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Abstract

Populations of simple recurrent neural networks were
subject to simulations of evolution where the selection
criterion was the ability of a network to learn to recog-
nize strings from context free grammars. After a number
of generations, networks emerged that use the activation
values of the units feeding their recurrent connections to
represent the depth of embedding in a string. Networks
inherited innate biases to accurately learn members of a
class of related context-free grammars, and, while learn-
ing, passed through periods during which exposure to
spurious input interfered with their subsequent ability
to learn a grammar.

Introduction

Human languages are quite complex, yet children are
able to learn to understand and speak their native lan-
guages before reaching the age of four. One of the most
popular (albeit controversial) responses to this puzzle is
to hypothesize that humans are born with innate biases
to be able to recognize certain kinds of linguistic struc-
tures. These innate biases may be specific to language
(Chomsky, 1987), or may be part of general cognitive
mechanisms. In either case, the proposal of innate bi-
ases raises difficult questions. Precisely what sorts of
biases are there; how could they be encoded genetically;
how could they evolve?

We are exploring these issues by means of computa-
tional simulations of the evolution of neural networks
capable of recognizing and generating strings from for-
mal languages. The class of “context-free” languages
(Hoperoft & Ullman, 1979) is the simplest class which
exhibits recursively embedded structure. In our simula-
tions, networks emerge which are capable of recognizing
strings generated by simple context-free languages. The
networks use some of their recurrent connections to rep-
resent the depth of embedding in the strings. The mem-
bers of a population of networks trained on strings gen-
erated by a class of related context-free languages even-
tually evolve a bias to efficiently learn languages from
the class.

Networks, Grammars, Evolution

Recurrent neural networks (as shown in figure 1) have
been shown to be capable of recognizing and gener-
ating strings generated by formal grammars (Serven-
Schreiber, et al., 1988; Elman, 1990). A typical training
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Figure 1: A simple recurrent network for recognizing
strings generated by a grammar. Symbols from the
string are presented sequentially to the input units. The
network is trained to predict the mext symbol in the
string. Recurrent connections from hidden units feed
back to the input layer. Each unit in a layer has connec-
tions to each of the units in the next layer; these con-
nections are not shown. The specific numbers of input
units, hidden units, output units, and recurrent connec-
tions varied in the different experiments.

regimen (and the one used in the experiments reported
here) consists of presenting the symbols from a string
generated by the grammar sequentially to the input units
of the network. Activation is then fed forward through
the network. The activations of the output units are
taken as a prediction of the next symbol in the string.
The prediction is compared with the actual symbol that
appears next, and the error between the predicted and
correct value is backpropagated through the network to
adjust the connection weights between units.

It has been shown that, in principle, a recurrent neu-
ral network can recognize any class of grammar (Pol-
lack, 1991; Siegelmann, 1994). However it is not clear if
a network has actually been trained to recognize a lan-
guage generated by a context-free grammar, as opposed
to a simpler approximation to the language. Giles, et
al., (1990), have shown that networks equipped with an
external stack can learn to recognize context-free gram-
mars. To demonstrate that an unaccessorized simple
recurrent network is really recognizing strings from a
context-free language, one must show that the network
has somehow been trained to keep track of the depth of
embedding in the string.

Researchers in the nascent fields of “artificial life” and
“evolutionary programming,” have explored computa-



tional simulation of evolution by natural selection, both
to better understand the mechanisms of evolution, and
to use those mechanisms to discover solutions to difficult
computational problems (Langton, 1989). A compelling
intuition (first presented by Baldwin, 1896) is that evolu-
tion and learning can work synergistically: the members
of a species can inherit biases from which learning can ef-
ficiently and reliably derive superior solutions to difficult
problems. This intuition has been explored by simulat-
ing the evolution of populations of neural networks where
the selection criterion is the networks’ ultimate ability to
learn some task (Hinton & Nowlan, 1987; Belew, et al.,
1991).

In our simulations, the “genome” of a network is a
specification of its initial connection weights. Each of the
members of a population of networks is trained to recog-
nize strings from a grammar or a set of related grammars.
The networks which learn the grammars best are used
to generate the next generation of the population by cre-
ating new networks whose initial weights are the same
as those of the best networks. The genomes of some of
the offspring networks are then “mutated” by modifying
some of the weights randomly before the members of the
next generation are trained on the grammars.

Learning a Simple Context-Free
Grammar

A very simple context-free grammar consists of strings
of the form a"b", that is: some number of tokens of
the symbol a, followed by the same number of tokens
of the symbol b. The pattern exhibited by strings from
this language corresponds to what are called “center-
embedded” constructions in natural languages, where
some constituent, for example a noun phrase, must be
matched with another constituent, for example a verb
phrase, across some intervening material, for example a
relative clause, that might exhibit the same structure.

Any machine that can recognize whether a string is in
this language or not must somehow count up the num-
ber of a’s it sees, and count down each time it sees a
b. A recognizer for this language must also keep track of
which of two states it is in: an initial state corresponding
to the sequence of a’s, and a second state corresponding
to the sequence of b’s. During the period the machine
is in the initial state, it may see either an a or a b; if it
sees an a, it remains in the initial state and increments
the counter; when it sees a b, it enters the second state
and decrements the counter. While in the second state,
it must only see b’s, and must decrement the counter for
each one. While a pushdown stack is needed to recognize
an arbitrary context-free language, any device capable of
recording a value that can be incremented, decremented,
and compared with zero, will suffice for this simple gram-
mar.

The networks used for learning this grammar had 3
input units, 10 hidden units, 3 output units and 7 recur-
rent connections from the hidden units to the input layer.
Training consisted of presenting the networks strings
from the a"b™ grammar preceded and terminated by a
‘space’ character. Prediction error was backpropagated

28

through the network to update the connection weights.
(The backpropagation learning rate for all of these exper-
iments was 0.1. No momentum term was used.) Each
network was trained for a total of 500,000 characters,
which works out to about 33,000 strings. (The strings
ranged in length from 4 to 26 characters, with an average
length of 15 characters.)

To assess the difficulty networks would have learning
this grammar, 513 randomly initialized networks (initial
weights were uniformly distributed between —1 and +1)
were trained on strings from the grammar. Their perfor-
mance on a set of test strings was then measured. The
average of the networks’ prediction errors per character
was was 0.244, with a standard deviation of 0.031. The
best network in this set achieved an average prediction
error of 0.168.

The performance of a randomly initialized network af-
ter training on strings from the a"b” language is shown
in figure 2. The values plotted are the activation val-
ues of the network’s output units, after the characters
from the string are input to the network. The network
correctly predicts the appearances of the a character for
the first half of the string, and once the first b is seen,
the prediction for a drops to zero. In the second half
of the string, the prediction for b, initially high, begins
to drop off, and the the prediction for the ‘space’ char-
acter begins to rise. Although these predictions accord
with the statistics of the training strings, the network
has hardly learned the grammar very well. It should be
predicting only b until as many b’s as a’s have been seen,
at which point it should predict only the ‘space’ charac-
ter. The behavior of the network shown in figure 2 is
representative of virtually all of the randomly initialized
networks.

The evolutionary simulation was begun by creating a a
population of 24 recurrent networks. Each network was
given random initial weights. For each generation of the
simulation, each network was trained on strings from the
language, seeing a total of 500,000 characters, as above.
The network was assigned a fitness value that depended
on the average prediction error it obtained when the net-
work was then tested on strings from the grammar. At
the end of each generation, the 8 best networks were
retained into the next generation and their connection
weights reset to the values stored in their genomes. In
addition, the genomes of those top networks were copied
into the remaining 16 networks and modified by a muta-
tion operator which changed some of the initial weights
by small random value. The networks of this new gen-
eration were then trained on the grammar again.

By the 1565th generation of this simulation, the best
network had an error of 0.151 and the average error for
all of the networks in the population was 0.179. This 1s
2.2 standard deviations better than randomly initialized
networks.

Figure 3 shows the activation values of some of the
units of a network that evolved in this experiment, after
training on strings from the grammar, while the network
is shown strings of various lengths. For each string, the
network strongly predicts the character a until it sees a



Figure 2: Performance of a randomly initialized network
after training on 500,000 characters from strings in the
a"b" language. Values plotted are the activation values
of output units, after the characters from the string are
presented to the network. The symbol ‘sp’ stands for the
string-delimiting ‘space’ character. This network had
an average prediction error of .251 for the set of test
strings — approximately the median value for a set of
513 randomly initialized networks.

b, at which point it predicts b until the end of the string,
where it predicts the ‘space’ character.

The plots labeled rec on the graphs in figure 3 show
the value passed from a unit in the hidden layer of the
network back to the input layer via one of the network’s
recurrent connections. These values show that this unit
seems to be behaving like a counter: Each a increases its
activation until b is seen, after which the value decreases.
When the activation value of the unit approaches zero,
the network predicts the sp character. The behavior of
this unit is precisely what is required for the network to
recognize strings of the form a"b".

Learning From a Class of Grammars

The population of networks in the first experiment was
able to combine evolutionary search with backpropaga-
tion learning to learn a particular language. Obviously
an ideal solution would have been for a network to need
no training at all — it would be “born” with its con-
nections already appropriate to recognize the target lan-
guage. This solution is not available to humans. Chil-
dren are able to learn whatever language they are ex-
posed to, no matter what language their parents spoke.
There are apparently no innate biases to learn particu-
lar human languages. It has been suggested, however,
that all human languages share certain abstract struc-
tural features, and children are born with an innate bias
to learn languages with those structural features (Chom-
sky, 1987).

A second evolutionary simulation was performed to
explore this idea. In this experiment, each member of a
population of networks was trained on a language from a
class of 36 related context-free languages. The network’s
ability to learn the language was used to compute its fit-
ness value, and hence whether it survived into the next
generation and reproduced. But in the next generation
the network and its offspring would, in general, face dif-
ferent languages. So to do well, networks must develop
biases not for a specific language, but for the class of
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Figure 3: Activation values of units of an evolved net-
work after training, while recognizing strings of various
lengths. Plots labeled a, b, and sp show activation val-
ues of output units. The plots labeled rec show the
activation values of a unit feeding one of the network’s
recurrent connections.
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Figure 4: The evolution of networks trained on languages from the class of context-free grammars. The value plotted
is the average of the ‘pred’ scores of the networks in each generation.

languages as a whole.

Each of the languages in the class uses the symbaols
a, b, c, and d. For a specific language, each of the four
symbols is assigned to one of three categories: the ‘push’
symbols, the ‘pop’ symbols and the ‘idle’ symbols. In a
grammatical string, each ‘push’ symbol must be matched
on its right by a ‘pop’ symbol. Any number of ‘idle’ sym-
bols can appear anywhere in the string, except that the
first symbol in the string must be a ‘push’ symbol, and
the last symbol in the string must be its matching ‘pop’
symbol. Each language had at least one ‘push’, ‘pop’,
and ‘idle’ symbol. The 36 possible languages defined
this way fall into three classes, corresponding to the lan-
guages with two ‘push’ symbols, two ‘pop’ symbols and
two ‘idle’ symbols. There are 12 languages in each class,
differing only in which symbols are assigned to which
category.

For example one language in the class has a and b
as the ‘push’ symbols, d as the 'pop’ symbol and c is
the ‘idle’ symbol. The string ‘baadcadcdd’ is in this
language.

The intuition being explored here is that the specific
lexical items used in a language are the most arbitrary
aspects of the language. Underneath lexical differences,
languages may share aspects of linguistic structure (word
order, case systems, phonological or morphological pro-
cesses, etc.), and that there may be underlying regulari-
ties common to all languages.

The grammars in this class are somewhat easier to
recognize than that in the first experiment. All that a
recognizer must do 1s to keep track of one counter value.
Whenever it sees a ‘push’ symbol, the recognizer should
increment the counter; when it sees a ‘pop’ symbol, it
should decrement the counter; and when it sees an ‘idle’
symbol, it should keep the counter at the same value.
When the counter reaches zero, the end of the string
has been found. The network must learn to do this, of
course, as well as to learn the mappings from the actual
symbols to their categories.

In this experiment, networks with 5 inputs, 10 hid-
den layers, 5 outputs and 1 recurrent connection were
used. The single recurrent connection was used in order
to make the language-learning task as difficult as possi-
ble for the networks, given the relative simplicity of these
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Figure 5: Activation values of units in one of the net-
works that evolved to learn languages from the class of
context-free grammars, after being trained on a specific
language from the class. For this language, the symbols
a, and b are ‘push’ symbols, d is the ‘pop’ symbol, and
c, is the ‘idle’ symbol. The solid line plots the activation
value of the unit feeding into the single recurrent con-
nection of the network after the given character is seen.
The dotted line plots the network’s prediction of the end
of string ‘space’ character.

grammars compared to the a"b" grammar.

The networks were trained on strings of characters as
in the first experiment. However in this simulation, the
performance of a network was assessed by computing the
average value of its ‘space’ output unit at the end of each
of a set of test strings. This value will be referred to as
the ‘pred’ value of the network. Ideally, it ought to be 1.0
— indicating that the network has correctly predicted
the end of each of the strings. This value is more in-
formative than the average per-character error for these
languages, as the the specific character that can follow
another within a string is much less constrained than in
the earlier grammar. As before, the per-character pre-
diction error was used for backpropagation training.

To see how well networks do recognizing this gram-
mar with no evolutionary search, 436 randomized net-
works with varying numbers of hidden units and recur-
rent connections were trained for 500,000 characters each
on grammars from the class. The average ‘pred’ value
was 0.375 with a standard deviation of 0.117. The best
network had a value of 0.827. Of 103 networks with a
single recurrent connection, the average ‘pred’ value was
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Figure 6: Performance of an evolved network in learning a grammar after exposure to spurious input. The plot on
the left illustrates the final ‘pred’ value for the network after first being trained on the indicated number of characters
from random sequences, and then trained on 500,000 characters generated by a specific grammar from the class of
context-free grammars. The plot on the right shows the final ‘pred’ value for the network after first being trained on
strings from a language from each of the three subclasses of languages for the indicated number of characters, and
then trained on 500,000 characters from a language of class 1. The solid line indicates the average performance of
randomly initialized networks. Both plots display average values taken over 20 runs each. Note that the scales of

the abscissas are different in the two plots.

0.280 with a standard deviation of 0.057; the best net-
work had a value of 0.457.

The evolutionary simulation was organized in a similar
fashion as the first experiment, with the ‘pred’ value of
each network used to compute its fitness. Figure 4 shows
a record of the simulation. The value plotted at each
generation is the average ‘pred’ value for the networks
in the population. After an initial period of relatively
aimless search, the members of the population steadily
improve their aptitude at learning the grammars. (This
particular run took seven days on a Sun Sparc Station
10. It was terminated due to the submission deadline for
this paper.)

Figure 5 illustrates the performance of one of the net-
works that evolved. The network was trained for 500,000
characters from strings of a specific language in the class.
The values plotted are the activation of the ‘space’ out-
put unit and the unit feeding the recurrent connection
after the indicated character is presented to the network.
As in the first experiment, the unit feeding the recurrent
connection is used as a counter: the ‘push’ symbols a
and b increment its activation value; the ‘pop’ symbol d
decrements it, and the ‘idle’ symbol ¢ modifies it only
slightly. When the activation value decreases far enough,
the network signals the end of the string.

After 150 generations, the average performance of the
entire population is better than the best performance
for the randomly initialized networks. This illustrates
that the networks are indeed developing an innate bias
towards learning the languages in the class.

A network from a late generation of the simulation
was tested on a string from a grammar without having
been trained on any input at all. For each character
in the test string, the networks ‘space’ output unit is
strongly activated — it is almost 1.0 for each character
of the string — and the recurrent activation is very close
to 0.0 throughout the string. Thus the “newborn” net-
work is apparently hypothesizing the minimal language
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consistent with the data it has seen: namely the empty
set. Furthermore, this prediction of the ‘space’ symbol
is innately associated with a zero recurrent input. This
association will be reinforced later when the unit feeding
the recurrent connection begins to be used as a counter,
and its activation reaching zero signals the end of the
string.

A straightforward consequence of a network’s having in-
nate biases to learn grammars is that this bias can be
degraded substantially if the weights of the networks
diverge from those that evolved. One of the networks
that evolved to learn grammars from the class of related
context-free grammars was trained for varying periods
with random strings. After some number of rounds of
such training, the network was then trained on one of
the grammars in the class, for 500,000 characters. As
illustrated in the left hand plot of figure 6, the ultimate
performance of the network on learning a language de-
creases with the length of exposure to random input.
More dramatic degradation in the performance of the
network is observed if the network is trained on one lan-
guage for a while, and then switched to another, as is
illustrated in the right hand plots of figure 6. In this
experiment, the network was first trained for the indi-
cated number of characters on a language from one of
the three subclasses of languages: class 1 had two ‘push’
symbols; class 2 had two ‘pop’ symbols, and class 3 had
two ‘idle’ symbols. After this initial training, the net-
work was trained for 500,000 characters on a language
from class 1. (If the initial training was on a class 1 lan-
guage, a different class 1 language was used for the sub-
sequent training.) As can be seen, the different language
classes differ in their effect on the subsequent learnability
of another language. If the languages were similar (class
1 first, then a different class 1 language), the degradation
in performance was relatively small. Languages which
were more different had a more substantial effect.
Apparently what is happening here is that the innate



biases that the networks have evolved tend to place their
initial weights in zones from which training will guide the
networks to good solutions. A period of random train-
ing will jiggle the weights around, but won’t move them
out of the zone right away. On the other hand, exposure
to structured input will move the weights out of the ini-
tial bias zone towards a particular solution. Once out of
that initial zone, the networks have a hard time finding
ways back into it. Indeed if the training input results
in the network learning to recognize properties of the
strings that are not relevant for recognizing the second
language (and to fail to recognize those that are), the
final performance of the network can be below that of
randomly initialized networks. These effects are remi-
niscent of the “critical periods” observed in the acquisi-
tion of some cognitive abilities, in particular, language
(Newport, 1990).

Discussion

Further work is needed to analyze the initial weights of
the networks that evolve to understand exactly how they
encode the networks’ innate biases to learn specific gram-
mars. We have found in experiments in which networks
are evolved and trained to recognize classes of simpler
temporal patterns, that the networks eventually inherit
initial weight values which implement operations useful
in recognizing any specific member of the class.

We are also interested in attempting to evolve net-
works that can recognize more complex syntactic struc-
tures. Another avenue of experiment will involve train-
ing populations of networks to exchange strings with
each other in a communication task, to see what sorts of
syntactic regularities arise spontaneously.

The enormous investment in computational power il-
lustrated by searches like that shown in figure 4 make
it questionable whether evolutionary searches really are
a good way to obtain networks which can recognize
strings from grammars. However the point is not to con-
struct individual networks capable of recognizing specific
languages. Instead, these results demonstrate that the
members of a species can evolve biases to learn different,
but related, languages reliably and efficiently. These bi-
ases would be crucial for the members of a species whose
subgroups face different, but related, communicative sit-
uations.

In our simulations, the initial weights of the networks
are fully specified by the networks “genotype.” This is
not biologically accurate — the information available in
the human genome is capable of specifying only a minute
fraction of the actual connectivity in the brain. On the
other hand, it is possible that even such a small fraction
of specified initial connectivity could strongly influence
the solutions that a general-purpose learning mechanism
would find. We are exploring sparser representations of
the genotype and more realistic models of the interac-
tions between genetics, development, and learning.

While this research was motivated by properties of
human languages and the debate over the question of
innate biases, it is important not to read to much into
these results. For one thing, there is a lot more to lan-
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guage than syntax, and it seems likely that much of the
regularities observed in human language arise from its
use as a communicative and expressive mode of action.

Still, the ability to recognize and generate complex
temporal patterns, necessary for language as well as
other activities, is important enough to expect that in-
nate biases would be beneficial. Recurrent neural net-
works can recognize patterns whose complexity is com-
parable to those found in human languages, and, with
the help of evolved biases, they can learn to do so when
exposed to examples.
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