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Abstract

Critical Congenital Heart Disease (CCHD) screening that only uses oxygen saturation (SpO2), 

measured by pulse oximetry, fails to detect an estimated 900 US newborns annually. The addition 

of other pulse oximetry features such as perfusion index (PIx), heart rate, pulse delay and 

photoplethysmography characteristics may improve detection of CCHD, especially those with 

systemic blood flow obstruction such as Coarctation of the Aorta (CoA). To comprehensively 

study the most relevant features associated with CCHD, we investigated interpretable machine 

learning (ML) algorithms by using Recursive Feature Elimination (RFE) to identify an optimal 

subset of features. We then incorporated the trained ML models into the current SpO2-alone 

screening algorithm. Our proposed enhanced CCHD screening system, which adds the ML model, 

improved sensitivity by approximately 10 percentage points compared to the current standard 

SpO2-alone method with minimal to no impact on specificity.

lzhengfeng@ucdavis.edu . 
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I. INTRODUCTION

Congenital heart disease (CHD) is the most common birth defect, affecting nearly 0.8% 

of all newborn infants [1]. Critical congenital heart disease (CCHD) is a subset of CHD 

accounting for almost 20% of these infants [1], representing the most severe forms of 

CHD. CCHD lesions require surgical or catheter-based intervention soon after birth, often 

including pre-procedural hospitalization and medical management. Late or missed detection 

of CCHD can lead to significant, preventable morbidity, as well as death [2–4]. Prior to 

mandatory oxygen-saturation (SpO2) based CCHD screening, 25% of newborns with CCHD 

were diagnosed after going home from the hospital [4], [5]. Although, SpO2 screening has 

helped with earlier diagnosis and reduced CCHD mortality, it still misses approximately 900 

newborns with CCHD annually in the United States [6], [7]. The majority of the missed 

types of CCHD defects are those with obstructed systemic blood flow that do not commonly 

cause low SpO2, or hypoxemia [6].

To address this problem, we created an automated real-time data collection system [8] 

to collect additional pulse oximetry data in newborns, allowing us to analyze other pulse 

oximetry features that may augment the current screening process when added to the SpO2 

screening component.

As such, it is necessary to design an interpretable machine learning model that can be 

directly incorporated into our current SpO2-alone screening system [9] with automatic 

feature selection to further improve the sensitivity of CCHD detection with little impact on 

specificity (at least 99%). To our best knowledge, our work is the first to analyze the feature 

relevance of CCHD screening by using machine learning (ML) algorithms as well as the first 

to incorporate ML into current standard SpO2 screening.

II. METHODS

A. Subjects

By using an automated collection system [8], we enrolled 335 newborns, including 236 

newborns that have a final diagnosis (with or without CCHD) confirmed. Patients were 

excluded if they required vasoactive infusions other than Prostaglandin E1. The majority of 

patients were enrolled at University of California (UC), Davis. Four other hospitals, Sutter 

Medical Center in Sacramento, UC Los Angeles, UC San Francisco, and Cohen Children’s 

Medical Center in New York, are also enrolling patients for this study. We recorded at 

least 5-minute dual limb (right hand and any foot) pulse oximetry measurements at three 

time periods: within 24 hours, 24-48 hours, and after 48 hours following the baby’s birth. 

We analyzed healthy newborns (defined as those without any CHD) vs those with CCHD 

(newborns who require a surgical or catheter-based intervention within 30 days of age). We 

divided all measurements into two groups: (G1) 0-48 hours, which included 158 healthy and 

27 CCHD newborns; and (G2) over 48 hours, which included 50 healthy and 36 CCHD 

newborns. The experimental procedures involving human subjects described in this paper 

were approved by the Institutional Review Board.
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B. Spot SpO2-alone Screening

Single pre and post-ductal SpO2 values were recorded during the measurements as well. 

These spot values were used to assign pass or fail to all newborns per the current standard 

SpO2-alone screen [9]. If the last recorded spot SpO2 measurements resulted in a ”repeat” 

assignment from this algorithm, we assigned them a ”fail” in a ”Conservative spot SpO2-

alone” algorithm to bias towards the null for CCHD detection.

C. Features Extraction & Analysis

Pulse oximetry features evaluated for discrimination of healthy vs CCHD include: heart rate 

(HR), perfusion amplitude index (PAI), also known as perfusion index (PIx), and oxygen 

saturation (SpO2). We removed values likely associated with artifact: HR larger than 250 

and SpO2 larger than 100 (the pulse oximeter assigns a value of 127 for SpO2 when the 

measurement quality is poor). We then extracted variance, min, max, median and mean 

for HR, PAI and SpO2. To study the differentiation of these features, we visualized each 

individually and then their correlation with each other. Fig. 1 illustrates the distribution of 

the mean SpO2 and its correlation with min HR: the mean SpO2 for the healthy newborns is 

typically higher than that for the CCHD newborns and the min HR for healthy newborns is 

typically less than that for CCHD newborns.

D. Classification Algorithms

Several ML classifiers were tested for CCHD detection during this study, including Random 

Forest, Logistic Regression, and Multilayer Perceptron. Although a recent study [10] 

claimed random forest classifier has the best performance, we comprehensively investigated 

the above classification algorithms by Recursive Feature Elimination (RFE) [11] with 5-fold 

cross-validation on each algorithm separately. RFE can help determine the best performance 

of each model and the corresponding optimal feature set. RFE achieves this by searching 

for the most relevant subset of features to optimize our performance metric. We used 

cross-validation to optimize sensitivity by setting it as the score of RFE. To achieve the most 

optimal sensitivity, we started with all features from the training dataset as the input and fit 

the ML models, which ranked features by importance, discarded the least important features 

and refit the model. This process was repeated until the desired number of features resulted 

in the highest sensitivity (as shown in Fig. 2).

1) 0-48 Hours of age to evaluate for no-CHD vs CCHD: In this setting, we found 

that Random Forest Classifier resulted in the highest sensitivity in the 5-fold cross-validation 

for the 0-48 hour age. Fig. 2(a) shows the optimal sensitivity was achieved by using 11 

features.

2) Over 48 Hours of age to evaluate for no-CHD vs CCHD: We found that 

Logistic Regression performed best in this group, as Fig. 2(b) demonstrates, we found a 

subset of 7 optimal features using Logistic Regression.

The fewer number of CCHD cases compared to healthy cases resulted in a class imbalance 

problem, making it challenging to train a relatively unbiased ML model. To deal with 

this issue, we applied Random Oversampling (ROS), Random Undersampling (RUS), 

Lai et al. Page 3

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and Synthetic Minority Oversampling Technique (SMOTE) [12], separately. SMOTE 

is one type of oversampling method, where the minority class is oversampled by 

generating ”composite” examples [12]. We tried different sampling ratios from 0.2 to 0.9, 

but the results had trivial improvements. Thus, we used the balanced loss function inside of 

the ML models, which led to the optimal results we could achieve in this study.

E. Performance Evaluation

CCHD screening is a binary classification problem between healthy and CCHD, thus we 

used the following metrics to comprehensively evaluate the performance of our model: 

Sensitivity (Sens) (1) and Specificity (Spec) (2).

Sens = TPR = TP
TP + FN (1)

Spec = TN
TN + FP (2)

FPR = FP
FP + TN (3)

where:

• TP: the number of CCHD predicted as CCHD

• FP: the number of healthy predicted as CCHD

• TN: the number of healthy predicted as healthy

• FN: the number of CCHD predicted as healthy

We also calculated the Area Under the Receiver Operating Characteristics curve (AUROC) 

by plotting true positive rate (TPR) (1) against false positive rate (FPR) (3) with the 

discrimination threshold increasing from 0 to 1.

III. RESULTS

A. Sensitivity and Specificity

The sensitivity and specificity of our proposed method and the current SpO2 screening 

methods are summarized in Table. I. When comparing to the current standard CCHD 

screening, which includes spot right hand and any foot SpO2 measurements, the addition 

of the over 48 hour ML model did not lead to additional false positive results, but did 

detect 4 additional newborns with CCHD, hence increasing sensitivity from 76.5% to 88.9% 

(McNemar mid-p = 0.06) when tested on a sample of 50 healthy newborns and 36 newborns 

with CCHD. The addition of the 0-48 hour ML model, resulted in 3 additional false positive 

results and detected 3 additional newborns with CCHD, hence increasing sensitivity from 

76.5% to 85.2% (McNemar mid-p = 0.13) when tested on a sample of 158 healthy newborns 
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and 27 newborns with CCHD. Overall, the ML models improved the sensitivity from 76.5% 

to 86.4%, nearly 10 percentage point improvement.

B. ROC Curve

ROC curve results from 5-fold testing are shown in Fig. 3. For 0-48 hours, the average 

AUROC for no-CHD vs CCHD was 0.92 by using the Random Forest classifier; for over 48 

hours, the average AUROC was 0.91 by using the Logistic Regression model. The estimated 

AUROC for our ML algorithms combining pulse oximetry features (PAI and HR) appears 

similar to or better than the current SpO2-alone screen [13], [14].

C. Interpretable Machine Learning

Compared to the current standard SpO2-alone CCHD screening, our ML models have the 

potential to achieve better sensitivity by incorporating features related to HR and PAI (or 

PIx). The optimal subset for the 0-48 hours Random Forest classifier includes: HR (median, 

mean, max, variance), SpO2 (min, max, median, mean), PAI or PIx (mean, median, max). 

The optimal subset for the over 48 hours Logistic Regression ML model includes: HR 

(min, max, variance), SpO2 (median, mean), PAI or PIx (mean, min). Therefore, from our 

experiments, we can conclude the features extracted from HR and PAI have potentials for 

CCHD detection.

From Logistic Regression, we achieved importance ranking of features based on the trained 

weights. For the Random Forest classifier, we visualized decision trees as shown in (Fig. 4): 

the decision tree mainly relies on the features from SpO2, but the features related to HR and 

PAI are also considered in deeper decision-making layers of the tree.

IV. DISCUSSION

In this study, we investigated ML algorithms with optimized feature selection to provide an 

enhanced CCHD screening algorithm. We first applied the current standard CCHD screening 

(including both True Spot SpO2-alone and Conservative Spot SpO2-alone) to our enrolled 

newborns as the benchmark. Then, we tested our proposed ML models on these newborns, 

which gained approximately 10 percentage points increase in sensitivity of CCHD detection. 

Our proposed system improved detection of defects currently missed by SpO2-alone 

which would serve as a promising enhanced CCHD screening tool. Furthermore, by using 

these interpretable ML models, we found potential benefit of PAI and HR as features to 

differentiate between healthy newborns and newborns with CCHD.

In our future work, we will test the generalizability of our proposed system on more 

newborns, and we will study the potential relations between PAI and specifically systemic 

CCHD. To further improve the sensitivity, other potential features related to CCHD 

diagnosis such as radiofemoral pulse delay and photoplethysmography slopes will be 

incorporated and evaluated in the future.
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Clinical relevance—

This establishes proof of concept for a ML algorithm that combines pulse oximetry 

features to improve detection of CCHD with little impact on false positive rate.

Lai et al. Page 7

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Feature Analysis between Healthy vs CCHD Over 48 Hour of Age.
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Fig. 2. 
Recursive Feature Elimination (RFE) by using Machine Learning Models for Healthy vs 

CCHD at Different Ages.
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Fig. 3. 
Area Under the Receiver Operating Curves (AUROC) for Models on No-CHD vs CCHD.
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Fig. 4. 
Visualization of One Decision Tree.
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TABLE I

COMPARED WITH CURRENT SPO2 SCREENING

Methods Specificity Sensitivity

True Spot SpO2-alone [9] 96.8 62.8

Conservative Spot SpO2-alone [9] 96.8 76.5

ML (0-48 hrs) 97.5 81.5

ML (>48 hrs) 100 83.3

Conservative Spot SpO2-alone + ML (0-48 hrs) 96.2 85.2

Conservative Spot SpO2-alone + ML (>48 hrs) 96 88.9

Conservative Spot SpO2-alone + Any ML 95.8 86.4

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 November 01.


	Abstract
	INTRODUCTION
	METHODS
	Subjects
	Spot SpO2-alone Screening
	Features Extraction & Analysis
	Classification Algorithms
	0-48 Hours of age to evaluate for no-CHD vs CCHD:
	Over 48 Hours of age to evaluate for no-CHD vs CCHD:

	Performance Evaluation

	RESULTS
	Sensitivity and Specificity
	ROC Curve
	Interpretable Machine Learning

	DISCUSSION
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	TABLE I



