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Abstract of the Dissertation 

Molecular and metabolic hallmarks of metastasis in triple negative breast cancer  
 

By 
 

Ryan Tevia Davis 
 

Doctor of Philosophy in Biomedical Sciences 
 

 University of California, Irvine, 2020 
 

Assistant Professor Devon A. Lawson, Chair 
 
 
 

      Although metastasis remains the cause of most cancer-related mortality, 

mechanisms governing seeding in distal tissues are poorly understood. I hypothesized the initial 

stages of seeding at distal tissues (micrometastases) contain a unique transcriptome compared 

to primary tumor cells, enabling the identification of novel molecular targets to specifically block 

micrometastatic establishment. Here I established a robust method for identification of global 

transcriptomic changes in rare metastatic cells during seeding using single-cell RNA-

sequencing and patient-derived xenograft (PDX) models of breast cancer. I found that both 

primary tumors and micrometastases display transcriptional heterogeneity, but micrometastases 

harbor a distinct transcriptome program conserved across PDX models that is highly predictive 

of poor survival in patients. Pathway analysis revealed mitochondrial oxidative phosphorylation 

(OXPHOS) as the top pathway upregulated in micrometastases, in contrast to higher levels of 

glycolytic enzymes in primary tumor cells, which was corroborated by flow cytometric and 

metabolomic analyses. Pharmacological inhibition of OXPHOS dramatically attenuated 

metastatic seeding in the lungs, which demonstrates the functional importance of OXPHOS in 

metastasis and highlights its potential as a therapeutic target to prevent metastatic spread in 

breast cancer patients. 
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Chapter 1: Introduction 

1.1 Significance 

Metastasis remains the leading cause of cancer related mortality in breast cancer 

patients. Despite a high prevalence in patients (>30%), experimental and clinical data 

demonstrates that metastasis is rare, with only a biologically unique population of cells within a 

tumor being capable of successfully completing the process and developing advanced 

metastatic outgrowth.1–3 Preclinical research of early stages of metastasis (local invasion and 

circulation) and late stages of metastasis (outgrowth of secondary tumors) have been useful in 

understanding key components of this process.4 However, robust models which can recapitulate 

the seeding of circulating tumor cells (CTCs) at distal tissues and the establishment of 

metastatic foci are lacking. This stage of the metastatic cascade represents a particularly 

difficult biological bottleneck, wherein most CTCs either are cleared in circulation or the tissue 

parenchyma or enter a state of prolonged dormancy.5–7  

1.2 Innovation 

The inability to authentically investigate the mechanisms governing the initial seeding 

and establishment of metastatic foci represents a critical gap in knowledge. My dissertation 

project has focused on developing a model system to isolate micrometastatic cells and assess 

their molecular profile with innovative new high-resolution single-cell technologies. I decided to 

utilize patient-derived xenografts (PDX) as my model system because they maintain many 

features of the original patients’ tumors, including histopathology, clinical markers, global gene 

expression patterns, hormone responsiveness, and intratumor heterogeneity. They have also 

been shown to be more predictive than cell line or transgenic models of disease course and 

drug response in patients.8–12 Furthermore, given that the study of micrometastatic lesions 

would necessitate incredibly low cell inputs, I developed a single-cell deep RNA sequencing 

(scRNA-DeepSeq) approach to facilitate the capture and analysis of rare cells. This combined 
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approach allowed me to gain new insights into the mechanisms driving metastatic seeding of 

human patient breast tumor cells in distal tissues. 

1.3 Background 

1.3.1 Breast cancer prevalence and subtypes 

Breast cancer remains the leading diagnosed cancer in women worldwide, with an 

annual incidence rate of 252,710 cases in the United States alone. Breast cancer also maintains 

a very favorable prognosis, with a 97.3% chance of a woman surviving five years after 

diagnosis.13 This rate is a nearly 39% increase since 1989.13 This favorable prognostic outcome 

is due in large part to advances in early stage detection modalities available to patients and in 

the molecular understanding of breast cancer. This molecular insight has enabled the 

development of directed therapeutics targeting subsets of the disease more effectively.  

Breast cancer is a highly heterogenous disease and advances in gene expression 

profiling have enabled its classification into five molecularly distinct categories: Luminal A, 

Luminal B, HER2 enriched, Basal-like/Triple Negative, and normal-like.14,15 The first two 

categories, Luminal A and Luminal B, are considered the hormone-positive subsets 

characterized by expression of the estrogen receptor (ER) and progesterone receptor (PR). The 

distinction between the subsets arises from the relative expression of Ki67+ cells within the 

sample, with Luminal B having higher prevalence. Together, these subtypes represent the most 

diagnosed tumors with the best prognostic outcome, due in large part to targeted molecular 

therapies including the estrogen antagonist, exemestane, the anti-VEGF antibody, 

bevaciczumab, and the mTOR inhibitor, everolimus.16–18 

The HER2-enriched subset of breast cancer arises from the overexpression of the 

human epidermal growth factor receptor 2 (ERBB2/HER2), resulting in over-activation of several 

growth pathways including the MAPK and PI3K/Akt pathways.19,20 This subset of tumors often 

arises from a gene duplication event, rather than an activating mutation, at the ERBB2 gene 

locus, resulting in overproduction of the HER2 receptor.20 Current molecular therapies for this 
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subset are primarily the anti-HER2 antibody, trastuzumab, though a subset of HER2 enriched 

tumors do not respond to trastuzumab treatment. This resistance has been associated with 

PTEN loss and CXCR4 upregulation.17,21 

Molecular profiles of basal-like breast tumors have a high degree of overlap with the 

histologically classified triple-negative breast cancer (TNBC, characterized by a lack of the ER, 

PR, and HER2 receptors). In addition, these tumors are often characterized by expression of 

basal epithelial markers, such as KRT5 and KRT14.15,22 Of all the molecular subtypes, basal-like 

cancers represent the most clinically aggressive subtype, with a high incidence of local and 

regional recurrence following treatment.23 Owing to the lack of targetable molecular aberrations, 

such as the HER2 receptor or HRs, the primary therapeutic intervention is chemotherapy, such 

as taxane or anthracycline.24 More recently, the TNBC subtype has been shown to contain even 

further heterogeneity in tumor types, with a distinction between the basal-like, the 

mesenchymal, immune-enriched, and luminal AR, indicating a strong need to develop new 

markers and targetable therapies that are specialized to the wide range of molecular subtypes 

in this classification.25 

1.3.2 Breast cancer and the process of metastasis 

Among a cohort of 1,608 patients in Toronto, TNBC was found to have the highest risk 

of distant metastasis (HR 4.0, CI 2.7-5.9) within the first five years to diagnosis.26  Breast cancer 

metastasis remains a complex clinical problem with regards to the development of reliable 

biomarkers and effective treatments. Two predominate models exist to explain the process of 

metastasis in breast cancer: the “linear progression” model and the “parallel progression” 

model. In the linear progression model, the primary tumor undergoes a series of genetic, 

epigenetic, and transcriptional alterations which develops a clonal selection process to favor a 

subset of clones which are capable of undergoing metastasis. This model was supported by 

initial studies in primary tissue samples which identified conserved gene expression profiles in 

metastatic tissues and the primary tumor and the relationship between tumor size and 
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metastatic propensity.14,27,28 The linear progression model implicitly assumes metastasis to be a 

“late” process in tumor development, as the clonal selection process requires a series of growth 

and death events to purify the metastatic subclone.  

In contrast, the “parallel” progression model postulates dissemination occurs from a 

large subset of cells in the primary tumor during early tumorigenesis. This model is supported by 

several studies indicating a high level of discordance between the gene expression of 

disseminated tumor cells in the lymph nodes and in the primary tumor with paired patient 

samples.29 These studies, in contrast to those examining gene expression in support of the 

linear progression model, were primarily performed in mouse models, which could explain part 

of the disparity. There is, however, additional evidence in the form of epidemiological studies 

which indicate that metastases began to develop 5-7 years before primary tumor diagnosis in a 

cohort of 12,000 breast cancer patients and clinical evidence of the presence of metastatic 

disease without the presence of initial tumor diagnosis.30,31 Evidence also suggests that these 

disseminated tumor cells can enter a state of quiescence which enables long-term survival at 

distant sites, which may explain the recurrence seen in patients with early stage disease 

following surgical resection.7,32 The parallel progression model, due to dissemination of tumor 

cells prior to initial tumor diagnosis, requires the treatment of the disease from a systemic 

standpoint. As such, future therapeutic interventions may necessitate the treatment of early 

stage tumors with systemic agents to attempt to limit the reoccurrence of dormant metastatic 

cells shed during early tumorigenesis. 

1.3.3 Intratumoral heterogeneity and metastasis 

Heterogeneity is pervasive in human cancer and manifests as morphological differences 

between cells or distinct karyotypic patterns, protein and biomarker expression levels and 

genetic profiles.33,34 Tumors are complex ecosystems of malignant cells surrounded by non-

malignant stroma, including fibroblasts, endothelial cells and infiltrating immune cells.35–37 

Intratumor heterogeneity arises through various mechanisms (Fig. 1.1). Heterogeneity is also 
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generated through cellular differentiation. In cancer stem cell (CSC) models, cancers are 

hierarchically organized with a stem cell-like population, sustaining tumor growth through self-

renewal and differentiation.38 The tumor microenvironment also generates intratumor 

heterogeneity by exerting different selective pressures in distinct regions of the tumor.39–42 

These models are not mutually exclusive and act together to create a complex system with 

multiple layers of heterogeneity established by the distinct genetic, epigenetic, transcriptomic, 

proteomic and functional properties of different cells. 

In the context of understanding the transcriptome differences between primary tumor 

cells metastatic cells, this level of intratumoral heterogeneity presents several problems. 

Primarily, the difficulty exists in the inability to distinguish subsets of tumor cell states from each 

other during bulk sequencing studies. The general dogma is that metastasis is carried out by 

rare cells with unique cellular and molecular properties.32 Single-cell investigations now enable 

the identification and characterization of such cells, including their localization in primary tumors, 

and the effect of genetic versus non-genetic and intrinsic versus extrinsic factors on metastasis 

(Fig. 1.2). Single-cell multiplex qPCR technology has shown that metastasis is initiated by cells 

with stem cell and epithelial–to-mesenchymal transition (EMT)-like characteristics in PDX 

models of breast cancer.2 This is consistent with results from the MMTV-PyMT breast cancer 

mouse model showing CSCs as the origin of metastasis1, as well as reports implicating stem 

cell and EMT programs in other breast cancer models.7,43 A recent scRNA-seq study of human 

head-and-neck cancers further implicated EMT in metastasis.44 As such, the application of this 

technology to the development of micrometastasis will provide new insights into the key factors 

governing this critical state. 

1.3.4 Application of scRNA-seq technologies to cancer research 

Single-cell technologies have advanced rapidly in the past several years. Currently 

available protocols vary in cell capture method, library preparation chemistry and  

https://www.nature.com/articles/s41556-018-0236-7#Fig3
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Figure 1.1 Common types of intratumor heterogeneity and its regulation by intrinsic and extrinsic factors. 
Tumors comprise a heterogeneous population of cells, which is regulated by both intrinsic and extrinsic factors. 
Tumor cells vary in biomarker expression, epigenetic landscape, hypoxic state, metabolic state, stage of 
differentiation, invasive potential, and genotype due to genomic instability. The tumor microenvironment can also 
be heterogeneous, in which different types of fibroblasts, pro-tumor and anti-tumor immune infiltrate, vascular and 
lymphatic vessel density and extracellular matrix (ECM) composition affect tumor cell heterogeneity and function. 
(From Lawson, et al. 2018, Nat Cell Bio) 
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Figure 1.2 Genetic and phenotypic properties of metastasis-initiating cells at the single-cell level. 
Metastasis is a rare event, in which most cancer cells cannot progress through major bottlenecks associated with 
invasion, intravasation, extravasation, seeding and colonization to produce a malignant macrometastatic tumor. 
In this model, cancer cells are heterogeneous in genotype (nuclei) and phenotype (cytoplasm), and metastasis-
initiating cells possess a distinct combination of both. Dashed arrow indicates that cancer cells within 
micrometastases can die. Death rates within micrometastases can balance proliferation rates, and thereby 
prevent progression to macrometastasis by the failure to produce net growth. (From Lawson, et al. 2018, Nat Cell 
Bio) 
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throughput.45–48 Most protocols require single-cell suspensions, so the first critical consideration 

is optimizing tumor dissociation to generate a cell suspension that is fully representative of the 

intact tumor in terms of cell populations, their frequencies and expression programs. Digestion 

of solid tumors eliminates spatial information and can obscure the true program of individual 

cells.49,50 Although there is no consensus for how to measure these profound effects, cellular 

diversity after dissociation can be analyzed by flow cytometry for known cell types or markers 

for the specific tumor type. Populations are typically validated by follow-up analyses in situ, but 

this approach only confirms their existence and does not determine whether all cell populations 

in the tumor were accounted for after cell dissociation. Ultimately, identification of the same 

populations using different protocols would increase confidence in the results. 

Technologies for transcriptome analysis are the most advanced and have been used to 

profile CSCs, map differentiation trajectories, describe drug resistance programs and define the 

immune infiltrate in tumors.51–53 The first single-cell transcriptome technologies utilized 

microfluidics to capture cells followed by multiplex qPCR for selected genes, but most recent 

studies favor scRNA-seq to enable assessment of the entire transcriptome. Selection of the 

most appropriate scRNA-seq protocol depends on the sample size, the number of cells to be 

sequenced and whether transcript counting, or full-length mRNA sequencing is desired. When 

large cell numbers must be sequenced, high-throughput, semi-automated droplet-based 

approaches (for example, inDrop54 and Dropseq55) are optimal. However, these approaches 

typically achieve lower transcriptome coverage and detect fewer lowly expressed genes, and 

there is very limited transcript sequence coverage due to 3′ end counting, precluding single-

nucleotide variant (SNV) and splicing analyses.50 Droplet-based protocols are also less 

amenable to studying small cell numbers, for instance CTCs, disseminated tumor cells or 

micrometastases. For such samples, cell isolation by flow cytometry or micromanipulation 

followed by manual library preparation in microwell plates is more tractable. These protocols 

typically amplify full-length mRNA by switching mechanism at 5′ end of RNA template (SMART) 
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or alternative chemistries, which enable full-length mRNA sequencing for SNV, splicing and 

deeper transcriptome analyses.56–59 For tissues that are preserved or cannot be readily 

dissociated, single-nucleus RNA-seq approaches, such as DroNc-seq60 or microwell-based 

single-nucleus RNA-seq61, may be optimal. 

1.3.5 Metabolism and cancer: Warburg and beyond 

Classical concepts of tumor metabolism centralize on the observation that cancer cells 

continue to preferentially metabolize glucose to lactate through glycolysis, rather than utilize 

OXPHOS in the presence exogenous oxygen sources. This aerobic glycolysis behavior by 

cancer cells was initially described by Otto Warburg in the 1930s and thus has been referred to 

eponymously as the Warburg effect or Warburg metabolism.62,63 Since its initial discovery, many 

researchers have utilized this metabolic quirk of cancer cells to their advantage. For instance, 

increased glucose uptake in tumors can be coopted for tumor detection; using 18fluoro-

deoxyglucose (FDG) in positron emission tomography (PET) imaging enables identification of 

localized tumors in patients.64 From a therapeutic standpoint, inhibiting glucose import can 

starve cancer cells65, inhibiting glucose catabolism during glycolysis can prevent ATP 

production66, or inhibiting lactate export can acidify cancer cells resulting in cell death.67 

However, although Warburg’s initial observation has resulted in several advances in our 

understanding of cancer, his key hypothesis that aerobic glycolysis results from impaired 

respiratory capacity has been challenged. Indeed, mutations or deletions in mitochondrial DNA 

(mtDNA), actually has deleterious effects on cancer cell viability and function.68 A prevailing 

hypothesis, which has strong experimental support, posits that the benefits of Warburg 

metabolism are not energetic (as OXPHOS metabolism produces far more ATP in cells), but 

rather biosynthetic.69 Indeed, tumor cells have been shown to utilize a modified form of pyruvate 

kinase (M2-PK), which converts phosphoenolpyruvate (PEP) to pyruvate, which is less efficient 

at this critical step in glycolysis.70 The resulting bottleneck generated at this final step of 

glycolysis in enables the tumor cell to instead shift its metabolism towards biosynthetic 



10 
 

pathways upstream of PEP, including nucleotide synthesis, amino acid metabolism, and 

triacylglyceride synthesis.69 Furthermore, the increased acidity of the tumor microenvironment 

results from upregulation of LDHA activity, a critical enzyme which regenerates NAD+ and 

generates lactic acid, resulting from the shifting away from OXPHOS and CAC activity in tumor 

cells which typically regenerates the cellular NAD+ levels.71 

 Our understanding of cancer cell metabolism has drastically expanded beyond the 

Warburg effect, and now includes contribution of multiple additional metabolic pathways 

upregulated in cancer cells, including the pentose phosphate pathway (PPP)72, fatty acid 

oxidation73,74, and glutamine metabolism.75–77 In particular glutamine metabolism has been given 

special focus for its ability to maintain both ATP levels and NADPH for lipid biosynthesis while 

tumor cells undergo aerobic glycolysis. By engaging multiple biosynthetic pathways, while 

simultaneously reducing ATP production through OXPHOS, tumor cells place themselves in 

energetic debt. Glutamine, thus, has been demonstrated to not only provide oxaloacetate for the 

replenishment of CAC intermediates, but also can be used to generate NADPH to lipid 

synthesis.78 In the context of metastasis, several metabolic pathways have been implicated in 

promoting a pro-invasive, anti-apoptotic phenotype. Increased lactate production from aerobic 

glycolysis stimulates migration and angiogenesis.67 The PPP provides the reducing cofactor 

NADPH to counterbalance elevated intracellular ROS levels79 and the CAC provides ATP to 

counterbalance depleted intracellular levels80, resulting from detachment of metastatic cells from 

the extracellular matrix and to prevent anoikis. Glutamine metabolism provides inputs to fuel the 

CAC and the generation of glutathione, further acting to counteract ROS levels and provide 

additional ATP.76,81,82  

1.4 Project Goal and Key Outcomes 

The primary goal of my thesis project was to elucidate the molecular and metabolic drivers 

of TNBC metastasis. As described in the preceding sections, a key finding regarding metastatic 

cells was that they arise from rare, phenotypically distinct cells in the primary tumor. This led to 
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my hypothesis that micrometastatic cells contain a global transcriptome distinct from signature 

from the primary tumor. However, bulk sequencing technologies are unable to effectively 

distinguish rare molecular signatures from the average of the combined malignant and non-

malignant tumor profiles that are typically generated. To that end, I turned to single cell 

sequencing technologies to define the molecular signature of micrometastatic cells in the 

context of clinically relevant PDX models. This approach afforded two advantages: 1) it enabled 

me to deconvolve intratumoral heterogeneity in both primary tumor cells and micrometastatic 

cells and 2) it enabled me to profile incredibly rare seeding colonies of micrometastasis in the 

lungs and lymph nodes of my PDX models. The major findings from this work, explained in 

detail in Chapters 2 and 3, include the establishment of a highly specific micrometastatic gene 

signature with potential prognostic value and the identification of a bioenergetic shift from 

glycolysis to OXPHOS in micrometastatic cells which can be inhibited pharmacologically to 

significantly impair metastatic potential. 
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Chapter 2: Defining heterogeneity in primary tumor and metastatic cells  

2.1 Introduction 

Despite major advances in the detection and treatment of early stage disease, 

metastasis remains the cause of nearly all mortality associated with breast cancer.83,84 Previous 

work suggests that metastasis is seeded by rare primary tumor cells with unique biological 

properties that enable them to surpass each step in the metastatic cascade.3,85,86 While 

properties promoting cell motility and migration are well studied, mechanisms governing the 

seeding and establishment of micrometastasis in distal tissues are poorly understood. This is in 

part because metastatic seeding cannot be studied in humans, and because it is technically 

challenging to detect and analyze rare cells at this transient stage in animal models. Further 

insights into the mechanisms driving metastatic seeding are critical to inspire new strategies for 

how to prevent metastatic spread and reduce mortality in breast cancer patients. 

I have developed a robust approach for the capture and analysis of individual cancer 

cells during the seeding of micrometastasis in human PDX models using scRNA-seq 

technology. This enabled me to study the role of tumor heterogeneity in metastasis, and identify 

cellular programs upregulated in micrometastatic cells that promote metastatic seeding. I find 

that micrometastases display a distinct transcriptome program and that this program is 

predictive of patient outcomes in the context of TNBC.  

2.2 Materials and Methods 

2.2.1 Orthotopic transplantation of PDX tumors into immunocompromised mice 

Samples from patients were generously provided by A.L. Welm in the Department of 

Oncological Sciences at the Huntsman Cancer Institute (HCI). All tissue samples were collected 

with informed consent from individuals being treated at the Huntsman Cancer Hospital and the 

University of Utah under a protocol approved by the University of Utah Institutional Review 

Board.87 HCI001 was acquired from a primary tumor biopsy of a Stage IV female patient 
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diagnosed with ER-PR-Her2-, basal-like invasive ductal carcinoma (IDC) with no previous 

systemic treatment. HCI002 was acquired from a primary tumor biopsy of a female patient 

diagnosed with ER-PR-Her2-, basal-like Stage IIIA medullary type IDC with no previous 

systemic treatment. HCI010 was acquired from a pleural effusion of a Stage IIIC female patient 

diagnosed with ER-PR-Her2-, basal-like (PAM50) IDC treated with several rounds of 

chemotherapies.87 Additional clinical details of each patient tumor can be found in Supplemental 

Table 1 of ref 83. Samples were collected and de-identified by the Huntsman Cancer Institute 

Tissue Resource and Application Core facility before being obtained for implantation. The study 

is compliant with all relevant ethical regulations regarding research involving human 

participants. 

The University of California, Irvine Institutional Animal Care and Use Committee 

(IACUC) reviewed and approved all animal experiments. Orthotopic transplants of serially 

passaged human tumor samples were performed on immunocompromised 3-4-week-old 

NOD/SCID or NSG mice after clearing the mammary fat pads following established protocols.2 

Tumor growth was monitored by weekly calipers and volumes were calculated as: length × 

width2 × 0.51. Animals were euthanized, and tissues were harvested when tumors reached 2.0-

2.5cm by length or width. For experimental metastasis studies, cultured MDA-MB-231 or 4T1-

GFP were suspended in 100µL of sterile PBS and injected into the tail vein of 8-10-week-old 

female NOD/SCID (MDA-MB-231) or BALB/c (4T1-GFP) mice. Mice were euthanized by 

asphyxiation with CO2 followed by cervical dislocation and perfusion with 10mM EDTA in D-PBS 

21 days (MDA-MB-231) or 5 days (4T1-GFP) post-injection. For cell line orthotopic tumor 

injections, mice were placed under isoflurane anesthesia (1.5–2.0%). Prior to injection the area 

was shaved and cleaned with an alcohol swab. 1x106 4T1-GFP or MDA-MB-231 cells in 100µL 

PBS were injected bilaterally into the fourth mammary fat pad of 10-12-week-old NSG mice. The 

study is compliant with all relevant ethical regulations regarding animal research. 

2.2.2 Tissue harvest and dissociation 
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Animals at endpoint were euthanized by asphyxiation with CO2 followed by cervical 

dislocation and perfusion with 10mM EDTA in D-PBS.  Prior to perfusion, Evan’s Blue (Sigma-

Aldrich, Cat. No. E2129-10G) was injected into the footpads and ears of anesthetized mice to 

aid in lymph node visualization. Solid tissues from the mice, which includes the primary tumor, 

lung, and lymph nodes were processed for flow cytometry by mechanically chopping with 

blades, followed by Collagenase IV digest (Sigma-Aldrich Cat. No. C5138-1G) in media 

(DMEM/F12 with 5% FBS, 5µg/mL insulin, and 1% Penstrep/Ampho B) for 45 min at 37°C. Cell 

suspensions were washed with 2 µg/mL DNAse I (Worthington Biochemical, Cat. No. 

LS002139) for 5 min and further dissociated with 0.05% Trypsin for 10 min. Following a wash 

with HBSS/2% FBS, cells were passed through a 70µm filter. Lung and primary tumor cells 

were treated with 1X RBC lysis buffer, followed by resuspension in DMEM/F12 with 10% FBS 

for FACS. 

2.2.3 Flow cytometry 

Single cell suspensions were stained human-specific antibody CD298, diluted 1:100 

(PE, BioLegend, Cat. No. 341704) and the mouse-specific antibody MHC-I, diluted 1:150 (APC, 

ThermoFisher, Scientific Cat. No. 17-5957-80). Flow cytometry was performed using the BD 

FACSAria Fusion cell sorter. Cell viability was determined by negative staining for SYTOX Blue, 

diluted 1:1000 (ThermoFisher Scientific Cat. No. S34857). Forward scatter area by forward 

scatter width (FSC H x FSC A) and side scatter area by side scatter width (SSC H x SSC A) 

was used to discriminate single cells from doublet and multiplet cells. Mouse cells were 

excluded by gating out CD298NegMHC-IPos. Human primary tumor cells and metastatic cells 

were selected by gating on SytoxNegCD298PosMHC-INeg.  

2.2.4 Generation of single-cell RNA sequencing data 

Single cells were sorted directly into each well of a skirted 96-well PCR plate (Fisher 

Scientific, Eppendorf, Cat. No. E951020443) containing lysis buffer (0.2% Triton X-100 (Sigma-

Aldrich, Cat. No. T9284), 2 U/µL RNAseOUT (ThermoFisher Scientific, Cat. No. 10777019), 
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10µM oligo-dT30VN, and 10µM dNTPs (ThermoFisher Scientific, Cat. No. 18427088) as 

described previously.56 The plates were snap frozen on dry ice and stored at -80°C until further 

processing. Total RNA was converted into cDNA using the SmartSeq2 protocol and prepared 

for Illumina sequencing with the Nextera XT DNA Library Preparation Kit (Illumina, Cat. No. FC-

131-1096). Cells were sequenced at a depth of 1 million reads/cell on the HiSeq2500. 

2.2.5 Processing of single-cell RNA sequencing data 

Files from the HiSeq2500 were demultiplexed and converted to FASTQ files. Paired-end 

100bp reads were aligned to the Gencode 21 human transcriptome using Bowtie2 and 

quantified using RSEM with the following parameters: rsem-calculate-expression -p $CORES --

bowtie2 --paired-end READ1 READ2 gencodehg21. Expression values were log-transformed 

into log(TPM+1) matrices and loaded into the Seurat analysis package with the following 

parameters: p10 <- CreateSeuratObject(raw.data = p10.mat, min.cells = 8, min.genes = 1000,  

project = "HCI010"). As further quality control, we removed any cells identified as visual outliers 

by library complexity (<2500 genes/cell) or overrepresentation of mitochondrial gene expression 

(>50%). Additionally, we removed any genes that were not represented in a robust population of 

cells (<8 cells/gene) from downstream analysis. This resulted in a final analysis of 1,119 single 

cell profiles.  Using the RegressOut feature in Seurat, we calculated z-score residuals using 

nGene and percent.mito as co-variates, which was used to perform PCA and tSNE. A G1/S and 

G2/M score was calculated using the gene score method described below and regressed out as 

well for HCI001 and HCI010. 

2.2.6 Dimensionality reduction, cell cluster identification, and differential gene expression 

analysis 

Dimensionality reduction and differential gene expression was performed using the 

Seurat analysis package version 2.1.0.88,89 For the combined and individual patient analysis, 

highly variable genes in our dataset were identified using the MeanVarPlot function with the 

following parameters: FindVariableGenes(object = comb, mean.function = ExpMean, 
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dispersion.function = LogVMR, x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5). These 

variable genes were then used for PCA analysis. The PCs generated were then used to perform 

t-distributed stochastic neighbor embedding (tSNE) of the data. For the individual patient 

analysis, using the FindClusters function in Seurat and a granularity parameter of 1.0, I 

identified distinct subpopulations and defined marker genes for each of them with the 

FindAllMarkers function in Seurat with the default settings for the FindAllMarkers function and 

the “bimod” statistical test. For the generation of the 330 micrometastatic gene signature, 

metastatic cells from all PDX models were grouped together separate from tumor cells and we 

calculated a DE test in Seurat using the “tobit” test with the following parameters: comb<- 

FindAllMarkers(object = comb, only.pos = TRUE, min.pct = 0.1, logfc.threshold = 0.25, test.use 

= "tobit", latent.vars=”orig.ident”). The “orig.ident” command in the “latent.vars” variable 

represents the Patient ID (i.e. HCI001, etc.). By including this variable, the tobit model identifies 

conserved marker genes.88–90 Gene ontology analysis was performed using the Enrichr web 

resource, where the input gene set for each population was the markers identified by 

FindAllMarkers.91 For the analysis of specific OXPHOS and glycolysis genes, I calculated the 

average log2 fold-change of the raw matrix values using the FetchData(use.raw=T) function in 

Seurat. 

2.2.7 Development of logistic regression model for identifying candidate biomarkers 

To calculate the logistic regression model used to identify candidate biomarker targets, 

gene expressions were normalized across all cells such that each gene had a mean expression 

of zero and a standard deviation of one. For model fitting, the data was sampled equally ten 

times from each mouse and cell identity (tumor vs. micrometastasis) category to avoid 

systematic bias. For each sampling, a stepwise regression with forward selection was 

performed, where at each step, the model that minimized the Akaike information criterion (AIC) 

was chosen to be used as a base model for the next step. Our logistic regression model used a 
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conservative cutoff of five genes based on the elbow in the AIC plot to minimize the size of our 

gene set while maintaining descriptive power. 

2.2.8 Gene scoring 

To quantitatively compare gene groups (e.g., Glycolysis, OXPHOS) in our cell 

populations, I utilized individual gene scores as described previously.52,92 A curated list of genes 

was obtained from KEGG, a database used for GO term enrichment. I utilized the 

AddModuleScore() function from Seurat to calculate gene scores for each population  

2.2.9 Relapse-free survival analysis 

For the relapse-free survival analysis, Kaplan-Meier (KM) survival curves were 

generated on basal-like breast cancer patient primary tumor microarray data from the KM plotter 

database for the top 20 micrometastasis-associated genes in our 330 gene signatures.93 Two 

genes were found to be not predictive and data for three genes was not available and were 

excluded. To generate the combined survival analysis, we calculated a weighted average of the 

15 predictive genes analyzed using the “Use Multiple Genes” function in KMPlotter. All KM plots 

are displayed using the “auto select best cutoff” parameter. 

2.2.10 Breast cancer PAM50 subtyping 

Classification of the single cell RNAseq data into the PAM50 subtypes was performed 

using the genefu R package.94 Briefly, log(TPM+1) expression matrices for each patient were 

loaded into the genefu package and cells were classified using the molecular.subtyping() 

function with the following parameters: sbt.model = "pam50",data = p10.dataset,annot = 

p10.annot,do.mapping = FALSE. Cells with a classification probability <0.7 were removed and 

the remaining cells were used in further analysis.  

2.2.11 Histology 

Tumor and lung tissues from the PDX mouse models were fixed overnight in 4% 

paraformaldehyde, then dehydrated and processed for paraffin embedding in the Leica Tissue 

Processor using standard protocols. The paraffin blocks were cut into 5-µm thick sections using 
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the Leica microtome, rehydrated, and then stained with hematoxylin and eosin. Brightfield 

imaging was done using the BZ-X700 Keyence microscope. 

2.2.12 Fluorescent in situ hybridization (FISH) 

FISH was performed on formalin fixed paraffin embedded (FFPE) sections using the 

RNAscope Multiplex Fluorescent Reagent Kit v2 (ACD, Cat. No. 323110) according to the 

manufacturer’s instructions. Briefly, FFPE sections were rehydrated in Histoclear and 100% 

ethanol, prior to antigen retrieval using the RNAscope antigen retrieval solution and mild boiling 

at 100°C for 15 minutes. PHLDA2 probe (ACD, Cat. No. 551441) amplification was performed 

according to manufacturer’s instructions with the TSA Plus Cyanine 3  (PerkinElmer, Cat. No. 

PN NEL744001KT) fluorophore diluted 1:1000, stained with DAPI, and mounted with Prolong 

Gold. Slides were visualized using the Zeiss LS700 confocal microscope. Image analysis was 

performed in ImageJ. Normalized total fluorescence intensity of the PHLDA2 probe was 

calculated on regions of interest across at least 5 different fields of view on 2 mouse lungs and 3 

tumors from HCI001 according to the following equation: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑇𝐹𝐼 =  
𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑅𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡
 

For quantification of lung micrometastatic regions of interest, surrounding mouse stroma 

was excluded from the analysis and for tumor regions of interest, necrotic regions or mouse 

stroma was excluded from the analysis. 

2.3 Results 

2.3.1 Single-cell RNA sequencing of matched primary tumors and micrometastases  

To identify fundamental cellular programs important for seeding in metastatic tissues, I 

investigated transcriptome programs uniquely expressed by cancer cells during the seeding and 

establishment of micrometastatic lesions. I utilized breast cancer PDX models because of their 

human disease authenticity and since they maintain intratumor heterogeneity, which is critical 

for determining the role of cellular heterogeneity in metastasis.8,9,12,95  I analyzed three 
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Figure 2.1 Single-cell RNA sequencing of micrometastatic and primary tumor cells. a, Overview of the 
experimental workflow. The primary tumor, lungs, and lymph nodes of each PDX animal were digested to make 
single-cell suspensions. Single CD298+MHC-I− human tumor cells were isolated by flow cytometry, deposited into 
individual wells of 96-well plates and single-cell cDNA libraries were prepared using Smartseq2 chemistry. 
Matched primary tumor and micrometastatic cells from nine mice and three PDX models (HCI001, HCI002 and 
HCI010) were analyzed, and 1,119 cells passed quality-control filtering. b, Left, flow cytometry-based strategy for 
the isolation of human CD298+MHC-I− cells from micrometastatic (bottom) and primary tumor (top) cells. Right, 
frequency of CD298+MHC-I− cells in a cohort of PDX mice. Mice that were selected for sequencing are indicated 
with an asterisk. c, Hematoxylin and eosin stains of micrometastases in the lungs of HCI001 mice. Data are 
representative of n = 8 biologically independent samples. Micrometastatic lesions are indicated by the arrows. 
Scale bars, 100 µm. d, T-distributed stochastic neighbor embedding (tSNE) plot showing clustering of 1,119 
metastatic and primary tumor cells from the HCI001, HCI002 and HCI010 models. 
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previously established PDX models of TNBC: HCI001, HCI002, and HCI010 (Fig. 2.1a).8 Like in 

many breast cancer patients, metastatic progression is slow and sporadic in these models, 

where most animals display dispersed micrometastases in the lung and lymph nodes and very 

low metastatic burden at endpoint (20-25 mm primary tumor diameter) (Fig. 2.1b-c).2,8 This 

enabled me to investigate transcriptional changes associated with early events in the seeding 

and establishment of micrometastasis.  

We previously developed a robust protocol for the isolation of metastatic cells from PDX 

models by flow cytometry using human (CD298) and mouse (MHC-I) species-specific antibodies 

(Fig. 2.1a-b).2 Here, I used this approach to compare cellular diversity in primary tumors and 

micrometastases by scRNA-seq. I sorted individual cancer cells from the lungs, lymph nodes, 

and primary tumors of PDX mice into 96-well PCR plates (Fig. 2.1a-b). Matched metastatic and 

primary tumor cells were isolated from each animal. I optimized our scRNA-seq protocol 

specifically for flow cytometry-sorted cancer cells.2,56 Single-cell libraries were constructed using 

the Illumina platform and sequenced at high depth (1 million paired end reads/cell). 

In contrast to high-throughput platforms (e.g., droplet-based), my scRNA-DeepSeq 

protocol enabled me to capture rare metastatic cells and detect more genes per cell.87 In total, I 

sequenced 1,707 tumor and metastatic cells from nine PDX mice and three tumor models (Fig. 

2.1a-b). Cell libraries were filtered to remove low quality cells using stringent parameters for low 

library complexity, mitochondrial gene overrepresentation, and noisy gene expression to ensure 

technical artifacts did not impact downstream analysis (Fig. 2.2a-c).88,89 1,119 cells (66%) 

passed filtering and were carried forward for further analysis. Importantly, all patient models 

exhibited similar library quality (Fig. 2.2a-c). 

2.3.2 Transcriptional diversity in micrometastatic and primary tumor cells 

To investigate intra- and intertumoral diversity, I performed K-nearest neighbor (KNN) 

graph-based clustering, followed by Louvain modularity optimization utilizing the Seurat analysis 

package.88,89 This revealed substantial intertumoral heterogeneity, which is consistent with prior 
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Figure 2.2 Quality control and exclusion criteria for single-cell RNA sequencing. a, Identification and 
removal of poor-quality cell libraries. Plots show the number of genes detected in each cell from each PDX model. 
Cells (x axis) are ordered from fewest to most genes detected. Cells with fewer than 2500 genes detected 
(horizontal line) were excluded. b, Identification and removal of noisy/background genes. Plots show the 
distribution of genes detected per cell. Vertical line indicates that genes detected in fewer than 8 cells were 
excluded. c, Violin plots indicate the expression of mitochondrial genes as a percentage of total gene expression 
in each cell separated by HCI001 (n = 375 cells), HCI002 (n = 576 cells), and HCI010 (n = 756 cells). Cells were 
excluded if > 50% of genes detected were mitochondrial (horizontal line). Black line with dot indicates median. 
d, e, Cells from HCI001 (d) and HCI010 (e) are plotted based on the relative expression of gene sets associated 
with G1/S (x-axis) and G2/M (y- axis) stages of the cell cycle. Left plots: Relative expression of the proliferation-
associated gene MKI67 is shown in HCI001 and HCI010. Middle plots: Cell clustering before cell cycle 
regression. Cluster identities are shown in grey. Right plots: Cell clustering after cell cycle regression. Colors 
indicate new cluster identity of each cell and correspond with clusters shown in Fig. 2.3a. Bar graphs show 
quantification of cell clusters by cycling status before and after regression. 
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bulk and single-cell RNA sequencing studies of malignant cells (Fig. 2.1d).8,44,52,53,92,96 I 

subsequently analyzed each model separately to explore intratumoral heterogeneity. Initial 

clustering in the HCI010 and HCI001 models was primarily driven by cell cycle status (Fig. 2.2d-

e). I consequently regressed out the effects of cell cycle using a previously established method, 

which infers cell cycle stage by calculating scores for each cell based on its expression of genes 

associated with G1/S or G2/M (Fig. 2.2d-e).52,92 After regressing out the effects of cell cycle, 

mouse-to-mouse variation within each model was limited, suggesting minimal batch effects (Fig. 

2.4a). Clustering analysis identified three distinct cell populations in HCI001 (A1-A3), five in 

HCI002 (B1-B5), and six in HCI010 (C1-C6) (Fig. 2.3a). Interestingly, metastatic and primary 

tumor cells were found in all clusters, suggesting that metastatic cells display substantial 

transcriptional diversity even at early stages of micrometastasis (Fig. 2.3b, Fig. 2.4b). However, 

clusters A1, B1, and C2-C3 from each model contained higher proportions of metastatic cells 

relative to the other clusters, suggesting a skewing towards this cell state in micrometastasis 

(Fig. 2.3b). 

 

To identify cellular properties characteristic of each population, I performed marker gene 

identification and Gene Ontology (GO) analyses using Seurat and Enrichr.88,89,91,97,98 This 

revealed distinct markers and pathways associated with each cell cluster (Fig. 2.3c, Fig. 2.4c). 

For example, A2 in HCI001 contained a population of cells that expressed high levels of genes 

associated with fatty acid metabolism, such as BDH2, DECR1, and CAV1 (Fig. 2.4c-d). B1 in 

HCI002 expressed high levels of genes encoding proteasome function (Fig. 2.4c-d). The EMT 

clusters (A3, B5, and C4) displayed increased levels of classic EMT genes, such as ZEB1, 

SNAI2, and VIM, and decreased levels of epithelial genes, such as EPCAM, CDH1, and KRT19 

(Fig. 2.4c-d, Fig. 2.5a). A3 in HCI001 also contained cells with a robust extracellular matrix 

(ECM) modulatory signature, that displayed increased expression of collagens (COL12A1, 

COL15A1, COL16A1), matrix metalloproteinases (MMP11, MMP16), and tissue inhibitors of 
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Figure 2.3 Transcriptional diversity in micrometastatic and primary tumor cells. a, tSNE plots show 
clustering of cells from PDX models HCI001 (n= 247 cells), HCI002 (n= 401 cells) and HCI010 (n= 471 cells). 
Cells are colored by cluster identity. Biological features defining each population identified by GO term analysis of 
marker genes are indicated. b, Bar graphs quantify the number of micrometastatic and primary tumor cells in 
each cluster. Arrows indicate clusters enriched for metastatic cells. c, Heatmaps show top marker genes for each 
cluster. 
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metalloproteinases (TIMP1) (Fig. 2.4c-d, Fig. 2.5b). B5 in HCI002, and C4 in HCI010 showed 

analogous ECM modulatory gene signatures (Fig. 2.4c-d, Fig. 2.5b). Interestingly, EMT and 

ECM signatures were often observed in overlapping clusters, particularly in HCI010 where gene 

signatures for EMT and ECM were significantly correlated in C4, and to some degree in A3 and 

B5 from HCI001 and HCI002, respectively (Fig. 2.5c). This is consistent with prior reports of 

increased MMP and collagen expression in cancer cells that display an EMT phenotype.99 

These data show that PDX models display substantial inter- and intratumoral heterogeneity, and 

distinct populations of cancer cells can be identified in both primary tumor and micrometastases. 

The partitioning of other tumor functions (i.e., ECM/EMT, OXPHOS, glycolysis) into different 

cancer cell subpopulations provides support for cooperative models for tumor progression, 

which propose that cell subpopulations within a tumor carry out discrete cellular functions and 

cooperate to synergistically propagate the tumor.100,101  

2.3.3 Breast cancer subtype analysis of primary tumors and metastatic cells 

In breast cancer, subtype switching has been observed in resistant tumor cells post-

treatment, and metastatic lesions frequently display a different subtype from the original primary 

tumor at diagnosis.102 Intratumor heterogeneity specifically relating to breast cancer subtype 

may therefore be clinically relevant both for drug resistance and metastatic propensity.103–105 

Each of 

the three original patients in this study were diagnosed with triple-negative, basal-like breast 

cancer by immunohistochemical analysis and PAM50 testing.8 I assigned subtypes to my single 

cell transcriptomes based on the PAM50 classification system to determine whether any cells 

representing other subtypes could be identified. As expected, most cells matched the basal-like 

subtype across each model (Fig. 2.6a). Interestingly, 24.8% of cells were identified as HER2, 

luminal A, luminal B, or normal-like subtypes. These disparate classifications were not specific 

to cell identity (metastatic versus tumor) or cluster designation (Fig. 2.6a). Analysis of several 

stereotypic markers for each subtype supported this finding and showed that 2-10% of cells 
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Figure 2.4 Marker and GO term analysis of cell clusters from each PDX model. a, tSNE plots display 
clustering of cells colored by mouse of origin from PDX models HCI001 (n = 247 cells), HCI002 (n = 401 cells) and 
HCI010 (n = 471 cells). b, tSNE plots display clustering of cells colored by tissue of origin from PDX models 
HCI001 (n = 247 cells), HCI002 (n = 401 cells) and HCI010 (n = 471 cells). c, Bar plots show selected top GO 
terms determined by the marker genes identified for each cell cluster. P values are determined by the Fisher 
exact test. Specifically, for HCI001, n = 162 A1 genes, n = 107 A2 genes, and n = 199 A3 genes. For 
HCI002, n = 490 B1 genes, n = 173 B2 genes, n = 34 B3 genes, n = 181 B4 genes, and n = 194 B5 genes. For 
HCI010, n = 96 C1 genes, n = 247 C2 genes, n = 198 C3 genes, n = 357 C4 genes, n = 54 C5 genes, n = 110 C6 
genes. d, Bar graphs show the log fold change (logFC) for selected genes from GO term pathways. Values 
indicate the logFC of the average gene expression for the indicated cell cluster relative to all other clusters within 
that PDX model. 
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Figure 2.5 Identification of an ECM remodeling and EMT co-correlated population in each PDX model. a-b, 
Gene scoring for EMT (a) and ECM (b) in each cell cluster. Cells from each PDX model were scored for an 
extended list of EMT-associated (a) or ECM-associated (b) genes. Box plots summarize scores for all cells in 
each cell cluster. (c) Dot plots display correlated gene scores for both ECM and EMT pathways in cluster A3, B5, 
and C4 from HCI001, HCI002, and HCI010, respectively. Pearson correlation values are indicated. 
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expressed ESR1, 0-12% expressed PR, and 33-63% expressed ERBB2 (also known as HER2) 

(Fig 2.6b). It is important to note, however, that although HCI001 contains a high prevalence of 

ERBB2 transcripts, the overwhelming molecular classification of the cells is basal-like (Fig. 

2.6a-b). The distinction likely arises from difference in histological compared to molecular 

profiling of these tumor cells, wherein the PAM50 classification of HER2 breast cancer includes 

concomitant upregulation of ERBB2, GRB7, FGFR4, and BLVRA, while also requiring 

downregulation of ACTR3B, MYC, and SFRP1. This is not the case in HCI001; FGFR4 is only 

expressed in 7.7% of cells, while MYC is expressed in 93.1% of cells (data not shown). 

Collectively, however, these results are consistent with recent work demonstrating subtype 

divergence within human breast tumors when bulk subtype classifications were compared to 

single cell profiles.106 Given that both the HCI001 and HCI002 patients were treatment naïve at 

the time of tumor collection for PDX generation, these results suggest that naïve tumors may 

often contain cells representing different subtypes and that such patients may benefit from 

combinatorial therapies. 

2.3.4 Micrometastatic cells display a distinct transcriptome program 

To determine whether micrometastatic cells possess unique transcriptome programs 

that may facilitate seeding in distal tissues, I performed supervised analysis to directly compare 

gene expression in primary tumor and micrometastatic cells (Fig. 2.7a).88–90 This identified 330 

differentially expressed genes (p<0.05; logFC>0.25), including 116 genes specifically 

upregulated in micrometastatic cells conserved in all three PDX models (Fig. 2.7b). Top 

micrometastasis-associated genes included several heat shock proteins (HSPB1, HSPE1, and 

HSPA8), which are protein chaperones upregulated in response to environmental stress that 

play pleiotropic roles in protein folding, wound healing, antigen presentation, protection from 

apoptosis, and cellular proliferation and differentiation (Fig. 2.7c).107,108 Several cytokeratins 

(KRT14, KRT16, KRT7, and KRT17) were also upregulated in micrometastatic cells from all 

three models, as well as ACTG2, which encodes a smooth muscle protein involved in cell 



30 
 

  

Figure 2.6 Relevance of intratumor heterogeneity on subtype classification. a, Classification probability of 
individual cells to the indicated subtype based on the PAM50 classifier. Only cells with a classification probability 
>0.7 are shown. Cell identity (metastatic or tumor) are indicated to the left. b, Quantification of the fraction of cells 
expressing the indicated subtype-specific genes for all three PDX.  



31 
 

motility (Fig. 2.7c). Micrometastatic cells also expressed higher levels of several genes with 

lesser known roles in metastasis, such as CKB, PHLDA2, NME1, ASHA1, NOP16, and 

S100A16 (Fig. 2.7c). 

We next performed a series of survival analyses, logistic regression and in situ validation 

experiments to confirm increased expression of micrometastasis-associated genes in PDX mice 

and evaluate disease relevance in breast cancer patients. We first explored whether increased 

primary tumor expression of micrometastasis-associated genes is predictive of poor survival in 

basal-like breast cancer patients using microarray data from the KMplotter database (879 

patients).93 This was to determine whether micrometastasis genes are higher in more 

biologically aggressive tumors, or if they have value as predictive biomarkers for disease 

progression in patients. Remarkably, we found that 15 of our top 20 micrometastasis-associated 

genes are significantly predictive of relapse in basal-like patients (two genes were not predictive 

and data for three genes was not available) (p<0.05; HR≥1.4) (Fig. 2.8a). Combining all 15 

genes further increased the power for predicting patient relapse in this cohort, showing a nearly 

3-fold increased risk (HR=2.83; P = 2.9x10-10) (Fig. 2.7d). 

We next utilized a stepwise logistic regression model to identify top biomarker 

candidates for micrometastasis in our data set. We utilized Akaike information criterion (AIC) to 

determine the optimal number of genes to include in each subsampling (n=5) and constructed 

10 models on equal subsamplings of micrometastatic and primary tumor cells in our data set 

(Fig. 2.8b-c). Using this approach, top candidates will appear the most often in the 10 data 

subsamplings. We find that PHLDA2 was the top candidate for micrometastatic cells and 

appeared in 8 of 10 models (Fig. 2.8d). PHLDA2 is a maternally imprinted gene that regulates 

placental growth and increases xenograft engraftment and cell invasion in vitro, but has limited 

prior association with breast cancer metastasis.109,110 Our survival analysis showed that 

PHLDA2 is significantly predictive of increased relapse (p=7.4x10-3; HR=1.44) in basal-like 

breast cancer patients (Fig. 2.8a). To determine whether PHLDA2 transcripts are upregulated in 
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Figure 2.7 Micrometastatic cells display a distinct transcriptome program. a, Schematic of the analysis 
method to identify genes that were differentially expressed between micrometastatic and primary tumor cells, 
conserved in all three PDX models. All of the cells in the dataset were classified as micrometastatic or tumor cells 
and the differential gene expression between the groups was calculated using the tobit test in Seurat with the 
patient ID as a latent variable; 330 differentially expressed genes were identified (P < 0.05, min.pct = 0.1, log[FC] 
threshold = 0.25). b, Volcano plot showing all genes that were differentially expressed between micrometastases 
and tumors. The P values were determined using the tobit test in Seurat, which utilizes a likelihood-ratio test. c, 
Heat map of the top-20 marker genes for micrometastatic and primary tumor cells. The average FC of each gene 
(x axis) in micrometastatic relative to primary tumor cells was plotted for each mouse (y axis). Yellow indicates 
higher expression in micrometastatic cells and purple indicates higher expression in tumor cells. d, Kaplan–Meier 
survival curve showing decreased relapse-free survival in patients with basal-like breast cancer (n = 360) who 
expressed high levels of the top-15 micrometastasis-associated genes. The P values were determined using a 
log-rank test. e, Representative fluorescent in situ hybridization for PHLDA2 (RNAscope) on primary tumor (n = 3 
biologically independent samples; bottom) and lung micrometastases (n = 2 biologically independent samples; 
top) from the PDX model HCI001. Insets, higher magnification of individual puncta. The white arrow indicates a 
tumor cell with high expression of PHLDA2. Scale bars, 50 µm. f, Normalized total fluorescent intensity (TFI) of 
PHLDA2 in primary tumor and micrometastatic cells from the PDX model HCI001 (n = 2 lungs, >15 lesions; n = 3 
tumors, 22 fields). Data are shown as the mean ± s.e.m. 
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Figure 2.8 Prognostic value of micrometastasis- associated genes in basal-like breast cancer patients. a, 
Kaplan-Meier curves show relapse free survival (RFS) in basal-like breast cancer patients from the KM plotter 
database (879 patients), based on their primary tumor expression of specified micrometastasis-associated genes. 
P values were determined via a log-rank test. b, Schematic for the construction of a stepwise logistic regression 
model to identify top biomarker candidates descriptive of primary tumor or micrometastatic cells. The data was 
subsampled to analyse equal numbers of micrometastatic and tumor cells from each mouse. The model was run 
on 10 subsamplings of the data, with the number of genes in each model determined by AIC. c, Plot 
demonstrating the AIC versus the number of genes included in the model. AIC is used to balance parameter 
additions (that is gene additions) with the descriptive power of a model. Data is presented as the 10% and 90% 
quantiles of the 10 data subsamplings. d, Bar plot showing the number of model appearances for each gene out 
of 10 data subsamplings. 
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micrometastatic lesions in situ, I compared PHLDA2 transcript levels in primary tumor and 

micrometastases using high resolution, single molecule fluorescence in situ hybridization (FISH) 

(RNAscope). I found that PHLDA2 transcript levels are >2-fold higher in micrometastases 

relative to primary tumors, validating our approach for identifying genes upregulated in 

micrometastasis (Fig. 2.7e-f). Interestingly, only rare primary tumor cells expressed PHLDA2, 

raising the question of whether it marks pre-metastatic cells (Fig. 2.7e). These data highlight my 

dataset as a resource for the identification of potential drivers of metastatic seeding, and 

biomarkers to predict metastatic progression in breast cancer patients.  

2.4 Discussion 

These results offer new insights into the complexity of intratumoral heterogeneity in the 

context of metastasis. Prior work has demonstrated that metastases arise from rare and 

phenotypically distinct cells in the primary tumor, such as a subpopulation of CXCR4+ tumor 

cells in pancreatic ductal adenocarcinoma3 or CD90+CD24+ cells in mouse models of breast 

cancer.1 Surprisingly, I find that micrometastatic cells contained the same diverse array of cell 

states as the primary tumors, albeit in different proportions (Fig. 2.3b). This finding can 

potentially be explained by two separate, but not mutually exclusive, models of micrometastatic 

establishment. In the first model, primary tumor cells from a broad range of cell states are shed 

into circulation during tumor development and seed distal tissues. Each of these cell states have 

differing capacity to survive each step in the metastatic cascade and are thus eradicated at 

differing rates, leading to the establishment of micrometastases that are dominated by certain 

cell states (i.e. A1, B1, C2/C3), but contain trace levels of all cell states (i.e. B5, C6) (Fig. 2.3b). 

This model would be supported by reports of collective cell migration in the context of cancer, 

which posits that multiple cells maintain their cell-cell junctions at invasive zones and move 

together during initial invasion into the surrounding stroma and intravasation into circulation or 

lymphatics.111 This phenomenon is seen in multiple cancers, including breast cancer and may 

explain how multiple cell states from the primary tumor escape and transit to sites of metastasis 
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to form multi-state micrometastases.112,113 In the second model, a single cell state is uniquely 

capable to surviving all steps of the metastatic cascade (i.e. A1, B1, C2/C3) and establishing 

initial singlet or multiplet colonies of metastases at distal tissues. However, during the 

establishment of micrometastasis and the development of a new secondary tumor site, 

additional tumor cell states are required to support this transition, such as additional ECM 

remodeling (A3, B5, C4) or generation of an inflammatory microenvironment (B4, C5). While 

these states themselves are incapable of surviving the multiple bottlenecks of the metastatic 

cascade, they are required as synergistic components of driving tumor establishment, and thus 

the initial founder colonies differentiate into these “helper” states. In support of this model, 

recent studies demonstrated that glioblastoma cells exist in up to four distinct cell states, with 

different frequencies that are highly plastic and dependent on the genetic and 

microenvironmental ques.53,114 Furthermore, that these cell states exist in a hierarchy of 

differentiation.53,114 This indicates that tumor cells have high degrees of heterogeneity with the 

capacity to readily differentiate between these states, and that this heterogeneity is context 

dependent.  

A prevailing concept in metastasis is the reversion of an tumor cell of epithelial origin to 

a more motile mesenchymal-like cell state, a process referred to as epithelial-to-mesenchymal 

transition (EMT).44 This process has been extensively studied and is consideered central to the 

progression of a tumor from localized to systemic.4,85,115,116 In agreement with previous work, I 

also identified populations of cancer cells with upregulation of EMT-associated programs in all 

three TNBC PDX models (Fig. 2.4c-d, Fig. 2.5a). Interestingly, however I find that these same 

populations are highly correlated with expression of both ECM components (COL1A1, COL1A3, 

LAMA2) in addition to ECM remodeling enzymes (MMP3, MMP2) (Fig. 2.4c-d, Fig. 2.5b-c). 

Remodeling of the ECM has been shown to be critical to the promotion of an EMT phenotype in 

cancer cells. While it is believed that increases in ECM remodeling enzymes in the 

microenvironment is contributed by stromal cells, including cancer-associated fibroblasts 
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(CAFs)117, my data demonstrates that the tumor cells can also contribute to the generation of 

these enzymes. As a result, a feed-forward loop is created in these tumor subpopulations where 

the EMT phenotype is further enhanced by increased production of ECM remodeling enzymes 

by the same cells. Additionally, it is important to note that the EMT/ECM subpopulations (A3, 

B5, C4) appears to be preferentially enriched in primary tumor cells, rather than micrometastatic 

cells (Fig. 2.3b). This finding further supports the concept of the reversion of metastatic cells to 

an epithelial phenotype following seeding at distal tissues and the establishment of a secondary 

tumor site, or the so-named mesenchymal-to-epithelial transition (MET).118 

Despite significant transcriptional diversity, I find that metastatic cells also display a 

distinct core expression program, consisting of 330 differentially expressed genes, that is 

conserved across the PDX models (Fig. 2.7b). There are currently no well-established 

predictive biomarkers for metastasis in routine clinical use, so the ability to determine whether 

their expression levels in human tumors correlates with metastatic progression is clinically 

valuable. I demonstrate that the top 20 genes associated with the core metastatic expression 

program is highly predictive (HR=2.73, p-val=2.9x10-10) of relapse-free survival in a large cohort 

of TNBC patients (Fig. 2.7d). One can envisage how this approach may one day be used in 

diagnostic applications, to score tumor samples for a core metastatic expression program to 

predict clinical outcomes, such as local relapse or organ-specific metastasis. I validated a 

specific marker from this core expression program, PHLDA2, in situ and found substantial 

upregulation in micrometastatic cells compared to primary tumor cells (Fig. 2.7e-f). Interestingly, 

while most tumor fields expressed little to no PHLDA2, there existed individual tumor cells with 

similar expression levels to micrometastatic lesions (Fig. 2.7e). An intriguing question for future 

studies will be to determine whether primary tumors that are enriched for cells with this marker 

are more likely to metastasize, in addition to the functional consequences of upregulation of this 

gene for metastatic potential. 
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Chapter 3: Metabolic phenotype 

3.1 Introduction 

I find that micrometastases display a distinct transcriptome program from primary tumors 

and identify mitochondrial oxidative phosphorylation (OXPHOS) as a top pathway upregulated 

during metastatic seeding. This was confirmed at the molecular level, where I show that 

micrometastatic cells display increased mitochondrial membrane potential and a distinct 

metabolic profile. I further find that pharmacologic inhibition of OXPHOS specifically in cancer 

cells attenuates metastatic seeding in the lung using two different breast cancer experimental 

metastasis models. These data show that OXPHOS is functionally important for metastasis and 

suggest that different metabolic strategies may be advantageous for cells to complete discrete 

stages of the metastatic cascade. 

3.2 Materials and Methods 

3.2.1 Seahorse Assay 

8x104 MDA-MB-231 or 4T1-GFP cells were seeded into Seahorse XF24 microplates 

(Agilent, Cat. No. 100850), and the XF24 cartridge (Agilent, Cat. No. 100850) was calibrated in 

the Seahorse prep station (Agilent) overnight. Before the assay, the medium was replaced by 

0.5 mL XF base medium (Agilent, Cat. No. 102353) supplemented with 10 mM glucose, 2 mM 

glutamine, and 1 mM pyruvate. Cells were incubated at 37 °C for 1 hour in the Seahorse prep 

station. 56 µL oligomycin (2 µM) (Sigma, Cat. No. 75351), 62 µL FCCP (2 µM) (Sigma, Cat. No. 

C2920) and 69 µL ROT/AA (1 µM) (Sigma, Cat. No. 557368, A8674) were added into the 

cartridge wells. OCR and ECAR levels were determined using Seahorse bioscience XF24 

extracellular flux analyzer (Agilent) and each cycle of measurement involved mixing (3 min), 

waiting (2 min), and measuring (3 min) cycles. To quantify basal respiration, I calculated the 

difference in the average OCR before addition of oligomycin and the average OCR after the 

addition of Antimycin A/Rotenone. For ATP-dependent respiration, I calculated the difference in 
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average OCR  before addition of oligomycin and after addition of oligomycin. Maximal 

respiration rates were calculated as the difference in average OCR after addition of FCCP and 

the average OCR after the addition of oligomycin. Any negative values were set to 0 for 

visualization and when calculating differences between groups.  

3.2.2 Proliferation Assay 

For proliferation studies, 2x105 MDA-MB-231 cells were seeded on 6-well plates 

(Genesee Scientific, Cat. No. 25-105) containing DMEM-F12 (Fisher Scientific, Cat. No. 

MT10090CV), 10% heat-inactivated fetal bovine serum (Sigma-Aldrich, Cat. No. 12306C), 1% 

penicillin-streptomycin 100X solution (Hyclone, Cat. No. SV30010) , and 5mM HEPES (Gibco, 

Cat. No. 15630-080) approximately 24 hours before drug treatment and left to adhere. 2x105 

4T1 cells were seeded on 6-well plates (Genesee Scientific, Cat. No. 25-105) containing 

DMEM-F12 (Fisher Scientific, Cat. No. MT10090CV), 5% heat-inactivated fetal bovine serum 

(Sigma-Aldrich, Cat. No. 12306C), and 1% penicillin-streptomycin 100X solution (Hyclone, Cat. 

No. SV30010) approximately 24 hours before drug treatment and left to adhere. The following 

day, the media was replaced with media containing 1µM oligomycin (MP Biomedicals Cat. No. 

0215178610), while the control cells had their media replaced. Cells were washed with PBS and 

their media was replaced after 8 hours of treatment or 6 hours of treatment in the case of 4T1-

GFP and MDA-MB-231 cells, respectively. At 24, 48, and 72 hours post-treatment cells were 

collected with 0.05% Trypsin (Corning, Cat No. 25-052-Cl) and counted using a Countess II 

Automated Cell Counter (ThermoFisher Scientific, Cat. No. AMQAX1000). Growth rate was 

calculated between 24 and 48hrs and between 48 and 72hrs post-treatment with the following 

equation: 

𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒 =
ln (

𝑁(𝑡)
𝑁(0)

)

𝑡
 

Where N(t) is the number of cells at either 48hrs or 72hrs, N(0) is the number of cells at 

either 24hrs or 48hrs, and t is the time between measurements. 
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3.2.3 Viability Assay 

For analysis of cell viability following oligomycin treatment, cells were stained with 

Annexin V-FITC, diluted 1:100 (GeneTex Cat. No. GTX14082) and propidium iodide (PI), diluted 

1:100 (ThermoFisher Scientific Cat. No. P3566). FSC-W x FSC-A and SSC-W x SSC-A was 

used to discriminate single cells from doublet and multiplet cells. Viability was determined by the 

frequency of Annexin-VNegPINeg cells in the population. 

3.2.4 FLIM Acquisition 

For FLIM analysis, 4T1-GFP mouse breast cancer cells and MDA-MB-231 human breast 

cancer cells were cultured in DMEM (ThermoFisher Scientific Cat. No. 11965092) 

supplemented with 10% heat-inactivated fetal bovine serum (ThermoFisher Scientific Cat. No. 

10082139), and 1% penicillin-streptomycin 100X solution (Hyclone, Cat. No. SV30010). Cells 

were plated at a confluency of 2x104 cells/cm2 in 8-well glass-bottomed (ThermoFisher Scientific 

Cat. No. 155411), fibronectin coated imaging dishes approximately 24 hours before drug 

treatment and left to adhere. The following day, the media was replaced with media containing 

1µM oligomycin (MP Biomedicals Cat. No. 0215178610), while the control cells had their media 

replaced. Cells were washed with PBS and their media was replaced after 8 hours of treatment 

or 6 hours of treatment in the case of 4T1-GFP and MDA-MB-231 cells, respectively. The cells 

were then imaged at 0, 6, and 24 hours post-washout for no greater than one hour per 

experimental condition. All FLIM imaging experiments were performed as previously 

described.119 FLIM images were acquired on an inverted laser scanning confocal microscope 

with a 40x 1.2NA water-immersion objective with cells kept under biological conditions 

throughout. 4T1-GFP and MDA-MB-231 cells were excited at approximately 2mW with a two-

photon Ti:Sapphire laser (Spectra-Physics, MaiTai) at 740 nm, which was passed through a 690 

nm dichroic filter. The fluorescence emission was separated through a bandpass filter (442/46 

nm) to capture cell auto-fluorescence and exclude any GFP emission and was then detected by 

a photomultiplier tube (Hamamatsu, Cat. No. H7422P-40). Fluorescence lifetime decays were 
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captured in the frequency domain via an A320 FastFLIM box (ISS) and subsequently mapped 

onto the phasor plot using the SimFCS software, developed at the Laboratory for Fluorescence 

Dynamics at the University of California, Irvine, for quantitative NADH lifetime analysis. 

Coumarin-6 in ethanol, with a known single exponential fluorescence lifetime of 2.5 ns, was 

imaged before each experiment and used as a calibration sample for instrument response time. 

3.2.5 FLIM Data Analysis 

Each pixel of the FLIM image was Fourier transformed and plotted on the phasor plot in 

SimFCS, as previously described.119 Each FLIM image was individually masked to exclude any 

nuclei from the analysis. Each masked frame’s cluster of phasors were then averaged to obtain 

its G and S coordinate, which was then used to determine the cluster’s fraction of free NADH. 

This free NADH fraction is calculated on the fact that 100% free NADH has a decay of 

approximately 0.4 ns, and 100% bound NADH has a decay of approximately 3.2 ns. Any pixel 

with a fluorescence decay containing a mixture of both free and bound NADH will lie within the 

linear combination of 100% free and 100% bound NADH when on the phasor plot in the 

frequency domain. Consequently, the cluster’s fraction of free NADH can be calculated by the 

cluster’s mathematical distance between the 100% free NADH and 100% bound NADH 

positions on the universal circle. For each independent experiment, the treated sample’s fraction 

of free NADH was subtracted from the average of the control sample’s fraction of free NADH to 

obtain the fraction of free NADH difference. Significance was determined via a two-tailed T-test 

with homoscedasticity determined via F-test. Error bars represent the standard error of the 

mean. 

3.2.6 Orthotopic transplantation and intravenous injection of cell lines into mice 

The University of California, Irvine Institutional Animal Care and Use Committee 

(IACUC) reviewed and approved all animal experiments. For experimental metastasis studies, 

cultured MDA-MB-231 or 4T1-GFP were suspended in 100µl of sterile PBS and injected into the 

tail vein of 8-10-week-old female Nod/SCID (MDA-MB-231) or BALB/c (4T1-GFP) mice. Mice 
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were euthanized by asphyxiation with CO2 followed by cervical dislocation and perfusion with 

10mM EDTA in D-PBS 21 days (MDA-MB-231) or 5 days (4T1-GFP) post-injection. For cell line 

orthotopic tumor injections, mice were placed under isoflurane anesthesia (1.5–2.0%). Prior to 

injection the area was shaved and cleaned with an alcohol swab. 1x106 4T1-GFP or MDA-MB-

231 cells in 100µl phosphate buffered saline (PBS) were injected bilaterally into the fourth 

mammary fat pad of 10-12-week-old NSG mice. The study is compliant with all relevant ethical 

regulations regarding animal research. 

3.2.7 Flow cytometry 

For mitochondrial membrane potential readouts, cells were stained with TMRM, diluted 

1:500 (ThermoFisher Scientific Cat. No. T668), MitoTracker-Green, diluted 1:100 from a 10µM 

stock (ThermoFisher Scientific Cat. No. M7514), human-specific antibody CD298, diluted 1:100 

(APC, BioLegend, Cat. No. 341706), and the mouse-specific antibody MHC-I, diluted 1:100 

(PE/Cy7, BioLegend, Cat. No. 114717). Cell viability was determined by negative staining for 

SYTOX Blue, diluted 1:1000 (ThermoFisher Scientific Cat. No. S34857). Compensation controls 

and FMOs were used to determine TMRMHigh and TMRMLow populations in the PDX tumor cells. 

For analysis of MDA-MB-231 metastatic burden, FSC W x FSC A and SSC W x SSC A was 

used to discriminate single cells from doublet and multiplet cells. MDA-MB-231 cells were 

defined by gating on SytoxNegCD298PosMHC-INeg, and the level of metastatic burden was 

determined by the frequency of that population. One mouse from the oligomycin treated group 

did not contain any detectable MDA-MB-231 cells by flow cytometry and was thus excluded 

from the analysis. For analysis of 4T1-GFP metastatic burden, FSC H x FSC A and SSC H x 

SSC A was used to discriminate single cells from doublet and multiplet cells. 4T1-GFP cells 

were defined by gating on SytoxNegGFPPos cells, and the level of metastatic burden was 

determined by the frequency of that population.  

3.2.8 Quantitative real-time PCR 
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Total RNA was extracted using Quick-RNA MicroPrep kit (Zymo, Cat. No. R1050). The 

mRNA was reverse transcribed into cDNA using the iScript cDNA synthesis kit (BioRad, Cat. 

No. 1708891) according to the manufacturer’s protocol. The quantitative real-time PCR 

reactions were performed using PowerUp SYBRGreen master mix (Applied Biosystems, Cat. 

No. A25742). The primer sequences used for each gene are listed in the following table: 

Table 1 Primer sequences used for quantitative real-time PCR 

Gene Forward Primer Sequence Reverse Primer Sequence 

ESRRA1 ACGAGTGTGAGATCACCAAG CGCACTCCCTCCTTGAG 

PGC1B GATGCCAGCGACTTTGACTC ACCCACGTCATCTTCAGGGA 

ATP5F1 TGCAAGGAACTTCCATGCCTC CGCCCAGTTTCTTCAAGATCAA 

COX5B ATGGCTTCAAGGTTACTTCGC ATGGCTTCAAGGTTACTTCGC 

 

3.2.9 Generation of steady-state metabolomics data using LC-HRMS 

Approximately 1000 cells were sorted using flow cytometry from primary tumors and 

lung metastatic cells from six HCI010 PDX transplants in NSG mice. Cells were centrifuged to 

remove medium and extracted in pre-cooled 80% HPLC methanol in HPLC-grade water. 

Samples were placed at -80°C for 15 min. Samples were then placed on ice and mixed several 

times. All samples were then centrifuged at 20,000 rcf for 10 min at 4°C. Supernatant was 

transferred to a new tube and dried using speed vacuum. The samples were prepared and 

analyzed by LC-HRMS as previously described.120 Integrated peak intensities were used. 

Hierarchical clustering and heat map were generated using MetaboAnlyst software 

(https://www.metaboanalyst.ca/) with the samples normalized using the Autoscaling feature, 

FDR was set at 5%, and metabolites were ranked by t-tests. Pathway enrichment analysis was 

conducted using MetaboAnalyst; briefly, metabolite identifications from the human metabolome 

database from the metabolites that were significantly enriched (FC>1.5 and p>0.05) were 

inputted. The pathway library used was Homo sapiens and hypergeometric test was used for 
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overrepresentation analysis. Partial least squares-discriminant analysis (PLS-DA) was 

implemented using the plsda function in R package “mixOmics”.121 

3.3 Results 

3.3.1 Micrometastatic cells upregulate mitochondrial oxidative phosphorylation 

To identify pathways and cellular properties upregulated in cancer cells during 

metastatic seeding, I performed GO term analysis on my 330-gene signature. Top GO terms for 

micrometastatic cells included ‘epidermis development’ (CALML5, KRT17, KRT16, KRT14, 

KLK5) and ‘response to unfolded protein’ (DNAJA1, HSPA8, HSPB1, HSPE1, HSPD1) (Fig. 

3.1a). Interestingly, many top GO terms centered on mitochondrial biology and metabolism, and 

included ‘respiratory electron transport chain’, ‘ATP metabolic process,’ ‘mitochondrial 

transport,’ and ‘oxidative phosphorylation’ (Fig. 3.1a). In contrast, ‘canonical glycolysis,’ and 

‘pyruvate metabolic process’ were top GO terms for primary tumor cells, suggesting clear 

metabolic differences between primary tumor and micrometastatic cells (Fig. 3.1a). Analysis of 

GO term-associated genes showed that 27 genes related to OXPHOS, glycolysis, and 

mitochondrial complexes were differentially expressed (p<0.05) (Fig. 3.1b). Micrometastatic 

cells expressed higher levels of numerous mitochondrial electron transport chain (ETC) genes, 

including NDUFS6, NDUFAB1, NDUFB2, NDUFAF4, UQCC3 and COA6, as well as the ATP 

synthase subunits ATP5I, ATP5G1, and ATP5J2 (Fig. 3.1b). Micrometastatic cells also 

expressed higher levels of the mitochondrial transport proteins TOMM5, TOMM6, and TIMM13, 

and the mitochondrial ribosome genes MRPL14, MRPL55, and MRPL51 that translate 

mitochondrial genes encoding ETC proteins (Fig. 3.1b). SOD1 (Superoxide dismutase 1) was 

also upregulated in micrometastatic cells, which encodes a mitochondrial enzyme that converts 

superoxide radicals to O2 and H2O2, and thus may protect micrometastatic cells from apoptosis 

due to oxidative stress from increased ETC activity (Fig. 3.1b). In contrast, primary tumor cells 

expressed higher levels of genes associated with glycolysis, including the glycolytic enzymes 

ALDOA, ALDOB, ALDOC, PGM1 and PGK1 (Fig. 3.1b). Our logistic regression analysis also 
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Figure 3.1 Micrometastatic cells display increased mitochondrial OXPHOS. a, Gene Ontology terms 
identified for primary tumor (n = 214 genes) and micrometastatic cells (n = 116 genes) based on the 330-
micrometastasis-gene signature. The P values were determined using Fisher’s exact test. b, Bar graph showing 
log2[FC] values for differentially expressed OXPHOS- and glycolysis-associated genes in micrometastatic cells 
(n = 435) relative to primary tumor cells (n = 684). *P < 0.05, tobit test in Seurat (which utilizes a likelihood-ratio 
test) for genes in our 330-micrometastasis signature. c, Gene scores of 37 unique metabolic pathways in 
micrometastatic (n = 435) and primary tumor (n = 684) cells. The average gene scores were calculated on 
individual tumor or micrometastatic cells and averaged across the three PDX models. Significance is shown on 
the y axis. The P values were determined using a two-sided Wilcox test. d, Schematic illustrating the mechanism 
of TMRM fluorescent staining in mitochondria. Increased ETC activity increases proton efflux from the 
mitochondrial matrix, resulting in a greater membrane potential and further accumulation of TMRM in the 
matrix. e, Top, flow cytometry analysis of TMRMhigh and TMRMlow populations in primary tumor cells from an 
HCI010 mouse. Data are representative of n = 6 biologically independent mice. Bottom, quantification of 
mitochondrial biogenesis and ETC genes in TMRMhigh relative to TMRMlow tumor cells, determined by real-time 
quantitative reverse-transcription PCR; n = 3 technical replicates. f, Top, histogram overlay of TMRM-
fluorescence intensity in lung micrometastatic and primary tumor cells from an HCI010 mouse. Data are 
representative of n = 5 biologically independent mice. Bottom, ratio of mean fluorescence intensity of TMRM to 
MitoTracker in CD298+MHC-I− cells. The P  value was determined using an unpaired two-sided Student’s t-test. 
Data presented as the mean ± s.d. of n = 6 mice. One lung with no metastasis was excluded. 
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identified LDHA, which promotes aerobic glycolysis by catalyzing the conversion of pyruvate to 

lactate and diverting it from entry into the TCA cycle, as the top gene most descriptive of 

primary tumor cells (Fig. 2.7d). 

To further investigate metabolic differences between primary tumor and 

micrometastases, I evaluated the expression of 1,402 genes associated with 37 metabolic 

pathways, such as the pentose phosphate pathway, the citric acid cycle, and fatty acid 

metabolism (Fig. 3.1c, Fig. 3.2). Gene scoring for each pathway showed that glycolysis (p =  

2.20 x 10-16) and OXPHOS (p =  2.20 x 10-16) were the most significantly differentially expressed 

of all 37 pathways (Fig. 3.1c). Importantly, I found that >70% of genes were detected and 

passed quality filtering in 33 of the 37 pathways, indicating sufficient coverage across metabolic 

pathways for comparative analysis (Fig. 3.2).  

I next performed several studies for molecular validation of the metabolic difference 

between primary tumor and micrometastases. Since conventional oxygen consumption assays 

are not amenable to the small cell numbers extracted from micrometastases, I performed a 

combination of flow cytometry and high resolution metabolomic analyses. I compared 

mitochondrial activity in primary tumor and metastatic cells by flow cytometry using 

tetramethylrhodamine methyl ester (TMRM), which is a fluorescent dye that accumulates in the 

mitochondria as a result of a difference in membrane potential (Fig. 3.1d).122 I find that HCI010 

primary tumors contain TMRMhigh and TMRMlow populations, where TMRMhigh cells are the 

minority population (Fig. 3.1e). qPCR analysis of sorted TMRMhigh and TMRMlow cells confirmed 

that TMRMhigh cells express higher levels of genes involved in mitochondrial biogenesis and the 

ETC, validating the TMRM assay in PDX cells (Fig. 3.1e). I stained matched primary tumor and 

lung cell suspensions from six HCI010 PDX mice with TMRM. Cells were co-stained with a 

viability dye (Sytox), CD298, MHC-I and MitoTracker to identify viable human cells and assess 

mitochondrial membrane potential relative to mitochondrial mass. Flow cytometry analysis 

showed that micrometastases display 3-fold higher mitochondrial membrane potential than 
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Figure 3.2 Gene scoring identifies OXPHOS and glycolysis as top metabolic pathways differentially 
expressed between micrometastases and primary tumor cells. Gene scores for each metabolic pathway in 
micrometastatic (red, n = 435 cells) or primary tumor cells (blue, n = 684 cells). Each cell in the dataset was 
scored by calculating the difference between the average gene expression for all the genes in each metabolic 
pathway versus the average gene expression of a randomly selected background gene set. Dotted line 
represents a zero score, which indicates the metabolic pathway is not differentially expressed relative to the 
background gene set. The boxed value (top right of each plot) indicates the percent of genes in the pathway that 
was detected in the dataset. The lower and upper hinges correspond to the first and third quartiles, and the 
midline represents the median. The upper and lower whiskers extend from the hinge up to 1.5 * IQR (inter-quartile 
range). Outlier points are indicated if they extend beyond this range. 
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primary tumor cells (P = 0.0331) (Fig. 3.1f). These data, combined with transcriptome analyses, 

strongly suggest that micrometastases utilize higher levels of OXPHOS for cellular metabolism. 

3.3.2 Micrometastatic cells display a distinct metabolic profile 

I next sought to determine whether micrometastatic cells are distinct from primary tumor 

cells at the global metabolic level. To this end, I developed a collaboration with the Mei Kong lab 

at UC Irvine and the Jason Locasale lab at Duke University to utilize liquid chromatography 

coupled with high-resolution mass spectrometry (LC-HRMS) to perform steady-state 

metabolomic analysis of cells isolated from the lungs and primary tumors of six HCI010 PDX 

animals (Fig. 3.3a).120 Although less abundant metabolites fell below the limit of detection due to 

limited cell numbers available from metastatic lesions, analysis of the 150 identified metabolites 

showed that metastatic cells display a distinct metabolic profile (Fig. 3.3b-d). This revealed 

modestly higher levels of fumarate and malate in metastatic cells (p<0.05), which are 

intermediates of the citric acid cycle (CAC) that feeds into OXPHOS (Fig. 3.3e, Supp. Table 6). 

We also identified 2.9-fold higher levels of succinyl carnitine in metastatic cells, which 

accumulates as a waste intermediate from the CAC (Fig. 3.3e). Glutamate, glucose and 

palmitolylcarnitine, an intermediate in fatty acid metabolism, were also significantly higher in 

metastatic cells (Fig. 3.3e). Glutamine also trended upward in metastatic cells compared to 

primary tumor cells, though did not achieve significance (p=0.303) (Fig. 3.3e). These 

metabolites are used by several pathways in the cell, but mainly provide carbon sources for the 

CAC to generate NADH/FADH2 for energy production through OXPHOS (Fig. 3.3f). We 

observed no difference in pyruvate or lactate between primary tumor and metastatic cells (Fig. 

3.3e). Interestingly, pathway analysis also showed increased amino acid metabolism in 

metastatic cells (p<0.05, FC>1.5) (Fig. 3.3g). Although amino acid accumulation may support 

diverse cellular functions, such as protein synthesis, signaling and proliferation, the catabolism 

of several of these amino acids such as cysteine, lysine, arginine, phenylalanine, and valine can 

also support the CAC and OXPHOS.123 These data show that metastatic cells display a distinct 
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Figure 3.3 Metastatic cells display a distinct metabolic profile. a, Schematic overview of the workflow for 
steady-state global metabolomics profiling of matched primary tumor and lung metastatic cells from six HCI010 
PDX animals using LC–HRMS. b, Partial least-squares discriminant analysis of the global metabolite data in 
metastatic and tumor cells. Individual points represent the bulk profiles of n = 1,000 cells isolated from either the 
lung (metastatic) or primary tumor (n = 6 mice). The individual points are labelled with their mouse ID. One tumor 
and one metastatic sample were excluded from the analysis due to low signal. c, Volcano plot showing 
metabolites that were differentially detected in metastatic or tumor samples. The P values were determined using 
an unpaired two-sided Student’s t-test. d, Heat map of peak intensities measured by LC–MS showing 
unsupervised clustering of 150 metabolites identified in metastatic and primary tumor cell samples normalized by 
autoscaling on MetaboAnalyst and ranked by a Student’s t-test. e, Levels of selected glycolysis, CAC and lipid 
metabolism intermediates in metastatic cells relative to primary tumor cells represented as the normalized 
intensity mean ± s.d. of n = 5 micrometastatic and tumor samples. The values of individual samples were 
normalized to the tumor average. The P values were determined using an unpaired two-sided Student’s t-test. f, 
Schematic showing the role of metabolites identified at higher levels in metastatic cells (indicated by an asterisk) 
in key metabolic pathways. g, Top metabolic pathways that were higher in metastatic cells identified by pathway 
analysis (P < 0.05; FC > 1.5; n = 62 metabolites). Metab., metabolism; biosynth., biosynthesis. The P values were 
determined using an unpaired two-sided Students t-test in MetaboAnalyst. 
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metabolic profile, which includes higher levels of several metabolites that may fuel oxidative 

phosphorylation.   

3.3.3 Oxidative phosphorylation is critical for lung metastasis 

I next investigated whether increased OXPHOS is functionally important  for metastasis, 

or whether it simply represents a response to increased oxygen availability in the metastatic 

site. I used two experimental metastasis models of TNBC that metastasize to the lung with 

reproducible kinetics following intravenous (i.v.) delivery, mouse 4T1 and human MDA-MB-231 

cells. I used the complex V inhibitor, oligomycin, to inhibit OXPHOS in vitro and then measured 

its effects on metastatic outgrowth in the lung (Fig. 3.4a-b). I chose oligomycin because it is a 

highly selective inhibitor of OXPHOS with limited off-target effects.124 Oligomycin induces cells 

to shift to glycolysis to produce ATP, and has been used to study the consequences of this 

metabolic shift in diverse settings.125–128 

Since oligomycin is cytotoxic if cells are unable to switch to increased glycolysis125, I 

performed a series of analyses to test the health and metabolic state of MDA-MB-231 and 4T1 

cells post treatment (Fig. 3.5a-b). Flow cytometry analysis for propidium iodide (PI) and annexin 

V staining showed that oligomycin does not reduce cell viability, increase apoptosis, or alter cell 

morphology 72 hours post treatment (Fig. 3.5c-d). Proliferation assays further showed no 

decrease in the growth rate of treated cells (Fig. 3.5e,g). Using the Seahorse XF assay, we 

found that oligomycin induces a sustained reduction in the oxygen consumption rate (OCR) and 

a corresponding increase in the extracellular acidification rate (ECAR) (Fig. 3.4c-d, Fig. 3.5f,h), 

suggesting the cells shift from OXPHOS to glycolysis. We further utilized phasor fluorescent 

lifetime imaging (FLIM) of NADH to determine the durability of the metabolic shift. FLIM relies on  

the fact that the fluorescent lifetime of NADH is longer when bound to enzymes involved in 

mitochondrial metabolism (~3.4ns) than when free floating in the cell during glycolysis 

(~0.4ns).129,130 FLIM analysis 6-24 hours after treatment showed a significant decrease in bound 

NADH, indicating a durable shift from OXPHOS to glycolysis in both cell lines (p < 0.05) (Fig. 
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Figure 3.4 Oxidative phosphorylation is critical for lung metastasis. a,b, Schematic of the experimental 
approach used to determine the effects of complex V inhibition via oligomycin on metastasis of MDA-MB-231 (a) 
and 4T1–GFP cells (b). c,d, Left, OCR of MDA-MB-231 (c) and 4T1–GFP cells (d) versus control cells after 
treatment with oligomycin for 6–8 h in vitro. O, oligomycin; F, FCCP; ROT/AA, rotenone with antimycin A. Right, 
basal, ATP and maximal respiration rates for each condition. The P values were determined using an unpaired 
two-sided Student’s t-test. Data presented as the mean ± s.d. of n = 4 replicates. e,f, Left, representative FLIM 
images of the fluorescence lifetime of NADH in cultured MDA-MB-231 (e) or 4T1–GFP cells (f). The fields do not 
represent consecutive images of the same cell. Scale bars, 10 µm. Right, quantification of the free-NADH fraction 
in the FLIM images normalized to the control. The P values were determined using a two-sided Student’s t-test 
with homoscedasticity determined using an F-test. Data presented as the mean ± s.e.m.; t = 0 h, n = 39 fields; 
t = 6 h, n = 41 (MDA-MB-231) and 40 (4T1–GFP) fields; and t = 24 h, n = 42 fields. g,h, Flow cytometry analysis of 
the metastatic burden in the lungs of the animals injected intravenously with oligomycin-treated or control cells. 
Left, FACS plots show MDA-MB-231 cells (g), identified as CD298+MHC-I+, and 4T1–GFP cells (h), identified by 
GFP, in representative animals. Right, frequency of metastatic cells. Data presented as the mean ± s.d. of the 
frequency of MDA-MB-231 (n = 5 oligomycin-treated, one mouse without detectable micrometastases was 
excluded; and n = 6 control mice) and 4T1–GFP (n = 5 oligomycin-treated and control mice) cells. The P value 
was determined using an unpaired two-sided Student’s t-test. Oligo., oligomycin. 
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Figure 3.5 Oligomycin treatment inhibits OXPHOS in MDA-MB-231 and 4T1-GFP cells. a,b, Schematic of the 
experimental setup to determine the effects of oligomycin treatment on MDA-MB-231 (a) or 4T1-GFP (b) cells. 
Oligo. = oligomycin. c,d, Bar graph (left) of the viability of MDA-MB-231 (c) or 4T1- GFP (d) cells 72-hours post-
treatment determined via flow cytometry. Data is presented as the mean ± s.d. for n = 3 replicates. P values 
determined by unpaired, two- sided Student’s t-test. Brightfield images (right) of in vitro MDA-MB-231 (c) or 4T1-
GFP (d) cells 72 hours after cessation of oligomycin treatment. Scale bar = 100 µm. e, Growth rate of MDA-MB-
231 cells for the indicated time after cessation of oligomycin treatment. Data is presented as mean ± s.d. of n = 3 
replicates. P values determined by unpaired, two-sided Students t-test. f, Extracellular acidification rate (ECAR) of 
MDA-MB-231 treated with oligomycin compared to control cells. ECAR was measured at the conclusion of 
treatment with oligomycin as described in (a). Arrows indicate when drugs were added. O=oligomycin, F=FCCP, 
ROT/AA=Rotenone/ Antimycin A. Data is presented as mean ± s.d. of n = 4 replicates. g, Same as (e) for 4T1-
GFP cells. h, Same as (f) for 4T1-GFP cells. Data is presented as mean ± s.d. of n = 3 replicates. P values 
determined by unpaired, two-sided Students t-test. i, j, Additional FLIM images of the fluorescence lifetime of 
NADH in cultured MDA-MB-231 (i) or 4T1-GFP cells (j) as shown in Fig. 3.3e, f. Fields do not represent 
consecutive images of the same cell. O=oligomycin, C=control. Scale bar=10 µm. k, l, Brightfield images of 
tumors from orthotopically injected control or oligomycin treated MDA-MB-231 (k) or 4T1-GFP (l) cells. Bar 
graphs indicate tumor weights (right). Data presented as mean ± s.d. of MDA-MB-231 (n = 6 oligomycin-treated, 
n = 6 control) and 4T1-GFP (n = 6 oligomycin-treated, n = 6 control) tumors. P-values were determined by 
unpaired, two-sided Student’s t-test. Scale bar = 0.5 cm. 



59 
 

3.4e-f, Fig. 3.5i-j). Collectively, these data demonstrate that oligomycin induces MDA-MB-231 

and 4T1 cells to shift from OXPHOS to glycolytic metabolism without compromising cell viability 

or proliferation.  

I injected NOD/SCID mice i.v. with oligomycin-treated versus control MDA-MB-231 cells 

(8x105) and harvested lungs 21 days later (Fig. 3.4a). Flow cytometry analysis showed a nearly 

3-fold decrease in the frequency of metastatic cells in the lungs of the treatment group (Fig. 

3.4g), showing that OXPHOS inhibition attenuates the metastatic capacity of MDA-MB-231 

cells. I used a similar approach to test the effects of OXPHOS inhibition on 4T1 cell metastasis 

(Fig. 3.4b). I injected GFP-labeled 4T1 cells (1x105) into BALB/c mice and harvested lungs 5 

days later since 4T1 cells metastasize rapidly in the lung. Remarkably, animals injected with 

oligomycin-treated 4T1-GFP cells displayed a 7-fold decrease in metastatic cells in the lung at 

this early timepoint (Fig. 3.4h), suggesting OXPHOS is important to facilitate early events in the 

metastatic cascade.  

Finally, to determine whether OXPHOS is specifically important for metastasis or 

generally important for cancer cell function, I tested the effects of oligomycin treatment on 

primary tumor growth. I treated 4T1 and MDA-MB-231 cells with oligomycin in vitro, performed 

bilateral orthotopic injections (1x106 cells), and harvested tumors 14 and 17 days later, 

respectively (Fig. 3.5k-l). I found no significant difference in engraftment efficiency or tumor size 

in control versus oligomycin-treated tumors (Fig. 3.5k-l), further establishing a role for OXPHOS 

in mediating the lung metastasis (Fig. 3.6). 

3.4 Discussion 

Defining the molecular mechanisms that facilitate specific stages of the metastatic 

cascade is critical to understand how cells metastasize and inspire new strategies to prevent 

metastatic spread in cancer patients. I have developed a robust approach for the capture and 

analysis of rare cells during the seeding and establishment of micrometastasis in PDX models 

using scRNA-seq. I find that micrometastases display significant transcriptional heterogeneity, 
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Figure 3.6 Model for metabolic shift associated with metastatic seeding in TNBC. Metastatic cells in the 
lung and lymph nodes display increased OXPHOS, in contrast to primary tumor cells that express higher levels of 
genes associated with aerobic glycolysis. Pharmacological inhibition of OXPHOS with the complex V inhibitor 
oligomycin substantially attenuates lung metastasis in experimental models of TNBC, showing that OXPHOS is 
functionally important for metastasis. 



61 
 

but also display a distinct expression program that is predictive of poor survival in breast cancer 

patients. I identify mitochondrial OXPHOS as the top pathway upregulated in micrometastases, 

in contrast to primary tumor cells that score higher for genes associated with aerobic glycolysis 

(Fig. 3.6). With the help of collaborators, we validated this by flow cytometry and LC-HRMS, 

where we found that micrometastases display a distinct metabolic profile and higher levels of 

several metabolites that feed into OXPHOS. Most importantly, I find that pharmacologic 

inhibition of OXPHOS substantially attenuates lung metastasis, showing that OXPHOS is 

functionally critical for metastatic spread.  

My work sheds light on the controversial role of metabolism in metastasis. Historically, 

tumors were thought to contain dysfunctional mitochondria and be principally sustained by 

Warburg metabolism.62,63 Recent work has challenged this dogma, showing the importance of 

glutamine76,77,82, fatty acid73,131, proline132, and pyruvate carboxylase-mediated metabolism133 in 

metastatic progression.134,135 Recent work using the 4T1 mouse model also showed that 

circulating tumor cells (CTCs) utilize increased OXPHOS, and that suppression of a central 

regulator of mitochondrial biogenesis (PGC1α) reduced cancer cell invasion and metastasis.136 

Furthermore, lung micrometastases have increased expression of mitochondrial complex I and 

oxidative stress by in situ RNA sequencing.137 My work utilized an unbiased transcriptomic 

approach to discover that OXPHOS promotes metastasis specifically during the seeding step of 

the metastatic cascade in three distinct human patient models of TNBC. Interestingly, many 

metabolic pathways implicated in metastasis, such as glutamine, fatty acid, and proline 

metabolism also converge on or produce critical metabolites to drive OXPHOS, raising the 

question of whether OXPHOS represents an underlying mechanistic link between them. 

OXPHOS may promote metastatic seeding in several ways. Increased ATP generation 

through OXPHOS may provide energy for cytoskeleton remodeling for motility, or to survive 

anoikis during cell detachment and migration.80 Increased ROS production through OXPHOS 

may promote cell motility by activating oncogenic signaling, as mtROS‐inducing mutations are 
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sufficient to trigger metastasis.23,138–141 Epidemiological data in humans also supports a role for 

OXPHOS in cancer progression, showing that treatment with the diabetes drug metformin 

(complex I inhibitor) is protective against breast cancer relapse and metastasis.142–145 Several 

drugs targeting mitochondrial metabolism are already FDA approved or in clinical trials (e.g., 

IACS-010759146, plumbagin147,148, atovaquone149,150), providing an opportunity for re-indication in 

breast cancer patients to prevent metastasis.  

On important caveat of my approach to demonstrating the deleterious effects of 

OXPHOS inhibition on metastatic potential involves the utilization of an i.v. injection model. I 

was able to demonstrate that OXPHOS activity is necessary at any step along the metastatic 

cascade from survival in circulation, to extravasation, and seeding at foreign tissues (lung). This 

method does not include local invasion or intravasation. Interestingly, my data does 

demonstrate that while the OXPHOS phenotype is enriched highly in metastatic cells, there 

does exist primary tumor cells with enhanced oxidative capacity (Fig. 3.1e-f, Fig. 3.2). It is 

tempting to speculate whether these cells are in fact the subset of primary tumor cells with the 

highest potential to form metastases and represent a novel therapeutic target.  Nevertheless, 

further studies are needed to define which specific steps of the metastatic cascade OXPHOS is 

critical for, to determine when it might be applied for clinical benefit against metastasis. 

 

 

 

 

 

 

Reprinted with permission from: 

Davis, R.T., Blake, K., Ma, D. et al. Transcriptional diversity and bioenergetic shift in human 
breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol 22, 
310–320 (2020). 
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Chapter 4: Conclusion and Final Remarks 

Metastasis remains the primary cause of death in almost all human cancers, including 

breast cancer. While many aspects of the metastatic cascade have been investigated, the 

mechanisms driving survival of micrometastases at distal tissues remains poorly understood. 

The long-term goal of my thesis project was to define intratumoral heterogeneity present in 

primary tumors and micrometastatic cells and define novel molecular signatures present in 

micrometastatic cells. To that end, I performed a comprehensive analysis of 1,119 single cell 

transcriptomes representing primary tumor and micrometastatic lesions from three distinct PDX 

models. I identified a conserved micrometastatic signature associated with patient outcomes in 

a large cohort of TNBC patient tumors. I pursued a bioenergetic shift associated with 

micrometastatic cells and performed extensive molecular and functional studies to evaluate 

OXPHOS in micrometastases and investigate its functional importance for metastatic seeding. 

Chapter 2 of this thesis explored the intratumoral heterogeneity present in primary tumor 

cells compared to micrometastatic cells. Identifying models which can recapitulate the early 

stages of metastasis post-extravasation, prior to secondary tumor formation has classically 

been difficult in the field. I found that by performing orthotopic transplantation of three previously 

identified TNBC PDX models (HCI001, HCI002, HCI010), the spontaneous metastases that 

develop mirror the micrometastatic stage. I developed a method for generating global 

transcriptome information from matched primary tumor and micrometastatic cells from three 

distinct TNBC patient samples (scRNA-DeepSeq). Using bioinformatic analysis, I identified 

heterogeneity in all three PDX models, comprising three (A1-A3), five (B1-B5), and six (C1-C6) 

distinct cell states in HCI001, HCI002, and HCI010, respectively. Interestingly, I found that these 

heterogeneous cell states were not exclusive to primary tumors, but rather shared between 

primary tumor and micrometastatic lesions at different frequencies. While some cell states were 

unique to specific PDX models, I identified a common EMT signature associated with primary 
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tumor-enriched cell states in all three models. This EMT signature was highly correlated with 

ECM remodeling signature, indicating a potential feed-forward mechanism in these cells to 

enhance EMT activity. I demonstrated subtype heterogeneity in all three PDX models. Though 

each tumor can be broadly classified as basal-like/TNBC tumors, subpopulations of both 

micrometastatic and tumor cells classified as HER2 or Luminal A/Luminal B, indicating a 

potential for targeted therapies to eliminate segments of the tumor. Importantly, I identified a 

micrometastatic gene signature, comprising 330 genes, which demonstrated high predictive 

power in stratifying TNBC patient outcomes from primary tumor gene profiling. I further validated 

a key component of this signature, PHLDA2, in micrometastatic lesions and primary tumor cells. 

I found PHLDA2 to be highly enriched in micrometastatic lesions, but also identified rare cells 

within the primary tumor with similar expression levels, which hints at the possibility of these 

cells having gained higher metastatic potential. Experimentally, this can be determined via 

overexpression of PHLDA2 in tumor cells and determining their capacity for spontaneous and 

experimental metastasis models compared to control tumor cells. Indeed, this work has already 

been started by my colleagues, who have developed an in vitro culture system of the PDX cells, 

which enables genetic manipulation. Preliminary data indicates that overexpression of PHLDA2 

in both the HCI001 and HCI010 patient models, followed by orthotopic transplantation into NSG 

mice, results in substantial increases in metastatic burden in the lungs of these mice (data not 

shown). Importantly, this increase in burden is not a result of differences in tumor growth rates 

or final volumes (data not shown). Collectively, the results outlined in Chapter 2 provide a 

valuable resource to the community to explore intratumoral heterogeneity in the context of 

metastasis, and a novel gene signature with potential clinical benefits.  

Chapter 3 builds upon the findings in Chapter 2 by attempting to determine a conserved 

feature of the 330 gene micrometastatic signature. Using GO term analysis, I identify a 

bioenergetic shift from glycolysis to OXPHOS as the central theme present in the signature. 

This switch is highly specific at the transcriptional level, as I demonstrate that glycolysis and 
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OXPHOS are the predominate differentiator between primary tumor and micrometastatic cells 

when compared to 37 metabolic pathways comprising over 1,400 genes. I find that 

micrometastatic cells upregulated several genes involved in mitochondrial function and the ETC. 

Given the low cell inputs obtained by micrometastatic lesions, conventional metabolic readouts 

(i.e. Seahorse) were not amenable to this study. Rather, I turned to using a fluorescent readout 

of mitochondrial activity, TMRM, which is sensitive to mitochondrial membrane potential. I find 

that primary tumor cells are characterized by enrichment for TMRMLow cells, with less than 10% 

of tumor cells categorized as TMRMHigh by flow cytometry. This contrasts with micrometastatic 

lesions, which show significantly higher mitochondrial membrane potential, after controlling for 

mitochondrial mass. To fully explore whether this bioenergetic shift was relevant at the 

metabolite level, I developed a collaboration to generate steady-state metabolomics data from 

extremely low cell inputs (1000 cells/tissue). This data demonstrated that micrometastatic cells 

show significant enrichment for metabolites involved in CAC activity, glutamine metabolism and 

fatty acid metabolism. In agreement with my transcriptome analysis, these pathways are all 

involved in generating metabolites and intermediates for OXPHOS. Finally, I demonstrated the 

functional significance of OXPHOS metabolism in vivo. I showed that inhibition of OXPHOS with 

oligomycin significantly impairs metastatic capacity in both an immune-compromised and 

immune-competent setting, without impairing primary tumor development. The results outlined 

in Chapter 3 demonstrate a bioenergetic shift associated with micrometastasis and that this shift 

is necessary for efficient metastatic dissemination. Furthermore, these results indicate a 

potential clinical benefit for exploring inhibitors of OXPHOS metabolism in patients with 

disseminated disease.   

The gene signature associated with micrometastatic cells is likely driven by either 

genetic or epigenetic factors. An intriguing mechanistic link between the gene signature I 

identified in Chapter 2 and the metabolic shift explored in Chapter 3 involves changes to the 

epigenetic landscape driven by the CAC. Acetyl-CoA can be utilized for the acetylation of 
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histones, and α-ketoglutarate is a key component of several dioxygenases, such as TET1 and 

KDM2, which in turn are responsible for DNA and histone demethylation, respectively.151 It is 

possible that the metabolic adaptations acquired by the metastatic cells drive epigenetic 

rewiring of the cells to initiate changes in gene expression that drive the cell towards the 

micrometastatic gene signature, including upregulation of genes like PHLDA2. Future studies 

will be needed to explore the epigenetic landscape of micrometastatic cells compared to primary 

tumor cells, to determine which modifications are highly abundant, and in turn which 

modifications could potentially be modulated by the metabolic phenotype of micrometastases. 

Experimentally, this can be accomplished by profiling the epigenome of these cells with 

advances in single cell epigenetics (scATAC-seq) in micrometastatic compared to primary tumor 

cells in these PDX models I have previously described. One could then modulate the levels of 

OXPHOS in vitro and perform a similar scATAC-seq assay to determine which specific regions 

of the epigenome are altered by the bioenergetic shift in micrometastases, thereby linking any 

identified changes to alterations in the 330 gene micrometastatic signature described in Chapter 

2. 

Finally, another key factor that may explain the mechanistic benefits of enhanced CAC 

and OXPHOS activity seen in these micrometastatic cells involves the immune system. In 

Chapter 3 I demonstrated that inhibition of OXPHOS in 4T1-GFP cells significantly impaired 

their ability to metastasize in the context of a fully competent immune system, indicating that the 

role of OXPHOS is relevant with an active immune system. Several models exist to explain this 

phenomenon, many of which will like work synergistically, to enable the micrometastatic cells to 

evade immune clearance. Increased OXPHOS and CAC activity results in increased ATP levels 

in micrometastatic cells. These excess ATP molecules may be secreted or released upon cell 

death, where they can be cleaved by ectonucleotidases (CD73 and CD39) into adenosine, 

which in turn can bind A2a receptors on both CD8 T cells and NK cells, thus inhibiting their 

activity.152 The logical hypothesis from this is that blocking CD73 and CD39 will prevent the 



67 
 

functional advantage provided by increased ATP production in highly oxidative micrometastatic 

cells. This can be tested experimentally in vitro using recently described monoclonal antibodies 

which block CD73 (IPH5301) and CD39 (IPH4201) activity.153 Following promotion of OXPHOS 

metabolism in vitro (i.e. dichloroacetate (DCA) treatment)154, one would treat the cells with 

IPH5301/IPH4201 and read out cytotoxicity towards TNBC cell lines in co-cultures with 

activated NK cells and T cells by flow cytometry (Fig. 4.1).155 This experiment would result in the 

cytotoxic levels of T and NK cells towards four different conditions: (1) Untreated cells (DCA-

IPH-), (2) OXPHOS-enhanced cells (DCA+IPH-), (3) antibody-treated control cells (DCA-IPH+), 

and (4) antibody-treated, OXPHOS-enhanced cells (DCA+IPH+) (Fig. 4.1). If increased ATP 

production through enhanced OXPHOS activity in metastases results in inhibition of NK and T 

cell cytotoxicity in a CD73/CD39 dependent manner, there should be a significant increase in 

cytotoxicity between conditions 2 and 4 (Fig. 4.1). Alternatively, it is possible that there is no 

difference between these groups, suggesting that the activity of CD73/CD39 may not be a 

tumor-cell intrinsic factor, but rather a microenvironmental factor. This second point cannot be 

validated by this in vitro set-up, and thus would require performing a similar experimental 

approach in vivo (as the IPH antibodies have been demonstrated to reach effective 

concentrations in vivo153). By using the in vivo model, the effects of stromal cells (which have 

been demonstrated to express CD39/CD73152) can be included.  

Additionally, increased mtROS produced by ETC activity may be converted to H2O2 and 

similarly accumulate in the extracellular space, in turn inhibiting T cell function.156 The primary 

ROS produced by OXPHOS, superoxide, has also been demonstrated to promote motility of 

tumor cells in a mtSRC/PYK2 dependent manner.138 This leads the hypothesis that increased 

mtROS production is required for enhanced metastatic seeding capacity. This can be 

determined experimentally by isolating cells based on their levels of mtROS using mitoSOX, a 

mitochondrially-targeted dye which fluoresces in the presence of superoxide and has been used 

extensively to study mtROS levels in cells.157 These cells can then be introduced I.V. into mice 
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Figure 4.1 Experimental scheme to test the contribution of CD39/CD73 towards enhanced metastatic 
potential. Treatment of cells with dichloroacetate (DCA) promotes OXPHOS metabolism by inhibiting PDK and 
fostering mitochondrial oxidation of pyruvate. To distinguish tumor cell viability and apoptosis from the co-culture 
with NK/T cells, CellTracker Violet (CTV) is used to label tumor cells fluorescently prior to the cytotoxicity assay.  
Addition of IPH5301 and IPH4201 (IPH) preferentially inhibits CD39/CD73 activity in culture. Viability of the TNBC 
cell line is determined by PI and Annexin V staining, with increasing cell death occurring with increasing NK/T cell 
(effector, E) to TNBC cell line (target, T) ratio. 
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and their ability to form micrometastases can be determined by flow cytometry (Fig. 4.2a).  

Interestingly, previous studies exploring the gene expression differences between primary tumor 

cells, CTCs, and advanced macrometastasis found similar bioenergetic shift towards OXPHOS 

metabolism in CTCs.136 Expectedly, they saw an upregulation in glycolysis within the primary 

tumor, but somewhat surprisingly, they found a reversion to a glycolytic phenotype in 

macrometastasis. Combined with my findings, this results in a cyclic model of metabolic 

phenotypes as tumor cells transition from local to circulation to seeding to colonization, 

suggesting that different metabolic adaptations are critical a differential stages of the metastatic 

cascade. Given the previous studies demonstrating a role for ROS in promoting migration138, it 

is logical to hypothesize that the mtROS generated by enhanced OXPHOS activity in 

micrometastases is required for efficient metastatic seeding, but is be dispensable for metastatic 

colonization. This can be determined experimentally by assaying the levels of ROS in a 

controlled, temporally separated experimental metastasis model (Fig. 4.2b).  

Lastly, studies have been published demonstrating a key link between the metabolic 

behavior of tumor cells and immunomodulatory effects on cytotoxic cells, such as CD8 T cells, 

which in turn links back the previous hypothesis regarding CD39/CD73.158,159 It will be important 

to further explore mechanisms of dysregulation of immune responses resulting the bioenergetic 

shift present in micrometastatic cells to better develop treatment options which enhance the 

immune system’s ability to recognize and clear these micrometastatic lesions before the 

develop into lethal macrometastatic disease.  
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Figure 4.2 Experimental schemes to test the contribution of mtROS production towards enhanced 
metastatic potential. a, Experimental scheme to test whether increased mtROS levels confer a functional 
advantage towards metastatic seeding. Following culture of 4T1 cells in vitro, individual cells are sorted by FACS 
based on their levels of mitoSOX, a mitochondrially-targeted fluorescent probe for superoxide species. 1x105 cells 
are injected intravenously (I.V.) into BALB/c mice (n=5 per group) and allowed to seed and establish 
micrometastases (5 days). The levels of metastatic burden in the lungs are determined by the frequency of GFP+ 
cells. b, Experimental scheme to test whether mtROS levels decrease from seeding to colonization during 
metastasis. Equal numbers of 4T1-GFP cells (n=1x105 cells) are injected I.V. into BALB/c mice (n=5 per group) 
and allowed to form either micrometastases (5 days) or macrometastases (21 days). The levels of mtROS in each 
group is quantified by flow cytometry using mitoSOX. 
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