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Abstract

Prefrontal and Subcortical Dynamics of Value-Based Decision Making

by

Zuzanna Balewski

Doctor of Philosophy in Neuroscience

University of California, Berkeley

Professor Joni Wallis, Chair

The orbitofrontal cortex (OFC) is a region critical to value-based decision making. Previous
work from our lab showed that the neural population in OFC flip-flops between represent-
ing the available options while animals are deliberating between them. While these value
dynamics were predictive of subjects’ choices, they did not build toward the chosen option
preceding the choice. We hypothesised that a downstream region with connections to both
OFC and motor regions, for example the anterior cingulate cortex (ACC) or head of the
caudate nucleus (CdN), may be integrating over these OFC value dynamics, leading to the
choice. We recorded large neural populations simultaneously from OFC and each of these
regions while two monkeys used a bidrectional lever to select between pairs of pictures, each
associated with a unique probabilistic reward. In the ACC, we indeed observed a motor
preparation signal that was influenced by OFC value dynamics on individual trials. How-
ever, in the CdN we observed a rapid choice direction signal, locked to the start of the trial
instead of the motor response, that was independent of OFC value dynamics. Overall, our
results are consistent with parallel, rather than serial, processing underlying value-based
decision making.
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Chapter 1

Introduction

I am often faced with decisions that involve comparing disparate options. For example,
I may need to choose between eating breakfast and catching the bus to work; in the long
run, I may consider buying a car or just a louder alarm to help me wake up earlier. What
are the neural computations underlying these complex decisions?

The orbitofrontal cortex (OFC) is a region critical to this behavior. Patients with OFC
lesions are impaired in decision-making despite otherwise unaffected cognitive function (Es-
linger & Damasio, 1985; Szczepanski & Knight, 2014). Lesion and microstimulation studies
from rats and monkeys indicate that OFC is critical for learning the expected outcomes
associated with reward-predictive cues (Ballesta et al., 2020; Burke et al., 2008; Knudsen
& Wallis, 2020; Rudebeck & Murray, 2011), especially when new information needs to be
computed or integrated (Murray & Rudebeck, 2018; Stalnaker et al., 2015).

Historically, when only a handful of cells could be recorded at a time, the relationship
between behavior and neuronal responses was usually examined through trial-averaged firing
rates. Studies have shown that OFC neurons encode the value of the chosen options, typically
independent of sensory information like stimulus identity or motor movement required to
indicate the choice (Kennerley & Wallis, 2009; Padoa-Schioppa, 2011; Padoa-Schioppa &
Assad, 2006).

However, by only examining average neuronal responses aligned to task events (e.g.:
option presentation, motor movement), we may have been missing important dynamics in the
evolution of individual decisions. The cognitive processes underlying deliberative decisions
may vary from trial to trial, but are difficult to study directly because they are unobservable
from animals’ behavior alone (Wallis, 2018).

To tackle this problem, Rich and Wallis (2016) leveraged larger, simultaneously recorded
OFC populations to first find neural patterns corresponding to different value represen-
tations, then infer the single-trial dynamics through this value representation space while
monkeys deliberated between two available options. OFC value representations flip-flopped
between the available options in a unique pattern on each trial; the strength and duration of
these representations during the deliberative period was predictive of subjects’ choices and
response times. This serial representation of available options may reflect some deliberative
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comparison process.
Importantly, Rich and Wallis (2016) found that subjects’ choices could not be predicted

from OFC population responses immediately before or during choice execution. In other
words, the internal value representation did not build toward the chosen option preceding
the motor movement. They hypothesized that a downstream region may integrate over these
OFC value comparisons to drive the ultimate choice or motor output (Rich & Wallis, 2016;
Wallis, 2018), analogous to the noisy sensory information process observed in the lateral
interparietal area (Gold & Shadlen, 2001; Mazurek et al., 2003; Roitman & Shadlen, 2002)
in the visual system.

In this thesis, we set out to find such an integrator region. We looked for evidence that
a motor preparation signal was influenced by the simultaneous OFC value representation. If
such a relationship exists, we expected to find it in a region that is (1) anatomically connected
to both OFC and motor regions, and (2) critical to choice selection. We explored two such
candidate regions: the head of the caudate nucleus (CdN) and the anterior cingulate cortex
(ACC). Both regions are anatomically well-positioned for this role, with strong bidirectional
connections to OFC (CdN : Clarke et al., 2014; Ferry et al., 2000; Haber et al., 1995; ACC :
Barbas and Pandya, 1989; Carmichael and Price, 1996) and premotor or motor areas (CdN :
Inase et al., 1996; Takada et al., 2001, ACC : Dum and Strick, 1993; Morecraft et al., 2012;
Van Hoesen et al., 1993. Neurons in both regions encode value and direction information
(CdN : Grahn et al., 2008; Hori et al., 2020; Kawagoe et al., 1998; Lauwereyns et al., 2002;
ACC : Cai and Padoa-Schioppa, 2012; Hunt et al., 2018; Kennerley and Wallis, 2009; Luk
and Wallis, 2013). Finally, microstimulation of CdN can bias subjects toward a specific
reward-predictive cue (Nakamura & Hikosaka, 2006; Santacruz et al., 2017) and damage to
the ACC produces decision-making impairments (Camille et al., 2011; Kennerley & Walton,
2011; Kennerley et al., 2006).

We simultaneously recorded large populations of neurons from OFC and either CdN or
ACC while two monkeys viewed pairs of pictures and indicated their preferred option with
a lever. We examined single-trial population dynamics in all three regions, adapting the
approach from Rich and Wallis (2016). We found a motor preparation signal in ACC that
was indeed influenced by OFC value dynamics, consistent with the hypothesized downstream
integrator model. In contrast, the CdN choice direction signal was locked to fast, value-
guided saccades early in the trial, not the motor choice response. Additionally, this fast
direction signal was independent of OFC value dynamics, suggesting these regions reflect
parallel value processes in the brain.

Outline

Chapter 2, A model-based approach for targeted neurophysiology in the behaving non-
human primate, was previously published as Knudsen et al., 2019 and included here with
minor modifications. To obtain reliable single-trial signals required for the subsequent ex-
periments, we needed to collect large (∼100 cells) neural recordings simultaneously from
multiple brain regions. We developed a modular recording platform that allowed us to pre-
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cisely target brain regions of interest with multiple multi-channel probes (maximally 256
channels; Plexon: V- and K-probes) and could be easily 3D printed and assembled in-house.

Chapter 3, Fast and slow contributions to decision making in corticostriatal circuits, was
previously published as Balewski, 2022 and included here with minor modifications. We
observed a rapid, phasic signal in the head of the caudate nucleus (CdN) that predicted the
choice response and closely aligned with the subjects’ initial orienting eye movements. We
replicated the OFC value dynamics reported by Rich and Wallis (2016), but found no rela-
tionship with the rapid CdN direction response, suggesting these signals reflect independent
cognitive processes.

Chapter 4, Value dynamics in orbitofrontal cortex drive the choice response in anterior
cingulate cortex during decision-making. We observed a gradual increase in representational
strength of the choice direction in ACC preceding the motor movement. This motor prepa-
ration signal was biased in favor of the simultaneous OFC value representation, consistent
with integration over OFC value dynamics.
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Chapter 2

A model-based approach for targeted
neurophysiology in the behaving
non-human primate

Knudsen, Eric B., Balewski, Zuzanna Z., & Wallis, Joni D.

Acute neurophysiology in the behaving primate typically relies on traditional manu-
facturing approaches for the instrumentation necessary for recording. For example, our
previous approach consisted of distributing single microelectrodes in a fixed plane situated
over a circular patch of frontal cortex using conventionally-milled recording grids. With the
advent of robust, multisite linear probes, and the introduction of commercially-available,
high-resolution rapid prototyping systems, we have been able to improve upon traditional
approaches. Here, we report our methodology for producing flexible, magnetic resonance
informed recording platforms that allow us to precisely target brain structures of interest,
including those that would be unreachable using previous methods. We have increased our
single-session recording yields by an order of magnitude and recorded neural activity from
widely-distributed regions using only a single recording chamber. This approach speeds data
collection, reduces the damage done to neural tissue over the course of a single experiment,
and reduces the number of surgical procedures experienced by the animal.

2.1 Introduction

Deciphering how behavior arises from the combined activity of millions of neurons relies
on our ability to measure neural activity. Early studies used serial recordings of single
neurons to correlate firing rates and behavioral variables (Fuster, 1973; Niki & Watanabe,
1979). While the behavior of individual neurons is still a rich source of insight into behavior
(Hosokawa et al., 2013; Kennerley et al., 2011), it is increasingly clear that the collective
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dynamics emerging from neural populations can relate to behavior in ways not observable
at the level of individual neurons (Lara & Wallis, 2014; Mante et al., 2013; Rich & Wallis,
2016). Although chronically implanted arrays provide a means to collect multineuronal
datasets (Ganguly et al., 2011), acute neurophysiology remains a critical tool for studying
neural activity in relation to behavior in the head-fixed primate model. Acute recordings
allow a broad sampling of the neural environment from day to day, removing sampling bias
from analyses. Further, they also enable the study of circuit level activity over the scale of
tens of millimeters, and the testing of a many such hypotheses across several experiments
within a single subject.

As acute probe technology matures (Jun et al., 2017), parallel efforts are necessary to
optimize how these technologies are used (Baden et al., 2015; Chen et al., 2017; Patel et al.,
2014). Here we provide details of our own efforts to develop a system that allows us to
perform recordings from up to eight multisite (e.g. 16-32) commercially-available recording
probes. This system is fully customizable such that the number, location, and even individual
probe trajectories can be fully tailored to the recording target(s) of interest with precision
and repeatability. First, we describe the imaging pipeline we use to develop our anatomical
models. Next, we present the basic shuttle and tower designs that can be used in conjunction
with traditional planar grids. Third, we demonstrate how we build upon our initial designs
to both increase probe density and target distant (30 - 35 mm apart) brain regions within a
single recording chamber. Finally, we report neuronal yields from our ongoing experiments.

2.2 Methods

Segmenting MRIs for anatomical models

For each subject, we obtained anatomical images with resolution of 1 x 0.84 x 0.84
mm using a 3T Siemens TIM/Trio MRI scanner with a 2-channel receive-only head coil
(Fig. 2.1a). We manually traced regions of interest in the frontal lobe such as orbitofrontal
cortex (OFC), dorsolateral prefrontal cortex (dlPFC), and the striatum (STR) in Slicer3D
(Fedorov et al., 2012) using the Paxinos primate atlas (Paxinos et al., 2000) as a reference.
We used this neuroanatomical model in conjunction with a cranial model (Gray Matter
Research, Bozeman, MT) to position custom-fit polyether-ether-ketone (PEEK) (Mulliken
et al., 2015) unilateral acute recording chambers. Chambers were milled using traditional
approaches and surgically implanted over the left hemisphere in two subjects (C and V) and
the right hemisphere of one subject (T).

Initial design components

We previously performed acute recordings using 8 to 16 individually drivable single tung-
sten microelectrodes lowered bilaterally across two recording chambers (Kennerley et al.,
2011; Rich & Wallis, 2016). We have since transitioned to multisite linear probes (V/K-
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Figure 2.1: Probe microdrive components. (a) Cross-section of anatomical model with MRI slice
(subject C, coronal section 24 mm anterior to the interaural line) with cortical regions outlined. Chamber
profile in dark grey; accessible area in light grey. (b) Multisite linear probes (left: K-probe, right: V-probe)
with headstages and groundwires attached. K-probes have a 20◦ bend 8 mm above electrode shank. (c)
Rendering of single shuttle and drive screw. Green shows track for electrodes. (d) Render (left) and photo
(right) of 3 drives assembled into a linear tower and placed on a planar grid (clear). Hypodermic needles
serve as guide tubes.

probes, Plexon Inc., Dallas, Tx; Fig. 2.1b) configured with 16 or 32 recording sites spaced
100 µm apart. There are two primary challenges to using these probes for high channel
count neurophysiology (i.e. 3+ within one brain area). First, whereas metal microelectrodes
are solid and can bend to some degree, allowing drives to be angled outwards to increase
density (Patel et al., 2014), multisite probes are hollow, making it critical to insert them
orthogonal to the plane of entry to prevent probe damage. Second, standard microelectrodes
use a single pin connection to route neural signals to an electrode interface board where a
headstage connects, allowing for relatively close (1.5 - 2 mm) spacing of electrodes. The
multisite probes interface directly with the headstage, increasing the footprint of a single
probe to roughly 11 by 3 mm.

To work within these constraints, we set out to design a modular system that could (1)
actuate a probe with a similar precision to our old system (i.e. 1 mm = 3 turns), (2) provide
a stable platform for recordings from multiple probes deep within the brain for up to two
hours, (3) be modular such that blocks could be reconfigured to cover the breadth of brain
available within the craniotomy, and (4) be 3D-printable for rapid and flexible production.
To achieve (1), we designed (SolidWorks, Dassault Systèmes, Vélizy-Villacoublay, France)
a new shuttle that adds a long vertical arm capable of supporting the length of the thicker
hypodermic tubing, which supports the probe shank, at the connector-adjacent end, and
secured with a set screw (Fig. 2.1c). The shuttle interfaces with an 0-80 drive screw that
achieves 330 µm/turn resolution. This drive assembly is slotted into a tower (Fig. 2.1d)
that keeps each drive stabilized via a retaining cap. In the tower shown, we record from
3 probes spaced at 3 mm between probes, at depths of up to 16 - 20 mm (with V probes,
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Figure 2.2: Grid arrangements. (a) Linear dense interleaved grid in coronal profile; inset shows side
view. (b) High density grid. One shuttle, screw, and cap shown for clarify. Green tracks show electrode
trajectories. Grid footprint slots into mating collar that is mounted onto chamber. (c) Hippocampal grid
render; inset shows photo of assembled system.

> 40 mm with K-probes) from the cortical surface (Fig. 2.1d, green tracks). The tower
assembly is then positioned on a planar grid according to experimental needs (Fig 1d, right,
750 µm resolution shown). Each designed component was printed in-house using the Form
2 stereolithographic (SLA) printer (Form Labs, Cambridge, MA).

Increasing probe density

The size of the neural population we can record simultaneously is constrained by the den-
sity with which we can arrange the electrodes. For example, the closest possible spacing of 6
electrodes using our initial design is either a linear arrangement within a single tower span-
ning 15 mm, or split across two towers, covering a 6 x 5.25 mm area. These configurations
are inadequate for lowering a large number of probes into a single target region.

One strategy to increase density is to decrease the inline spacing between electrodes. We
achieve this by angling opposing towers such that their trajectories cross at the target region
as shown in Fig. 2.2a. Here, we offset one tower 1.5 mm in front of the other and tilt its base
by 10° medially, resulting in approximately 1.5 mm spacing between 6 electrodes lowered to
OFC, effectively halving the recording area.

A second strategy we are currently piloting is to increase the density per square area of
tissue (Fig. 2.2b). This design will enable us to lower 8 multisite probes within a roughly
2.5 x 2.5 mm area, a comparable footprint to conventional silicon arrays (e.g. Utah array).
In order to lower 8 probes in such close proximity, we require a new shuttle design in which
the electrode track is offset 12 mm from the microdrive screw. This necessitates extra
stabilization, achieved using a nonconductive carbon fiber rod. Due to the extra space
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OFC (n = 63) STR (n = 72)

Figure 2.3: Example neurons. Average waveforms for well-isolated single units from six probes lowered
to OFC (cyan) and striatum (purple; subject V).

required by the elongated shuttles, we developed an adaptor (“collar”) that mates with the
recording chamber, accommodating the larger footprint required by the 8 electrode towers.

Targeting distant brain regions

The custom-designed shuttles provide much greater flexibility with respect to the tra-
jectory with which the probe enters the brain. This is useful for targeting regions around
the craniotomy that would be otherwise unreachable with a direct approach. In addition,
tailoring individual probe trajectories ensures we can enter cortex perpendicular to the cor-
tical layers, improving our ability to study cortical layer-specific computations (Bastos et
al., 2018). Finally, we can target brain regions separated by relatively large distances (30
mm), as shown in Fig. 2.2c. In one subject we performed simultaneous recordings from
OFC in the frontal lobe and the hippocampus in the temporal lobe from a single chamber,
a first in the behaving primate. Other studies have recorded from hippocampus and other
prefrontal structures (e.g. lateral PFC), but did so through multiple recording chambers
(Brincat & Miller, 2015) approach is straightforward: start and end locations of the desired
track are specified via the MRI anatomical model, from which the necessary AP and ML
angles are back calculated and translated into a blank recording grid template. The footprint
for the tower is laid down around the tracks and either printed as a single piece (Fig.2.2a)
or modularly (Fig. 2.2c).
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2.3 Results

Fig. 2.3 shows an example yield of neurons simultaneously recorded from OFC and the
striatum. Here we used six probes in the standard probe/tower configuration (Fig. 1). On
average, we recorded approximately 1 - 1.5 well isolated single units per recording site during
the first several insertions (mean ± s.e.m. units per 16-channel probe; subject V: 16 ± 1.6,
subject C: 15± 1.6, subject T: 15± 1.8). Although we are still piloting our 8-probe within-
region system, using the other systems highlighted in this report, we have yielded 100+ unit
counts within the frontal lobe in multiple sessions; we anticipate that lowering 8 32-channel
probes into cortex (256 channels) will yield upwards of 200 neurons within a single region
based on current data.

2.4 Discussion

We outlined a general approach to recording increasingly large ensembles of neurons in
the behaving non-human primate. Starting with anatomical scans, we model brain regions
of interest in order to localize a form fitting chamber. Once implanted, we have the option to
use generic planar grids combined with modular multi-probe shuttle and tower groups. To
increase density of recording, we can interleave probes along a single axis, or cluster several
probes in close proximity by increasing the effective footprint of our recording chamber. To
record from distant brain regions simultaneously, we use our models to generate a number
of different trajectories that can be easily printed using commercially-available 3D printing
techniques.

There are several advantages to our approach over those reported by others (Jun et al.,
2017) and options developed by commercial suppliers of multisite linear probes (Plexon,
NeuroNexus, etc.). First, that we know of, our approach is the only one that enables high
density, high channel count (>100 channel) electrophysiology in deep structures of the pri-
mate brain. Orbitofrontal cortex sits at the base of the frontal lobe superior to the eye
orbits, approximately 15 mm below the cortical surface, as does much of the striatum; hip-
pocampus in primates is located about twice as deep at 30 mm. Thus, as investigators begin
to hypothesize about the network properties of large populations of neurons in these deep
regions, it is critical that they be able to collect the data. Unlike surface recordings, these
regions cannot be accessed through high channel count chronic arrays.

The next advantage to our approach is the decreased insertion to yield ratio. To collect
data from 100 neurons with our approach requires 5-6 probe insertions, while yielding the
same with conventional microelectrodes would optimistically require 30-50 insertions (assum-
ing 2-3 units per electrode). Not only do we benefit from collecting the data simultaneously,
allowing for a more diverse set of analyses (Rich & Wallis, 2016), the damage done to the
neural tissue is drastically reduced. This increases the amount of data that can be collected
from a single subject thereby reducing the number of subjects needed. Finally, the flexibility
our approach affords allows us to implant and maintain only a single unilateral recording
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chamber. Our previous work (Hosokawa et al., 2013; Kennerley et al., 2011; Lara & Wallis,
2014; Mante et al., 2013; Rich & Wallis, 2016) relied on bilateral recording chambers to
increase yields (16-20 neurons maximum); by switching to a single implant, we reduce the
maintenance requirements of the sterile environment inside the chamber(s), and reduce the
likelihood that either chamber gets infected, necessitating a removal of both.

Rapid prototyping technology has enabled a quiet revolution in neuroscience (Baden et
al., 2015; Chen et al., 2017; Freedman et al., 2016; Headley et al., 2015; Kloosterman et al.,
2009; Patel et al., 2014). Combined with medical imaging and computer aided design, much
of the guesswork that previously dictated the precision of neurophysiological experimenta-
tion has been eliminated. While recording technology continues to advance (10), it is only
natural that new pipelines are developed. Our flexible approach has allowed us to reliably
improve single neuron yields compared to our previous work. This ability allows us to test
new hypotheses about both population-level dynamics of prefrontal cortex (Lara & Wallis,
2014; Rich & Wallis, 2016) and how PFC interacts with far reaching regions as part of the
larger network, all while reducing damage to neural tissue caused by repeated microelectrode
insertions.

We presented here one methodological approach to using multiple commercially-available
linear multisite recording probes for acute primate neurophysiology. Our approach combines
MR imaging, computer aided design, and rapid prototyping techniques to enable precisely-
targeted high channel count distributed and concentrated neural recording.
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Chapter 3

Fast and slow contributions to
decision making in corticostriatal
circuits

Balewski, Zuzanna Z., Knudsen, Eric B. & Wallis, Joni D.

We make complex decisions using both fast judgements and slower, more deliberative rea-
soning. For example, during value-based decision-making, animals make rapid value-guided
orienting eye movements after stimulus presentation that bias the upcoming decision. The
neural mechanisms underlying these processes remain unclear. To address this, we recorded
from the caudate nucleus and orbitofrontal cortex while animals made value-guided decisions.
Using population-level decoding, we found a rapid, phasic signal in caudate that predicted
the choice response and closely aligned with animals’ initial orienting eye movements. In
contrast, the dynamics in orbitofrontal cortex were more consistent with a deliberative sys-
tem serially representing the value of each available option. The phasic caudate value signal
and the deliberative orbitofrontal value signal were largely independent from each other,
consistent with value-guided orienting and value-guided decision-making being independent
processes.

3.1 Introduction

To navigate complex decisions, we rely on a combination of fast, autonomous intuitions
and slower, deliberative judgements (Evans & Stanovich, 2013; Kahneman, 2011). Recent
studies have begun to highlight a complex interplay between fast and slow processes of
decision making (McClure et al., 2004). When subjects are presented with a choice, initial
eye movements appear to reflect rapid value processing; both humans (Shimojo et al., 2003)
and monkeys (Cavanagh et al., 2019) quickly orient their gaze to high value items within
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150 ms. This quick orientation then biases the subsequent slower deliberation by increasing
the likelihood that fixated items will be chosen (Cavanagh et al., 2019; Shimojo et al.,
2003). During learning, this orienting fixation lags changes in choice behavior (Cavanagh
et al., 2019), suggesting that these behaviors reflect two distinct processes that are at least
partially dissociable.

The neural systems involved in implementing these fast and slow mechanisms remain
unclear. The basal ganglia are involved in forming and executing habitual behaviors (Atal-
lah et al., 2014; Balleine & Dickinson, 1998; Graybiel, 2008). The caudate nucleus (CdN)
in particular is implicated in orienting value-guided fixations (Hikosaka et al., 2006; Lauw-
ereyns et al., 2002; Watanabe & Hikosaka, 2005) and microstimulation of CdN can bias
choice behavior towards a given reward-predictive cue (Santacruz et al., 2017). In contrast,
the prefrontal cortex, and particularly the orbitofrontal cortex (OFC), is more strongly asso-
ciated with deliberative value-based decision-making (Padoa-Schioppa, 2011; Wallis, 2007).
OFC neurons primarily encode the value of chosen options (Kennerley et al., 2009; Padoa-
Schioppa & Assad, 2006), and the region is critical to value-based decisions (Ballesta et al.,
2020; Knudsen & Wallis, 2020), especially when new information needs to be computed or
integrated (Murray & Rudebeck, 2018; Stalnaker et al., 2015). Furthermore, when animals
consider two options, the value representation in the OFC vacillates between the two idiosyn-
cratically on each trial, predicting both the speed and optimality of the final choice (Rich &
Wallis, 2016), consistent with deliberative decision processes occurring in OFC. Given the
strong, bidirectional connectivity between the head of CdN and OFC (Clarke et al., 2014;
Ferry et al., 2000; Haber et al., 1995), this circuit may mediate the interaction between fast
and deliberative valuation processes.

In the current study, we had two goals. First, we wanted to determine whether the CdN
population dynamics were consistent with orienting eye movements during a value-based
decision-making task. Second, we wanted to contrast these dynamics with flip-flopping
value representations in OFC to investigate the interaction between rapid and deliberative
processes in decision-making. To this end, we simultaneously recorded from the head of the
CdN and OFC while two monkeys freely viewed pairs of pictures and used a lever to select
their preferred associated juice outcome. CdN activity predicted choice direction rapidly
after trial onset, independent of the relatively slow response times, and correlated with the
direction of the first saccade, consistent with a role in mediating the effects of gaze on choice
behavior. However, the flipping-flopping dynamics of OFC value representations were not
influenced by eye movements nor the CdN direction signal, but were predictive of choice time,
suggesting that the two systems reflect parallel valuation processes that both contribute to
choice.

3.2 Results

We taught two monkeys (subjects C and G) to use a bidirectional lever to select either one
(forced choice trials) or between two (free choice trials) available pictures for the correspond-
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ing juice outcome (Fig. 3.1a). Both subjects learned 16 pictures, which were associated with
one of four juice amounts and four reward probabilities (Fig. 3.1b). As expected, subjects
preferred larger juice amounts and more certain rewards (Fig. 3.1c). Their lever response
times were relatively slow (subject C: free trials, median = 666 ms, forced trials, median =
700 ms; subject G: 454 ms, 457 ms) and broadly distributed (Fig. 3.1d). In contrast, the
first saccades following picture onset were fast (C: free trials median = 162 ms, forced trials
median 206 = ms; G: 189 ms, 203 ms; Fig. 3.1d), yet overwhelmingly predicted the chosen
picture even on free trials (C: 84% of free trials; G: 91%).

We modeled each subjects’ choice behavior on free trials by fitting a soft-max decision
function, which depended on the value difference between the two pictures and included a
bias term for the first saccade direction (Eq. 3.1, Fig. 3.1). We estimated subjective picture
value as expected value (Eq. 3.2), which better explained choices (C: 76% explained variance;
G: 86%) compared with other reported value functions (Eq. 3.6, Fig. 3.2) (Hosokawa et al.,
2013). Subjects selected the higher expected value option on 90% (subject C) and 92%
(subject G) of free trials. Both subjects were more likely to select the option they looked
at first, as indicated by the x-axis shift for the two curves depending on the direction of the
subjects’ first saccade. To simplify subsequent neuronal analyses, we binned the 16 pictures
into groups of four from lowest to highest value; picture value (1-4) refers to these groupings
(Fig. 3.1f).

To examine the relationship between picture value, choice responses, and initial saccade
times, we considered the effect of the more valuable picture (maximum value) and the overall
difficulty, or value difference, of the choice. Because each metric is separately correlated with
response time, we performed a linear regression on response times with both as predictors
to separate their unique contributions to behavior. Subjects responded significantly faster
as the maximum value increased (C: β = −0.39, CPD = 11%, p < 1× 10−5; G: β = −0.40,
CPD = 12%, p < 1× 10−5). There was also a small but significant effect of value difference,
with larger differences predicting faster responses (C: β = −0.04, CPD = 0.2%, p < 0.0001;
G: β = −0.03, CPD = 0.1%, p = 0.01; Fig. 3.1g). The onset of the first saccade was also
strongly dependent on the maximum value, with faster saccades to more valuable pictures
(C: β = −0.6, CPD = 27%, p < 1× 10−5; G: β = −0.54, CPD = 22%, p < 1× 10−5). The
effect of value difference on saccade timing however was weak and inconsistent (C: β = 0.06,
CPD = 0.4%, p < 1× 10−5; G: β = 0.01, CPD = 0%, p = 0.58; Fig. 3.1h). Since maximum
value, but not value difference, strongly correlated with both subjects’ behavior, we focused
only on this metric of picture value in the neural data.

Caudate neurons encode choice direction rapidly and phasically

We recorded single neurons and the local field potential (LFP) from the caudate nucleus
(CdN) using up to 4 acute multisite probes per session (Fig. 3.3a). To investigate the rela-
tionship between choice behavior and neuronal firing rates, we performed linear regressions
on the firing rates in sliding time windows with maximum value, choice direction, and trial
type (forced or free) as predictors (Eq. 3.7, see Methods). Overall, the firing rates of 69% of
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Figure 3.1: Task and behavior. (a) Subjects fixated a cue to initiate each trial. They were presented
with one (forced choice trials) or two (free) pictures. After indicating their choice with a lever, they received
the corresponding juice amount with the probability Preward. (b) Subjects learned 16 pictures associated
with different juice amounts and reward probabilities. (c) Subjects were more likely to choose pictures
associated with larger and more probable rewards. Using the same arrangement as (b), the color indicates
the percent of free trials on which each picture was chosen. (d) Lever response time distributions for free
(blue) and forced (gray) trials. First (purple) and second (orange) saccade distributions from free trials.
(e) The likelihood of choosing the right picture as a function of the difference in expected value (EV) of
the two pictures, separated by the first saccade direction. Circle size represents the number of trials. Lines
show the model fit. Both subjects were more likely to select an option when they first looked at it. (f)
We split the pictures into equal-sized groups from lowest expected value (value bin = 1) to highest (value
bin = 4). Groupings were the same for both subjects. Same arrangement as (b). (g) The unique effects
of maximum value and value difference on reaction times. To visualize the unique contributions of each of
these predictors, log10(responsetimes) were modeled as a linear function of one parameter, and the residuals
(mean ± s.e.m.) were plotted as a function of the other parameter. (h) The effect of maximum value and
value difference on the timing of the first saccade. Conventions as in (g).
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Figure 3.2: Subjective value model comparison. Models fitting subjects’ choice behavior with different
value functions (Eq. 3.2-3.5), and including (bright colors) or excluding (dark colors) the first saccade bias
term, w2. The best model, quantified with lowest BIC (left) and highest explained variance (right), was
expected value including the saccade bias term (blue arrows).

344 neurons and 68% of 1259 neurons from subjects C and G, respectively, were predicted
by at least one term during the first 500 ms following picture onset (Fig. 3.3b); we found no
anatomical organization among these neurons (Fig. 3.4). Most neurons were significantly
predicted by maximum value, choice direction, or both (Fig. 3.3c-e). In fact, we observed
more neurons that encoded both value and direction than would be expected by their inde-
pendent prevalence (χ2 test; C: χ2 = 25, d.f. = 1, p < 1 × 10−7; G: χ2 = 185, d.f. = 1,
p < 1× 10−10).

To better understand the temporal evolution of information in CdN neurons, we looked
at the dynamics of CdN population-level activity on individual trials. For each session,
we trained linear discriminant analysis (LDA) decoders to predict the choice direction (left
or right) from neuronal firing rates and LFP magnitude in sliding windows. We used a
subset of free trials to validate decoder performance with a leave-one-out (LOO) procedure
(see Methods). Accuracy rose sharply immediately after picture onset, peaking at 220 ms
(74 ± 1% across sessions) and 275 ms (82 ± 1%) after picture onset for subjects C and G,
respectively (Fig. 3.5a). Repeating this procedure with trials synced to the lever movement,
we observed significantly lower overall decoding accuracy leading to choice (Fig. 3.5b). This
confirmed that the encoding of choice direction in CdN was driven by the onset of the pictures
and did not reflect response preparation.

We next applied decoder weights to held-out free trials, iterating the procedure multiple
times to maximize the number of trials (see Methods). We used the posterior probability
for the choice direction as a proxy for representation strength (Fig. 3.5c). We observed a
phasic rise in choice direction representation locked to the picture onset. Even when sub-
jects took longer to respond, choice direction encoding was rapid. These dynamics, though
readily observable from the neural population on individual trials, were not apparent in most
individual neurons (Fig. 3.3e). Since most CdN neurons also encoded value, we examined
how the choice direction representation varied with maximum picture value (Fig. 3.5d). We
quantified this relationship by modelling the logit-transformed decoding strength as a linear
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Figure 3.3: CdN neurons. (a) Reconstruction of CdN recording sites on coronal slices. Circles represent
the number of neurons. (b) CdN neuron firing rates were modelled as a linear combination of maximum
value, choice direction, and trial type. Most neurons were significantly predicted by at least one factor
during the first 500 ms following picture onset. (c) Example neurons illustrating prevalent response types,
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(bottom row). Red bars at the top of each panel indicate periods of significance as determined from the
regression. (d) Single neuron encoding of maximum value across the entire population. Each horizontal line
indicates the percentage of variance in each neuron’s firing rate explained by maximum value, as determined
by the coefficient of partial determination (CPD). Neurons were grouped according to whether they showed
a positive (hot colors) or negative (cold colors) relationship between firing rate and value, and ordered by the
first significant time bin. Data from non-significant neurons are shown using grayscale. (e) Single neuron
encoding of choice direction across the entire population. Conventions as in (d).
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function of maximum value (Fig. 3.5e) and calculating the resulting beta coefficients and
coefficient of partial determination (CPD), which is the percentage of the overall variance
in decoding strength that could be explained by value. The strength of decoding of choice
direction was strongly predicted by value, peaking at around 190 ms (β = 0.24, CPD =
5.7%, p < 1× 10−15) and 150 ms (β = 0.38, CPD = 14%, p < 1× 10−15) for subjects C and
G, respectively.

We next asked if choice direction decoding strength predicted any additional variance in
response time beyond what was already explained by the maximum picture value. We per-
formed a linear regression on log10(response times) with logit-transformed decoding strength
and maximum value as predictors (Fig. 3.5f). Indeed, decoding strength significantly
predicted response times even once the effect of maximum value was accounted for (C:
β = −0.07, CPD = 0.55%, p < 1× 10−13; G: β = −0.15, CPD = 2.3%, p < 1× 10−15).

Phasic caudate responses predict first saccades

While the strength of direction decoding was correlated with maximum picture value
and response times, the latency appeared to follow picture onset, coinciding with the first
saccade (Fig. 3.1d, 3.5c). To quantify the onset of direction decoding on each trial, we
defined direction states to be periods of at least four consecutive time bins (spanning 35 ms)
when the posterior probability exceeded 99% of a null distribution constructed from values
during the fixation period (C: 99% threshold = 0.74; G: 0.84).

The distribution of first state onset times (C: median = 160 ms, G: 170 ms) was very
similar to first saccade movement times (C: median = 162 ms, G: 189 ms; Fig. 3.6a). Similar
to first saccades, the onset of the first direction state occurred significantly earlier for trials
with pictures of larger maximum value (Fig. 3.6b; linear regression, C: β = −0.07, p ¡ 1
x 10-12; G: β = −0.18,p < 1 × 10−15. The first saccade location was highly predictive
of the decoded direction (C: same on 68% of trials; G: 80%) and greater than would be
expected by chance (χ2 test; C: χ2 = 318, d.f. = 1, p < 1 × 10−15; G: χ2 = 304, d.f. =
1, p < 1 × 10−15). To examine the relationship between the CdN response and the saccade
direction, independent of the effect of value, we examined trials where both choice options
had the same value and compared trials where the first saccade was to the ultimately chosen
option versus those where the first saccade was to the unchosen option. When the first
saccade was to the chosen option, CdN direction decoding strength was significantly greater
and faster than when the first saccade was to the unchosen option, and the subjects also
responded more quickly (Fig. 3.6c).

These results suggest that the phasic CdN response reflects the first saccade direction and
that it effects the overall time for the animals to make their choice. However, it is also not a
simple oculomotor movement signal. Subject C tended to saccade first to the chosen picture
and then to the unchosen picture before moving the lever. The decoded direction did not
abruptly change from chosen to unchosen around the time of the second saccade, suggesting
the information decoded from CdN is related to the processes guiding the initial orienting
eye movement, but not subsequent movements (Fig. 3.6c). Of course, we cannot rule out
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Figure 3.6: CdN population tracks first saccade. (a) We defined direction states as sustained periods
of decoding of choice direction. The distribution of first state onsets (shaded blue) coincided with the
distribution of first saccade movements (blue line). (b) First direction state onsets occurred significantly
earlier on trials with higher maximum picture values. (c) We compared the average choice direction posterior
probability for trials where the first saccade location was to the choice direction (matched trials; orange)
and the unchosen direction (mismatched trials; black), restricting our analysis to trials where the pictures
were of equal value. Dark lines represent the means calculated from 10,000 bootstrapped samples. Subjects
responded more quickly (C: 116 ms, G: 83 ms) on matched trials. Shading and error bars indicate 99.9% CIs.
Gray triangles indicate the mean time of the 1st (both subjects) and 2nd saccade (subject C only) across
both trial groups. (d) During the 800 ms immediately following picture onset, chosen states (red) were
more prevalent (right) and longer duration (left) than unchosen (blue) direction states. Asterisks indicate
p < 1 × 10−15 determined from paired t-tests. (e) Distribution of number of flips between chosen and
unchosen direction states per trial.

more high-level motoric control: for example, the phasic signal might reflect the preparation
of a sequence of eye movements. In addition, we note that we could not perform the same
analysis in subject G, since he only typically made a single saccade before making his choice.
However, in both subjects it was clear that the decoded choice direction typically did not
change later in the trial. Chosen direction states dominated unchosen direction states in
quantity and duration (Fig. 3.6d), and for most trials (C: 62%, G: 71%) the decoded state
did not change (Fig. 3.6e).

In sum, direction decoding from CdN reflected similar timing and content as the initial
saccade. This suggests the decoder is classifying information correlated with the same fast
valuation system reflected in overt eye movements (Cavanagh et al., 2019; Kim et al., 2020).
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Orbitofrontal activity reflects a more deliberative decision-making
process

To compare OFC and CdN contributions to our subjects’ decision-making, we recorded
single neurons and LFP from OFC using up to 4 acute multisite probes per session (Fig.
3.7a). We repeated the single neuron analyses described above to investigate the relationship
between behavior and neuronal firing rates. The firing rates of 57% of 235 neurons and 54%
of 498 neurons from subjects C and G, respectively, were predicted by at least one term
during the first 500 ms following picture onset (Fig. 3.7b). Compared to CdN neurons,
fewer OFC neurons were modulated by choice direction and trial type (Fig. 3.7c-e).

Because we found little evidence of direction information in individual neurons, we looked
at the value dynamics of the OFC population and compared them to population dynamics
in CdN. We trained an LDA decoder on forced trials to predict picture value (1 - 4) from
neuronal firing rates and LFP magnitudes (Rich & Wallis, 2016). We applied the decoder
weights to free trials in sliding windows to obtain the posterior probability for each value
across time. Task events, including fixation and picture onsets, systematically biased the
baseline rates of each value level at these moments in the trial. To remove these artifacts,
we used the percent change in posterior probability from these baselines as a proxy for
representation strength. We defined value states as periods of at least four consecutive time
bins (spanning 35 ms) when the decoding strength exceeded twice the baseline rate.

Unlike the direction states decoded from CdN, value states in OFC flip-flopped between
multiple picture values idiosyncratically over the course of each trial, replicating our previous
study (Rich & Wallis, 2016). Decoding strength for the chosen and unchosen values peaked
at 190 ms and 305 ms for subject C, and 310 ms and 250 ms for subject G, respectively.
In the first 800 ms from picture onset, we observed a mean of 5.2 ± 0.03 and 8.5 ± 0.04
value states for subjects C and G, respectively. Chosen value states were significantly more
prevalent and of longer duration than unchosen states, which in turn were more prevalent
and longer than unavailable value states (Fig. 3.8a). For trials where at least one chosen
or unchosen value state was identified (C: 98.3%; G: 100%), the median number of flips
between them was 1 and 3 for subjects C and G, respectively (Fig. 3.8b). Decoding strength
was predictive of response time: responses were faster on trials with stronger chosen value
decoding and slower on trials with stronger unchosen value decoding (Fig. 3.8c). However,
similar to Rich and Wallis (2016), there was no evidence that the decoder needed to be in
a particular state at the time of the choice response. Indeed, the difference between chosen
and unchosen value strength around the time of choice was weak and inconsistent between
subjects (Fig. 3.10a). Value decoding in OFC was also not linked to gaze location. The
strength of decoding of either the chosen or unchosen value did not depend on the location
of the first saccade (Fig. 3.8d). Furthermore, there was no relationship between the phasic
CdN choice direction signal and the OFC value signal. We grouped trials with chosen or
unchosen initial value states in OFC and found no difference in the strength of the CdN
direction decoding (Fig. 3.8e).

In sum, value decoding in OFC correlated with choice behavior on average but vacillated
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Figure 3.7: OFC neurons. (a) Reconstruction of OFC recording sites on coronal slices. Circles represent
the number of neurons. (b) OFC neuron firing rates were modelled as a linear combination of maximum
value, choice direction, and trial type. About half of the neurons were significantly predicted by at least one
factor during the first 500 ms after picture onset, of which the majority was dominated by maximum value.
(c) Proportion of neurons in CdN (dark colors) and OFC (light colors) significantly predicted by each factor
(from Figs. (b) and 3.3b). Asterisks indicate p < 0.01 as determined by a χ2 test. There was no difference
between the areas in the prevalence of value-encoding neurons, but neurons encoding choice direction and
trial type were more common in CdN. (d) Two example OFC neurons that were modulated by maximum
value, but not choice direction. Conventions as in Fig. 3.3c. (e) Single neuron encoding of maximum value
across the entire OFC population. Conventions as in Fig. 3.3d.
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Figure 3.8: Value dynamics in OFC. (a) We trained an LDA decoder to classify picture value (1 - 4) on
forced trials from OFC and applied the decoder weights to free trials in sliding windows. Value states are
sustained periods of confident decoding of value. The prevalence (left) and duration (right) of value states
favored chosen (red) over unchosen (blue) over unavailable (gray) value states. Asterisks indicate p < 0.001
as determined from a 1-way ANOVA with post-hoc t-tests. (b) Distribution of number of flips between
chosen and unchosen value states per trial. (c) Response times were faster when the chosen value (red) was
decoded more strongly, and slower when the unchosen value (blue) was decoded more strongly. We built a
linear regression for response time with chosen and unchosen decoding strength as predictors. Top: regression
coefficients; bottom: % CPD. Bold lines indicate p < 0.001. (d) We compared the average decoding strength
of the chosen value (top) or the unchosen value (bottom) for trials where the first saccade location was to
the chosen direction (shaded) and the unchosen direction (black line), using the same procedure as in Figure
3.6c. There was no difference in decoding strength of either value given the first saccade direction. Shading
indicates bootstrapped 99.9% confidence intervals. The mean 1st saccade times (black triangles) are shown
for reference. (e) We observed no difference in the strength (mean ± s.e.m.) of the CdN direction decoder
between trials with an initial chosen (red) or unchosen (blue) value state in OFC.
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between the representation of the chosen and unchosen state on single trials, consistent
with our previous study. The OFC value signal was not linked to overt eye movements nor
CdN direction decoding, suggesting it reflects a more deliberative valuation process that is
separate from the rapid CdN orienting response.

Value decoding in caudate resembles dynamics in OFC

Since many CdN neurons also encoded value, we repeated the value decoding analyses
from OFC in the CdN. We found that CdN value dynamics were qualitatively similar to
those observed in OFC. Decoding strength for the chosen and unchosen values peaked at 170
ms and 175 ms for subject C, and 265 ms and 260 ms for subject G, respectively. In the first
800 ms from picture onset, we observed 4.5 ± 0.03 and 6.5 ± 0.05 value states for subjects
C and G, respectively. Chosen states were again more frequent and longer than unchosen
states and unavailable values (Fig. 3.9a). For trials where at least one chosen or unchosen
value state was identified (C: 96.1%; G: 92%), the median number of flips between them
was 1 and 2 for subjects C and G, respectively (Fig. 3.9b). As in OFC, strong encoding
of the chosen state produced significantly faster response times, while strong encoding of
the unchosen state produced significantly slower response times (Fig. 3.9c). However, on
the slowest 25% of trials, there was no difference between the chosen and unchosen value
strength following picture onset or around choice (Fig. 3.10b). Unlike direction decoding,
value decoding in CdN was not linked to gaze location. We again compared trials where the
first saccade and choice direction matched those when the directions were mismatched. We
found no difference in chosen or unchosen value decoding strength across these trial types
(Fig. 3.9d).

Given that we saw vacillation of value states in both OFC and CdN, we next asked
whether these dynamics correlated between the two structures. We restricted our analysis
to those sessions with successful value decoding simultaneously in both regions (C: 1 ses-
sion; G: 5 sessions, see Methods). We correlated separately the chosen and unchosen value
strengths decoded from OFC and CdN in each trial over time (Fig. 3.9e). We tested these
correlations against null distributions of correlation values from permuted trials. In both
subjects, within the first 500 ms after picture onset, both chosen and unchosen value dy-
namics were significantly correlated, although the effect was rather weak and inconsistent.
We also performed a cross-correlation on these time series to examine whether there might
be a lag between the two regions, but there was no evidence of a consistent lead or lag
between the two regions.

3.3 Discussion

We observed rapid and phasic encoding of the choice response in the head of the CdN
that was synced to the presentation of the choice options. While difficult to infer from trial-
averaged neural firing rates, these dynamics were readily observed from the neural population



CHAPTER 3. FAST AND SLOW CONTRIBUTIONS TO DECISION MAKING 25

******* ***

a

d e

c

0 5 10
0

0.2

0.4

0 5 10

1

2

3

0

50

0

C G C G
GC

Value states Value state flips

minimum

N
um

be
r o

f s
ta

te
s

St
at

e 
le

ng
th

 (m
s)

Tr
ia

l c
ou

nt
 (n

or
m

al
iz

ed
)

Value states
chosen
unchosen
not available

Value states
-0.5 0 0.5 1
Time from pictures (s)

-0.5 0 0.5 1
Time from pictures (s)

β 
co

ef
fic

ie
nt

%
 C

PD

0.1

-0.1
0

1

0

0.1

-0.1
0

1

0

C G

b

-0.5 0 0.5 1
Time from pictures (s)

-0.1

0

0.1

0.2

0.3

-0.5 0 0.5 1
Time from pictures (s)

-0.1

0

0.1

0.2

0.3

-0.5 0 0.5 1
Time from pictures (s)

-0.1

0

0.1

0.2

0.3

-0.5 0 0.5 1
Time from pictures (s)

-0.1

0

0.1

0.2

0.3

O
FC

 &
 C

dN
 c

or
re

la
tio

n
ch

os
en

 v
al

ue
 %

Δ
po

st
er

io
r p

ro
ba

bi
lit

y

O
FC

 &
 C

dN
 c

or
re

la
tio

n
un

ch
os

en
 v

al
ue

 %
Δ

po
st

er
io

r p
ro

ba
bi

lit
y

C G

C G

CdN value
chosen
unchosen

1st 2nd

Va
lu

e 
de

co
de

r c
ho

se
n

%
 Δ

 p
os

te
rio

r p
ro

ba
bi

lit
y

0

100

200

Time from pictures (s)
-0.5 0 0.5 1

1st

0

100

200

Time from pictures (s)
-0.5 0 0.5 1

1st 2nd

Va
lu

e 
de

co
de

r u
nc

ho
se

n
%

 Δ
 p

os
te

rio
r p

ro
ba

bi
lit

y

0

100

200

Time from pictures (s)
-0.5 0 0.5 1

1st

0

100

200

Time from pictures (s)
-0.5 0 0.5 1

C G

C G

chosen direction
unchosen direction 

1st saccade location

chosen direction
unchosen directionv 

1st saccade location

real data
shuffled trials

real data
shuffled trials

Figure 3.9: Value dynamics in CdN. (a) We trained an LDA decoder to classify picture value from
CdN using the same procedure as in Figure 6a. The prevalence (left) and duration (right) of value states
favored chosen (red) over unchosen (blue) and unavailable (gray) value states. Asterisks indicate p ¡ 0.001
as determined from a 1-way ANOVA with post-hoc tests. (b) Distribution of number of flips between
chosen and unchosen value states per trial. (c) Response times were faster when the chosen value (red) was
decoded more strongly, and slower when the unchosen value (blue) was decoded more strongly, using the
same regression and visualization as Figure 6c. (d) We compared the average value decoding strength of
the chosen (top) or the unchosen value (bottom) for trials where the first saccade location was to the chosen
(shaded) or the unchosen direction (black line), using the same procedure as Figures 4c and 6d. Decoding
strength of either value did not depend on the direction of the first saccade. Shading indicates bootstrapped
99.9% confidence intervals. The mean 1st saccade times (black triangles) are shown for reference. (e)
We correlated the chosen (top, red) and unchosen (bottom, blue) value strength decoded from OFC and
CdN on individual trials at each time point. We built a null distribution of correlation values from 10,000
permutations of trials; the gray line represents the median across these permutations and the shaded area
indicates the 1% and 99% bounds. There was a weak, but significant, correlation in both animals during
the first 500 ms of the choice period indicating that OFC and CdN tended to encode the same value at the
same time.
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Figure 3.10: Value decoding after picture onset and around choice. We aimed to compare the relative
strength of decoding chosen and unchosen values following picture onset and around the time of choice for
both regions. We restricted this analysis to the slowest 25% of correct trials to maximally separate any
phasic response following picture presentation to neural responses related to the preparation of the choice
response. (a) Average decoding strength from OFC. The difference between chosen and unchosen value
strength around the time of choice was inconsistent between subjects. (b) Average decoding strength from
CdN. There was no difference between chosen and unchosen value strength around the time of choice.

on individual trials. Despite this early signal that predicted the choice, both animals took
much longer to make their final decision. The direction signals in the CdN were strikingly
similar to the subjects’ initial saccade in that they occurred within 200 ms of the presentation
of the choice options and were directed to the chosen item on the majority of trials. Our
results are consistent with behavioral findings which suggest that there are two independent
systems responsible for value-guided attentional capture and value-guided choice (Cavanagh
et al., 2019). Our results suggest that CdN, but not OFC, is an important component of the
value-guided attentional capture system.

Striatal encoding of salient environmental stimuli

In recent years, there has been increasing appreciation of the role that value plays in
guiding attention (Anderson, 2016, 2019; Della Libera & Chelazzi, 2006). The basal gan-
glia appear to play a particularly important role in guiding saccades to rewarded targets
(Hikosaka et al., 2006). For example, in a task where monkeys fixated peripheral cues that
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predicted different sizes of reward, CdN neuronal activity was spatially selective and typ-
ically stronger when the cue predicted a larger reward (Kawagoe et al., 1998; Lauwereyns
et al., 2002). In humans, neuroimaging results have shown that CdN is more active when
humans must avoid being distracted by reward-associated cues (Anderson et al., 2014) sug-
gesting that it may also play an important role in value-guided attentional capture. A
possible mechanism for this involves projections to CdN from the superior colliculus via the
thalamus (McHaffie et al., 2005). Neurons in the suprageniculate nucleus, which relays in-
formation from the superior colliculus to CdN, discriminate between pictures that predict
high and low values of reward (Kim et al., 2020). This would also help explain why the
CdN response is so rapid, since it conceivably only involves three synapses from the retina.
Outputs from the CdN to the superior colliculus via the substantia nigra can then generate
saccades to the target (McHaffie et al., 2005). The entire system can function to generate
saccades to orient gaze towards ecologically relevant visual stimuli (Ghazizadeh et al., 2016).

Although CdN responses have been extensively studied in the context of peripheral pre-
sentation of reward-predictive cues, it was unclear how these findings would translate to
more complex decision-making tasks. Our results show that the fast, phasic CdN response is
also present during choice and may make an important contribution to value-based decision-
making where it could mediate the biasing effect of saccades on choice. However, CdN also
showed the kind of value vacillation that we previously observed in OFC. Thus, CdN appears
to multiplex two signals in the dynamics of its firing that could make distinct contributions
to choice. The first is the rapid, phasic directional signal that could mediate the effects of
value-guided attentional capture, and the second is the vacillation in the value representa-
tion that corresponds to deliberative valuation. While our evidence for the multiplexing of
fast and slow decision signals in CdN is correlational, this framework may help to explain
previously reported effects of causal manipulations of this region. In a visually guided sac-
cade task, CdN microstimulation following the saccade caused subsequent saccades in that
direction to occur more rapidly, an effect that mimicked the effects of natural rewards on sac-
cades (Nakamura & Hikosaka, 2006). In addition, we have shown that CdN microstimulation
during a value-guided decision-making task can selectively increase the value of a specific
stimulus independent of the choice response (Santacruz et al., 2017). An intriguing possi-
bility is that the timing of microstimulation in the CdN relative to the presentation of the
choice options may be able to differentially effect value-guided attention from value-guided
decision-making.

It will also be important to determine how these signals are initially learned. CdN
has frequently been associated with goal-directed, model-based reward learning, while the
more lateral putamen has been associated with habitual, model-free responses (Balleine
& O’Doherty, 2009). However, several features of value-guided attentional capture, suggest
that it is more consistent with a habitual, as opposed to goal-directed response. For example,
it occurs even when subjects are unaware of the underlying reward schedules (Pearson et
al., 2015) and when it conflicts with the goals of a task (Le Pelley et al., 2015), neither of
which is consistent with a deliberative process. With respect to the influence of value-guided
attentional capture specifically on decision-making, here too the behavioral evidence seems
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to favor a model-free, habitual response. For example, valuable options on which animals are
overtrained show an attentional capture effect which biases subsequent choices. In contrast,
while novel choices also demonstrate attentional capture, they do not bias choice (Cavanagh
et al., 2019). The fact that value-based attentional capture is only seen in the overtrained
situation is consistent with a model-free mechanism, and the fact that the behavioral effects
on choice are different from those of novel choice options, suggests that it is also at least partly
independent of information sampling (Monosov, 2020; Traner et al., 2021). To understand
these mechanisms and how they map onto striatal circuitry it will be important to compare
neural responses between CdN and the putamen, as well as use behavioral probes that can
test whether behaviors are goal-directed or habitual. For example, one could devalue one of
the rewards and examine how quickly the attentional capture effect changes relative to the
animal’s choice behavior.

Relationship to frontal deliberative decision-making

In contrast to the highly stereotyped early phasic direction response in CdN, OFC pop-
ulation value dynamics are idiosyncratic across trials. We replicated the main findings from
Rich and Wallis (2016): the value representation flip-flopped between the available pictures,
more valuable states were represented more frequently and for longer duration, and the
strength of these representations predicted subjects’ response times. Importantly, these dy-
namics were not influenced by overt eye movements. We saw very similar dynamics in the
value encoding in CdN, along with a correlation with the states on OFC. The interareal
correlation was rather weak and inconsistent. The weakness of the correlation may be real,
but it could also reflect a relative lack of power in our analyses. Decoding simultaneously
from two deep structures is technically challenging since it requires recording many neurons.
These are exactly the kinds of experiments that will be made possible by new recording
probes that have many hundreds of contacts (N. Steinmetz, 2019; N. A. Steinmetz et al.,
2018).

It also remains unclear how the value vacillation is translated into choice. We previously
speculated that a motor area downstream of OFC could integrate the value vacillation to de-
termine the correct response, given that more valuable states are represented more frequently
and for longer duration (Wallis, 2018). We identified three likely candidates based on their
connections with OFC and the presence of both value and motor signals: anterior cingulate
cortex, dorsolateral prefrontal cortex, and the striatum. We can now eliminate CdN as a
possibility since the encoding of the choice response was clearly not a gradual accumulation
of evidence from the value vacillation. However, it is conceivable that we might have seen
integration of value signals or stronger correlations with OFC vacillation if we had recorded
from the putamen rather than CdN. The putamen is a key striatal region involved in arm
movement control (Inase et al., 1996; Kelly & Strick, 2004; Takada et al., 1998) and our
animals were using arm movements to indicate their choice response. Furthermore, OFC
projections into the striatum are not limited to CdN but extend into ventromedial putamen
(Ferry et al., 2000). Neurons in the putamen encode action and value information (Hori
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et al., 2009), and inactivation of this region disrupts action selection that is dependent on
reward history (Muranishi et al., 2011).

Dysfunction of corticostriatal circuitry is a component of many neuropsychiatric disor-
ders (Fernando & Robbins, 2011). The corticostriatal network is increasingly the target of
implantable devices that can meaningfully interact with the circuit to treat these disorders
(Creed et al., 2015; Scangos et al., 2021; Shanechi, 2019). Our results demonstrate both
the challenges and potential of these approaches (Wallis, 2011). Value signals are nearly
ubiquitous throughout the brain (Vickery et al., 2011), yet they often subserve very dif-
ferent functions (Wallis & Kennerley, 2010). Our results show that CdN multiplexes two
distinct value signals with different dynamics. Understanding those dynamics potentially
allows devices to target different value-related processes.

3.4 Methods

Experimental model and subject details

All procedures were carried out as specified in the National Research Council guidelines
and approved by the Animal Care and Use Committee and the University of California,
Berkeley. Two male rhesus macaques (subjects C and G, respectively) aged 6 and 4 years,
and weighing 10 and 7 kg at the time of recording were used in the current study. Subjects
sat head-fixed in a primate chair (Crist Instrument, Hagerstown, MD) and manipulated a
bidirectional lever located on the front of the chair; eye movements were tracked with an
infrared eye-tracking system (SR Research, Ottawa, Ontario, CN). Stimulus presentation and
behavioral conditions were controlled using the MonkeyLogic toolbox (Hwang et al., 2019).
Subjects had unilateral (subject C) or bilateral (subject G) recording chambers implanted,
centered over the frontal lobe.

Task Design

Subjects performed a task in which they were required to choose between pairs of pictures
or single pictures. Each trial started with a 0.5° fixation cue in the center of the screen, which
subjects fixated continuously for 750 ms to initiate picture presentation. On free choice trials
(67% of trials), two pictures 2.5◦ x 2.5◦ appeared 6◦ on either side of the fixation cue; on
forced choice trials (33%), one picture appeared on either side. Subjects used a bidirectional
lever to indicate the left or right choice. Both subjects learned to associate 16 pictures
with one of four amounts of juice (subject C: 0.15, 0.3, 0.45, 0.6 mL; subject G: 0.1, 0.2,
0.3, 0.4 mL) and one of four reward probabilities (C: 0.15, 0.4, 0.65, 0.9; G: 0.1, 0.37,
0.63, 0.9). Amounts and probabilities were titrated for each subject so that one dimension
did not dominate choice behavior. The selected picture remained on the screen while the
corresponding juice amount was delivered probabilistically. Trials were separated by a 1000
ms intertrial interval. Gaze position was sampled at 500 Hz. Subject C completed 10,358
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free trials and 5,397 forced trials over 11 sessions; subject G completed 10,793 and 5,873
trials over 12 sessions.

Neurophysiological recordings

Subjects were fitted with head positioners and imaged in a 3TMRI scanner. From the MR
images, we constructed 3D models of each subjects’ skull and target brain areas (Paxinos et
al., 2000). Subjects were implanted with custom radiolucent recording chambers fabricated
from polyether ether ketone (PEEK). During each recording session, up to 8 multisite linear
probes (16- or 32- channel V probes with 75, 100, or 200 µm contact spacing, Plexon,
Dallas, TX) were lowered into CdN (head of the caudate nucleus, AP +22 to +32 mm) and
OFC (areas 11 and 13, AP +29 to +39 mm) in each chamber. Electrode trajectories were
defined in custom software, and the appropriate microdrives were 3D printed (Form 2 and 3,
Formlabs, Cambridge, MA) (Knudsen et al., 2019). Lowering depths were derived from the
MR images and verified from neurophysiological signals via grey/white matter transitions.
Neural signals were digitized using a Plexon OmniPlex system, with continuous spike-filtered
signals (200 Hz - 6 kHz) acquired at 40 kHz and local field-filtered signals acquired at 1 kHz.

We recorded neuronal activity over the course of 11 sessions for subject C and 12 ses-
sions for subject G (Table 3.1). Units were manually isolated using 1400 ms waveforms,
thresholded at 4 standard deviations above noise (Offline Sorter, Plexon). We restricted our
analysis to neurons with a mean firing rate across the session > 1 Hz firing rates. In addition,
to ensure adequate isolation of neurons, we excluded neurons where > 0.2% of spikes were
separated by < 1100 ms. Sorting quality was subjectively ranked on a 1 - 5 scale to separate
well-isolated single neurons from possible multi-units. None of the results reported in the
manuscript depended on the isolation quality of our neurons, and so we included all neurons
in our analyses. CdN neurons were additionally labeled as putative phasic or tonic neurons
from waveform shape, firing rate, and ISI distribution shape (Alexander & DeLong, 1985;
Aosaki et al., 1995). We did not find any significant differences in the functional properties
of these two classes of neurons and so we included all CdN neurons for the analyses reported
in the manuscript. Only LFP channels with at least one unit were also included. In total,
we recorded 344 and 1259 neurons and 247 and 899 LFP channels from CdN in subjects C
and G, respectively; we recorded 235 and 498 neurons and 189 and 383 LFP channels from
OFC.

Raw LFPs were notch filtered at 60, 120, and 180 Hz and bandpassed using finite impulse
response filters in six frequency bands: δ (2-4 Hz), θ (4-8Hz), α (8-12 Hz), β (12-30 Hz),
γ (30-60 Hz), and high γ (70-200 Hz). Analytic amplitudes were obtained from Hilbert
transforms in the pass bands.

Behavioral analysis

We defined saccades as eye movements whose velocity exceeded 6 standard deviations
from the mean velocity during fixation. The saccade time was defined by the peak velocity



CHAPTER 3. FAST AND SLOW CONTRIBUTIONS TO DECISION MAKING 31

Subject Session CdN neurons OFC neurons

C rec06 38 ⋆ 19
rec07 39 ⋆ 24 †

rec17 33 ‡ 32 †

rec20 41 ⋆ 17 †

rec47 20 ⋆ 33 †

rec49 40 ‡ 20
rec50 22 ‡ 28
rec51 31 ‡ 13
rec52 36 ‡ 22
rec53 36 ⋆ 7
rec54 18 ⋆ 20 †

total: 344 235
G rec14 123 ⋆ –

rec15 182 ‡ 111 †

rec16 67 ⋆ –
rec17 146 ⋆ –
rec18 103 ‡ 112 †

rec19 114 ‡ 96 †

rec20 89 ‡ 102 †

rec21 100 ‡ 77 †

rec22 82 ⋆ –
rec23 93 ⋆ –
rec24 97 ⋆ –
rec25 63 ⋆ –
total: 1259 498

Table 3.1: Neural data. Number of recording sessions and neurons recorded per session in the two subjects.
‡ Sessions with successful value and direction decoding; † successful value decoding; ⋆ successful direction
decoding.
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within each movement, and direction was identified by the subsequent eye position.
We fit choice behavior for each subject using a soft-max decision rule,

PR =
1

1 + ew1(VR−VL)+w2S+w3
(3.1)

which attempts to predict the probability that the subject will select the picture on the
right, PR, with three free parameters: the inverse temperature, w1, which determines the
stochasticity of the choice behavior as a function of the difference in value, V , between the
right and left picture, a saccade bias term, w2, which accounts for influence of the first gaze
location, S, after picture onset, and a side bias term, w3, which accounts for any preference
for one choice direction.

We considered multiple subjective value functions, including expected value

expected value = juice amount× reward probability (3.2)

which did not add any free parameters to the model, and three discount functions from
Hosokawa et al (2013)

valuelinear = juice amount− w4 (1− reward probability) (3.3)

valuehyperbolic =
juice amount

1 + w4(1− reward probability)
(3.4)

valueexponential = juice amount ew4(1−reward probability) (3.5)

which all added one free parameter, w4.
We estimated all free parameters by maximizing the log likelihood of the full model:

−
∑

NR ln(PR|∆V )−
∑

NL ln(1− PR|∆V ) (3.6)

where N is the number of trials where the animal selected either the right or left option.
The expected value model was the best fit for both subjects’ behavior, when models were
compared with BIC and overall explained variance.

Single neuron regression analysis

For each neuron, in overlapping 100 ms windows shifted by 25 ms, we performed the
following linear regression on firing rate, FR:

FR = β0 + β1 ∗ trial type+ β2 ∗ choice direction+ β3 ∗max value+ β4 ∗ trial number (3.7)

with binary variables for trial type (+1 free, -1 forced) and choice direction (+1 contralat-
eral, -1 ipsilateral), continuous variables for the maximum value of the presented pictures
(max value: 1 - 4), and trial number as a noise parameter to absorb potential variance due
to neuronal drift over the recording session. Significance was defined as p < 0.01 for 100
ms (four consecutive time bins). To compare the proportion of significant neurons between
CdN and OFC, we performed a χ2 test for each factor (trial type, choice direction, and max
value) independently.
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Direction decoding with single trial resolution

Choice direction was decoded from CdN only. For each session, we trained linear discrim-
ination analysis (LDA) decoders to predict the choice direction (left or right) from neural
activity during free trials. We synced the trials to picture onset or choice response, and the
decoders were trained in sliding windows of 20 ms stepped by 5 ms. To reduce the dimen-
sionality of the input features in each window, we performed PCA across trials separately
for normalized neuron firing rates and normalized magnitudes from the δ LFP band (2 - 4
Hz); higher frequency LFP bands did not meaningfully improve decoding accuracy. We then
restricted inputs to the top PCs that explained 95% of the variance within each group.

We randomly split all free trials into separate training and held-out sets. Trials in the
training set were constrained such that there was an equal number of each offer pair where
the chosen value level was greater than the unchosen value (i.e., left 3 vs. right 4, left 4
vs. right 3, 2 vs. 4, 4 vs. 2, etc.). The held-out set contained all remaining trials. We
used a k-fold leave-one-out validation procedure on the trials in the training set to assess
the accuracy of the decoders. We then used the entire training set to compute the posterior
probabilities for left and right direction on each trial in the held-out set. To maximally use
all trials in a session, we repeated the procedure with 25 random splits of training and held-
out sets. For each trial, we averaged the posterior probabilities across all instances when it
was in the held-out set. To ease interpretation of reported results, we relabeled the decoder
classes (left and right) as chosen direction and unchosen direction for each trial.

We identified sustained periods of confident decoding as states. We built a null distri-
bution of posterior probability values from the fixation period (-500 to 0 ms before picture
onset) to define a threshold that exceeded 99% of this distribution. On each trial, the pos-
terior probability for a given direction needed to surpass this threshold for at least four
consecutive time bins (spanning 35 ms, accounting for bin overlap) to be considered a state.

We bootstrapped confidence intervals to compare decoding strength between trials where
the first saccade was to the chosen (matched) or unchosen (mismatched) direction, restricted
to trials where the choice was between pictures of equal value. Note that we had about eight
times more matched trials compared to mismatched trials, and mismatched trials were more
likely to occur for lower picture values. To account for these differences, we ensured that the
random samples of matched trials had the same value distribution and total number as the
mismatched trials (C: n = 581, G: n = 383). We calculated 99.9% confidence intervals over
the means of 10,000 bootstrapped samples drawn from each trial group.

Value decoding with single trial resolution

Picture value was decoded from OFC and CdN, separately for each session. It is difficult
to train a decoder for picture value from free trials, where two pictures are available, without
making assumptions about how and when each picture is being represented (e.g., only the
picture on the right; only the best picture). Instead, following the approach in Rich and
Wallis (2016), for each session we trained an LDA decoder to predict the value (1 - 4) from
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neural activity on forced trials, where a single picture was available. We then used these
decoder weights to compute the posterior probability of each value on every free trial in
sliding windows of 20 ms stepped by 5 ms. Trials were synced to picture onset or lever
response. The neural input and dimensionality reduction was the same as for direction
decoding.

We trained one decoder from forced trials on neural activity averaged between 100 - 500
ms, for each session. We randomly sampled these trials to uniformly represent all pictures
on either side of the screen and used a k-fold LOO validation procedure. We repeated this
procedure with 50 random samples and averaged classification accuracy across all instances.
We applied these decoder weights to each free trial in sliding windows of 20 ms stepped by
5 ms. We repeated this procedure with 50 random samples of forced trials and averaged the
posterior probabilities on free trials across all instances.

Only sessions with good decoding accuracy on forced choice trials were included in the
analyses, defined as > 40% overall accuracy on forced trials (chance = 25%). For subject
C, 5 sessions met these criteria for OFC (mean accuracy 44± 1.7%) and 5 sessions for CdN
(46 ± 1.7%). However, only 1 of these sessions had acceptable decoding in both areas. To
minimize the number of sessions with poor value decoding, broadly predicted by the number
of value-encoding sessions, in both areas in the second subject, we implanted subject G
bilaterally to increase the number of probes per session. Indeed, for subject G, all 5 sessions
with probes in OFC met these criteria for both regions (OFC: 58± 2.5%, CdN: 53± 1.3%).
In the remaining sessions, no probes were lowered to OFC and CdN value decoding was not
analyzed to match trial counts from subject C.

We observed that chance rates of decoding each value deviated from the expected 25%,
likely due to global differences in population firing rates during different phases of the task.
To correct for this, we defined a unique baseline rate for each value level by averaging the
posterior probability corresponding to that level across trials when that picture value was
not available. We reported posterior probabilities as percent change from these baselines.
We refer to this metric as decoding strength.

To ease interpretation of reported results, we relabeled the decoder classes (1 - 4) as
chosen value, unchosen value, and unavailable for each trial. Only free trials where the
chosen value was greater than the unchosen value were analyzed (i.e., correct choice). For all
visualizations and analyses, one of the remaining unavailable levels was randomly selected
for each trial.

We identified sustained periods of confident decoding as states. On each trial, the de-
coding strength for a given value level needed to exceed 200% (i.e., double the baseline rate)
for at least four consecutive time bins (spanning 35 ms) to be considered a state.

Using sessions with good value decoding from both OFC and CdN, we asked if decoded
value dynamics were synchronized in the two regions (C: 1 session, G: 5 sessions). We
separately correlated the chosen value and unchosen value decoder strengths from OFC and
CdN at each time point. We built a null distribution of correlation values at each time point
from 10,000 permutations of the trials; trials were shuffled within value comparison (e.g., 1
vs. 2, 1 vs. 3, etc.)
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Statistics

All statistical tests are described in the main text or the corresponding figure legends. Er-
ror bars and shading indicate standard error of the mean (s.e.m.) unless otherwise specified.
All terms in regression models were normalized and had maximum variance inflation factors
of 1.7. The coefficient of partial determination (CPD) was used to quantify the percentage
of overall variance uniquely explained by each term. All comparisons were two-tailed.

Resource availability

Further information and requests for resources should be directed to and will be fulfilled
by the lead contact, Joni Wallis (wallis@berkeley.edu).
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Chapter 4

Value dynamics in orbitofrontal
cortex drive the choice response in
anterior cingulate cortex during
decision-making

Balewski, Zuzanna Z., Knudsen, Eric B. & Wallis, Joni D.

4.1 Introduction

During decision-making, neurons in orbitofrontal cortex (OFC) sequentially represent the
value of each option in turn (Balewski et al., 2022; Rich & Wallis, 2016). Although these
dynamics can predict both the optimality and the speed of the decision, there is no evidence
that OFC represents a specific option at the time of the choice response, raising the question
as to how the OFC value dynamics are translated into a decision. One clue is that more
valuable options tend to be represented more frequently and for longer duration (Balewski et
al., 2022; Rich & Wallis, 2016). Consequently, a downstream region that integrated the OFC
value dynamics would be able to select the more valuable option (Wallis, 2018), analogous
to the noisy sensory information accumulation process observed in the lateral interparietal
area (Gold & Shadlen, 2001; Mazurek et al., 2003; Roitman & Shadlen, 2002). Anterior
cingulate cortex (ACC) is a potential locus for such an integrator, since it connects to both
OFC (Barbas & Pandya, 1989; Carmichael & Price, 1996) and motor areas (Dum & Strick,
1993; Van Hoesen et al., 1993), contains neurons that encode both value and actions (Cai &
Padoa-Schioppa, 2012; Hunt et al., 2018; Kennerley & Wallis, 2009; Luk &Wallis, 2013), and
produces decision-making impairments when damaged (Camille et al., 2011; Kennerley &
Walton, 2011; Kennerley et al., 2006). To test this hypothesis, we carried out high-channel
count recordings from OFC and ACC while monkeys performed a value-based decision-
making task.
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4.2 Results

We taught two monkeys (subjects C and G) to use a bidirectional lever to select either
one (forced choice trials) or between two (free choice trials) available pictures for the cor-
responding juice outcome (Fig. 4.1a-b). Both subjects preferred larger juice amounts and
more certain rewards associated with the 16 pictures (Fig. 4.1c). We modeled each subjects’
choice behavior on free trials with a soft-max decision function that estimated subjective
value as expected value (Eq. 4.1-4.2; C: 78% explained variance; G: 84% explained vari-
ance). Subjects selected the higher value option on 92% (subject C) and 91% (subject G) of
free trials. To simplify subsequent neuronal analyses, we binned the 16 pictures into groups
of four from lowest to highest value (Fig. 4.1d).

Subjects’ lever response times were relatively slow (C: free trials, median = 649 ms,
forced trials median = 666 ms; G: 439 ms, 448 ms) and broadly distributed (Fig. 4.1e). To
examine the relationship between picture value and response times, we modeled response
times as a linear function of the best picture (maximum value) and the choice difficulty
(value difference). Subjects responded significantly faster when maximum value increased
(C: β = −0.37, CPD = 10.5%, p < 1 × 10−15; G: β = −0.34, CPD = 9.1%, p < 1 × 10−15;
Fig. 4.1f). There was also a small but significant decrease in response times with larger
value difference (C: β = −0.06, CPD = 0.3%, p < 1 × 10−8; G: β = −0.05, CPD = 0.2%,
p < 1 × 10−3, Fig. 4.1f). Since maximum value, not value difference, was predominantly
correlated with both subjects’ behavior, we focused on this metric of picture value in the
neural data.

ACC neurons encode choice direction preceding movement

We recorded single neurons and LFP from anterior cingulate cortex (ACC) using up to
four acute multisite probes per session (Fig. 4.4a). To investigate the relationship between
subject behavior and neuronal firing rates leading to the decision, we performed linear re-
gressions on firing rates in 100 ms overlapping time windows with maximum value, choice
direction (ipsilateral or contralateral to the recording location), and trial type (forced or
free) as predictors (Eq. 4.3; see Methods). Overall, 70% of 453 neurons and 54% of 527
neurons from subjects C and G, respectively, significantly encoded at least one term during
the last 500 ms preceding choice (Fig 4.2a). Encoding of value was most common, followed
by encoding of choice direction.

To better understand the temporal evolution of information in ACC neurons leading
to the decision, we analyzed ACC population activity on individual trials (Balewski et al.,
2022). For each session, we trained linear discriminant analysis (LDA) decoders to predict
the choice direction (left or right) from neuronal firing rates and LFP magnitudes in over-
lapping 20 ms windows. We used a subset of free trials to assess decoder performance with
a k-fold validation procedure (C: 68 ± 2% accuracy across sessions; G: 69 ± 2%; chance:
50%). We applied the trained decoder weights to held-out free trials (see Methods) and used
the posterior probability for the chosen direction (DIRACC) as a proxy for representation
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Figure 4.1: Task and behavior. (a) Subjects fixated a cue to initiate each trial. They were presented with
one (forced choice) or two (free choice) pictures. After indicating their choice with a lever, they received the
corresponding juice amount with the probability Preward. (b) Subjects learned 16 pictures associated with
different juice amounts and reward probabilities. (c) were more likely to choose pictures associated with
larger and more probable rewards. Using the same arrangement as (b), the color indicates the percent of
free trials on which each picture was chosen when available. (d) Expected value was used to approximate
subjective value. We split the pictures into equal-sized groups from lowest expected value (value bin = 1) to
highest (value bin = 4). Groupings were the same for both subjects; same arrangement as (b). (e) Choice
response times on free (green) and forced (gray) trials. (f) The effects of maximum value and value difference
on reaction times. To visualize the unique contributions of each of these predictors, response times were
modeled as a linear function of one parameter and the residuals (mean ± s.e.m.) were plotted as a function
of the other parameter.



CHAPTER 4. VALUE DYNAMICS IN OFC DRIVE ACC CHOICE RESPONSE 39

a

6
27

120

2

23 98
42

5 42

148

1

6
53

27

C G

Max 
value

Trial
type

Choice
direction

Total sig. 70%
of 453 neurons
(500 ms before choice)

Total sig. 54%
of 527 neurons

Time from choice (s)
-1 -0.5 0 0.5

Time from choice (s)
-1 -0.5 0 0.5

0.5

0.45

0.55

0.6

0.65

D
IR

A
C

C

pictures pictures
C G

Time from choice (s) Time from choice (s)
-1 -0.5 0 0.5 -1 -0.5 0 0.5

D
IR

A
C

C
co

ef
fic

ie
nt

-0.1

0.1

0

C G
M

ax
 v

al
ue

co
ef

fic
ie

nt

0.1

0

Time from choice (s)
-1 -0.5 0 0.5

Time from choice (s)
-1 -0.5 0 0.5

C G

Time from choice (s)
-1 -0.5 0 0.5

Time from choice (s)
-1 -0.5 0 0.5

0.5

0.45

0.55

0.6

0.65

D
IR

A
C

C

Max value
4
3
2
1

C G

b

c

d

e

Figure 4.2: ACC direction decoding. (a) ACC firing rates were modeled as a linear combination of
maximum value (blue), choice direction (yellow), and trial type (red) in overlapping 100 ms windows stepped
by 25 ms. The majority of neurons were significantly predicted by at least one factor during the 500 ms
preceding choice. Significance was defined as p < 0.01 for at least 100 ms. (b)Average posterior probability of
decoding the chosen direction (DIRACC) on free trials from ACC neuronal firing rates and LFP magnitudes.
DIRACC gradually increased over 300 ms (yellow), peaking before the lever movement. Black triangles
indicate the median picture onset. (c) DIRACC increased with maximum picture value. Lines represent
mean ± s.e.m. during free trials grouped by maximum value. (d) We performed a linear regression to
quantify the relationship between DIRACC and maximum value. Bold lines indicate significance at p < 0.01.
Decoding of choice direction was significantly stronger for larger values. (e) Regression of response times as
a function of DIRACC , after partialling out the effect of maximum value. Bold lines indicate significance
p < 0.01. Stronger decoding of choice direction predicted faster response times.

strength (Fig. 4.2b). We observed a gradual rise in DIRACC over approximately 300 ms,
peaking before the lever movement (C: 195 ms; G: 100 ms). DIRACC preceding the lever
movement was significantly stronger for higher picture values (Fig. 4.2c, d).

We examined whether DIRACC predicted any variance in response times, beyond what
was already explained by maximum picture value (Fig. 4.1e). We performed a linear regres-
sion on response times with DIRACC and maximum avlue as predictors. Indeed, DIRACC

significantly predicted response times preceding the lever movement even after the effect of
maximum value was accounted for (Fig. 4.2e). Importantly, this relationship was unique to
the end of the trial, suggesting this direction signal is related to motor preparation rather
than spatial value representation. Although we observed similar encoding of task variables
(Fig. 4.4a) and even better accuracy in decoding choice direction (Fig. 4.4b) early in the
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Figure 4.3: Recording locations. (a) Reconstruction of ACC recording sites on coronal slices. Circle sizes
represent the number of neurons. CS = cingulate sulcus. (b) Reconstruction of OFC recording sites on
coronal slices. Circle sizes represent the number of neurons.

trial, the DIRACC during the 500 ms following picture onset was a consistently weaker
predictor of response times (Fig. 4.4c).

OFC value states drive ACC direction signal

We next investigated whether DIRACC ramping prior to the lever movement was affected
by the dynamics of the value signal decoded simultaneously from OFC. Value representations
in OFC vacillate between the available options when animals deliberate (Balewski et al.,
2022; Rich & Wallis, 2016). We hypothesized that, if the ACC population direction response
reflects an integration of these OFC value fluctuations, DIRACC would be affected by the
value of the picture currently being represented by OFC (Fig. 4.5a).

First, we decoded value states, or sustained periods of confident decoding, on individual
free trials (see Methods) from neuronal firing rates (C: 454 neurons; G: 429) and LFP from
up to four multisite probes in OFC per session (Fig. 4.3b). Consistent with our previous
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Figure 4.4: ACC encoding and decoding details. (a) The response profile of ACC neurons early in
the trial (500 ms following picture onset) was similar to late in the trial (Fig. 4.11d). Same conventions as
Fig. 4.1d. Neurons that encoded maximum value (C: 53.2%; G: 38.7%) or choice direction (C: 25.4%; G:
18.8%) in both trial epochs were more prevalent than expected by chance (Chi2 test; C: value Chi2 = 130.8,
df = 1, p < 1 × 10−10, direction Chi2 = 141.6, df = 1, p < 1 × 10−10; G: value Chi2 = 162.6, df = 1,
p < 1 × 10−10, direction Chi2 = 203.9, df = 1, p < 1 × 10−10). (b) Peak DIRACC accuracy was better
following picture onset than preceding choice (Wilcoxon signed-rank test for difference; subjects C and G
combined due to small number of sessions: p = 0.02). Each circle represents one session. Dashed lines
indicate chance decoding. (c) DIRACC following picture onset was a weaker predictor of response times
than DIRACC preceding choice, measured with %CPD from the regression model in Fig. 4.2e (Wilcoxon
signed-rank test for difference; subjects C and G combined: p = 0.01). Each circle represents one session.

findings (Balewski et al., 2022; Rich & Wallis, 2016), we observed that OFC value states
corresponding to the available pictures (chosen and unchosen) flip-flopped idiosyncratically
on each trial (Fig. 4.6a-c), and the strength of value decoding was predictive of response
times (Fig. 4.6d).

We compared DIRACC at the onset of chosen and unchosen OFC value states (Fig. 4.5b)
in sessions with simultaneous ACC and OFC recordings (C: n = 5 sessions; G: n = 5). We
restricted the analysis to value states in the 300 ms period of rising DIRACC prior to lever
movement (Fig. 4.2b). We found thatDIRACC was stronger in the 100 ms following a chosen
OFC value state compared to an unchosen value state (two-sample t-tests; C: t(4273) = 3.1,
p = 0.0018; G: t(5366) = 2.8, p = 0.0054). We also asked whether chosen OFC value states
led to faster increases in DIRACC compared to unchosen states. In other words, we tested
the interaction between time (100 ms before and after value state onset) and value state
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Figure 4.5: OFC value states influence ACC direction signal. (a) Model of how OFC value state
integration might affect the ramping ACC choice direction signal (top). We predict that DIRACC will
increase faster following chosen (high value) than unchosen (low value) OFC value states. The null hypothesis
is that OFC value and DIRACC are independent signals (yellow box). (b) DIRACC synced to the onset
of chosen (magenta) or unchosen (cyan) OFC value states during the period of rising DIRACC (Fig. 4.2c,
yellow). DIRACC was stronger in the 100 ms following chosen OFC value states; p < 0.01, as determined
from two-sample t-tests. (c) Mean ∆DIRACC (black) across trials at chosen or unchosen OFC state onsets.
∆DIRACC is the change in average DIRACC 100 ms before and after the value state onset. Swarms
represent the null distribution of mean ∆DIRACC from 10,000 shuffled trials. The difference in ∆DIRACC

following chosen compared to unchosen OFC value states was significantly greater than expected from the
null distributions (inset); asterisks indicate significance at p < 0.05.

type (chosen and unchosen). Indeed, ∆DIRACC was significantly larger following a chosen
than an unchosen OFC value state, compared to a null distribution from shuffled trials (C:
p = 0.03; G: p = 0.04; Fig. 4.5c).

ACC value dynamics

Since a large number of ACC neurons encode value, we also characterized the single-trial
value dynamics in ACC. Using the same approach as in OFC (see Methods), we successfully
decoded value from ACC on forced trials (C: 56± 4% accuracy across sessions; G: 52± 4%;
chance: 25%) and observed flip-flopping between chosen and unchosen value states on free
trials (Fig. 4.7a-c). The strength of value decoding in ACC was also predictive of response
time (Fig. 4.7d). However, the value dynamics decoded simultaneously from OFC and ACC
were not significantly correlated with each other (Fig. 4.8a).

Finally, we investigated the relationship between value and direction signals decoded from
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Figure 4.6: OFC value decoding. (a) We trained a linear discriminant analysis (LDA) decoder to predict
the value (1 - 4) on forced trials from OFC neuronal firing rates and LFP magnitudes, and applied the
decoder weights to compute the posterior probability for each value on individual free trials in overlapping
windows of 20 ms stepped by 5 ms. States are sustained periods (≥ 35 ms) of confidence decoding of a
specific value. We observed more chosen (red) than unchosen (blue) than unavailable (gray) value states,
replicating our previous results Rich, 2016. Single asterisk indicates significance at p < 0.01; double asterisks
indicate significance p < 0.0001, as determined from a 1-way ANOVA with post-hoc t-tests. (b) Chosen
value states were of significantly longer duration than unchosen value states. Conventions are the same as
(a). (c) Distribution of number of flips between chosen and unchosen value states per trial. The median
number of flips was 1.2 ± 0.02 and 2.8 ± 0.03 for subjects C and G, respectively. (d) We built a linear
regression for response time with chosen and unchosen decoding strength as predictors. Response times were
significantly faster when the chosen value (red) was decoded more strongly, and significantly slower when
the unchosen value (blue) was decoded more strongly. Bold lines indicate significance at p < 0.001.

the same ACC populations on each session. We anticipated that this relationship would be
even stronger within than across regions. Surprisingly, we did not see a strong relationship
between the timing of ACC value states and DIRACC . Although DIRACC was stronger
in the 100 ms following chosen compared to unchosen value states (two-sample t-tests; C:
t(5837) = 4.5, p < 1× 10−5; G: t(5218) = 4.0, p < 1× 10−4; Fig. 4.8b), it was also stronger
in the preceding 100 ms in subject G, suggesting that it was not causal to DIRACC ramping.
The interaction between time (before and after state onset) and value state (chosen and
unchosen) was not significant in both subjects (C: p = 0.03; G: p = 0.397; Fig. 4.8c).

4.3 Discussion

In summary, our results show that during value-based decision-making motor preparation
signals in ACC are affected by which value the OFC is currently representing. Because
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Figure 4.7: ACC value decoding. (a) We observed significantly more chosen (red) than unchosen (blue)
than unavailable (gray) value states. Conventions are the same as Fig. 4.6a. (b) Chosen value states were
of significantly longer duration than unchosen value states. Conventions are the same as Fig. 4.6b. (c)
Distribution of number of flips between chosen and unchosen value states per trial. The mean number of
flips was 1.7± 0.02 and 2.5± 0.03 for subjects C and G, respectively. (d) Response times were faster when
the chosen value (red) was decoded more strongly and slower when the unchosen value (blue) was decoded
more strongly, both early (top) and late (bottom) in the trial. Regression model and conventions same as
Fig. 4.6d.

OFC represents higher values more frequently and for longer duration than lower values,
this interaction between the two areas might lead ACC motor preparation to be biased
towards choosing the more valuable option. Our results are also consistent with previous
findings in ACC. For example, motor preparation signals can also be affected by the arrival
of new information about the value of a choice option (Hunt et al., 2018). Furthermore,
ACC may not be the only area involved in this accumulation of evidence: similar signals
have been observed in dorsolateral prefrontal cortex (Lin et al., 2020). More generally,
our results are consistent with the notion that decision-making involves value comparison
and motor preparation processes that occur in parallel in the brain (Cisek, 2012; Cisek &
Kalaska, 2010), rather than involving serial computations (Cai & Padoa-Schioppa, 2014;
Padoa-Schioppa, 2011). Indeed, our results show that the interaction between value signals
and motor preparation occurs on a moment-to-moment basis.

One outstanding issue is why ACC does not behave exactly like an accumulator of evi-
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Figure 4.8: ACC value correlations. (a) ACC and OFC value strength (top: chosen, bottom: unchosen)
was not significantly correlated. There was a weak correlation for chosen value states in subject C, but
this was not replicated in subject G, and there was no correlation for unchosen value states. Gray line
and shading indicate the median and 99% confidence interval from the null distribution of correlations from
10,000 shuffled trials. Bold colored lines indicate significance p < 0.01. (b) DIRACC synced to the onset of
chosen (orange) or unchosen (purple) ACC value states during the period of rising DIRACC . DIRACC was
stronger in the 100 ms following chosen ACC value states, as well as the preceding 100 ms for subject G.
Same conventions as Fig. 4.5b. (c) Mean ∆DIRACC (black) across trials at chosen or unchosen ACC state
onsets, and the difference in ∆DIRACC following chosen compared to unchosen ACC value states (inset).
Same statistical tests and conventions as Fig. 4.5c.

dence. Specifically, when the chosen option is represented in OFC, we might expect motor
preparation signals in ACC to reverse direction rather than simply decelerate. There are
several possible explanations. First, since chosen values states are more frequent, misclassifi-
cation of value states is more likely to lead to some chosen states been incorrectly labeled as
unchosen states, leading to a bias to observe an increase inDIRACC as opposed to a decrease.
Second, ACC may be integrating value signals from multiple brain regions which could limit
the influence of OFC dynamics. For example, we have recently demonstrated the existence
of two distinct value signals in the striatum, related to attentional capture and deliberative
decision-making (Balewski et al., 2022). Finally, there may be distinct subpopulations in
ACC related to the preparation of different movements, as occurs in other areas engaged
in motor preparation (Cisek & Kalaska, 2005; Klaes et al., 2011). Our current design, in
which there were only two different motor responses, was not ideal for detecting different
subpopulations. For example, we cannot differentiate whether the population is encoding
‘left’ vs. ‘right’ or whether it might be encoding ‘left’ vs. ‘not left’.

In conclusion, our results are consistent with ACC accumulating value evidence from
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OFC in order to determine the optimal choice response. Our results also demonstrate the
advantages of using high-channel count recordings combined with population-level analysis
to decode the dynamics of cognitive processes (Wallis, 2018). We used the encoding of value
in OFC to understand the dynamics of decision-making, which then enabled us to better
understand neural signals in ACC.

4.4 Methods

Experimental model and subject details

All procedures were carried out as specified in the National Research Council guidelines
and approved by the Animal Care and Use Committee at the University of California, Berke-
ley. Two male rhesus macaques (subjects C and G, respectively) aged 6 and 4 years, and
weighing 10 and 7 kg at the time of recording were used in the current study. Subjects
sat head-fixed in a primate chair (Crist Instrument, Hagerstown, MD) and manipulated a
bidirectional lever located on the front of the chair. Eye movements were tracked with an
infrared system (SR Research, Ottawa, Ontario, CN). Stimulus presentation and behavioral
conditions were controlled using the MonkeyLogic toolbox (Hwang et al., 2019). Subjects
had unilateral (subject C) or bilateral (subject G) recording chambers implanted, centered
over the frontal lobe.

Task Design

Subjects performed a task in which they were required to choose between pairs of pictures
or single pictures. Subjects fixated continuously for 750 ms on a central 0.5◦ cue to initiate
the presentation of one (forced choice trials, 33%) or two (free choice trials, 67%) 2.5◦ x 2.5◦

pictures, presented 6◦ to either side of the fixation cue. We sampled gaze position at 500 Hz.
Subjects used a bidirectional lever to indicate a left or right choice, and the selected picture
remained on the screen while the corresponding juice amount was delivered probabilistically.
The juice amounts (subject C: 0.15, 0.3, 0.45, 0.6 mL; subject G: 0.1, 0.2, 0.3, 0.4 mL)
and reward probabilities (C: 0.15, 0.4, 0.65, 0.9; subject G: 0.1, 0.37, 0.63, 0.9) uniquely
associated with each picture were titrated for each subject so that the subjects considered
both dimensions during their choices. Subject C completed 12,033 free and 6,307 forced
trials over 13 sessions; subject G completed 4,696 free and 2,577 forced trials over 5 sessions.

Neurophysiological recordings

Subjects were fitted with head positioners and imaged in a 3T MRI scanner. From
the MR images, we constructed 3D models of each subjects’ skull and target brain areas
(Paxinos et al., 2000). Subjects were implanted with custom radiolucent recording chambers
fabricated from polyether ether ketone (PEEK). During each recording session, up to eight
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multisite linear probes (16- or 32- channel V probes with 75, 100, or 200 µm contact spacing,
Plexon, Dallas, TX) were lowered into ACC (AP +21 to +37 mm) and OFC (areas 11
and 13, AP +30 to +40 mm). Electrode trajectories were defined in custom software, and
the appropriate microdrives were 3D printed (Form 2 and 3, Formlabs, Cambridge, MA)
(Knudsen et al., 2019). Lowering depths were derived from the MR images and verified from
neurophysiological signals via gray/white matter transitions. Neural signals were digitized
using a Plexon OmniPlex system, with continuous spike-filtered signals (200 Hz - 6 kHz)
acquired at 40 kHz and local field-filtered signals acquired at 1 kHz.

We recorded neuronal activity over the course of 13 sessions for subject C and 5 sessions
for subject G (Table 4.1). Units were manually sorted using 1400 ms waveforms, thresholded
at 4 standard deviations above noise (Offline Sorter, Plexon). We restricted our analysis to
neurons with a mean firing rate of > 1 Hz across the session. To ensure adequate isolation of
neurons, we excluded neurons where > 0.2% of spikes were separated by < 1100 ms. Sorting
quality was subjectively ranked on a 1 - 5 scale to separate well-isolated single neurons
from possible multi-units. None of the results reported in the manuscript depended on the
isolation quality of our neurons, so we included all neurons in our analysis. It was impossible
to distinguish dorsal and ventral ACC in subject C due to his anatomy but none of the
reported results indicated a dorso-ventral gradient, so we combined all ACC neurons from
both sides of the sulcus. In total, we recorded 453 and 517 neurons from ACC in subjects C
and G, respectively, and 454 and 429 neurons from OFC.

Only LFP channels with at least one unit were analyzed. Raw LFPs were notch filtered
at 60, 120, and 180 Hz and bandpassed using finite impulse response filters in six frequency
bands: δ (2-4 Hz), θ (4-8Hz), α (8-12 Hz), β (12-30 Hz), γ (30-60 Hz), and high γ (70-200
Hz). Analytic amplitudes and phase angles were obtained from Hilbert transforms in the
pass bands. In total, we recorded 302 and 402 LFP channels from ACC in subjects C and
G, respectively, and 341 and 360 LFP channels from OFC.

Behavioral analysis

We estimated the subjective value for each picture as the expected value, V:

expected value = juice amount× reward probability (4.1)

We then fit choice behavior using a soft-max decision rule:

PR =
1

1 + ew1(VR−VL)+w2S+w3
(4.2)

This modeled the probability that the subject will select the picture on right, PR, with
three free parameters: the inverse temperature, w1, which determines the stochasticity as a
function of the value difference between the right and left picture; a saccade bias term, w2,
which accounts for the influence of the first gaze location, S, after picture onset (Cavanagh et
al., 2019); and a side bias term, w3, which accounts for any preference for one choice direction.
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Subject Session ACC neurons OFC neurons

C rec09 – 29 †

rec11 23 –
rec16 22 31
rec33 – 33 †

rec36 – 33 †

rec41 – 38
rec42 – 52
rec60 107 ‡ 42 †

rec61 92 ‡ 46 †

rec62 60 ‡ 17 †

rec63 41 ‡ 44
rec65 47 ‡ 34 †

rec66 61 ‡ 55 †

total: 453 454
G rec28 99 ‡ 107 †

rec29 128 ‡ 70 †

rec31 112 ‡ 95 †

rec32 83 ‡ 85 †

rec33 95 ‡ 72 †

total: 517 429

Table 4.1: Neural data. Number of recording sessions and neurons recorded per session in the two subjects.
‡ Sessions with successful value and direction decoding; † successful value decoding.

We estimated all free parameters by maximizing the log likelihood of the full model. We
defined saccades as eye movements whose velocity exceeded 6 standard deviations from the
mean velocity during fixation. The saccade time was defined by the peak velocity within
each movement, and direction was identified by the subsequent eye position.

Single neuron regression analysis

For each neuron, we examined the relationship between firing rate, FR, and task variables
in a linear regression:

FR = β0 + β1 ∗ trial type+ β2 ∗ choice direction+ β3 ∗max value+ β4 ∗ trial number (4.3)

with binary variables for trial type (+1 free, -1 forced) and choicedirection (+1 contralateral
to the neuron, -1 ipsilateral), continuous variables for the maximum value of the presented
pictures (max value: 1 - 4), and trial number, a nuisance parameter to absorb potential
variance due to neuronal drift over the recording session. We repeated this regression in
overlapping 100 ms windows shifted by 25 ms, and defined significance as p < 0.01 for
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at least 100 ms (four consecutive time bins). We ensured that this criterion produced an
acceptable false discovery rate, by confirming that < 1.1% of neurons reached significance
during the fixation epoch. We performed this analysis with trials synced to picture onset
and choice.

Direction decoding with single trial resolution

For each session, we trained linear discrimination analysis (LDA) decoders to predict the
choice direction (left or right) from ACC neural activity during free trials in overlapping
windows of 20 ms stepped by 5 ms (Balewski et al., 2022). We synced the trials to either
picture onset or choice response. To reduce the dimensionality of the input features, we
performed PCA across trials separately for normalized neuron firing rates and normalized
amplitudes from the δ LFP band (2 - 4 Hz); higher frequency LFP bands did not meaningfully
improve decoding accuracy. We restricted the decoder inputs to the top PCs that explained
95% of the variance within each group.

We randomly split all free trials into separate training and held-out sets. The training set
was constrained such that there were an equal number of each offer pair where the chosen
value level was greater than the unchosen value (i.e. left 3 vs chosen right 4, chosen left
4 vs right 3, 2 vs chosen 4, chosen 4 vs 2, etc.). The held-out set contained all remaining
trials where the chosen value was equal to or greater than the unchosen value (i.e. correct
trials). We used a k-fold validation procedure on the training set to assess decoding accuracy.
We then used the entire training set to obtain decoder weights to compute the posterior
probability for left vs. right direction on each trial in the held-out set.

To maximally use all trials in a session, we repeated the procedure with 25 random splits
of training and held-out sets. For each trial, we averaged the computed posterior probabilities
across all instances when it was in a held-out set. To ease interpretation of reported results,
we relabeled the decoder class (left and right) as chosen direction and unchosen direction as
appropriate for each trial; chosen direction decoding strength is referred to as DIRACC in
the main text. Only sessions with good decoding accuracy on the training set of free trials
were included in the analyses, defined as > 60% overall accuracy (chance = 50%).

Value decoding with single trial resolution

For each session, we trained an LDA decoder to predict the value (1 - 4) from either OFC
or ACC neural activity during forced trials (Rich & Wallis, 2016). We averaged neuron firing
rates and all LFP band magnitudes following picture onset (100 - 400 ms) or preceding choice
(-300 to 0 ms). We performed the same dimensionality reduction as detailed for direction
decoding. For the training set, we randomly sampled forced trials to uniformly represent all
pictures on either side of the screen and used a k-fold validation procedure to assess decoding
accuracy. We then used all of the training set to obtain decoder weights to compute the
posterior probability for each value on all free trials in overlapping windows of 20 ms stepped
by 5 ms. To maximally use all trials in a session, we repeated the procedure with 50 random
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samples of forced training set trials and averaged the posterior probabilities for free trials.
Only sessions with good decoding accuracy on forced trials were included in the analyses,
defined as > 40% overall accuracy (C: 54± 4%; G: 52± 4%; chance = 25%).

We observed that chance rates of decoding value on free trials deviated from the expected
25%, likely due to global differences in population firing rates during different phases of the
task. To correct for this, we defined a unique baseline rate for each value level by averaging
the posterior probability corresponding to that level across trials when the picture value was
not available. We reported posterior probabilities as percent change from these baselines;
we refer to this metric as decoding strength.

To ease interpretation of reported results, we relabeled the decoder classes (1 - 4) as chosen
value, unchosen value, and unavailable as appropriate for each trial. Only free trials where
the chosen value was greater than the unchosen value (i.e. correct trials) were analyzed. For
all visualizations and analyses, one of the two unavailable value levels was randomly selected
for each trial.

We identified sustained periods of confident decoding as states. On each trial, the decod-
ing strength for a given value level needed to surpass 200% (i.e., double the baseline rate)
for at least four consecutive time bins (spanning 35 ms) to be considered a state.

Change in DIRACC following OFC value states

We defined the change in direction strength decoded from ACC (∆DIRACC) as the
difference between the average strength (DIRACC) 100 ms before and after the onset of
an OFC value state. We averaged ∆DIRACC within trials with more than one chosen or
unchosen OFC value state; we restricted the analysis to value states in the period of rising
DIRACC leading to choice (Fig. 4.2c), i.e. 300 ms before the peak for each subject.

We compared the difference between the average DIRACC following OFC chosen value
states (C: 57% of free trials; G:83%) and OFC unchosen value states (C: 52% of free trials; G:
68%). To assess statistical significance we built a null distribution over this metric for 10,000
trial shuffles, where trial labels were randomly permuted within each value comparison (1
vs. 2, 1 vs. 3, 1 vs. 4, etc.) per session.

Statistics

All statistical tests are described in the main text or the corresponding figure legends.
Error bars and shading indicate standard error of the mean (s.e.m.) unless otherwise spec-
ified. Probabilities and response times were transformed with logit and log10 functions,
respectively. All terms in regression models were normalized, and had maximum variance
inflation factors of 1.7. All comparisons were two-sided.
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Chapter 5

Conclusion

We began this thesis with the goal of understanding how orbitofrontal cortex (OFC)
value dynamics (Rich and Wallis, 2018; replication in chapter 3) are translated into deci-
sions. We hypothesized that a downstream region, such as the head of the caudate nucleus
(CdN; Chapter 3) or the anterior cingulate cortex (ACC; Chapter 4), may be integrating
over these serial value representations of the available option. We recorded large neural
populations (Chapter 2) simultaneously from OFC and either candidate region while two
monkeys used a bidrectional lever to select between pairs of pictures, each associated with a
unique probabilistic reward. We successfully predicted subjects’ choices and response times
from the neural activity in both ACC and CdN, but at vastly different times in the trial,
suggesting different computational roles for this regions. We observed that the motor prepa-
ration signal was indeed influenced by the OFC value signal. In contrast in the CdN, we
observed a rapid choice responses, which was locked to the picture presentation instead of
motor response and independent of OFC value. This chapter will summarize the findings
from our experiments and address remaining questions and future directions.

CdN supports fast, value-guided attention

We observed rapid encoding of the choice response in the CdN, locked to the picture pre-
sentation instead of motor response. This signal was strongly connected with the subjects’
initial saccades, which also occurred within 200 ms of the start of the trial and were directed
to the chosen item on the majority of trials. While CdN responses have been studied exten-
sively int he context of individual reward-predictive cues (Anderson et al., 2014; Hikosaka
et al., 2006; Kawagoe et al., 1998; Lauwereyns et al., 2002), our results show that this fast
direction signal is also present during choice. Overall, this rapid CdN direction signal is
consistent with a value-guided orienting response.

In contrast to the highly stereotyped early phasic direction response in CdN, OFC pop-
ulation dynamics are idiosyncratic across trials, likely reflecting slower, more deliberative
reasoning. We replicated the main findings from Rich and Wallis, 2016: value representa-
tion flip-flopped between the available pictures, predicting both the optimality and speed
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of the decision. OFC value signals were independent of the CdN direction response, and
were also not influenced by overt eye movements. These findings are consistent with value-
guided orienting and value-guided decision-making being parallel processes processes (see
also: Cavanagh et al., 2019; Evans and Stanovich, 2013; Kahneman, 2011; McClure et al.,
2004.

OFC value integration in ACC

The strength of the choice direction signal in ACC increased gradually leading up to
the motor response. We observed that this motor preparation signal was biased toward the
picture corresponding to the simultaneous OFC value representation on each trial, consistent
with our integration model. Our results are consistent with previous findings motor prepa-
ration signals in ACC can be affected by the arrival of new information about the value of
a choice option (Hunt et al., 2018).

One useful approach for further investigating this relationship may be a causal manipu-
lation of OFC value dynamics in real time, for example with closed-loop microstimulation
(Jadhav et al., 2012; Knudsen & Wallis, 2020; Zhou et al., 2019). We predict that selectively
enhancing or disrupting OFC value states would bias both the ACC direction signal and
motor response times toward or against the corresponding picture, respectively; we predict
initial saccades and the CdN direction signal would be unchanged.

This relationship with OFC value may not be unique to ACC. Future experiments will
need to explore other brain regions that also fit the candidate profile we established (Chapter
1). For example, the dorsolateral prefrontal cortex also has strong reciprocal connections
with both OFC (Barbas & Pandya, 1989) and motor areas (Young & Shapiro, 2011), and
neurons here transition from encoding value to motor responses over the evolution of the
trial (Cai & Padoa-Schioppa, 2014; Hunt et al., 2015). The anterior striatum also receives
strong projections from OFC (Ferry et al., 2000; Haber et al., 1995); while we ruled out the
head of the caudate nucleus as an OFC value integrator (Chapter 3), the putamen remains
a strong candidate. This region is critical to arm movement control (Inase et al., 1996; Kelly
& Strick, 2004; Takada et al., 1998) and neurons here also encode both value and motor
information (Hori et al., 2009).

High-channel recordings

Over the course of these experiments, we advanced existing recording methods to dramat-
ically expand the number of simultaneously recorded neurons, peaking over 100 neurons each
from two regions. We leveraged these ensembles to investigate neural dynamics that were not
observable from trial-averaged single neuron responses: individual ACC and CdN neuronal
response profiles were very similar, but the single-trial dynamics revealed important tem-
poral differences in the encoding of direction response information. As more sophisticated
probes (N. Steinmetz, 2019; N. A. Steinmetz et al., 2018) and imagine methods (Bollimunta
et al., 2021; Kondo et al., 2018; Oguchi et al., 2021) continue to increase the density of
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recorded neural populations, we will need to advance more sophisticated analysis methods
to understand circuit- and systems-level population dynamics.

Parallel value processing

Value-based decision making is often presented as a serial process of choice evaluation,
comparison, and motor action (Cai & Padoa-Schioppa, 2014; Padoa-Schioppa, 2011). In
contrast, our results are more consistent with all of these elements happening in parallel
in the span of the deliberative period. Value and direction signals from all three brain
regions (OFC, ACC, and CdN) were not necessarily correlated with each other, but were all
predictive of subjects’ choices and response times.

While we made progress in understanding how OFC value signals are translated into
actions, we opened a series of new questions about which regions beyond ACC may serve
as OFC value integrators; whether there are other value circuits, like the parallel attention
signal evident in CdN and initial saccades, that influence the choice or motor response; and
how these parallel signals all ultimately drive the behavior.
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Vickery, T. J., Chun, M. M., & Lee, D. (2011). Ubiquity and specificity of reinforcement
signals throughout the human brain. Neuron, 72 (1), 166–177.

Wallis, J. D. (2007). Neuronal mechanisms in prefrontal cortex underlying adaptive choice
behavior. Ann. N. Y. Acad. Sci., 1121, 447–460.

Wallis, J. D. (2011). Cross-species studies of orbitofrontal cortex and value-based decision-
making. Nat. Neurosci., 15 (1), 13–19.

Wallis, J. D., & Kennerley, S. W. (2010). Heterogeneous reward signals in prefrontal cortex.
Curr. Opin. Neurobiol., 20 (2), 191–198.

Wallis, J. D. (2018). Decoding cognitive processes from neural ensembles. Trends Cogn. Sci.,
22 (12), 1091–1102.

Watanabe, K., & Hikosaka, O. (2005). Immediate changes in anticipatory activity of caudate
neurons associated with reversal of position-reward contingency. J. Neurophysiol.,
94 (3), 1879–1887.

Young, J. J., & Shapiro, M. L. (2011). Dynamic coding of Goal-Directed paths by orbital
prefrontal cortex. J. Neurosci., 31 (16), 5989–6000.



BIBLIOGRAPHY 62

Zhou, A., Santacruz, S. R., Johnson, B. C., Alexandrov, G., Moin, A., Burghardt, F. L.,
Rabaey, J. M., Carmena, J. M., & Muller, R. (2019). A wireless and artefact-free
128-channel neuromodulation device for closed-loop stimulation and recording in non-
human primates. Nat Biomed Eng, 3 (1), 15–26.




