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Abstract of the Dissertation

Joint Inference for Competing Risk Data

by

Qing Yang

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2014

Professor Gang Li, Chair

This dissertation develops joint inferential methods for the cause specific hazard

function and the cumulative incidence function of a specific type of failure to

assess the effects of a variable on the type of failure of interest in the presence

of competing risks. Joint inference for the two functions are needed in practice

because 1) they describe different characteristics of a particular type of failure,

2) they do not uniquely determine each other, and 3) the effects of a variable

on the two functions can be different and one often does not know which effects

are to be expected. We study both the group comparison problem and the Cox’s

regression problem. We also develop joint inference for other equivalent pairs of

functions. Our simulation shows that the derived joint tests can be considerably

more powerful than the Bonferroni method, which has important practical impli-

cations to the analysis and design of clinical studies with competing risks data.

We illustrate our methods using a Hodgkin disease data and a lymphoma data.

We also develop sample size calculation methods based on nonparametric two-

sample joint tests of the cause-specific hazard and the all-cause hazard. A user

friendly R-function is developed to implement the method. We illustrate the im-

plementation of our method and the potential saving on the required sample size
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over the Bonferroni method through simulations and the 4-D (Die Deutsche Dia-

betes Dialyse Studie) clinical trial designed to compare a lipid lowering treatment

with placebo in type 2 diabetic patients on hemodialysis.
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CHAPTER 1

Introduction

Competing risks failure time data arise commonly in clinical trials, reliability

testing, and other fields. For instance, in a clinical trial, one may be interested in

time to death due to a particular disease, but a patient can also die from other

competing diseases that are potentially positively correlated with the disease of

interest. Competing risks can also be negatively correlated with the event time

of interest. For example, in a kidney transplantation program, patients who are

ineligible for transplantation due to reasons, such as being overweight, are put

on a waiting list until they become eligible (see, e.g., Sancho et al. (2007)). An

important variable of interest is the waiting time to become eligible for trans-

plantation. In this case, death before becoming eligible for the transplantation is

a competing risk event that is potentially negatively correlated with the waiting

time. More examples of competing risks failure time data can be found in Graunt

(1899); Halley (1942); Prentice et al. (1978); Pintilie (2006); Gichangi and Vach

(2005); Putter et al. (2007), and the references therein.

There is a broad literature on analysis of competing risks survival data. Group

comparison of a specific type of failure has been studied using either the cause

specific hazard (Prentice et al., 1978; Lindkvist and Belyaev, 1998; Kulathinal

and Gasbarra, 2002) or the cumulative incidence (Gray, 1988; Pepe and Mori,

1993; Bajorunaite and Klein, 2007). Methods to compare failures across failure

types have been developed with respect to either the cause specific hazard, or the
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cumulative incidence, or both (Aly et al., 1994; Sun and Tiwari, 1995; Lam, 1998;

Luo and Turnbull, 1999). Tiwari et al. (2006) proposed a test to check equal-

ity of cause specific hazards across all failure types and groups. For regression

analysis of competing risks survival data, Prentice et al. (1978), Lagakos (1978),

Holt (1978), Cox and Oakes (1984, chap.9), and Larson (1984); Lunn and Mc-

Neil (1995) studied proportional cause-specific hazards models. Fine and Gray

(1999) introduced a proportional subdistribution hazards model for cumulative

incidence regression. Fine (1999), Fine (2001), Klein and Andersen (2005), and

Gerds et al. (2012) used transformation models to directly model the cumulative

incidence function. Klein (2006) discussed additive models for both cause specific

hazard and cumulative incidence function. Comprehensive survey of methods for

competing risks data and further references can be found in Beyersmann et al.

(2007); Latouche et al. (2007); Haller et al. (2012).

1.1 Joint Inference for Competing Risks Data

In the first part of the dissertation we focus on the problem of assessing the

effects of a variable (treatment or covariate) on a particular type of failure. For

convenience, we assume hereafter that there are only two types of failure, where

type 1 failure is of interest and type 2 includes all other competing risks. As

discussed earlier, there are mainly two approaches to this problem. One approach

is based on the cause-specific hazard (CSH)

λ1(t) = lim
dt↓0

P (t ≤ T < t+ dt,D = 1|T ≥ t)/dt, t > 0

the instantaneous risk for type 1 failure at time t given that the subject is at risk

just prior to t, where T is the continuous failure time with J possibly correlated

types and D is the failure type. For example, Prentice et al. (1978) showed that
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the standard Cox (1972, 1975) regression method can be used to study the effect of

a variable on the cause-specific hazard λ1(t) by treating other types of failures as

independent censoring. Another approach uses the cumulative incidence function

(CIF),

F1(t) = P (T ≤ t,D = 1), t > 0

the cumulative incidence rate of type 1 failure by time t, or equivalently, the

sub-distribution hazard (SDH) of F1(t), which is defined by

λ̃1(t) = limdt↓0 P (t ≤ T < t+ dt,D = 1|T ≥ t ∪ (T < t ∩D 6= 1))/dt

= −d log {1− F1(t)} /dt,

In particular, Gray (1988) developed a class of nonparametric tests to compare the

CIFs of a particular type of failure between different groups and Fine and Gray

(1999) introduced a proportional subdistribution hazards model for regression

problems.

Despite of the extensive literature on this topic, there are still confusions to

practitioners as to which method should be used in practice when studying the

effects of a variable on type 1 failure. We point out that joint inference for both

λ1(t) and F1(t) should be made. First of all, these two quantities describe different

characteristics of type 1 failure: λ1(t) represents the instantaneous type 1 failure

rate at time t given survival to t, whereas F1(t) summarizes the prevalence or

cumulative incidence of type 1 failure over the time interval [0, t]. Secondly, λ1(t)

and F1(t) do not uniquely determine each other except when J = 1. It can be

shown that F1(t) =
∫ t

0
S(u)λ1(u)du, where S(u) = P (T > u) is the all-cause

survival function. Thus F1(t) depends not only on λ1(t), but also on other cause-

specific hazards through the all-cause survival function S(t). Finally, the effect of

a variable on λ1(t) can be different from its effect on F1(t) (Gray, 1988; Fine and

Gray, 1999), and one often does not know which effects are to be expected. To the
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best of our knowledge, however, no formal joint inference procedure is available

for these quantities in the literature. Although Bonferroni’s method provides a

straightforward solution, we demonstrate later in Sections 3 and 4 that it can be

severely under-powered since it does not account for potential correlation between

the estimates of the two quantities.

The primary purpose of this first part of the dissertation is to develop joint

inference procedures to assess the effects of a variable on λ1(t) and F1(t) simul-

taneously. We allow independent right censoring in addition to competing risks.

We first consider the two-sample comparison problem with respect to both λ1(t)

and F1(t). By establishing the asymptotic joint distribution of the weighted log-

rank test statistic for λ1(t) and the Gray (1988) test statistic for F1(t) (or λ̃1(t)),

we derive two-sample joint tests for λ1(t) and F1(t). We then extend our method

to a regression setting based on Cox’s type models for λ1(t) and F1(t). We also

remark that our approach can be extended to develop joint tests for other related

quantities.

1.2 Sample Size Calculation for Joint Test of Competing

Risks Data

To establish the efficacy of a treatment with sufficient power at a pre-specified

Type I error level, one needs to determine the adequate number of patients to be

enrolled in a randomized placebo-controlled clinical trial. There is an extensive

literature on sample size calculation for a time-to-event outcome with indepen-

dent right censoring. For example, a widely used sample size calculation formula

was proposed by Schoenfeld (1981, 1983) who considered uniform patient entry

and administrative censoring. Lachin and Foulkes (1986) extended the formula
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to more complex clinical situations, allowing for truncated exponential patient

entry, losses to follow-up, noncompliance and stratified analysis. Yateman and

Skene (1992) used piecewise exponential distribution to approximate arbitrary

patient entry pattern and losses to follow-up distribution. A nice review of sam-

ple size calculation and further references can be found in (Lachin, 1981; Lakatos,

1986; Lachin and Foulkes, 1986; Lakatos, 1988; Lakatos and Lan, 1992; Schmoor

et al., 2000; Eng and Kosorok, 2005).

We will develop sample size calculation methods for jointly testing the cause

specific hazard and the all cause hazard in a two sample comparison situation in

the presence of competing risks and independent right censoring.

1.3 Research Outline

The organization of the dissertation is as follows. In Chapter 2, we will introduce

some basic background information for competing risks data, sample size calcula-

tion for survival data and counting process theory we need to use in the following

chapters. In Chapter 3, we develop joint test procedures for group comparisons

of λ1(t) and F1(t) and joint regression analysis methods for λ1(t) and λ̃1(t) un-

der Cox-type regression models. We also discuss joint tests for other equivalent

pairs including λ1(t) with the all-cause hazard, and λ1(t) with the cause-specific

hazard for other failure types. We presents some simulation results to evaluate

the proposed methods and compare them with the Bonferroni method, and illus-

trate our methods on a Hodgekin disease data and a follicular lymphoma study.

In Chapter 4, we develop a sample size calculation method for two sample non-

parametric joint test with respect to cause specific hazard and all cause hazard

as well as some simulation studies and a real data example. We present some

discussion and future researches in chapter 5.
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CHAPTER 2

Preliminaries

In this chapter, first we introduce two important quantities in competing risks

data analysis and the related non-parametric test and semi-parametric Cox mod-

els. Then we summarize the sample size calculation methods proposed by Schoen-

feld (1981, 1983) for survival data with independent right censoring. We also

review basic counting process and martingale theories which will be useful for

our derivations.

2.1 Competing Risks Models

Standard survival data considers the time span from some time origin to a major

end point defined by the occurrence of a certain event of interest when a possible

independent right censoring is involved. However, in practice, the more commonly

seen situation is that there are more than one type of events which can potentially

lead to subject’s failure. Typically we can only observe one of the events in this

case, which forms a competing risk situation. We usually are interested in only

one type of event, and other possible events are called competing risks. For

example, in cancer research, we are interested in time to death due to a specific

type of cancer, so death due to other diseases, such as heart attack, patients’

losses to follow-up and end of study are considered as competing risks. Under the

competing risks model, we can have dependent competing risks or independent

6



competing risks. For the latter, we usually call it independent censoring, which

means the competing risk or the censoring has nothing to do with the disease

or other risks. In our example, end of study can be considered as independent

censoring, while patient’s losses to follow-up may fall in this category if we can

assume patients’ losses to follow-up were due to moving out of the area etc. For

death due to other medical problems, it will be hard to justify that they are

independent of the death due to a specific cancer. We can imagine that there

are always some biological mechanism behind this. It’s possible that people who

died due to heart attack is more likely to experience death due to cancer since

their health condition in general are not good.

2.1.1 Two Sample Comparison

Suppose that there are two independent groups of subjects. Let Tik, Dik, and Cik

denote the continuous failure time, the type of failure, and the censoring time,

respectively, for subject i in group k, i = 1, . . . , nk, k = 1, 2. Assume that the

triplets (Tik, Dik, Cik) for different subjects within each group are independent

and identically distributed and that the censoring time Cik is independent of

the survival time Tik. The two groups are allowed to have different censoring

distributions. For group k (k = 1, 2), one observes a right censored compet-

ing risks survival data {(Xik, δik), i = 1, . . . , nk}, where Xik = min(Tik, Cik) and

δik = DikI(Tik ≤ Cik). Let Sk(t) = P (Tik > t) and Sck(t) = P (Cik > t). For

group k (k = 1, 2), let λ1k(t), F1k(t), and λ̃1k(t) denote the cause-specific haz-

ard function, the cumulative incidence function, and the sub-distribution hazard

function, respectively, for type 1 failure.
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2.1.1.1 Logrank Test for Cause Specific Hazard

We first review the two-sample weighted log-rank test for the cause-specific hazard

for type 1 failure.

It is now well known that the standard (weighted) log-rank test (Peto and

Peto, 1972; Andersen et al., 1982) for right censored survival data can be used to

test the following null hypothesis

H0 : λ11(t) = λ12(t) for all t > 0, (2.1)

by treating all other competing risks as independent right censoring (Tsiatis,

1975; Prentice et al., 1978; Lindkvist and Belyaev, 1998). Specifically, letNjk(t) =∑nk
i=1 I(Xki ≤ t,Dki = j) be the counting process of the number of observed type

j failure in group k by time t, and Yk(t) =
∑nk

i=1 I{Xki ≥ t} be the at risk

process indicating the number of subjects in group k who are at risk prior to

time t, k = 1, 2. Let Nj·(t) =
∑2

k=1Njk(t) and Y·(t) =
∑2

k=1 Yk(t). The weighted

log-rank test statistic for (2.1) is defined as

U1k =

∫ τ

0

W1(t)Yk(t)

{
dN1k(t)

Yk(t)
− dN1·(t)

Y·(t)

}
, (2.2)

where W1(t) is a predictable weight function, which converges in probability to

some deterministic function w1(t) when n → ∞, and τ is the largest time at

which all of the groups have at least one subject at risk. It can be shown that

under the null hypothesis, n−1/2U11/σ̂ has a standard normal limiting distribution

where

σ̂2 =

∫ τ

0

W 2
1 (t)

Y1(t)Y2(t)

Y·(t)

dN1·(t)

Y·(t)
. (2.3)

This leads to an asymptotic χ2
1-test or a Z test for (2.1).
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2.1.1.2 Two-Sample Tests for Cumulative Incidence

Gray (1988) developed a class of K-sample nonparametric tests to compare the

cumulative incidence between different groups. Consider the following null hy-

pothesis

H0 : F11(t) = F12(t) for all t > 0. (2.4)

or equivalently

H0 : λ̃11(t) = λ̃12(t) for all t > 0. (2.5)

The Gray (1988) nonparametric test statistic is defined as

Ũ1k =

∫ τk

0

W̃ (t)Rk(t)

{
dN1k(t)

Rk(t)
− dN1·(t)

R·(t)

}
, (2.6)

where W̃ (t) is a predictable weight function, which converges in probability to

some deterministic function w̃(t) when n→∞, Rk(t) = I(τk ≥ t)Yk(t)Ĝjk(t)/Ŝk(t−)

can be considered as an adjusted risk set size for group k at time t and τk is

some fixed time point satisfying Sk(τk)S
c
k(τk) > 0. R·(t) represents the same

quantity in the pooled sample. Let S·(t) and Fj·(t) denote the survival function

and cumulative incidence function with respect to cause j for pooled sample in

two groups, respectively. Ĝjk(t−) is the the left-hand limit of the Kaplan-Meier

(1958) estimate of Gjk(t) = 1−Fjk(t), and Ĝj·(t−) is the the left-hand limit of the

Kaplan-Meier estimate of Gj·(t) = 1−Fj·(t). Ŝk(t−) and Ŝ·(t−) are the left-hand

limit of the Kaplan-Meier estimate of Sk(t) and S·(t), respectively. Gray (1988)

showed that n−1/2Ũ11/ˆ̃σ has a standard normal limiting distribution, where

ˆ̃σ2 =
2∑

k=1

n−1

{∫ τ1

0

â2
k(t)ĥ

−1
k (t)ĥ−1

· (t)dN1·(t) +

∫ τ1

0

b̂2
2k(t)ĥ

−2
k (t)dN2k(t)

}
, (2.7)
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with

âk(t) = d̂1k(t) + b̂1k(t),

b̂jk(t) =
[
I(j = 1)− Ĝ1·(t)/Ŝk(t)

]
[ĉk(τ1)− ĉk(t)] ,

ĉk(t) =
∫ t

0
d̂1k(u)Ĝ1·(u−)−1ĥ−1

· (u)dN1·(u),

d̂jk(t) = n−1I(j = 1)W̃ (t)R1(t)
[
I(k = 1)− ĥk(t)/ĥ·(t)

]
/Ĝ1·(t−),

ĥk(t) = I(t ≤ τk)n
−1Yk(t)/Ŝk(t−),

ĥ·(t) = I(t ≤ max(τ1, τ2))n−1Y·(t)/Ŝ·(t−),

Ĝ1·(t) = 1− F̂1·(t) = 1− n−1
∫ t

0
ĥ−1
· (u)dN1·(u).

(2.8)

This gives an asymptotic χ2
1-test for (2.4) based on n−1Ũ2

11/ˆ̃σ2 or a Z test based

on n−1/2Ũ11/ˆ̃σ.

2.1.2 Proportional Hazard Model

Assume that one observes n independent and identically distributed triples (Xi, δi,

Zi), where for subject i (i = 1, . . . , n), Xi = min{Ti, Ci}, δi = DiI(Ti ≤ Ci), Ti

is the failure time of interest, Ci is a right censoring time, Di is discrete random

variable taking values on 1, . . . , J with Di = j indicating that type j failure is

observed, and Zi is a vector of fixed or time-varying covariates that are observed

on [0, Xi]. Assume Ci is independent of Ti, Di and Zi, and pr(Ci ≥ t) = Gc(t).

2.1.2.1 Cox Regression for Cause Specific Hazard

When we evaluate cause specific hazard in a competing risks set, we are actually

treating the competing risks other than the cause of interest, j, as independent

censoring. This can be seen by writing out the partial likelihood based on the

cause specific hazard with respect to each causes (Prentice et al., 1978) (Tsiatis,

1975). So we can use the standard Cox (1972, 1974) model to model effects of

regression variables on a cause-specific hazard function by regarding all failures
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from other causes as independently censored at their time of failure. Suppose the

covariates we want to include in the model is a p dimension covariates vector Z(t),

which include treatment indicator, time varying covariates chosen from Z(t), and

some possible interactions. Conditional on Z(t), the model can be formulated as

λj(t|Z(t)) = λj0(t) exp(ZT (t)β0), (2.9)

where λj0(t) is the baseline cause specific hazard for cause j. The p dimension

score test statistics with respect to coefficient vector β is

S
(n)
j (β) =

n∑
i=1

∫ ∞
0

{
Zi(t)− Z̄(β, t)

}
dNij(t), (2.10)

where Z̄(β, t) =
∑
l Yl(t)Zl(t) exp(ZTl (t)β)∑
l Yl(t) exp(ZTl (t)β)

, Yi(t) = I{Xi ≥ t} and Nij(t) = I(Xi ≤

t,D = j). It’s been proved that under the null hypothesis, n−1/2S
(n)
j (β) has a

p dimension normal limiting distribution with mean 0 and variance-covariance

matrix

Ω(pp) =
1

n

n∑
i=1

∫ ∞
0

[
Zi(t)− Z̄(β, t)

]⊗2
exp(ZT

i (t)β)Yi(t)λj0(t)dt, (2.11)

which can be estimated by

Ω̂(pp) =
1

n

n∑
i=1

∫ ∞
0

[∑
l Yl(t)Zl(t)

⊗2 exp(ZT
l (t)β̂)∑

l Yl(t) exp(ZT
l (t)β̂)

− Z̄(β̂, t)⊗2

]
dNij(t), (2.12)

where β̂ is the Maximum Likelihood Estimate of β. Then n1/2(β̂ − β0) ≈

Ω−1
(pp)n

−1/2S
(n)
j (β0). The details can be found in Prentice et al. (1978), Flem-

ing and Harrington (1991, chap. 8) and Andersen et al. (1993, chap.7).

2.1.2.2 Fine & Gray’s Proportional Hazard Model for Subdistribution

Hazard

Cause-specific hazard is a widely used quantity in evaluating treatment effect

with respect to one specific cause, however, the interpretation is restricted to
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actual study conditions, and there is no implication that the same effect would be

observed under a new setting. Moreover, the instantaneous risk of specific failure

type is usually of less interest compare to the overall probability of the specific

failure type, which can be formulated as the cumulative incidence function. The

problem is there is no one-to-one relationship between the cause-specific hazard

and the cumulative incidence function, and the effect of a covariate on the cause-

specific hazard function of a particular failure type may be quite different from the

effect of the covariate on the corresponding cumulative incidence function(Gray

1988, Pepe 1991). Thus, Fine and Gray (1999) proposed a new semiparametric

proportional hazards model for the subdistribution which akin to proportional

cause-specific hazards model.

The second hypothesis we are interested in testing is if cumulative incidence

Fj(t) for cause of interest, j, are the same in the two treatment groups. In our

paper, we adapt the proportional hazard model for subdistribution after log(-

log) transformation proposed by Fine and Gray (1999). Subdistribution hazard

or cumulative incidence hazard is defined by

λ̃j(t) = limdt↓0 P (t ≤ T < t+ dt,D = j|T ≥ t ∪ (T < t ∩D 6= j))/dt

= −d log {1− Fj(t)} /dt.
(2.13)

λ̃j(t) is modeled by

λ̃j(t|Z̃(t)) = λ̃j0(t) exp(Z̃T (t)γ0), (2.14)

where λ̃j0(t) is the baseline hazard for cause specific cumulative incidence hazard

for cause j, and Z̃(t) is a q dimension vector of time varying covariates we chose

from Z(t), which might be different from Z(t) we use for model (3.18).

By using similar notations from Fine and Gray (1999), let us assume the

censoring variable C is independent of T,D, Z̃ with survival function Gc(t) =

12



P (C ≥ t). The q dimension score test statistics with respect to γ can be expressed

as

S̃
(n)
j (γ) =

n∑
i=1

∫ ∞
0

{
Z̃i(t)− ¯̃Z(γ, t)

}
ωi(t)dÑij(t), (2.15)

where ¯̃Z(γ, t) =
∑
l ωl(t)Ỹl(t)Z̃l exp(Z̃Tl (t)γ)∑
l ωl(t)Ỹl(t) exp(Z̃Tl γ)

, Ñij(t) = I(Ti ≤ t,D = j), and Ỹi(t) =

1−Ñij(t−). ωi(t) is a time dependent weight constructed by adapting the inverse

probability of censoring weighting techniques. It’s calculated by ωi(t) = I(Ci ≥

Ti ∧ t)Ĝc(t)/Ĝc(Xi ∧ t), where Ĝc is a Kaplan-Meier estimator of the survival

function of the censoring variable, C. Notice that Ñij(t) is different from Nij(t)

and may not be observed if the subject is censored, but ω(t)Ñij(t) is always

computable.

It’s proved that under the null hypothesis, n−1/2S̃
(n)
j (γ) has a normal limiting

distribution with mean 0 and variance-covariance matrix Ω(qq), which can be

estimated by

Ω̂(qq) = n−1

n∑
i=1

(η̂i + φ̂i)
⊗2, (2.16)

with

η̂i =

∫ ∞
0

{
Z̃i(t)− ¯̃Z(γ̂, t)

}
ωi(t)d

ˆ̃Mij(t), (2.17)

where

ˆ̃Mij(t) = Ñij(t)−
∫ t

0

(1− I(Ti < u,D = j)) exp(Z̃i(t)
T (u)γ̂)d ˆ̃Λj0(u),

ˆ̃Λj0(t) =
1

n

n∑
i=1

∫ t

0

{
n∑
l=1

Yl(u) exp(Z̃T
l (u)γ̂)

}−1

dÑij(u),

and

¯̃Z(γ̂, t) =

∑n
l=1 ωl(t)Ỹl(t)Z̃l exp(Z̃T

l (t)γ̂)∑n
l=1 ωl(t)Ỹl(t) exp(Z̃T

l (t)γ̂)
,

and

φ̂i =

∫ ∞
0

q̂(t)

π̂(t)
d ˆ̃Mic(t), (2.18)
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where

ˆ̃Mic(t) = I(Xi ≤ t,Di = 0)−
∫ t

0

I(Xi ≥ u)d ˆ̃Λc(u),

ˆ̃Λc(t) =

∫ t

0

∑
i d {I(Xi ≤ u,Di = 0)}∑

i I(Xi ≥ u)
,

q̂(t) = −n−1

n∑
i=1

∫ ∞
0

{
Z̃i − ¯̃Z(γ̂, s)

}
ωi(s)d

ˆ̃Mij(s)I(s ≥ t > Xi)

and

π̂(t) = n−1

n∑
i=1

I(Xi ≥ t).

γ̂, the MLE for γ is consistent for γ0. n1/2(γ̂−γ0) ≈ Σ−1
(qq)(n

−1/2S̃
(n)
j (γ)), where

Σ(qq) can be estimated by Σ̂ = 1
n

∑n
i=1

{∑
l ωl(t)Ỹl(t)Z̃

⊗2
l exp(Z̃Tl (t)γ̂)∑

l ωl(t)Ỹl(t) exp(Z̃Tl γ̂)
− ¯̃Z(γ̂)⊗2

}
I(Di =

j). The detailed information can be found in Fine and Gray (1999). Suppose the

null hypothesis we are interesting in testing is

H0 : C̃Tγ = C̃Tγ0

for some prespecified C̃. The corresponding Wald test statistics is n1/2(C̃T γ̂ −

C̃Tγ0), which has a normal limiting distribution with mean 0 and variance-

covariance matrix C̃T Σ̂
−1

(qq)Ω̂(qq)Σ̂
−1

(qq)C̃.

2.2 Sample Size Calculation for Competing Risks Data

2.2.1 Sample Size Calculation for Cox Model

Schoenfeld (1981, 1983) presents an explicit sample size calculation formula based

on logrank test statistic and Cox model for survival data. It is a two steps

procedure.

• Step 1: Given Type I error α, power 1 − β, and hazard ratio φ, calculate

14



the number of failure (information) needed to accumulated by

D =
(zα/2 + zβ)2

(log φ)2 ∗ a1 ∗ a2

, (2.19)

where ak is the proportion of patient allocated in group k, k = 1, 2, and

Z1−α/2 and Z1−β are the 1−α/2 and 1−β quantiles of the standard normal

distribution.

Note that D is the number of events which is observed during the study.

We can follow the patients until D failures are observed. However, this is

not practical. We usually need to make decision about the study duration

and total recruitment before the study is launched.

• Step 2: The actual number of patients needed to be enrolled in the study

can be calculated by

N = D/(a1P1 + a2P2), (2.20)

where ak are the proportions of patients assigned to group k, k = 1, 2, and

Pk is the probability a patient will experience event of interest in group k.

2.2.2 Sample Size Calculation for Fine and Gray’s Model

Fine & Gray’s proportional subdistribution hazard model has become a more

popular tool to handle competing risks data. Latouche et al. (2004) proposed a

similar two steps method to determine the number of patients needed to enroll

in the study for the Cox Model. First, to detect subdistribution hazard ratio θ,

the number of failures of interest is determined to achieve power of 1 − β at α

nominal level as follows,

D =
(Z1−α/2 + Zβ)2

(log θ)2p1(1− p1)
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This formula holds in both ’complete data’ and ’censoring complete data’ case.

The total number of patients needed to be enrolled is calculated by

N = D/ψ,

where ψ is the proportion of failures of interest observed by time of analysis t.

This formula looks very similar to the one under Cox model except the parameter

used to specify the difference between two treatments is subdistribution hazard

ratio instead of cause-specific hazard ratio. We can then use the same way to

evaluate ψ as we did for Cox model.

2.3 Counting Processes and Martingales

When we derive the joint distribution of logrank type test statistics, we need to

use counting process to express the test statistic, and then use martingale theory

to derive the asymptotic distributions. In this section, we briefly review some

basic concepts and properties with regards to these two useful tools.

2.3.1 Counting Processes

Given observed competing risks survival data {(Xi, δi, Zi), i = 1, . . . , n}, the in-

formation we collect is called counting process

Nij(x) = I(Xi ≤ x, δi = j),

and risk process

R(x) = I(Xi ≥ x),

where i indicates the patient, j denotes the competing risk, and t is the calendar

time.

n(x) =
n∑
i=1

I(Xi ≥ x) =
n∑
i=1

R(x)
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is counting the number of patients at risk at time x.

2.3.2 Martingales

Given a time point t, we know that the expected number of events at t is equal

to the number of patients still at risk multiplied by the probability of failure at

that time. The jump of Nij(t) at time t can be predicted by

E(dNij(t)|Ft−) = I(Xi ≥ t)λj(t)dt, (2.21)

where Ft− denotes the filtration by time t, which is interpreted as a collection

of histories just prior to t. (2.21) is usually called intensity process of counting

process Nij(t). It is the expectation of whether a failure due to cause j would hap-

pen in the next small interval dt given all the histories prior to t. The difference

between expectation and the reality is measured by

Mij(x) = Nij(x)−
∫ x

0

λj(u)I(Xi ≥ u)du.

Andersen et al. (1993) proved that Mij is a local square integrable martingale

with varitation process

〈Mij〉 (t) =

∫ t

0

I(Xi ≥ t)dΛij(s).

Martingales has zero means and independent increments, which means E[Mij(t)] =

0 and E[Mij(t)|Fs] = Mij(s) for all s < t, where Fs contains all the histories up

to time s. There are some important properties for martingale. We review one

of them which will be useful in our later derivation. The details of the proof are

in Andersen et al. (1993).

Lemma. If M is a finite variation local square integrable martingale, and

H is a locally bounded predictable process, then
∫
HdM is still a local square
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integrable martingale with variation〈∫
HdM

〉
=

∫
H2d 〈M〉 .
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CHAPTER 3

Joint Inference for Competing Risks Data

The purpose of this chapter is to develop joint inference procedures to assess the

effects of a variable on λ1(t) and F1(t) simultaneously. We allow independent

right censoring in addition to competing risks. We first consider the two-sample

comparison problem with respect to both λ1(t) and F1(t). By establishing the

asymptotic joint distribution of the weighted log-rank test statistic for λ1(t) and

the Gray (1988) test statistic for F1(t) (or λ̃1(t)), we derive two-sample joint tests

for λ1(t) and F1(t). We then extend our results to other related quantities and

to a regression setting based on Cox’s type models for CSH and CIF.

3.1 Two Sample Joint Test for Competing Risks Data

3.1.1 Two Sample Joint Test for Cause-Specific Hazard and Cumula-

tive Incidence

Suppose that there are two independent groups of subjects. Let Tik, Dik, and Cik

denote the continuous failure time, the type of failure, and the censoring time,

respectively, for subject i in group k, i = 1, . . . , nk, k = 1, 2. Assume that the

triplets (Tik, Dik, Cik) for different subjects within each group are independent

and identically distributed and that the censoring time Cik is independent of

the survival time Tik. The two groups are allowed to have different censoring
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distributions. For group k (k = 1, 2), one observes a right censored compet-

ing risks survival data {(Xik, δik), i = 1, . . . , nk}, where Xik = min(Tik, Cik) and

δik = DikI(Tik ≤ Cik). Let Sk(t) = P (Tik > t) and Sck(t) = P (Cik > t). For

group k (k = 1, 2), let λ1k(t), F1k(t), and λ̃1k(t) denote the cause-specific haz-

ard function, the cumulative incidence function, and the sub-distribution hazard

function, respectively, for type 1 failure. We develop nonparametric tests for the

following null hypothesis

H0 : λ11(t) = λ12(t) and F11(t) = F12(t) for all t > 0, (3.1)

or equivalently

H0 : λ11(t) = λ12(t) and λ̃11(t) = λ̃12(t) for all t > 0. (3.2)

To test the joint null hypothesis (3.1), we establish the joint limiting distri-

bution of U11 and Ũ11 below.

Theorem 1 Let U11 and Ũ11 be defined by (2.2) and (2.6). Under the null hy-

pothesis (3.1), n−1/2(U11, Ũ11) has an asymptotically bivariate normal distribution

with mean 0 and variance-covriance matrix Σ(1) = (σ
(1)
ij ), where Σ(1) is defined

in (3.4) and (3.7). Furthermore, σ
(1)
11 and σ

(1)
22 are consistently estimated by (2.3)

and (2.7), and the covariance σ
(1)
12 is consistently estimated by

σ̂
(1)
12 = n−1

{∫ τ
0
W1(t)Y2(t)

Y·(t)
V̂11(t) + ĉn1 (τ)

∫ τ
0
W1(t)Y2(t)

Y·(t)
Ê11(t)ĥ−1

1 (t)
}
Y1(t)dΛ̂11(t)

+n−1
{∫ τ

0
W1(t)Y1(t)

Y·(t)
V̂12(t) + ĉn2 (τ)

∫ τ
0
W1(t)Y1(t)

Y·(t)
Ê12(t)ĥ−1

2 (t)
}
Y2(t)dΛ̂12(t),

(3.3)

where Λ̂1k(τ) =
∫ τ

0
Y −1
k (t)dN1k(t), V̂jk(t) =

[
d̂jk(t)− Êjk(t)ĉk(t)

]
ĥ−1
k (t), Êjk(t) =

I(j = 1)− Ĝ1k(t−)/Ŝk(t−), and all other quantities are defined in (2.8).

Proof for Theorem 1. Let Mjk(t) = Njk(t)−
∫ t

0
Yk(u)dΛjk(u), where Λjk(t) =∫ t

0
λjk(u)du is the cumulative cause-specific hazard for cause j in group k. Under
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the null hypothesis, we can rewrite (2.2) as

n−1/2U11 =

∫ τ

0

W1(t)
Y1(t)Y2(t)

Y·(t)

{
dM11(t)

Y1(t)
− dM12(t)

Y2(t)

}
,

and (4.19) as

n−1/2Ũ11 =
2∑
j=1

2∑
k=1

{Ajk(τ) + Ck(τ)Bjk(τ)} ,

where

Ajk(τ) =
∫ τ

0
[Djk(t)− Ejk(t)Ck(t)] ĥ−1

k (t)n−1/2dMjk(t),

Bjk(τ) =
∫ τ

0
Ejk(t)ĥ

−1
k (t)n−1/2dMjk(t),

Ck(τ) =
∫ τ

0
n−1W̃ (t)R1(t) [I(k = 1)−Rk(t)/R·(t)] /Ĝ1k(t−)dF1k(t),

Djk(τ) = I(j = 1)n−1W̃ (τ)R1(τ) [I(k = 1)−Rk(τ)/R·(τ)] /Ĝ1k(τ−),

Ejk(τ) = I(j = 1)−G1k(τ)/Sk(τ).

Under usual regularity conditions, by using multivariate martingale central

limiting theorem (Fleming and Harrington (1991), Theorem 5.3.5), we can prove

that n−1/2(U11, Ũ11)T has a asymptotic multivariate normal distribution with

mean 0 and variance-covariance Σ(1) = (σ
(1)
ij ), where σ

(1)
11 and σ

(1)
22 are developed

by Fleming and Harrington (1991); Gray (1988),

σ
(1)
11 = σ2 =

∫ τ
0
w2

1(t)y1(t)y2(t)
y·(t)

dΛ11(t),

σ
(1)
22 = σ̃2 =

∑2
k=1 n

−1
{∫ τ1

0
a2
k(t)h

−1
k (t)h−1

· (t)dF1·(t) +
∫ τ1

0
b2

2k(t)h
−2
k (t)dF2k(t)

}
,

(3.4)
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with

Λjk(t) =
∫ t

0
λjk(u)du,

ak(t) = djk(t) + bjk(t),

bjk(t) = [I(j = 1)−G1k(t)/Sk(t)] [ck(τ1)− ck(t)] ,

ck(t) =
∫ t

0
d1k(u)λ̃1k(u)du,

djk(t) = I(j = 1)W̃ (t)R1(t) [I(k = 1)− hk(t)/h·(t)] /G1k(t),

hk(t) = I(t ≤ τk)yk(t)/Sk(t),

h·(t) = I(t ≤ max(τ1, τ2))(y1(t) + y2(t)/Sk(t),

yk(t) = pkSk(t)S
c
k(t),

pk = nk/(n1 + n2).

The covariance σ
(1)
12 between the two test statistics is〈

n−1/2U11, n
−1/2Ũ11

〉
= n−1

〈∫ τ
0
W1(t)Y1(t)Y2(t)

Y·(t)

{
dM11(t)
Y1(t)

− dM12(t)
Y2(t)

}
,
∑2

k=1

∑2
j=1 {Ajk(τ) + Ck(τ)Bjk(τ)}

〉
= n−1

〈∫ τ
0
W1(t)Y1(t)Y2(t)

Y·(t)

{
dM11(t)
Y1(t)

− dM12(t)
Y2(t)

}
,∫ t

0
V11(t)dM11(t) + C1(τ)

∫ τ
0
E11(t)ĥ−1

1 (t)dM11(t)

+
∫ τ

0
V12(t)dM12(t) + C2(τ)

∫ τ
0
E12(t)ĥ−1

2 (t)dM12(t)
〉

= n−1
{∫ τ

0
W1(t)Y2(t)

Y·(t)
V11(t) + C1(τ)

∫ τ
0
W1(t)Y2(t)

Y·(t)
E11(t)ĥ−1

1 (t)
}
d〈M11,M11〉(t)

+n−1
{∫ τ

0
W1(t)Y1(t)

Y·(t)
V12(t) + C2(τ)

∫ τ
0
W1(t)Y1(t)

Y·(t)
E12(t)ĥ−1

2 (t)
}
d〈M12,M12〉(t),

(3.5)

where Vjk(t) = [Djk(t)− Ejk(t)Ck(t)] ĥ−1
k (t). Note that Mjk(t) are orthogonal

square intergrable martingales with predictable variation process

〈Mjk(t),Mj′k′ (t)〉 = γjj′γkk′

∫ t

0

Yk(u)dΛjk(u), (3.6)
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where γuv = 1 if u = v. After plugging (3.6) into (3.5), we have〈
n−1/2U11, n

−1/2Ũ11

〉
= n−1

[∫ τ
0
W1(t)Y2(t)

Y·(t)
V11(t) + C1(τ)

∫ τ
0
W1(t)Y2(t)

Y·(t)
E11(t)ĥ−1

1 (t)
]
Y1(t)dΛ11(t)

+n−1
[∫ τ

0
W1(t)Y1(t)

Y·(t)
V12(t) + C2(τ)

∫ τ
0
W1(t)Y1(t)

Y·(t)
E12(t)ĥ−1

2 (t)
]
Y2(t)dΛ12(t),

which converges in probability to

σ
(1)
12 =

[∫ τ
0
w1(t)y2(t)

y·(t)
v11(t) + c1(τ)

∫ τ
0
w1(t)y2(t)

y·(t)
e11(t)h−1

1 (t)
]
y1(t)dΛ11(t)

+
[∫ τ

0
w1(t)y1(t)

y·(t)
v12(t) + c2(τ)

∫ τ
0
w1(t)y1(t)

y·(t)
e12(t)h−1

2 (t)
]
y2(t)dΛ12(t),

(3.7)

where

ejk(t) = I(j = 1)−G1k(t)/Sk(t)

vjk(t) = [djk(t)− ejk(t)ck(t)]h−1
k (t).

Finally a consistent estimator of σ
(1)
12 is obtained by replacing each unknown

quantity in (3.3) by its consistent sample estimate. �

3.1.1.1 Chi-square Joint Test for (3.1)

Define

X2 = n−1
(
U11, Ũ11

)
Σ̂

(1)(−1)

 U11

Ũ11

 .

It follows from Theorem 1 that under (3.1), X2 has an asymptotically chi-square

distribution with 2 degrees of freedom. This leads to the following chi-square test

for (3.1):

Reject (3.1) at level α if X2 > χ2
2(α),

where χ2
2(α) is the upper 1− α percentile of the standard χ2

2 distribution.

Rejection of (3.1) by the above chi-square test implies that there is a difference

in either cause-specific hazard or cumulative incidence between the two groups.
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However, it does not indicate which individual quantity has a difference. The

following maximum test provides an alternative joint test that allows one to

draw a conclusion on each individual quantity. It also allows one-sided test.

3.1.1.2 Maximum Joint Test for (3.1)

Define

M = max(|Z11|, |Z̃11|)),

where Z11 = n−1/2U11/

√
σ̂

(1)
11 and Z̃11 = n−1/2Ũ11/

√
σ̂

(1)
22 . We would reject (3.1)

if the observed M is large. It follows from Theorem 1 that for large samples,

the distribution of (Z11, Z̃11) can be approximated by the bivariate normal distri-

bution N
(
(0, 0)T , (1, 1, ρ̂)

)
, where ρ̂ =

σ̂
(1)
12√

σ̂
(1)
11

√
σ̂
(1)
22

. Thus we can approximate the

distribution of M using Monte Carlo simulation. Specifically, we generate N pairs

of random variables from the bivariate normal distribution N
(
(0, 0)T , (1, 1, ρ̂)

)
.

For the l-th generated pair, compute the maximum absolute value, and denoted

it by Ml. Let Tα be the upper 100(1 − α)-th sample quantile of M1, . . . ,MN .

Reject the null hypothesis (3.1) at level α if M > Mα.

Remark 3.1. It is straightforward to modify the maximum joint test proce-

dure to test one-sided alternative(s) based on either M = max(Z11, Z̃11), M =

max(|Z11|, Z̃11), or M = max(Z11, |Z̃11|) as deemed appropriate.

Remark 3.2. (K-Sample Joint Tests) The above two-sample joint tests can

be easily extended to the K-sample problem (K ≥ 2) for the following null

hypothesis

H0 : λ11(t) = · · · = λ1K(t) and F11(t) = · · · = F1K(t) for all 0 < t < τ,(3.8)
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where τ is some pre specified fixed time. Similar to Theorem 1, it can be shown

that under the null hypothesis (3.8), n−1/2(U11, · · · , U1K−1, Ũ11, · · · , Ũ1K−1) has

an asymptotic multivariate normal distribution with mean 0 and variance-covariance

matrix Σ∗, where the elements of Σ∗, can be obtained as the limit of the pairwise

covariances of the test statistics. From Kulathinal and Gasbarra (2002), we have

ˆCov(n−1/2U1k, n
−1/2U1k′ ) = −

∫ τ

0

W 2
1 (t)

Yk(t)Yk′ (t)

Y·(t)
dΛ1(t),

where k, k
′

= 1, · · · , K. ˆCov(n−1/2Ũ1k, n
−1/2Ũ1k′ ) is given by equation (2.10) on

page 1146 of Gray (1988). Similar to the proof of Theorem 1, we can show that

ˆCov(n−1/2U1k, n
−1/2Ũ1k′ )

=
(∫ τ

0
W1(t)V̂1k′k(t) + ĉk′k(τ)

∫ τ
0
W1(t)Ê1k(t)ĥ

−1
k (t)

)
Yk(t)dΛ̂1k(t)

+
∑K

l=1

(∫ τ
0
W1(t)Yk(t)

Y·(t)
V̂1k′ l(t) + ĉk′ l(τ)

∫ τ
0
W1(t)Yk(t)

Y·(t)
Ê1l(t)ĥ

−1
l (t)

)
Yl(t)dΛ̂1l(t),

(3.9)

where

Λ̂1k(τ) =
∫ τ

0
Y −1
k (t)dN1k(t),

V̂jkl(t) =
[
D̂jkl(t)− Êjl(t)ĉkl(t)

]
ĥ−1
l (t),

D̂jkl = n−1I(j = 1)W̃ (t)Rk(t)
[
I(k = l)− ĥl(t)/ĥ·(t)

]
/Ĝ1·(t−),

ĉkl(t) = n−1
∫ t

0
d̂1kl(u)Ĝ1·(u−)−1ĥ−1

· (u)dN1·(u),

Êjk(t) = I(j = 1)− Ĝ1k(t−)/Ŝk(t−),

and all other quantities are defined in (2.8).
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Derivation for Covariance between U1k and Ũ1k′

n−1/2 < (U1k, Ũ1k′ ) >

= <
∫ τ

0
W1(t)YK(t)

(
dN1k(t)
Yk(t)

− dN1·(t)
Y·(t)

)
,
∑K

l=1

∑2
j=1

(
Ajk′ l(τ) + ck′ l(τ)Bjl(τ)

)
>

= <
∫ τ

0
W1(t)Yk(t)

(
dM1k(t)
Yk(t)

− dM1·(t)
Y·(t)

)
,∑K

l=1

∫ τ
0
V1k

′
l(t)dM1l(t) + ck′ l(τ)

∫ τ
0
E1l(t)ĥ

−1
l (t)dM1l(t) >

= <
∫ τ

0
W1(t)Yk(t)

dM1k(t)
Yk(t)

,
∫ τ

0
V1k′k(t)dM1k(t) + ck′k(τ)

∫ τ
0
E1k(t)ĥ

−1
k (t)dM1k(t) >

+
∫ τ

0
W1(t)Yk(t)

∑K
l=1 dM1l(t)

Y·(t)
,
∑K

l=1

∫ τ
0
V1k′ l(t)dM1l(t) + ck′ l(τ)

∫ τ
0
E1l(t)ĥ

−1
l (t)dM1l(t) >

=
(∫ τ

0
W1(t)V1k′k(t) + ck′k(τ)

∫ τ
0
W1(t)E1k(t)ĥ

−1
k (t)

)
d < M1k(t),M1k(t) >

+
∑K

l=1

(∫ τ
0
W1(t)Yk(t)

Y·(t)
V1k′ l(t) + ck′ l(τ)

∫ τ
0
W1(t)Yk(t)

Y·(t)
E1l(t)ĥ

−1
l (t)

)
d < M1l(t),M1l(t) >

=
(∫ τ

0
W1(t)V1k′k(t) + ck′k(τ)

∫ τ
0
W1(t)E1k(t)ĥ

−1
k (t)

)
Yk(t)dΛ1k(t)

+
∑K

l=1

(∫ τ
0
W1(t)Yk(t)

Y·(t)
V1k′ l(t) + ck′ l(τ)

∫ τ
0
W1(t)Yk(t)

Y·(t)
E1l(t)ĥ

−1
l (t)

)
Yl(t)dΛ1l(t),

(3.10)

where Vjkl(t) = [Djkl(t)− Ejl(t)ckl(t)] ĥ−1
l (t) and all other quantities are defined

in Gray (1988) on page 1153. n−1/2 < (U1k, Ũ1k′ ) > converges in probability to

cov(n−1/2U1k, n
−1/2Ũ1k′ )

=
(∫ τ

0
w1(t)v1k′k(t) + ck′k(τ)

∫ τ
0
w1(t)e1k(t)ĥ

−1
k (t)

)
yk(t)dΛ1k(t),

+
∑K

l=1

(∫ τ
0
w1(t)yk(t)

y·(t)
v1k′ l(t) + ck′ l(τ)

∫ τ
0
w1(t)yk(t)

y·(t)
e1l(t)ĥ

−1
l (t)

)
yl(t)dΛ1l(t),

(3.11)

where

ejk(t) = I(j = 1)−G1k(t)/Sk(t)

vjkl(t) = [djkl(t)− ejl(t)ckl(t)]h−1
l (t),

and djkl is defined in Gray (1988) on page 1146. Finally a consistent estimator

of cov(n−1/2U1k, n
−1/2Ũ1k′ ) is obtained by replacing each unknown quantity in

(3.11) by its consistent sample estimate. �

For Chisquare test, define

X2 = n−1
(
U11, · · · , U1K−1, Ũ11, · · · , Ũ1K−1

)
Σ∗−1

(
U11, · · · , U1K−1, Ũ11, · · · , Ũ1K−1

)T
.
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We can prove that that under (3.8), X2 has an asymptotically chi-square distri-

bution with 2(K-1) degrees of freedom. Reject (3.8) at level α if X2 > χ2
2(K−1)(α),

where χ2
2(K−1)(α) is the upper 1− α percentile of the standard χ2

2(K−1) distribu-

tion.

For maximum test, define

T ∗ = max(|Z11|, · · · , |Z1K−1|, |Z̃11|, · · · , |Z̃1K−1|),

where Z1k and Z̃1k are the standardized test statistics of U1k and Ũ1k. The Test

can be conducted by generating Monte Carlo sample which is similar to what did

for Maximum joint test in two sample case.

Remark 3.3: It can be easily shown that for group k, the three pairs of func-

tions (λ1k(·), F1k(·)), (λ1k(·), λ·k(·)), and (λ1k(·), λ2k(·)) uniquely determine each

other and that each pair uniquely determines the distribution of the observed

pair (Xik, δik). A practical question is then which pair should one consider in a

particular study when studying the effects on a variable on type 1 failure. Such a

decision should be made based upon which pair is scientifically more relevant in

the study although it is always sensible to use (CSH, CIF). For instance, in the

kidney transplantation program example discussed in the beginning of the intro-

duction section, death before becoming eligible for transplantation is a competing

risk event for the waiting time to become eligible. The two competing events are

negatively correlated. Suppose that one is interested in studying the effects of a

weight loss intervention to improve the waiting time to become eligible for trans-

plantation, then the (CSH, CIF) pair would be of primary interest. One would

not want to study the (CSH, ACH) pair because ACH combines two negatively

correlated competing events and does not have a meaningful interpretation. The

(CSH, OSH) pair would also not be very interesting if the weight loss interven-

tion is not expected to significantly impact the risk of death before becoming
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eligible for transplantation. On the other hand, in a randomized confirmatory

Phase III clinical trial of a new treatment versus a standard treatment for a spe-

cific disease, it might be preferable to use the disease-specific survival (effects on

the target disease) and overall survival (effects on a patient’s overall health), or

equivalently (CSH, ACH), as co-primary endpoints, although the other two pairs

are also meaningful. Finally, although the three null hypotheses (3.1), (3.2), and

(3.12) are equivalent, their corresponding alternative hypotheses are not. Con-

sequently, a joint test for a specific pair is powered to detect group differences

in the direction of that pair. For example, when there are group differences in

CSH, OCH, and CIF, but no group difference in ACH, the maximum joint test

for (CSH, ACH) was observed to have poorer power than that for (CSH, OCH)

or (CSH, CIF) in our limited simulation studies.

3.1.2 Two-Sample Joint Tests for Other Quantities

Some related quantities are also useful to study the effects of a variable on type 1

failure. For group k, let λ·k(t) and λ2k(t) denote the all-cause hazard function and

the cause-specific hazard function for type 2 failure, respectively. Then, it can

be shown that the three pairs (λ1k(·), F1k(·)), (λ1k(·), λ·k(·)), and (λ1k(·), λ2k(·))

uniquely determine each other. Therefore, the hypothesis (3.1) is equivalent to

H0 : λ11(t) = λ12(t) and λ·1(t) = λ·2(t) for all t > 0, (3.12)

or

H0 : λ11(t) = λ12(t) and λ21(t) = λ22(t) for all t > 0. (3.13)
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3.1.2.1 Two-Sample Tests for Cause-Specific Hazard and All-Cause

Hazard

Let

U·k =

∫ τ

0

W·(t)Yk(t)

{
dN·k(t)

Yk(t)
− dN··(t)

Y·(t)

}
, (3.14)

be the weighted log-rank test statistic for H0 : λ·1(t) = λ·2(t) for all t > 0, where

N·k(t) =
∑2

j=1Njk(t), N··(t) =
∑2

k=1

∑2
j=1Njk(t), and W·(t) is a predictable

weight function, which converges in probability to some deterministic function

w·(t) when n→∞.

Theorem 2 Let U11 and U·1 be defined by (2.2) and (3.14). Then, n−1/2(U11, U·1)

has an asymptotic bivariate normal distribution with mean 0 and variance-covariance

matrix Σ(2) = (σ
(2)
ij ) defined by (3.16). Furthermore, Σ(2) is consistently esti-

mated by Σ̂
(2)

= (σ̂
(2)
ij ) where

σ̂
(2)
11 =

∫ τ
0
W 2

1 (t) Y1(t)Y2(t)
Y1(t)+Y2(t)

dN11(t)
Y1(t)

,

σ̂
(2)
22 =

∫ τ
0
W 2
· (t) Y1(t)Y2(t)

Y1(t)+Y2(t)
dN·1(t)
Y1(t)

,

σ̂
(2)
12 =

∫ τ
0
W1(t)W·(t)

Y1(t)Y2(t)
Y1(t)+Y2(t)

dN11(t)
Y1(t)

.

(3.15)

Proof for Theorem 2. Under usual regularity condition, by using multivariate

martingale central limiting theorem (Fleming and Harrington (1991), Theorem

5.3.5), we can prove that (n−1/2U11, n
−1/2U·1)T has a bivariate normal limiting

distribution with mean 0 and variance-covariance matrix Σ(2) = (σ
(2)
ij ), where

σ
(2)
11 =

∫ τ
0
w2

1(t) y1(t)y2(t)
y1(t)+y2(t)

dΛ11(t),

σ
(2)
22 =

∫ τ
0
w2
· (t)

y1(t)y2(t)
y1(t)+y2(t)

dΛ·1(t),

σ
(2)
12 =

∫ τ
0
w1(t)w·(t)

y1(t)y2(t)
y1(t)+y2(t)

dΛ11(t).

(3.16)
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Here Λ·1(t) =
∫ t

0
λ·1dt is the all-cause cumulative hazard in group 1. Note that

σ
(2)
12 is the limit of〈

n−1/2U11, n
−1/2U·1

〉
= n−1

〈∫ τ
0
W1(t)Y1(t)Y2(t)

Y·(t)

{
dM11(t)
Y1(t)

− dM12(t)
Y2(t)

}
,
∫ τ

0
W·(t)

Y1(t)Y2(t)
Y·(t)

{
dM·1(t)
Y1(t)

− dM·2(t)
Y2(t)

}〉
= n−1

{∫ t
0
W1(t)W·(t)

Y 2
1 (t)Y 2

2 (t)

Y·(t)2

(
d<M11(t),M·1(t)>

Y 2
1 (t)

+ d<M12(t),M·2(t)>

Y 2
2 (t)

)}
= n−1

{∫ t
0
W1(t)W·(t)

Y 2
1 (t)Y 2

2 (t)

Y·(t)2

(
dΛ11(t)
Y1(t)

+ dΛ12(t)
Y2(t)

)}
,

which converges in probability to
∫ t

0
w1(t)w·(t)

y1(t)y2(t)
y·(t)

dΛ11(t) Similarly, the diag-

onal elements are the asymptotic variances of n−1/2U11 and n−1/2U·1, respectively

(Fleming and Harrington, 1991).

Finally, a consistent estimate of Σ(2) is obtained by replacing each quantity

in (3.16) with its consistent empirical estimate. �

The asymptotic results in Theorem 2 allow one to construct a chi-square joint

test and a maximum joint test for (3.12) along the lines of Section 3.1.1.1 and

3.1.1.2.

3.1.2.2 Two-Sample Joint Tests for Cause-Specific Hazard and Other-

Cause Hazard

Let

U2k =

∫ τ

0

W2(t)Yk(t)

{
dN2k(t)

Yk(t)
− dN2·(t)

Y·(t)

}
, (3.17)

be the weighted log-rank test statistic for H0 : λ21(t) = λ22(t) for all t > 0,

where W2(t) is a proper weight function, which converges in probability to some

deterministic function w2(t) as n → ∞. It’s well known that U1k and U2k are

asymptotically independent (Prentice et al., 1978). Hence one can construct joint

tests for (3.13) based on the joint distribution of the two test statistics.
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3.2 Joint Regression Analysis for Competing Risks Data

3.2.1 Joint Regression Analysis of Cause-Specific Hazard and Cumu-

lative Incidence

We now consider joint inference for the cause-specific hazard and the cumula-

tive incidence hazard under a regression setting. Assume that one observes n

independent and identically distributed triples (Xi, δi,Zi), where for subject i

(i = 1, . . . , n), Xi = min{Ti, Ci}, δi = DiI(Ti ≤ Ci), Ti is the failure time of

interest, Ci is a right censoring time, Di is discrete random variable taking values

on 1, . . . , J with Di = j indicating that type j failure is observed, and Zi is a

vector of fixed or time-varying covariates that are observed on [0, Xi]. Assume

Ci is independent of Ti, Di and Zi, and pr(Ci ≥ t) = Gc(t).

Again, for simplicity, we assume there are only two types of failures, and type

1 is the event of interest. Let λ1(t|z) and λ̃1(t|z) be the conditional cause-specific

hazard function and the conditional subdistribution hazard function for type 1

failure for an individual with covariate z. Assume the proportional cause-specific

hazards model (Prentice et al., 1978)

λ1(t|Z) = λ10(t) exp(βT1 Z(1)(t)), (3.18)

and the proportional subdistribution hazards model (Fine and Gray, 1999)

λ̃1(t|Z) = λ̃10(t) exp(γT1 Z(2)(t)), (3.19)

where λ10(t) and λ̃10(t) are unknown baseline cause-specific hazard and baseline

subdistribution hazard for type 1 failure, respectively, and Z(1)(t) and Z(2)(t) are

functions of the original covariates Z and t that allow time × covariates interac-

tions. Prentice et al. (1978) showed that inference for β1 under the proportional

cause-specific hazards model (3.18) can be made using the standard Cox (1972,
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1975) partial likelihood method by regarding other types of failure as independent

censoring. The proportional subdistribution hazards model (3.19) was introduced

by Fine and Gray (1999) who developed large sample inference for γ1.

Below we develop joint inference for β1 and γ1. Specifically, we consider the

following joint null hypothesis

H0 : AT1 β1 = d1 and AT2 γ1 = d2, (3.20)

where A1 and A2 are constant matrices, and d1 and d2 are constant column

vectors.

Following Prentice et al. (1978) and Fine and Gray (1999), let

U1(β1) =
n∑
i=1

∫ ∞
0

{
Z

(1)
i (t)− Z̄(1)(β1, t)

}
dNi1(t), (3.21)

and

Ũ1(γ1) =
n∑
i=1

∫ ∞
0

{
Z

(2)
i (t)− Z̄(2)(γ1, t)

}
ωi(t)dÑi1(t), (3.22)

be the score functions for β1 and γ1 under models (3.18) and (3.19), respectively,

where Z̄(1)(β1, t) =
∑n
l=1 Yl(t)Z

(1)
l (t) exp(βT1 Z

(1)
l (t))∑n

l=1 Yl(t) exp(βT1 Z
(1)
l (t))

, Yi(t) = I{Xi ≥ t} and Ni1(t) =

I(Xi ≤ t,Di = 1), Z̄(2)(γ1, t) =
∑n
l=1 ωl(t)Ỹl(t)Z

(2)
l exp(γT1 Z

(2)
l (t))∑n

l=1 ωl(t)Ỹl(t) exp(γT1 Z
(2)
l (t))

, Ñi1(t) = I(Ti ≤

t,Di = 1), Ỹi(t) = 1 − Ñi1(t−), ωi(t) = I(Ci ≥ Ti ∧ t)Ĝc(t)/Ĝc(Xi ∧ t), and

Ĝc is the Kaplan and Meier (1958) estimate of the survival function Gc of the

censoring variable C. Note that Ñi1(t) is different from Ni1(t) and may not be

observed if the subject is censored, but ωi(t)Ñi1(t) can always be computed.

Let β̂1 and γ̂1 be the solutions of the score equations U1(β1) = 0 and

Ũ1(γ1) = 0, respectively.

Theorem 3 Under similar regularity conditions to Andersen et al. (1982) and
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Fine and Gray (1999), we have

n1/2

 β̂1 − β1

γ̂1 − γ1

 d−→ N(0,Σ(1)), as n→∞,

where Σ(1) is defined by (3.26), (3.27), (3.28), and (3.29). Furthermore, Σ(1)

can be consistently estimated by

Σ̂
(1)

=

 Ω̂
(1)−1

(pp) Ω̂
(1)−1

(pp) Ω̂
(1)

(pq)Ω̂
(1)−1

(qq)

Ω̂
(1)−1

(qq) Ω̂
(1)

(qp)Ω̂
(1)−1

(pp) Ω̂
(1)−1

(qq) Ω̂
∗(1)

(qq)Ω̂
(1)−1

(qq)

 , (3.23)

where

Ω̂
(1)

(pp) = 1
n

∑n
i=1

∫∞
0

[∑n
l=1 Yl(t)Z

(1)
l (t)⊗2 exp(β̂

T
1 Z

(1)
l (t))∑n

l=1 Yl(t) exp(β̂
T
1 Z

(1)
l (t))

− Z̄(1)(β̂1, t)
⊗2

]
dNi1(t),

Ω̂
(1)

(qq) = 1
n

∑n
i=1

{∑n
l=1 ωl(t)Ỹl(t)Z

(2)
l (t)⊗2 exp(γ̂T1 Z

(2)
l (t))∑n

l=1 ωl(t)Ỹl(t) exp(γ̂T1 Z
(2)
l (t))

− Z̄(2)(γ̂1, t)
⊗2

}
I(δi = 1),

Ω̂
(1)

(pq) = 1
n

∑n
i=1

{∫∞
0

(
Z

(1)
i (t)− Z̄(1)(β̂1, t)

)(
dNi1(t)− Yi(t) exp(β̂

T

1 Z
(1)
i (t)dΛ̂10(t)

)
∗ η̂i

}
+ 1

n

∑n
i=1

{∫∞
0

(
Z

(1)
i (t)− Z̄(1)(β̂1, t)

)(
dNi1(t)− Yi(t) exp(β̂

T

1 Z
(1)
i (t))dΛ̂10(t)

)
∗ φ̂i

}
Ω̂
∗(1)

(qq) = 1
n

∑n
i=1(η̂i + φ̂i)

⊗2,

with

η̂i =
∫∞

0

{
Z

(2)
i (t)− Z̄(2)(γ̂1, t)

}
ωi(t)d

ˆ̃Mi1(t),

ˆ̃Mi1(t) = Ñi1(t)−
∫ t

0
Ỹi(u) exp(γ̂T1 Z

(2)
i (u))d ˆ̃Λ10(u),

ˆ̃Λ10(t) = 1
n

∑n
i=1

∫ t
0

{∑n
l=1 Ỹl(u) exp(γ̂T1 Z

(2)
l (u))

}−1

ωi(u)dÑi1(u),

φ̂i =
∫∞

0
q̂(t)
π̂(t)

dM̂ c
i (t),

M̂ c
i (t) = I(Xi ≤ t, δi = 0)−

∫ t
0
I(Xi ≥ u)dΛ̂c(u),

Λ̂c(t) =
∫ t

0

∑n
i=1 d{I(Xi≤u,δi=0)}∑n

i=1 I(Xi≥u)
,

q̂(t) = −n−1
∑n

i=1

∫∞
0

{
Z

(2)
i (s)− Z̄(2)(γ̂1, s)

}
I(s ≥ t > Xi)ωi(s)d

ˆ̃Mi1(s),

π̂(t) = n−1
∑n

i=1 I(Xi ≥ t).

Proof for Theorem 3. First, we will derive the asymptotic joint distribution
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of n−1/2(U1(β1), Ũ1(γ1))T . It can be shown that

n−1/2U1(β1) = n−1/2
∑n

i=1 Ui1(β1) + op(1),

n−1/2Ũ1(γ1) = n−1/2
∑n

i=1 (ηi(γ1) + φi(γ1)) + op(1),
(3.24)

where

Ui1(β1) =

∫ ∞
0

{
Z

(1)
i (t)− z̄(1)(β1, t)

}
dMi1(t),

ηi =

∫ ∞
0

{
Z

(2)
i (t)− z̄(2)(γ1, t)

}
wi(t)dM̃i1(t),

φi =

∫ ∞
0

q(t)

π(t)
dM c

i (t),

M̃i1(t) = Ñi1(t)−
∫ t

0

Ỹi(t) exp(γT1 Z
(2)
i (u))dΛ̃10(u),

M c
i (t) = I(Xi ≤ t, δi = 0)−

∫ t

0

I(Xi ≥ u)dΛc(u),

q(t) = −n−1

n∑
i=1

∫ ∞
0

{
Z

(2)
i (u)− Z̄(2)(γ1, u)

}
wi(u)dM̃i1(u)I(u ≥ t > Xi),

and

π(t) = n−1

n∑
i=1

I(Xi ≥ t),

with Λ̃10(t) =
∫ t

0
λ̃10(u)du is the baseline cause-specific cumulative hazard for

cause 1, Λc(t) =
∫ t

0
λc(u)du is the cumulative hazard for censoring variable,

z̄(1)(β1, t) =
limn→∞ n

−1
∑n

l=1 Yl(t)Z
(1)
l (t) exp(βT1 Z

(1)
l (t))

limn→∞ n−1
∑n

l=1 Yl(t) exp(βT1 Z
(1)
l (t))

,

and

z̄(2)(γ1, t) =
limn→∞

∑n
l=1 ωl(t)Ỹl(t)Z

(2)
l (t) exp(γT1 Z

(2)
l (t))

limn→∞
∑n

l=1 ωl(t)Ỹl(t) exp(γT1 Z
(2)
l (t))

.

It follows from (3.24) and the multivariate central limit theorem that n−1/2(U1(β1),

Ũ1(γ1))T has a p+ q multivariate normal limiting distribution with mean 0 and

variance-covariance

Ω(1) =

 Ω
(1)
(pp) Ω

(1)
(pq)

Ω
(1)
(qp) Ω

(1)
(qq)

 , (3.25)
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where

Ω
(1)
(pp) =

∫∞
0

[
limn→∞ n−1

∑
l Yl(t)Z

(1)
l (t)⊗2 exp(βT1 Z

(1)
l (t))

limn→∞ n−1
∑
l Yl(t) exp(βT1 Z

(1)
l (t))

− z̄(1)(β1, t)
⊗2

]
Yi(t) exp(βT1 Z

(1)
i (t))dΛ10(t),

(3.26)

Ω
(1)
(qq) =

∫∞
0

{
limn→∞

1
n

∑n
l=1 ωl(t)Ỹl(t)Z

(2)
l (t)⊗2 exp(γT1 Z

(2)
l (t))

limn→∞
1
n

∑n
l=1 ωl(t)Ỹl(t) exp(γT1 Z

(2)
l (t))

− z̄(2)(γ1, t)
⊗2

}
ωi(t)Ỹi(t) exp(γT1 Z

(2)
i (t))dΛ̃10(t),

(3.27)

and

Ω∗(1)
qq = E

{
(ηi(γ1) + φi(γ1)) (ηi(γ1) + φi(γ1))T

}
. (3.28)

Note that variance-covariance matrix between the two score test statistics is ob-

tained as the limit of〈
n−1/2U1(β1), n−1/2Ũ1(γ1)

〉
= n−1

∑n
i=1 〈Ui1(β1),ηi(γ1) + φi(γ1)〉

= n−1
∑n

i=1 〈Ui1(β1),ηi(γ1)〉+ n−1
∑n

i=1 〈Ui1(β1),φi(γ1)〉

= n−1
∑n

i=1

∫∞
0

{
Z

(1)
i (t)− z̄(1)(β1, t)

}{
Z

(2)
i (t)− z̄(2)(γ1, t)

}
ωi(t)d < Mi1, M̃i1 > (t)

+n−1
∑n

i=1

∫∞
0

{
Z

(1)
i − z̄(1)(β1, t)

}
q(t)
π(t)

d < Mi1,M
c
i > (t),

which converges in probability to

Ω
(1)
(pq) = E

∫∞
0

{
Z

(1)
i (t)− z̄(1)(β1, t)

}{
Z

(2)
i (t)− z̄(2)(γ1, t)

}
ωi(t)d < Mi1, M̃i1 > (t)

+ E
∫∞

0

{
Z

(1)
i − z̄(1)(β1, t)

}
q(t)
π(t)

d < Mi1,M
c
i > (t).

(3.29)

Let β̂1 and γ̂1 be solutions to U1(β̂1) = 0 and Ũ1(γ̂1) = 0, respectively. Appying

Taylor series expansion to (U1(β̂1), Ũ1(γ̂1))T around (β1,γ1), we have

n1/2

 β̂1 − β1

γ̂1 − γ1

 =

 Ω
(1)−1
(pp) 0

0 Ω
(1)−1
(qq)

 U1(β1)

Ũ1(γ1)

+ op(1).

This, together with (3.25), implies that

Σ(1) =

 Ω
(1)−1
(pp) Ω

(1)−1
(pp) Ω

(1)
(pq)Ω

(1)−1
(qq)

Ω
(1)−1
(qq) Ω

(1)
(qp)Ω

(1)−1
(pp) Ω

(1)−1
(qq)

 . (3.30)
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A consistent estimator for Σ(1) is obtained by replacing all unknown quantities

with their respective sample estimates. �

Corollary 1 Let ξn = n1/2(A1β̂1−d1) and ηn = n1/2(A2γ̂1−d2). Then, under

the null hypothesis (3.20), we have ξn

ηn

 d−→ N(0,V), as n→∞,

where

V =

 A1 0

0 A2

Σ(1)

 AT
1 0

0 AT
2

 . (3.31)

Define the following Wald-type test statistic

X2
W =

(
ξTn ,η

T
n

)
V̂−1

 ξn

ηn

 ,

where V̂ is a consistent estimate of V obtained by replacing Σ(1) with Σ̂
(1)

in

(3.31). It follows immediately from Corollary 1 that under (3.20), X2
W has an

asymptotic chi-squared distribution with pd1 + pd2 degrees of freedom, where pd1

and pd2 are the dimensions of d1 and d2, respectively. This leads to the following

chi-square joint test for (3.20):

Reject (3.20) at level α if X2
W > χ2

pd1+pd2
(α),

where χ2
pd1+pd2

(α) is the upper 1− α percentile of the standard χ2
pd1+pd2

distribu-

tion.

3.2.2 Joint Regression Analysis for Other Quantities

Besides analyzing λ1(t|Z) and λ̃1(t|Z) jointly, it is sometimes also useful to con-

sider other related quantities. Let λ(t|Z)) denote the all-cause hazard function.
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Then, the three pairs (λ1(t|Z), λ̃1(t|Z)), (λ1(t|Z), λ(t|Z)), and (λ1(t|Z), λ2(t|Z))

uniquely determine each other.

3.2.2.1 Joint Regression Analysis of Cause-Specific Hazard and All-

Cause Hazard

Assume that the proportional cause-specific hazards model (3.18) holds. In ad-

dition, assume the proportional all-cause hazards model:

λ(t|Z) = λ0(t) exp(βT· Z
(3)(t)), (3.32)

where λ0(t) is an unknown baseline all-cause hazard, and Z(3)(t) are functions of

the original covariates Z and t that allow time × covariates interactions. Below

we derive joint inference for β1 and β·.

Let

U·(β·) =
n∑
i=1

∫ ∞
0

{
Z

(3)
i (t)− Z̄(3)(β·, t)

}
dNi(t), (3.33)

be the score function for β· under model (3.32), where

Z̄(3)(β·, t) =

∑n
l=1 Yl(t)Z

(3)
l (t) exp(βT· Z

(3)
l (t))∑n

l=1 Yl(t) exp(βT· Z
(3)
l (t))

and Ni(t) = I(Xi ≤ t, δi = 1). Let β̂· be the solution of the score equation

U·(β·) = 0.

Theorem 4 Under some regularity conditions, as n→∞,

n1/2

 β̂1 − β1

β̂· − β·

 d−→ N(0,Σ(2)),

where Σ(2) is defined by (3.37). Furthermore, Σ(2) can be consistently estimated

by

Σ̂
(2)

=

 Ω̂
(2)−1

(pp) Ω̂
(2)−1

(pp) Ω̂
(2)

(pq)Ω̂
(2)−1

(qq)

Ω̂
(2)−1

(qq) Ω̂
(2)

(qp)Ω̂
(2)−1

(pp) Ω̂
(2)−1

(qq)

 , (3.34)
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where

Ω̂
(2)

(pp) = 1
n

∑n
i=1

∫∞
0

[∑n
l=1 Yl(t)Z

(1)
l (t)⊗2 exp(β̂

T
1 Z

(1)
l (t))∑n

l=1 Yl(t) exp(β̂
T
1 Z

(1)
l (t))

− Z̄(1)(β̂1, t)
⊗2

]
dNi1(t),

Ω̂
(2)

pq = 1
n

∑n
i=1

∫∞
0

(
Z

(3)
i (t)− Z̄(3)(β̂·, t)

)(
Z

(1)
i (t)− Z̄(1)(β̂1, t)

)
Yi(t) exp(β̂

T

1 Z(1)(t))dΛ̂10(t),

Ω̂
(2)

(qq) = 1
n

∑n
i=1

∫∞
0

[∑n
l=1 Yl(t)Z

(3)
l (t)⊗2 exp(β̂

T
· Z

(3)
l (t))∑n

l=1 Yl(t) exp(β̂
T
· Z

(3)
l (t))

− Z̄(3)(β̂·, t)
⊗2

]
dNi(t),

with Λ̂10(t) = 1
n

∑n
i=1

∫ t
0

{∑n
l=1 Yl(u)(β̂

T

1 Z
(1)
i (u))

}−1

dNi1(u) is an estimator of

the baseline cumulative cause-specific hazard for type 1 failure.

Proof for Theorem 4. Under the null hypothesis, it was shown by (Fleming

and Harrington, 1991) that

U·(β·) =
∑n

i=1

∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)
dMi(t)− n

∫ τ
0

(
Z̄(3)(β·, t)− z̄(3)(β·, t)

)
dMi(t)

U1(β1) =
∑n

i=1

∫ τ
0

(
Z

(1)
i (t)− z̄(1)(β1, t)

)
dMi1(t)− n

∫ τ
0

(
Z̄(1)(β1, t)− z̄(1)(β1, t)

)
dMi1(t),

where

Mi(t) = Ni·(t)−
∫ t

0

λ0(u)Yi(u) exp(βT· Z
(3)
i (u))du,

Mi1(t) = Ni1(t)−
∫ t

0

λj0(u)Yi(u) exp(βT1 Z
(1)
i (u))du,

and z̄(3)(β·, t) =
limn→∞ n−1

∑n
l=1 Yl(t)Z

(3)
l (t) exp(βT· Z

(3)
l (t))

limn→∞ n−1
∑n
l=1 Yl(t) exp(βT· Z

(3)
l (t))

.

The first part of (U·(β·),U1(β1))T , i = 1, 2, . . . , n can be viewed as a sum

of independently identically distributed random vector. By using multivariate

central limit theory, we can prove the first part of the vector (3) has a bivariate

normal distribution with mean 0, and variance-covariance matrix Ω(2). Since

Z̄(3)(β·, t) and Z̄(1)(β1, t) converge in probability to some deterministic process

z̄(3)(β·, t) and z̄(1)(β1, t) respectively, we can prove the second part of the vector

(3) converge in probability to zero by using the central limit theory for stochastic

integrals with respect to counting process martingales. Then we can use Slusky
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theorem to prove n−1/2(U·(β·),U1(β1))T has a p+ q dimension multivariate nor-

mal limiting distribution with mean 0 and variance-covariance matrix Ω
(2)
(pp) Ω

(2)
(pq)

Ω
(2)
(qp) Ω

(2)
(qq)

 , (3.35)

where Ω
(2)
(pp) = Ω

(1)
(pp), which is defined in (3.26),

Ω
(2)
(qq) =

∫∞
0

[
limn→∞ n−1

∑n
l=1 Yl(t)Z

(3)
l (t)⊗2 exp(βT· Z

(3)
l (t))

limn→∞ n−1
∑n
l=1 Yl(t) exp(βT· Z

(3)
l (t))

− z̄(3)(β·, t)
⊗2

]
Yi(t) exp(βT· Z

(3)
i (t))dΛ0(t).

(3.36)

and the covariance

Ω
(2)
(pq) = E

∫ τ

0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)(
Z

(1)
i (t)− z̄(1)(β1, t)

)
exp(βT1 Z

(1)
i (t))Yi(t)dΛ10(t)

is the limit of〈
n−1/2U·(β·), n

−1/2U1(β1)
〉

= n−1
∑n

i=1

〈∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)
dMi(t),

∫ τ
0

(
Z

(1)
i (t)− z̄(1)(β1, t)

)
dMi1(t)

〉
= n−1

∑n
i=1

∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)(
Z

(1)
i (t)− z̄(1)(β1, t)

)
d < Mi,Mi1 > (t)

= n−1
∑n

i=1

∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)(
Z

(1)
i (t)− z̄(1)(β1, t)

)
d < Mi1+i2,Mi1 > (t)

= n−1
∑n

i=1

∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)(
Z

(1)
i (t)− z̄(1)(β1, t)

)
d < Mi1,Mi1 > (t)

= n−1
∑n

i=1

∫ τ
0

(
Z

(3)
i (t)− z̄(3)(β·, t)

)(
Z

(1)
i (t)− z̄(1)(β1, t)

)
exp(βT1 Z

(1)
i (t))Yi(t)dΛ10(t).

Applying the Taylor series expansion to (U·(β̂·),U1(β̂1))T around (β·,β1),

we have

n1/2

 β̂1 − β1

β̂· − β·

 ≈
 Ω

(2)−1
(pp) 0

0 Ω
(2)−1
(qq)

 U·(β·)

U1(β1)

 .

This, together with (3.35), implies that

Σ(2) =

 Ω
(2)−1
(pp) Ω

(2)−1
(pp) Ω

(2)
(pq)Ω

(2)−1
(qq)

Ω
(2)−1
(qq) Ω(2)

qp Ω
(2)−1
(pp) Ω

(2)−1
(qq)

 . (3.37)
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Finally, a consistent estimator for Σ(2) is obtained by replacing all unknown

quantities with their respective sample estimates in (3.37). �

Theorem 4 enables one to draw joint inference for β1 and β· along the lines

of the previous section.

3.2.2.2 Joint Regression Analysis of Cause-Specific Hazard and Other-

Cause Hazard

Assume the proportional cause-specific hazards model (3.18) for type 1 failure.

In addition, assume the following proportional cause-specific hazards model for

type 2 failure:

λ2(t|Z) = λ20(t) exp(βT2 Z(4)(t)), (3.38)

where λ20(t) is a unknown baseline cause-specific hazard, and Z(4)(t) are functions

of the original covariates Z and t that allow time × covariates interactions.

Let

U2(β2) =
n∑
i=1

∫ ∞
0

{
Z

(4)
i (t)− Z̄(4)(β2, t)

}
dNi2(t), (3.39)

be the score test statistic under model (3.38), where

Z̄(4)(β2, t) =

∑n
l=1 Yl(t)Z

(4)
l (t) exp(βT2 Z

(4)
l (t))∑n

l=1 Yl(t) exp(βT2 Z
(4)
l (t))

.

Let β̂2 be the solution of the score equations U2(β2) = 0.

Theorem 5 Assume the usual regularity conditions, as n→∞,

n1/2

 β̂1 − β1

β̂2 − β2

 d−→ N(0,Σ(3)),

where Σ(3) is defined in the Appendix. Furthermore, Σ(3) can be consistently

40



estimated by

Σ̂
(3)

=

 Ω̂
(3)−1

(pp) 0

0 Ω̂
(3)−1

(qq)

 , (3.40)

where

Ω̂
(3)

(pp) = 1
n

∑n
i=1

∫∞
0

[∑n
l=1 Yl(t)Z

(1)
l (t)⊗2 exp(β̂

T
1 Z

(1)
l (t))∑n

l=1 Yl(t) exp(β̂
T
1 Z

(1)
l (t))

− Z̄(1)(β̂1, t)
⊗2

]
dNi1(t),

Ω̂
(3)

(qq) = 1
n

∑n
i=1

∫∞
0

[∑n
l=1 Yl(t)Z

(4)
l (t)⊗2 exp(β̂

T
2 Z

(4)
l (t))∑n

l=1 Yl(t) exp(β̂
T
2 Z

(4)
l (t))

− Z̄(4)(β̂2, t)
⊗2

]
dNi2(t).

Proof of theorem 5. Under null hypothesis, it can be shown by (Fleming

and Harrington, 1991) that

U1(β1) =
∑n

i=1

∫ τ
0

(
Z

(1)
i (t)− z̄(1)(β1, t)

)
dMi1(t)− n

∫ τ
0

(
Z̄(1)(β1, t)− z̄(1)(β1, t)

)
dMi1(t)

U2(β2) =
∑n

i=1

∫ τ
0

(
Z

(4)
i (t)− z̄(4)(β2, t)

)
dMi2(t)− n

∫ τ
0

(
Z̄(4)(β2, t)− z̄(4)(β2, t)

)
dMi2(t),

(3.41)

where Mi2(t) = Ni2(t)−
∫ t

0
λj0(u)Yi(u) exp(βT2 Z

(4)
i (u))du, and

z̄(4)(β2, t) =
limn→∞ n

−1
∑n

l=1 Yl(t)Z
(4)
l (t) exp(βT2 Z

(4)
l (t))

limn→∞ n−1
∑n

l=1 Yl(t) exp(βT2 Z
(4)
l (t))

.

The first part of (U1(β1),U2(β2))T , i = 1, 2, . . . , n can be viewed as a sum of

independently identically distributed random vector. By the multivariate central

limit theorem, the first part of the vector (3.41) has a bivariate normal distri-

bution with mean 0, and variance-covariance matrix Ω(3). Since Z̄(1)(β1, t) and

Z̄(4)(β2, t) converge in probability to some deterministic process z̄(1)(β1, t) and

z̄(4)(β2, t), respectively, it can be shown that the second part of the vector (3.41)

converges in probability to zero. It then follows from the Slusky theorem that

n−1/2(U1(β1),U2(β2))T has a p + q dimension multivariate normal limiting dis-

tribution with mean 0 and variance-covariance matrix Ω
(3)
(pp) 0

0 Ω
(3)
(qq)

 , (3.42)
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where Ω
(3)
(pp) is defined in (3.26) and

Ω
(3)
(qq) =

∫∞
0

[
limn→∞ n−1

∑n
l=1 Yl(t)Z

(4)
l (t)⊗2 exp(βT2 Z

(4)
l (t))

limn→∞ n−1
∑n
l=1 Yl(t) exp(βT2 Z

(4)
l (t))

− z̄(4)(β2, t)
⊗2

]
Yi(t) exp(βT2 Z

(4)
i (t))dΛ02(t).

(3.43)

The variance-covariance matrix between (U1(β1),U2(β2))T equals 0 because <

Mi1,Mi2 > (t) = 0 (Fleming and Harrington, 1991, Theorem 2.5.2.). Finally, a

consistent estimator for Σ(3) is obtained by replacing all unknown quantities with

their respective sample estimates in (3.42). �

Remark 3.4: In addition to being easy to interpret, the PH models for the

cause-specific hazard and the all-cause hazard only require that the censoring time

be conditionally independent of the survival time given the observed covariates,

which is weaker than the completely censoring at random assumption needed by

the proportional subdistribution hazards model.

Remark 3.5: It is important in practice to routinely assess how well a re-

gression model fits the data. It has been well recognized that the proportional

hazard assumption for a time-independent covariate does not hold simultaneously

for the cause-specific hazard and cause-specific subdistribution hazard, which is

why we allow time × covariates interactions in models (3.18), (3.19), (3.32) and

(3.38). Standard model building and diagnostics techniques for the standard Cox

(1972) proportional hazards model can be readily applied to models (3.18), (3.32)

and (3.38) (Schoenfeld, 1980, 1982; Lagakos, 1981; Andersen, 1982; Nagelkerke

et al., 1984; Moreau et al., 1985; Arjas, 1988; Beyersmann et al., 2007; Latouche

et al., 2007; Grambauer et al., 2010; Haller et al., 2012; Andersen et al., 2012).

Graphical methods for these models can also be adapted for the proportional

subdistribution hazards model (3.19). Formal goodness of fit tests for (3.19) are

developed by (Scheike and Zhang, 2008).
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3.3 Simulations

In this section, we present some simulation studies to illustrate the advantages

of the proposed joint tests over the Bonferroni adjustment method that spends

half of the significance level for each of the two individual tests. Specifically, we

consider a two-sample model with J = 2 competing risks, and we focus on the

problem of comparing type 1 failure time between the two groups. The competing

risks data are generated using Beyersmann et al. (2009)’s cause-specific hazard

driven method which requires only specification of the cause-specific hazard for

each type of failure. The underlying model assumes that in each group, both types

of failures have constant cause-specific hazards and thus the all-cause hazard is

also constant. As discussed in Section 3.2.2, to study the group difference in type

1 failure, it is sufficient to test any one of the three equivalent hypotheses (3.1),

(3.12), and (3.13). In this chapter, we did simulation studies with respect to both

CSH and CIF pair, and CSH and ACH pair.

3.3.1 Simulations for Joint Two sample test with respect to CSH and

CIF Pair

Figure 3.1 depicts the simulated rejection power of the chi-square joint test, the

maximum joint test and the Bonferroni adjustment method for (3.1) for various

sample sizes under three scenarios. Here λjk denotes the cause-specific hazard

for type j in group k. The censoring rate is set to be 0.1 with an independent

exponential censoring time. The nominal significance level is 0.05. Figure 3.1

represents a null case where there is no difference with respect to type 1 failure

between the two groups (same CSH and CIF for cause 1 between two groups).

Figure 3.1 (b) corresponds to a situation where there is no group difference in

cause-specific hazard for type 1 failure, but there is a group difference in the
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cumulative incidence function (or cumulative incidence hazard). Figure 3.1 (c)

corresponds to a situation where there are group differences in both the cause-

specific hazard and cumulative incidence for type 1 failure. Each simulation uses

1,000 Monte Carlo samples.

It is seen from Figure 3.1 (a) that the type I error rates for all three tests

are well controlled around the 0.05 nominal level. In the case when there is

a group difference in cumulative incidence hazard (Figure 3.1 (b)) or both the

cause-specific hazard and cumulative incidence hazard for type 1 failure (Figure

3.1(c)), the chi-square joint test or the maximum join test can be much more

powerful than the Bonferroni method. This has important implications for the

design of a clinical trial in the presence of competing risks. For example, to

achieve 80% power under the second scenario (Figure 3.1 (b)), it would require

n = 80 patients in each group for the chi-square joint test, n = 180 patients

for the joint maximum test, and at least n = 200 patients in each group for the

Bonferroni adjustment method.

3.3.2 Simulations for Joint Two sample Test with respect to CSH and

ACH Pair

Figure 3.2 depicts the simulated rejection power of the chi-square joint test,

the maximum joint test, and the Bonferroni adjustment method for (3.12) for

various sample sizes under four scenarios. Here λ1k and λk denote the cause-

specific hazard for type 1 failure and the all-cause hazard, respectively, for group

k (k = 1, 2). The censoring rate is set to be 0.1 with an independent exponential

censoring time. Patients were equally assigned to two groups. The nominal

significance level is 0.05. Figure 3.2 (a) represents a null case where there is

no difference with respect to type 1 failure between the two groups. Figure 3.2
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Figure 3.1: For CSH and CIF pair: simulated power for the chi-square test (solid

line), the maximum test (dotted line), and the Bonferroni method (dashed line)

under a null case (panel (a)) and two different alternatives (panels (b)-(c))
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(b) corresponds to a situation where there is a group difference in cause-specific

hazard for type 1 failure, but there is no group difference in the all-cause hazard.

Figure 3.2 (c) corresponds to a situation where there is no group difference in

cause-specific hazard for type 1 failure, but there is a group difference in the

all-cause hazard. Both Figure 3.2 (d) and (e) corresponds to a situation where

there are group differences in both the cause-specific hazard for type 1 failure,

and the all-cause hazard. Each simulation uses 1,000 Monte Carlo samples.

It is seen from Figure 3.2 (a) that the type I error rates for all three tests are

well controlled around the 0.05 nominal level. When there is a group difference in

only one of the two quantities (Figure 3.2 (b) or (c)), the chi-square joint test or

the maximum join test can be much more powerful than the Bonferroni method.

When there are group differences in both the cause-specific hazard for type 1

failure and the all-cause hazard and CSH ratio, and ACH ratio are very different

(Figure 3.2(d)), chi-square test will have much higher power than Bonferroni test.

Only in the case when CSH ratio and ACH ratio are very similar (0.09/0.15=0.6,

0.11/0.17=0.65), the three methods have similar powers with the maximum test

being slightly more powerful. This has important implications for the design

of a clinical trial in the presence of competing risks. For example, to achieve

80% power under the second scenario (Figure 3.2 (b)), it would require around

n = 460 patients for the chi-square joint test, around n = 1900 patients for the

joint maximum test, and at least n = 2200 patients for the Bonferroni adjustment

method.

3.4 Real Data Example

We illustrate our methods on two real data sets. In the first example we consider

joint inference for the cause-specific hazard and cumulative incidence for time
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Figure 3.2: For CSH and ACH pair: Simulated power of the chi-square test (solid

line), the maximum test (dotted line), and the Bonferroni method (dashed line)

under a null case (panel (a)) and four different alternatives (panels (b)-(e))
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to second malignancy in Hodgkin disease patients. In the second example, we

perform joint analysis of the cause-specific hazard (CSH) for time to progression

(TTP) and all-cause hazard for time to progression or death (progression free

survival or PFS) for follicular type lymphoma patients.

3.4.1 Hodgkin Disease

The Hodgkin disease data was described in Pintilie (2006). It consists of 865

patients who were diagnosed with Hodgkin disease and received radio therapy

in Princess Margaret Hospital between 1968 and 1986. Here we are interested

in studying time to second malignancy after receiving radio therapy, which is

an important variable for evaluating the side effects of radio therapy. Death

without second malignancy is a competing risk. Among the 865 patients, 93

developed second malignancy, 386 were dead without the second malignancy,

and 386 were right censored who did not experience any of the two events by the

end of study. For illustration purpose, we investigate whether or not the risks

of developing second malignancy were the same among older(≥ 30) and younger

(< 30) patients.

Figure 3.3 and Figure 3.4 depict the cumulative cause-specific hazard func-

tions and the cumulative incidence functions, respectively, for time to second

malignancy for the older(≥ 30) and younger (< 30) groups. There appears to

be a higher cause-specific hazard for the older patients since the slope of their

cumulative cause-specific hazard is noticeably bigger (Figure 3.3). However, the

cumulative incidence functions for the two age groups are barely distinguishable

(Figure 3.4 ). The two-sample log-rank test for the cause-specific hazard for time

to second malignancy yields a p-value=0.037. The Gray (1988) two-sample test

for the cumulative incidence for time to second malignancy gives a p-value=0.770.
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At 5% overall significant level, none of the individual tests is statistically signifi-

cant at the Bonferroni adjusted level 0.05/2=0.025.
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Figure 3.3: Cumulative cause-specific hazard functions for time to second malig-

nancy for older(≥ 30) and younger (< 30) patients. Log-rank test p-value=0.037.

Comparing the event of interest between two groups 155

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Time to second malignancy

C
u

m
u

la
tiv

e
 c

a
u

se
 s

p
e

ci
fic

 h
a

za
rd

Models B and D: Competing risks are ignored

C
u

m
u

la
tiv

e
 i
n

ci
d

e
n

ce
 o

f 
se

co
n

d
 m

a
lig

n
a

n
cy

C
u

m
u

la
tiv

e
 i
n

ci
d

e
n

ce
 o

f 
se

co
n

d
 m

a
lig

n
a

n
cy

Age ≥ 30 years

Age  < 30 years

Age <30 years
Age ≥30 years

Time to second malignancy

 Model C: Only death is competing risk

Age ≥30 years
Age <30 years

Time to second malignancy

 Model A: Relaspe and death are competing risks

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

Figure 9.2 The effect of age under the different models.

B and D the coefficients are similar and larger than for both models
A and C. The effects seen in models A and C are the ‘real effects’.
Model A gives the effect of age on second malignancy when only
the first event was observed. The events that form the competing

Figure 3.4: Cumulative incidence functions for time to second malignancy for

older(≥ 30) and younger (< 30) patients. Gray’s test p-value=0.770.

We performed the chi-square joint test and the maximum test for the null

hypothesis that there is no difference in the cause-specific hazard and the cumula-

tive incidence for time to second malignancy between older and younger patients.

The p-values are presented in Table 3.1, along with the results of the individual

tests and the Bonferroni’s method. In contrast to the Bonferroni method, the

two-sample chi-square joint test for the cause-specific hazard and the cumulative

incidence yields a p-value 0.02, which is highly significant at 5% significance level.
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Table 3.1: Separate and Joint Test Results for Hodgkin Disease Example

Separate Test Joint Test

Test CSH CIH Bonferroni χ2 Max

p-value 0.037 0.770 0.074 0.020 0.050
NOTE: χ2 and Max are abbreviations for the Chi-square test and the maximum test described in Section 2.2.

The maximum joint test is also significant at level 0.05 (p-value =0.05). Finally,

in addition to an elevated cause-specific hazard for time to second malignancy,

the older patients were also observed to have a higher risk of dying from other

life-threatening diseases without developing second malignancy, which explains

why their observed cumulative incidence was not significantly different from the

younger patients. This is consistent with our simulation results in Section 4 that

the chi-square test tends to be more powerful test when there is a difference in

one quantity.

3.4.2 Follicular Cell Lymphoma Study

The follicular cell lymphoma study (Pintilie, 2006; Scheike and Zhang, 2011)

consists of 541 early stage (I or II) follicular type lymphoma patients who were

enrolled between 1967 and 1996 and treated with either radiation alone (RT) or

with radiation and chemotherapy (CMT). There were 272 events due to disease

(relapse or no treatment response), 76 competing risk events (death without

relapse), and 193 censored individuals who didn’t experience any of the two events

at the end of the followup. As in Scheike and Zhang (2011), we test if the CMT

group has a longer time to relapse or no treatment response than the RT group.

Although one could study different pairs of quantities, we consider joint inference

of the cause-specific hazard and the all-cause hazard based on models (3.18) and
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Table 3.2: Separate and Joint Test Results for Follicular Cell Lymphoma Study

Separate Test Joint Test

Test CSH CIH Bonferroni χ2 Max

p-value 0.035 0.037 0.070 0.182 0.047
NOTE: χ2 and Max are abbreviations for the Chi-square joint test and the maximum joint test.

(3.19) because they correspond to two commonly used endpoints, namely time to

progression (TTP) and progression free survival (PFS), in oncology clinical trials.

Here TTP, defined as time to relapse or no treatment response, is an important

endpoint for the anti-tumor activity of an agent, and PFS, defined as time to

progression or death before progression, is a common endpoint for the overall

effects on a patient. In addition to a binary treatment variable (1 for RT and 0

for CMT), we adjust for patient’s baseline age, stage, and Haemoglobin level (hgb)

by including them as covariates in our models. The Cox-Snell residual plots for

the proportional all-cause hazards model (Figure 3.5 (a)) and the proportional

cause-specific hazards model (Figure 3.5 (b)) indicate reasonable overall fit of

both models. We conducted chi-square joint test and the maximum joint test

for the treatment variable and summarized the results along with Bonferroni

adjustment method and the individual tests in Table 3.2. The maximum joint test

(p-value= 0.047) is significant, whereas the chi-square joint test (p-value=0.182)

and the Bonferroni method (p-value=0.07) are not significant at 5% significance

level. The chi-square joint test has a relatively large p-value because it can only

do two-sided test. Finally, the one-sided individual test statistics for CSH and

ACH are 1.81 and 1.78, respectively, both exceeding 1.77, the cutoff value of the

maximum test. Therefore we conclude that CMT group has a lower risk of TTP

(cause-specific hazard) and a lower risk of PFS (ACH) as compared to the RT

group at 5% overall significance level.
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Figure 3.5: The Cox-Snell residual plots (solid lines) for all-cause hazard re-

gression model (panel (a)) and cause-specific hazard model (panel(b)), with 95%

bootstrap confidence intervals (dashed lines), and the 45 degree line (dotted lines)
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CHAPTER 4

Sample Size Calculation for Joint Inference of

Cause Specific Hazard and All Cause Hazard

The purpose of this chapter is to develop sample size calculation methods for

jointly testing the cause specific hazard and the all cause hazard in a two sample

comparison situation in the presence of competing risks and independent right

censoring. The methods are based on the nonparametric two-sample joint tests

developed in chapter 3. We also consider uniform patient entry and the admin-

istrative censoring.

It is worth noting that the cause-specific hazard and all-cause hazard corre-

spond to two important surrogate endpoints, time to progression (TTP) and pro-

gression free survival (PFS), in oncology trials. For example, in cancer research,

one is often interested in time to tumor progression while other correlated events,

such as death without a tumor progression, can prevent one from seeing the event

of interest. In this case, the TTP is a direct measure of the antitumor activity

of the new drug or agent, whereas the PFS, time to either disease progression or

time to death whichever happens first, is a commonly used surrogate endpoint in

early phase oncology trials.
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4.1 Joint Distribution for Two Individual Test Statistics

under Alternative Hypothesis

In chapter 3, we developed the joint distribution for the two logrank test statistics

(2.2) and (3.14) under the null hypothesis

H0 : λ11(t) = λ12(t) and λ·1(t) = λ·2(t). (4.1)

Based on the joint distribution, we constructed a chi-square test statistics and

maximum statistics to detect any group difference in the either CSH or ACH. In

order to do sample size calculation, we also need to find the joint distribution of

the two test statistics under the alternative hypothesis. Similar to other sample

size studies (Schoenfeld, 1983; Schulgen et al., 2005), we assume local asymptotic

alternative

Ha : λ11(t)/λ12(t) = 1 + φ1/
√
n or λ·1(t) = λ·2(t) = 1 + φ·/

√
n, (4.2)

where φ1 and φ· are bounded integrable function and have order of O(1).

Theorem 6 Let U11(τ) and U·1(τ) be defined by (2.2) and (3.14). The asymp-

totic joint distribution of n−1/2(U11(τ), U·1(τ)) under a sequence of local alter-

natives (4.2) is an approximately bivariate normal distribution with mean µ =

(µ1, µ2) and variance-covriance matrix Σ, where

µ1 =

∫ τ

0

φ1
y1(t)y2(t)

y1(t) + y2(t)
dΛ11(t), (4.3)

µ2 =

∫ τ

0

φ·
y1(t)y2(t)

y1(t) + y2(t)
dΛ·1(t), (4.4)

and

Σ =

 σ11σ12

σ21σ22

 , (4.5)
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where

σ11 =

∫ τ

0

y1(t)y2(t)

y1(t) + y2(t)
dΛ11(t), (4.6)

σ22 =

∫ τ

0

y1(t)y2(t)

y1(t) + y2(t)
dΛ·1(t), (4.7)

and

σ12 = σ21 =

∫ τ

0

y1(t)y2(t)

y1(t) + y2(t)
dΛ11(t), (4.8)

with Λjk(t) =
∫ t

0
λjk(u)du and Λ·k(t) =

∫ t
0
λ·k(u)du, and yk(t) = akSk(t)Sc(t).

Proof of Theorem 6: Under usual regularity condition, by using multivariate

martingale central limiting theorem (Fleming and Harrington (1991), Theorem

5.3.5), we can prove that (n−1/2U11, n
−1/2U·1)T has a bivariate normal limiting

distribution with mean µ = (µ1, µ2) and variance-covariance matrix Σ = (σij),

where

µ1 =
∫ τ

0
φ1

y1(t)y2(t)
y1(t)+y2(t)

dΛ11(t),

µ2 =
∫ τ

0
φ·

y1(t)y2(t)
y1(t)+y2(t)

dΛ·1(t),

σ11 =
∫ τ

0
y1(t)y2(t)
y1(t)+y2(t)

dΛ11(t),

σ22 =
∫ τ

0
y1(t)y2(t)
y1(t)+y2(t)

dΛ·1(t),

σ12 =
∫ τ

0
y1(t)y2(t)
y1(t)+y2(t)

dΛ11(t).

(4.9)

Here Λ·1(t) =
∫ t

0
λ·1dt is the all-cause cumulative hazard in group 1. Note that

σ12 is the limit of〈
n−1/2U11, n

−1/2U·1
〉

= n−1
〈∫ τ

0
Y1(t)Y2(t)
Y·(t)

{
dM11(t)
Y1(t)

− dM12(t)
Y2(t)

}
,
∫ τ

0
Y1(t)Y2(t)
Y·(t)

{
dM·1(t)
Y1(t)

− dM·2(t)
Y2(t)

}〉
= n−1

{∫ t
0

Y 2
1 (t)Y 2

2 (t)

Y·(t)2

(
d<M11(t),M·1(t)>

Y 2
1 (t)

+ d<M12(t),M·2(t)>

Y 2
2 (t)

)}
= n−1

{∫ t
0

Y 2
1 (t)Y 2

2 (t)

Y·(t)2

(
dΛ11(t)
Y1(t)

+ dΛ12(t)
Y2(t)

)}
,

which converges in probability to
∫ τ

0
y1(t)y2(t)
y·(t)

dΛ11(t). Similarly, the diagonal ele-

ments are the asymptotic variances of n−1/2U11 and n−1/2U·1, respectively (Flem-

ing and Harrington, 1991). �

55



4.2 Sample Size Calculation for Chisquare Test Statistics

4.2.1 Non-central Chisquare Test Statistics under Alternative Hy-

pothesis

Define

X2 = n−1 (U1(τ), U·1(τ)) Σ−1

 U11(τ)

U·1(τ)

 . (4.10)

It follows from theorem (6) that X2 has an approximate non-central chi-square

distribution with 2 degree freedom and non-centrality parameter ξ, where

ξ = nµTΣ−1µ. (4.11)

Analogous to Schoenfeld’s method Schoenfeld (1981), we can also do sample

size calculation in two steps, calculate the number of failures due to cause of

interest first, and then get the actual number of patients needed to enroll in the

study. In the next two subsections, we will show why the two step methods

carries to the joint test situation and how to implement them in details.

4.2.2 The Required Number of Failure Due to Cause of Interest

In this subsection, we will calculate the number of failure due to cause 1 needed

first for the chi-square test. We will first state a lemma to establish the relation-

ship between ξ and the number of failure due to cause 1.

Lemma 1 The number of failure due to cause 1 can be calculated by

D1 = ξ(1−R)

a1a2[(φ1−φ·)2+φ2· (1−1/R)]
, (4.12)

where a1, a2 are the sample proportions in group 1 and group 2, respectively, and

R is the relative risk of failure due to cause 1 versus any cause in group 1.

56



Proof of Lemma 1:

µ1 =
∫ τ

0
φ1

y1(t)y2(t)
y1(t)+y2(t)

dΛ11(t)

=
∫ τ

0
φ1

a1S1(t)Sc(t)a2S2(t)Sc(t)
a1S1(t)Sc(t)+a2S2(t)Sc(t)

dΛ11(t)

=
∫ τ

0
φ1a1a2

S2(t)
a1S1(t)+a2S2(t)

S1(t)Sc(t)dΛ11(t)

=
∫ τ

0
φ1a1a2

e−
∫ t
0 λ·2(u)du

a1e
−

∫ t
0 λ·1(u)du+a2e

−
∫ t
0 λ·2(u)du

S1(t)Sc(t)dΛ11(t)

≈ φ1a1a2P11(t),

(4.13)

and by similar derivations, we can get

µ2 =
∫ τ

0
φ·

y1(t)y2(t)
y1(t)+y2(t)

dΛ·1(t) = φ·a1a2P·1(t),

σ11 =
∫ τ

0
y1(t)y2(t)
y1(t)+y2(t)

dΛ11(t) = a1a2P11(t),

σ22 =
∫ τ

0
y1(t)y2(t)
y1(t)+y2(t)

dΛ·1(t) = a1a2P·1(t),

σ12 =
∫ τ

0
y1(t)y2(t)
y1(t)+y2(t)

dΛ11(t) = a1a2P11(t),

(4.14)

where a1, a2 are the sample proportions in group 1 and group 2, respectively,

P11(t) =
∫ τ

0
S1(t)Sc(t)dΛ11(t) and P·1(t) =

∫ τ
0
S1(t)Sc(t)dΛ·1(t) are the cumulative

incidence in group 1 by time t due to cause 1 and all cause, respectively.

After plugging all the quantities from (4.13) and (4.14) to (4.11), we can get

ξ =
a1a2[φ21nP11(t)−2φ1φ·nP11(t)+φ2· nP·1(t)]

1−nP11(t)/nP·1(t)

=
a1a2[φ21D1(t)−2φ1φ·D1(t)+φ2·D·(t)]

1−D1(t)/D·(t)

=
a1a2[φ21D1(t)−2φ1φ·D1(t)+φ2·D·(t)/R(t)]

1−R(t)

=
a1a2[(φ1−φ·)2D1+φ2· (1/R(t)−1)D1]

1−R(t)
,

(4.15)

where R(t) is the relative risk of failure due to cause 1 versus all causes. We can

solve for D1 from (4.15). �

Given type I error α and type II error β, we can establish the two error

equations below.

α = P (Reject H0|H0) = P (X2 > C|X2 ∼ χ2
2(0)), (4.16)
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1− β = P (Reject H0|Hα) = P (X2 > C|X2 ∼ χ2
2(ξ)), (4.17)

where C is the critical value for the test. We can solve for C from (4.21). After

plugging C in (4.22), theoretically speaking, we can solve for ξ and in turn solve

for D1 by (4.12). However, (4.22) involves a non-central chi-square distribution,

so it’s hard to find an analytical formula for ξ. In this paper, we will use an

algorithm (proposed by an unpublished dissertation by Nan Zhang) to solve the

equations iteratively. The algorithm for solving D1 is listed below.

1. In kth iteration, let D
(k)
1 = k and D

(k)∗
1 = k + 1;

2. Calculate ξ(k) and ξ(k)∗ by plugging in D
(k)
1 and D

(k)∗
1 in (4.12) respectively;

3. Use (4.22) to get C
D

(k)
1

and C
D

(k)∗
1

;

4. If C falls between C
D

(k)
1

and C
D

(k)∗
1

, return sample size D
(k)
1 . Otherwise, go

back to Step (2).

To summarize, we need the following information to find the required number

of failure due to cause of interest for the trial in order to have 1 − β power to

detect treatment effect at α level.

• Pre-specified type I error α and power 1− β;

• The sample proportion allocation in group 1 and group 2, a1 and a2;

• Relative risk of failure due to cause 1 versus any causes in group 1, which

is denoted by R.

• CSH ratio for cause 1 in group 1 versus group 2, φ1;

• ACH ratio for group 1 versus group 2, φ·.
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4.2.3 The Required Number of Patients

Similar to Schoenfeld (1983), the actual number of patients needed to enroll in

the trial can be calculated by

N = D1/ (a1 ∗ P11 + a2 ∗ P12) , (4.18)

where P1k is the probability of observing a failure due to cause 1 in group k, a1

and a2 (a1 + a2 = 1) are patients allocation in two groups.

In practice, when we do sample size calculation, we could make some assump-

tions to simply the required input partakers from practitioner. For example, we

may assume both CSH and ACH are constant in control and treatment groups

(λ1k(t) = λ1k, λ·k(t) = λ·k, k = 1, 2). The censoring hazard is also assumed to

be constant, denoted by λc. Patients enter study uniformly over accrual period

[0, t1] and the follow-up time is t2. Under these assumptions, according to Lachin

and Foulkes (1986) Schulgen et al. (2005), the probability of observing a failure

due to cause j by time t1 + t2 can be calculated by

Pjk =
λjk
λ·k

[
1− exp(−λ·kt2)− exp(−λ·k(t1 + t2))

λ·kt1

]
, (4.19)

where λ·k = λ1k + λ2k + λc, and the probability of observing a failure due to any

cause by time t1 + t2 is

P·k =
λ1k + λ2k

λ·k

[
1− exp(−λ·kt2)− exp (−λ·k(t1 + t2))

λ·kt1

]
. (4.20)

In summary, to calculate the actual number of patients required for the trial,

besides the information listed in last subsection, we also need to know the accrual

time t1, the maximum follow-up time t2, cumulative incidence for cause 1 in both

groups, P11 and P12 or equivalently λ11 and λ12.
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4.3 Sample Size Calculation for Maximum Test Statistics

Define

M = max(|Z11|, |Z·1|)),

where Z11 = U11/
√
σ11 and Z·1 = U·1/

√
σ22. It follows from Theorem 1 that

for large samples, the distribution of n−1/2(Z11, Z·1) can be approximated by

the bivariate normal distribution N
(

(0, 0)T , (1, 1,
√
R)
)

under null hypothesis

(4.1), and N

((
φ1

√
a1a2P11(t), φ·

√
a1a2P11(t)/R

)T
,
(

1, 1,
√
R
))

under alterna-

tive hypothesis (4.2).

Given type I error α and type II error β, we can establish the two error

equations below,

α = P (Reject H0|H0) = P (M > C∗|H0), (4.21)

and

1− β = P (Reject H0|Ha) = P (M > C∗|Ha), (4.22)

where C∗ is the critical value for the test.

We can solve for C∗ from equation (4.21). Since we can not find the exact

distribution functions for M , we will need to proximate them by using Monte

Carlo samples. Specifically, we generate N pairs of random variables from the

bivariate normal distribution N
(

(0, 0)T , (1, 1,
√
R)
)

. For the l-th generated pair,

compute the maximum absolute value, and denoted it by Ml, l = 1, ..., N . We

can approximate C∗ by the upper 100(1− α)-th sample quantile of M1, . . . ,MN .

For a fixed alternative, we can prove that (Z11, Z·1) has a limiting distribution

with mean
(
φ1

√
a1a2D1, φ·

√
a1a2D1/R

)
. To solve equation (4.22) for sample

size, we need to use a similar algorithm proposed in the previous section.
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1. In kth iteration, let D
(k)
1 = k, and generate N pairs of random numbers

(Wi, Vi), i = 1, ..., N from bivariate normal distribution

N
((
φ1

√
a1a2D1, φ·

√
a1a2D1/R

)
, (1, 1,

√
R)
)
.

2. Calculate the maximum absolute value within each pair and denote it by

Ml, l = 1, ..., N . Find the first Ml which is bigger than C∗ and denote the

index by l∗.

3. If 1− l∗/N > 1− β, then return D1 = D
(k)
1 . Otherwise go back to step 1.

Similar to Chisquare test, we can get the number of patients needed to be

enrolled in the trial by (4.18) (4.19) and (4.20).

Remark 4.1. It is straightforward to modify the maximum joint test proce-

dure to test one-sided alternative(s) based on either T ∗ = max(Z11, Z̃11), T ∗ =

max(|Z11|, Z̃11), or T ∗ = max(Z11, |Z̃11|) as deemed appropriate.

4.4 Simulation Studies

A simulation study was conducted to illustrate the saving in sample sizes for using

Chiquare test or maximum test compare to Bonferroni Test. The CSH for cause 1

in group 1, λ11, was set to be 0.05. Simulation results with different values for λ11

are similar and available upon request. The relative risk of failure due to cause 1

versus all causes in group 1, R, is set to be 0.6 and 0.85 to indicate a middle and

high relative risk. The censoring rate was set to be 0.1. Various combination of

CSH ratio for cause 1 and ACH ratio were used to cover most of situations we

can encounter in real analysis. In order to make sure λ·2 > λ12, we need to choose

the parameter combinations which meet φ1 > R ∗ φ·. The Monte Carlo sample

we used to approximate distribution of T under alternative hypothesis (4.2), and
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distributions of M under both null and alternative hypothesis (4.1) and (4.2) is

set to be 5000. Let the maximum followup time to be t = 200. Type I error

α was chose to be 0.05, to achieve a 80% power, both number of failure due to

cause 1 and total number of patients required by all three methods are listed in

in table 4.1.

As we can see in table 4.1, chisquare test requires less sample sizes than

maximum test or Bonferroni method in almost all cases except when CSH ratio

and ACH ratio is the same. The bigger the differences between CSH ratio and

ACH ratio, the smaller the sample sizes required by chi-square test compare to

maximum test or Bonferroni method. In the cases when difference in CSH ratio

and ACH are the same, maximum test requires least sample size among all three

methods.

4.5 Real Data Example

We illustrate our method by using a 4D trial (Die Deutsche Disbetes Dialyse

Studie) (Wanner et al., 1999). This 4D trial is to evaluate the efficacy of antihy-

perlipidemic treatment with atovastatin, in reducing cardiovascular mortality and

frequency of non-fatal myocardial infection. It is a randomized, double-blinded,

placebo-controlled trial. The event of interest is the composite endpoint of death

due to cardiovascular disease and non-fatal myocardial infarction, and the possi-

ble competing risks is death due to other cause. Schulgen et al. (2005) conducted

sample size calculation based on the test of the cause-specific hazard(CSH) for

event of interest (death due to cardiovascular disease or non-fatal myocardial

infection). As discussed earlier in Li and Yang (2013), CSH is not enough to

quantify competing risk data, so a joint test is necessary to compare the treat-

ment with placebo with respect to time to event of interest. In our paper, we
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Table 4.1: Sample Size Based on the Chi-square Test and the Bonferroni Test for

the Joint Hypothesis of CSH and ACH (α = 0.05, 1− β = 0.8)

R
CSH

ratio

ACH

ratio

Chi-square Test Maximum Test Bonferroni Test

Event Patient Event Patient Event Patient

0.85

0.6 0.6 125 163 104 136 124 162

0.6 0.7 125 150 133 160 146 175

0.7 0.6 82 116 115 162 115 162

0.7 0.7 257 334 217 282 255 330

0.7 0.8 217 263 270 327 299 362

0.8 0.6 44 67 109 163 108 162

0.8 0.7 143 199 222 308 238 330

0.8 0.8 657 852 540 700 650 841

0.8 0.9 365 445 644 785 764 930

0.9 0.6 27 43 110 173 103 162

0.9 0.7 67 99 228 334 226 330

0.9 0.8 255 350 577 792 613 841

0.9 0.9 2950 3819 2020 2615 2912 3769

0.60

0.6 0.6 88 162 82 152 88 162

0.6 0.7 141 239 122 207 146 247

0.6 0.8 132 208 137 216 146 229

0.6 0.9 89 131 140 206 146 214

0.7 0.6 77 154 83 166 82 162

0.7 0.7 181 333 164 302 180 330

0.7 0.8 302 517 266 456 299 512

0.7 0.9 218 350 283 454 299 480

0.9 0.6 45 101 83 185 73 162

0.9 0.7 104 216 169 351 160 330

0.9 0.8 327 636 433 842 433 841

0.9 0.9 2083 3820 1877 3442 2055 3769

Note: R represents relative risk of failure due to cause 1 versus any cause.
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illustrate how to re-design the trial with respect to CSH and ACH. We will show

that there is a big saving in sample size by using chi-square test or maximum

test compare to Bonferroni method under most scenarios.

First, we calculate the number of cardiovascular death or non-fatal myocardial

infection needed to detect the treatment difference. In Schulgen et al. (2005)’s

paper, they used prior information from two pervious studies about diabetes

patients (Koch et al., 1997; Tschöpe et al., 2008). Beside all the information

needed in Schulgen et al. (2005), such as type I error α, power 1 − β, patients

allocation a1 and a2, and the cause specific hazard ratio between treatment group

and control with respect to event of interest (death due to cardiovascular disease

or non-fatal myocardial infection) φ1, we also need to know φ·, the all cause

hazard ratio between the two groups , and R, the relative risk of event of interest

to death due to any cause or non-fatal myocardial infection in control group.

Similar to Schulgen et al. (2005), we set α = 0.05, β = 0.1, a1 = a2 = 0.5,

and φ1 = 0.73. We also assume R = 0.26/0.4, where 0.26 is the CSH for cause

of interest and 0.4 is ACH based on numbers used in table 1 in Schulgen et al.

(2005)’s paper. For all cause hazard ratio, we assume three different scenarios

(table 4.2), some beneficial treatment effect on competing risk (φ· = 0.3/0.4,

scenario A), adverse treatment effect on competing risk (φ· = 0.36/0.4, scenario

B), and no treatment effect on competing risk (death due to other causes) (φ· =

0.33/0.4, scenario C). We can plug in all the prior information to our R function

and get the required number of event of interest for both chi-square test and

maximum test.

In order to calculate the actual number of patients to be enrolled in the

study, we need to calculate all the cause specific hazards based on each specific

cumulative incidence Schulgen et al. (2005). Assume the accrual period t1 = 1.5,
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Table 4.2: Assumptions for Hazard Rates under Control and Experimental Treat-

ment

Scenario A Scenario B Scenario C

Control treatment Control treatment Control treatment

Cause of interest 0.26 0.19 0.26 0.19 0.26 0.19

Competing Risk 0.14 0.11 0.14 0.17 0.14 0.14

All Causes 0.40 0.30 0.40 0.36 0.40 0.33

Note: Scenario A, B, and C correspond to the scenarios that there is beneficial, adverse,

and no treatment effects on failure due to the competing risks, respectively.

a trial duration t2 = 4, and equal allocation for the patients a1 = a2 = 0.5, we

can calculate the probability of observing an event of interest and the number of

patients enrolled based (4.18) and (4.19).

The results for both number of events of interest and total number of patients

enrolled are summarized in table 4.3. We can see in all three scenarios, maximum

test perform better than Bonferroni method, and Chisquare test works the best

when if there is any beneficial or adverse effect from the treatment group to death

due to other causes.

65



Table 4.3: Sample Sizes for Chi-square Joint Test, Maximum Test, and Bonferroni

Joint Test

Chi-square Maximum Bonferroni

Scenario EOI Patient EOI Patient EOI Patient

A 155 333 158 339 163 349

B 358 712 460 915 505 1003

C 511 1030 462 931 505 1017

Note: EOI is number of event of interested required to detect

treatment effect.
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CHAPTER 5

Discussion and Future Work

We emphasize the need for joint inference of the cause-specific hazard and the

cumulative incidence because one quantity alone does not fully capture the ef-

fects of a variable on a particular type of failure. The developed joint inference

procedures can be considerably more powerful than the Bonferroni method as

illustrated in our simulation and real data examples. This has important practi-

cal implications for the analysis and design of clinical trials with competing risks

data. For example, the increased power of the joint tests implies that fewer pa-

tients would be required in a clinical trial. In a sequel, we develop power analysis

methods to determine the required sample size to test a group difference based

on the developed joint tests.

We also gave some key steps in developing joint tests for the K-sample (K > 2)

problem in Chapter 3. The joint regression methods in Chapter 3 Section 2 can

also be extended to beyond Coxs models. For example, the accelerated failure

time models can be used to model the cause-specific hazard. Scheike and Zhang

(2008) considered other regression models for the subdistribution hazard. Joint

inference procedures for these models can be developed similarly.

As we discussed in Chapter 2, to study the group difference in type 1 failure,

it is sufficient to test any one of the three equivalent hypotheses (3.1), (3.12),

and (3.13). The three pairs of test statistics will have different powers because

they test different alternatives. We did some simulation under various alternative

67



hypothesis. Generally speaking, when there is a group difference in CSH, but no

group difference in ACH, then the maximum test and Bonferroni method for the

CSH & ACH pair will perform the worst in comparison to chi-square test for

CSH & ACH pair, and all the joint tests with respect to the other two pairs. If

there is a group difference in CSH, but no group difference in OCH, the three

joint test statistics with respect to pair CSH & OCH performs a little worse than

the joint test statistics with respect to two other pairs. Since we can not predict

where the true group difference is in terms of CSH, ACH or CIF, which pair to

choose for testing the null hypothesis will depend on the research question we are

truly interested in. For instance, in our Hodgkin disease example, if our interest

is really the time to second malignancy, we should choose the CSH & CIF pair.

We have also done some simulation for CSH and ACH pair with respect to

Cox model. For simplicity, only two covariates are included. One is the group

variable which is our interest, and another is gender variable, which is a nuisance

parameter. We draw power curves under different alternatives. Chisquare test

has highest power nearly all circumstances, which Bonfferonni perform the worst.

The conclusion is similar to what we have for the two sample comparison.

Currently we developed sample size calculation for two sample joint test of

cause specific hazard and all cause hazard. In the future, we could also develop

similar procedure for the CSH and CIF as well as in regression settings.
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CHAPTER 6

Appendix

R functions for performing sample size calculation for chi-square test and maxi-

mum test proposed in this dissertation

####################################################################

## Sample size for Maximum Test

## alpha,beta,lambda_11,RR,phi_1,phi_all,t1,t2,censorrate are required inputs:

## -- alpha: type I error

## -- beta: type II error

## -- lambda_11: Cause Specific Hazard for cause 1 in group 1

##-- phi1: ’log(phi_1)’ is expected cause specific hazard ratio in alternative.

##-- phi_all: ’log(phi_all)’ is expected all cause hazard ratio in alternative.

##-- RR: Relative risk of cause of interest vs. all causes in group 1.

##-- t1: patient accrual time period

##-- t2: maximum follow up period

##-- censorrate: censor rate

##-- a1: sample allocation proportion in group 1

####################################################################

library(MASS)
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Maximum_RR<-function(alpha,beta,lambda_11,RR,phi_1,phi_all,t1,t2,censorrate,a1)

{

### Input parameters ###

alpha=alpha

beta=beta

censorrate=censorrate

lambda_11=lambda_11

RR=RR

phi_1=phi_1

phi_all=phi_all

lambda_a1=lambda_11/RR

lambda_12=lambda_11/phi_1

lambda_a2=lambda_a1/phi_all

a2=1-a1

# parameter combination has to meet phi_1 > RR * phi_all

if (lambda_a2< lambda_12) {

print(NA)

break

}

# same censoring distribution in two groups

lambda_c=censorrate*(lambda_a1+lambda_a2)/2

corr=matrix(c(1,sqrt(RR),sqrt(RR),1),nrow=2,ncol=2)

nbootstrap=5000
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#simulate null distribution

sample=mvrnorm(n = nbootstrap, c(0,0), corr, tol=1e-4)

max=matrix(NA,nrow=nbootstrap,ncol=1)

max_oneside=matrix(NA,nrow=nbootstrap,ncol=1)

for (j in 1:nbootstrap){

max[j]=max(abs(sample[j,]))

max_oneside[j]=max(sample[j,])

}

cutoff2= quantile(max, 1-alpha)

d_m=1 #initial value

for (i in 1: 5000){

mu_1=-log(phi_1)*sqrt(a1*a2*d_m ) # calculate \mu_1

mu_a=-log(phi_all)*sqrt(a1*a2*d_m/RR) # calculate \mu_all

sample2=mvrnorm(n = nbootstrap, c(mu_1,mu_a), corr, tol=1e-4)

max=matrix(NA,nrow=nbootstrap,ncol=1)

for (j in 1:nbootstrap){

max[j]=max(abs(sample2[j,]))

}

index<-seq(1,nbootstrap)

index.a<-index[sort(max)>cutoff2]

if (1-index.a[1]/nbootstrap < 1-beta)

{d_m=d_m+1}

else {break}

if (i==5000) print("reach maximum loop")

}
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# Calculate the probability of observing event of interest

lambda_all1=lambda_a1+lambda_c

lambda_all2=lambda_a2+lambda_c

if (t1==0){

P_11=lambda_11/lambda_all1*(1-(exp(-lambda_all1*t2)))

P_12=lambda_12/lambda_all2*(1-(exp(-lambda_all2*t2)))

P_a1=lambda_a1/lambda_all1*(1-(exp(-lambda_all1*t2)))

P_a2=lambda_a2/lambda_all2*(1-(exp(-lambda_all2*t2)))

}

else {

P_11=lambda_11/lambda_all1*(1-(exp(-lambda_all1*t2)

-exp(-lambda_all1*(t1+t2)))/lambda_all1*t1)

P_12=lambda_12/lambda_all2*(1-(exp(-lambda_all2*t2)

-exp(-lambda_all2*(t1+t2)))/lambda_all2*t1)

P_a1=lambda_a1/lambda_all1*(1-(exp(-lambda_all1*t2)

-exp(-lambda_all1*(t1+t2)))/lambda_all1*t1)

P_a2=lambda_a2/lambda_all2*(1-(exp(-lambda_all2*t2)

-exp(-lambda_all2*(t1+t2)))/lambda_all2*t1)

}

P_1=a1*P_11+a2*P_12

P_a=a1*P_a1+a2*P_a2
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samplesize_m = d_m/P_1

return(list(d_m=d_m, samplesize_m=samplesize_m))

}

####################################################################

## Sample size for chi-square test

## alpha,beta,lambda_11,RR,phi_1,phi_all,t1,t2,censorrate are required inputs:

## -- alpha: type I error

## -- beta: type II error

## -- lambda_11: Cause Specific Hazard for cause 1 in group 1

##-- phi1: ’log(phi_1)’ is expected cause specific hazard ratio in alternative.

##-- phi_all: ’log(phi_all)’ is expected all cause hazard ratio in alternative.

##-- RR: Relative risk of cause of interest vs. all causes in group 1.

##-- t1: patient accrual time period

##-- t2: maximum follow up period

##-- censorrate: censor rate

##-- a1: sample allocation proportion in group 1

####################################################################

library(MASS)

Chisquare_RR<-function(alpha,beta,lambda_11,RR,phi_1,phi_all,t1,t2,censorrate,a1)

{

### Input parameters ###
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alpha=alpha

beta=beta

censorrate=censorrate

lambda_11=lambda_11

RR=RR

phi_1=phi_1

phi_all=phi_all

lambda_a1=lambda_11/RR

lambda_12=lambda_11/phi_1

lambda_a2=lambda_a1/phi_all

a2=1-a1

# parameter combination has to meet phi_1 > RR * phi_all

if (lambda_a2< lambda_12) {

print(NA)

break

}

# same censoring distribution in two groups

lambda_c=censorrate*(lambda_a1+lambda_a2)/2

########################################################################

## Find D, number of event of interest, for chisquare test by iterations

c = qchisq(1-alpha,2,0)

d = 1

noncentral1 = a1*a2*((log(phi_1)-log(phi_all))^2*d

+log(phi_all)^2*d*(1/RR-1))/(1-RR)
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noncentral2 = a1*a2*((log(phi_1)-log(phi_all))^2*(d+1)

+log(phi_all)^2*(d+1)*(1/RR-1))/(1-RR)

while ( !(qchisq(beta,2,noncentral1) < c & qchisq(beta,2,noncentral2) >= c) )

{

d = d+1

noncentral1 = a1*a2*((log(phi_1)-log(phi_all))^2*d

+log(phi_all)^2*d*(1/RR-1))/(1-RR)

noncentral2 = a1*a2*((log(phi_1)-log(phi_all))^2*(d+1)

+log(phi_all)^2*(d+1)*(1/RR-1))/(1-RR)

}

d_c=d

# Calculate the probability of observing event of interest

lambda_all1=lambda_a1+lambda_c

lambda_all2=lambda_a2+lambda_c

if (t1==0){

P_11=lambda_11/lambda_all1*(1-(exp(-lambda_all1*t2)))

P_12=lambda_12/lambda_all2*(1-(exp(-lambda_all2*t2)))

P_a1=lambda_a1/lambda_all1*(1-(exp(-lambda_all1*t2)))

P_a2=lambda_a2/lambda_all2*(1-(exp(-lambda_all2*t2)))

}

else {

P_11=lambda_11/lambda_all1*(1-(exp(-lambda_all1*t2)

-exp(-lambda_all1*(t1+t2)))/lambda_all1*t1)

P_12=lambda_12/lambda_all2*(1-(exp(-lambda_all2*t2)

75



-exp(-lambda_all2*(t1+t2)))/lambda_all2*t1)

P_a1=lambda_a1/lambda_all1*(1-(exp(-lambda_all1*t2)

-exp(-lambda_all1*(t1+t2)))/lambda_all1*t1)

P_a2=lambda_a2/lambda_all2*(1-(exp(-lambda_all2*t2)

-exp(-lambda_all2*(t1+t2)))/lambda_all2*t1)

}

P_1=a1*P_11+a2*P_12

P_a=a1*P_a1+a2*P_a2

samplesize_c = d_c/P_1

return(list(d_c=d_c,samplesize_c=samplesize_c))

}

#################

### real data example ====== Diabetics

Chisquare_RR(alpha=0.05,beta=0.1,lambda_11=0.26,RR=0.26/0.4,phi_1=0.19/0.26,

phi_all=0.33/0.4,t1=1.5,t2=4,censorrate=0,a1=0.5)

Maximum_RR(alpha=0.05,beta=0.1,lambda_11=0.26,RR=0.26/0.4,phi_1=0.19/0.26,

phi_all=0.26/0.4,t1=1.5,t2=4,censorrate=0,a1=0.5)

76



Bibliography

E.E.A.A. Aly, S.C. Kochar, and I.W. McKeague. Some tests for comparing cu-

mulative incidence functions and cause-specific hazard rates. Journal of the

American Statistical Association, 89(427):994–999, 1994.

Per Kragh Andersen. Testing goodness of fit of cox’s regression and life model.

Biometrics, pages 67–77, 1982.

P.K. Andersen, Ø. Borgan, R. Gill, and N. Keiding. Linear nonparametric tests

for comparison of counting processes, with applications to censored survival

data, correspondent paper. International Statistical Review/Revue Interna-

tionale de Statistique, pages 219–244, 1982.

P.K. Andersen, Ø. Borgan, R. Gill, and N. Keiding. Statistical models based on

counting processes. Springer Verlag, 1993.

P.K. Andersen, R.B. Geskus, T. de Witte, and H. Putter. Competing risks in

epidemiology: possibilities and pitfalls. International journal of epidemiology,

41(3):861–870, 2012.

Elja Arjas. A graphical method for assessing goodness of fit in cox’s proportional

hazards model. Journal of the American Statistical Association, 83(401):204–

212, 1988.

R. Bajorunaite and J.P. Klein. Two-sample tests of the equality of two cumulative

incidence functions. Computational statistics & data analysis, 51(9):4269–4281,

2007.

J. Beyersmann, M. Dettenkofer, H. Bertz, and M. Schumacher. A competing

risks analysis of bloodstream infection after stem-cell transplantation using

77



subdistribution hazards and cause-specific hazards. Statistics in medicine, 26

(30):5360–5369, 2007.

J. Beyersmann, A. Latouche, A. Buchholz, and M. Schumacher. Simulating com-

peting risks data in survival analysis. Statistics in Medicine, 28(6):956–971,

2009.

David R Cox. Partial likelihood. Biometrika, 62(2):269–276, 1975.

D.R. Cox. Regression models and life-tables. Journal of the Royal Statistical

Society. Series B (Methodological), 34(2):187–220, 1972. ISSN 0035-9246.

D.R. Cox and D. Oakes. Analysis of survival data, volume 21. Chapman &

Hall/CRC, 1984.

Kevin Hasegawa Eng and Michael R Kosorok. A sample size formula for the

supremum log-rank statistic. Biometrics, 61(1):86–91, 2005.

J. P. Fine and R. J. Gray. A proportional hazards model for the subdistribution

of a competing risk. Journal of the American Statistical Association, 94(446):

496–509, 1999.

JP Fine. Analysing competing risks data with transformation models. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 61(4):817–830,

1999.

J.P. Fine. Regression modeling of competing crude failure probabilities. Bio-

statistics, 2(1):85–97, 2001.

T.R. Fleming and D.P. Harrington. Counting processes and survival analysis,

volume 8. Wiley Online Library, 1991.

78



T.A. Gerds, T.H. Scheike, and P.K. Andersen. Absolute risk regression for

competing risks: interpretation, link functions, and prediction. Statistics in

Medicine, 2012.

A. Gichangi and W. Vach. The analysis of competing risks data: A guided tour.

Statistics in Medicine, 2005.

N. Grambauer, M. Schumacher, and J. Beyersmann. Proportional subdistribution

hazards modeling offers a summary analysis, even if misspecified. Statistics in

medicine, 29(7-8):875–884, 2010.

J. Graunt. 1662. natural and political observations mentioned in a following index

and made upon the bills of mortality. London: John Martyn. Reprinted in The

Economic Writings of Sir William Petty, Together with the Observations upon

the Bills of Mortality, More Probably by Captain John Graunt, 1899.

R.J. Gray. A class of K-sample tests for comparing the cumulative incidence

of a competing risk. The Annals of Statistics, 16(3):1141–1154, 1988. ISSN

0090-5364.

B. Haller, G. Schmidt, and K. Ulm. Applying competing risks regression models:

an overview. Lifetime Data Analysis, pages 1–26, 2012.

E. Halley. An estimate of the degrees of the mortality of mankind, drawn from

curious tables of the births and funerals at the city of breslaw; with an attempt

to ascertain the price of annuities upon lives. by mr. e. halley, rss. Philosophical

Transactions, 17(192-206):596–610, 1942.

JD Holt. Competing risk analyses with special reference to matched pair experi-

ments. Biometrika, 65(1):159–165, 1978.

79



E.L. Kaplan and P. Meier. Nonparametric estimation from incomplete observa-

tions. Journal of the American statistical association, 53(282):457–481, 1958.

ISSN 0162-1459.

J.P. Klein. Modelling competing risks in cancer studies. Statistics in medicine,

25(6):1015–1034, 2006.

J.P. Klein and P.K. Andersen. Regression modeling of competing risks data

based on pseudovalues of the cumulative incidence function. Biometrics, 61

(1):223–229, 2005.

Michael Koch, Bernd Kutkuhn, Evi Trenkwalder, Dieter Bach, Bernd Grabensee,

Hans Dieplinger, and Florian Kronenberg. Apolipoprotein b, fibrinogen, hdl

cholesterol, and apolipoprotein (a) phenotypes predict coronary artery disease

in hemodialysis patients. Journal of the American Society of Nephrology, 8

(12):1889–1898, 1997.

SB Kulathinal and D. Gasbarra. Testing equality of cause-specific hazard rates

corresponding to m competing risks among k groups. Lifetime Data Analysis,

8(2):147–161, 2002.

J.M. Lachin. Introduction to sample size determination and power analysis for

clinical trials. Controlled Clinical Trials, 2(2):93–113, 1981. ISSN 0197-2456.

J.M. Lachin and M.A. Foulkes. Evaluation of sample size and power for analyses

of survival with allowance for nonuniform patient entry, losses to follow-up,

noncompliance, and stratification. Biometrics, 42(3):507–519, 1986. ISSN 0006-

341X.

S.W. Lagakos. A covariate model for partially censored data subject to competing

causes of failure. Applied Statistics, pages 235–241, 1978.

80



SW Lagakos. The graphical evaluation of explanatory variables in proportional

hazard regression models. Biometrika, 68(1):93–98, 1981.

E. Lakatos. Sample-size determination in clinical-trials with time-dependent rates

of losses and noncompliance. Controlled Clinical Trials, 7(3):189–199, 1986.

E. Lakatos. Sample sizes based on the log-rank statistic in complex clinical trials.

Biometrics, 44(1):229–241, 1988. ISSN 0006-341X.

E. Lakatos and KK Lan. A comparison of sample size methods for the logrank

statistic. Statistics in medicine, 11(2):179–191, 1992. ISSN 1097-0258.

KF Lam. A class of tests for the equality of k cause-specific hazard rates in a

competing risks model. Biometrika, 85(1):179–188, 1998.

M.G. Larson. Covariate analysis of competing-risks data with log-linear models.

Biometrics, pages 459–469, 1984.

A. Latouche, R. Porcher, and S. Chevret. Sample size formula for proportional

hazards modelling of competing risks. Statistics in Medicine, 23(21):3263–3274,

2004.

A. Latouche, V. Boisson, S. Chevret, and R. Porcher. Misspecified regres-

sion model for the subdistribution hazard of a competing risk. Statistics in

Medicine, 26(5):965–974, 2007.

G. Li and Q. Yang. Joint Inference for Competing Risks Data. Journal of

American Statistical Association, 2013.

H. Lindkvist and Y. Belyaev. A class of non-parametric tests in the competing

risks model for comparing two samples. Scandinavian journal of statistics, 25

(1):143–150, 1998.

81



M. Lunn and D. McNeil. Applying cox regression to competing risks. Biometrics,

pages 524–532, 1995.

X. Luo and B.W. Turnbull. Comparing two treatments with multiple competing

risks endpoints. Statistica Sinica, 9(4):985–998, 1999.

T Moreau, J O’quigley, and M Mesbah. A global goodness-of-fit statistic for the

proportional hazards model. Applied Statistics, pages 212–218, 1985.

NJD Nagelkerke, J Oosting, and AAM Hart. A simple test for goodness of fit of

cox’s proportional hazards model. Biometrics, pages 483–486, 1984.

M.S. Pepe and M. Mori. Kaplanmeier, marginal or conditional probability curves

in summarizing competing risks failure time data? Statistics in medicine, 12

(8):737–751, 1993.

R. Peto and J. Peto. Asymptotically efficient rank invariant test procedures.

Journal of the Royal Statistical Society. Series A (General), 135(2):185–207,

1972. ISSN 0035-9238.

M. Pintilie. Competing risks: a practical perspective. John Wiley & Sons New

York:, 2006.

RL Prentice, J.D. Kalbfleisch, A.V. Peterson Jr, N. Flournoy, VT Farewell, and

NE Breslow. The analysis of failure times in the presence of competing risks.

Biometrics, 34(4):541–554, 1978. ISSN 0006-341X.

H. Putter, M. Fiocco, and RB Geskus. Tutorial in biostatistics: competing risks

and multi-state models. Statistics in medicine, 26(11):2389–2430, 2007.
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