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First evidence for cos 2β > 0 and resolution of the CKM Unitarity Triangle ambiguity
by a time-dependent Dalitz plot analysis of B0 → D(∗)h0 with D → K0

S
π+π− decays
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Università di Napoli Federico IIb, I-80126 Napoli, Italy
85Nara Women’s University, Nara 630-8506, Japan

86National Central University, Chung-li 32054, Taiwan
87National United University, Miao Li 36003, Taiwan

88NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
89Department of Physics, National Taiwan University, Taipei 10617, Taiwan
90H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342, Poland

91Nippon Dental University, Niigata 951-8580, Japan
92Niigata University, Niigata 950-2181, Japan

93University of Notre Dame, Notre Dame, Indiana 46556, USA
94Ohio State University, Columbus, Ohio 43210, USA

95Osaka City University, Osaka 558-8585, Japan
96Pacific Northwest National Laboratory, Richland, Washington 99352, USA

97INFN Sezione di Padovaa; Dipartimento di Fisica, Università di Padovab, I-35131 Padova, Italy
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We present first evidence that the cosine of the CP -violating weak phase 2β is positive, and hence
exclude trigonometric multifold solutions of the CKM Unitarity Triangle using a time-dependent
Dalitz plot analysis ofB0 → D(∗)h0 withD → K0

Sπ
+π− decays, where h0 ∈ {π0, η, ω} denotes a light

unflavored and neutral hadron. The measurement is performed combining the final data sets of the
BABAR and Belle experiments collected at the Υ (4S) resonance at the asymmetric-energy B factories
PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471 ± 3) × 106BB
pairs recorded by the BABAR detector and (772±11)×106BB pairs recorded by the Belle detector.
The results of the measurement are sin 2β = 0.80 ± 0.14 (stat.) ± 0.06 (syst.) ± 0.03 (model) and
cos 2β = 0.91 ± 0.22 (stat.) ± 0.09 (syst.) ± 0.07 (model). The result for the direct measurement of
the angle β of the CKM Unitarity Triangle is β = (22.5± 4.4 (stat.)± 1.2 (syst.)± 0.6 (model))◦.
The quoted model uncertainties are due to the composition of the D0 → K0

Sπ
+π− decay amplitude
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model, which is newly established by performing a Dalitz plot amplitude analysis using a high-
statistics e+e− → cc̄ data sample. CP violation is observed in B0 → D(∗)h0 decays at the level of 5.1
standard deviations. The significance for cos 2β > 0 is 3.7 standard deviations. The trigonometric
multifold solution π/2 − β = (68.1 ± 0.7)◦ is excluded at the level of 7.3 standard deviations. The
measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.

PACS numbers: 11.30.Er, 12.15.Hh, 13.25.Hw

In the standard model (SM) of electroweak interac-
tions, the only source of CP violation is the irreducible
complex phase in the three-family Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix [1]. The BABAR
and Belle experiments discovered CP violation in the B
meson system [2–5]. In particular, by time-dependent
CP violation measurements of the “gold plated” decay
mode1 B0 → J/ψK0

S and other decays mediated by
b̄ → c̄cs̄ transitions [6, 7], BABAR and Belle precisely
determined the parameter sin 2β ≡ sin 2φ1,2 where the
angle β of the CKM Unitarity Triangle is defined as
arg [−VcdV ∗cb/VtdV ∗tb] and Vij denotes a CKM matrix el-
ement. Inferring the CP -violating weak phase 2β from
these measurements of sin 2β leads to the trigonometric
two-fold ambiguity, 2β and π−2β (a four-fold ambiguity
in β), and therefore to an ambiguity on the CKM Uni-
tarity Triangle. This ambiguity can be resolved by also
measuring cos 2β, which is experimentally accessible in B
meson decay modes involving multibody final states such
as B0 → J/ψK0

Sπ
0 [8, 9], B0 → D∗+D∗−K0

S [10, 11],
B0 → K0

SK
+K− [12, 13], B0 → K0

Sπ
+π− [14, 15], and

B0 → D(∗)h0 with D → K0
Sπ

+π− decays (abbreviated

as B0 →
[
K0
Sπ

+π−
](∗)
D
h0) [16–18]. However, no pre-

vious single measurement has been sufficiently sensitive
to establish the sign of cos 2β, to resolve the ambiguity
without further assumptions.

The decays B0 → D(∗)h0, with D → K0
Sπ

+π− and
h0 ∈ {π0, η, ω} denoting a light neutral hadron, provide
an elegant way to access cos 2β [19]. The B0 → D(∗)h0

decay is predominantly mediated by CKM-favored b̄ →
c̄ud̄ tree amplitudes. Additional contributions from
CKM-disfavored b̄→ ūcd̄ tree amplitudes that carry dif-
ferent weak phases are suppressed by |VubV ∗cd/VcbV ∗ud| ≈
0.02 relative to the leading amplitudes and can be ne-
glected at the experimental sensitivity of the presented
measurement. The D → K0

Sπ
+π− decay exhibits com-

plex interference structures that receive resonant and
nonresonant contributions to the three-body final state
from a rich variety of intermediate CP eigenstates and
quasi-flavor-specific decays. Knowledge of the variations
on the relative strong phase as a function of the three-
body Dalitz plot phase space enables measurements of

1 In this Letter the inclusion of charge-conjugated decay modes is
implied unless otherwise stated.

2 BABAR uses the notation β and Belle uses φ1; hereinafter β is
used.

both sin 2β and cos 2β from the time evolution of the

B0 →
[
K0
Sπ

+π−
](∗)
D
h0 multibody final state.

Assuming no CP violation in B0-B0 mixing and no di-

rect CP violation, the rate of the B0 →
[
K0
Sπ

+π−
](∗)
D
h0

decays is proportional to

e
−|∆t|
τ
B0

2

{ [
|AD0 |2 + |AD0 |2

]

− q
(
|AD0 |2 − |AD0 |2

)
cos(∆md∆t)

+ 2qηh0 (−1)
L

Im
(
e−2iβAD0A∗

D0

)
sin(∆md∆t)

}
,

(1)

where ∆t denotes the proper-time interval between the
decays of the two B mesons produced in the e+e− →
Υ (4S) → B0B0 event, and q = +1 (−1) represents
the b-flavor content when the accompanying B meson
is tagged as a B0 (B0). The parameters τB0 and ∆md

are the neutral B meson lifetime and the B0-B0 os-
cillation frequency, respectively. The symbols AD0 ≡
A(M2

K0
Sπ
− ,M

2
K0
Sπ

+) and AD0 ≡ A(M2
K0
Sπ

+ ,M
2
K0
Sπ
−) de-

note the D0 and D0 decay amplitudes as functions of
the Lorentz-invariant Dalitz plot variables M2

K0
Sπ
− ≡

(pK0
S

+ pπ−)2 and M2
K0
Sπ

+ ≡ (pK0
S

+ pπ+)2, where the

symbol pi represents the four-momentum of a final state
particle i. The factor ηh0 is the CP eigenvalue of h0.
The quantity L is the orbital angular momentum of the
Dh0 or D∗h0 system. The last term in Eq. (1) can be
rewritten as

Im
(
e−2iβAD0A∗

D0

)
= Im

(
AD0A∗

D0

)
cos 2β

− Re
(
AD0A∗

D0

)
sin 2β, (2)

which allows sin 2β and cos 2β to be treated as indepen-
dent parameters.

Measurements of sin 2β and cos 2β in B0 → D(∗)h0

with D → K0
Sπ

+π− decays are experimentally chal-
lenging. The branching fractions of the B and D me-
son decays are low (O(10−4) and O(10−2), respectively),
and the neutral particles in the final state lead to large
backgrounds and low reconstruction efficiencies. In ad-
dition, a detailed Dalitz plot amplitude model or other
experimental knowledge of the relative strong phase in
the three-body D meson decay is required. Previous
measurements of these decays performed separately by
BABAR and Belle were not sufficiently sensitive to estab-
lish CP violation [16–18], obtaining results far outside of
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the physical region of the parameter space [16], and us-
ing different Dalitz plot amplitude models [16, 17], which
complicates the combination of individual results.

In this Letter, we present measurements of sin 2β and
cos 2β from a time-dependent Dalitz plot analysis of
B0 → D(∗)h0 with D → K0

Sπ
+π− decays that combines

the final data samples collected by the BABAR and Belle
experiments, totaling 1.1 ab−1 collected at the Υ (4S) res-
onance. The combined approach enables unique exper-
imental sensitivity to cos 2β by increasing the available
data sample and by applying common assumptions and
the same Dalitz plot amplitude model simultaneously to
the data collected by both experiments. As part of the
analysis, an improved D → K0

Sπ
+π− Dalitz plot ampli-

tude model is obtained from high-statistics e+e− → cc̄
data. This allows the propagation of the model uncer-
tainties to the results on sin 2β and cos 2β obtained in
B0 → D(∗)h0 with D0 → K0

Sπ
+π− decays in a straight-

forward way. In the following, the extraction of the
D0 → K0

Sπ
+π− Dalitz plot amplitude model parameters

from Belle e+e− → cc̄ data is summarized. Thereafter,
the time-dependent Dalitz plot analysis of the B meson
decay combining BABAR and Belle, data is described. A
more detailed description of the analysis is provided in
Ref. [20].

To measure the D0 → K0
Sπ

+π− decay amplitudes, we

use a data sample of 924 fb−1 recorded at or near the
Υ (4S) and Υ (5S) resonances with the Belle detector [21]
at the asymmetric-energy e+e− collider KEKB [22]. This
gives a large sample of D mesons enabling precise mea-
surement of the decay amplitudes, so in effect nothing
would be gained by the inclusion of the equivalent BABAR
data. The decays D∗+ → D0π+

s with D0 → K0
Sπ

+π−

and K0
S → π+π− are reconstructed, and the flavor of the

neutral D meson is identified as D0 (D0) by the positive
(negative) charge of the slow pion π+

s emitted from the
D∗+ decay. Charged pion candidates are formed from
reconstructed tracks, and the selection requirements de-
scribed in Refs. [24, 25] are applied to K0

S candidates.
To reject background originating from B meson decays,
a requirement of p∗(D∗+) > 2.5 (3.1) GeV/c for candi-
dates reconstructed from Υ (4S) (Υ (5S)) data is applied,
where p∗ denotes the momentum evaluated in the e+e−

center-of-mass (c.m.) frame. Events are selected by the
D0 candidate mass MD0 and the D∗+ −D0 mass differ-
ence ∆M , and a yield of 1 217 300 ± 2 000 signal decays
is obtained by a two-dimensional unbinned maximum-
likelihood fit to the MD0 and ∆M distributions [20].

Similar to previous D0-D0 oscillation analyses and
measurements of the Unitarity Triangle angle γ [26] by
BABAR, Belle and LHCb [27–30], the D0 → K0

Sπ
+π− de-

cay amplitude is parameterized as:

A(M2
K0
Sπ
− ,M

2
K0
Sπ

+) =
∑

r 6=(Kπ/ππ)L=0

are
iφrAr(M2

K0
Sπ
− ,M

2
K0
Sπ

+) + F1(M2
π+π−) +AKπL=0

(M2
K0
Sπ
−) +AKπL=0

(M2
K0
Sπ

+). (3)

The symbols ar and φr represent the magnitude
and phase of the rth intermediate quasi-two-body
amplitude Ar contributing to the P - and D-waves.
These amplitudes are parameterized using an isobar
ansatz [31] by relativistic Breit-Wigner (BW) prop-
agators with mass-dependent widths, Blatt-Weisskopf
penetration factors [32], and Zemach tensors for the
angular distributions [33]. The following intermedi-
ate two-body resonances are included: the Cabibbo-
favored K∗(892)−π+, K∗2 (1430)−π+, K∗(1680)−π+,
K∗(1410)−π+ channels; the doubly Cabibbo-suppressed
K∗(892)+π−, K∗2 (1430)+π−, K∗(1410)+π− modes; and
the CP eigenstates K0

Sρ(770)0, K0
Sω(782), K0

Sf2(1270),
and K0

Sρ(1450)0. The symbol F1 denotes the amplitude
for the ππ S-wave using the K-matrix formalism in the
P -vector approximation with 4 physical poles [34, 35].
The symbol AKπL=0

represents the amplitude for the Kπ
S-wave using the LASS parametrization [36], which com-
bines a BW for the K∗0 (1430)± with a coherent nonres-
onant contribution governed by an effective range and a
phase shift.

The D0 → K0
Sπ

+π− decay amplitude model parame-

ters are determined by an unbinned maximum-likelihood
Dalitz fit performed for events in the signal region of the
flavor-tagged D0 sample. The probability density func-
tion (p.d.f.) for the signal is constructed from Eq. (3)
with a correction to account for reconstruction efficiency
variations over the Dalitz plot phase space due to exper-
imental acceptance effects [23], and an additional term
to account for wrong flavor identifications of D mesons.
In addition, the likelihood function contains a p.d.f. for
the background that is constructed from the distributions
taken from theMD0 and ∆M data sidebands. The ar and
φr parameters for each resonance are floated in the fit and
measured relative to the K0

Sρ(770)0 amplitude, which is
fixed to aK0

Sρ(770)
0 = 1 and φK0

Sρ(770)
0 = 0◦. The masses

and widths of the resonances are fixed to the world aver-
ages [37] except for those of the K∗(892) and K∗0 (1430),
which are floated to improve the fit quality. The LASS
parameters and several parameters in the K-matrix are
floated in the fit.

The results of the Dalitz fit are summarized in Table III
of Ref. [20]. The data distributions and projections of
the fit are shown in Fig. 1. By a two-dimensional χ2
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FIG. 1. (color online). The Dalitz plot data distributions
(points with error bars) for D0 → K0

Sπ
+π− from D∗+ →

D0π+
s decays reconstructed from Belle e+e− → cc̄ data, and

projections of the Dalitz fit. The red solid lines show the
projections of the total fit function including background, and
the grey regions show projections of the background.

test, a reduced χ2 of 1.05 is obtained for 31 272 degrees of
freedom based on statistical uncertainties only, indicating
a relatively good quality of the fit [27–29, 38, 39].

The time-dependent Dalitz plot analysis of B0 →
D(∗)h0 with D → K0

Sπ
+π− decays is performed using

data samples containing 471 × 106 BB pairs recorded
with the BABAR detector [40, 41] at the asymmetric-
energy e+e− (3.1 on 9 GeV) collider PEP-II [42] and
772× 106 BB pairs recorded with the Belle detector [21]
at the asymmetric-energy e+e− (3.5 on 8 GeV) collider
KEKB [22] collected at the Υ (4S) [23].

The light neutral hadron h0 is reconstructed in the
decay modes π0 → γγ, η → γγ and π+π−π0, and
ω → π+π−π0. Neutral D mesons are reconstructed in
the decay mode D → K0

Sπ
+π−, and neutral D∗ mesons

are reconstructed in the decay mode D∗ → Dπ0. The de-
cay modes B0 → Dπ0, Dη, Dω, D∗π0, and D∗η, where
sufficient signal yields are reconstructed, are included in
the analysis. The selection requirements applied to the
reconstructed candidates are summarized in Ref. [20].

The B0 → D(∗)h0 yields are determined by three-
dimensional unbinned maximum likelihood fits to the dis-
tributions of the observables M ′bc, ∆E, and C′NNout

. The
beam-energy-constrained mass M ′bc defined in Ref. [43]
is computed from the beam energy E∗beam in the c.m.
frame, the D(∗) candidate momenta, and the h0 can-
didate direction of flight. The quantity M ′bc provides
an observable that is insensitive to possible correlations

with the energy difference ∆E = E∗B − E∗beam that can
be induced by energy mismeasurements for particles de-
tected in the electromagnetic calorimeters, for example,
caused by shower leakage effects. The variable C′NNout

defined in Ref. [44] is constructed from the output of
a neural network multivariate classifier trained on event
shape information based on a combination of 16 mod-
ified Fox-Wolfram moments [45, 46] to identify back-
ground originating from e+e− → qq (q ∈ {u, d, s, c})
continuum events. The fit model accounts for contri-
butions from B0 → D(∗)h0 signal decays, cross-feed from
partially-reconstructed B0 → D∗h0 decays, background
from partially-reconstructed B+ →D(∗)0ρ+ decays, com-
binatorial background from BB decays, and background
from continuum events. In total, a B0 → D(∗)h0 sig-
nal yield of 1 129 ± 48 events in the BABAR data sample
and 1 567 ± 56 events in the Belle data sample is ob-
tained. The signal yields are summarized in Table IV of
Ref. [20]. The M ′bc, ∆E, and C′NNout

data distributions
and fit projections are shown in Fig. 2.

The time-dependent Dalitz plot analysis follows
the technique established in the previous combined
BABAR+Belle time-dependent CP violation measurement

of B0 → D
(∗)
CPh

0 decays [25]. The measurement is per-
formed by maximizing the log-likelihood function con-
structed from the events reconstructed from BABAR and
Belle data [20]. The measurement includes all events
used in the previous M ′bc, ∆E, and C′NNout

fits. In the
log-likelihood function, the p.d.f.s are functions of the ex-
perimental flavor-tagged proper-time interval and Dalitz
plot distributions for the signal and background com-
ponents. The signal p.d.f.s are constructed from Eqs. 1
and 2 convolved with experiment-specific resolution func-
tions to account for the finite vertex resolution [6, 47] and
including the effect of incorrect flavor assignments [6, 48].
The p.d.f.s for the proper-time interval distributions of
the combinatorial background from BB̄ decays and back-
ground from continuum events account for background
from non-prompt and prompt particles convolved with ef-
fective resolution functions. The partially-reconstructed
B0 → D∗h0 decays are modeled by the signal p.d.f. with
a different set of parameters to account for this cross-
feed contribution, and the background from partially-
reconstructed B+ →D(∗)0ρ+ decays is parameterized by
an exponential p.d.f. convolved with the same resolution
functions as used for the signal.

In the fit, the parameters τB0 , τB+ , and ∆md are fixed
to the world averages [50], and the Dalitz plot amplitude
model parameters are fixed to the results of the D0 →
K0
Sπ

+π− Dalitz plot fit described above. The signal and
background fractions are evaluated on an event-by-event
basis from the three-dimensional fit of the M ′bc, ∆E, and
C′NNout

observables. The only free parameters are sin 2β



8

5.25 5.27 5.29
M
′
bc (GeV/c2)

0

100

200

300

400

500
E

ve
nt

s
/

1
M

eV
/c

2

(a) BABAR+Belle

−0.1 0.0 0.1
∆E (GeV)

0

50

100

150

200

E
ve

nt
s

/
50

M
eV

(b) BABAR+Belle

−8 −4 0 4 8 12
C ′NNout

0

100

200

300

400

500

E
ve

nt
s

/
0.

25
a.

u.

(c) BABAR+Belle Fit projection

Signal

Crossfeed

B+ →D
0(∗)

ρ+

BB̄ bkg.

Continuum bkg.

Data

FIG. 2. (color online). Data distributions for a) M ′bc, b) ∆E, and c) C′NNout
(points with error bars) for the BABAR and Belle

data samples combined. The solid black lines represent projections of the total fit function, and the colored dotted lines show
the signal and background components of the fit as indicated in the legend. In plotting the M ′bc, ∆E, and C′NNout

distributions,
each of the other two observables are required to satisfy M ′bc > 5.272 GeV/c2, |∆E| < 100 MeV, or 0 < C′NNout

< 8 to select
signal-enhanced regions.

and cos 2β, and the results are

sin 2β = 0.80± 0.14 (stat.)± 0.06 (syst.)± 0.03 (model),

cos 2β = 0.91± 0.22 (stat.)± 0.09 (syst.)± 0.07 (model).
(4)

The second quoted uncertainty is the experimental sys-
tematic error, and the third is due to the D0 → K0

Sπ
+π−

decay amplitude model. The evaluation of these uncer-
tainties is described in detail in Ref. [20]. The linear
correlation between sin 2β and cos 2β is 5.1%. The re-
sult deviates less than 1.0 standard deviations from the
trigonometric constraint given by sin2 2β + cos2 2β = 1.

An alternative fit is performed to measure directly the
angle β using the signal p.d.f. constructed from Eq. (1),
and the result is

β = (22.5± 4.4 (stat.)± 1.2 (syst.)± 0.6 (model))
◦
. (5)

The proper-time interval distributions and projections
of the fit for sin 2β and cos 2β are shown in Fig. 3 for
two different regions of the D0 → K0

Sπ
+π− phase space.

Figure 3a shows a region predominantly populated by

CP eigenstates, B0 →
[
K0
Sρ(770)0

](∗)
D
h0. For these de-

cays, interference emerges between the amplitude for di-
rect decays of neutral B mesons into these final states
and those following B0-B0 oscillations. The time evolu-
tion exhibits mixing-induced CP violation governed by
the CP -violating weak phase 2β, which manifests as a
sinusoidal oscillation in the CP asymmetry. Figure 3b
shows a region predominantly populated by quasi-flavor-

specific decays, B0 → [K∗(892)±π∓]
(∗)
D h0. For these de-

cays, the time evolution exhibits B0-B0 oscillations gov-
erned by the oscillation frequency, ∆md, which appears
as an oscillation proportional to cos(∆md∆t) in the cor-
responding asymmetry.
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(b) BABAR+Belle B0 →
[
K0
Sπ
±π∓

](∗)
D
h0 with

|MK∗(892)± −MK0
Sπ
±| < 75 MeV/c2
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FIG. 3. (color online). Distributions of the proper-time
interval (data points with error bars) and the correspond-

ing asymmetries for B0 → D(∗)h0 candidates associated
with high-quality flavor tags for two different regions of the
D → K0

Sπ
+π− phase space and for the BABAR and Belle data

samples combined. The background has been subtracted us-
ing the sPlot technique [49], with weights obtained from the
fit presented in Fig. 2.

The measurement procedure is validated by various
cross-checks. The B0 → D(∗)0h0 decays with the CKM-
favored D0 → K+π− decay have very similar kinemat-
ics and background composition as B0 → D(∗)h0 with
D → K0

Sπ
+π− decays and provide a high-statistics con-

trol sample. Using the same analysis approach, the
time-dependent CP violation measurement of the con-
trol sample results in mixing-induced and direct CP
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violation consistent with zero, in agreement with the
assumption of negligible CP violation for these flavor-
specific decays. Measurements of the neutral B me-
son lifetime for B0 → D(∗)h0 with D → K0

Sπ
+π−

decays, and for the control sample without flavor-
tagging applied, yield τB0 = (1.500± 0.052 (stat.)) ps
and τB0 = (1.535± 0.028 (stat.)) ps, respectively, which
are in agreement with the world average τB0 =
(1.520± 0.004) ps [50]. In addition, we have performed
all measurements for data separated by experiment yield-
ing consistent results [20].

The significance of the results is determined by a
likelihood-ratio approach that accounts for the exper-
imental systematic uncertainties and the Dalitz plot
amplitude model uncertainties by convolution of the
likelihood curves. The measurement of sin 2β agrees
within 0.7 standard deviations with the world average
of sin 2β = 0.691± 0.017 [50] obtained from more precise
measurements using b̄ → c̄cs̄ transitions. The measure-
ment of cos 2β excludes the hypothesis of cos 2β ≤ 0 at
a p-value of 2.5 × 10−4, which corresponds to a signifi-
cance of 3.7 standard deviations, providing the first ev-
idence for cos 2β > 0. The measurement of β excludes
the hypothesis of β = 0◦ at a p-value of 3.6 × 10−7,
which corresponds to a significance of 5.1 standard devi-
ations. Hence, we report an observation of CP violation
in B0 → D(∗)h0 decays. The result for β agrees well with
the preferred solution of the Unitarity Triangle, which
is (21.9 ± 0.7)◦, if computed from the world average of
sin 2β = 0.691 ± 0.017 [50]. The measurement excludes
the second solution of π/2 − β = (68.1 ± 0.7)◦ at a p-
value of 2.31 × 10−13, corresponding to a significance of
7.3 standard deviations. Therefore, the present measure-
ment resolves an ambiguity in the determination of the
apex of the CKM Unitarity Triangle.

In summary, we combine the final BABAR and Belle
data samples, totaling an integrated luminosity of more
than 1 ab−1 collected at the Υ (4S) resonance, and per-
form a time-dependent Dalitz plot analysis of B0 →
D(∗)h0 with D → K0

Sπ
+π− decays. We report the

world’s most precise measurement of the cosine of the
CP -violating weak phase 2β and obtain the first evidence
for cos 2β > 0. The measurement directly excludes the
trigonometric multifold solution of π/2−β = (68.1±0.7)◦

without any assumptions, and thus resolves an ambigu-
ity related to the CKM Unitarity Triangle parameters.
An observation of CP violation in B0 → D(∗)h0 decays
is reported.

The B0 → D(∗)h0 decays studied by the combined
BABAR and Belle approach provide a probe for the CP -
violating weak phase 2β that is theoretically more clean
than the “gold plated” decay modes mediated by b̄→ c̄cs̄
transitions [51]. Therefore, B0 → D(∗)h0 decays can
provide a new and complementary SM reference for 2β
at the experimental precision achievable by the future
high-luminosity B factory experiment Belle II [52].
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