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Behavioral phenotypes of genetic mouse models of autism

T. M. Kazdoba, P. T. Leach, and J. N. Crawley*

MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis 
School of Medicine, Sacramento, CA, USA

Abstract

More than a hundred de novo single gene mutations and copy-number variants have been 

implicated in autism, each occurring in a small subset of cases. Mutant mouse models with 

syntenic mutations offer research tools to gain an understanding of the role of each gene in 

modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and 

transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and 

comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum 

disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse 

behavioral assays designed to maximize face validity to the types of social deficits and repetitive 

behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated 

symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual 

reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 

years, we and many other laboratories around the world have employed these and additional 

behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, 

we highlight mouse models with mutations in genes that have been identified as risk genes for 

autism, which work through synaptic mechanisms and through the mTOR signaling pathway. 

Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to 

a causal role for specific gene contributions and downstream biological mechanisms in the 

etiology of autism.
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Autism spectrum disorder (ASD) is a neurodevelopmental syndrome with a prevalence of 

over 1% of the population (CDC 2014; Elsabbagh et al. 2012; Kim et al. 2011). Diagnosis 

by the current Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria is 

based on two categories of behavioral symptoms: (1) unusual reciprocal social interactions 

and impaired social communication; and (2) stereotyped and repetitive patterns of behaviors, 

with restricted interests and activities (American Psychiatric Association 2013; Lord & 

Bishop 2015). Associated symptoms, which are present in subsets of individuals with ASD, 

include intellectual disabilities, anxiety, seizures, hyperactivity, sleep disruption and unusual 
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reactivity to sensory stimuli. Early behavioral interventions are the current standard of care 

and offer the best long-term outcomes at present (Lord & Jones 2013; Rogers et al. 2012). 

Intensive behavioral intervention is highly effective in teaching young children to improve 

their social skills and redirect their repetitive behaviors. However, even the best behavioral 

therapies do not work for all, are expensive, are labor- and time-intensive and are not 

available in many geographic regions. Understanding the causes of autism is the first step in 

the development of effective medical therapeutics to improve symptoms and reverse the 

disorder’s trajectory.

Hypotheses about the genetic causes of ASD originally arose from observations of a male–

female bias, 4:1 or greater, and high concordance between identical twins, 50–90%, as 

compared to less than 10% for non-identical twins and siblings (Fombonne 2009; Hallmayer 

et al. 2011; Miles 2011; Nordenbaek et al. 2014; Ritvo et al. 1985; Sandin et al. 2014; 

Smalley et al. 1988). Intensive searches for the genes causing ASD employed genome-wide 

association approaches in the early 2000s, progressed to analyses of copy-number variants 

(CNVs), and are now proceeding with exome and whole genome sequencing in thousands of 

individuals. Early findings quickly revealed that ASD is not a monogenic disorder. In 

contrast to disorders such as Huntington’s disease and Fragile X syndrome, there is no one 

specific gene responsible for all cases of autism. Rather, a growing number of de novo single 

gene mutations and CNVs have been identified in people with autism (Alarcon et al. 2008; 

Bucan et al. 2009; Butler et al. 2005; Buxbaum et al. 2007; Cook & Scherer 2008; Crepel et 

al. 2014; Glessner et al. 2009; Iossifov et al. 2014; Krumm et al. 2015; Kumar et al. 2009; 

Lawson-Yuen et al. 2008; Leblond et al. 2014; Michaelson et al. 2012; Morrow 2010; Neale 

et al. 2012; O’Roak et al. 2011; Pinto et al. 2010; Szatmari et al. 2007; Vernes et al. 2008; 

Wang et al. 2009; Yuen et al. 2015). Mutations in common gene variants and de novo 

coding mutations may be responsible for up to 50% of ASD cases (Gaugler et al. 2014; 

Iossifov et al. 2014; Miles 2011). Over 100 risk genes and CNVs for ASD have been 

published, each one appearing in only a relatively small number of individuals (Butler et al. 

2005; Coe et al. 2014; De Rubeis et al. 2014; Gaugler et al. 2014; Iossifov et al. 2014; Li et 

al. 2014; Parikshak et al. 2013; Pinto et al. 2014; Willsey & State 2015). Epigenetic risk 

factors have been implicated in ASD, including chromatin remodeling and methylation 

mechanisms, such as CHD8 (Bernier et al. 2014; Cotney et al. 2015; O’Roak et al. 2012; 

Wilkinson et al. 2015), HDAC (Foley et al. 2012; Moldrich et al. 2013) and MECP2 

(Shibayama et al. 2004; Theoharides et al. 2015), Further, environmental risk factors, such 

as parental age (Kong et al. 2012) and atypical maternal autoantibodies (Braunschweig et al. 

2013; Brimberg et al. 2013; Diamond et al. 2013; Piras et al. 2014), are associated with a 

higher incidence of ASD.

One of the most intriguing aspects regarding the genetics of ASD is the enigma of how these 

many risk factors converge to result in the same general cluster of symptoms diagnosed as 

ASD. One possibility is that there are underlying convergent downstream mechanisms 

which contribute to ASD symptomotology. No definitive biomarkers have yet been 

identified across all diagnosed cases. Rather, subsets of biological factors may define 

subgroups of individuals with ASD. Stratification by subgroup, either by behavioral 

category or biomarker, may offer the best strategy for focused clinical trials. Intensive 
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searches are underway to define abnormalities in neurophysiology, neuroanatomy, brain 

chemistry, immune markers and other key biological systems (Ecker et al. 2013; Jeste & 

Geschwind 2014; Levitt & Veenstra-VanderWeele 2015). High heterogeneity of symptoms 

across cases suggests that autism is actually multiple disorders, analogous to the plural 

concept of ‘cancers’, with different genetic etiologies and biological defects, to be treated 

with different classes of therapeutics. The concept of ‘autisms’ is implicit in the current use 

of the term ASD, implemented in the 2013 edition of the DSM-5.

Readers of Genes, Brain and Behavior are well aware of methods to interrogate genetic 

hypotheses of human disorders by targeting the homologous mutation in another species and 

then explicating the consequent phenotypic outcomes. Knockout (KO) and humanized 

knockin mice, and more recently KO rats, have been generated for many of the single gene 

mutations and CNVs that were identified in ASD populations and for comorbid 

neurodevelopmental disorders such as Fragile X and tuberous sclerosis (TSC) (Baudouin et 

al. 2012; Ey et al. 2011; Silverman et al. 2010a; Zoghbi & Bear 2012). Some of these 

mutant mouse models are now being employed in preclinical testing of pharmacological 

targets to treat the core symptoms of ASD (Silverman & Crawley 2014; Spooren et al. 2012; 

Vorstman et al. 2014).

As genetic mouse models emerged, our behavioral neuroscience laboratory invested in 

methods development to design mouse behavioral assays with high relevance to the 

diagnostic symptoms of autism (Crawley 2004). Because the clinical phenotype of this 

uniquely human disorder is complex and heterogeneous, we initiated discussions with 

autism clinical experts, to understand the critical symptoms that could be most meaningfully 

modeled in mice. Clinical researchers, including colleagues at the University of California 

Davis MIND Institute, Weill Cornell Medical College, University of North Carolina, 

University of Washington, University College London and the National Institute of Mental 

Health Intramural Research Program, kindly allowed us to observe diagnostic interviews 

and watch videotapes of children with ASD. Knowledge gained through these sessions, and 

from lectures and conversations with many other generous colleagues working with 

children, adolescents and adults with ASD, guided our thinking in the development of 

mouse behavioral assays that dovetail with the natural behavioral repertoire of mice. 

Considering the types of social approach abnormalities and inappropriate social behaviors 

that are common in ASD, we developed a mouse 3-chambered social approach assay (Moy 

et al. 2004; Nadler et al. 2004), refined methods for scoring reciprocal social interactions in 

juvenile and adult mice (McFarlane et al. 2008), adapted measures for the detection of 

responses to social olfactory cues (Yang & Crawley 2009), and developed call categories for 

ultrasonic vocalizations emitted in response to social cues during reciprocal social 

interactions (Scattoni et al. 2008, 2011). Further, we established observational scoring 

methods to quantify motor stereotypies and repetitive behaviors, such as self-grooming and 

digging, along with assembling a set of established behavioral assays relevant to anxiety, 

intellectual impairment, hyperactivity and sensory reactivity (McFarlane et al. 2008; Moy et 

al. 2008a,b; Roullet & Crawley 2011; Silverman et al. 2010a,b, 2012, 2013, 2015; Wohr et 

al. 2011a; Yang et al. 2011, 2012a, 2015), which are now widely used. A small subset of 

these assays is illustrated in Figure 1. This review presents examples and summaries of 
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ASD-relevant phenotypes discovered by our lab and many other excellent behavioral 

genetics labs, revealing the phenotypic consequences of targeting mutations in ASD risk 

genes.

A remarkable number of risk genes for ASD code for synaptic proteins. Cell adhesion 

proteins, including contactin-associated proteins, neuroligins and neurexins connect 

dendrites with axons to promote synapse formation. Postsynaptic scaffolding proteins, such 

as shanks and neuroligins, strengthen synapses and maintain synaptic transmission. 

Postsynaptic receptors, such as NMDA and metabotropic glutamate receptors, GABA 

receptors of varying subunit compositions, serotonin transporter and receptor subtypes, and 

oxytocin receptors, mediate excitatory and inhibitory synaptic signals. Sodium channels, 

potassium channels and downstream signaling pathways, such as the PTEN/PI3 kinase/Akt/

mTOR pathway, mediate postsynaptic events and critical cellular functions. Mutations and 

common variants of the genes for these proteins have been identified in small numbers of 

individuals with autism and related disorders (Butler et al. 2005; Cheah et al. 2013; Frazier 

et al. 2014; Han et al. 2012; Krey et al. 2013; Rosander & Hallbook 2015; Tavassoli et al. 

2014; Veenstra-VanderWeele et al. 2012; Weiss et al. 2003).

Mice with targeted mutations in many of these genes were generated by outstanding 

molecular genetics laboratories and generously donated to public repositories such as The 

Jackson Laboratory. Behavioral phenotypes have been published for some of these mutant 

lines. In most cases, one original publication describes the behavioral, electrophysiological, 

neuroanatomical, and/or biochemical phenotypes of the new mouse model of autism. In 

some cases, the first findings have been replicated by the same laboratory in additional 

publications. In a few cases, behavioral phenotypes have been replicated by other 

laboratories. We summarize some of the strongest findings below. Table 1 provides 

descriptions of gene mutations associated with human ASD. Table 2 summarizes the 

behavioral phenotypes in the corresponding mouse models, focusing on a subset of ASD 

risk genes that are involved in synaptic function and the mTOR signaling pathway. Here, we 

will refer to mice without any functional alleles (homozygous null) as KO mice, mice with 

one functional allele as heterozygous (Het) mice, mice with targeted amino acid 

substitutions as knockin mice, and littermate controls with both functional alleles as 

wildtype (WT) mice.

Mouse models of genetic risk factors for autism

The CNTNAP2 gene, located on chromosome 7, encodes contactin-associated protein-like 2 

(CASPR2), a member of the neurexin superfamily of proteins, functioning as a cell adhesion 

molecule and receptor (Rodenas-Cuadrado et al. 2014). This protein, which contains a 

putative PDZ binding domain, mediates interactions of neurons and glia during central 

nervous system development. It also is located in myelinated axons and directs potassium 

channel localization within differentiating neurons (Poliak et al. 1999, 2003). CASPR2 

directly binds to the transcription factor FOXP2 (forkhead box protein P2), which has been 

implicated in speech and language development (Fischer & Hammerschmidt 2011; Vernes 

et al. 2008). Several mutations in the CNTNAP2 locus, including rare, common and deletion 

variants, have been associated with ASD (Alarcon et al. 2008; Arking et al. 2008; Poot et al. 
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2010; Rossi et al. 2008; Strauss et al. 2006), although more recent studies indicate a limited 

contribution of CNTNAP2 dysregulation to ASD (Bakkaloglu et al. 2008; Murdoch et al. 

2015; Sampath et al. 2013). Mice lacking Cntnap2 exhibited reduced juvenile ultrasonic 

vocalizations, reduced social interaction time and increased repetitive behaviors 

(Penagarikano et al. 2011). In addition to these deficits in ASD-related behaviors, Cntnap2 

KO mice also displayed abnormal neuronal cortical migration, asynchronous neuronal firing 

in the cortex, a reduced number of inhibitory interneurons, behavioral perseveration in a 

cognitive task, hyperactivity and seizures (Penagarikano et al. 2011).

Neuroligins are cell adhesion molecules located at the postsynaptic side of the synapse, 

interacting with their presynaptic partner proteins, the neurexins (Bang & Owczarek 2013). 

Neuroligins contribute to synaptic neurotransmission through their influence on synaptic 

formation and are distributed at excitatory and inhibitory synapses in an isoform-dependent 

manner (Hu et al. 2015). For example, neuroligin-1 is primarily located at excitatory 

synapses (Budreck et al. 2013; Chih et al. 2005; Song et al. 1999), while neuroligin-2 is 

found at inhibitory synapses (Varoqueaux et al. 2004); neuroligin-3 can be found at both 

these locations (Budreck & Scheiffele 2007). At the synapse, neuroligins bind to PSD-95, a 

scaffolding protein important for postsynaptic strengthening and synapse organization, 

particularly with ion channels and receptors, such as the glutamatergic NMDA receptor 

(Bolliger et al. 2001; Irie et al. 1997; Kim et al. 1995, 2008; Kornau et al. 1995; 

Niethammer et al. 1996; Shipman & Nicoll 2012). Several studies suggest that neuroligins 

are involved in synapse modulation and specification rather than synapse formation 

(Chubykin et al. 2007; Krueger et al. 2012; Varoqueaux et al. 2006). Neuroligin proteins 

encoded by X-linked genes, such as NLGN3 and NLGN4 which map to Xq13 and Xp22.3, 

respectively, have been associated with ASD in large genome-wide scans (Auranen et al. 

2002; Glessner et al. 2009; Philippe et al. 1999), but strong associations have not been 

found in all studies (Vincent et al. 2004; Ylisaukko-oja et al. 2005). Using amino acid 

sequencing in linkage and proband case studies, deletions and frameshifts in NLGN3 and 

NLGN4 sequences have been identified in individuals with ASD (Jamain et al. 2003; 

Laumonnier et al. 2004; Lawson-Yuen et al. 2008; Marshall et al. 2008; Thomas et al. 1999; 

Yan et al. 2005).

Neuroligin-1 KO mice exhibited minimal deficits in social behavior, but displayed increased 

grooming and spatial learning impairments, along with impaired hippocampal long-term 

potentiation (Blundell et al. 2010). Neuroligin-2 heterozygous and KO mice showed normal 

social interactions in social approach, but displayed increased anxiety-like behavior, 

decreased pain sensitivity and poor motor coordination (Blundell et al. 2009; Wohr et al. 

2013). In addition, neuroligin-2 KO mice had decreased inhibitory neurotransmission, as 

well as decreased immunostaining of inhibitory synapse markers (Blundell et al. 2009; 

Chubykin et al. 2007). Neuroligin-3 knockin (R451C) mice, with an arginine to cysteine 

substitution at site 451, did not display robust autism-relevant behaviors, but rather had mild 

developmental differences, (e.g. slower righting reflexes), enhanced spatial learning 

acquisition and reduced acoustic startle (Chadman et al. 2008; Etherton et al. 2011; Tabuchi 

et al. 2007), suggesting that this ASD-related point mutation delayed development, altered 

learning and reduced sensitivity to stimuli. Neuroligin-3 knockin mice also displayed 
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increased inhibitory neurotransmission in the barrel cortex, increased excitatory 

neurotransmission and enhanced long-term potentiation in the hippocampus, increased 

dendritic branching in the hippocampus, as well as increased protein levels of inhibitory 

synaptic markers, while KO mice did not (Etherton et al. 2011; Tabuchi et al. 2007). 

Neuroligin-3 KO mice displayed normal sociability, but impairments in fear conditioning 

and olfaction, as well as hyperactivity and decreased total brain volume (Radyushkin et al. 

2009). Characterization of Nlgn4 KO mice revealed that loss of this neuroligin resulted in 

reduced sociability and ultrasonic vocalizations, as well as a reduction in total brain volume 

(El-Kordi et al. 2013; Jamain et al. 2008). However, phenotypic analysis of later generations 

of the same line of Nlgn4 KO did not find any genotype differences in sociability, ultrasonic 

vocalizations, anxiety-related behaviors or general locomotor activity (Ey et al. 2012).

Neurexins are a class of cell adhesion proteins found on the presynaptic terminal of synapses 

that bind to neuroligins (Bang & Owczarek 2013). Numerous association studies have 

identified mutations in the NRXN1 gene, located on chromosome 2, in intellectual 

disabilities and other syndromes, including several cases of autism (Ching et al. 2010; Feng 

et al. 2006; Glessner et al. 2009; Gregor et al. 2011; Marshall et al. 2008; Szatmari et al. 

2007; Zahir et al. 2008). Neurexin-1α KO mice displayed increased grooming, reduced 

locomotor activity, reduced sensorimotor gating and increased aggression (Etherton et al. 

2009; Grayton et al. 2013). Further studies are necessary to determine the exact contribution 

of specific neurexin and neuroligin mutations to ASD-relevant behaviors.

The SHANK family of genes located on chromosome 22q encodes scaffolding proteins that 

assist in the synaptic organization of excitatory glutamatergic neurons by binding to 

postsynaptic density proteins, signaling molecules, postsynaptic receptors and cytoskeletal 

proteins (Boeckers et al. 2002; Grabrucker et al. 2011; Lim et al. 1999; Naisbitt et al. 1999; 

Sheng & Kim 2000; Tu et al. 1999). SHANK3 can bind to neuroligins, suggesting disrupted 

cell adhesion may contribute to ASD (Meyer et al. 2004). Genetic studies have identified de 

novo and inherited mutations in SHANK1 (Sato et al. 2012), SHANK2 (Berkel et al. 2010, 

2012; Pinto et al. 2010) and SHANK3 (Boccuto et al. 2013; Durand et al. 2007; Gauthier et 

al. 2009, 2010; Marshall et al. 2008; Moessner et al. 2007). A recent meta-analysis of 

SHANK mutations has suggested that ASD severity due to SHANK mutations may be related 

to which gene is mutated, such that SHANK3 mutations have a higher frequency and 

penetrance in individuals with ASD, compared to SHANK1 and SHANK2 (Leblond et al. 

2014). 22q13 deletion syndrome, also known as Phelan-McDermid syndrome, is caused by a 

deletion on the distal part of the long arm of chromosome 22 and is associated with ASD-

like behaviors, including disrupted social behavior, repetitive behaviors, motor dysfunctions, 

seizures and moderate to severe intellectual disability (Kolevzon et al. 2014; Phelan & 

McDermid 2012). SHANK3 is one of the most commonly mutated genes within the Phelan-

McDermid critical region and is thought to underlie most of the neural consequences of this 

deletion (Phelan & McDermid 2012).

While Shank1 KO mice do not display robust autism-relevant social deficits (Silverman et 

al. 2011), Shank1 KO mice emitted fewer ultrasonic vocalizations as pups, exhibited 

reduced scent marking and abnormal vocalizations as adults and had motor impairments 

(Silverman et al. 2011; Wohr et al. 2011b). Shank1 KO mice also displayed dendritic spine 
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abnormalities, including weaker basal synaptic neurotransmission (Hung et al. 2008). 

Shank2 KO mice had abnormalities in several ASD-relevant behaviors, including reduced 

sociability, as measured by fewer social contacts during same-sex interactions, and reduced 

preference for social novelty, as well as higher levels of repetitive behaviors (e.g. grooming 

and jumping) and abnormal ultrasonic vocalizations (Schmeisser et al. 2012; Won et al. 

2012). In addition, Shank2 KO mice had a reduced number of hippocampal dendritic spines 

and reduced glutamatergic neurotransmission in the hippocampus (Schmeisser et al. 2012; 

Won et al. 2012).

Mutant mice have been generated for each of the Shank3 isoforms, with deletions in various 

domains of the Shank3 gene, some of which displayed social deficits while others displayed 

normal sociability (Jiang & Ehlers 2013). Reduced sociability, reduced ultrasonic 

vocalizations and high levels of repetitive self-grooming were dependent on which isoform 

was deleted (Bozdagi et al. 2010; Drapeau et al. 2014; Kouser et al. 2013; Peca et al. 2011; 

Wang et al. 2011; Yang et al. 2012b). Reduced basal neurotransmission as well as 

abnormalities in neuronal morphology (e.g. neuronal hypertrophy, dendritic spine deficits) 

have been identified in most of these models (Bozdagi et al. 2010; Kouser et al. 2013; Peca 

et al. 2011; Wang et al. 2011; Yang et al. 2012b), underscoring the importance of the Shank 

proteins in maintaining normal synaptic function and neuronal structure. Therefore, several 

different ASD-relevant mutations in the SHANK gene family have been modeled in mice, 

and while the phenotypes differ between the specific models, it appears that complete or 

partial loss of Shank proteins may be detrimental to normal social behaviors and may induce 

high levels of repetitive behaviors in mice.

ASD risk genes in the mTOR signaling pathway

While many of the identified risk genes for ASD involve synaptic proteins, mutations in 

several components of the mTOR pathway are also implicated in ASD (Bourgeron 2009), 

suggesting that normal function of this intracellular signaling pathway is necessary for 

proper synaptic transmission and neuronal activity. The mTOR pathway is critical for 

protein synthesis, cellular proliferation and growth (Hershey et al. 2012; Laplante & 

Sabatini 2012). Activated tyrosine kinase receptors recruit and activate phosphoinositide 3-

kinase (PI3K), which converts phosphatidylinositol (4,5)-biphosphate (PIP2) to 

phosphatidylinositol (3, 4, 5)-triphosphate (PIP3). PIP3 recruits many proteins to the 

membrane through pleckstrin homology domains, including PDK1 and the serine/threonine 

kinase AKT, an important downstream effector of PIP3. Phosphatase and tensin homolog 

located on chromosome 10 (PTEN) is a lipid and protein phosphatase that negatively 

regulates Akt activity by working in opposition to PI3K, converting PIP3 back to PIP2 

(Maehama & Dixon 1998; Stambolic et al. 1998). Akt is fully activated following 

phosphorylation by PDK1 and mTOR complex 2 (mTORC2), one of two complexes that 

involves the evolutionarily conserved serine/threonine kinase, mammalian target of 

rapamycin (mTOR) (Bayascas & Alessi 2005; Sarbassov et al. 2005). Phosphorylated Akt is 

involved in a wide range of cellular processes, including cell proliferation, survival and 

growth, via a myriad of downstream signaling proteins, including TSC1 and TSC2. 

Activated Akt inhibits a protein complex composed of TSC1 (hamartin) and TSC2 (tuberin) 

through phosphorylation (Huang & Manning 2009; Tee et al. 2002). This disinhibits the 
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GTPase Rheb and actives mTOR complex 1 (mTORC1) (Sato et al. 2008). Once activated, 

mTORC1 upregulates protein synthesis by phosphorylating several key proteins, including 

S6 kinase 1 (S6K1), which subsequently regulates Fragile X mental retardation protein 

(FMRP) through phosphorylation (Narayanan et al. 2008). Several key proteins, such as 

PTEN, TSC1, TSC2 and FMRP, are strongly implicated in subsets of ASD cases, and are 

discussed below. However, additional components of the mTOR pathway are also under 

investigation for their contribution to ASD-related deficits, such as the mTOR substrate 

eIF4E (Gkogkas et al. 2013).

PTEN mutations are most often associated with a variety of hamartoma syndromes, 

including Cowden syndrome (Eng 2003), which are characterized by benign focal 

malformations. PTEN was identified as an ASD candidate gene after several case and 

prospective studies revealed an association in individuals with ASD and macrocephaly 

(enlarged head size) (Butler et al. 2005; Buxbaum et al. 2007; Herman et al. 2007; McBride 

et al. 2010; Varga et al. 2009). Modeling PTEN mutations in mice has focused on two 

distinct strategies: conditional KO mice, in which distinct cell types lack the gene and 

protein product, and heterozygous null mice that possess constitutive haploinsufficiency. 

Conditional KO mice with a Pten deletion restricted to a subset of post-mitotic hippocampal 

and cortical neurons exhibited deficits in social interaction, sociability and preference for 

social novelty as well as impaired performance in the Morris water maze and macrocephaly 

(Kwon et al. 2006; Zhou et al. 2009). Similarly, heterozygous KO mice with a constitutive 

Pten mutation exhibited macrocephaly and deficits in sociability (Clipperton-Allen & Page 

2014), but these sociability impairments were limited to female mice in one study (Page et 

al. 2009). Additionally, Allen, Page and colleagues also showed that Pten heterozygous 

mice exhibited elevated repetitive behaviors (i.e. digging, self-grooming). To date, the 

results obtained with Pten mutant mice suggest that Pten dysfunction leads to several ASD-

relevant behaviors, although more extensive behavioral characterization of the various Pten 

conditional mouse models would further elucidate this phosphatase’s contribution to ASD.

Tuberous sclerosis is a genetic condition resulting from mutations in the TSC1 or TSC2 

gene, which negatively regulate mTOR activity (Curatolo & Maria 2013). Individuals that 

carry mutations in either TSC gene have a higher than expected occurrence of ASD-like 

features (50%) or an ASD diagnosis (29%) (Curatolo et al. 2010). Tsc1 heterozygous mice 

exhibited deficits in social interactions, hippocampus-dependent contextual fear 

conditioning, and hidden platform Morris water maze tasks (Goorden et al. 2007). Social 

deficits were not identified in Tsc2 heterozygous mice, except when the mice were also 

treated prenatally with Poly I:C, a maternal immune activation model (Ehninger et al. 2012). 

However, Tsc2 mutations did produce learning and memory deficits in Morris water maze 

hidden platform performance and contextual fear conditioning (Ehninger et al. 2008). A 

dominant negative Tsc2 mutation that binds to Tsc1 and inhibits its activity also led to 

reduced social interactions and a reduced preference for social novelty, although these mice 

exhibited normal sociability in the 3-chambered social approach task (Chevere-Torres et al. 

2012). A specific Tsc1 disruption limited to cerebellar Purkinje cells produced deficits in 

sociability, repetitive behavior and cognitive flexibility (Tsai et al. 2012). Similarly, Tsc2 

disruption limited to cerebellar Purkinje cells replicated deficits in sociability and social 
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preference, which were accompanied by increased repetitive behaviors (Reith et al. 2013). 

The study of these Tsc1 and Tsc2 mutant mice has provided knowledge as to how these 

single gene mutations can model some ASD-relevant phenotypes and contribute to the 

overall ASD phenotype.

Fragile X syndrome (FXS) is caused by a hypermethylated CGG repeat expansion in the 

FMR1 gene that leads to a drastic reduction in its protein product, FMRP. FMRP is an RNA 

binding protein that has been implicated in regulating protein expression (Bagni & 

Greenough 2005; Chen & Joseph 2015; Crawford et al. 2001; Kazdoba et al. 2014). 

Individuals with FXS are characterized by intellectual disability and a variety of physical 

abnormalities, and frequently display social dysfunction, anxiety and repetitive behaviors 

(Berry-Kravis et al. 2002; Lightbody & Reiss 2009). The diagnostic criteria for ASD 

commonly occur in individuals with FXS, with recent estimates ranging from 18% to 47% 

(Clifford et al. 2007; Demark et al. 2003; Hatton et al. 2006; Kaufmann et al. 2004; Rogers 

et al. 2001). Conversely, the proportion of FXS in the ASD population has been estimated at 

3–8% (Cohen et al. 1991; Fombonne et al. 1997). The first and most widely tested mouse 

model of FXS is the Dutch-Belgian Consortium Fmr1 KO mouse, which has been 

maintained on multiple background strains. Recent work with the Fmr1 KO mouse has 

evaluated ASD-relevant phenotypes, including social deficits and repetitive behaviors. Fmr1 

KO mice on a C57BL/6 (B6) background exhibited decreased sociability in some cases 

(Dahlhaus & El-Husseini 2010) or decreased sniffing during a social approach test when 

maintained on a B6/FVB hybrid background (McNaughton et al. 2008). In contrast, other 

studies revealed normal sociability and reduced preference for social novelty in Fmr1 KO 

mice maintained on FVB and B6 backgrounds (Liu & Smith 2009; Pietropaolo et al. 2011). 

In tests of direct social interaction, Fmr1 KO mice on a B6 background showed deficits in 

social interaction in some studies (Mineur et al. 2006), but as with much of the Fmr1 mouse 

behavioral literature, there are caveats to these behavioral impairments (Kazdoba et al. 

2014). Paylor and colleagues demonstrated increased social interaction in Fmr1 KO mice on 

a B6 background (Spencer et al. 2005, 2008). Importantly, the Paylor team presented data 

interpreted as higher social anxiety in these mice. Fmr1 KO mice also exhibited elevated 

repetitive behaviors, another core symptom of ASD. Specifically, Fmr1 KO mice on B6 or 

hybrid backgrounds had elevated levels of self-grooming, but not when they were 

maintained on an FVB background (McNaughton et al. 2008; Pietropaolo et al. 2011). Fmr1 

KO mice on B6 and B6 hybrid backgrounds also had higher levels of marble burying 

(Gholizadeh et al. 2014; Spencer et al. 2011; Veeraragavan et al. 2012). Intellectual 

disabilities which characterize FXS have been evaluated in a variety of cognitive tasks. In 

some reports, Fmr1 KO mice demonstrated cognitive deficits consistent with the intellectual 

impairments that characterize FXS. Deficits have been observed in contextual, cued and 

trace fear conditioning and/or context discrimination in Fmr1 KO mice on B6 and sighted 

FVB backgrounds (Auerbach et al. 2011; Ding et al. 2014; Paradee et al. 1999; Zhao et al. 

2005). However, many other reports have described normal cognitive abilities in Fmr1 KO 

mice maintained on B6, FVB/129 hybrid, and albino B6 backgrounds, including fear 

conditioning (Baker et al. 2010; Dobkin et al. 2000; Peier et al. 2000; Uutela et al. 2012; 

Van Dam et al. 2000). Similarly, spatial navigation and reversal deficits were observed 

during Morris water maze testing in Fmr1 KO mice maintained on B6, albino B6 and FVB 
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backgrounds in some labs (Baker et al. 2010; D’Hooge et al. 1997; Kooy et al. 1996; The 

Dutch-Belgian Fragile X Consortium et al. 1994) but these impairments were not seen in 

other studies (Paradee et al. 1999; Uutela et al. 2012; Yan et al. 2004). Thus, although the 

gene and its product are absent in Fmr1 mice, behavioral phenotypes relevant to the human 

syndrome and to ASD appear to be variable, with phenotypes potentially dependent on a 

variety of methodological and environmental factors. While genetic background is one 

potential factor, there does not appear to be a clear segregation of behavioral outcomes on 

the B6 vs. FVB backgrounds, either in the social and repetitive behavioral domains most 

relevant to autism, or in the cognitive domains most relevant to FXS. In contrast to the 

inconsistent behavioral literature on Fmr1 mice, investigations of neuroanatomical, 

electrophysiological, genetic and biochemical phenotypes in Fmr1 KO mice have allowed 

researchers to gain considerable insight into biological mechanisms underlying Fragile X 

syndrome.

Conclusions

The summary above and in Table 2 provides descriptions of behavioral and biological 

phenotypes in representative genetic mouse models of ASD. The small subset of genetic 

mouse models included herein focuses primarily on risk genes that mediate the formation 

and strengthening of synapses, and postsynaptic downstream signaling through the mTOR 

pathway. Our selection is presented for its possible usefulness in conceptualizing a cluster of 

genes with potentially interrelated actions through synaptic and postsynaptic intracellular 

mechanisms. The appeal of this convergence concept, proposed by many autism researchers 

(Delorme et al. 2013; Geschwind & State 2015; Silverman & Crawley 2014; Spooren et al. 

2012), includes the possibility of developing pharmacological treatments for ASD that act 

through impaired synaptic mechanisms, perhaps using compounds repurposed from other 

uses involving synaptic dysfunction. Several intriguing preclinical studies with mouse 

models of ASD indicate improvements in social behaviors and/or reductions in repetitive 

behaviors and/or amelioration of cognitive deficits after pharmacological treatments. 

Promising results from pharmacological interventions in mouse models of ASD and FXS 

include mGluR5 antagonists (Michalon et al. 2012; Silverman et al. 2012; Tian et al. 2015), 

GABA agonists (Han et al. 2014; Henderson et al. 2012; Silverman et al. 2015), rapamycin 

(Burket et al. 2014; Ehninger & Silva 2011; Zhou et al. 2009), d-cycloserine (Burket et al. 

2013; Yadav et al. 2012), BDNF and ampakines (Lauterborn et al. 2007; Silverman et al. 

2013), IGF-1 (Bozdagi et al. 2013) and oxytocin (Huang et al. 2014; Meziane et al. 2014; 

Modi & Young 2012; Penagarikano et al. 2015). Descriptions of additional mouse models of 

ASD are available in several other recent review articles (Ey et al. 2011; Kas et al. 2014; 

Silverman & Crawley 2014).

Caveats abound for the methods and interpretations of mouse behavioral phenotypes 

relevant to the core symptoms of autism. The first is genetic background. Just as humans 

with the same mutation may present with different symptoms, possibly due to protective or 

susceptibility genes in their genetic backgrounds, mice present with different phenotypes 

when a mutation is bred into different inbred strains, such as C57BL/6J, FVB/NJ and 

substrains of 129, each of which has its own idiosyncratic behavioral traits (Crawley et al. 

1997). Varying behavioral phenotypes have been reported for mutant mouse models of 
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autism and FXS, as described above, when outcomes of the mutation were placed on 

divergent backgrounds and directly compared (Moy et al. 2009; Pietropaolo et al. 2011; 

Spencer et al. 2011). The second is experimental design. Employing large Ns and using WT 

littermates as controls are essential to avoid over-interpretations of phenotypes which were 

actually caused by environmental influences that affect mouse behaviors. The third is 

statistical analysis of behavioral data. Two-way ANOVAs are often required, in which 

treatment is one factor and genotype is the other factor, rather than simple t-tests. Stringent 

post-hoc tests, such as Newman-Keuls, Dunnett’s and Tukey’s, avoid the false positives that 

may be obtained from more forgiving post-hoc tests such as Fisher’s LSD. Statistical 

comparisons must match the original experimental design. For example, our 3-chambered 

social approach task is not sensitive enough to compare the absolute number of seconds 

spent with the novel mouse across genotypes, or across drug doses. Data on social approach 

are correctly analyzed with a simple paired t-test or equivalent, which compares time with 

the novel mouse vs. time with the novel object within genotype only, or within a drug dose 

only, to provide a yes-or-no outcome measure, i.e. sociability or absence of sociability. The 

fourth is corroboration within the behavioral domain. Conducting two or more assays that 

interrogate the same behavior (e.g. at least two social tasks, or two repetitive behavior 

assays, or two anxiety-related tests, or several learning and memory tasks that tap into 

different cognitive domains) allows for stronger interpretations and generalizability of a 

finding within a given domain. Including relevant controls, such as open field exploration 

for tasks that require locomotor activity, and pain or foot shock sensitivity for fear 

conditioning, will ensure that a motor or sensory artifact is not the cause of a significant 

effect in the behavioral domain of primary interest. Large numbers of mouse behavioral 

assays relevant to the diagnostic and associated symptoms of ASD are available to choose 

from (Crawley 2012; Silverman et al. 2010a), along with a wealth of relevant control tests 

(Crawley 2007).

One additional caveat, arguably the most important, is replicability. While all scientific 

discoveries require replication, behavioral findings require extra attention to reproducibility 

because of the strong influence of the various environmental factors on mouse behaviors. 

Stressors, such as construction noise or rough handling, can greatly affect scores on sensitive 

behavioral assays for anxiety-related, social and cognitive phenotypes. These types of 

variable findings remain primarily anecdotal, because they are difficult to document and 

publish, although they are common knowledge among behavioral neuroscientists. Loss of 

behavioral phenotypes across breeding generations may occur due to attritional loss of the 

mutation or drift in background genes. Basic methodological issues, such as the age of the 

mice at testing, composition of the chow diet, properties of the testing equipment and testing 

room, social testing in single vs. mixed genotype dyads, cleaning of the equipment between 

subject mice, and simple random chance beyond P <0.05, may create conditions that yield a 

positive finding that cannot be replicated. Following published procedures by expert 

behavioral neuroscientists can help alleviate some of these concerns. However, the best 

strategy to ensure high replicability is for the research team to conduct the entire experiment 

again in a separate cohort of mice prior to publishing. Further, to confirm the ultimate 

strength of a finding for the scientific community, several different laboratories should 

conduct essentially the same experiment with the same line of mice. When a social deficit in 
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a genetic mouse model of ASD is replicated across cohorts and by many labs, the strength of 

a finding is ensured. Highly robust, well-replicated behavioral phenotypes relevant to the 

symptoms of ASD in a genetic mouse model can then effectively inform our understanding 

of the role of that gene in the symptomotology of ASD and serve as preclinical outcome 

measures for therapeutic discovery.
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Figure 1. Examples of rodent behavioral assays with face validity to the diagnostic symptoms of 
autism
(a) Two mice interacting in a Noldus Phenotyper 3000 reciprocal social interaction chamber 

equipped with an Avisoft ultrasonic microphone. The inset shows representative ultrasonic 

vocalizations recorded during adult male–female social interaction. (b) Close-up of two 

mice displaying ‘crawl over and under’ during the reciprocal social interaction test session. 

(c) 3-Chambered social approach apparatus offers automated scoring of time spent with a 

novel social partner vs. time spent with a novel object. (d) BTBR mouse engaged in 

repetitive self-grooming. Photos by Jane Hayes, Michael Pride, Jill Silverman and Mu Yang, 

MIND Institute, University of California Davis School of Medicine.
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Table 1

Examples of autism risk genes identified by human genetic studies

Gene Identification method Investigated population Reference for genetic study

CNTNAP2

Association
with ASD

Linkage study Old Order Amish families (4 children
and 6 parents) with an autosomal
recessive founder (null mutation)

Strauss et al. (2006)

Linkage, association and gene
expression studies

172 parent–child trios from the Autism
Genetic Resource Exchange (AGRE)
resource

Alarcon et al. (2008)

Genome-wide linkage study,
family based-association
mapping

National Institute of Mental Health
Autism Genetics Initiative Repository;
Stage I: 72 muliplex families (148
affected, 292 controls); Stage II: 1295
parent–child trios (145 mulitplex
families with 303 affected children)

Arking et al. (2008)

Cytogenetics 34 year old female Rossi et al. (2008)

Cytogenetics 11 year old male Poot et al. (2010)

Limited
association
with ASD

Cytogenetics, linkage and
resequencing

635 ASD cases and 942 controls Bakkaloglu et al. (2008)

Genetic association analyses;
transmission disequilibrium
test

186 multiplex (408 trios) and 323
simplex families with ASD from the
AGRE resource

Sampath et al. (2013)

No association
with ASD

Next generation sequencing 2704 ASD cases, 2747 controls Murdoch et al. (2015)

NLGN1

Association
with ASD

Whole genome copy number
variant study

859 ASD cases, 1409 controls; 1336
ASD cases, 1110 controls

Glessner et al. (2009)

Limited
association
with ASD

Mutation analysis, linkage
analysis, association analysis

30 ASD cases; 19 families with 41 ASD
cases; 100 families with 122 ASD
cases

Ylisaukko-oja et al. (2005)

NLGN3

Association
with ASD

Amino acid sequencing, linkage
study

36 ASD sibling pairs, 122 ASD trios, 350
unrelated controls

Jamain et al. (2003)

Limited
association
with ASD

Mutation analysis, linkage
analysis, association analysis

30 ASD cases; 19 families with 41 ASD
cases; 100 families with 122 ASD
cases

Ylisaukko-oja et al. (2005)

NLGN4

Association
with ASD

Cytogenetic analysis,
fluorescence in situ
hybridization (FISH)

8 females, 3 with ASD Thomas et al. (1999)

Amino acid sequencing, linkage
study

36 ASD sibling pairs, 122 ASD trios,
350 unrelated controls

Jamain et al. (2003)

Linkage analysis and gene
sequencing

10 members of a French family with
ASD and intellectual disability, 200
controls

Laumonnier et al. (2004)

Direct sequencing and mutation
analysis

148 unrelated ASD cases, 48 ADHD
and bipolar cases, 288 unaffected
controls

Yan et al. (2005)

Chromosome analysis Family with 1 ASD proband,
96 controls

Lawson-Yuen et al. (2008)

Single nucleotide polymorphism
microarrays and karyotyping

427 unrelated ASD families Marshall et al. (2008)
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Gene Identification method Investigated population Reference for genetic study

Limited
association
with ASD

Mutation analysis, linkage
analysis, association analysis

30 ASD cases; 19 families with
41 ASD cases; 100 families with
122 ASD cases

Ylisaukko-oja et al. (2005)

No association
with ASD

PCR genetic screen, denaturing
high performance liquid
chromatography

196 ASD cases from 183 multiplex
and 13 simplex families

Vincent et al. (2004)

NRXN1

Gene scanning and sequencing 103 Caucasian ASD cases, 61
Afro-American ASD cases, 535
Caucasian controls

Feng et al. (2006)

Linkage study, using
comparative analysis of
hybridization intensities

1496 multiplex ASD families
(at least 2 affected individuals)
(7917 family members)

Szatmari et al. (2007)

Single nucleotide polymorphism
microarrays and karyotyping

427 unrelated ASD families Marshall et al. (2008)

Cytogenic analysis 1 ASD case study Zahir et al. (2008)

Whole genome CNV study 859 ASD cases, 1409 controls;
1336 ASD cases, 1110 controls

Glessner et al. (2009)

Comparative genomic
hybridization microarrays

3540 cases with developmental
disorders, ASD, intellectual
disability

Ching et al. (2010)

SHANK1

Microarray 1158 Canadian and 456 European
ASD cases, 15122 controls

Sato et al. (2012)

Meta-analysis of copy-number
and coding-sequence variants

5657 ASD cases, 19163 controls;
76 0 – 214 7 ASD cases, 492–1090
controls depending on the
SHANK gene

LeBlond et al. (2014)

SHANK2

Genome-wide microarray scan;
DNA sequencing

396 ASD cases, 184 individuals
with intellectual disability, 659
unaffected controls

Berkel et al. (2010)

Dense genotyping arrays 996 European ASD cases, 1287
matched controls

Pinto et al. (2010)

Meta-analysis of copy-number
and coding-sequence variants

5657 ASD cases, 19, 163 controls;
76 0 – 214 7 ASD cases, 492–1090
controls depending on the
SHANK gene

LeBlond et al. (2014)

SHANK3

FISH analysis; direct sequencing 226 families with at least
1 ASD child, 270 controls

Durand et al. (2007)

DNA sequencing and
microarray-based comparative
intensity analysis

400 Canadian ASD cases; HapMap
collection was used for
comparison

Moessner et al. (2007)

Single nucleotide polymorphism
microarrays and karyotyping

427 unrelated ASD families Marshall et al. (2008)

Gene sequencing 427 ASD cases, 190 controls Gauthier et al. (2009)

Denaturing high performance
liquid chromatography, direct
sequencing, multiplex
ligation-dependent probe
amplification, array comparative
genomic hybridization

3 cohorts: 133 American ASD cases;
88 Italian ASD cases; 104 American
ASD cases; 560 American controls
and 422 Italian controls

Boccuto et al. (2013)

Meta-analysis of copy-number 5657 ASD cases, 19, 163 controls; LeBlond et al. (2014)
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Gene Identification method Investigated population Reference for genetic study

and coding-sequence variants 76 0 – 2147 ASD cases, 492–1090
controls depending on the SHANK
gene

PTEN

Direct DNA sequencing 18 ASD cases with macrocephaly Butler et al. (2005)

Direct DNA sequencing, multiplex
ligation-dependent probe
amplification

88 ASD cases with macrocephaly Buxbaum et al. (2007)

Direct DNA sequencing 2 ASD cases with macrocephaly Herman et al. (2007)

Direct DNA Sequencing 114 cases of ASD, developmental
delay or macrocephaly

Varga et al. (2009)

Direct DNA sequencing 93 cases of ASD or developmental
delays with macrocephaly

McBride et al. (2010)

Genes Brain Behav. Author manuscript; available in PMC 2016 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kazdoba et al. Page 31

Table 2

Examples of genetic mouse models of autism

Mouse model Mouse phenotype Reference

Cntnap2 knockout mouse • Reduced social interactions

• Increased repetitive behaviors

• Reduced juvenile ultrasonic vocalizations

• Hyperactivity

• Seizures

• Abnormal cortical migration

• Asynchronous neurotransmission

• Reduced number of interneurons

Penagarikano et al. 
(2011)

Neuroligin-1 knockout mouse • Minimally impaired social approach

• Repetitive behavior

• Spatial learning deficits

• Impaired hippocampal long term potentiation

• Reduced NMDA/AMPA glutamate receptor ratio at cortico-striatal 
synapses

Blundell et al. (2010)

Neuroligin-2* knockout mouse • Increased anxiety-like behavior

• Decreased pain sensitivity

• Decreased motor coordination

• Reduced exploratory activity

• Developmental milestone delays

• Reduced ultrasonic pup vocalizations

• Decreased inhibitory synaptic puncta, with no change in overall 
synapse number

• Reduced inhibitory synaptic neurotransmission

Chubykin et al. (2007), 
Blundell et al. (2009) 
and
Wohr et al. (2013)

Neuroligin-3* knockout mouse • Reduced fear conditioning

• Olfactory impairments

• Hyperactivity

• Decreased total brain volume

Radyushkin et al. 
(2009)

Neuroligin-3* knockin mouse
(R451C substitution)

• Enhanced water maze spatial learning acquisition

• Increased protein levels of inhibitory synaptic markers

• Increased inhibitory neurotransmission in the somatosensory barrel 
cortex

• Increase in AMPA-mediated excitatory neurotransmission and 
enhanced long-term potentiation in the hippocampus

• Increased dendritic branching in the hippocampus

Tabuchi et al. (2007)
and Etherton et al. 
(2011)

Neuroligin-3* knockin mouse
(R451C substitution)

• Reduced ultrasonic vocalizations in pups

• Reduced acoustic startle to high decibel tones

Chadman et al. (2008)
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Mouse model Mouse phenotype Reference

• Minor developmental differences in growth and righting reflexes

Nlgn4 knockout mouse (gene
trap insertion downstream
of exon I)

• Reduced social interaction time

• Impaired social approach and social novelty recognition

• Reduced ultrasonic vocalizations

• Reduced volume of total brain, cerebellum and brain stem

Jamain et al. (2008)
and El-Kordi et al. 
(2013)

Nlgn4* knockout mouse
(gene trap insertion
downstream of exon I)

• No genotype differences in ultrasonic vocalizations, anxiety-related 
behaviors or locomotor activity

Ey et al. (2012)

Neurexin 1α* knockout mouse • Increased grooming

• Decreased prepulse inhibition

• Reduced excitatory synaptic neurotransmission

Etherton et al. (2009)

Neurexin 1α* knockout mouse • Reduced exploratory activity in novel environments

• Increased aggressive behaviors

• Mild increases in anxiety-like behavior

Grayton et al. (2013)

Shank1* knockout mouse
(targeted replacement of PDZ
domain (exons XIV and XV))

• Anxiety-like phenotype

• Impaired contextual fear memory

• Enhanced spatial learning

• Impaired long term memory retention

• Reduced dendritic spine size and smaller postsynaptic densities

• Weaker basal synaptic neurotransmission

Hung et al. (2008)

Shank1* knockout mouse
(targeted replacement of PDZ
domain (exons XIV and XV))

• Mild anxiety-like phenotype

• Reduced exploratory locomotion

Silverman et al. (2011)

Shank1* knockout mouse
(targeted replacement of PDZ
domain (exons XIV and XV))

• Reduced pup ultrasonic vocalizations

• Reduced male scent marking and abnormal ultrasonic vocalizations in 
response to female pheromones

Wohr et al. (2011b)

Shank2 knockout mouse
(lacking all Shank2 isoforms)

• Fewer social contacts during same-sex interactions

• Reduced social novelty recognition

• Repetitive grooming

• Abnormal ultrasonic vocalizations

• Hyperactivity

• Increased anxiety-like behavior

• Reduced dendritic spines

• Impaired glutamatergic neurotransmission

Schmeisser et al. 
(2012)

Shank2 knockout mouse (exon
VI and VII microdeletion and a

• Reduced home-cage social interaction

• Reduced social preference

Won et al. (2012)
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Mouse model Mouse phenotype Reference

frameshift for both Shank
splice variants)

• Repetitive jumping

• Reduced ultrasonic vocalizations

• Impaired spatial learning

• Decreased glutamatergic NMDA receptor function

Shank3A* heterozygous mouse
(ankyrin repeat domain
deletion (exon IV-IX))

• Reduced social sniffing in male–female reciprocal social interactions

• Reduced ultrasonic vocalizations

• Reduced long term potentiation

• Transient dendritic spine expansion during long term potentiation

• Reduced basal AMPA neurotransmission

Bozdagi et al. (2010)

Shank3A* heterozygous and
knockout mice (ankyrin repeat
domain deletion (exon IV-IX))

• Reduction of select parameters (e.g. sniffing, following, front 
approach and push-crawl) in juvenile reciprocal social interaction in 
male heterozygous and knockout mice

• Increased repetitive grooming in male heterozygous and knockout 
mice

• Impaired novel object recognition in knockout mice

• Mild motor learning deficits in knockout mice

• Lower pain sensitivity in knockout mice (C57BL/6 background)

• Impaired synaptic transmission, induction and long-term potenti-ation 
in knockout mice

Yang et al. (2012b)
and Drapeau et al. 
(2014)

Shank3A knockout mouse
(ankyrin repeat domain
deletion (exon IV-IX))

• Reduced social interaction time

• Repetitive behaviors

• Aberrant ultrasonic vocalizations

• Reduced activity and motor learning in males

• Impaired acquisition in Morris water maze

• Reduced postsynaptic protein and glutamate receptor protein levels

• Longer dendritic spines

• Reduced long term potentiation

Wang et al. (2011)

Shank3A* knockout mouse
(ankyrin repeat domain
deletion)

• Reduced preference for social novelty Peca et al. (2011)

Shank3B knockout mouse
(PDZ domain deletion)

• Reduced social interaction and social novelty recognition

• Self-injurious repetitive grooming

• Increased anxiety-like behavior

• Reduced postsynaptic proteins and glutamate receptor protein levels

• Neuronal hypertrophy and reduction in dendritic spines

• Increased caudate volume

• Reduced neurotransmission in corticostriatal circuits

Peca et al. (2011)

Shank3* knockout mouse
(exon 21 deletion, including
the Homer binding domain)

• Increased repetitive grooming in older knockout mice

• Impaired spatial learning

Kouser et al. (2013)
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Mouse model Mouse phenotype Reference

• Avoidance of inanimate objects

• Impaired motor coordination

• Increased pain sensitivity

• Decreased excitatory neurotransmission and reduced long-term 
potentiation

• Increased mGluR5 receptor levels in synaptic fractions

Nse-Cre Pten conditional
knockout mouse (Pten
deletion restricted to
subsets of postmitotic
cortical and hippocampal
neurons)

• Decreased social interaction with juvenile mice

• Reduced sociability and preference for social novelty

• Spatial learning deficits

• Reduced exploratory activity in the center of the open field

• Increased startle responses and reduced sensorimotor gating

• Spontaneous seizures

• Macrocephaly, including hippocampal dentate gyrus enlargement

• Hippocampal granule cell and cortical neuron hypertrophy

Kwon et al. (2006),
Ogawa et al. (2007) 
and Zhou et al. (2009)

Pten heterozygous mouse • Reduced sociability and preference for social novelty

• Increased repetitive behavior

• Decreased aggression and reduced social investigation in the resident-
intruder test

• Reduced sensorimotor gating

• Increased depression-like behavior in male heterozygous mice

• Macrocephaly and higher brain mass

Page et al. (2009);
Clipperton-Allen and 
Page (2014) and
Clipperton-Allen and 
Page (2015)

The asterisk (*) following the name of a mouse model indicates that its social behaviors were normal, using assays with high face validity to the 
types of social deficits which characterize autism.
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