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REVIEW ARTICLE 

Convergent Activation Dynamics in Continuous 
Time Networks 

MORRIS W. HIRSCH 

University of California 

(Received and uccepted 14 March 1989) 

Abstract-The activation dynamics of nets are considered from a rigorous mathematical point of view. A net 
is identified with the dynamical system defined by a continuously differentiable vector field on the space of 
activation vectors, with fixed weights, biases, and inputs. Chaotic and oscillatory nets are briefly discussed, but 
the main goal is to find conditions guaranteeing that the trajectory of every (or almost every) initial activation 
state converges to an equilibrium. Several new results of this type areproved. These are illustrated with applications 
to additive nets. Cascades of nets are considered and a cascade decomposition theorem is proved. An extension 
of the Cohen-Grossberg convergence theorem is proved for certain nets with nonsymmetric weight matrices. 

Keywords-Convergence, Cascade, Liapunov function, Excitatory net, Inhibitory net, Global asymptotic 
stability, Chaotic dynamics. 

1. INTRODUCTION 

A neural net with fixed weights is a dynamical sys- 
tem: given initial values of the activations of all the 
units, the future activations can be computed. This 
is the activation dynamics, with weights, biases, and 
inputs as parameters. On the other hand, there are 
many schemes for adaptively determining the 
weights of a network in order to achieve some par- 
ticular kind of activation dynamics, for example, to 
classify input patterns in a particular way. Such a 
scheme determines a dynamical system in the space 
of weight matrices; this is the weight dynamics. A 
third, little explored possibility is to adapt the 
weights while running the activation dynamics. Such 
a procedure is a dynamical system in the Cartesian 
product of the weight space and the activation space. 

In this article we consider activation dynamics 
from a rigorous mathematical point of view. We re- 
strict attention to continuous time nets whose acti- 
vation dynamics, with fixed weights, biases, and 
inputs, is governed by an autonomous system of or- 
dinary differential equations defined by a continu- 
ously differentiable vector field. We identify a 
network with the dynamical system determined by 
such a system of differential equations. 

Requests for reprints should be sent to Morris W. Hirsch. 
Department of Mathematics. University of California, Berkeley, 
CA 94720. 
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The vast majority of all networks that have been 
simulated or theoretically analyzed have convergent 
activation dynamics: the trajectory of every initial 
state tends to some equilibrium. This is highly im- 
plausible behavior for biological networks whose 
units are nerve cells; but it may be descriptive of 
biological networks whose units are agglomerations 
of many nerve cells which tend to act coherently- 
such units have been variously termed cell assem- 
blies, neuron pools, etc. On the other hand conver- 
gent networks have been designed to accomplish 
many interesting tasks, such as pattern recognition 
and classification, combinatorial optimization, con- 
version of printed documents to spoken words, and 
so forth. But no doubt the main reason for the com- 
mon assumption of convergent dynamics is that it is 
exceedingly difficult to analyze or control the other 
kind. 

In this article we present mathematical results 
which guarantee that the networks to which they 
apply are convergent: the orbit of every state con- 
verges to an equilibrium. Commonly this is done by 
finding a function which decreases on trajectories; 
but as we shall see, there are interesting nets where 
no such function is known, but which can be oth- 
erwise proved convergent. We also show that certain 
networks which may not be convergent are never- 
theless “almost convergent.” 

A net has n units. To the ith unit we associate its 
activation state at time t, a real number x, = x,(t); 

output function a,; bias 0,; and output signal R, = 
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O&X, + 13,). Usually we suppress notation for 0, by 
incorporating it into fri. 

The weight or connection strength on the line from 
unit J to unit i is a real number W,,. When W,, = 
0 then there is no transmission line from unit j to 
unit i. 

The incoming signal from unit j to unit i is Si, = 
W;jR,. In addition there can be a vector I of any 
number of external inputs feeding into some or all 
units. 

In all our nets the weights and biases are fixed. 
The future activation states are assumed to be 

determined by a system of n differential equations 
of the form 

i, = $ = G,(x,, S,,, . . , S,“, 1); 

i = 1. . . n (1) 

where the independent variable t represents time. 
Written out in full this is 

.& = (Xx,, R’,P,(x, + O,), . . . ~,na,,(x,, -I- On); 

I I,. . 3 I,); i = 1, . . , n. (2) 

With the W,, Bi and 1, assumed known we write this 
as 

k, = F,(x,, . . . , x,,); i = 1. . , n. (3) 

The output functions oi are taken to be continu- 
ously differentiable and nondecreasing: 0,’ r 0; oc- 
casionally we require the stronger condition 0; > 0. 
We also assume that the state transition functions G, 
in (1) satisfy aGi/aSii > 0; in other words, an increase 
in the weighted signal Wi,oj(Xi) from unit j to unit i 

tends to increase the activation of unit i. 

We shall often assume nonnegative outputs: o, 12 
0. In this case we interpret the condition Wi, > 0 as 
meaning that “unit j excites unit i”, since an increase 
in the output aj will cause the activation Xi to rise if 
other outputs are held constant; similarly, Wi, -=c 0 
means “unit j inhibits unit i”. 

Equations (3) represent the network in a partic- 
ular coordinate system, called network coordinates. 
These coordinates (x1, . . . , x,) are convenient be- 
cause Xi is the activation level of unit i of the network, 
and we shall generally work in these coordinates. 
However it is important to emphasize that we iden- 
tify the network not-with this particular system of 
equations, but with the underlying dynamical system. 

By this system we mean the collection of mappings 
{&=k defined as follows. For each y E R” there 
is a unique solution x to (3) with x(0) = y; we set 

@J*(Y) = x(t). If we introduce new coordinates, this 
same dynamical system will probably be represented 
by different differential equations. Of course the 
variables in a different coordinate system will not be 
the activation levels; for example they are sometimes 
chosen to be the outputs, but in principle they can 

be any invertible function of the activation levels, 
chosen for mathematical convenience. We shall see 
examples of this in Section 10, where we replace 
some of the variables by their negatives in order to 
obtain differential equations of the special type called 
“cooperative. ” 

All the dynamical features of solutions to (3)~-- 
convergence, attractors, limit cycles, and so forth- 
are invariant under coordinate changes: they are 
properties of the underlying dynamical system. A 
fundamental mathematical task is to deduce impor- 
tant dynamical properties from the form of the equa- 
tions. While a great deal is known about the 
dynamics of certain classes of equations, no methods 
are known that apply to all equations. 

Equations (2) do not include all systems that have 
been used to model neural networks-see for ex- 
ample (5) below-but they are reasonably general, 
and can be used to illustrate mathematical results 
that apply to most network equations. Many of the 
methods and results we describe also apply to more 
general nets with little change. 

Often the external inputs are “clamped”-held 
constant-during a particular run of the activation 
dynamics. In this case the inputs are parameters that 
determine the uctivation dynamics. It is important to 
realize that changing the clamped inputs will change 
the dynamics. Thus for nets of this type we cannot 
properly speak of equilibria, attractors, and so forth 
without first specifying a particular input pattern. 

In vector notation we write (3) as k = F(x); here 
F is the vector field on Euclidean space R” whose ith 
component is Fi. We always assume that F is contin- 
uously differentiable. We shall tacitly assume that all 
vector fields dealt with are at least continuous and 
satisfy the usual theorems on existence, continuity 
and uniqueness of solutions. ’ These theorems hold 
for continuously differentiable vector fields.’ 

’ Although this seems an innocuous assumption, in the neural 
net literature one frequently comes across discontinuous vector 
fields, to which these theorems do not apply in general. Even 
continuity of a vector field, without further assumptions, does not 
imply uniqueness of solutions. Vector fields built out of step func- 
tions are often used to define activation dynamics. But they are 
generally not continuous, and the standard theorems on differ- 
ential equations cannot be assumed to apply to them. Greater 
attention ought to be paid to this point. 

* They also hold for vector fields which satisfy a local Lipschitz 
condition. These include any field whose component functions are 
constructed by starting with continuously differentiable functions 
and applying the following operations a finite number of times: 
taking the maximum or minimum of two functions; composing 
functions; and performing the usual arithmetic operations onfunc- 
tions. An example of such a field is obtained from system (1) by 
taking the output functions u, to be piecewise linear (and contin- 
uous), i.e., a function whose graph is connected and composed 
of a finite set of nonvertical straight segments or rays. A typicat 
example of a piecewise linear function is a rump function, whose 
connected graph is made up of two horizontal rays and one seg- 
ment of positive slope. 
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A much studied class of network dynamics are the 
additive nets: 

k, = - c,x, + x, W,,q(x, + 0,) + I,, 
i=l.....n (4) 

with constant decay rates c, and external inputs Z, 
(Amari, 1972, 1982; Aplevich, 1968; Cowan, 1967; 
Grossberg, 1969; Hopfield, 1984; Malsburg, 1973; 
Sejnowski. 1977). Our results will be illustrated by 
additive nets, although many of them apply more 
generally. 

A closely related type of net is composed of units 
which are differentiable analogs of linear threshold 
elements: the dynamics are given by 

j, = -c,L’, + ,O,(CIWII_Y, + U,), I = I. . n (5) 

where each p, is a sigmoid function. This system is 
not in the form (4). As has been noted by several 
authors, in case all the c, are equal we can substitute 
X, = &W,,y, in (5) and obtain a system of type (4) 
with o, = p,. When the weight matrix is invertible 
then the inverse transformation is also possible.’ 
While many of the results given below for systems 
of type (4) can be recast in forms valid for (5), in 
this paper we do not consider (5) further. 

2. INPUT AND OUTPUT 

Consider a net represented by equation (1). In run- 
ning the net we must specify the external input vector 
I and the initial activation vector x(0). Both I and 
x(O) are ways of feeding data into the net, but they 
play different dynamic roles. When I is specified the 
dynamics is determined, and x(O) is the initial value 
of a trajectory. A different I determines a different 
dynamical system, whereas if I is held fixed, a dif- 
ferent x(0) is the initial value of another trajectory 
of the same dynamical system. 

In the activation dynamics of feed-forward nets 
operating in discrete time, only the initial values of 
the input units is specified. This is because the initial 
values of the other units is irrelevant; their future 
values are functions of the inputs alone. But in a net 
governed by differential equations, even if it is feed- 
forward, all activations must be given initial values, 
because a solution of a differential equation is not 
determined until initial values of all variables have 
been specified. The initial values of the non-input 
units are generally reset to the same conventional 
value (usually zero) each time the net is run. 

It is biologically more realistic not to reset the 

’ This change of variables is interesting for the following rea- 

son: If the y, in (5) denote the activations of a physical network, 

the “network” with activations x, = &W,,y, represented by (4) is 

only conceptual. This shows that it can be worthwhile studying 

network-type equations that do not correspond to a preconceived 
class of physical networks. 

activations of the non-input units when inputs are 
changed, but rather to simply take as the new initial 
value whatever the activation level happens to be . 
when the input is changed. This, however, greatly 
complicates the analysis of the net’s behavior under 
a sequence of inputs. 

To see how such a net might work, we suppose 
that for each input vector the dynamics is such that 
almost every initial value lies in the basin of some 
point attractor. After the first input vector Iu) is 
chosen, the activation is in some initial state z. Sup- 
pose that this state is in the basin of an attracting 
equilibrium p = (p, , . . , p,). Under the dynamics 
determined by I(,,, the trajectory of the state ap- 
proaches p. Now we change to a second input Ic2) # 
1(,,. The dynamics are now different, and p is prob- 
ably not an equilibrium for the new dynamics. We 
assume p lies in the basin of some attractor q f p 
for the dynamics corresponding to the new input I(?). 
The activation vector then tends to q. Suppose the 
third input I,,, coincides with the first: Icj, = I,,,. We 
are back in the same dynamical system as we started 
with, but we are computing the trajectory of the state 
q, rather than the state z which initialized the system. 
There is no guarantee that q and z are in the basin 
of the same attractor for the Zcl, dynamics. If they 
are not, then the activation will evolve to some new 
attractor r # p. The upshot is that for a net of this 
type? run without resetting initial values, we cannot 
use the dynamics to define a mapping from inputs 
to attractors. 

Evidently such a net cannot function as a classifier 
for the input patterns I, or as an associative content 
addressable memory. Instead it tends to behave like 
a rather unreliable finite state automaton, the states 
of the automaton being the various attracting equi- 
libria. An interesting generalization of the supervised 
learning problem is the question of how to teach a 
network of this type to emulate a given automaton. 

If the activation dynamics are globally asymptoti- 
cally stable for every input vector, then the initial 
state doesn’t matter, since for any fixed input, all 
trajectories tend to the same limit. Such nets realize 
a mapping sending each input to the corresponding 
equilibrium state. They are discussed in Section 8. 

So far we have assumed the external input I is 
clamped. Alternatively, I may be a single pulse: Z(t) 
is specified during the time interval 0 5 t 5 t,, and 
is clamped at zero (or some other conventional 
value) after time t,. Thus the system has different 
dynamics for t < t, and t > t,. One way of using 
single pulse inputs is the following: Each input vec- 
tor is such that it quickly drives x(t)-regardless of 
x(O)-to some desired region of activation space, for 
example, the basin of an attractor associated to the 
input. Then when the pulse is shut off, the activation 
vector tends to that attractor. For a net run in this 
mode the initial activation values are irrelevant, pro- 
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vided the input pulses are strong enough. Such a net 
can thus be run without resetting activations. 

From now on we assume inputs are clamped. 

3. CONVERGENT, OSCILLATORY, 
CHAOTIC DYNAMICS 

In order to say anything interesting about 

AND 

the acti- 
vation dynamics, the response functions Gi in equa- 
tions (1) must be further restricted. At this point the 
relevant question is: What kind of dynamics do we 
expect of our net? In order to discuss this we consider 
three large categories of dynamical systems (assum- 
ing weights and external inputs are fixed): 

Convergent: Every trajectory x(t) = (x,(t), . . . , 
x,(t)) converges to some equilibrium (stationary 
state) (as t --, + m); 
Oscillatory: Every trajectory is asymptotic to a pe- 
riodic (perhaps stationary) orbit; 
Chaotic: Most trajectories do not tend to periodic 
orbits.4 (“Most” must be made precise; for ex- 
ample: excluding a set of initial values having mea- 
sure zero.) 

Almost all, but not all, nets that have actually 
been simulated or analyzed are convergent (or as- 
sumed to be so). In particular, feed-forward nets are 
convergent (practically by definition).5 The classical 
additive nets (4) are known to be convergent in cer- 
tain cases: when the weight matrix W = [ Wij] is sym- 
metric (section 5); when the state transition functions 
Gj have a special algebraic form (section 6); and 
when the derivatives a; and the weights obey certain 
inequalities (section 7). In certain cases cascades of 
convergent nets can be proved to be convergent (sec- 
tion 9). We explain in section 10 that excitatory nets 

’ Chaotic dynamics is often defined more loosely to mean that 
long-term behavior of trajectories is extremely sensitive to initial 
values, but for present purposes the definition given here is con- 
venient. On the other hand, R. Thorn says: “ ‘Chaos’ and ‘chaotic’ 
should be reserved for systems that cannot be explicitly described 
either quantitatively of qualitatively (there are plenty of them). 
Hence such chaotic systems have no equations. It is to be 
expected that after the present initial period of word play, people 
will realize that the term ‘chaos’ has in itself very little explanatory 
power. .” (Skarda & Freeman, 1987, p. 182). I agree whole- 
heartedly with the last sentence; but the concept of “systems that 
cannot be explicitly described”-needs to be more explicitly de- 
scribed! 

5 This is true for discrete-time net, but not for all continuous- 
time nets run by equation (l), unless aGJa.r, = 0. Consider a 
three-layer, three unit net: the clamped input is a real number I, 
the activation x of the hidden layer is determined by x = f(x, I), 
and the output y(t) is governed by y = &r(t), y(r)). Suppose x(0) 
and y(0) are specified. Since the system is assumed bounded, 
x(t) -+ constant. Without further assumptions, however, this does 
not imply y(t) -+ constant. 
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are “almost convergent,” as are certain inhibitory 
and other types of nets. 

There is good reason for wanting nets to be con- 
vergent. If we think of the activation dynamics as 
eventually retrieving (or perhaps creating) infor- 
mation, it is natural to want this information to be 
in the form of a single unchanging n-tuple of num- 
bers, that is, an equilibrium (stationary state) of the 
dynamical system. 

We are so accustomed to storing data as numbers 
or symbols-discrete, constant entities-that it is 
hard to imagine any other way. Suppose, for ex- 
ample, that our net is oscillatory. We input an initial 
state, and the dynamics eventually homes in on a 
cycle (nonconstant periodic orbit}. How can we re- 
trieve the “information” embodied in this cycle‘? We 
might for example calculate the period of the cycle. 
or its amplitude, or some function of the Fourier 
coefficients of its components: or the average of 
some function over the cycle. 

In fact there are fundamental differences between 
cycles and equilibria. In a finite dimensional state 
space any state is an equilibrium for some dynamics; 
thus the set of possible equilibria is identical with 
the state space, and thus is finite dimensional. But 
the set of possible cycles is a much richer, infinite 
dimensional space. 

An equilibrium is a finite, static kind of object- 
mathematically, merely a point. But a cycle is not 
only an infinite set of points, it is an object whose 
dynamic interpretation necessarily involves time. 
Moreover the interpretation of an equilibrium is not 
highly dependent on the coordinate system; ordi- 
narily it is a standard, usually routine mathematical 
task to change from one coordinate system to an- 
other, should this be desirable (e.g., in order to ex- 
hibit the local dynamics more perspicuously). But 
our interpretation of a cycle may be intimately tied 
to particular coordinates: In one coordinate system 
a periodic orbit can appear extremely simple, per- 
haps with only one nonzero Fourier component- 
simple harmonic motion-while this same orbit may 
appear very complex in other coordinates. These co- 
ordinates may be natural ones adapted to the net- 
work, and the complexity of the cycle may reflect 
accurately the behavior of the “real” system modeled 
by the mathematics, On the other hand it may be a 
merely mathematical artifact due to our choice of 
state variables, with no intrinsic significance. 

An interesting problem arises if ihe output of our 
net serves as input to another net, as is often the 
case in biological systems. There is no difficulty 
about this if the first net is convergent. But what if 
it is oscillatory? The second net then has oscillatory 
inputs. The theory-or practice-of nets with oscil- 
latory input does not exist, apart from the general 
subject of dynamical systems with oscillatory forcing. 
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While there are many unanswered questions 
about convergent nets (and no doubt many interest- 
ing unasked questions!), there are several widely ac- 
cepted methodologies for convergent nets. There is 
general agreement on what it means to input infor- 
mation to a net (in several ways); on how to read 
the output of a net; on how a net can function as an 
associative memory, a pattern analyzer, an optim- 
izer, and so forth; on what supervised and unsu- 
pervised learning mean. There is no such general 
understanding as to how oscillatory nets might func- 
tion. 

One of the great successes of the study of neural 
nets has been the development of nets which can be 
analyzed through the use of well-understood math- 
ematical methods: gradient descent, Liapunov func- 
tions, probability theory, linear algebra, group 
theory, dynamical systems theory, differential equa- 
tions, combinatorics. For oscillatory nets much of 
the relevant mathematics is either not sufficiently 
developed or is too complex to be useful. For ex- 
ample, the existence of a strict Liapunov function is 
a simple and usable criterion for every trajectory to 
converge to equilibrium. But there is no known anal- 
ogous criterion for every trajectory to converge to a 
cycle. The detection of equilibria for a given dynam- 
ical system amounts to solving a system of algebraic 
equations, and determining their stability properties 
is the problem of estimating eigenvalues of matrices. 
While the computations may be arduous, there are 
standard methods of carrying them out, and well- 
understood theories behind them. The analogous 
problems for cycles are extremely difficult, and there 
are no general methods-practical or theoretical- 
for locating cycles and determining their stability. 

Oscillatory dynamics in network models of short- 
term memory were studied by Elias and Grossberg 
(Elias & Grossberg, 1975). Nets that store data as 
stable oscillations and methods for training their 
weights have been examined as models of the olfac- 
tory bulb by Baird (1986, 1989). Li and Hopfield (in 
press) have also studied storage of oscillations in such 
models. 

More perplexing questions arise with chaotic nets. 
The limit set of a chaotic orbit is generally some sort 
of fractal; in what sense can it represent useful in- 
formation? How do we retrieve information from a 
fractal? How can we use it as input to another net? 
How can we train the weights? In what sense can a 
chaotic network be stable? How can we determine 
if the net is actually chaotic? 

On the other hand, there are good reasons for 
trying to understand and use oscillatory and chaotic 
nets. If we take seriously the basic creed of the neural 
net enterprise-that we have much to learn from the 
networks in the brain-then it is a striking experi- 
mental fact that brain dynamics have never been ob- 

served to be convergent, and are generally oscillatory 
or chaotic (see e.g., Freeman & Viana Di Prisco, 
1986a, 1986b). 

4. ARE CHAOTIC DYNAMICS 
BIOLOGICALLY USEFUL? 

We digress to discuss an interesting paper by Skarda 
and Freeman (1987) who suggest ways in which cha- 
otic dynamics might be useful, and even necessary, 
in the olfactory system of rabbits: “During late in- 
halation and early exhalation a surge of receptor in- 
put reaches the bulb, depolarizes the mitral cells, 
sensitizes the bulb, and induces an oscillatory burst. 
This is a bifurcation from a low-energy chaotic state 
to a high energy state with a narrow temporal spectral 
distribution of its energy, suggesting that it is gov- 
erned by a limit cycle attractor.” They suggest fur- 
ther that ‘&. . multiple limit cycle attractors exist, 
one for each odorant an animal has learned to dis- 
criminate behaviorally, and each one leading to reg- 
ular oscillation in a burst.” In this model the 
dynamics is chaotic in the absence of a recognized 
odor; upon intake of a previously learned odor the 
dynamics bifurcates, and the state vector finds itself 
in the basin of an attracting cycle of the new dynam- 
ics, corresponding to the particular odor. 

How is it useful for the dynamics to be chaotic? 
Skarda and Freeman: “We conjecture that chaotic 
activity provides a way of exercising neurons that is 
guaranteed not to lead to cyclic entrainment or to 
spatially structured activity. . It also allows rapid 
and unbiased access to every limit cycle attractor on 
every inhalation, so that the entire repertoire of 
learned discriminanda is available to the animal at 
all times for instantaneous access. There is no search 
through a memory store. Moreover the chaotic well 
during inhalation provides a catch-basin for failure 
of the mechanism to converge to a known attractor 

. . the chaotic well provides an escape from all es- 
tablished attractors, so that an animal can classify an 
odorant as ‘novel’ with no greater delay than for the 
classification of any known sample, and it gains the 
freedom to maintain unstructured activity while 
building a new attractor. . Most remarkably, ‘sig- 
nals’ are not detected ‘in’ the chaos because the 
mechanism turns the chaos ‘off’ when it turns a signal 
‘on’.” They go on to make the provocative suggestion 
that “without chaotic behavior the neural system 
cannot add a new odor to its repertoire of learned 
odors. ” 

This is an interesting and original biological role 
for chaotic dynamics. But notice that the chaos is 
only in the background: When the rabbit sniffs a 
previously learned odor, the dynamics bifurcates-it 
radically changes its global behavior-and the state 
which was in a chaotic attractor for the old dynamics 
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suddenly finds itself in a limit cycle attractor for the 
new dynamics6 The Skarda-Freeman scheme is thus 
based on the bifurcation of a chaotic attractor into 
several limit cycle attractors upon presentation of 
learned inputs. How the network learns this bifur- 
cation is not explained. 

It is worth emphasizing that the mathematical the- 
ory of chaotic attractors is in its infancy; there is very 
little rigorous mathematical treatment beyond bifur- 
cation of equilibria and limit cycles. Concerning cha- 
otic attractors there is much simulation but few 
theorems, or even conjectures; and consequently lit- 
tle in the way of predictive power. Even simulations 
are controversial: it is not clear that what is observed 
is truly a chaotic attractor: it might well be a com- 
plicated transient on its way to a limit cycle. In any 
case, omnipresent rounding and truncation errors, 
which are harmless for convergent dynamics, render 
dubious conclusions based solely on chaotic-looking 
simulations. It is extremely difficult to prove or dis- 
prove that a suspected attractor is in fact chaotic. 
There is not even a rudimentary classification. As 
Thorn pointed out in his critique of Skarda and Free- 
man (note 4 above), “the invariants associated with 
the present theory-Liapunov exponents, Hausdorff 
dimension, Kolmogoroff-Sinai entropy . . . show lit- 
tle robustness in the presence of noise.” 

There are many cogent criticisms of Skarda and 
Freeman’s innovative thesis in the same journal. Of 
these, Grossberg’s is relevant to the dynamical is- 
sues. He points out that “a data phenomenon, de- 
spite its correlation with a particular functional 
property, may not be necessary to achieve that func- 
tional property. When this is true it is not possible 
to assert that the system has been designed to gen- 
erate the property for that functional purpose. One 
can defeat the claim that the property in question is 
necessary by providing a mathematical counterex- 
ample of its necessity.” Grossberg goes on to claim 
that the Adaptive Resonance Theory architecture 
ART I (Carpenter & Grossberg 1987) defeats Skarda 
and Freeman’s claim of the necessity of chaos be- 
cause (in our terminology) it is a convergent system, 
which exhibits with mathematical rigor the same be- 
havior for which chaos is claimed to be necessary. 

Skarda and Freeman suggest ways in which cha- 
otic network dynamics may be useful and even nec- 
essary for efficient learning; this needs a great deal 
of investigation by computer simulation, mathemat- 
ical analysis, and neurological experiment. The 
mathematical model they refer to (Freeman, 1987) 
is a complicated system of coupled nonlinear second- 
order differential equations, which has not been sub- 

b More recently Freeman has stated that he has been unable 
to find experimental evidence for such limit cycle attractors. 
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jetted to mathematical analysis. There is no theory 
of how the model works. The novelnotion of a “cha- 
otic well” bifurcating into limit cycle attractors in 
response to inputs is intriguing but imprecise. Most 
studies of bifurcation go the other way: they deal 
with bifurcation from limit cycles to chaos as energy 
(or temperature, etc.) increases. There is clearly a 
need for much research here. 

Biology apart, there are good engineering reasons 
for investigating nonconvergent nets: The dynamical 
possibilities are much richer for a given number of 
units. What we don’t yet know are useful ways of 
exploiting this wealth of dynamic behavior. 

5. CONVERGENT DYNAMICS 

Suppose we restrict attention to convergent nets. 
Why not stay with the old reliable feed-forward ar- 
chitectures, since these are guaranteed to converge? 
In part the answer has already been given: The brain 
is highly recurrent, and the repertoire of dynamic 
behavior is richer for recurrent nets. Feed-forward 
nets can not do competitive learning. for example, 
nor adaptive resonance. There is also some evidence 
that recurrent nets can learn more quickly (Almeida, 
1987). Williams and Zipser (1988). and Servan- 
Schreiber and Cleeremans (1988) present learning 
algorithms for general recurrent nets (not necessarily 
convergent) that can accomplish rather complex tem- 
poral tasks.’ 

Thus it is highly desirable to have at hand criteria 
for activation dynamics to be convergent. It turns 
out that slightly weaker conditions are often easier 
to verify and practically as useful: 

A system is almost convergent if the set of initial 
values whose trajectories do not converge has Le- 
besgue measure zero-in other words a point 
picked at random has a convergent trajectory with 
probability 1. This does not exclude nonconver- 
gent orbits, but it means they are exceptional, and 
we probably won’t observe them since they cannot 
be stable. 
Quasiconvergence means that every trajectory ap- 
proaches the set & of equilibria. Since the tangent 
vector to the trajectory approaches zero, this 
means that the velocity of every trajectory tends 
to zero. Any trajectory, after sufficient time has 
elapsed, will change only imperceptibly. To the 
observer the trajectory will appear to converge, 
although mathematically it does not necessarily do 

7 Other studies of learning in recurrent nets are due to Pineda 
(1987), Rowher and Forrest (1987), Jordan (1987), Stornetta, 
Hogg, and Huberman (1987), Mozer (1988),Pearlmutter (198% 
Elman (1988), Robinson and Fallside (1987), Bachrach (1988), 
and Rumelhart, Hinton, and Williams (1986). 



Convergent Activation Dynamics 337 

so. In a quasiconvergent system there cannot be 
cycles or recurrent trajectories. 

l Almost quasiconvergence means that the set of in- 
itial values whose trajectories are not quasicon- 
vergent has measure zero. This is a combination 
of the last two conditions. It means that we are 
unlikely to observe a trajectory that does not ap- 
pear to converge. There may be cycles or other 
kinds of nonconvergent orbits, but they cannot be 
stable. 

We discuss below several types of dynamical sys- 
tems relevant to neural nets, that can be shown to 
have these properties. For simplicity we shall tacitly 
assume that any system under consideration is 
bounded, that is, there is a bounded set A which 
attracts all trajectories: For any trajectory x(t) there 
exists tcr such that x(t) E A for all t 2 to. This is a 
natural requirement for applications, and can usually 
be proved without difficulty for specific models. 

In a bounded system every (forward) trajectory 
x(t) approaches a nonempty, closed, bounded, con- 
nected set of limit points. By a limit point p of the 
trajectory x(t) we mean a point of the form p = 
lim,+,,x(t,) for some sequence of times fk+ m. (More 
precisely, p is an omega limit point.) If x(0) = q the 
set of limit points is called the (omega) limit set of 
the point q, denoted w(q). All points on the orbit 
of q have the same limit set. The limit set is invariant 
under the dynamics, that is, if y(t) is a trajectory that 
starts at a point of y(0) E o(q), then y(t) E w(q) for 
all I such that y(t) is defined. 

To say that a trajectory converges is equivalent to 
saying its limit set consists of a single equilibrium. 
When the limit set of a trajectory is a cycle, the orbit 
appears to be eventually periodic-in the long run 
it is indistinguishable from the cycle (although math- 
ematically it is disjoint from the cycle, except in the 
case that the trajectory itself is periodic). 

A fundamental dynamical concept is that of a sta- 
ble equilibrium. An equilibrium p for a vector field 
H is characterized by H(p) = 0: it is stable if every 
eigenvalue of the linearized field DH(p) has nega- 
tive real part. This implies that trajectories starting 
near p converge to p at an exponential rate. It also 
implies that p is robust,x that is, any sufficiently small 
perturbation of H will have a stable equilibrium near 
p. When p is stable the basin of p is the union of the 
trajectories tending to p. 

Another important type of equilibrium is a hy- 

’ Robustness of a dynamic phenomenon is considered desir- 
able in mathematical models of natural processes, since physical 
constants can never be measured with mathematical exactness, 
and consequently there is always uncertainty in the dynamical 
equations. Nonrobust phenomena are often thought of as being 
unobservable, not physically meaningful, and so forth. 

perbolic equilibrium p: this means that the eigen- 
values of DH(p) have nonzero real parts. This is a 
generic condition on vector fields: If H has a non- 
hyperbolic equilibrium, there are arbitrarily small 
perturbations of H whose equilibria are hyperbolic; 
while if H has only hyperbolic equilibria, so do all 
sufficiently small perturbations of H (see e.g., Hirsch 
& Smale, 1974). Of course this by itself guarantees 
nothing about a particular vector field. If p is a hy- 
perbolic equilibrium then either p is stable, or else 
the set of trajectories tending top has measure zero, 
and forms a smooth manifold of lower dimension 
than the state space. A hyperbolic equilibrium p is 
robust in the sense that any vector field sufficiently 
close to H must have a hyperbolic equilibrium 
near p. 

An equilibrium p is simple if DF( p) is invertible, 
that is 0 is not an eigenvalue. Hyperbolic equilibria 
are simple and robust. It is a generic condition for 
all equilibria to be simple. In that case equilibria are 
isolated; and since we always assume bounded dy- 
namics, it follows that the equilibrium set & is finite. 

In view of the fact that it is a generic condition 
for equilibria to be isolated, and under our assump- 
tions, finite in number, it is a reasonable assumption, 
in the absence of contrary evidence, that any partic- 
ular vector field we are dealing with has finite 6. This 
common dogma is less persuasive. however, if it we 
are dealing with vector fields having a particular 
form, such as equation (1). It is in fact an interesting 
unresolved problem (probably not difficult) to prove 
or disprove for our general network equations (l), 
or for the more restricted additive network equations 
(4), that generically 6 is finite. 

6. LIAPUNOV FUNCTIONS 

One of the commonest ways to guarantee conver- 
gence is to find a Liapunov function, that is, a 
continuous function V on the state space which is 
nonincreasing along trajectories. Such a function is 
constant on the set of limit points of a trajectory. If 
V is a strict Liapunov function, meaning that V is 
strictly decreasing on nonstationary trajectories, 
then all limit points of any trajectory are equilibria 
(see e.g., Hirsch & Smale, 1974). 

If V is a Liapunov function then any strictly in- 
creasing function of V is also a Liapunov function. 
Because we assume bounded dynamics, any Liapunov 
function V for our systems is necessarily bounded 
below; and we can obtain a bounded Liapunov func- 
tion by composition, for example, arctan( If V is 
a bounded Liapunov function and K > 0 is a suffi- 
ciently large constant then V + K will be a bounded 
positive Liapunov function which is strict if V is 

strict. 
If F is a vector field on R” and V is a continuously 
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differentiable real valued function on R”, then the 
chain rule shows that if x(t) is a trajectory then 

$WN = VV(X@)) . F(x(t)). 

where VV is the gradient vector field of V and the 
dot means the usual inner product. Therefore V is a 
Liapunov function if and only if VV . F 5 0 every- 
where; and V is strict if an only if VV(z) . F(z) < 0 
at every point z such that F(Z) # 0. The geometric 
interpretation of this last condition is the following. 
Suppose F(z) Z 0; set V(z) = c. Then the vector 
F(z) is transverse to the level surface V-‘(c) at z, 
and points toward the set where V < c. 

A strict Liapunov function forces every trajectory 
to approach asymptotically a set of equilibria; the 
system is thus quasiconvergent. If the 6 is finite or 
countably infinite (or more generally, totally 
disconnected), then a strict Liapunov function causes 
every trajectory to have a unique limit point (nec- 
essarily an equilibrium); in other words the system 
is convergent .9 

Even with non-strict Liapunov functions it is often 
possible to guarantee quasiconvergence. This 
method, called LaSalle’s invariance principle (La- 
Salle, 1968), is based on the fact that the limit set of 
a trajectory is contained in the largest invariant set 
s in which the Liapunov function is constant on or- 
bits. Sometimes one can show that this set is com- 
posed of equilibria; then the system is quasiconver- 
gent. If P is discrete then the system is conver- 
gent. LaSalle’s invariance principle (for discrete-time 
systems) has been used by Golden (1986) to prove 
convergence for the Brain-State-In-A-Box. Cohen 
and Grossberg (1983) have applied the invariance 
principle in connection with their Study of Liapunov 
functions, discussed below. 

There is unfortunately no general method for con- 
structing Liapunov functions, or for recognizing sys- 
tems that have one. The following remarks describe 
some common situations where Liapunov functions 
are known. 

In dissipative mechanical systems, energy is (by 
definition) a strict Liapunov function; hence Lia- 
punov functions are sometimes called energy func- 
tions. Entropy is a strict Liapunov function in 
classical thermodynamical systems. For a gradient 
system _i~; = - ~U/&X, the real valued function U on 
the state space is a strict Liapunov function: By the 
chain rule, dU(x(t))ldt = X(au/dXi)il = -Z(ac/l 
ax,)*; this is negative unless x(t) is an equilibrium. In 
many adaptive learning systems an error function is 

9 There is a theorem, for which I do not know a reference, 
that in an analytic gradient system every bounded trajectory con- 
verges, regardless of the nature of Q. 

constructed so as to be a Liapunov function for the 
weight dynamics; in fact many algorithms for adapt- 
ing weights are approximations to gradient descent 
on the error function. If a vector field F can be writ- 

ten in the form F(x) = p(x)G(x) in such a way that 
p is a positive continuous function on the state space, 
and G is a vector field that admits a Liapunov func- 
tion V(x), then V is also a Liapunov function for F: 
this is because the trajectories of G are simply re- 
parameterizations of those of F. 

An early use of Liapunov functions in ecological 
systems is due to MacArthur (1969) for Gause- 
Lotka-Volterra systems of interacting species having 
symmetric community matrices. Cohen and Gross- 
berg (1983) greatly extended this results by con- 
structing Liapunov functions for all systems of the 
form 

& = a,(x)[b,(x,) - XikC,&(Xk)] z* F,(x) (6, 

where ai 2 0, the constant matrix [elk. is symmetric, 
and d; 2 0. In this system we can assume c,, = 0. 
since the term Ci;di(Xi) can be absorbed into bi(Xi). 

Special cases of system (6) have often been used 
to represent neural networks: xi is the activity level 
of unit i; dk(xk) is the output of unit k; c,~ is the 
strength (weight) of the connection from unit k to 
unit i; a,(X) is an amplification factor. If we suppose 
all xJ and dJ are 2 0, then the connection from unit 
k to unit i is inhibitory if cjk > 0 and excitatory if 
c,k < 0. By assumption these relationships are sym- 
metric. The sum in (6) represents the net input to 
unit i. If the amplification factor is positive, equation 
(6) means that the activity of unit i decreases if and 
only if the net input to unit i exceeds a certain in- 
trinsic function b, of the unit’s activation. If all con- 
nections between different units are inhibitory then 
we can think of the units as competing among them- 
selves, the competition being modulated by the state- 
dependent amplification factors a,, the self-excite- 
ment rates bi, and the inhibitory interactions c,kdli. 

The Liapunov function discovered by Cohen and 
Grossberg for system (6) is 

V(X) = -?;, 
1 

*’ b,(W,‘(Wt + %C.,&,)d&4 (7) 
Ii 

They showed that if a, > 0 and d; ‘> 0, then V is a 
strict Liapunov function, and therefore the system is 
quasiconvergent. Using LaSalle’s invariance princi- 
ple they showed this also holds in certain more gen- 
eral circumstances. 

Essentially the same Liapunov function for a spe- 
cial case of (3) was given by Hopfield (1984), where 

Fi(X) = -c,xi + Z,T,,g(x,): (8) 

here [r,} is a constant symmetric matrix and g’ 2 0. 
The Liapunov function is -4Z&CiX’ I- $X#Tjk&j)g(X$; 
in Hopfield’s electrical circuit interpretation this is 
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exactly the energy. Cohen and Grossberg also refer 
to this model. 

A generalization of the Cohen-Grossberg theo- 
rem to certain nonsymmetric nets is given in Section 
10, Theorem 7. 

There is a little-known stability property for a dy- 
namical system (3) having a strict Liapunov function 
and isolated equilibria. Not only does every trajec- 
tory converge to an equilibrium; but even if we allow 
arbitrary errors to perturb the trajectory, provided 
they are small enough, every limit point of the per- 
turbed trajectory will be close to an equilibrium. To 
state this precisely we use the following definition. 
A (5, @perturbed trajectory is a map (possibly dis- 
continuous!) y: (0, =] + W” such that the following 
conditions hold: There is an increasing sequence 
T, + = such that T,,, - T,>s>Oforailj = 1,2, 

. , and solutions .x(‘)(t) such that for all j we have 
/[y(t) - xc,)(t)JI < 6 for T, 5 t 5 T,,,. 
Theorem 1. Suppose equilibria are isolated and there 
is a strict Liapunov function V. Then for any T > 0, 
E > 0 there exists 6,, > 0, depending on T and E, such 
that if 0 < b < 6,, then any limit point of a (T, 6)- 
perturbed trajectory y(t) is within E of an equilibrium 
p. Moreover if y(O) is in the basin of a stable equi- 
librium q, then for sufficiently small 6(, we can take 

P = 4. 
This result is false if the assumption of a strict 

Liapunov function is deleted, and instead it is merely 
assumed that every trajectory converges. Theorem 
1 gives a theoretical robustness to the dynamics of 
systems to which it applies. The perturbations, sub- 
ject to the conditions of the theorem, can be oth- 
erwise completely arbitrary: for example, due to 
rounding or truncation error in a numerical sim- 
ulation, noisy inputs, errors in estimating sys- 
tem parameters, etc. No statistical assumptions are 
needed. 

The proof uses the boundedness of the system to 
ensure that the image of y is bounded, and that out- 
side any neighborhood N of the equilibria, V de- 
creases by at least some fixed number 3. > 0 along 
any trajectory on an interval of length 2~. By taking 
6 small we can ensure that V(y(t)) - V(x’(t)) is less 
than 63. for T, 5 t 5 Tj+ ,. This implies that there is 
an upper bound to the number of successive intervals 
[T,, T,+J whose images under X, is disjoint from N. 
If N is the union of balls around equilibria of small 
radius, V cannot change by much along trajectory 
curves inside the balls. The upshot is that any limit 
point of y(t) must be inside one of the balls. 

Golden (1988) has shown how a broad class of 
nets with strict Liapunov functions respond to inputs 
as if they are maximizing a posteriori estimates of 
the probability distribution of the environment. This 
gives an interesting psychological interpretation of 
network dynamics. 

7. A CONVERGENCE THEOREM 
WITHOUT LIAPUNOV FUNCTIONS 

Grossberg (1978) (reprinted in Grossberg, 1982) 
proved a remarkable convergence theorem for a class 
of competitive systems for which no Liapunov func- 
tions are known: these are the systems of the form 

jc, = a,(x)[b,(x,) - C(x,. , x,,)] (9) 

where a, > 0 and K/ax, > 0 for all i. (His theorem 
is also valid if K/ax, < 0 for all i.) Notice that each 
6, is a function of only the one variable x,, and that 
the function C: R” + HP does not depend on i. In this 
kind of a system the xi compete indirectly with each 
other through the medium of a scalar “field” C(x) 
created by the interaction of all the x,. 

Grossberg showed that if the functions b, are 
piecewise monotone then system (9) is convergent. 
Even without piecewise monotonicity, it can be 
proved that the system is quasiconvergent. 

A simple example of a system (9) is 

i-, = r,x,(B, - x, - KX,a,(x,)). 0 % x, 5 B, (10) 

with 0,’ > 0 and positive constants r,, B, and K. This 
represents a special kind of completely intercon- 
nected network in which all weights equal -K; thus 
all connections are inhibitory, including the self-con- 
nections. If all connections were severed (i.e., K = 

0), each nonzero activation would rise to its upper 
limit B,, since it would obey i, = r,x,(B, - x,). The 
connections serve to inhibit activations by means of 
the field term - K);,a,(x,)), negatively proportional 
to the total output signal. 

Grossberg’s result has been extended (Hirsch, 
1980) to mildly nonautonomous systems of the form 

,?, = a,@. t)h,(x,, C(x,. , x,,)) (11) 

where a, > 0, a, and l/a, are uniformly bounded in 
t for each x, the partial derivatives of C are all pos- 
itive or all negative, and a:h, > 0. Here the ampli- 
fication factors are allowed to depend on time in a 
bounded way. This is one of the few examples of a 
convergence theorem for nonautonomous systems. 

8. GLOBAL ASYMPTOTIC STABILITY 

A system is globally convergent if there is a unique 
equilibrium to which everything converges. If in ad- 
dition the equilibrium is stable, the system is called 
globally asymptotically stable. This concept is inter- 
esting for nets whose dynamical equations have the 
form 

x, = F,(X,. . , x,,,, I,. . f,) (12) 

where the Z, are clamped external inputs. If the sys- 
tem is globally convergent for each input vector I, 
then we need not specify initial values of the xi, since 
all trajectories end up at the same unique equilib- 
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rium. This equilibrium depends on I. In this way we 
obtain a mapping from the space of input vectors I 
to the space of activation vectors X. Moreover we 
need not reset the activations when changing inputs, 
which is convenient for a system running in real time. 
Additive networks that run in this way have been 
considered by Kelly (in press). 

There is a conceptually simple condition on a dy- 
namical system k = F(x) which guarantees global 
asymptotic stability. Let (5, II) denote the inner (dot) 
product of vectors 5, q; the square of the Euclidean 
norm of < is ll<ll’ = (<, 0. 
Theorem 2. Assume there is a constant -p < 0 such 
that each Jacobian matrix A = DF(y) has the prop- 
erty that (A{, 5) 5 - pllr\[* for all c E R”. Then 
the dynamical system f = F(x) is globally asymp- 
totically stable. 

The idea of the proof is to use the Taylor expan- 
sion of F to get the following estimate for the distance 
between solutions: 

f-$x(t) - Y(Qll’ = (F(x) - F(Y), .I- - Y) 

= (DF(Y)(X - Y) + R(x, Y)? x - Y): 

if x(O), y(0) are close and t 2 0 is bounded we can 
assume IIR(x, y)II 5 EIIX - y(( for any given E > 0. 
We take E < fp and get 

+ 4dlx - yl12 5 -/Ax - YIP 

+ t/Lllx - yl12 = -‘zpllx - YIP. 

This implies that 11x(t) - y(t)11 decreases exponen- 
tially if x(O) and y(0) are close. Closeness is in fact 
not necessary, since there is a finite sequence from 
n(O) to y(0) in which successive pairs are close. Tak- 
ing y(0) = x(s) for some s 2 0 leads to a proof that 
x(t) converges to an equilibrium p. This equilibrium 
must be unique, since any two trajectories are mu- 
tually asymptotic. It also follows that p is asymptot- 
ically stable. Thus there is global asymptotic stability. 

The condition (A, <, <) 5 --,u~~~~~~ for all 5 E R” 
on a matrix A is equivalent to the largest eigenvalue 
of $(A + A ‘) being 5 -,u, where AT denotes the 
transpose of A. By Gerschgorin’s circle theorem (No- 
ble & Daniel, 1988) this is implied by the condition 

A,, + 4X,,,,, IA,, + A,,1 5 -p, i = 1, , n. (13) 

As an example we consider an additive net 

2, = -c,x, + Z,W,,ff,(x,) + I, = F,(x,. ,x,,>. (14) 

Assume that Cj > 0 and 

0 5 0; 5 y for all i. 

Now 

dF,idx, = -c, + W,,a,‘(x,) 5 ‘-I.‘ + W,$ 

and 

laF,ldn,l = I W,,~$(x,)l 5 1 W,,ij fm i f j. 

Therefore we see from Gerschgorin’s condition (13) 
that the inequality in Theorem 2 will hold for all 
Jacobian matrices D F(x) provided 

-c, + y( W,, + &,,,,{\I W,,l + / W,J) 5 -1~ for all i. 

This proves: 
Theorem 3. System (14) is globally asymptotically 
stable, for any inputs Ii, provided there is a constant 
y 2 0 such that for all i 

0 c 0,’ 5 ;I and y( W,, + 4X,,, (I W,;l + lW,,i}) < c,. 

(15) 

Thus global asymptotic stability can be guaranteed 
by choosing transfer functions (7i having gains cr,’ suf- 
ficiently small relative to the self-inhibitions c,; or 
alternatively, by making each self-weight Wji suffi- 
ciently negative relative to the absolute values of the 
other weights on lines connected to unit i. Of course 
in any specific case it may turn out that these con- 
ditions conflict with other constraints on the net- 
work, or with algorithms for choosing the weights. 

One way of using condition (15) is to assume uni- 
form bounds on the weights, the self-inhibitions c,, 
and on the connectivity m = maximum number of 
other units any unit is connected to. Assume that for 
all distinct i, j with Wi, # 0, we have in (14) 

0 Cr 0,’ % j'. w,, 5 p, (W,,l 5 d, c, 2 n > 0: 

then (15) holds provided 

j’(/Y + mn‘) < c(. (16) 

Thus condition (16) implies global asymptotic sta- 
bility of the additive net (14), and it depends only 
on local properties of the network. Therefore it has 
the important virtue of being independent ofthe num- 
ber of units. 

A globally asymptotically stable system has a strict 
Liapunov function- but we construct it after the fact: 
In order to know there is a Liapunov function we 
need to know the system is giobally asymptotically 
stable. Nevertheless the existence of a strict Liapu- 
nov function may be useful in determining conver- 
gence of a cascade in which the net is a component; 
see section 10. For each initial vatuc: x , let V(x) denote 
the length of the trajectory y(t) which st@rts at x = 

y(O): 

V(x) = 
I 

= II~(Y(~NlW 
0 
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It is not hard to show that V is finite’“, and that 

$ V(v(t)) = -lIF(y(t))ll, 

proving that V is a strict Liapunov function. 
Kelly (1988) gives a different criterion for global 

asymptotic stability of (14). Define the operator 
norm IIWIl of the weight matrix W to be maximum 
of 1) WxJJ taken over all unit vectors X. Kelly shows 
that if afl c, = 1 and yll Wl( < 1, then (14) is globally 
asymptotically stable, ” and the function (Ix - pII2 is 
a strict Liapunov function for system (14), where p 
is the unique equilibrium. 

9. CASCADES 

In studying the activation dynamics of a net it is often 
useful to decompose it into simpler subnets, and then 
try to understand the qualitative dynamics of the full 
net in terms of the dynamics of the subnets. The 
dynamics of feed-forward nets, for example, can be 
analyzed in terms of the dynamics of the individual 
units. 

A recurrent net may be known to have convergent 
dynamics; for example it may have a strict Liapunov 
function. Consider a layered net 3: It is built up from 
a collection of subnets :R,,, :R,, . . , in such a way 
that the output of :X,,,_, is fed only into Y&,,. Suppose 
it is known that each :‘)i,,, has convergent dynamics. 
Does this imply that the full net :X also has conver- 
gent dynamics? Not in full generality. But we shall 
see several cases where this can be proved. 

A generalization of a layered net is a cascade. Let 
:X0 and y)i, be two separate nets. If some units of u)i,, 
feed their outputs to units in 9, via new connections, 
we obtain a larger net :%i, , called a cascade of :X,, into 
91,. If outputs from 91i, are fed into a third net 9iz, 
separate from 9li,, we obtain a net 91iz, a cascade of 
9li, into ‘:X2. By iterating this process we obtain cas- 
cades of any number of nets %,,, 9i,, :X2, 9i3, . . 
(We may think of a cascade as a feed-forward su- 
pernet whose superunits are nets.) For example each 
9, might be a recurrent net doing competitive learn- 
ing, feeding its output to uji,. k > j. A net 3 obtained 
in this way is called the cascade of the components 
91,. A basic problem is to understand the behavior 
of a cascade in terms of the behavior of its component 
subnets. 

iii This uses the assumption that the Jacobian matrix at the 

equilibrium has eigenvalues with negative real parts, which pre- 

vents the orbit from wiggling too much as it approaches the equi- 

librium. 

‘I This result is closely related to Theorem 3: It is easy to see 

that every eigenvalue of i(W + W') has absolute value c(~WJ/; if 

c, = 1 for all i, calculation of DF(x) shows that Kelly’s assumption 

implies the hypothesis of Theorem 3. 

We call a net irreducible if every pair of distinct 
units belongs to a loop of directed transmission lines, 
or in other words, if every unit can directly or in- 
directly influence the output of every other unit. A 
net that is not irreducible is called reducible. A feed- 
forward net with more than one unit is reducible to 
one-unit nets. Every cascade is by definition redu- 
cible. 

A maximal irreducible subnet of a given net is 
called a basic subnet. It is easy to see that every 
irreducible subnet of a given net is contained in a 
unique basic subnet. In Appendix A we prove the 
following result. 
Theorem 4. Every reducible net !)i is a cascade whose 
components are the basic subnets of u)i. 

The irreducibility of a net represented by equa- 
tions (2) can be expressed in terms of the weight 
matrix W = W,,: The net is irreducible if and only 
if W is an irreducible matrix in the following sense: 
A square matrix [M,,] is irreducible if for any pair of 
distinct indices i and j we can find a chain of indices 
i = k,,, . . . k, = j such that: if k, = u and k,,, = 
b then Muh # 0. Equivalently, the linear map deter- 
mined by M does not have any proper, nontrivial 
invariant subspace obtained by equating some set of 
coordinates to zero. Another equivalent formulation 
is that there is no way of permuting the coordinates 
to give this linear transformation a matrix with a 
square block in the upper left corner with only zeroes 
beneath it. 

To test a matrix M for irreducibility, draw a di- 
rected graph with one vertex for each row of M, and 
an arrow from vertex j to vertex i if and only if M,, 
# 0. If M is the weight matrix of a net then this graph 
is just the flow chart of the net. M is irreducible if 
and only if for pair i, j of distinct vertices there is a 
directed path of edges from i to j; or equivalently, i 
and j belong to a loop of directed edges. 

If a net is reducible its units can be ordered so 
that the weight matrix is in lower block triangular 
form: square submatrices down the diagonal, zeroes 
above them, arbitrary entries below. 

10. CONVERGENT CASCADES 

It is frequently useful to know whether some partic- 
ular property shared by all the components of the 
cascade % is also true for % itself. Here we inquire: 
If each net in a cascade has convergent dynamics, 
does the whole cascade have convergent dynamics? 
If each net in the cascade is globally asymptotically 
stable, is this true of the whole cascade? 

The second question has an easy answer: Yes. It 
is convenient to formulate this result more generally, 
for vector fields with parameters (which are math- 
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ematical models of systems with inputs). An analo- 
gous result holds for discrete-time systems. 

Let F be a vector field on R”, G a map from 
R” X R” to R”, and consider the dynamical system 

i = F(x), .$J = G(x, y). (17) 

This is the cascade of the two systems i = F(x) and 
ic = G(<, u), where 5 is a parameter for the latter 
system. 

More complex cascades of dynamical systems with 
parameters can be built by iterating this construc- 
tion. Let E”, . . . , E’ denote Euclidean spaces of 
various dimensions. For each j = 1, , r let Fi: 
E” x . . . x El + EJ be a map, thought of as a 
vector field on Ej with input parameters from E” x 
. . . x EJ-‘. The cascade of this family {r’, . . . 
F} is the following dynamical system on state space 
E” x . . x El, where xi denotes a vector in El: 

i’ = FJ(x”, . , xl), j = 1. . . r. 

Theorem 5. A cascade of systems, each of which is 
globally asymptotically stable for every parameter 
value, is globally asymptotically stable. 

Proof. It suffices to consider a cascade of two sys- 
tems, as in (17). Let z(t) = (,x(t), y(t)) be a trajectory 
of (17). Since F is globally asymptotically stable, x( t ) 
converges to the unique equilibrium p for F. There- 
fore the limit set of z(t) is a closed bounded set in 
p x W”, invariant under the dynamics of j, = G( p. 
y ). Since this system is globally asymptotically stable 
it has a unique equilibrium 4. Now the only compact 
nonempty invariant set of a globally asymptotically 
stable system is the equilibrium. Therefore the limit 
set of z(t) is (p, q). Since p and 9 are asymptotically 
stable, so is (p, q). QED 

This proof also shows that if F is merely conver- 
gent, while G is globally asymptotically stable for 
every parameter value, then the cascade (17) is con- 
vergent. A similar result holds for almost conver- 
gence. 

It is not true that a cascade of convergent systems 
is necessarily convergent, or even almost convergent, 
To achieve convergence we need special assump- 
tions. 

As an example of what can be proved, suppose 
that the dynamics of Fare convergent; that for each 
fixed equilibrium p for F there is a strict Liapunov 
function for the system j, = G(p, y); and that G(p, 
y) has only a finite number of equilibria. Then the 
cascade (17) is convergent. To see this let z(t) = 
(x(t), y(t)) be a solution with x(t) -+ p. The limit set 
K of z(t) is an invariant set for the dynamics of G(p, 
y) which has the property of being chain recurrent 
(Conley, 1978). The definition of chain recurrent is 
not needed here, but only the fact that a strict Lia- 

punov function is constant on any chain recurrent 
set whose equilibrium set is finite. Therefore K must 
consist entirely of equilibria, and hence (being con- 
nected) of a single equilibrium. Thus (17) is conver- 
gent. If instead of being convergent F is merely al- 
most convergent, the same argument shows that (17) 
is almost convergent. 

This last result can be iterated and applied to cas- 
cades of arbitrary networks whose activation dynam- 
ics are of the form (l), provided that each component 
of the cascade has a finite equilibrium set, and admits 
a strict Liapunov function for every set of values of 
the inputs Z,. Under these conditions any such cas- 
cade will be convergent. 

We now present a general way of constructing a 
strict Liapunov function for the system (17), assum- 
ing that F has one, and that for each equilibrium p 
of F, the vector field G,(y) = G(p, y) has one. 
provided equilibria are hyperbolic. 
Theorem 6. In system (17) assume equilibria of F 
are isolated, and equilibria of G, are hyperbolic for 
each equilibrium p of F. Suppose that F has a C’ 
(continuously differentiable) strict Liapunov func- 
tion V(x), and that there is a C’ strict Liapunov 
function for each G,. Then there is a C’ strict Lia- 
punov function for (17). 

Proof (with help from Michael Cohen). Let (p, q) 
be an equilibrium, taken to be (0, 0) for simplicity. 
By the implicit function theorem we may assume 
G(x, 9) = 0 for all x near p. Using hyperbolicity it 
is possible to linearly change coordinates so that 
D,.G(p, q) = T + B, where T is a nonsingular di- 
agonal matrix, and there are constants 5 > 0 and 
arbitrarily small /? > 0 such that 

Let U(y) be a bounded strict Liapunov function 
for G,. For each < near enough to p, the function 
W(y) = U(q) - (Ty , y) is another strict Liapunov 
function for G,, in a neighborhood of 4. Now define 

NY) = (1 - ~r(y))Wyt + ;~rtyMy) 

where ;J > 0 is a small constant, and r is 1 outside a 
neighborhood of q and 0 inside a smaller neighbor- 
hood of q. A calculation shows that if /? and y are 
small enough and U is C2 then o(y) is a strict Lia- 
punov function for G,, for each < near p. 

Let the solutions to G(p, y) = 0 be ql, . , . . qs. 
For each qi let oi be defined similarly to 0, using q, 
in place of q. Then the function W(y) = Xc,~i(y) is 
a strict Liapunov function for G, for each < near p- 

L,et V(x) be a bounded strict Liapunov function 
for F. Let p be a Cl real-valued function on R” taking 
the value 1 on a neighborhood N of p, and the value 
0 outside a larger, bounded neighborhood N’ of p 
containing no other equilibrium. Pick 6 > 0, to be 



Convergent Activation Dynamics 343 

specified later, and define the function L(x, y) = 
V(x) + @p(x) W( y). We show that if 6 is small enough 
then L is a Liapunov function, strict for x near p. 

Let H(x, y) = (F(x), G(x, y)) denote the right 
hand side of (17). The derivative of L along a tra- 
jectory of H is 

i = VL, H = V,V. F 

+ (iiV,p . F)W + 6pV,W. G. (18) 

If we evaluate I!. at a point (a, 6) such that a belongs 
to a region where p is constant, then the middle term 
of (18) drops out and the other terms are 50. More- 
over, if a $ N’ then the first term is 10; and if a E 
N then ,!,(a, b) = V,V . F + SV,W * G, which is 
negative unless H(a, b) = 0. Therefore it suffices to 
prove i(a, 6) < 0 for a E N’\N. Since V is a strict 
Liapunov function, V,V . F(a) I -K < 0 for some 
constant K and all a E N’\N. Now the third term 
on the right hand side of (18) is always 50, so we 
have I!, 5 -K + 6MB where M is an upper bound 
for (V,p( and B is an upper Pound for (WI. By taking 
6 small enough we ensure L(u, b) < 0. Constructing 
a function like L for each equilibrium p of F and 
adding them up we obtain a strict Liapunov function 
for (18). QED 

One can iterate Theorem 6 for certain additive 
cascades of networks: In an additive cascade, func- 
tions of the outputs of the component nets are added 
to the input units of later nets in the cascade. 

Consider for example a cascade whose component 
nets ‘3i, each satisfy the hypotheses of a special form 
of the Cohen-Grossberg theorem (see eqn (6)). Fix 
j and let y be the vector of activations of ‘:)i,. The 
activation dynamics of 9, are assumed to be 

I’, = a,(.v,) h,(v,) - 2 c,,&(y,) + h,(z’) (19) 
I i 1 

where z’ is a vector whose components are the ac- 
tivations of the units in the nets ‘:)i,, . . , :)I,_, 
Notice that a, is a function of yi only. We assume 
a, > 0, d; > 0 and c,~ = ck,. Denote hj(Z’) by <. We 
recast (19) as 

where Bi(y,) = b,(y,) + ({ia,(y This is in the 
form required by the Cohen-Grossberg theorem, 
for each fixed <. Therefore the Cohen-Grossberg 
Liapunov function (7) gives a function Cr(l, y) which 
for each < is a strict Liapunov function for Gi(<, y). 
To apply Theorem 6 the vector fields (20) and the 
functions U(<, y) must be C’. To achieve this it suf- 
fices to assume that the functions a,, b;, d, and hj are 
c3. 

This gives a generalization of the Cohen-Gross- 
berg Theorem: There is a Liapunov function for a 

cascade of nets, each of which separately satisfies the 
hypothesis of the Cohen-Grossberg theorem in a 
slightly stronger form. More precisely, we weaken 
the requirement of symmetry of the weight matrix, 
assuming instead that it is in triangular block form 
with symmetric diagonal blocks, provided we restrict 
the amplification factors to be functions of one vari- 
able: 
Theorem 7. Consider a network 

with C’ functions a,, b,, d,. Assume u, > 0 and 
d,! > 0. Assume hyperbolic equilibria. Assume the 
matrix [c,,] is in lower (or upper) block triangular 
form, and that the diagonal blocks are symmetric. 
Then the activation dynamics has a strict C’ Liapu- 
nov function. 

Proof. The block triangular form allows us to rep- 
resent the net as an additive cascade. of which each 
component satisfies the requirements of the Cohen- 
Grossberg Theorem for a strict Liapunov function. 
The preceding discussion shows that Theorem 5 can 
be applied to the successive stages of this cas- 
cade. QED 

It is more difficult to obtain convergence for cas- 
cades of systems that are merely assumed to be con- 
vergent, but without benefit of Liapunov functions 
or global asymptotic stability. One way of doing this 
is to place strong restrictions on the rates of conver- 
gence. Roughly speaking, the cascade will be con- 
vergent provided the stable equilibria in the earlier 
stages in the cascade have faster convergence rates 
in their basins than equilibria in the later stages. 

Let us assume about the cascade (20) that almost 
every initial vulue for 1 = F(x) belongs to the basin 
o.f a stable equilibrium p. (This holds, for example, 
if F has simple equilibria and there is a strict Lia- 
punov function; it also holds for certain cooperative 
or competitive systems described below.) Assume 
also that for each stuble equilibrium p of F, every 
trujectory of _C = G( p, y) converges to a hyperbolic 
equilibrium q of (20). The key assumption is: For 
any such equilibria p and q, trajectories of F(x) ap- 
proach p at a faster exponential rate than trajectories 
of G(p. y) approach q. The technical formulation of 
this rate condition is the following: For any eigen- 
values i., /l of the linearizations of F(x) at s = p and 
of G(p, y) at y = q respectively, the real part of i., 
denoted by !H(i.), is less than !H(/i). Note that these 
real parts are negative by the assumption of stability 
of p and q. 
Theorem 8. With the assumptions of the preceding 
paragraph, almost every initial state of the cascade 
(20) belongs to the basin of a stable equilibrium. 

The proof is outlined in Appendix B. 
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There are examples of cascades for which Theo- 
rem 8 holds, but which have nonconstant periodic 
orbits; these of course cannot be stable. A variant 
of Theorem 8, assumes instead: (a) every equilibrium 
is hyperbolic; (b) every trajectory of k = F(x) con- 
verges to an equilibrium p; (c) for each such p, every 
trajectory of jt = G(p, y) converges; and (d) for 
any eigenvalues A, p of the linearizations of F(x) 
at x = p and of G(p, y) at y = 9 respectively. if 
?H(E.) < 0 then #(A) < !H(,u). The conclusion is then 
that every trajectory of the cascade converges. It 
then follows from hyperbolicity that the conclusion 
of Theorem 8 also holds. The proof of this result is 
outlined in Appendix B. 

To illustrate a possible application of Theorem 8. 
consider a two layer net :R, with each layer an ad- 
ditive recurrent net, such that the second layer :)iz 
does not send signals to the first layer :)‘)I,. Thus :R 
is a cascade of ?X, into :Xz. The dynamics is repre- 
sented by 

P, = --c,x, + c, W,,cr,(X,) + I, - F,(x) 

9, = -b,y, + c, UN~,(Y,) 

(22) 

+ 2, v~,n~m(xm) - G(x. y) (23) 

where the weights in the first layer are W;j, those in 

the second layer are Uki, and the weights from the 
first to the second layer are V,, . The activation func- 
tions in the first layer are g,(Xj), and in the second 
layer T,( y,). Suppose it is known that almost every 
initial value of the x-dynamics (22) is in the basin of 
a stable equilibrium, and that the real part of the 
eigenvalues of DF at such an equilibrium are 5 

-P < 0. (These eigenvalues may be estimated with 
Gerschgorin’s theorem; see section 8.) Assume fur- 
ther that for every such equilibrium p of the x-dy- 
namics (22), the y-dynamics (23) with x = p is con- 
vergent, with all equilibria simple. Suppose also that 
for each k (indexing the units in the second layer), 
the following inequalities holds: 

Then it can be shown using Gerschgorin’s theorem 
that at any equilibrium q of the y-dynamics (23), with 
x held constant at a stable equilibrium p of the X- 
dynamics, the eigenvalues of Z&G(p, q) have real 
parts > -p (compare the discussion preceding Theo- 
rem 2). 

Therefore by Theorem 8 these assumptions imply 
that almost every initial value of the activation dy- 
namics of the net ?)z lies in the basin of a stable 
equilibrium. Notice that this result is independent of 
the weights and connections berween layers. 

Further convergence results for cascades will be 
discussed below in connection with even loop sys- 
tems. 

11. EXCITATORY, IN&WMTORY AND 
SIGN-SWmRIC NETS 

Consider a net with fixed inputs; we suppress nota- 
tion for biases and inputs. Assume nonnegative ac- 
tivations a,, and let the activation dynamics be rep- 
resented by our standard differential equation 

.(_, = G’,(X,, W,lGl(Xl!. M;‘,.,G_,(X,,)) 

- F;(x,. . , x,,); i 7 1 . ti. (241 

Suppose the net is inhibitory, meaning that all con- 
nections between distinct units are inhibitory. We 
interpret this as Wij s 0 for i i j. It then follows 
from our standing assumptions about equation (1) 
that aF,/ax, 5 0 for i # j. Any vector field F with 
this property is called competitive. K 

When all connections between distinct units are 
excitatory we call the net excitatory. In this case dF,/ 
dx, 2 0 for i # j. Any vector field F with this prop- 
erty is called cooperative.” 

Inhibitory nets are often used for competitive 
learning (Grossberg, 1976, 1972; Kohonen, 1984: 
Malsburg, 1973). Usually the dynamics are designed 
so that the system is convergent, and for almost all 
initial conditions, the limiting equilibrium has only 
one unit with nonzero activation-this kind of acti- 
vation dynamics is called “choice” or “winner-take- 
all” competition. I4 This arrangement seems wasteful, 
since such a net can have only as many responses as 
it has units. Is there a useful type of competitive 
learning where the ratio of the number of stable equi- 
libria to the number of units scales at a greater than 
linear rate? Using the theorem of Smale referred to 
below one can construct competitive systems in R” 
that are convergent and have any number of stable 
equilibria; but most of these systems do not resemble 
nets. 

” This rather abstract formulation of competition is mathe- 
matically elegant but hard to verify from real biological or eco- 
nomic data, or to use for predictive purposes; it is more useful to 
mathematicians than to biologists or economists. Many other 
mathematical models of competition have been devised, some of 
which have even been experimentally validated: see e.g., Hsu, 
HubbelI, and Waltman (1978a, 1978b). Their use in neural net- 
works is unexplored. 

” A competitive system becomes cooperative under time-re- 
versal. This is a useful trick in investigating attractors and other 
compact invariant sets, since cooperative systems enjoy special 
properties derived from the Kamke-Miiller comparison principle 
(see Coppel, 1965): if x(t) and y(t) are sohrtions to a cooperative 
system and x,(O) 5 ~~(0) for all i then xi(t) c y,(t) for all r > 0. 

I4 It is sometimes assumed that this bolh for dl initial values. 
But this can only hold when there is only one stable equilibrium, 
an uninteresting property for competitive learning nets. When 
there are v z 2 stable equilibria in a winner-take-all net (as defined 
here) with convergent dynamics, then there must exist at least 
11 - 1 unstable equilibria at each of which two or more units are 
activated. 
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Smale showed in 1976 that any (n-1)-dimensional 
system can be embedded as an attractor in a system 
of y1 competing species. This unexpected result shows 
that only special kinds of competitive systems can be 
convergent, for example the symmetric Lotka-Vol- 
terra-Gause systems studied by MacArthur. Con- 
vergence theorems for other special classes of com- 
petitive systems have been proved by Chenciner 
(1977), Coste. Peyraud, Coullet, and Chenciner 
(1978), Grossberg (1978), Cohen and Grossberg 
(1983), Hirsch ( 1988). Competitive and more general 
systems of differential equations were intensively 
studied as ecological models by Lotka (1924), Vol- 
terra (1931), and Gause (1934). 

These results imply that only special kinds of in- 
hibitory networks can be expected to have convergent 
uctivation dynamics. In the following section we will 
describe some networks of this type. 

Excitatory nets, which can be used for “cooper- 
ative learning,” are an interesting class of nets which 
deserve more attention. They have very good con- 
vergence properties: 
Theorem 9. An irreducible excitatory net repre- 
sented by eqn (24) has almost quasiconvergent ac- 
tivation dynamics. If all equilibria are simple, then 
almost every activation state tends toward a stable 
equilibrium. 

This is an immediate consequence of the fact that 
every cooperative irreducible system is almost 
quasiconvergent’ (Hirsch. 1984, 1985, 1988a). 

In view of this result and others (Hirsch, 1982), 
cooperative systems cannot have very exotic dynam- 
ics. While there are examples of cooperative systems 
that are not convergent because they contain non- 
constant periodic orbits, and even chaotic orbits. 
these orbits cannot be stable. We would observe them 
only in special circumstances. 

We shall see that some nets having both excitatory 
and inhibitory connections, and whose weights are 
sign-symmetric. can be represented by cooperative 
systems after changing the signs of certain variables. 
Such systems are therefore almost quasiconvergent. 

In Hirsch (1987) the convergence results for co- 
operative irreducible systems were applied to obtain 
convergence theorems for certain kinds of neural net- 
works having irreducible activation dynamics. but 
not necessarily excitatory. The hypothesis of irre- 
ducibility is a serious restriction on the network ar- 
chitecture. however. It turns out that similar results 
apply to many reducible networks, as we now ex- 
plain. 

Consider a net :)I represented by our standard 

” It is unfortunately not known whether this result. and its 

consequences such as Theorem 9, are valid for systems operating 

in discrete time. 

differential equation. Besides assuming a, 2 0, we 
assume CJ,’ > 0 for all j (rather than our standing 
hypothesis 0,’ 2 0). Since we allow these derivatives 
to be arbitrarily close to zero, this assumption does 
not seem unduly restrictive. 

We also impose the very restrictive requirement 
that the weights are sign-symmetric: W,, W,, 2 0 for 
all i, j. This includes both excitatory and inhibitory 
nets, and many others as well. 

To the net ?)i (or the system (24)) we associate a 
labeled directed interaction graph r: the nodes are 
the indices 1, . . . , n of the units, with an arrow 
pointing from j to i only if W,, # 0. Ths arrow is 
labeled with the sign of W,,. Thus r is simply a picture 
of the network with signs of weights attached to the 
transmission lines. (We adopt the usual convention 
that if W,, = 0 then there is no transmission line from 
unit j to unit i.) 

To a sign-symmetric net we associate another la- 
beled graph, which is not directed, by joining node 
j to node i only if either W,, or W,, is f0. We call this 
the reduced graph r’ of the network. 

In section 9 we observed that every net breaks up 
into a cascade of maximal irreducible subnets ‘:)ik, 
called the basic subnets, connected to each other in 
a feed-forward fashion (see Appendix A). It is tempt- 
ing to conjecture. but false. that if each basic subnet 
has convergent activation dynamics. then so has the 
whole net. The following result. however, can be 
proved using the results of Hirsch (1985): 
Theorem 10. The net ‘:)i has almost quasiconvergent 
dynamics provided each basic subnet YR~ is repre- 
sented in some coordinate system by a cooperative 
system of differential equations having isolated equi- 
libria. 

It is therefore of interest to determine conditions 
guaranteeing such a representation.‘” 

Now the standard differential equations for a sub- 
net :)i, are obtained from (24) by deleting the vari- 
ables corresponding to units outside the subnet, and 
setting the corresponding weights to zero. This sys- 
tem is irreducible; and it will be cooperative precisely 
when all connections between distinct vertices in the 
subnet are excitatory. Even if the standard differ- 
ential equations do not give a cooperative system, 
however, it is sometimes possible to find a change 
of variables rendering the system cooperative in the 
new variables. 

A simple change of variables effecting this can be 
made for a basic subnet -)iA in case its interaction 

Ih I don’t know whether the assumption of isolated equilibria 

is really needed. Having isolated equilibria is a generic property 

of vector fields. It is very likely a generic property of systems like 

(24). 
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graph rk satisfies the following even directed loop 
condition: 

l Every directed loop contains an even number 

of minus signs.17 

Any sign-symmetric net for which this condition 
holds is called consistent. For an irreducible net the 
even directed loop condition is equivalent to the even- 
loop condition in Hirsch (1987). In that paper I showed 
that the activation dynamics of an even-loop net is 
cooperative if coordinates are changed by reversing 
the sign of certain activation variables. (See Smith, 
1988 for a systematic approach to this process.) 

Assume now that :X is consistent. It is easy to see 
that each $3, is consistent.1s It follows that each !-)I,, 
being irreducible, is almost quasiconvergent; and 
therefore Theorem 10 implies that ~3 is almost quasi- 
convergent provided it has finitely many equilibria. 

In summary: 
Theorem 11. Let YX be a net whose activation dy- 
namics are represented by equation (24), with (T, 2 
0 and 0,’ > 0. 

(4 

(b) 

(4 

If V% is excitatory and irreducible, then system 
(24) is almost quasiconvergent. 
If the activation dynamics in each basic subnet 
can be represented by a cooperative system of 
differential equations (allowing an arbitrary 
change of variables in each basic subnet), then 
system (24) is almost quasiconvergent provided 
the equilibrium set is finite. 
Suppose ?R is sign-symmetric and consistent. Then 
(24) is almost quasiconvergent provided the equi- 
librium set is finite. 

As an example, consider an irreducible inhibitory 
net whose reduced graph is embedded in a cubical 
or hexagonal lattice with nodes at lattice points. Thus 
every directed edge of the interaction graph is neg- 
ative and every loop has an even number of edges. 
Therefore the system is irreducible and consistent. 
so it transforms into a cooperative system by chang- 
ing the sign of some variables. Hence (a) implies it 
is almost quasiconvergent. Even if the net is redu- 
cible, provided there are only finitely many equilib- 
ria, (c) implies almost quasiconvergence. 

Another example of a consistent net is a sign- 
symmetric net whose reduced graph is embedded in 
the plane with each node having integer coordinates, 
with each edge vertical, horizontal, or diagonal of 
slope 2 1, and with positive weights on the diagonal 
edges and negative weights on the vertical and hor- 
izontal edges. This represents inhibition between 
nearest neighbors and excitation between immediate 

” Of course zero is an even number. 
lx But this does not imply 91 can be made cooperative by a 

change of variables; $3 may be reducible. 

M. W. Hirsch 

diagonal neighbors. It is easy to see that by changing 
the signs of the activation variables of each unit 
whose horizontal and vertical coordinates differ by 
an even number, we obtain a cooperative dynamical 
system. If the net is irreducible, or if the equilibrium 
set is finite, Theorem 11 shows that the activation 
dynamics are almost quasiconvergent. 

An inhibitory net whose reduced graph is embed- 
ded in a triangular lattice is not necessarily consis- 
tent. There is a completely connected three-dimen- 
sional competitive system (representing an inhibitory 
net with three units) which has an attracting limit 
cycle; thus it is not almost quasiconvergent. Of 
course such a net is not consistent. 

A convenient property of the class of consistent 
nets is that it is closed under arbitrary cascading, 
with arbitrary signs for the weights on the new trans- 
mission lines, because no new loops are introduced 
by cascading. In this way quite complex neural nets 
can be built up, which are guaranteed to have almost 
quasiconvergent activation dynamics provided the 
number of equilibria is known to he finite. These are 
not biologically plausible as models of the nervous 
system; but they may be useful as designs for artificial 
networks where convergence is desired. 

In Hirsch (1984) it is shown that sufliciently small 
perturbations of irreducible cooperative systems are 
almost quasiconvergent. Thus almost quasiconverg- 
ence is a robust property of these systems. The size 
of the allowable perturbations can in principle be 
estimated. 

It is not known if the same applies to perturbations 
of cascades of irreducible cooperative systems. But 
it can be shown to hold for such cascades (and hence 
for consistent systems) provided that the perturbed 
system introduces no new connections between dif- 
ferent irreducible components; or more generally, if 
they are introduced, then they join only components 
that were originally connected, with the same direc- 
tion as the original connections. 

The following result applies only to nets with a 
very special architecture, but it yields convergence 
for all initial states: 
Theorem 12. Let :X be a sign-symmetric irreducible 
net represented by eqn (24). Assume the reduced 
graph embeds in a straight line, and that the vector 
field F has continuous partial derivatives of order 
n - 1. Then the activation dynamics are conver- 
gent.‘” 

Proof. By changing the signs of certain activation 
variables the dynamics can be made cooperative 
(or competitive). The conclusion now follows from 
the theorem of Smillie (1984) on tridiagonal sys- 
tems. QED 

VI The same result probably holds even if F iS Only Contiuu- 
ously differentiable. 
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It is unfortunately not known whether analogues 
of the convergence results in this section are valid 
for discrete-time systems. 

It is known that in dimension n = 2 competitive 
systems are always convergent (Albrecht, Gatzke, 
Haddad, & Wax, 1974). and their orbit structure is 
completely analyzed (Holz, 1987); but in dimension 
3 there can be periodic orbits (Coste, Peyraud, & 
Coullet. 1979; Gilpin. 1975; Zeeman, 1989) and non- 
periodic oscillations (May & Leonard, 1975; Schus- 
ter, Sigmund, & Wolff, 1979), but there cannot be 
so-called “strange attractors” or any kind of chaotic 
dynamics (Hirsch, 1982. in press-b). In higher di- 
mensions there can be numerically chaotic dynamics 
(Arnedo et al.. 1982); see also the papers by Kerner 
(1961), Levin (1970), Coste et al. (1978). See also 
the valuable survey by Freedman (1980), which 
treats many related types of systems arising in bio- 
logical modeling. 
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APPENDIX A: CASCADE DECOMPOSITION 

We prove Theorem 4, which states that we can decompose 
any reducible net 31 into a cascade whose components are the 
basic subnets of :)i. 

Call two units U, and U, cocyclic if they are the same or they 
belong to a loop of directed transmission lines. This is an equiv- 
alence relation on the set of units; the equivalence class of a unit 
is the set of all units cocyclic with it. in equivalence class is a 
maximal set of units of which each pair is cocyctic. A net is ir- 
reducible if there is only one equi;alence cl&. Since we are 
supposing r1l is reducible, the set of units breaks up into at least 
two eauivaknce classes 41,. . , 41,. 

Lei :a, be the subnet of rX whose units are those in O,, with 
all the connections between them. Each !H. is a maximal irreducible 
subnet of 91; the :1), are the basic subnets of %. It is easy to see 
that if there are connections between two basic subnets $8, and 
!H,, they can be in only one direction: all from ~6, to IB,, or all from 
!I$ to ‘8,. 

There must be some basic subnet with no lines coming into it; 
call these the level 0 subnets. Let % be the union of all these. 
Since % is reducible then there must be some basic subnet re- 
ceiving signals from ?)I,, but not from any other basic subnet except 
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itself. These are level 1 subnets. Let 9i, be the subnet comprising 

the units of the level 1 subnets and all connections between them. 

Continuing in this way we recursively define a basic subnet to be 

level k + I if it receives input from units in one or more basic 

subnets at a lower (previously defined) level. but not from any 
other units of <‘Ii; then :li&+, is defined to be the subnet comprising 
the units of the level k + 1 subnets and all connections between 

them. 
The net comprising :‘)i,,. :)i, and all the connections between 

them (which go only from ‘I<,, to -Ii,) is a subnet .i’, which is a 
cascade of %,, into !)I,. If Y, # ~)i then we define .\‘: to be the net 

comprising Y,. ‘)t! and all connections from Y, to %2. Then ?‘: is 

the cascade of !‘, into 1%2. In this way we build up the original net 

Eli as an iterated cascade whose components are the maximal ir- 
reducible subnets ‘I:,. 

APPENDIX B: PROOF OF THEOREM 8 

We prove Theorem 8. 

Let F be a vector field on R’“, G a map from 31’” x R” to R”. 

and consider the dynamical svstem 

.? = F(.r). j = G(x, y). (25) 

This is the cascade of the two systems i = F(x) and p = G(<. y). 

where < is a parameter for the latter system. We make the fol- 

lowing assumptions: 

(a) Almost every initial value for X = F(x) belongs to the basin 

of a stable equilibrium p. 

(b) For each stable equilibrium p of F, every trajectory of G(p. 

(c) 

y) converges to a hyperbolic equilibrium q of system (25). 

Letp be a stable equtlibrium of F(x) and 4 a stable equilibrium 

of G( I-‘. y) (with p held fixed). Suppose i is an eigenvalue of 

the linearization of F at p, and /l is an eigenvalue of the 

linearization of G(p. y) at y. Then the real part of i. is less 

than the real part of il. 

Theorem 8. With the preceding assumptions. almost every initial 

state of the cascade (25) belongs to the basin of a stable equilib- 

rium. 

Proof. Let S C R” x R” be a set of positive measure; we must 
show that some point of S lies in the basin of a stable equilibrium 

for (25). By (a) we assume that there is a point (x. y) E S such 
that x E R”’ is in the basin B(p) of a stable equilibrium p for F. 

Fix such a p, and let T C 5’ be subset of all points (x, y) in S such 

that x E B(p). It can be shown using (c) that every trajectory 
starting in T is asymptotic with some trajectory in p x R” (the 

proof uses the methods of Hirsch and Pugh. lY70). Therefore by 

(b) every trajectory starting in T is in the stable manifold W(q) 

of an equilibrium q; thus T is contained in the union of stable 

manifolds. Since the equilibrium set is countable by hyperbolicity, 

at least one of the stable manifolds W(q) meeting T must have 
positive measure. But this means W(q) has dimension m + II. so 

y must be a stable equilibrium. QED 

The variant of Theorem 8 assumes: 

(i) every equilibrium is hyperbolic; 
(ii) every trajectory of x = F(x) converges to an equilibrium p: 

(iii) for each such p, every trajectory of ,V = G( p. v) converges; 

and 
(iv) for any eigenvalues i, jr of the linearizations of F(x) at x = 

p and of G(p. v) at y = q respectively. if Pi(;) < 0 then 

!)l(i.) i !)i(,c). 

The conclusion is then that every trajectory of the cascade con- 

verges. To prove this, consider a smgle trajectory (x(t). v(r)), with 

-r(t) --) p. Then x(r) lies in to the stable manifold of p for the 
vector field F; denote this stable manifold by V C R”‘. Then (x(f), 

$t)) lies in the submanifold M = V x R” C W”’ x R”. and M is 

Invariant under the flow of the full cascade (25). Assumption (iv) 

can be used to show that every trajectory in M is asymptotic to 

a trajectory in p x R”. Therefore by (iii). (x(r). y(t)) con- 

verges. QED 




