி, ܾ ൌ 0,1,… , ത݊ ሽ ൌ ሼെ ത݊߱ி, െሺ ത݊ െ 2ሻ߱ி,… , ሺ ത݊ െ 2ሻ߱ி, ത݊߱ிሽ 

(A1.3) 
and the possible frequency components of system output are 
given by [41] 

Ω ൌ ራ Ω௡ത

ே

௡തୀேିଵ

ൌ ሼെܰ߱ி,െሺܰ െ 2ሻ߱ி,… , ሺܰ െ 2ሻ߱ி, ܰ߱ிሽ

׫ ሼെሺܰ െ 1ሻ߱ி,െሺܰ െ 3ሻ߱ி,… , ሺܰ െ 3ሻ߱ி, ሺܰ െ 1ሻ߱ிሽ 
                         = ሼ0, േ1߱ி,േ2߱ி,… ,േܰ߱ிሽ 

  (A1.4) 
From Equation (A1.1), it is known that 

ܺሺ௜,௡തሻሺ݆߱ሻ ൌ  ሺ௜,௡തሻሺ݆߱ሻܷ௡തሺ݆߱ሻ                     (A1.5)ܩ
where 

ሺ௜,௡തሻሺ݆߱ሻܩ ൌ
∑ ,ሺ௜,௡തሻሺ݆߱ଵܪሺ݆߱௡തሻܣ…ሺ݆߱ଵሻܣ … , ݆߱௡തሻఠభାڮାఠ೙ഥୀఠ

∑ ାఠ೙ഥୀఠڮሺ݆߱௡തሻఠభାܣ…ሺ݆߱ଵሻܣ
 

and 
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ܷ௡തሺ݆߱ሻ ൌ
1
2௡ത ෍ ሺ݆߱௡തሻܣ…ሺ݆߱ଵሻܣ

ఠభାڮାఠ೙ഥୀఠ

 

in this case. As Equation (A1.3) indicates even order harmonics 
are produced by even order nonlinearity and odd order 
harmonics are produced by odd order nonlinearity,  Equations 
(19) and (20) can be obtained from (A1.5)  from the case of ܰ is 
odd and from the case of ܰ is even, respectively. Thus, the 
proof of Proposition1 is completed. 

APPENDIX A2 PROOF OF PROPOSITION 2 
Consider ݇ and ܰ are all even first. In this case, it is known 

from (20) that 
௜ܺሺ݆݇߱ிሻ ൌ

ሺ௜,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ ൅ ሺ௜,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ ൅ ൅ڮ  ሺ௜,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻ  (A2.1)ܩ
௜ܺାଵሺ݆݇߱ிሻ ൌ
ሺ௜ାଵ,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ ൅ ሺ௜ାଵ,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ ൅ ൅ڮ   ሺ௜ାଵ,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻܩ

(A2.2) 
where  ݇ ൌ 2,4, …  ܰ െ 2, ܰ . It is known from Property (i) of the 
NOFRF transmissibility given by (14) that if  ܬ ҧ ൐ 1, for 1 ൑
݅ ൑ ሺ1ሻܬ  െ 2 or  ܬሺܬ ҧሻ ൑ ݅ ൑ ݊ െ 1, 

ሺ௜,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ
ሺ௜ାଵ,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ

ൌ
ሺ௜,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ
ሺ௜ାଵ,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ

ൌ ڮ

ൌ
ሺ௜,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻܩ
ሺ௜ାଵ,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻܩ

ൌ ௜ܶ,௜ାଵ
ே௅ ሺ݆݇߱ிሻ 

ൌ തܳ௜,௜ାଵሺ݆݇߱ிሻ                                 (A2.3) 
Equations (A2-1)-( A2-3) imply that  

ܵܶ௜,௜ାଵሺ݆݇߱ிሻ ൌ
ܺ௜ሺ݆݇߱ிሻ

௜ܺାଵሺ݆݇߱ிሻ

ൌ
ሺ௜,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ ൅ ሺ௜,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ ൅ ൅ڮ ሺ௜,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻܩ

ሺ௜ାଵ,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ ൅ ሺ௜ାଵ,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ ൅ ൅ڮ ሺ௜ାଵ,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻܩ
 

                                ൌ ௜ܶ,௜ାଵ
ே௅ ሺ݆݇߱ிሻ ൌ തܳ௜,௜ାଵሺ݆݇߱ிሻ                             (A2.4) 

Therefore (22) holds.  
Also according to Property (i) of the NOFRF 

transmissibility, it is known that if ܬ ҧ ൐ 1, for  ܬሺ1ሻ െ 1 ൑ ݅ ൑
ܬሺܬ   ҧሻ െ 1,  
ீሺ೔,ೖሻሺ௝௞ఠಷሻ௎ೖሺ௝௞ఠಷሻ

ீሺ೔శభ,ೖሻሺ௝௞ఠಷሻ௎ೖሺ௝௞ఠಷሻ
് ௜ܶ,௜ାଵ

ே௅ ሺ݆݇߱ிሻ , 
ீሺ೔,ೖశమሻሺ௝௞ఠಷሻ௎ೖశమሺ௞௝ఠಷሻ

ீሺ೔శభ,ೖశమሻሺ௝௞ఠಷሻ௎ೖశమሺ௞௝ఠಷሻ
് ௜ܶ,௜ାଵ

ே௅ ሺ݆݇߱ிሻ,…, 
and ீሺ೔,ಿషమሻሺ௝௞ఠಷሻ௎ಿሺ௝௞ఠಷሻ

ீሺ೔శభ,ಿషమሻሺ௝௞ఠಷሻ௎ಿሺ௝௞ఠಷሻ
് ௜ܶ,௜ାଵ

ே௅ ሺ݆݇߱ிሻ, so that    
  

ܵܶ௜,௜ାଵሺ݆݇߱ிሻ ൌ
ܺ௜ሺ݆݇߱ிሻ

௜ܺାଵሺ݆݇߱ிሻ

ൌ
ሺ௜,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ ൅ ሺ௜,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ ൅ ൅ڮ ሺ௜,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻܩ

ሺ௜ାଵ,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ ൅ ሺ௜ାଵ,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ ൅ ൅ڮ ሺ௜ାଵ,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻܩ
 

് ௜ܶ,௜ାଵ
ே௅ ሺ݆݇߱ிሻ                                                                                             (A2.5) 

Therefore (23) holds. 
According to Property (ii) of the NOFRF transmissibility 

given by (15), if ܬ ҧ ൌ 1, for  ݅ ൌ 1, . . . , ݊ െ 1  
ሺ௜,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ
ሺ௜ାଵ,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ

ൌ
ሺ௜,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ
ሺ௜ାଵ,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ

ൌ ڮ

ൌ
ሺ௜,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻܩ
ሺ௜ାଵ,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻܩ

ൌ ௜ܶ,௜ାଵ
ே௅ ሺ݆݇߱ிሻ 

ൌ ധܳ௜,௜ାଵሺ݆݇߱ிሻ                                 (A2.6) 
Equations (A2-1), (A2-2) and (A2-6) imply that  
ܵܶ௜,௜ାଵሺ݆݇߱ிሻ ൌ

ܺ௜ሺ݆݇߱ிሻ

௜ܺାଵሺ݆݇߱ிሻ

ൌ
ሺ௜,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ ൅ ሺ௜,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ ൅ ൅ڮ ሺ௜,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻܩ

ሺ௜ାଵ,௞ሻሺ݆݇߱ிሻܩ ௞ܷሺ݆݇߱ிሻ ൅ ሺ௜ାଵ,௞ାଶሻሺ݆݇߱ிሻܩ ௞ܷାଶሺ݆݇߱ிሻ ൅ ൅ڮ ሺ௜ାଵ,ேሻሺ݆݇߱ிሻܷேሺ݆݇߱ிሻܩ
 

ൌ ௜ܶ,௜ାଵ
ே௅ ሺ݆݇߱ிሻ ൌ ധܳ௜,௜ାଵሺ݆݇߱ிሻ                                                 (A2.7) 

Therefore (24) holds. 
As ܰ is assumed to be even, for  ܬҧ ൌ 1,  it is known from the 

first equation in (16) and (17) that  
when L≥ J(1), if  1 ൑ ݅ ൑ ሺ1ሻܬ െ ܮ ݎ݋  2 ൑ ݅ ൏ ݊ െ 1, or  when  
L<J(1) if 1 ൑ ݅ ൑ ܮ െ ሺ1ሻܬ ݎ݋  1 ൑ ݅ ൏ ݊ െ 1,  

ܵܶ௜,௜ାଵሺ݆߱ிሻ ൌ
௜ܺሺ݆߱ிሻ

௜ܺାଵሺ݆߱ிሻ

ൌ
ሺ௜,ଵሻሺ݆߱ிሻܩ ଵܷሺ݆߱ிሻ ൅ ሺ௜,ଷሻሺ݆߱ிሻܩ ଷܷሺ݆߱ிሻ ൅ ൅ڮ ሺ௜,ேିଵሻሺ݆߱ிሻܷேିଵሺ݆߱ிሻܩ

ሺ௜ାଵ,ଵሻሺ݆߱ிሻܩ ଵܷሺ݆߱ிሻ ൅ ሺ௜ାଵ,ଷሻሺ݆߱ிሻܩ ଷܷሺ݆߱ிሻ ൅ ൅ڮ ሺ௜ାଵ,ேିଵሻሺ݆߱ிሻܷேିଵሺ݆߱ிሻܩ
 

                                                                            ൌ ௜ܶ,௜ାଵ
௅ ሺ݆߱ிሻ ൌ ܳ௜,௜ାଵሺ݆߱ிሻ (A2.8) 

that is, the first equation of (25) holds. Otherwise, it is known 
from the second equation of (16), (17) and the first equation of 
(20) that  

ܵܶ௜,௜ାଵሺ݆߱ிሻ ൌ
௜ܺሺ݆߱ிሻ

௜ܺାଵሺ݆߱ிሻ

ൌ
ሺ௜,ଵሻሺ݆߱ிሻܩ ଵܷሺ݆߱ிሻ ൅ ሺ௜,ଷሻሺ݆߱ிሻܩ ଷܷሺ݆߱ிሻ ൅ ൅ڮ ሺ௜,ேିଵሻሺ݆߱ிሻܷேିଵሺ݆߱ிሻܩ

ሺ௜ାଵ,ଵሻሺ݆߱ிሻܩ ଵܷሺ݆߱ிሻ ൅ ሺ௜ାଵ,ଷሻሺ݆߱ிሻܩ ଷܷሺ݆߱ிሻ ൅ ൅ڮ ሺ௜ାଵ,ேିଵሻሺ݆߱ிሻܷேିଵሺ݆߱ிሻܩ
 

് ௜ܶ,௜ାଵ
௅ ሺ݆߱ிሻ ൌ ܳ௜,௜ାଵሺ݆߱ிሻ            (A2.9) 

So the second equation of (26) holds. 
For all the other cases of ܰ and ݇, i.e., ܰ and ݇ are all odd, 

or ܰ is odd but ݇ is even, or ܰ is even but ݇ is odd, (22)-(25) 
can be proved by following the same approach as above. Thus, 
the proof of Proposition 2 is completed.  
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