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Abstract

An unconditionally stable algorithm for plane stress elastoplasticity is
developed, based upon the notion of elastic predictor return mapping (plastic
corrector). Enforcement of the consistency condition is shown to reduce to
the solution of a simple nonlinear equation. Consistent elastoplastic tangent
moduli are obtained by exact linearization of the algorithm. Use of these
moduli is essential in order to preserve the asymptotic rate of quadratic con-
vergence of Newton methods. An exact solution for constant strain rate over
the typical time step is derived. On the basis of this solution the accuracy of
the algorithm is assessed by means of iso-ciror maps. The excellent perfor-
mance of the algorithm for large time steps is illustrated in numerical experi-
ments.
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Introduction

The radial returrn algorithm initially proposed by Wilkins [1964], is the most widely used
integration procedure for plane strain and three dimensional classical J; elastoplasticity.
Extensions of this basic algorithin to account for isotropic and kinematic hardening have been
developed by Krieg & Key [1976]. The procedure is now well established due mainly to the
pionering accuracy analysis of Krieg & Krieg [1977] for ideal plasticity, subsequently
extended by Schreyer, Kulak and Kramer [1979] to include hardening effects. Yoder & Whir-
ley [1983] have demonstrated the overall superiority of the radial return method over other
proposed algorithm, particularly in the presence of hardening.

The radial return algorithm is a particular case of elastic predictor-plastic corrector algo-
rithms where a purely elastic (rial state is followed by a plastic corrector phase (refurn
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mapping). The purpose of the latter is to enforce consistency at the end of the step in a
manner consistent with the prescribed flow rule. This notion has also been employed in non-
classical plasticity models such as the cap model, Sandler & Rubin [1977]. The mathematical
structure of this class of methods is now well understood in the context of linear kinematics,
Ortiz [1981]. These integration procedures are simply product formula algorithms arising
from an operator spiit on the elastoplastic problem of evolution. As emphasized by Moss
[1984], return mapping algorithms always have been strain driven. Formulation of these
notions in the finite deformation range are given in Simo and Ortiz [1985], and Simo [1985].
The stability of integration procedures for inelasticity is addressed in Argyris et. al. [1979],
and recently, thoroughly re-examined in Ortiz & Popov [1985].

Three dimensional return mapping algorithms can be trivially modified for the plane
strain problem (e.g. Hallquist [1983]). This is in contrast with the plane stress situation where
satisfaction of the plane stress condition places a nontrivial constraint on the return algo-
rithm. Hence, incremental methods based on the use of the classical elastoplastic moduli are
still widely used, see, e.g., Marques [1984], Zienkiewicz , Sec 18.4 [1977] and references
therein. On the computational side, iterative corrections to the radial return method have
been proposed, Nagtegaal [1985], Hallquist et. al. [1985]. To some exient these procedures
are developed on an ad hoc basis.

In this paper a family of return mapping algorithms for the plane stress problem is
developed. The basic idea is to project the basic elastoplastic equations onto the subspace
defined by the plane stress condition, and there construct a return algorithm by application of
the generalized midpoint rule. Thus, the plane stress condition is identically satisfied by the
algorithm. Exact (algorithmic) enforcement of the consistency condition is shown to yield a
scalar equation for the plastic Lagrange parameter. For the case of isotropic elasticity the
procedure takes a remarkably simple form due to the structure of the elastic matrix. For three
dimensiona! elastoplasticity, use of the generalized midpoint rule was proposed by Rice and
Tracy [1973], and subsequently extended by Ortiz and Popov [1985]. For viscoplasticity, it
was employed by Hughes and Taylor [1978].

An essential ingredient in the overall performance of the algorithm is the development
of consistent elastoplastic tangent moduli obtained by flinearization of the algorithm. These
moduli reduce to the classical elastoplastic moduli as the time step & — 0 (consistency
requirement). For finite values of 2, however, use of the classical elastoplastic moduli results
in loss of the asymptotic rate of quadratic convergence characteristic of Newton’s methods,
Simo & Taylor [1985]. We note that replacement of the classical elastoplastic moduli by the
consistent moduli does not entail additional computational effort. It is also noted that
enforcement of the consistency condition at ¢, is essential in order to preserve the sym-
metry of the consisient elastoplastic moduli. [t is shown that enforcement of consistency at
the end of the step, as suggested by Ortiz & Popov [1985], results in loss of symmetry of algo-
rithmic elastoplastic moduli.

Finally, the exact solution for the plane stress problem is obtained under the customary
assumption of constant strain rate over the time step. This solution is compared with the
proposed algorithm and used to develop isoerror maps.

The excellent performance of the proposed algorithmn is illustrated by means of numeri-
cal simulations.

1. Formulation of the coustrained equations.

In what follows plane stress elastoplasticity with nonlinear isotropic and linear kinematic
hardening, and a von Mises yield condition is adopted as a model problem There is no con-
ceptual difficulty in extending the ideas discussed below to other yield conditions, flow rule
and hardening laws. Employing standard notation the three dimensional elastoplastic equa-
tions may be formulated in component form as
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€ = € + ¢f
e = ?\(5,, - )
i, - ; i (1.1a)
¢ ="hs;8,  Lu@)=0

Here, s;; are the components of the stress deviator defined as s, := o;; — (040 /3)9;;, where §;;
is the Kronecker delta. Further, «; are the components of the back stress, with o'y = 0.
The function &” -» x(¢”) defines the hardening law in terms of the the so-called equivalent
plastic strain €. The latter is defined by the rate equation

¢ - e (.10

To equations (1.1a) and (1.1b) one has to append the elastic stress-strain relations
g = l)ijk! ff] (IIC)
Constrained equations. The plane stress consiraint may be systematically introduced as

follows. Let V5 be the vector space of symmeiric rank-2 siress tensors. Thus, dim Vs = 6.
The plane stress subspace V7 is obtained from rthree constraints as

VP = (eeV® | sp3=o0p3=033=0) (1.2a)
Similarly, the deviator subspace V' is defined by three constraints
PP = (seV® | s;3=53=0, and oy =0 ) (1.2b)
Hencedim V¥ = dim VP = 3. Since both V'” and V" are isomorphic to R?® it proves con-
venient to introduce vector notation and express se¥’ and se Y as
o:=[oy on opl', si=[lsn Sn spl (1.3)

The mapping P :V* — VP connecting the constrained stress tensor gVt and its deviator
seV? plays a crucial role in what follows. In matrix notation we have

2 -10
s=Pe, Pi=1|-1 20 (1.4)
0 0 3

Note that the component 533 is non zero but is not explicitly included in (1.4). Instead of
employing the three dimensional components «; of the back stress directly, we introduce a
vector aeVT (ie.,oy3 = a'y3 = oi = 0) by the relation

[/ oy o) =1 Pa,  a:i=[a apn ap] (1.5)
Finally, the components of the strain tensors are collected in vector form as
e:=le e 26l & i=[ef) & 2eh] (1.6)

With this notation at hand, the basic equations (1.1) may be reformulated in vector form as
follows

€=¢€ + ¢

= D¢&
& = \Py (1.7
@ = }\Hlp

¢ =g Py~ L") <0
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where D is the elastic constitutive matrix for plane stress, and we have set for convenience

5 = € - @ (1.8)

Further, by making use of the flow rule (1.7); and relation (1.4) for the stress deviator, the
rate equation (1.1b) may be recast as

& = [29'Pal*A (1.9)

Finally, loading/unloading conditions may be conveniently formulated in standard Kuhn-
Tucker form simply by requiring that

<0, A20, r¢p=0 (1.10)

Note that conditions (1.10) are consistent with the classical notion of loadiml})g/unloading. As
an illustration, if ¢ < O then (1.10); requires that A = 0; hence ¢’ = 0 and & = 0 so that the
process is elastic.

Remark 1.1. For the case of isotropic elasticity the constitutive matrix I and P have the
same characteristic subspaces; i.e., their spectral decomposition is given by

P=0QAQ', D=QAQ, (1.11a)
where the orthogonal matrix Q = Q' and the constitutive matrix D are given by
I -1 0 Il v O
1 E
Q=—11 1 0], Di=—-——1{r1 0 }. (1.11b)
V2 - 1 —»
0 0 V2 I—»
00—~

E
i B
?OO I—v 00
Ap =10 1 Of, Ap=| O 2G 0}. (1.11c)
002 0 0 G

Since P and D have the same cigenvectors, it follows that PD = D P; that is, P and D com-
mute. For isotropic elasticity, the properties recorded above play a crucial role in the imple-
mentation of the algorithm discussed in Section 3. [

Remark 1.2. It should be noted that the sirain components ¢33, €53, and {3 do not enter
the formulation explicitly. These are dependent variables obtained from the basic variables
{e, €, &}, the plane stress condition, and the condition of isochoric plastic flow. For the
case of isotropic elasticity we have

3 = —vl(ef] + ), 5 = —efy - b (1.12)

The total strain ¢33 then follows simply as €33 = ¢§3 + 3 [J

We conclude this section by recording the expression for the so-called elastoplastic
tangent moduli. Although the argument is fairly standard (e.g., Owen & Hinton [1980, page
227]) for comparison purposes with our developments in Section 2.3 we outline the main
steps. By time differentiation of equation (1.7), it follows that

& = D(e- APy (1.13)
For plastic loading, the plastic consistency condition requires that the stress point must
remain on the yield surface. Accordingly, ¢ = 0 and ¢ = 0. This latter condition implies

<'1>=IIIP1'IW~§‘KK'€;!/EO (1.14)
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where « ;= dx/3¢”. Substitution of (1.7),, (1.8) and (1.13) into (1.14) yields
g PDe«

1.15
g PDPs(l +5) ( )
where we have set
s W H)GT oy
i Im P (1.16
Bri= S PDPy ¢:=Vy Py )
Finally, substitution of (1.15) into (1.13) leads to the expression
de - p - nen ~__DPy (1.17)

—— 5 o= C——————
de 1+ 4 Vg PDPy

where the symbol "® " denotes tensor product (i.e., in matrix notationn @ n -» nn' ). O

2. Integration algorithm,
In this section we develop the integration procedure for constitutive equations (1.7).
From a computational standpoint it is essential to note that this problem of evolution may
always be regarded as strain driven in the following sense.

2.1. Basic problem. Let [0, T]JCR be the time interval of interest. At time 1,€[0, T']
we assume that the total and plastic strain fields and the back siress are known; that is

(e,, €f,e",m,) given data at i, (2.1)

It is noted that the elastic strain tensor and the siress tensor are regarded as dependent vari-
ables which can always be obtained from the basic variables (2.1) through the relations

e =e, — €, o, = Dey. (2.2)
Let u :Q — IR? be the incremental displacement field assumed to be given. Here, QCR? is the
reference configuration of the body of interest. The basic problem, then, is to update the
fields (2.1) to ,,,€[0, 7] in a2 manner consistent with the elastoplastic constitutive equations
(1.7). Note that the stress field a,,, is computed from (2.2) once the strain field is known.
The problem is strain driven in the sense that the total strain tensor e is trivially updated
according to the (exact) formula

€41 = € *+ Viu (2.3)

where V¥( . ) denotes the symmetric gradient, and u is the specified displacement increment
over the time step [1,,{,,¢]. It remains to update the plastic strain tensor ¢ and the
equivalent plastic strain &”.

2.2. Integration algorithm. The plastic strains €, and €%, ,, and the back stress a,, |,
are determined by integration of the flow rule and hardening law over the time step
[t,, t,.)CI0, T]. To this end, use is made of the generalized midpoint rule. Introducing the
notation

€nin = aep +(1-a)e, =€, + aVu, a0, 1] (2.4)

the integration algorithm may be formulated as ¥

e = € + AP,
e = T+ M (2.5)
2
@y = @y t T;Hﬂnnx

TIn the following, for notational simpliciiy, Ak is replaced by .



J.C. Simo and R L. Taylor 6

where 8, .. and ¢,,., are defined as follows. First, @, ,,, €., and @,,, are defined according
to the expressions

eg%-a V= a€5+1 + (1 wa)fg
@y = @y, +(1-a)a, (2.6)

Onio = Dlg, o — eg%a]

Then g, ., and ¢, ., are obtained through the expressions

Fnia = Fpsa = Hpigs b se = \/;Ttmeﬂner (2.7

Note that (2.6); is simply the stress strain relation (1.7); at 1, ,,,, with the additive decomposi-
tion (1.7), implicitly used. The basic update algorithm (2.5) may be recast in terms of @, ,, by
making use of (2.6) and (2.7). This leads to the following sequential update procedure

€pin = €5 + aVu

1

Bria = mg(mmm ~¢f - Da,]
@, =&, +aNHg,,, (2.8)

Fpio ™ Bnia ~ Enia
Er[z)+a = 5,1: + a\/%}\(_j;li+a
Here, E()) plays the role of a modified (algorithmic) elastic tangent matrix and is defined as

2 = [D! + ~~+-9~‘~-’—‘-~-—-«1P—1 (2.9)

The update formulae (2.8) depend parametrically on the plastic Lagrange multiplier A which
is to be determined by enforcing the condition that the stress point o, ,, ai time {,,, 1s on the
yield surface. That is, by enforcing consistency at t,,.. Accordingly, we have the constraint
condition

DnialA) =12 '!rngaP"nﬂy - % K2(5r117+a) =0 (2.10)

This furnishes a nonlinear scalar equation which may be solved for A. For the case of isotro-
pic elasticity condition (2.10) has a particularly simple form due to the structure of matrices P
and D, and may be easily solved by elementary methods, as shown in Section 3. [0

Remark 2.1. It is again emphasized that the algorithmic counterpart of the consistency
condition is enforced at the mid-siep ¢, .., and not at the end of the step 7,.,. It is shown
below that enforcement of the consistency condition at 1,,,,, as in Ortiz & Popov [1985], leads
to consistent elastoplastic moduli which are non-symmetric. U

Remark 2.2. The algorithm (2.8) (or (2.5)) depends on the time step A = #,,; — 1,. By
expanding the exact solution {€’ (1, +h), é”(t,+h), a(t, +h)} at time {,,, in a Taylor series
about #, and using (1.7), it can be readily shown that (2.5) is second order accurate for o = Y2,
as expected, and first order accurate otherwise. For an explicit calculation of this type we
refer to Ortiz & Popov [1985]. O

2.3. Consistent elastoplastic tangent moduli.

We develop elastoplastic tangent moduii by linearization of the algorithm (2.8). It is
shown that the resulting tangent operator reduces in the limit as the step size A — 0 to the
classical elastoplastic moduli defined by (1.17). This is essentially the consistency require-
ment between algorithm (2.8) and problem (1.7). However, as shown in Simo & Taylor
[1985], for finite values of & it is essential to use the consistent tangent moduli in order to
preserve the quadratic rate of asymptotic convergence that characterizes Newton’s method.
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By differentiation of the algorithm we obtain the following formulae
dﬂn fo T D [d'{” o fl}‘*“P?n +a 7 AaP(d”N o T dan +(z)]

def.. = \[Eolgy,dN + Ndg, ] (210
%aH
da,,, = —5———d\g,,, + Ndo,..]

l+§aAH’

where J}m is defined by (2.7), and d%n .o 18 computed by differentiating this expression.
From (2.11), and (2.11); it follows that
adA

d@yn ro = E(A) [d €hia *1'; % o )\E P?n +a] (2 12)
Differentiation of the consistency condition (2.10) at 7,,,, and use of (2.11), leads to
d¢’n o = (1 & ;32' Kiﬂ +c¥) &n +z:xd&;n L ; « K,n +ta (%5 ’r{yd)\ =0 (2 1 3)

By making use of (2.11);, (2.12), (2.13) and solving for dA, the following expression is
obtained

adh erz‘mPEdfnwx

- , =1+ 2aH A 2.14a
Y1 ﬂémpzpmua(l + ﬁnrw) ' i 3 “ ( )
where
';“ &34—0{ (K’n +a Y1 + H Y2)7< N ,
ﬁn+a': ﬁ}i+aPEPqn+u’)2 ) V2= l_g'aKﬂJra}\ (214b)
From (2.14) and (2.12) we finally obtain
N’ o @ N T+
ds g o e B Tl (2.15a)
dé 7t l + ﬁn#a
where we have set
EP o
Ny, = ——nte (2.15b)
\/!/‘1 +«YPEP?n to

The elastoplastic tangent moduli at ¢,,; now follow at once from (2.14) by a chain rule argu-
ment. One simply finds that

de _dey  de denia _ de (2.16)

de n+l d”’”“ de 7o dc“‘rf de nia

Remark 2.3. It is noted that as the time step £ —» 0 one has A — 0. From expressions
(2.14), 1t follows that v, —= 1 and v, —» 1 as & — 0. Hence

h -0 = A - D and g,,,— 8, (2.17)

where (8 1s given by (1.16). Therefore, the "consistent” elastoplastic moduli (2.14) reduce to
the classical elastoplastic moduli given by (1.17) as 2 — 0. This shows that algorithm (2.4) is
consistent with problem (1.7). 7

Remark 2.4. We examine the implication of enforcing the plastic consistency condition
at ¢,,;. For the sake of simplicity in the exposition the case of perfect plasticity (R = con-
stant, and H = 0) is considered. If the stress point 1s required to be on the yield surface at
¢, .1, then instead of condition (2.10) one has



J.C. Simo and R.L. Taylor 8

¢11+1(}\)EI/ZG}€I+IP”?1'%1 -R*=0 (2.18)
To determine the value of d X we note that
da,. = Dde,,, - -i—-Ddem: ;‘;—d%m o> 0 (2.19)

By differentiating (2.18), and making use of (2.19) along with (2.12) we obtain the expression

[ PEd
adh = Zrel B0 (2.20)

! [
ﬂn+lPr"P¢n+{x

Substitution of (2.20) into (2.12) leads to

P i+ @ MP 4o

{ Evl
6, PEPa,,,

n+1

Clearly, expression (2.21) is non-symmetric except for the special case of o = 1. Thus, for the
generalized mid-point rule algorithm, the consistency condition must be enforced at the mid-
step 7,,.,. Otherwise, the resulting consistent elastoplastic moduli are non-symmetric. 1

Remark 2.5. The stability requirement of algorithm (2.8) 1s the one typically found for
the generalized midpoint rule; i.e., unconditional stability is attained for « = %. This result is
classical for linear elastodynamics, see e.g. the review article of Hughes [1983]. In the context
of viscoplasticity, a similar result was found by Hughes & Taylor [1978]. For elastoplasticity,
the sharp stability analysis of Ortiz & Popov [1985] again confirms the same result. 0

Remark 2.6 The basic algorithm (2.4)-(2.5) may be viewed as a product formula arising
from the following operator split on the elastoplastic problem of evolution.

Total = FElastic Predictor  +  Plastic Corrector
€ = given € = given =0

& = \Py & =0 & = \Py

¢ = \ju'Pa)’ & =0 ¢ =\3u'Pul”
&:}\%HW a =0 &:X%Hg

The geometric update formula (2.4) defines an (exact) algorithm consistent with the elastic
predictor problem. Note that the elastic relations (1.7), are regarded as a constraint that hold
at all time. By computing the stress tensor at the elastic predictor phase one obtains the so-
called trial elastic stress. The second part of the algorithm defines a relaxation process
towards the yield surface often referred as return mapping. Operator splits and product for-
mulae have long tradition in the computational literature, see ¢.g., Chorin et. al [1978]. For
elastoplasticity, the radial return method proposed by Wilkins [1960] furnishes the best
known example. A thorough analysis is contained in Krieg & Krieg [1977], and subsequently
extended by Schrever, Kulak & Kramer [1979]. O

3. Implementation.
For the case of isotropic elasticity, the implementation of the algorithm discussed above
takes a remarkably simple form. Employing the same notation as in Remark 1.1 we define

T~ M2 Myt

=Q g = NG NG 112) (.1

where Q is given by (1.i1b),. In addition, we define an elastic trial state given by ef, ., wf,,
and &£, ., by setting
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”)i;-:?a = Dle,y ~ Etl;}]» ?:ﬁa o= 0’1!;+a - @&y, £r§+<x o= QI ?rjz:ﬂy (3.2)

Making use of relations (1.11) the basic update formula (2.8), takes the form
£, = [+« %‘)\H)I +aNApAp] &Y, = P(VES,, (3.3)

where T'(}) is a diagonal matrix given by
i 1 1
La(—E + 2H)ya T 142G+ 2H)N T 14a(2G + ZH) )

31— )

In terms of the & variables, the consistency condition (2.10) takes a simple form. For con-
venience, we set

(3.4)

(A = diag

(¢f1) . (5 + (£h)°
+%H)a}\]z [1+a(2(;+§11)>\]~'

$’(N) =

E
[1+(‘§“('1~_V)

RN = 1@ + a2 g(0) (3.5)

where R()) is the radius of the yield surface defined in terms of the hardening rule (1.9).
With this notation at hand equation (2.10) now reads

() = Vap*(A) - REN), A>0 (3.6)

It can be readily shown that the function ¢*()) is monotonically decreasing for Ae[0, co), and
further that

lim ¢%(\) = lim -i&(x) =0 (3.7)
Ao GO A OGO (IIA
Thus, for the physically meaningful case of a monotonically increasing hardening law, (3.6)
has a unique solution A = 0. In particular, linear and saturation laws of the exponential type
are often used; i.e.,

K@) = K& + kg + (s ~xo)[1 ~ exp(~ye")] (3.8)

Here, K > 0, Ko = K0 and v > 0 are material constants. [J

Remark 3.1. Equation (3.6) is ideally suited for a local iterative solution procedure
employing Newton’s method. Note that in most realistic applications for which the hardening
law is nonlinear, such as (3.8), a local iterative solution is always necessary, even for plane
strain with von Mises yield condition (e.g. see Simo & Taylor [1985]). Thus, the additional
effort required to solve (3.6) due to the presence of d)z(}\) 1s negligible. [

A step by step implementation of the algorithm discussed above is summarized for con-
venience in Box 1.

4. Numerical Examples

In this section attention is first focused on an assessment of the accuracy of the pro-
posed algorithm by numerical testing. For this purpose, isoerror maps are developed on the
basts of a strain controlled homogeneous problem. Subsequently, the robustness and overall
performance of the solution procedure is illustrated by means of two numerical examples. All
the calculation reported herein were performed in a VAX 11/750 under the Berkeley UNIX
operating system,
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BOX 1. Algorithm for plane stress (o« = 1)

e Update strain tensor. Compute trial elastic stresses

& = € + Vu
”’E = D[‘nﬂ - 5;17)]
¥ = ¢ - a

e Consistency at 7,,,: Solve ¢(A) = 0 for A
d(\) 1= Y p*(A) - R*(A) =0

209 1= (nfi — B’ Ly, it 2’ + 2nfy)’
re— ° 2 2
[1+(3(1E7+_§HM]2 [1+Q2G +2H))
bl 4 .

RYN) i= L@ + ey /2o(0)
e Compute modified (algorithmic) elastic tangent moduli

- D'+ ————p]!

# Update stresses and plastic sirains at £,

1
Tl = T 2)\}7&( )D 4"
Gy = @yt >\“3“Hﬁn+l
Fpy) = Buel — Wy
. o 2’ s
e = 8 +IA0N)
ef = € + APy,

® Compute consisient elastoplastic tangent moduli

f!;'.'; oeg [EI)'IM‘!] [qunﬂlz

-4 =
de n+l W;HIPEP’MH + Basi
=1+2HN, v := L= 200 A

- Y,
Brsr = ::Z; ?;("HHVI + H72)ﬂrtx+lpﬂn+l
e Update ¢33 strain

1
e3n01 = — o, toxn )~ (), + e )
E

4.1 Accuracy analysis. Iso-error maps.

Isoerror maps corresponding to specified loading increments provide a systematic
approach to test the accuracy of algorithms for elasto-plasticity. The procedure has been
employed by a number of authors, e.g., Krieg and Krieg [1977], Schreyer, Kulak, and Kramer
[1979], Iwan and Yoder [1983], Ortiz and Popov [1985], Ortiz and Simo [1985]. In the

10
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present context, we proceed as follows.

Three points on the yield surface are selected which are representative of wide range of
possible states of stress. These points, labeled A, B, and C and shown on Figure 4.1,
correspond to uniaxial, biaxial, and pure shear stress, respectively. To construct the isoerror
maps we consider for each selected point on the yield surface a sequence of specified normal-
ized strain increments. The stresses corresponding to the (homogeneous) states of strain
prescribed in this manner, are then computed by application of the algorithm. At each point
the normalization parameters are chosen as the elastic strains associated with initial yielding.
Without loss of generality, the calculation is performed in terms of principal values of the
strain and stress tensors; i.e., it 1s assumed that ¢, = 0. Results are reported in terms of the
relative root mean square of the error between the exact and computed solution, which is
obtained according to the expression
B \/(0 ~a )i (g—0)

\/a‘* . 0'*

Here, & is the result obtained by application of the algorithm, whereas &~ is the exact solution
corresponding to the specified strain increment. The exact solution is obtained utilizing
expressions (A.3) through (A.5) in the Appendix. It is noted, however, that for any given
strain increment, repeated application of the algorithm with increasing number of subincre-
ments, yields a solution that converges rapidly to the exact solution developed in the Appen-
dix. This provides an additional numerical verification of this soclution.

The isoerror maps corresponding to points A, B, and C are shown in Figures 4.2
through 4.4. The values reported here were obtained for a von-Mises yield condition with no
hardening and a Poisson ratio of 0.3. It is noted now that Figures 4.3 and 4.4 2xhibit a sym-
metry which may be expected from the location of points B and € on the yield surface. From
these results, it may be concluded that the level of error observed is roughly equivalent to that
previously reported in the literature for other return mapping algorithms. As a rule, good
accuracy (within 5 percent) is obtained for moderate strain increments of the order the
characteristic yield strains. It is also noted that exact results for any strain increment are
obtained for radial loading along both symmetry axes, as expected.

4.2 Numerical simulations.

The results corresponding to the numerical solution of two boundary value problems are
reported below. The main objective of thesc simulations is to exhibit the reliable perfor-
mance of the algorithm in practical calculations. The overall robustness of the algorithm is
significantly enhanced by combining the classical Newton procedure with a line search algo-
rithm. This strategy has been suggested by number of authors, i.e., see Dennis and Schnabel
[1983], or Luenberger [1984]. The specific algorithm used is a linear line search which is
invoked whenever a computed energy norm is more than 0.9 of a previous value in the load
step (see Matthies and Strang [1979]). Attention also is directed to the excellent convergence
charactenistics of the Newton procedure. This is the result of the use of the consistent tangent
operator developed in Section 2.3. The numerical simulations reported below were per-
formed by implementing the algorithm described in Box 3.1 in an enhanced version of the
general purpose nonlinear finite element computer program FEAP described in Chapter 24 of
Zienkiewicz [1977].

Example 4.1. Extension of a strip with a circular hole. The geometry and finite element
mesh for the problem considered are shown in Figure 4.5. A unit thickness is assumed and
the calculation is performed by imposing uniform displacement control on the upper boun-
dary. For obvious symmetry considerations only one-quarter of the specimen need be
analyzed. A total of 164 4-node isoparametric quadrilaterals with bilinear interpolation of
the displacement field are employed in the calculation. It should be noted that for plane
stress problems no special treatment of the incompressibility constraint is needed. A von
Mises yield condition with linear isotropic hardening is considered. The elastic constants and
non-zero parameters in hardening law (3.8) are as follows:

0 x 100. (4.1
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TABLE 4.1. Strip with circular hole. Error norms. # = 0.01
Energy Norm
Load Step

I 2 3 4
0.112e+01 | 0.709e-01 0.716e-01 0.725e-01
0.277e-03 0.597e-04 0.248e-03 0.250e-04
0.218e-04 0.100e-04 0.262e-04 0.336¢-05
0.504e-06 0.494e-07 0.139e-07 0.944¢-06
0.142e-08 0.153e-12 0.245e-10 0.302¢-08
0.441e-14 0.396¢-22 0.201e-19 0.650e-13
0.690e-25 0.183e-33 0.180e-33 0.334e-22

0.392¢.33
Luclidean norm of residual
Load Step

1 2 3 4
0.114e+02 | 0.285e+01 | 0.285¢+01 | 0.285¢+01
0.388e-01 0.263¢-01 0.450e-01 0.230e-01
0.387¢-01 0.319¢-01 0.439e-01 0.963e-02
0.624¢-02 0.165e-02 0.942¢-03 0.422e-02
0.215e-03 0.237e-05 0.360¢-04 0.279¢-03
0.411e-06 0.361e-10 0.135¢-08 0.120e-05
0.155e-11 0.175e-15 0.164e-15 0.276e-10

0.189%-15
TABLE 4.2. Strip with circular hole. Error norms. 4 = 0.07
Energy Norm Residual Norm
Load Step Load Step

i 2 1 2
0.344e+01 | 0.355¢+01 || 0.199¢+02 | 0.19%+02
0.149e-01 0.139¢-02 0.123¢+400 | 0.102e¢+00
0.997e-01 0.287¢-03 0.880e+00 | 0.612e-01
0.162e-01 3.103e-04 0.718¢+00 | 0.109e-01
0.386e-02 0.300e-07 0.385¢+00 | 0.646e-03
0.716e-05 0.707e-12 0.150e-01 0.317e-05
0.608e-06 0.497e-21 0.407e-02 0.693e-10
0.973e-08 0.547e-03
0.480e-13 0.163e-05
0.325e-23 0.147e-10

E =70, v=02, «=0243, K =224 (4.2)

The problem is first solved using prescribed increments of vertical displacement on the
upper boundary of 0.04 followed by three subsequent equal increments of 0.01. The resuiting
spread of the plastic zone is shown in Figure 4.6. Note that spread of the plastic zone across
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an entire cross-section is achieved in the third load increment. The values of the H'-energy
norm and the Euclidean norm of the residual for the entire calculation are shown in Table
4.1. These results clearly exhibit an asymptotic rate of quadratic convergence. It is noted
that no line search was required during the iteration process.

TABLE 4.3. Strip with circular hole. Error norms. 4 = 0.5

Energy Morm Residual Norm
Load Step Load Step
(line search)

1 2 1 2
0.175e+03 0.182e¢+03 0.142e+03 | 0.142e+03
0.438e+00 0.434e-01 0.546e+00 | 0.207e+00
0.502e+01 0.344e-02 0.133e+01 | 0.141e+00
0.877e-01 0.182¢-03 0.115e¢+01 | 0.393¢-01
0.207e+01 0.172e-05 0.155e+01 | 0.576e-02
0.244e-01 0.154e-09 0.113e+01 | 0.433e-04
0.113e-01 0.186e-17 0.732e+00 | 0.505e-08
0.228¢-01 0.103e-30 0.545¢+00 | 0.347¢-14
0.172e-02 0.284e+00
0.358e-03 0.176e+00
0.122e-04 0.196e-01
0.119e-04 0.943¢-02
0.279¢-06 0.191e-02
0.135e-09 0.525e-04
0.512e-16 0.302e-07
0.717e-29 0.136e-13

To demonstrate the robustness of the solution procedure, the problem described above
was resolved using two equal increments, s =0.07. The results are reported in Figure
4.7(a),(b). Figure 4.7(a) shows nonconverged solutions, labeled @D and O, corresponding {o
the first two iterations of the first load step. Figure 4.7(b) shows the converged solution for
the two load steps. Note the substantial change in the plastic zone during the iteration pro-
cess and the complete agreement for the solution previously computed in four steps. The
values of the energy and residual norms for the entire iteration process along with the number
of line searches performed in each iteration are shown in Table 4.2. A quadratic rate of
asymptotic convergence is again exhibited.

Finally, to demonstrate the possible range of application of the proposed procedure the
problem was solved now using two increments of 4 =0.5. Nonconverged solutions
corresponding to the first two iterates are shown in Figure 4.8(a), while the converged solu-
tions for the two time steps, labeled @D and @, are shown in Figure 4.8(56). These results
demonstrate that even with the entire specimen plastified in the first two iterations the solu-
tion procedure is still able to produce a converged meaningful solution. The values of the
energy and residual norms for the entire iteration process along with the number of line
searches performed in each iteration are shown in Table 4.3. For this large loading step a
quadratic rate of asymptotic convergence is still exhibited,

Example 4.2. Bending of a strip with a circular notch The problem considered is pure
bending of a finite width strip with two symmetric circular notches, as shown in Figure 4.9.
By noting symmetry and asymmetry conditions. only one quarter of the region need be
modeled. The finite element mesh, also shown in Figure 4.9, consists of 252 four node iso-
parametric elements with bi-linear interpolation functions. Loading is applied by prescribing
the boundary condition as a linear varying vertical displacement along the upper boundary.



J.C. Simo and R L. Taylor 14

That is

X

v(x,y,t)},:gri-};f, 0=x<bh (4.3)

where b is a constant given by b = 10 - 2.5V2. Four loading increments of equal size,
corresponding to & = 0.1, are considered. For the geometry described above, two sets of
material parameters were analyzed

TABLE 4.4 Strip with circular notch. Error norms.

Isotropic hardening

Energy norm
Load step
1 2 3 4

0.403e+01 | 0.409e+01 | 0.417¢+0] | 0.296e+01
0.148e-02 0.127e-01 0.228e-02 0.109e-02
0.155e-03 0.658e-02 0.695¢-04 0.35%¢-04
0.178e-06 0.213e-04 0.616e-07 0.429e-07
0.467e-12 0.134e-06 0.415e-09 0.755e-13
0.152e-22 0.647e-12 0.143e-17 0.517e-24

0.793e-22 0.180e-31

Euclidean norm of residual

Load step
| 2 3 4

0.205e+02 | 0.205¢+02 | 0.205¢+02 | 0.170e+02
0.977e-01 0.234e+00 | 0.186e+00 | 0.112e+00
0.153¢+00 | 0.535e+00 | 0.729¢-01 0.382e-01
0.358e-02 0.557e-01 0.185e-02 0.186e-02
0.614e-05 0.345e-02 0.208e-03 0.273e-05
0.354e-10 0.883e-05 0.131e-07 0.716e-11

0.967e-10 0.179¢e-14

Cuase (a). Linear isotropic hardening The non-zero material parameters are chosen as
E =100, »=03, =10, K=250 (4.4)

The results of the numerical simulation are shown in Figure 4.10. To provide an idea of the
computational effort involved in the calculation, the error in the H'-energy norm and the
Euclidean norm of the residual for each iteration are given in Table 4.4.

Case (b): Combined linear isotropic-kinematic hardening The non-zero material parame-
ters are chosen as

E =100, v=03, =10, K=10, H =40 (4.5)

The results of the numerical simulation are shown in Figure 4.11, and the corresponding
values of the energy and residual norms for each iteration are summarized in Table 4.5.

The quadratic rate of asymptotic convergence of the Newton iteration scheme is again
exhibited by these results. Note that although included in the solution scheme, no line
searches are required during the iteration process reported above.
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TABLE 4.5 Strip with circular notch. Error norms:

Isotropic and kinematic hardening

15

Energy norm
Load step
1 2 3 4
0.403e+01 | 0.409e+01 | 0.417e¢+01 | 0.296e+01
0.148e-02 0.128e-01 0.214e-02 0.719¢-03
0.155¢-03 0.659¢-02 0.716e-04 0.136e-04
0.178e-06 0.213e-04 0.221e-06 0.110e-07
0.467e-12 0.134e-06 0.388e-09 0.202e-14
0.152e-22 0.642¢-12 0.153e-17 0.201e-27
0.779¢-22 0.166¢-31
Euclidean norm of residual
Load step
1 2 3 4
0.205e+02 | 0.205¢+02 | 0.205¢+02 | 0.170e+02
0.977¢-01 0.233e+00 | 0.191e+00 | 0.120e+00
0.153e¢+00 | 0.536e+00 | 0.761e-01 0.261e-01
0.358e-02 0.557e-01 0.420e-02 0.941e-03
0.614e-05 0.345e-02 0.202e-03 0.449e-06
0.354¢-10 0.880e-05 0.133e-07 0.143e-12
(0.958e-10 0.172e-14
5. Closure.

A consistent return mapping algorithm for plane siress elastoplasticity has been
developed. Attention has been directed to the case of von Mises yield condition with non-
linear isotropic and linear kinematic hardening. It has been shown that satisfaction of the
consistency reduces to the solution of a scalur nonlinear equation. A feature of practical
significance is the development of the tangent matrix by consistent linearization of the algo-
rithm. This matrnx although different from the classical elastoplastic matrix reduces to it in
the limit of infinitesimal loading steps. Use of the consistent tangent matrix ensures a qua-
dratic rate of asymptotic convergence in Newton’s method, as demonstrated in the numerical
examples discussed above,

The accuracy of the proposed algorithm has been assessed by isoerror maps correspond-
ing strain increments for typical stress states initially on the yield surface. The magnitude of
observed errors is comparable to results previously reported for return mapping algorithms
associated with plane strain and three dimensional applications.

A closed form solution to the plane stress elastoplastic problem was developed for the
customary assumption of constant strain rate over the loading increment. This result, used to
construct isoerror maps, may also be employed in explicit transient calculations requiring
high accuracy.

The numerical examples presented demonstrate the efficiency and usefulness of the pro-
posed algorithm in practical applications. These examples also exhibit the significant
enhancement in the robustness of Newton’s method when the proposed algorithm is employed
in conjunction with a linear line search.
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Appendix: Fxact solution for constant strain rate.

The exact solution to the elastoplastic problem of evolution over a typical time step
{t,.1,.1] may be obtained under the customary assumption of constant strain rate over the
step. For simplicity, reference to kinematic hardening is omitted, so that @ = 0 and g = ».
By dividing equation (1.13) by A we obtain the following inhomogeneous linear differential
equation

(A.1)

Fr=( = Oy

subject to the constraint (1.7)s. Equation (A.1) is easily transformed into an integral equation
for ¢(2) of the form

Lnsy

exp[DPAe(A) = o, + [ cxp[DP7]Dr)dr (A.2)

ty

Under the assumption that € = Constant on {t, , t,. ] one obtains the explicit expression

I - exp[-DPA]
A

“()*) = eXp[*DPA] oy t+ {DP]ﬂ] D(fnJrl - fn) (A3)
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As in Section 3, expression (A.3) can be decoupled by introducing the spectral representations
of P and D. On setting £(2) := Q' #()\), (A.2) reduces 10

EX) = exp[-OM]E, + @ [-‘»l—?%tﬂﬂ»]AD[Q’ (ener = &) (A 42)
where ® ;= Ap Ap, and
exp[-@A] = diag{exp[-ﬁi—v—) A}, exp[-2G A], exp[-2G A}) (A.4b)

One now redefines %20\) in (3.5) by the expression
$°(N) := £ () ApE(N) (A.5)

where Ap is given by (1.11c),. As in Section 3, the plastic Lagrange multiplier \ is obtained
by solving the consistency condition (3.6). Note that R()\) must be obtained by integrating
(1.9). This results in a rather messy expression, except for the trivial case of perfect plasticity.

Remark A.1. It is noted that the basic update formula (2.8), follows from the exact
expression (A.2) by evaluating the integral over [z, , t,,,] with the aid of generalized mid-
point rule and introducing the the approximation

exp[DPA] =1 + ADP + O(\) 0 (A.5)
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Figure Captions,

Figure 4.1 Plane stress yield surface: Points for isoerror maps.

Figure 4.2 Isoerror map corresponding to point A on yield surface.
Figure 4.3 Isoerror map corresponding to point B on yield surface.
Figure 4.4 Isoerror map corresponding to point C on yield surface.
Figure 4.5 Extension of a strip with a circular hole. Finite element mesh

Figure 4.6 Extension of a strip with a circular hole. Yield zone for the following time incre-
ments: @ h = 0.04;and @, @, and @ & = 0.01.

Figure 4.7 Extension of a strip with a circular hole. (a) Yield zone for first two iterations,
labeled @ and O, corresponding to first time step. (b) Yield zone for converged solutions,
labeled @D and O, respectively. Two time increments of & = 0.07.

Figure 4.8 Extension of a strip with a circular hole. (a) Yield zone for first two iterations.
The entire specimen is in the plastic regimen. (b) Yield zone corresponding to converged
solutions, labeled (D and O, respectively. Two time increments # = 0.5.

Figure 4.9 Bending of a strip with a circular notch. Finite element mesh.

Figure 4.10 Bending of a strip with a circular notch. Case (a) Isotropic bardening (K = 5.0).
Yield zone for first four loading steps, labeled @, @, @ and @, respectively. Equal time
steps of value A = 0.1,

Figure 4.11 Bending of a stirip with a circular notch. Case (b) Isotropic and kinematic harden-
ing (K = 1.0, H = 4.0). Yield zone for first four loading steps, labeled @, O @ and @,
respectively. Equal time steps of value A = 0.1.
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Figure 4.1 Plane stress yield surface: Points for isoerror
maps.
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Figure 4.2 Isoerror map corresponding to point A on
yield surface.
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Figure 4.3 Isoerror map corresponding to point B on
yield surface.
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Figure 4.4 Isoerror map corresponding to point C on
yield surface.
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Figure 4.5 Extension of a strip with a circular hole.
Finite element mesh



Figure 4.6 Extension of a strip with a circular hole.
Yield zone for the following time increments: @
= 0.04:and O, ®, and @ h = 0.01.
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Figure 4.7 Extension of a strip with a circular hole. (a)
Yield zone for first two iterations, labeled @ and O,
corresponding to first time step. (b) Yield zone for
converged solutions, labeled @ and @, respectively.
Two time increments of 2 = 0.07.
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Figure 4.8 Extension of a strip with a circular hole. (a)
Yield zone for first two iterations. The entire speci-
men is in the plastic regimen. (b) Yield zone
corresponding to converged solutions, labeled @ and
@, respectively. Two time increments 2 = (.5.



Figure 4.9 Bending of a strip with a circular notch.
Finite element mesh.



Figure 4.10 Bending of a strip with a circular notch.
Case (a) Isotropic hardening (K = 5.0). Yield zone for
first four loading steps, labeled @, @, @ and @, respec-
tively. Equal time steps of value /4 = 0.1.
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Figure 4.11 Bending of a strip with a circular notch.
Case (b) Isotropic and kinematic hardening
(K = 1.0, H = 4.0). Yield zone for first four loading
steps, labeled @, @ @ and @, respectively. Equal time
steps of value /4 = 0.1.





