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ABSTRACT 

A plane-wave method for computing the three-dimensional scattering of propagating elastic 

waves by a planar facture with heterogeneous fracture compliance distribution is presented.  This 

method is based upon the spatial Fourier transform of the seismic displacement-discontinuity 

(SDD) boundary conditions (also called linear slip interface conditions), and therefore, called the 

wavenumber-domain SDD method (wd-SDD method). The resulting boundary conditions 

explicitly show the coupling between plane waves with an incident wavenumber component 

(specular component) and scattered waves that do not follow the Snell’s law (non-specular 

components) if the fracture is viewed as a planar boundary.  For a spatially periodic fracture 

compliance distribution, these boundary conditions can be cast into a linear system of equations 

that can be solved for the amplitudes of individual wave modes and wavenumbers.  We 

demonstrate the developed technique for a simulated fracture with a stochastic (correlated) 

surface compliance distribution.  Low and high-frequency solutions of the method are also 

compared to the predictions by low-order Born series in the weak and strong scattering limit.  

 

PACS numbers: 43.20.Gp, 43.20.Px, 43.58.Ta 
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I. INTRODUCTION 

At micro scales, fractures in rocks, metals and ceramics can take many different forms including 

aligned open cracks, two surfaces in imperfect contact and a planar, thin zone filled with 

materials more compliant than the background medium (e.g., Liu et al, 2000).  Since a fracture 

scatters propagating elastic waves as a function of the fracture geometry and mechanical 

properties, they can be detected and characterized from the scattering behavior of the waves.   

The micro-scale geometry and spatial property variations of a fracture, however, cannot be 

resolved using elastic waves if these heterogeneous features are much smaller than the 

wavelengths.  Instead, these heterogeneities are likely to affect the scattering behavior of the 

waves through static, effective mechanical properties of the fracture that are determined at some 

sub-wavelength scale larger than the heterogeneities themselves.  This is one of the basic 

principles of the seismic displacement-discontinuity (SDD) boundary conditions (also known as 

linear slip interface conditions) commonly used for examining elastic wave scattering by 

fractures.  The SDD conditions assume a linear relationship between the wave-introduced, small 

relative displacement and stress across a fracture, via material parameters called fracture stiffness 

and its inverse, fracture compliance (Schoenberg, 1980).  Baik and Thompson (1983) showed 

that the fracture compliance can be determined analytically for fractures consisting of sparsely 

distributed, co-planar circular cracks and of contact patches between half spaces.  Angel and 

Achenbach (1985) showed that elastic wave scattering off a fracture, consisting of aligned 

microcracks, can be modeled by the SDD conditions for long wavelengths.  From laboratory 

ultrasonic transmission tests across a synthetic fracture with known, regular geometry, Myer et 

al. (1985) found good agreement between measured waves and theoretical prediction by the SDD 

model.   

Theoretical studies based upon the SDD model on the elastic wave scattering by fractures are 

limited to, or assume, fractures with a homogeneous distribution of fracture compliance on the 

fracture plane (Schoenberg, 1980; Pyrak-Nolte and Cook, 1987; Rokhlin and Wang, 1991; 

Nakagawa et al., 2002).  This is because the conventional SDD model, when used with plane 

wave theory, requires a “range-independent” (material properties do not vary along the fracture 

plane) fracture compliance distribution.  Naturally occurring fractures are, however, 
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heterogeneous, with the micro scale properties varying along the fracture plane.  This gives rise 

to fracture compliance that is spatially heterogeneous and, possibly, correlated.  Since the 

heterogeneity of a fracture has a great impact on the hydraulic and mechanical properties of the 

fracture (Pyrak-Nolte et al., 1987; Buck et al., 1987; Jones and Knipe, 1996; Hakami and 

Larsson, 1996), understanding the effect of the heterogeneity on the scattering of elastic waves 

can provide valuable tools for geophysical and nondestructive characterization of the fracture 

properties.  

In this article, we present analytical and numerical techniques to examine the elastic wave 

scattering by a heterogeneous fracture, based on the “local” SDD boundary conditions and the 

plane wave theory.  This is achieved by applying a spatial Fourier transform to the SDD 

conditions with “local” fracture compliance that is a function in space.  For this reason, this 

method is called the wavenumber domain seismic displacement discontinuity method (wd-SDD 

method).  Previously, the local SDD model was used in geometric ray approximations.  Pyrak-

Nolte and Nolte (1992) examined the apparent, scattering induced frequency dependence of 

fracture compliance assuming that the compliance varied much more slowly compared to the 

wavelength (high-frequency ray approximation).  Nihei (1989) and Oliger et al. (2003) used 

Kirchhoff approximations to take into account the diffraction of waves transmitted across a 

heterogeneous fracture.  In the Kirchhoff approximations, the amplitudes and phases of the 

transmitted waves across a fracture are computed at each location on the fracture, assuming that 

the fracture is planar and has a single value of fracture compliance assigned to that location.  In 

contrast, the wd-SDD method is not limited to high frequencies and takes into account the 

interactions between different locations on the fracture.  Although numerical methods such as the 

boundary element method (Mikata and Achenbach, 1988) and the finite difference method 

(Punjanni and Bond, 1986; Coates and Schoenberg, 1995) can also be used to examine the 

scattering of elastic waves at full range of frequencies, applications of these methods to three-

dimensional problems results in high computational costs, particularly large computer memory.  

Further, the analytical nature of the introduced method can provide clearer insights into the 

mechanism of wave scattering by a heterogeneous fracture. 
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II. THEORY 

A. Plane wave analysis 

We first hypothesize that the “local fracture compliance” can be defined for a fracture.  This 

means that the dynamic behavior of a real fracture is well approximated by the behavior of an 

interface between half-spaces with a heterogeneous distribution of compliance which is 

measured locally at some length scale much smaller than the seismic (elastic wave) wavelengths.  

This approach is commonly taken to numerically simulate wave scattering by fractures with 

heterogeneous surface contacts using the boundary element method and the finite difference 

method. 

In our model, we also assume that the dimension of a fracture in the fracture-normal direction, 

such as the surface roughness and waviness, is much smaller than considered seismic 

wavelengths, and therefore, the fracture can be treated as a plane.  For the local fracture 

compliance model, the SDD boundary conditions are specified at each spatial location on the 

fracture on the x, y plane as (Figure 1) 

( , ) ( , ) ( , )x y x y x y+ −= ≡σ σ σ , (1) 

[ ]( , ) ( , ) ( , )x y x y x y=η σ u , (2) 

where the displacement-discontinuity vector [u], stress vectors σ ±, σ , and the compliance matrix 

η  are defined as 

 [ ] ( , ) ( , ; 0) ( , ; 0)
x x

y y

z z

u u
x y x y z x y z u u

u u

+ −

+ − + −

+ −

 −
 ≡ → + − → − = − 
 − 

u u u , (3) 

 ( , ) ( , ; 0)
xz

yz

zz

x y x y z
σ
σ
σ

±

± ± ±

±

 
 ≡ → ± =  
  

σ σ , ( , )
xz

yz

zz

x y
σ
σ
σ

 
 ≡  
  

σ , (4) 
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 ( , )
xx xy xz

yx yy yz

zx zy zz

x y
η η η
η η η
η η η

 
 ≡  
  

η , (5) 

where the superscripts “-” and “+” indicate the two sides of the fracture. Since we use only the 

three stress components on the x,y plane, the stress can be treated as a three-component, traction 

vector instead of a six-compoent tensor. We assume that the incident waves insonify the fracture 

on the “-” side. By directly applying the spatial 2D Fourier transform to these “local” SDD 

conditions, 

( , ) ( , ) ( , )x y x y x yk k k k k k+ −= ≡σ σ σ! ! ! , (6) 

( ) [ ]* ( , ) ( , )x y x yk k k k=η σ u! ! ! . (7) 

Tilde “~” indicates transformed variables, and “*” indicates a convolution.  It is noted that for a 

uniform fracture, ηηηη(x,y) is a constant matrix, and the convolution is reduced to a multiplication, 

i.e., the same relationship as in the x, y domain. 

As shown in Appendix A, in the wavenumber domain, the displacement and stress can be related 

to each other via single vector variables a± containing the displacement amplitudes of three plane 

wave modes (for isotropically elastic media, these are one compressional wave and two shear 

waves).  Therefore, for each wavenumber component, the above equations are rewritten 

respectively as 

( , )Inc x yk k+ + − − += + ≡S a S a S a σ! , (8) 

( )* Inc
+ + + + − − += − −η S a U a U a U a! . (9) 

The 3×3 matrices U± (displacement matrices), and S± (stress matrices) are defined in the 

Appendix A.  Inca  is the amplitude vector for the incident wave.  The superscript “T” indicates 

the vector and matrix transposition.  Also, hereafter, the superscripts “-” and “+” indicate waves 

propagating in the negative z direction (reflected waves) and in the positive z direction (incident 
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and transmitted waves).  To simplify the above equations, we choose to use the stress vector σ!  

as our primary variable.  This choice leads to an efficient implementation of a numerical 

algorithm, which we will discuss later.  Using the equalities in the first equation, the variables a- 

(reflected waves) and a+ (transmitted waves) are eliminated from the second equation, resulting 

in  

( )* Inc− =H η σ Hσ! ! ! , (10) 

where 

( ) ( )1 1− −+ + − −≡ −H U S U S . (11) 

Also, the stress introduced by the incident wave is given by Inc Inc
+=σ S a! .  Eq.(10) is a Fredholm 

integral equation of the 2nd kind 

1( , ) ( , ) ( , ) ( , ) ( , )x y Inc x y x y x x y y x y x yk k k k k k k k k k k k dk dk
+∞ +∞

−

−∞ −∞

′ ′ ′ ′ ′ ′= + − −∫ ∫σ σ H η σ!! ! ! . (12) 

The first term on the right hand side of the equation is the incident wave field, and the second 

term is the scattered wave field.  The second term shows that, for a heterogeneous fracture 

compliance distribution, different wavenumber components are coupled through the convolution 

with the Fourier transformed fracture compliance, resulting in non-specular transmission and 

reflection of an incident plane wave.  For simplicity, we define matrix operators 1−H  and η!  .  

These operators perform multiplication with the matrix 1−Η  and convolution with the matrix η! , 

respectively, on a vector function.  The formal solution of Eq.(12) is obtained (Neumann series) 

by first introducing these operators as 

1
Inc Inc i−= + ≡ +σ σ H ησ σ Ωσ!! ! ! ! ! , (13) 

where 1i −≡Ω H η! , and then by applying Eq.(13) recursively to itself as 
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 ( ) 12( ) .... Inc Inci i i
−

 = + + + = − σ I Ω Ω σ I Ω σ! ! ! . (14) 

I  is the identity operator. If the scattering is weak so that the stress field on the fracture can be 

approximated by the stress introduced by the incident wave, the (1st-order) Born approximation 

can be used in Eq.(13), resulting in 

 ( )Inc Inc Inci i= + = +σ σ Ωσ I Ω σ! ! ! ! ,,  ((1155))  

which can also be obtained by keeping the first two terms in the Neumann series (Born series) in 

Eq.(14).  It is noted that an alternative approximation that is valid for the strong-scattering limit 

can be obtained if the stiffness of the fracture, instead of compliance, is used.  The derivation of 

this approximation is shown in Appendix B.  

Introducing higher-order terms in the Born series increases the applicable range of the 

approximation for stronger scattering, as long as the series is convergent.  However, the series 

may converge very slowly, or even may not converge for moderately to strongly scattering 

fractures (for weakly to moderately scattering fractures if the formulation in Appendix B is 

used).  For these cases, the original system equation (10) has to be solved numerically.  

B. Numerical analysis 

In order to solve the integral equation (12) numerically, the equation is discretised to obtain a 

linear system of equations by applying the discrete Fourier transforms instead of the continuous 

Fourier transforms.  This indicates that both the two-dimensional fracture compliance 

distribution and the resulting waves are treated as periodic, though the waves can be periodic in 

the dynamic sense as in the Floquet boundary condition (i.e., a constant phase shift is included in 

the periodic boundary condition).  Also, for the linear system of equation to be finite in size, the 

spectra of the transformed fracture compliance need to be band limited (decay away from the 

origin sufficiently fast).  The discrete form of the Eq.(10) is (for computational efficiency, 

Eqs.(12) and (13) are not used) 
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1 1

, ,
0 0

M N

mm nn mn m m n n m n mn Inc mn
m n

δ δ
− −

′ ′ ′ ′ ′ ′− −
′ ′= =

 − = ∑∑ H η σ H σ! ! ! . (17) 

( 0,1,..., 1m M= −  and 0,1,..., 1n N= − ) 

δmm’ and δnn’ are Kronecker deltas.  All vectors and matrices are evaluated at discrete 

wavenumbers ( , )xm ynk k = (2 / , 2 / )x ym L n Lπ π  and indicated by indices (m, n).  Note that all these 

indices are periodic with a period (M, N), and the compliance distribution is spatially periodic 

with a period (Lx, Ly).  The length of the period (M, N) should be sufficiently long to avoid 

spectral leakage in the solution.  By grouping the two indices (m, n) and (m’, n’) to the vectors 

and matrices into single indices l and l’ (l, l’=0, 1, …, MN-1), respectively, Eq.(17) are 

assembled into a single matrix equation  

 ( ) Inc− =H η σ Hσ! , (18) 

where 

 

0

1

1MN −

 
 
 ≡
 
 
  

H
H

H

H
"

,

0 1 1

1 0 2

1 2 0

MN

MN

MN MN

− − +

+ − +

− −

 
 
 ≡
 
 
  

η η η
η η η

η

η η η

! ! !#
! ! !#

!
$ $ " $
! ! !#

,  

0

1

1MN −

 
 
 =
 
 
  

σ
σ

σ

σ

!
!
$
!

, 

,0

,1

, 1

Inc

Inc
Inc

Inc MN −

 
 
 =
 
 
  

σ
σ

σ

σ

!
!
$

!

. (19) 

Once the stress vector σ  is determined, by solving Eq.(18), the coefficient vectors for each 

wavenumber and wave mode component are computed via 

( ) 1

mn mn mn

−+ +=a S σ! , (20) 
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( ) ( )1

mn mn mn Inc

−− −= −a S σ σ! ! , (21) 

for transmitted and reflected waves, respectively.  From these, the displacement vectors for the 

transmitted and reflected waves are 

1 1
( )

0 0
( , , 0) xm yn

M N
i k x k y t

mn mn mn
m n

x y z e ω
− −

+ −+ + + +

= =
> =∑∑u U E a , (22) 

( )
1 1

( )
,

0 0
( , , 0) xm yn

M N
i k x k y t

mn mn mn mn mn Inc mn
m n

x y z e ω
− −

+ −− − − − + +

= =
< = +∑∑u U E a U E a ,  (23) 

where mn
±E = ( , ; )mx nyk k z±E are the discrete forms of the phase-shift matrices defined in Appendix 

A. 

C. Computational considerations 

The system matrix has a size (Mmat×Mmat) where Mmat=M×N×DOF (degrees of freedom, three 

for three-dimensional problems) which grows rapidly as the number of wavenumber components 

increases.  However, unique properties of the equation allow an efficient implementation of the 

method in a computer program, which leads to significant savings in the computer time and 

memory. 

First, we discuss the memory considerations.  From Eqs.(17) and (18), it is noticed that the 

system matrix consists of two parts: the 3×3 block diagonal part H , and the fully populated part 

η! .  The latter matrix has the same structure as the Toeplitz matrix: each element of the matrix, a 

3×3 submatrix, appears recursively, with the first entry of the compliance matrix 00 0=η η! !  in the 

diagonal.  Therefore, for this system matrix, if an iterative solver such as the stabilized bi-

conjugate gradient method (Van der Vorst, 1994) or the GMRES method (Saad and Schultz, 

1986) is used, it is sufficient to store only the block diagonal part of the matrix H  and the 

transformed fracture compliance matrices corresponding to the first 3×Mmat part of the matrix η! . 
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An iterative solver requires both fast computation of matrix-vector products (mat-vecs) and 

effective preconditioning of the system matrix.  The fully populated structure of the system 

matrix is usually not suited for fast computation of mat-vecs.  Fortunately, Eq.(17) reveals that 

the matrix-vector product between η!  and σ  is essentially a single convolution between 

, ( )m n l=η η! !  and , ( )m n l=σ σ! ! .  Therefore, this computation can be carried out efficiently by 

transforming the vectors to the spatial domain and then transforming back the products between 

the vectors and the local compliance matrices to the wavenumber domain, using Fast Fourier 

Transforms.  The preconditioning of the matrix is carried out in the spatial domain using the 

Kirchhoff approximation of the scattered waves.    

Finally, for a plane incident wave with a wavenumber vector ( ,Inc Inc
x yk k ), the definition of the 

wavenumbers is changed to ( , )xm ynk k = ( 2 / , 2 / )Inc Inc
x x y yk m L k n Lπ π+ + , so that the non-specular 

wavenumber components close to the incident wave wavenumber are preferentially used to 

represent the scattered waves.  This is a reasonable choice because the partial waves with 

wavenumbers close to the source wavenumber are more strongly excited due to the coupling 

introduced by the diagonally dominant kernel of the convolution integral in Eq.(12).  The 

expression for the stress vector also changes as 

 , 0 0Inc mn m n Incδ δ→σ σ! ! , (24) 

III. EXAMPLES 

A. Comparison with a boundary element code 

In order to check the performance of the numerical technique, we compared the numerical results 

of the wd-SDD technique developed in the previous sections to the results from a two-

dimensional, frequency-domain elastodynamic boundary element (BE) method of Hirose and 

Kitahara (1991).  In this test, the results from the two methods were compared for plane waves 

propagating along the x, z plane.  We assumed a fracture with sinusoidal compliance distribution 

in the x direction as shown in Figure 2, and a plane wave normally incident on the fracture.  In 
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contrast to the three-dimensional, infinitely periodic model used in the wd-SDD technique, the 

two-dimensional fracture in the BE model is finite in its extent (56 m long).   

z-direction particle motions of the waveforms computed for receivers located on both sides of the 

fracture are shown in Figure 3.  The distance of the receivers from the fracture is 20 m, the 

incident wave is a plane P wave Ricker wavelet (second derivative of a Gaussian wavelet) with a 

central frequency corresponding to 4 m which is also the length period of the compliance 

distribution.  Compared to the SDD results, the BE results show much shorter, more compact 

waveforms, because the fracture in the BE model is finite.  The initial part of the waveforms, 

however, show very good agreement for both reflected and transmitted fractures, which indicates 

that the scattering of the waves can be accurately modeled using the wavenumber-domain SDD 

technique. The secondary arrivals that also show rather good agreement are due to the S waves 

converted by the fracture. 

B. Numerical models of a heterogeneous fracture 

In the following examples, we used a fracture with a numerically simulated stochastic 

compliance distribution. For simplicity, the fracture compliance matrix was assumed to be 

proportional to an identity matrix, i.e., normal and shear compliances are the same, and 

( , ) ( , )x y x yη=η I .  A distribution of logarithmic compliance, ln η(x, y), was generated from a 

Gaussian correlation function with a correlation length (one standard deviation) of 4 m and 

uncorrelated phase between the Fourier components (Pardo-Iguzquiza and Chica-Olmo, 1993).  

The range of a single periodic cell is (Lx, Ly)=(64 m, 64 m).  The resulting compliance η(x, y), 

shown in Figure 4, has a log-normal distribution with a mean and a standard deviation of the 

compliance of 6.74×10-11 m/Pa and 4.87×10-11 m/Pa, respectively.  The correlation length of the 

distribution (one standard deviation of a fitted Gaussian profile) is approximately 4 m.   

C. Exact solutions 

Waves scattered by the heterogeneous fracture in Figure 4 were computed for a plane incident P 

wave, using a Ricker wavelet (2nd derivative of a Gaussian function) with a central frequency, 

750 Hz, corresponding to the correlation length of the fracture.  The velocities and density of the 
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homogeneous, isotropic, elastic background were cp=3000 m/s, cs=1731 m/s, and ρ=2100 kg/m3, 

respectively.  If the fracture had a homogeneous fracture compliance distribution, the mean 

compliance value of 6.74×10-11 m/Pa would give the same P wave transmission and reflection 

coefficients of 0.71.   

The snapshots in Figure 5a and 5b were computed for both normally incident wave and obliquely 

incident wave with a propagation vector (vx,vy, vz)=(1, 1, 1), respectively.  To emphasize the 

scattered waves with small amplitudes, the amplitude scale was magnified by a factor of 4, 

which caused the saturation of scale for a part of transmitted and reflected waves.  In both 

snapshots, it can be seen that patches of large and small compliance scatter the incident waves, 

creating circular (spherical) diffraction patterns in both sides of the fracture.  For the normal 

incidence case, the amplitude and phase fluctuations in the both transmitted and reflected waves 

can be seen.  It is also noted that incoherent plane S waves were generated.  For the oblique 

incidence case, the diffracted waves generated horizontally propagating nearly plane P waves in 

later times, part of which is critically refracted as head waves propagating away from the fracture 

(multiple, faint oblique wave fronts propagating symmetrically across the fracture).   

Figure 6 shows the amplitude distribution of individual wavenumber components for a given 

frequency (750 Hz) and angles of incidence (normal and oblique) of incident plane P waves.  

The axes of the plots show the integral numbers (m, n) corresponding to the wavenumber 

components ( , )xm ynk k = ( 2 / , 2 / )Inc Inc
x x y yk m L k n Lπ π+ + .  It is reminded that the components of 

wavenumbers used in the numerical simulations were distributed around the incident 

wavenumber ( , )Inc Inc
x yk k .  These diagrams can be used to see if the spectrum leakage occurs due 

to a premature truncation of the wavenumber series (or undersampling in the spatial domain).  

For this example, although the length of the wavenumber series was rather short ((M, N)=(32, 

32)), the amplitudes of the scattered waves became significantly small at the edge of the 

diagram, showing a posteori that the selected length of the series was sufficiently long.  It is also 

noted that while normal-incidence case showed no coupling between the incident P wave and Sh 

waves, the oblique-incidence case showed small Sh waves.  

D. Born approximations and low and high-frequency asymptotic solutions 
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If the compliance distribution is uniform, only the specular wavenumber component needs to be 

examined.  This is because the convolution matrix, η! , and therefore the system matrix in Eq. 

(18), becomes block diagonal due to the lack of coupling between different wavenumber 

components..    For a plane incident wave, using the vectors and matrices in Eq.(19), the “exact” 

equation (18) reduces to  

( )0 0 0 Inc− =H η σ H σ! ! !  or 1
0 0 0 0 0( ) ( ) Inci−− ≡ − =I H η σ I Ω σ σ! ! ! ! . (25) 

For a diagonal fracture compliance matrix 0 , ,xx yy zzdiag η η η ≡  η! , 0Ω  is  

 

[ ]

0 2 2 2
S yyS xx P zz

Sv Sh P

cc cDiag

Diag

ωρ ηωρ η ωρ η 
=  

 
≡ Ω Ω Ω

Ω
. (26) 

The components of the matrix are the dimensionless frequencies defined by Haugen and 

Schoenberg (2000).  The stiffness based equations (Appendix B) also reduces to  

( )1 1
0 0 0[ ] [ ]Inc
− −− =H κ u H u! ! !  or 0 0 0 0 0 0( )[ ] ( )[ ] [ ]Inci− ≡ + =I H κ u I T κ u u! !! ! ! . (27) 

Since both 0η!  and 0κ!  are constant and diagonal, and 0H  is also diagonal for normally incident 

waves, 1
0 0

−=κ η! ! , and 1
0 0

−=T Ω .  Therefore, the two Born series are 

 0 0
0

nn
Inc

n
i

∞

=
= ⋅∑σ Ω σ! !  (28) 

0 0
0

[ ] ( ) [ ]n n
Inc

n
i

∞
−

=
= − ⋅∑u Ω u! ! . (29) 

Since the eigenvalues of the matrices 0Ω  and 1
0

−Ω  are the Haugen and Schoenberg’s 

dimensionless frequencies and their inverse, the above Born series converge for , , 1Sv Sh PΩ <  for 

compliance based series, and , , 1Sv Sh PΩ >  for the stiffness based series.  Therefore compliance 
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and stiffness based Born approximations can be applied in the low and high frequency limits, 

respectively.  

For heterogeneous fracture compliance and stiffness distributions, these relationships are more 

complicated due to the non-specular scattering of waves.  The matrix-vector form of the Born 

series is obtained from Eq.(18) as 

( )1

0 0

n n n
Inc Inc

n n
i

∞ ∞
−

= =
= ≡∑ ∑σ H η σ Ω σ! . (30) 

Also, from Appendix B, the stiffness based Born series is 

( )
0 0

[ ] [ ] ( ) [ ]
n n n

Inc Inc
n n

i
∞ ∞

= =
= ≡ −∑ ∑u Hκ u T u! . (31) 

These series are convergent if 1<Ω  and 1<T , i.e., the magnitude of the eigenvalues of the 

matrices are smaller than unity.  It is desirable to interpret these conditions as the low and high-

frequency limits, as we saw for a homogeneous fracture, so that we can apply the Born 

approximations to the low and high-frequency scattering problems for a heterogeneous fracture.  

We will examine these possibilities using numerical simulations.  

For the fracture model used in the previous section, we can compute the scattered wavefield from 

the (generalized) Born series.  For simplicity, we assume normally incident, monochromatic 

transmitted P waves, and examine only the specular component of the waves.  The “exact” 

solutions are also computed from Eq.(18) for a range of frequencies, and compared to the Born 

approximations of different orders.  Figure 7a and 7b show the comparisons of transmission 

coefficient amplitudes computed from the z-direction particle motions of P waves.  Each curve in 

the plots is labeled with the order of Born approximation. The low-frequency approximations 

were computed using the compliance-based Born series, and the high-frequency approximations 

were computed using the stiffness-based Born series.  As can be seen from the plots, the both 

Born approximations appear to be valid in the low and high-frequency limits, respectively, and 

including higher-order terms in the Born series does improve the applicability of the 

approximations.  In Figure 8, z-direction particle motions are compared for both 3rd –order Born 
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approximation and the exact numerical solution.  The receivers are located at z=32 m 

(transmitted waves) and z=–32 m (reflected waves), and a low frequency (a central frequency of 

100 Hz) Ricker wavelet was used.  For this example, the results of the two methods are 

indistinguishable.  

However, these results do not necessarily guarantee that the first two terms in the Born series 

(first-order Born approximations) are exactly the leading terms in the series, i.e., low and high-

frequency asymptotes of the exact solutions.  We examined the low and high-frequency limit 

behavior of the two Born series more in detail by plotting the amplitudes of individual terms’ 

contribution as a function of frequency (Figure 9a and 9b, respectively).  

From Figure 9a, the second and the higher-order terms of the Born series all exhibit o(ω)-

dependence, instead of the expected o(ωn)-dependence for a homogeneous fracture in Eq.(28), 

where n is the order of the term. This indicates that, although it is still a good approximation due 

to small magnitudes of the terms higher than n>2, the lowest-order, compliance-based Born 

approximation does not give the exact low-frequency asymptotic solution.  In contrast, from 

Figure 9b, the higher-order terms in the stiffness-based Born approximation are of the order 

o(1/ωn+1).  Therefore, the Born series give correct high-frequency asymptotes.   

IV. CONCLUSIONS 

We developed a plane wave method to compute the three-dimensional scattering of plane elastic 

waves by a fracture with a heterogeneous stiffness (compliance) distribution.  This technique 

allows us to examine the relationships between the characteristics of scattered elastic waves and 

the microstructural variations along the fracture plane, e.g., surface contact and crack 

distribution, gouge layer thickness variation, that are modeled as heterogeneities in the fracture 

compliance distribution. 

This method is a straightforward extension of the commonly used seismic displacement 

discontinuity (SDD) method for a homogeneous fracture, to a fracture with a heterogeneous 

fracture compliance distribution.  Even though the developed technique is a full-waveform 

technique and successfully models a variety of wave phenomena involving a fracture, such as 
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mode converted waves, head waves (refracted waves), surface waves and diffracted waves, it 

does not require massive parallel computers as finite difference methods and boundary element 

methods would do.  All examples given in this paper were computed using a small, single 

processor desk-top computer with a limited amount of memory and speed (200 MB RAM and 

400 MHz clock speed).  

The current numerical technique can be applied to non-planar incident waves by simply 

modifying the incident wave vector.  In this case, however, a larger number of wavenumber 

components need to be used in the matrix equation.  It should also be noted that this technique is 

difficult to apply to extremely heterogeneous fractures, because such fractures typically results in 

a large linear system of equations to solve for non-specular components of scattered waves with 

wavenumbers far different from the incident wave.  Further, the compliance-based equations 

break down for open cracks and voids (infinite compliance) and the stiffness-based equations 

break down for welded surfaces (infinite stiffness), because the Fourier transforms cannot be 

performed.  

Lastly, we demonstrated that two types of Born series can be used to examine the low and high-

frequency limit behavior of the wave scattering by a heterogeneous fracture.  The low-frequency 

Born series (compliance-based formulation), however, should be used with a caution, because 

the lowest-order term does not provide the exact low-frequency asymptotic solution.  In contrast, 

the high-frequency Born series (stiffness-based formuation) is the exact high-frequency 

asymptote, although, in practice, the local SDD conditions used as a basis of the theory may not 

be valid for such high frequencies.  
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APPENDIX A 

We assume a single plane fracture embedded within a homogeneous background medium with a 

stiffness tensor C=[Cijkl] and a density ρ.  It is also assumed that the fracture plane is on the z=0 

plane in the Cartesian coordinate system.  For a given frequency ω and plane-parallel 

wavenumbers kx and ky, the Christoffel equation is solved to obtain six z-direction wavenumbers 
1
zk ± , 2

zk ± , 3
zk ± , and corresponding unit particle displacement vectors 1ˆ ±u , 2ˆ ±u , 3ˆ ±u .  Using these 

wavenumbers and vectors, plane wave displacement is given by 
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. (A1) 

The stress is computed from the displacement vector using the Hooke’s law 

:ijσ± ± ± ≡ = ∇ τ C u .  Since we consider only the stress components on the z plane, we define a 

stress vector by 

 

( )
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 
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  

=

σ

S E a

. (A2) 

For an isotropic background medium, the three modes of wave propagation is two shear (S) 

waves and one compressional (P) wave.  We label these modes as 1=Sv wave, 2=Sh wave, and 

3=P wave, where a convention is taken such that the Sh wave has the particle displacement 

parallel to the fracture (or z) plane. The z-direction wavenumbers are 1,2 2 2S
z z S rk k k k± = ± ≡ ± −  

and 3 2 2P
z z P rk k k k± = ± ≡ ± − , where 2 2

r x yk k k= +  with P and S-wave wavenumbers kP and kS, 

respectively.  The displacement and stress matrices in Eqs.(A.1) and (A.2) take the forms  
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/ /
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/ /
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where cS is the S-wave velocity, and R is the rotation matrix around the z axis given by 

/ /
/ /

1

x r y r

y r x r

k k k k
k k k k

 
 ≡ − 
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R . (A5). 

The superscript “T” indicates matrix transposition. 

Using Eqs.(A.3) and (A.4), the H matrix in Eq.(10) becomes 

 ( ) ( )1 1
/

2 /
/

S
z S

T S
S z

S P
z S

k k
k R k

i c R
k k

ωρ
− −+ + − −

 
 ≡ − =  ⋅   

H U S U S R R , (A6) 

where R is the dimensionless Rayleigh function 

 
22 2 21 2( / ) 4( / ) ( / )P S

r S r S z z SR k k k k k k k ≡ − +  . (A7) 
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APPENDIX B  

As an alternative to using the compliance-based equations, we can use equations based on 

fracture stiffness 1( , ) ( , )x y x y−=κ η .  In this case, Eq.(7) in the text is replaced by  

( *[ ])( , ) ( , )x y x yk k k k=κ u σ! ! ! . (B1) 

κ!  is the Fourier transformed fracture stiffness matrix.  By using the displacement discontinuity 

vector [ ] Inc
+ + − − += − −u U a U a U a!  as the primary variable, the coefficients a- and a+ in Eqs.(8) 

and (B1) are eliminated from the second equation, resulting in  

( )[ ] [ ]1 1*
Inc

− −− =H κ u H u! ! ! , (B2) 

where the incident term for the displacement-discontinuity vector is defined as 

[ ] IncInc
+≡ −u HS a! . (B3) 

Eq.(B3) is the displacement discontinuity vector for an open fracture (free surface).  The integral 

equation corresponding to equation (12) is  

[ ] [ ] [ ]( , ) ( , ) ( , ) ( , ) ( , )x y x y x y x x y y x y x yInc
k k k k k k k k k k k k dk dk

+∞ +∞

−∞ −∞

′ ′ ′ ′ ′ ′= + − −∫ ∫u u H κ u!! ! ! , (B4) 

and the Neumann series (Born series) corresponding to Eq.(14) is 

[ ] [ ] ( ) [ ]12( ) ....
Inc Inc

i i i
−

 = − + − + = + u I Τ Τ u I Τ u! ! ! , (B5) 

where the operator Τ is defined as i− ≡Τ Hκ! .  It should be noted that, in general, the fracture 

stiffness convolution operator κ!  is not the inverse of the compliance operator η! .  Eq.(B4) can 

be written in a matrix form to be solved numerically.  The resulting matrix equation is equivalent 

to the compliance-based equation (17) but shows faster convergence of iterative solutions at 

higher frequencies.  This property can be used to efficiently implement the computer program to 
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solve for the “exact” solutions: the compliance formulation is used at low frequencies and the 

stiffness formulation at high frequencies.   
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Figure 1  Heterogeneous fractures with a variety of microstructures are modeled as a planer 

interface between half-spaces with spatially varying fracture compliance (springs in the figure). 

 

Figure 2  Compliance distribution along a finite, 56 m-long fracture of the two-dimensional 

BEM model. Both normal and shear compliances are the same.  For the three-dimensional wd-

SDD model, the sinusoidal distribution extends infinitely in the x direction, and the identical 

profile extends infinitely in the y direction (in-and-out of the paper). 

 

Figure 3  Comparisons between waveforms computed using the BEM and the wd-SDD method. 

A plane P wave is normally incident on the fractures.  The first-arriving parts of the waves show 

very good agreement.  The results of the wd-SDD method show long-lasting reverberations 

(“coda”) due to the waves scattered long distance away from the receiver.     

 

Figure 4  Single periodic cell for the compliance distribution of a simulated fracture.  The 

distribution is periodic in both x and y directions.  The correlation length of the distribution is 4 

m (single standard deviation of a fitted Gaussian distribution), and the compliance values vary 

for about an order of magnitude. 

 

Figure 5  Three-dimensional snapshots of the waves scattered by a single plane fracture at z=0,  

with a heterogeneous fracture compliance distribution shown in Figure 4.  Both x and z direction 

particle displacements are shown on the surfaces of a cube cut out of an infinite medium 

containing the fracture.  The top two rows are for a normally incident P wave propagating from 

the bottom of the plots, and the bottom two rows are for an obliquely incident P waves 

propagating from the bottom left corner of the cube.  

 

Figure 6 Sv, Sh, and P-wave amplitude distributions of wavenumber components around a unit 

amplitude, incident P wave (m=n=0).  Both the normal incidence case (a) and oblique incidence 

case (b) are shown.  The frequency of the waves is 750 Hz.  The color scale is saturated for 

components with an amplitude larger than 0.01.  The line diagrams are the profiles of the 
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distributions cut along the line, m=0 (shown as a dotted line).  The amplitudes of the 

wavenumber components decay quickly away from the center (incident wave). 

 

Figure 7  Real and imaginary parts of the transmission coefficients (the most dominant specular 

components of P wave are compared) computed using the Born approximations of different 

orders up to n=5.  For comparison, the ‘exact’ numerical solutions are also plotted.   The low-

frequency approximations are computed using the compliance-based Born series while the high-

frequency approximations are obtained from the stiffness-based Born series.  

 

Figure 8  Comparisons between z-direction particle motions computed by solving the matrix 

equation in Eq. (18) and by the 3rd-order, compliance-based Born approximation.  The central 

frequency of the incident Ricker wavelet (P wave) is 100 Hz, and the receivers are located on 

both sides, 32 m away from the fracture.  The results are nearly identical. 

 

Figure 9  Magnitudes of individual terms in the Born series for a unit-amplitude, plane incident  

P wave.  The z-direction particle displacements of transmitted P wave are shown.  The nth-order 

term of the high-frequency Born series scales as o(1/ωn+1).  In contrast, all the terms except for 

the 0th order term (incident wave) in the low-frequency Born series scale as o(ω).  The absolute 

magnitudes of the higher order terms, however, are small for this example. 
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