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Abstract
Evaluation of long-term temporal and spatial climatic change in mountainous regions is a critical challenge because of the

interactive effects of multiple land and climatic factors and processes. Here we present the application of the statistical

framework to the assessment of changes of climatic conditions, using data from 17 meteorological stations across the East

River watershed near Crested Butte, Colorado, USA, and spanning the period from 1966 to 2021. The framework is

developed based on (1) a time-series analysis of daily, monthly, and yearly averaged meteorological parameters (tem-

perature, relative humidity, precipitation, wind speed, etc.), (2) evaluation and time series analysis of potential evapo-

transpiration (ETo), actual evapotranspiration (ET), aridity index (AI), standard precipitation index (SPI) and standard

precipitation-evapotranspiration index (SPEI), and (3) a temporal-spatial climatic zonation of the studied area based on the

hierarchical clustering and PCA analysis of the SPEI, because the SPEI can be considered an integrative characteristic of

the changes of climatic conditions. The Budyko model, with the application of the Penman–Monteith equation for the

estimation of ETo, was used to determine the ET. The time series analysis of the AI is used to identify the periods with

energy limited and water limited conditions. Hierarchical clustering of site locations for the three temporal segments of the

SPEI showed a significant temporal-spatial shifts, indicating that dynamic climatic processes drive zonation patterns.

Therefore, the watershed climatic zonation requires periodic re-evaluation based on the structural time series analysis of

meteorological and water balance data.

Keywords Evapotranspiration � Standard precipitation-evapotranspiration index (SPEI) � Budyko model � Hierarchical

clustering � Climatic zonation � Statistical analysis

1 Introduction

Evaluation of long-term temporal and spatial features of

climatic change in mountainous regions is particularly

challenging due to strong gradients in energy budgets,

topographic complexity and heterogeneous soils and veg-

etation. This limits our ability to predict the consequences

of global change for the ecology and ecosystem services of

mountainous regions. Various meteorological (such as

temperature and precipitation) and hydrological variables

(such as evapotranspiration), as well as various drought

indices, which are derived from meteorological and

hydrological variables, are amongst the metrics used to

characterize climatic changes. For example, to assess spa-

tiotemporal drought variability, researchers commonly use

such indices, as the Standardized Precipitation Index (SPI),

the Standard Precipitation-Evapotranspiration Index

(SPEI), the Compound Index (CI), the Z Index, the Palmer

Drought Severity Index (PDSI), etc. (e.g., Bonaccorso et al.

2003; Vicente-Serrano et al. 2010; Beguerı́a et al. 2014;

Jiang et al. 2015; WHO 2016). These index values are

indicators of the frequency of specific conditions across

extended time-series. In this paper, we performed a sta-

tistical analysis of SPI and SPEI, but the developed

approach is applicable for other climatic indices.

The SPI is a drought index that is used for estimating

wet or dry conditions based on a single precipitation time

series (McKee et al. 1993, 1995; Edwards and McKee

1997; Guttman 1998, 1999; Guenang and Kamga 2014).

The SPI is expressed as a standard deviation that the
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observed precipitation would deviate from the long-term

mean. The application of SPI relies on two assumptions:

(a) the variability of precipitation is much greater than that

of other variables, such as temperature or ETo, and (b) the

other variables are effectively stationary, i.e., they have no

pronounced temporal trend (Mckee et al. 1993). The SPI

indicates the frequency of the precipitation value in the

corresponding month as estimated from the entire precip-

itation record. The World Meteorological Organization

(WMO) has recommended SPI as a starting point for

meteorological drought monitoring (https://www.drought

management.info/indices/). However, SPI cannot reflect

how other meteorological parameters, such as temperature

or relative humidity, interact with precipitation to influence

drought characteristics.

The SPEI is generally an extension of the SPI, and has

been formulated to capture the effect of the meteorological

water balance given as the difference between precipitation

Fig. 1 The location of the East River Watershed within the Colorado River basin (source: https://gunnisonriverbasin.org/wp-content/uploads/

2021/04/east_river_watershed-slide-by-Ken-Williams-LBNL.png)

Table 1 Coordinates, land cover, and elevations of locations of 17 meteorological stations

Nos. Stations Latitude Longitude Land cover Elevation, ft Station type

1 Almont 38.65369565 - 106.8591304 Dvlpd_Open_Space 8100 RMBL/SFA stations

2 Billy Barr 38.96021739 - 106.9911594 Woody_Wetlands 9571 RMBL/SFA stations

3 Castnet 38.95627 - 106.98587 Grassland_Herbaceous 9563 EPA Castnet

4 Judd Falls 38.96065217 - 106.9835507 Grassland_Herbaceous 9855 RMBL/SFA stations

5 KCOCREST10 38.89424896 - 106.9719391 Grassland_Herbaceous 9212 Weatherunderground

6 KCOCREST4 38.8803978 - 106.9762039 Shrub_Scrub 8894 Weatherunderground

7 KCOCREST6 38.84946442 - 106.9446716 Grassland_Herbaceous 8894 Weatherunderground

8 KCOMTCRE2 38.91503143 - 106.9589233 Deciduous_Forest 9600 Weatherunderground

9 Kettle Ponds 38.93985507 - 106.9716667 Grassland_Herbaceous 9383 RMBL/SFA stations

10 Mexican Cut 39.0257971 - 107.0606522 Evergreen_Forest 11,194 RMBL/SFA stations

11 MRMEX 39.0283 - 107.064 Woody_Wetlands 11,188 Weatherunderground

12 MTAPC2 38.9086 - 106.603 Grassland_Herbaceous 10,417 Weatherunderground

13 NRCS 1141 38.983333 - 106.75 Evergreen_Forest 10,640 NRCS SNOTEL stations

14 NRCS 380 38.9 - 106.95 Deciduous_Forest 10,160 NRCS SNOTEL stations

15 NRCS 680 38.816667 - 106.58333 Evergreen_Forest 9600 NRCS SNOTEL stations

16 NRCS 737 39.016667 - 107.05 Evergreen_Forest 10,700 NRCS SNOTEL stations

17 Snodgrass 38.92949275 - 106.9855072 Evergreen_Forest 11,141 RMBL/SFA stations
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and ETo time trends (Vicente-Serrano et al. 2010a,b). The

Global SPEI database, SPEIbase, offers long-term, robust

information about drought conditions at global scales, with

a 0.5-degree spatial resolution and a monthly time resolu-

tion (Global SPEI database 2020). The SPEI can be used

for determining the onset, duration and magnitude of

drought conditions with respect to normal conditions across

a variety of natural and managed systems, with time-scales

between 1 and 48 months. Like other climatic indices,

SPEI can be used to assess drought severity according to its

intensity and duration, and can identify the onset and end

of drought episodes. Statistical analysis showed that SPEI

is more sensitive to drought assessment than SPI, and could

more accurately reflect dry/wet alternations in complex

regions (e.g., Stagge et al. 2014; Liu et al. 2021).

Taking into account the need to analyze the long-term

temporal and spatial climatic changes in the mountainous

area, the goal of this paper is to present a statistical

framework to: (1) conduct a time-series analysis of mete-

orological parameters (air temperature, dewpoint temper-

ature, relative humidity, precipitation, and wind speed),

using the data for 17 locations of meteorological stations at

the East River watershed, Colorado, USA, as a case study,

(2) calculate and analyze time series of water balance

parameters–potential evapotranspiration, aridity index,

actual evapotranspiration, SPI and SPEI, and (3) perform a

climatic zonation of the watershed area for different seg-

ments of the temporal trends SPEI, by means of the

hierarchical k-means clustering and Principal Component

Analysis.

The 17 locations of meteorological stations represent

significant variance in energy (elevation/aspect), geologic

and topographic complexity, subsurface properties, and

vegetation, which influence the interactions between pre-

cipitation and ET and therefore provide a valuable test case

to track the ability of these indices to define climatic

zonation across a mountainous watershed. We analyzed the

meteorological datasets for the period from 1966 to 2021.

The structure of the paper is as follows: Sect. 2 presents

a description of the study area, the sources of meteoro-

logical data, and data used for calculations. Section 3

presents a flow chart of the statistical approach, the

methods and equations used for calculations of the ETo,

ET, AI, SPI and SPEI, as well as the approach used for the

hierarchical cluster analysis and ordination. Section 4

includes (a) the results of the time-series analysis to assess

the timings of breakthroughs, i.e., abrupt changes or shifts

of meteorological and water balance parameters, (b) cal-

culations of SPI and SPEI, and hierarchical clustering, i.e.,

subdivision/partitioning of meteorological stations. Sec-

tion 5 includes conclusions and directions of future

research.

2 Study area characterization and data used
for calculations

2.1 Study area of the East River watershed

2.1.1 Location and topography

The study area is the East River watershed, which is

a representative headwater basin in the Upper Colorado

River Basin, Colorado, USA (Fig. 1). The watershed is

located northeast of the town of Crested Butte, Colorado,

and covers an area of * 300 km2 at an average elevation

of 3266 m. The East River watershed is a typical example

of watersheds in mountainous areas, with pronounced

gradients in hydrology, geomorphology, biome type or life

zone (montane, subalpine, alpine). A summary of geo-

graphic coordinates, types of the land cover at these loca-

tions, and elevations is given in Table 1, and locations of

the meteorological stations will be shown on the maps

given in Sect. 4.2 below. Detailed information about geo-

logical and hydrological conditions of the East River

watershed can be found at https://watershed.lbl.gov/com

munity-observatory/additional-site-information/. The East

River watershed serves as a testbed for the US Department

of Energy Watershed Function Scientific Focus Area, SFA

(Hubbard et al. 2018; Community Watershed 2022), host-

ing 150 ? investigators, conducting research in various

Fig. 2 Barplot of elevations of meteorological stations. Photographs

of the meteorological stations, for which the plots are shown in the

main body of the paper, are from https://watershed.lbl.gov/commu

nity-observatory/
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fields of earth sciences, ecohydrogeology, climate and

other scientific disciplines.

Figure 2 shows a barplot of the elevations of meteoro-

logical stations along with the photographs of three mete-

orological stations, Almont, representing the lowest

elevation, Billy Barr–median elevation, and Mexican Cut–

highest elevation. These three locations represent different

climatic conditions within the East River watershed in

terms of the elevation, a landcover, as well as temperature,

precipitation, and other meteorological and water balance

parameters, and were used to present typical results of

calculations in the main body of the paper. The results of

calculations for other locations are given in the attached

Supplemental Information (SI).

2.1.2 Climate and biome zones

The East River watershed area is defined as having a

continental, subarctic climate with long, cold winters and

short, cool summers. Excursions in river discharge are

driven primarily by snowmelt in late spring to early sum-

mer, with mid- to late-summer monsoonal rainfall inducing

rapid but punctuated increases in flow. The watershed

comprises several biome zones–montane, subalpine, and

alpine life zones, which collectively include aspen, mea-

dow, mixed conifer, sagebrush, willow, grasses, sedges,

and a diversity of forbs. The area is characterized by

variable climatic conditions across the drainage water-

sheds, with quite variable rainfall and temperature. The

watershed has a mean annual temperature of *0 �C, with

average minimum and maximum temperatures of - 9.2

and 9.8 �C, respectively; winter and growing seasons are

distinct and greatly influence the hydrology and biogeo-

chemistry of the watershed. An average precipitation is

1200 mm yr-1, the majority of which falls as snow, which

is typical for the Upper Colorado River Basin. A typical

feature of the East River watershed is that air reaches the

mountains, and then moves up the windward side of a

mountain and cools. As a result, humidity increases and

orographic clouds and precipitation can develop.

2.2 Data used for calculations

Meteorological datasets for the period from January 1966

to December 2021 were downloaded from two major cli-

matic databases: (1) PRISM database (PRISM 2022),

which is part of the Northwest Alliance for Computational

Science and Engineering at the Oregon State University

(the abbreviation PRISM stands for ‘‘Parameter-elevation

Regressions on Independent Slopes Model), and (2) NOOA

Reanalysis database (2022). These databases provide the

most complete meteorological datasets, which were cal-

culated using modern weather forecasting models and data

assimilation.

The PRISM database was used to provide time series

datasets of monthly precipitation, air temperature (mini-

mum, mean, and maximum), vapor pressure deficit (mini-

mum and maximum), and dewpoint temperature (mean) for

the period from January 1966 to December 2021. The wind

dataset for the same period (with a 3-h frequency) was

downloaded from the NCEP/NCAR Reanalysis database

with the application of the function ‘‘NCEP.gather’’ in the

R package ‘RNCEP’’ (Kemp 2020). A function

‘‘NCEP.aggregate’’ of the package ‘RNCEP’’ was used to

convert the 3-h time series of wind velocity into the

monthly wind velocity. (The citations to the R packages

that are central to this study are given at the end of the

Reference list.)

Monthly data of relative humidity were calculated using

the air temperature (Ta) and dewpoint temperature (Td),

based on the formula given by (Alduchov and Eskridge

1996; Buck 1981; Lawrence 2005)

Fig. 3 Flowchart of the

statistical framework of three

phases of the data analysis

1306 Stochastic Environmental Research and Risk Assessment (2023) 37:1303–1319
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RH ¼ 100 � expð17:625 � Td= 243:04 þ TdÞð Þ=expð17:625

� Ta= 243:04 þ TaÞð Þ

where air temperature and dewpoint temperature are given

in �C, and RH is in percent.

3 Methods of data analysis

3.1 Workflow flowchart

The developed statistical framework of the data analysis

includes a sequence of three main phases, which are

summarized in the flowchart in Fig. 3. Phase I of the data

analysis involves an exploration data analysis: plotting

time trends of temperature, precipitation, and relative

humidity, estimation of the time series structural break-

points, basic statistics, and cumulative probability distri-

bution functions; Phase II is concerned with calculations of

ETo, ET, SPI, and SPEI; and Phase III includes hierarchical

k-means cluster analysis of SPEI, averaging of the SPEI

time trends for each cluster, and plotting hierarchical

clustering trees-dendrograms and 2D PCA (PCA stands for

Principal Component Analysis) maps, and zonation maps

for periods before and after the time series breaks. Prepa-

ration of the datasets for calculations was conducted using

the methods given in the paper by Faybishenko et al.

(2022). Monthly data of all variables were converted to

yearly averaged time series data using the function ‘‘ap-

ply.monthly’’ of the ‘‘xts’’ library in R (Ryan et al. 2020).

This function is applied to non-overlapping time periods,

such as monthly time series, and it is different from a

rolling function in that it used to subset the data based on

the specified time period (in this case it is the year), and

returns a vector of values for each period in the original

data. Other R libraries applied for data manipulation are:

zoo (Zeileis and Grothendieck 2005) and dplyr (Wickham

et al. 2021).

3.2 Detecting breakpoints and segmentation
of time series

In statistical studies, time series structural breaks (also

termed change-points, or breakthrough points, or simply

breakpoints) are commonly defined as unexpected (or

sudden) changes over time, i.e., time series shifts (Antoch

Fig. 4 Time series graphs of yearly (grey color) temperature for

Almont, Billy Barr, and Mexican Cut meteorological stations,

determined as a 12-month moving-window mean. Vertical solid lines

indicate structural breakpoints, separating the temporal segments, and

vertical dashed lines are the 95% CIs of breakpoints. Blue dashed

lines are mean temperature for each temporal segment

Stochastic Environmental Research and Risk Assessment (2023) 37:1303–1319 1307
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et al. 2019; Hansen 2001). We applied the strucchange

package in R for analyzing time series for trend structural

changes (Zeileis et al. 2002). The algorithms is based on

the determination of the time series of structural changes,

i.e., breakpoints or shifts, of time series based on the

evaluation of the F-statistics (Chow test statistics), by

means of assessing deviations in the classical linear

regression model. In general, the algorithm for computing

the optimal breakpoints given the number of breaks is

based on a dynamic programming approach of Bellman’s

‘‘principle of optimality.‘‘ Details about the underlying

theory can be found in Bai and Perron (2003), and Zeileis

et al. (2010). The application of the function ‘‘breakpoints’’

of the strucchange package for the minimal number of

observations from 150 to 200 days in each time series

segment showed that both the residual sum of squares

(RSS) and the Bayesian Information Criterion (BIC)

function drop sharply up to 2 breakpoints (Figure SI-1, see

Supplemental Information), indicating that the time series

can be divided into three segments. The function ‘‘break-

date’’ is then used to determine the corresponding dates of

the time series breakpoints, which were then converted to

the POSIXct scale of time (Grolemund and Wickham

2011; Eddelbuettel 2020). The function ‘‘confint’’ is

applied to determine the confidence intervals (CIs) of

breakpoints. The breakpoints and their CIs are then visu-

alized by vertical lines on time series plots given in Sect. 4

and plots in SI.

A comparison of the ranges of calculated parameters for

different segments of time series of meteorological

parameters and calculated ET, SPI, and SPEI are demon-

strated in Sect. 4, using (a) box-and-whisker plots, (b) cal-

culations of the Empirical Cumulative Distribution

Functions, using the ‘‘ecdf’’ function of the library ‘‘stats’’

in R (R Core Team 2022), and (c) statistical Kolmogorov–

Smirnov (KS) two-sample testing of ‘‘stats’’. The KS test

is a nonparametric statistical test for comparing two sam-

ples, based on the differences in both location and shape of

the empirical cumulative distribution functions of the

samples. The ‘‘ks.test ‘‘ function returns the test statistic

and the p-value. The p-value\ 0.05 is used to reject the

Fig. 5 Boxplots of yearly averaged temperature for Almont, Billy Barr, and Mexican Cut meteorological stations for the three time series

segments
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null hypothesis that the time series before and after the

break are drawn from the same continuous distribution.

3.3 Calculations of ETo, ET, SPI, and SPEI.

3.3.1 Calculations of ETo

Calculations of ETo were performed using Thornthwaite

(1948), Hargreaves (1994), and Penman–Monteith (Allen

et al. 1998) equations.

The Thornthwaite formula (1948) is given by

ETo ¼ 16
L

12

� �
N

30

� �
10Tmi
I

� �a

where Tmi is the average monthly temperature (oC); if the

monthly averaged Tmi\ 0, then ETo = 0; N is the number

of days in the month being calculated, L is the average

sunshine hours of the month (which was determined from

the site latitude given in Table 1), the exponent a is

determined from

a ¼ 6:75 � 10�7I3 � 7:711 � 10�5I2 þ 1:791 � 10�2I
þ 0:4924

with I being the Annual Heat Index given by

I ¼
X12

i¼1

Tmi
5

� �1:514

Thornthwaite equation is an empirical model, and is

based on the assumption that temperature and radiation are

correlated. However, over the course of a year, air tem-

perature tends to lag behind radiation.

The Hargreaves formula is given by (Hargreaves and

Allen 2003)

ETo ¼ 0:0135Rs Tm þ 17:8ð Þ

where Tm is monthly temperature (oC), and Rs is the global

solar radiation at the land surface, given in the units of

water evaporation, mm/day.

The Penman–Monteith (PM) equation is based on a

combination of turbulent transfer and energy-balance

models, and is given by

Fig. 6 Time series graphs of yearly (grey color) precipitation for

Almont, Billy Barr, and Mexican Cut meteorological stations,

determined as a 12-month moving-window mean. Vertical solid lines

indicate structural breakpoints, separating the temporal segments, and

vertical dashed lines are the 95% CIs of breakpoints. Blue dashed

lines are mean precipitation for each temporal segment
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ETo ¼ ½0:408DðRn � GÞ þ c900= T þ 273ð Þu2ðes

� eaÞ =� ½Dþ cð1 þ 0:34u2Þ�

where ETo is the reference evapotranspiration (mm day-1),

Rn is the net radiation (MJ m-2 day-1), G is the soil heat

flux density (MJ m-2 day-1), T is air temperature at 2 m

height (�C), u2 is wind speed at 2 m height (m s-1), es is

saturation vapor pressure (kPa), ea is actual vapor pressure

(kPa), (es—ea) is saturation vapor pressure deficit (kPa), D
is slope of the vapor pressure curve (kPa �C-1), and c is

psychrometric constant (kPa �C-1).

Note that the Thornthwaite and Hargreaves equations

are derived to calculate the potential evapotranspiration,

which is the cumulative amount of evaporation and tran-

spiration that would occur if a sufficient water source is

available. The Penman–Monteith equation is used to cal-

culate the reference evapotranspiration, which is the

amount of evaporation and transpiration from a ‘‘reference

surface,’’ i.e., a hypothetical grass surface. Calculations of

ETo were provided using the library ‘‘SPEI’’ in R. The day

length is determined using the function ‘‘DayLength’’ from

the library ‘‘solrad’’ (Seyednasrollah 2018).

3.3.2 Calculations of ET using the Budyko model

Budyko (1974) hypothesized that a functional relationship

between the actual evapotranspiration, ET, and the two

climate variables—precipitation, P, and ETo is given by

ET=P ¼ AI tanh 1=AIð Þ 1�exp �AIð Þ½ �f g0:5

where AI is the Aridity Index given by

AI ¼ ETo=P

The Budyko model is subject to the limiting conditions

(Wang et al. 2016; Sposito 2017): under wet conditions, ET

is energy limited by ETo, and under dry conditions, ET is

water limited by P.

The Budyko equation provides a concise and accurate

representation of the relationship between annual evapo-

transpiration and long-term-average water and energy

balance at a catchment scale, and has achieved iconic status

in soil and hydrological studies (Sposito 2017).

Fig. 7 Boxplots of yearly averaged precipitation for Almont, Billy Barr, and Mexican Cut meteorological stations for the three time series

segments
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3.3.3 Calculations of SPI and SPEI

The first step in calculations of SPI and SPEI is to choose a

particular probability distribution among several typical

distributions for the precipitation P (for calculations of

SPI) and the difference (P-ETo) used for calculations of

SPEI. We tested the application of the gamma, Weibull,

lognormal, and logistic distributions, and found that the

gamma distribution fits best the long-term time series of

both precipitation and the difference (P-ETo).

The SPI and SPEI are usually computed for different

time scales, and expressed in units of the standard devia-

tion. Positive SPI and SPEI values indicate wet conditions,

and negative values indicate dry conditions (Lloyd-Hughes

Table 2 Results of the two-

sample KS test for air

temperature used for

comparison of segments 1 and 2

and segments 2 and 3

Locations D Statistics p-Value D Statistics p-Value

1–2 segments 1–2 segments 2–3 segments 2–3 segments

Almont 0.664 0 0.769 0

Billy_Barr 0.458 0 0.838 0

Castnet 0.458 0 0.838 0

Judd_Falls 0.458 0 0.838 0

KCOCREST10 0.63 0 0.392 0

KCOCREST4 0.63 0 0.392 0

KCOCREST6 0.812 0 0.481 0

KCOMTCRE2 0.383 0 0.829 0

Kettle_Ponds 0.538 0 0.826 0

Mexican_Cut 0.731 0 0.373 0

MRMEX 0.445 0 0.771 0

MTAPC2 0.782 0 0.362 0

NRCS_1141 0.827 0 0.475 0

NRCS_380 0.383 0 0.829 0

NRCS_680 0.289 0 0.657 0

NRCS_737 0.694 0 0.391 0

Snodgrass 0.463 0 0.869 0

Table 3 Results of the two-

sample KS test for precipitation

used for comparison of

segments 1 and 2 and segments

2 and 3

Locations D Statistics p-Value D Statistics p-Value

1–2 segments 1–2 segments 2–3 segments 2–3 segments

Almont 0.425 0 0.269 0

Billy_Barr 0.581 0 0.634 0

Castnet 0.581 0 0.634 0

Judd_Falls 0.581 0 0.634 0

KCOCREST10 0.225 0.001 0.328 0

KCOCREST4 0.225 0.001 0.328 0

KCOCREST6 0.233 0 0.307 0

KCOMTCRE2 0.529 0 0.474 0

Kettle_Ponds 0.605 0 0.665 0

Mexican_Cut 0.604 0 0.705 0

MRMEX 0.628 0 0.669 0

MTAPC2 0.449 0 0.279 0

NRCS_1141 0.324 0 0.705 0

NRCS_380 0.529 0 0.474 0

NRCS_680 0.578 0 0.252 0

NRCS_737 0.593 0 0.691 0

Snodgrass 0.544 0 0.531 0
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and Saunders 2002). Calculations of the SPI and SPEI were

conducted using the time scale period of 12 months, with

the application of the R library ‘‘SCI’’ (Gudmundsson and

Stagge 2016).

3.4 Hierarchical k-means clustering analysis
and mapping

A clustering analysis is generally provided to classify

studied locations on the basis of a set of measured variables

into a number of different groups such that similar loca-

tions are placed in the same group (Kaufman and Rous-

seeuw 1990; Maechler et al. 2021). Hierarchical clustering,

which is one of the most popular modern clustering tech-

niques, is aimed to build a hierarchy of clusters. The

application of this technique is useful as it provides flexi-

bility in selecting from the hierarchical tree (i.e., a den-

drogram) how many clusters can be selected and/or how

many elements of the studied system can be included in

each cluster. In this paper, we applied a univariate clus-

tering of the SPEI time series, assuming that the SPEI is a

comprehensive measure of the climatic water balance of

the studied area.

Hierarchical clustering is provided using the Hartigan

and Wong algorithm (Hartigan and Wong 1979), with the

application of the function ‘hkmeans’ in the R library

‘factoextra’ (Kassambara and Mundt 2020). The results are

Fig. 8 Graphs of yearly averaged AI for Almont, Billy Barr, and

Mexican Cut. Red color: AI[ 1, which corresponds to water limited

conditions, and green color: AI\ 1, which corresponds to energy

limited conditions. Vertical dashed lines are 95% CI around the

breakpoints. Horizontal dashed blue lines are mean values of AI for

each segment

Fig. 9 The Budyko curve, i.e., the relationship of ET/P vs AI, with the

points representing the yearly averaged ET/P vs AI for Almont, Billy

Barr, and Mexican Cut
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presented in the forms of the cluster dendrogram and the

PCA plot for the three segments of SPEI time series, which

are shown in Sect. 4.2. The optimal number of clusters was

determined using the ‘‘elbow’’ method, using the function

‘‘kmeans’’ of the R package ‘‘stats.’’ Figure SI-2 shows that

the optimal number of clusters is 5. The function ‘‘fviz_-

cluster’’ of the R package ‘‘factoextra’’ was used to visu-

alize the results. Mapping was conducted with the

application of the R libraries ‘‘ggmap,’’ ‘‘ggrepel,’’ and

‘‘ggplot2’’ (Kahle and Wickham 2013; Wickham

2016; Slowikowski 2021).

4 Results

4.1 Time series trends and structural
breakpoints

4.1.1 Meteorological parameters

The temporal warming trends, structural breakpoints and

their 95% CIs for Almont, Billy Barr and Mexican Cut

locations are shown in Fig. 4, and for all other locations in

SI-3. The corresponding boxplots are shown in Fig. 5,

showing the minimum, lower-hinge (first quartile), median,

upper-hinge (third quartile), and maximum of the temper-

ature before and after the breaks. These results show that

the median temperature of the 3rd segment in comparison

with the 1st segment increased by 1.8 �C at Almont (from

3.3 to 5.1 �C), 1.6 �C at Billy Barr (from 0.5 to 2.5 �C),

and 1.5 �C at Mexican Cut (from -0.8 to 0.7 �C).

Figures 6 and 7 show that the precipitation increased in

the 2nd segment following the decrease to the same (for

Almont) or lower levels (Billy Barr and Mexican Cut) in

the 3rd segment. The median precipitation dropped from

the 2nd to the 3rd segment at Billy Barr by 306 mm/yr

(from 1295 to 989 mm/yr) and at Mexican Cut even more

significantly—by 530 mm/yr from 1816 to 1286 mm/yr.

The same pattern of increasing and then decreasing pre-

cipitation was observed for all stations, except NRCS 1141,

where precipitation dropped in the 2nd segment, and then

again in the 3rd segment (Figure SI-4).

Based on the results of the two-sample KS test, the null

hypothesis Ho that the temperature and precipitation trends

for each pair of segments (i.e., for the 1st and 2nd seg-

ments, and the 2nd and 3rd segments) are from the same

Fig. 10 Graphs of yearly averaged ET (based on monthly data) for all meteorological stations, calculated from the Budyko model. Vertical

dashed lines are 95% CI around the breakpoints. Horizontal dashed blue lines are mean values for each segment

Stochastic Environmental Research and Risk Assessment (2023) 37:1303–1319 1313

123



distribution can be rejected for all locations (Tables 2 and

3).

The graphs of the dewpoint temperature are the same for

all locations: Td dropped in the 2nd segment compared to

the 1st, and then increased to either the same or higher

levels in the 3rd segment (Figures SI-5). Relative humidity

decreased in the 3rd segment compared to the 1st segment

at all locations (Figure SI-6).

4.1.2 Time series of ETo, AI, and ET

The ETo was calculated using the Thornthwaite, Harg-

reaves, and Penman–Monteith equations. For further cal-

culations, we used the Penman–Monteith model that

provides more reliable Eo, comparable with those deter-

mined from field observations by Tokunaga et al.

(2016, 2019) and numerical CLM (Community Land

Model) modeling by Tran et al. (2019). Graphs of the time

series of ETo, which were calculated from the Penman–

Monteith equation, depict the pattern of decreasing ETo in

the 2nd segment, followed by the increase in the 3rd seg-

ment to the level above that in the 1st segment for all

stations (Figure SI–7).

Fig. 11 Graphs of yearly averaged SPEI (12-month averaged). Blue: wetted condtions, and red: drought conditions. Vertical dashed lines are

95% CI around the breakpoints. Horizontal dashed black horizontal lines are mean values for each segment

Fig. 12 Regression analysis of the relationship between SPEI and

SPI, showing 95% confidence and 95% prediction intervals
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Figure 8 shows the time series graphs of AI for Almont,

Billy Barr and Mexican Cut. On these plots, the horizontal

lines of AI = 1 are separating the periods of limited energy

(AI\ 1) and periods of limited water (AI[ 1). For

example, at Almont, climatic conditions are characterized

as water limited for the period from 1966 to 2021, at Billy

Barr—as intermittent energy and water limited until 2011,

and then mostly water limited, and Mexican Cut—as

energy limited for the whole period from 1966 to 2021,

with a few short periods of water limited. Figure SI-8

shows the calculated time series of AI for all locations.

The Budyko curve, i.e., the relationship of ET/P vs AI,

with the points representing the yearly averaged ET/P vs

AI for Almont, Billy Barr, and Mexican Cut, is shown in

Fig. 9. The Almont points are located entirely within the

water limited part of the Budyko curve; the Billy Barr

points are within the energy limited part before the tem-

poral break, and in the water limited part after the break;

and the Mexican Cut points are mostly within the energy

limited part with a few points in the water limited part of

the Budyko curve.

Figure 10 shows the time series graphs of ET for

Almont, Billy Barr, and Mexican Cut, and Figure SI-9, the

ET graphs for all locations. The graphs show that the

temporal patterns of ET are the same for all stations: an

increase in the 2nd segment compared to the 1st, followed

by the decrease of ET in the 3rd segment practically to the

same level as that in the 1st segment.

4.1.3 SPEI and SPI time series

Figure 11 shows the time series of yearly averaged SPEI

for Almont, Billy Barr and Mexican Cut, showing the shifts

from wetted to drought climatic conditions. Figure SI-10

demonstrates the SPEI graphs for all locations, also indi-

cating the shift from wetted conditions in the 2nd segment

to drought conditions in the 3rd segment.

Time series plots of SPI are shown in Figure SI–11. A

linear regression between SPEI and SPI for all locations is

shown in Fig. 12, which illustrates the 95% confidence and

95% prediction intervals for the relationship SPEI = f(SPI).

As expected, a prediction interval is wider than a confi-

dence interval. Although the majority of the data points are

beyond the 95% confidence interval, most of the points are

within the 95% prediction interval. A prediction interval

accounts for both the uncertainty in estimating the mean,

plus random variations of the individual values. A pre-

diction interval is an estimate of an interval in which a

future observation will fall, with a certain probability, and

Fig. 13 Cumulative distribution curves of SPEI for the three segments of SPEI time series
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Fig. 14 Left: Hierarchical clustering, and right: PCA plots of the 17 locations for the three segments of SPEI time series
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this interval will not converge to a single value as the

sample size increases.

4.2 Hierarchical clustering and zonation
mapping

To reduce the effect of the high frequency fluctuations of

the graphs of SPEI, hierarchical clustering was performed

based on the cumulative distribution curves of SPEI for

each of the three segments shown in Fig. 13. Figure 14

shows the results of the hierarchical clustering (left) and

corresponding PCA plots for the three segments of SPEI

time series for all locations. Based on the results of clus-

tering, Fig. 15 shows the maps of the spatial zonation of

meteorological stations. Figures 14 and 15 clearly indicate

different clustering and zonation patterns for the three

temporal segments. Table 4 lists the clusters for the three

temporal segments of SPEI. This table indicates that 7 out

17 locations remained in the same cluster for all three

segments, but combinations of the meteorological stations

into the clusters are different for the three segments. Thus,

the watershed climatic zonation requires periodic re-eval-

uation based on the results of the structural time series

analysis.

5 Conclusions

A statistical framework has been developed to assess long-

term temporal and spatial variability of meteorological

parameters (temperature, dewpoint, precipitation, relative

humidity, and wind speed), as well as calculated time series

of ETo, ET, SPI, and SPEI. Calculations were conducted

for the period from 1966 to 2021 for 17 locations of

meteorological stations located within the East River

Watershed, Colorado, which is a typical watershed in the

Upper Colorado River Basin.

The statistical analysis included the segmentation of

meteorological and calculated time series datasets time

series into three segments, based on the evaluation of

Fig. 15 Maps of the areal zonation of meteorological stations for the

three segments of SPEI time series

Table 4 Clusters of 17 locations before and after the breakpoints

Locations Segment 1 Segment 2 Segment 3

Almont 1 1 1

Billy_Barr 2 2 2

Castnet 2 2 2

Judd_Falls 2 2 2

KCOCREST10 3 3 1

KCOCREST4 3 3 1

KCOCREST6 3 3 1

KCOMTCRE2 3 4 3

Kettle_Ponds 4 5 4

Mexican_Cut 4 5 4

MRMEX 2 2 2

MTAPC2 1 1 1

NRCS_1141 4 5 5

NRCS_380 3 4 3

NRCS_680 5 1 3

NRCS_737 2 2 2

Snodgrass 3 4 3
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structural breakpoints (i.e., shifts) of, and zonation of the

studied locations by means of hierarchical and PCA clus-

tering of the SPEI time series segments. Time series seg-

mentation analysis and zonation demonstrate considerable

changes in climatic conditions with time and space. The

response to changing climate forcing is non-uniform across

the watershed. A significant shift in the cluster arrange-

ments for the temporal segments indicate that zonation

patterns are driven by dynamic climatic processes, which

are variable through time and space. Therefore, the

watershed climatic zonation requires periodic re-evaluation

based on the structural time series analysis of meteoro-

logical data.

Examples of directions of future research include the

assessment of the redistribution of the water and

energy limited regions across the East River watershed, a

comparison of the time series breakpoints for different

meteorological and water balance parameters, application

of other programming languages, such as Python or

MATLAB, and the application of the statistical framework

to other watershed areas.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00477-

022-02327-7.
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