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On Structure, Dynamics, and Adaptivity for Biological and Mental Processes: 

a Higher-Order Adaptive Dynamical System Modeling Perspective 

Jan Treur 
Vrije Universiteit Amsterdam, Social AI Group, Netherlands, j.treur@vu.nl 

 

Abstract 

To conceptualise biological and mental processes, often a 
dynamical systems perspective is suggested. In addition to 
dynamics, the structure of the contextual makeup or world 
configuration (of an organism or brain) plays a crucial role too, 
as well as adaptivity of the processes. This paper provides a 
conceptual perspective where the structure, dynamics, and 
adaptivity of these processes are distinguished and related to 
each other via adaptive dynamical systems. Moreover, it is 
shown how networks can be used to represent this conceptual 
perspective. Here an adaptive dynamical system of any order 
of adaptivity can be covered where any level can exert control 
over the level below. The approach is illustrated by case studies 
for higher-order adaptive evolutionary processes. One of these 
case studies shows a fifth-order adaptive dynamical system that 
models how due to bad environmental influences at a young 
age, epigenetic effects can lead to a lifelong mental disorder. 

Keywords: structure and dynamics; dynamical system; 
higher-order adaptivity; self-modeling networks.  

Introduction 

Biological or mental processes are often considered to form 

complex dynamical systems, e.g., (Ashby, 1960; Port and 

Van Gelder, 1995). Within the literature, such dynamical 

systems and their processes are sometimes described by 

indicating what are called pathways, which roughly spoken 

can be considered as chains of causal mechanisms. On the 

one hand, pathways are based on the structure of the 

contextual world configuration, for example, parts of the 

physical or physiological makeup of an organism or of a brain 

and the causal relations or mechanisms it enables. On the 

other hand, due to this structure, pathways induce dynamics 

where states earlier in a pathway influence states further on 

in the pathway. From a philosophy of science perspective, it 

has been analysed that the importance of the role of the 

underlying structure makes that explanations only based on 

general laws do not work well for psychological and 

biological sciences. Instead, alternatives have been proposed 

giving structure a prominent role, for example, based on 

concepts such as physical or physiological ‘makeup’ (Treur, 

2008; Treur, 2011) or ‘mechanisms’ (Bechtel, 2009; Bechtel, 

2011; Bechtel and Abrahamsen, 2005). 

Besides the two views on mental or biological processes or 

pathways from a structure perspective and from a dynamics 

perspective, also adaptivity often occurs. For example, for 

mental pathways, adaptive changes in pathway structures can 

occur due to other mental pathways that make learning 

happen. For biological pathways, adaptivity of pathway 

structures can also be based on other pathways for learning 

or improving skills, but as well by pathways for impacts from 

biological processes related to epigenetics and gene 

expression affecting the base pathway structures. The 

pathways for adaptation of other pathways have their own 

structure and dynamics and can also be adaptive themselves, 

which creates a form of recursion that enables higher-order 

adaptivity, realised by still other pathways.  

In this paper, it will be shown how these concepts of 

structure, dynamics, and adaptivity of biological and mental 

processes can be distinguished and related, and how higher-

order adaptive dynamical systems can successfully be used to 

obtain explanations and models based on them. The 

introduced perspective will be illustrated for a few examples 

of adaptive mental and biological processes.  

In (Treur, 2020abc) it has been introduced and elaborated 

how self-modeling networks (also called reified networks) 

can be used to model multi-order adaptive biological, mental, 

and social processes in a convenient manner. Such networks 

use nodes for specific network states (called self-model 

states) to represent some of their own network characteristics, 

thus enabling them to change over time. In this paper, it will 

also be discussed how the structure of a pathway can be 

described by a network structure, the dynamics of the 

pathway by the network’s dynamics, and adaptivity of the 

pathway by the network’s adaptivity. Conceptualisation by 

networks (sometimes called circuits) can also be found in 

biological literature such as (Alon, 2019; Alon, 2023; 

Westerhoff et al, 2014a; Westerhoff et al, 2014b). Following 

(Hendrikse, Treur, Koole, 2024; Treur, 2021), it will be 

pointed out here that any smooth (higher-order) adaptive 

dynamical system can be described by its canonical (higher-

order) self-modeling network representation. Therefore, 

using networks to describe higher-order adaptive dynamical 

systems is universal: it does not introduce any fundamental 

limitation.  

Structure, Dynamics, and Adaptivity 

As discussed above, the structure of a process or pathway can 

be considered as the contextual world configuration that 

enables its dynamics, for example, parts of the physiological 

structure of an organism or of a brain. As a metaphor, the 

structure of a pathway can be visualised as a river bed in a 

landscape and its dynamics as the river’s water flow induced 

by this river bed. The river metaphor is used to distinguish 

beween structure and dynamics and their relation; see the 

lower part in the upper half of Fig. 1. Note that dynamics 

usually is conditional with respect to some situational 

4283
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



conditions other than the pathway structure. In the river 

metaphor, some of such situational conditions concern that 

rain has fallen and that the water is not frozen. Another 

example of structure and dynamics of pathways for mental or 

neural proceses is propagation of activation of mental states 

or of neurons or areas in the brain; see the lower part in the 

lower half of Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Two illustrations of pathway adaptation pathways:  

one for the river metaphor with erosion (upper part) and one 

for neural processing and brain plasticity (lower part) 
 

In realistic examples, pathway structures often show 

adaptivity over time. For the river metaphor, this can for 

example take place by another pathway: by erosion of the 

landscape, the river bed is reshaped or reconfigured over 

time. This change in pathway structure in turn will also 

change the pathway dynamics of the flow of the river. 

Conceptually, this erosion pathway works as a pathway for 

adaptation of another pathway (a pathway adaptation 

pathway, for short); its dynamics brings about a change in the 

other pathway’s structure (the river bed) which in turn will 

also change that pathway’s dynamics (the river flow). For 

mental pathways, such adaptive changes in pathway structure 

can for example occur due to mental pathway adaptation 

pathways that make learning happen, for example, by 

strengthening connections (via synapses) based on Hebbian 

learning (Hebb, 1949). For biological pathways, adaptivity of 

pathway structures can also be based on biological pathway 

adaptation pathways for learning or improving certain skills 

by exercising, and as well by pathways for impacts from other 

biological processes such as transcription of genes affecting 

(via their related mRNA and enzymes) the considered 

pathway structures. Via epigenetic influences such processes 

can be dependent on the environmental context (Nigg, 2023).  

As any pathway, a pathway adaptation pathway has its own 

structure and dynamics, as shown in Fig. 1 for the river 

metaphor (upper half) and for neural processes (lower half). 

Also in this case, its dynamics is affected by its structure 

(indicated by the blue horizontal arrow in the upper part of 

each of the two halfs in Fig. 1) but can also have influences 

from the base pathway dynamics as indicated by the blue 

upward arrows in Fig. 1. This upward blue arrow indicates,  

for example, that the strength of the flow of a river often will 

affect the erosion process of the river bed too. 

An illustration for the case of neural processing and brain 

plasticity can be found in the lower half of Fig. 1. In this case, 

the upper part describes the structure and dynamics of the 

pathway for plasticity of the network of neurons, for example, 

the pathway based on the mechanisms of Hebbian learning 

that can strengthen connections. Here, the blue upward arrow 

indicates that this adaptation process depends also on the 

activation levels of the connected neurons. 

Pathways for adaptation of other pathways can also be 

adaptive themselves; this creates second-order adaptivity of 

pathways. Such second-order adaptivity is realised by still 

other pathways. Moreover, this conceptualisation can be 

repeated for an arbitrary number of adaptation orders or 

levels; this creates a form of recursion that makes higher-

order adaptivity. The case of second-order adaptive pathways 

is illustrated in Fig. 2 again for the two examples addressed 

in Fig. 1: for the river metaphor and for neural processing.  

For the river metaphor, second-order pathway adaptivity 

occurs when measures are taken to control (modulate or 

block) erosion; see the upper half of Fig. 2 for the river 

metaphor. For example, this often takes place when a river 

goes through a city where a river bed that continuously 

changes its position is highly undesirable. By adding solid 

material to the river bed, erosion can then be minimised or 

even (almost) completely blocked. Usually such measures are 

taken with higher priority when more erosion is observed, 

which is indicated by the upward blue arrow from first-order 

pathway adaptation pathway dynamics to second-order 

pathway adaptation pathway dynamics. 

For a conceptualisation of second-order adaptivity for 

neural processes in particular, see the lower half of Fig. 2, 

which illustrates the concepts for neuroscience. This second-

order adaptation level can be used to make the first-order 

adaptation context-sensitive as for neuroscience is addressed 

by the metaplasticity literature such as (Abraham and Bear, 

1996; Robinson et al, 2016; Sjöström et al, 2008). For 

example, the ‘Plasticity Versus Stability Conundrum’ in 

neuroscience (Sjöström et al, 2008) can be conceptualised 

and modelled in this way by applying context-sensitive 

control to the pathway adaptation pathway for plasticity of 

the brain. At that adaptivity control level, it can be specified 

under which contextual circumstances plasticity should have 

priority and under which stability. Also the more specific 

metaplasticity principle ‘Adaptation accelerates with 

Base pathway structure: 

brain, neural network 
Base pathway dynamics: 

activations of neurons 

Pathway adaptation 

pathway structure:  

for brain plasticity 

Pathway adaptation 

pathway dynamics:  
for brain plasticity 

Base pathway structure: 

river bed 
Base pathway dynamics: 

river flow 

Pathway adaptation 
pathway structure:  

for river bed erosion 

Pathway adaptation 
pathway dynamics:  

for river bed erosion 
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increasing stimulus exposure’ from neuroscience as 

formulated by (Robinson et al, 2016) can be conceptualised 

and modelled in this way: for example by introducing 

adaptive first-order adaptation speed at that adaptivity control 

level and specifying under which circumstances that 

adaptation speed should be high and under which low. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Two illustrations of second-order pathway 

adaptation pathways: one for the river metaphor with erosion 

and control of erosion (upper part) and one for neural 

processing, brain plasticity, and metaplasticity to control 

plasticity (lower part). 

Modeling Adaptive Dynamical Systems  

by Self-Modeling Networks 

Up till now, it was pointed out how conceptually from a 

higher-order adaptive dynamical systems perspective the 

structure, dynamics and adaptivity of biological and mental 

pathways or processes can be analysed and modeled. 

However, no detailed formalisation or modeling format for 

such a dynamical system was discussed. In this section, it will 

be explained how such higher-order adaptive dynamical 

systems can be described by higher-order adaptive (self-

modeling) network representations. Here, the structure of a 

pathway corresponds to a subnetwork or path within a 

network structure, the induced dynamics of the pathway 

corresponds to the network’s dynamics, and adaptivity of the 

pathway to the network’s adaptivity. 

Following (Treur, 2020abc), a temporal-causal network 

model uses nodes X and Y, also called states, with real number 

activation values X(t) and Y(t) over time t and network 

structure defined by the following network characteristics. 

Connectivity characteristics: connections from a state X to a 

state Y and their weights X,Y. Aggregation characteristics: for 

any state Y, a combination function cY(..) defines the 

aggregation that is applied to the impacts X,YX(t) on Y from 

its incoming connections from states X. Timing 

characteristics:  Each state Y has a speed factor Y defining 

how fast it changes for given aggregated causal impact. 

Based on the network structure defined above, the 

following canonical difference (or equivalent differential 

equations) define the network’s dynamics, incorporating 

these network characteristics ωX,Y, cY(..) and ηY in this 

standard numerical format (1): 
𝑌(𝑡 + 𝑡) =  𝑌(𝑡) + 

𝑌
[𝐜𝑌(𝑋1,𝑌𝑋1(𝑡), … ,𝑋𝑘,𝑌𝑋𝑘(𝑡))  −  𝑌(𝑡)] 𝑡     

for any state Y and where 𝑋1 to 𝑋𝑘  are the states from which 

Y gets its incoming connections. The software environment 

described in (Treur, 2020a, Ch. 9), includes a combination 

function library with for example this logistic function (2): 

alogisticσ,τ(V1, …,Vk) = [
1

1+e−𝛔(𝑉1+⋯+𝑉𝑘−𝛕)
 −

1

1+e𝛔𝛕](1+e-στ)   

Here the variables Vi are used for the single impacts 

𝑋𝑖,𝑌𝑋𝑖(𝑡),  is a steepness parameter and  an excitability 

threshold parameter. This software environment and its 

documentation can be downloaded via 

https://www.researchgate.net/publication/368775720 

https://www.researchgate.net/publication/369596699 

https://www.researchgate.net/publication/368776149 

To model adaptive dynamical systems, adaptive network 

models can be used: then not only a network’s state activation 

levels but also some of the network structure characteristics 

can change over time. By using a self-modelling network 

(also called a reified network), a network-oriented 

conceptualization can also be applied to adaptive networks; 

see (Treur, 2020abc). This can be done through the addition 

of new states to the network (called self-model or reification 

states) which represent (adaptive) network characteristics. By 

changing the activation values of such self-model states over 

time, the corresponding network characteristics become 

adaptive. In a graphical 3D-format such additional states are 

depicted at a next level (called self-model level or reification 

level), where the original network is at the base level. As an 

example, the weight ωX,Y of a connection from state X to state 

Y can be represented (at a next self-model level) by a self-

model state named WX,Y. In this way, for example, Hebbian 

learning (Hebb, 1949) can be modelled, sometimes 

formulated simply by ‘Neurons that fire together, wire 

together’ (Shatz, 1992). In such a case, in equations (1), for 

the connectivity characteristics 𝑋𝑖,𝑌 the values 𝐖𝑋𝑖,𝑌(𝑡) are 

used (3): 

Base pathway structure: 

brain neural network  

Base pathway dynamics: 

activations of  neurons 

First-order pathway adaptation 

pathway structure:  

for brain plasticity 

First-order pathway adaptation 

pathway dynamics:  

for brain plasticity  

Second-order pathway adaptation 

pathway structure:  

for brain metaplasticity 

Second-order pathway adaptation 

pathway dynamics:  

for brain metaplasticity  

Base pathway structure: 

river bed  

Base pathway dynamics: 

river flow 

First-order pathway adaptation 

pathway structure:  

for river bed erosion 

First-order pathway adaptation 

pathway dynamics:  

for river bed erosion 

Second-order pathway adaptation 

pathway structure:  

for erosion modulation  

Second-order pathway adaptation 

pathway dynamics:  

for erosion modulation 
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𝑌(𝑡 + 𝑡) = 𝑌(𝑡) + 

𝑌([𝐜𝑌(𝐖𝑋1,𝑌(𝑡)𝑋1(𝑡), … , 𝐖𝑋𝑘,𝑌(𝑡)𝑋𝑘(𝑡)) −  𝑌(𝑡)] 𝑡          
𝑑𝑌(𝑡)/𝑑𝑡 = 𝑌[𝐜𝑌(𝐖𝑋1,𝑌(𝑡)𝑋1(𝑡), … , 𝐖𝑋𝑘,𝑌(𝑡)𝑋𝑘(𝑡)) −  𝑌(𝑡)]       

In such a way, any of the network characteristics ωX,Y, cY(..), 

ηY can be made adaptive by including self-model states for it. 

These self-model states are handled in the same way as other 

states, so they have their own network characteristics and for 

their dynamics canonical equations (1) are applied to them as 

well. In Table 1, an overview is shown of the concepts used 

to define network structure, network dynamics and network 

adaptivity and their formalisation as discussed in this section. 
 

Table 1: Network structure, dynamics and adaptivity: 

concepts and their formalisation. 
 

 Concepts Formalisation 

Network 

structure 

States 

Network characteristics 

▪ connectivity 

▪ aggregation 

▪ timing 

X and Y and connections between them 

ωX,Y, cY(..), ηY 

▪ real numbers for connection weights: ωX,Y 

▪ mathematical functions: cY 

▪ real numbers for speed factors: ηY 

Network 

dynamics 

Canonical difference or 

differential equation for 

state values over time 

𝑌(𝑡 + 𝑡) =  𝑌(𝑡) +


𝑌

[𝐜𝑌(𝑋1,𝑌𝑋1(𝑡), … ,𝑋𝑘 ,𝑌𝑋𝑘(𝑡))  −  𝑌(𝑡)] 𝑡      

𝑑𝑌(𝑡)

𝑑𝑡
= 

𝑌
[𝐜𝑌(𝑋1,𝑌𝑋1(𝑡), … ,𝑋𝑘 ,𝑌𝑋𝑘(𝑡))  

−  𝑌(𝑡)]  

Network 

adaptivity 

Canonical difference or 

differential equation 

using adaptive network 

characteristics 

𝑌(𝑡 + 𝑡) =  𝑌(𝑡) +

𝐇𝑌(𝑡)[𝐜𝑌(𝐖𝑋1,𝑌(𝑡)𝑋1(𝑡), … , 𝐖𝑋𝑘 ,𝑌(𝑡)𝑋𝑘(𝑡))  −

 𝑌(𝑡)] 𝑡      
𝑑𝑌(𝑡)

𝑑𝑡
=

𝐇𝑌(𝑡)[𝐜𝑌(𝐖𝑋1,𝑌(𝑡)𝑋1(𝑡), … , 𝐖𝑋𝑘 ,𝑌(𝑡)𝑋𝑘(𝑡))  −

 𝑌(𝑡)]       

 

As the outcome of a process of network self-modeling 

results also in a temporal-causal network model itself (Treur, 

2020b, Ch 10), this self-modelling network construction can 

easily be applied iteratively to obtain multiple orders of self-

models at multiple (first-order, second-order, …) self-model 

levels. For example, a second-order self-model may include 

a second-order self-model state Wc,WX,Y representing the 

adaptive connection weight c,WX,Y of a connection from 

context state c to WX,Y which in turn represents the adaptive 

connection weight ωX,Y. This second-order adaptation level 

can be used to control the (first-order) adaptation in a context-

sensitive manner as addressed by the metaplasticity literature 

such as (Abraham and Bear, 1996; Robinson et al, 2016; 

Sjöström et al, 2008).  

Any smooth dynamical system has a canonical 

representation as a network and any smooth (multi-order) 

adaptive dynamical system has a canonical representation as 

a (multi-order) self-modeling network, as is shown in (Treur, 

2021a; Hendrikse et al, 2023). Therefore, compared to 

adaptive dynamical systems in general, the network-oriented 

modeling approach used does not introduce any fundamental 

limitations concerning what it can model. This has also been 

confirmed by applications in practice, e.g., (Treur and Van 

Ments, 2022; Canbaloğlu et al, 2023; Hendrikse, et al, 2024). 

In next section, it is discussed how the network-oriented 

perspective on conceptualisation and formalisation of 

adaptive dynamical systems can be used to formalise and 

model the structure, dynamics and adaptivity of pathways and 

their relations as discussed earlier. 

Using Self-Modeling Networks to Model  

Structure, Dynamics and Adaptivity 

For the second-order adaptivity case, the overall view of the 

mapping (indicated by the dashed lines) is displayed in Fig. 

3. At the base level, the structure of a pathway is described 

by a network structure and the dynamics of the pathway by 

this network’s dynamics. At the first-order pathway 

adaptation level, the pathway adaptation structure is 

described by a first-order self-model network structure and 

the pathway adaptation dynamics by the dynamics of this 

first-order self-model network. Similarly, at the second-order 

pathway adaptation level, the second-order pathway 

adaptation pathway structure is mapped on the second-order 

self-model network structure and the second-order pathway 

adaptation pathway dynamics by that second-order self-

model network’s dynamics. This can be generalised to an 

arbitrary number of adaptation levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3:  How structure, dynamics and adaptivity can be 

mapped onto self-modeling network concepts. 

Describing Evolutionary Processes by Adaptive 

Pathways for Multiple Control Levels 

Next, the mapping introduced in the previous section is 

illustrated for evolutionary processes as described within 

biology. Evolutionary adaptation often concerns affecting 

existing pathways by adding new pathways that change the 

structure of these existing pathways as a form of control, for 

example for upregulating or downregulating them. In this 

way, levels of control are created where the structure of a 

pathway at one level is changed (i.e., adapted) by the 

dynamics of a pathway at the next level, like in Fig. 2, but 

then with an arbitrary number of levels. Using a network 

representation, control of a pathway can be modeled, for 

example, by strengthening or weakening one or more 

connections within such a pathway’s structure. In a self-

Base pathway structure Base pathway dynamics 

First-order pathway 

adaptation structure 
First-order pathway 

adaptation dynamics 

Second-order pathway 

adaptation structure 

 

Second-order pathway 

adaptation dynamics 

 

Base network structure Base network dynamics 

First-order self-model 

network structure 

First-order self-model 

network dynamics 

Second-order self-model 

network structure 

 

Second-order self-model 

network dynamics 
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modeling network representation, self-model states at the 

next level can be used for this. In Fig. 4 an abstract example 

is shown of such a self-modeling network model for fourth-

order adaptivity of the type that can be found in evolutionary 

processes. Here, for the sake of simplicity, at each level the 

pathway structure is described by a context state representing 

that the necessary environment (makeup) is functional and a 

self-model state for the lower-level pathway connection plus 

a horizontal connection from the context state to this self-

model state. By this level’s dynamics, activation of this self-

model state in turn controls the connection one level lower.  

 

 
 

Figure 4: Self-modeling network structure for 4th-order 

adaptation in evolutionary processes via levels of control 

 

A similar self-modeling network model has been applied in 

(Treur, 2019) to model a case study of evolutionary processes 

from (Fessler et al., 2015), e.g., see 
‘Also of relevance here, one form of disgust, pathogen disgust, 

functions in part as a third-order adaptation, as disease-avoidance 

responses are up-regulated in a manner that compensates for the 

increases in vulnerability to pathogens that accompany pregnancy 

and preparation for implantation – changes that are themselves a 

second-order adaptation addressing the conflict between maternal 

immune defenses and the parasitic behavior of the half-foreign 

conceptus (Fessler, Eng & Navarrete, 2005; Jones et al., 2005; 

Fleischman & Fessler, 2011).’ (Fessler et al., 2015) 

This quote considers three levels of adaptation for the first 

trimester of pregnancy. But also considering the occurrence 

of pathogens a form of adaptation for the wider ecological 

context, pathways for the following four adaptation orders 

can be distinguished; via its dynamics, each of these 

adaptations controls the pathway of the previous adaptation: 
• First-order adaptation Pathogens occur, with pathways 

negatively modulate the existing pathways for good health. 

• Second-order adaptation An internal defense system occurs, 

with pathway negatively modulating the pathogens pathway. 

• Third-order adaptation For pregnancy, a pathway is added to 

downregulate the defense system’s pathway during the first 

trimester, thus protecting the half-foreign conceptus. 

• Fourth-order adaptation Disgust during first-trimester 

pregnancy adds a pathway to make the downregulation of the 

immune system less strong via the behavioural immune 

system: by disgust potential pathogens in the external world 

are avoided so that less risks are taken.  

This evolutionary perspective where the pathways of existing 

adaptations are conserved and only controlled or regulated by 

other pathways is in line with the idea of ‘frozen accidents’ 

or ‘frozen metabolic accidents’:  
‘There is historical evidence that it is hard to transition to a 

fundamentally different reaction network; life has not ever done it as 

far back as we have evidence. Evolutionary biologists might describe 

this phenomenon as a “frozen metabolic accident” (Leister, 2019; Shi, 

Bibby, Jiang, Irwin, Falkowski, 2005). (…) In short, once a 

(bio)chemical system begins to harbor multiple connected 

subsystems, it becomes essentially unalterable because a significant 

change would reverberate through all interconnected subsystems. This 

would be true for purely chemical complex reaction networks as well 

as for biological ones.’ (Preiner et al, 2020), p. 7710. 

For more literature about this concept and its relation to the 

‘metabolism-first’ hypothesis on the origin of life, see (Doig, 

2017; Ikehara, 2022; Koonin, 2017; Maury, 2018; 

Muchowska, et al, 2020).   

Modeling Adaptive Pathways Involving 

Genetics and Epigenetics 

A similar architecture based on a tower of control levels can 

be used to model how in a cell the expressed genes control 

what types of mRNA are produced, which is turn control 

which active enzymes are produced to change the 

physiological makeup of the organism which in turn affects 

the metabolism, see Fig. 5. In this section it is briefly 

discussed how aspects of genetics and also of epigenetics can 

be addressed from the perspective described here.  

First, to explore the role of genetics, consider the example 

of a biological network for E. coli, described in (Jonker et al, 

2008, Fig. 1 left hand side). This example describes on the 

one hand how bacteria generate and control their behaviour 

based on their genetical background, taking into account 

expressed genes, mRNA, and active enzymes and the related 

transcription and translation processes. For the general 

perspective on modelling the cell’s metabolic and life 

processes as biochemical networks, see also (Alon, 2019; 

Alon, 2023; Westerhoff et al, 2014a; 2014b). From the 

perspective of higher-order adaptation of pathways as 

considered here, the E. coli example can be modeled in a 

simplified, abstract way as shown in Fig. 5; here the term flux 

is used to indicate the base metabolism. 
 

 
 

Figure 5: Multiple levels of control for pathways in a cell 
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Horizontal arrows indicate the pathways within the different 

levels from the contextual world state ci for that level, for 

example for mRNA production (i=4) or enzyme production 

(i=3). Vertical arrows indicate control of the level below. 

In recent years, studying the role of epigenetics in mental 

and physical disorders has received more and more attention 

in the literature, e.g., (Cecil, Neumann, Walton, 2023; Cecil 

and Nigg, 2022; Nigg, 2023). As an extension of the model 

described in Fig. 5 incorporating genetics, a model covering 

epigenetics as well has been designed, following the 

perspective of (Nigg, 2023). An adaptive dynamical system 

model such as the one depicted in Fig. 6 explains and 

simulates the development of a mental disorder such as 

anxiety disorder, PTSD, and ASD, see also (David, Kalibala, 

Pichon, Treur, 2024; Gunjača, Samhan, Treur, 2024; 

Kathusing, Samhan, Treur, 2024). 

Here, for the pathway for the epigenetic effects to control 

expression of genes, one more adaptation level is added 

above the genetic level for expressed genes. This control of 

the expression of the relevant genes is influenced by 

environmental circumstances, which is modeled by the long 

blue upward arrows from base level to fifth-order self-model 

level. 

Figure 6: Multiple control levels up to fifth-order to model 

both genetic and epigenetic effects for the development of a 

mental disorder, illustrated for anxiety disorder. Adopted 

from (Kathusing et al, 2024). 

Discussion 

In this section it is discussed how the perspective based on 

structure, dynamics and adaptivity put forward here connects 

to some related topics in the literature. First, it already has 

been discussed above that the ‘frozen metabolic accident’ and 

the ‘metabolism-first’ hypothesis on the origin of life relate 

to the perspective discussed here (Preiner et al, 2020; Ralser, 

2018; Yarus, 2011; Doig, 2017; Ikehara, 2022; Koonin, 2003, 

2017; Maury, 2018; Muchowska, Varma, Moran, 2020). The 

idea is that  a complex chemical reaction network for base 

metabolism emerged first. Probably, naturally occurring 

catalysts were modulating this. On top of this chemical 

network, other structures later emerged. The ‘frozen 

metabolic accident’ hypothesis can explain how such 

pathways developed later on, do not change the existing 

pathways but add adaptation pathways on top of them to 

control them. The perspective addressing multiple levels of 

control as contributed by the current paper may provide a 

useful way to describe and analyse such structures developed 

via subsequent steps during evolution.  

Next, the general principle of temporal factorisation 

introduced in (Treur, 2007ab) postulates an important role for 

mediating states in dynamics. Such a mediating state 

indicates a structure in the present world or brain state which 

(1) emerges based on the earlier dynamics, and (2) in turn 

affects the later dynamics. This is in line with pictures like in 

Figs. 1 and 2, where the indicated structures on different 

levels indeed play a mediating role between earlier dynamics 

and later dynamics. In (Treur, 2021b, 2022) it has been shown 

how the more specific notion of criterial causation introduced 

in (Tse, 2013) to describe neural dynamics and plasticity is a 

special case of temporal factorisation, in this case applied to 

the brain: the criteria for criterial causation also form a 

specific structure (in the brain) that mediates between past 

and future dynamics. 

In recent work from the philosophical perspective based on 

mechanisms mentioned in the introduction, also the 

importance of different levels of control has been emphasized 

(Bechtel, 2022; Bich and Bechtel, 2022a; Bich and Bechtel, 

2022b). This provides support from the philosophical side for 

the perspective using multiple control levels discussed here. 

Not only hierarchical control levels but also heterarchical 

ones are considered in this literature. Also in the approach 

discussed here, control levels can be but do not need to be 

hierarchical. As an example, strange loops (Hofstadter, 1979, 

2006, 2007) are cyclic control level structures which have 

been shown to work well in (Treur, 2020b), Ch 8, pp. 186-

208, and (Anten, Earle, Treur, 2020). Within the area of 

Systems Biology such towers of control levels have been 

discussed too, for example, see (Hofmeyr and Westerhoff, 

2001; Bevilacqua, Wilkinson, Dimelow et al, 2008). 

Another related topic is the function–behavior–structure 

framework from design science (Bott and Mesmer, 2019, 

2023; Gero and Kannengiesser, 2004, 2014; Sanderson, 

Chaplin, Ratchev, 2019). In that case also a notion of function 

is added to the behavior-structure distinction that corresponds 

to our dynamics-structure distinction. 

Finally, the topic addressed here also relates to approaches 

to reasoning where reasoning steps make use of a world 

structure model. For example, in (Weyhrauch, 1980), 

socalled simulation structures and semantic attachments with 

them are used for this purpose. Other approaches of using 

world structure models in reasoning and its dynamics can be 

found in (Johnson-Laird, 1983; Leemans et al, 2002; Meyer 

and Treur, 2002; Treur, 1988, 1991; Treur and Willems, 

1994; Treur and Van Ments, 2022; Van Ments and Treur, 

2021). 
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