UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Simulating Activities: Relating Motives, Deliberation, and Attentive Coordination

Permalink

https://escholarship.org/uc/item/9968v6mv

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 25(25)

ISSN

1069-7977

Author

Clancey, William J.

Publication Date

2003

Peer reviewed

William J. Clancey

NASA-Ames Research Center Computational Sciences Division, MS 269-3 Moffett Field, CA 94035 http://bill.clancey.name; william.j.clancey@nasa.gov

Simulating Activities: Relating Motives, Deliberation, and Attentive Coordination

Abstract

Activities are located behaviors, taking time, conceived as socially meaningful, and usually involving interaction with tools and the environment. In modeling human cognition as a form of problem solving (goal-directed search and operator sequencing), cognitive science researchers have not adequately studied "off-task" activities (e.g., waiting), non-intellectual motives (e.g., hunger), sustaining a goal state (e.g., playful interaction), and coupled perceptual-motor dynamics (e.g., following someone). These aspects of human behavior have been considered in bits and pieces in past research, identified as *scripts*, *human factors*, *behavior settings*, *ensemble*, *flow experience*, and *situated action*. More broadly, *activity theory* provides a comprehensive framework relating motives, goals, and operations. This paper ties these ideas together, using examples from work life in a Canadian High Arctic research station. The emphasis is on simulating human behavior as it naturally occurs, such that "working" is understood as an aspect of living. The result is a synthesis of previously unrelated analytic perspectives and a broader appreciation of the nature of human cognition. Simulating activities in this comprehensive way is useful for understanding work practice, promoting learning, and designing better tools, including human-robot systems.

Related Work

Clancey, W. J. 2002. Simulating Activities: Relating Motives, Deliberation, and Attentive Coordination. *Cognitive Systems Research* 3(3):471-499, September 2002. Special issue on Situated and Embedded Cognition.

Clancey, W. J. 2001. Field science ethnography: Methods for systematic observation on an expedition. *Field Methods*. August. pp. 223-243.

Clancey. W. J. 2001. Empirical Requirements Analysis for Mars Surface Operations Using the Flashline Mars Arctic Research Station. *FLAIRS*. Key West, May.

Clancey, W.J. 1999. *Conceptual Coordination: How the mind orders experience in time*. Mahwah, NJ: Erlbaum.

Clancey, W.J., Sachs, P., Sierhuis, M., & van Hoof, R. 1998. Brahms: Simulating practice for work systems design. *Int. J. Human-Computer Studies*, 49, 831-865.

Clancey, W. J. 1997. *Situated Cognition: On Human Knowledge and Computer Representations*. New York: Cambridge.