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Electrophysiological signal processing is a broad, complex and growing field. Universally, the

first steps of any signal analysis are detection and classification. Here we present a flexible

matched filter designed to detect spikes from various biological data types, as well as two

statistically based approaches for spike classification. We then apply these developed tools

to study the effects of deep anesthesia on neuronal network dynamics.

The matched filter was implemented for three different applications: detecting action poten-

tials (APs) from multi-sensor extracellular recordings, detecting depolarization events (DEs)

from voltage sensitive dye (VSD) imaged cardiomyocytes, and detecting calcium events (CEs)

from calcium imaged neuronal somas as well as dendritic spines. In the case of AP detection,

the filter performed with average TP and FP rates of 85% and 17%, respectively, as com-

pared with manual detection. In the case of DE detection, the filter performed with TP and

FP rates of 98%-100% and 1%-2%, respectively, as compared with manual detection. In the

case of CE detection, the filter performed with TP and FP rates of 100% and 2%, as verified

by patched clamp recordings. It also reached perfect performance on simulated data at SNR

≥ 2, and TP and FP rates of 98% and 7% on simulated data with SNR = 0.2. Overall, the

presented matched filters can accurately detect spikes from various kinds of biological data.
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The classification problems explored here include AP (or spike) sorting, as well as DE clas-

sification across different drug administrations. In the case of spike sorting, the MUSIC

algorithm was used to extract neuronal source locations from multi-sensor extracellular AP

recordings. The source locations were then used as classification features. This approach was

able to reliably classify tetrode (4 channel) and heptode (7 channel) recorded APs. For DE

classification, salient DE features were extracted and then compared across drug treatments

using a Kolmogorov-Smirnov test. The drug treated cells were consistently statistically

distinguishable from controls, even at SNR ≤ 3. The method could also distinguish cells

immediately after drug administration from cells 10 min after drug administration. Overall,

both methods success makes them valuable tools for studying neuronal networks as well as

cardiomyocyte drug assays, respectively.

Finally, the matched filter for AP detection as well as the MUSIC-based AP classification

scheme were applied to in vivo heptode data collected from M1 of the right hemisphere of

anesthetized rats. The rats were also fitted with two electrocorticography (ECoG) electrodes

over M1 and V1 of the left hemisphere. Data was collected at three monotonically increasing

isoflurane anesthesia levels to assess the effects of increasing anesthesia on neuronal network

dynamics during a burst suppression state. To our knowledge, this is the first such study.

We found that higher anesthesia led to higher AP frequency, no change in the number of

active single units, and increased cross-hemisphere functional connectivity. Additionally, all

APs were restricted to ECoG bursts, with no APs occurring during suppressed ECoG states.
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Chapter 1

Introduction

The work presented in this dissertation deals with a very broad topic: electrophysiological

signal processing. Strictly speaking some of the signals, such as neuronal calcium transient

waves, are actually only a proxy for electrophysiological activity. Nonetheless the ultimate

goal is to develop processing tools to study the electrical activity of live tissues.

The most obvious electrically active cells are, of course, neurons. Although many techniques

have been employed in the study of higher-order neural function, such as single unit patch

clamping, extracellular recording, electroencephalography (EEG), pharmacological manipu-

lation, calcium imaging, optogenetics, and functional magnetic resonance imaging (fMRI),

they can all be stripped down to the study of a single phenomenon – neuronal spike trains [10].

Transient voltage pulses traveling down axons, commonly known as action potentials (APs),

are the main form of neural communication, and computation [45, 17, 49, 19]. The study of

APs and how they propagate to convey information through neuronal populations is therefore

fundamental to neuroscience. In this work we explore several different kinds of neurological

recordings: multi-sensor extracellular recording, which records electrical signals from several

neurons in the vicinity of the electrode, functional multi-neuron calcium imaging (fMCI),
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which records the calcium transient wave activity of several hundred adjacent neurons, and

electrocorticogram (ECoG) which records the global electrical signals of a population of

cortical neurons located under a roughly 1mm surface area electrode.

Another type of electrically active cells explored in this dissertation are cardiomyocytes.

Although it does not resemble a neuronal AP, the electrical activity of cardiomyocytes is

also often referred to as an action potential. However, to avoid confusion we will refer to

cardiomyocyte electrical activity as depolarization events (DEs). There are also many ways

to record cardiomyocyte DEs. Patch clamping offers precise measurement of transmembrane

voltages of single cells [5, 37, 111]; microelectrode arrays offer a minimally invasive platform

for assessing many extracellular potentials [51, 96]; calcium reporters such as Fluo-4 [75,

84], genetically encoded sensors such as GCaMP [38, 44, 95], and voltage sensitive dyes

(VSDs) [35, 67] offer minimally invasive, fluorescence-based detection of DEs. VSD based

fluorescence intensity measurements are the cardiomyocyte recordings presented in this work.

Once the signals are collected, signal processing can begin. Universally, the first step in any

analysis is detecting the signal of interest, followed most often by picking out salient features

of the signal and then often comparing different features or experimental paradigms. These

basic steps, detection and classification, are often called pre-processing, because they must

be performed before more complex comparisons of studies or conditions can be performed.

Although often mentioned in passing, these steps are often the most computationally inten-

sive and complex signal processing performed on the data. In this work we will discuss a

machine learning approach to signal detection, applied to three different data types - ex-

tracellular recording from neurons, calcium imaging of neurons, and voltage sensitive dye

imaging of caridomyocytes - as well as a two statistical approaches to classification, applied

to two different data types - extracellular recording from neurons, and voltage sensitive dye

imaging of caridomyocytes. The dissertation ends with applying all of these techniques in

the process of discovery to investigate the effects of deep anesthesia both on local neural
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network dynamics and on the local network relationship with cross-hemisphere global neural

activity.

For the benefit of the reader the following sections present executive summaries of the chap-

ters.

1.1 Executive Summary: Detection

As mentioned before, detection is a crucial component of any biophysical signal processing

algorithm. Electrophysiological data is often riddled with biological noise which is both

correlated with and statistically similar to the signal of interest, making traditional detection

tools from other fields inapplicable. With that in mind we have adopted a machine-learning

approach and developed a flexible matched filter to detect spikes from various types of

biological data.

1.1.1 Matched Filter Design

Although the matched filters implemented throughout this work have analyzed very different

kinds of data, they all share a common base design. Assuming Gaussian noise statistics, we

can express a generalized matched filter (GMF) [46] as

S(x) = sΣ−1xT ,
H1 if S(x) > γ

H0 if S(x) < γ
(1.1)

where x ∈ R1×CN is the row vector form of the C-sensor, N -sample input matrix, s ∈ R1×CN

is the row vector form of the “spike” (i.e. the template), Σ ∈ RCN×CN is the spatio-temporal

noise covariance matrix of the row vector form of the noise, γ is the threshold, H0 is the null
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hypothesis, and H1 is the alternative hypothesis. The filter is convolved with a C-sensor,

T -sample (T � N) time series to detect spikes at a given threshold γ.

1.1.2 Applications

The matched filter presented in this work has been applied to three different data types:

extracellular recordings of neurons, voltage sensitive dye imaging of cardiomyocytes, and

calcium imaging of neurons - all electrically active cells that exhibit a “spike” as the signal

of interest.

1.1.2.1 Multi-sensor Extracellular Action Potential Detection

The work presented in this section is adapted from Szymanska et al. 2013 [99]. Briefly, a

matched filter was designed and implemented to detect APs from multi-sensor extracellular

recordings. The detector was tested on tetrode data from a locust antennal lobe and assessed

against three trained analysts. 25 APs and noise samples were selected manually from the

data and used for training. To reduce complexity, the filter assumed that the underlying

noise in the data was spatially white. The detector performed with average TP and FP rates

of 84.62% and 16.63% respectively. This high level of performance indicates the algorithm

is suitable for widespread use.

Methods 20 seconds of data from four sensors of a planar microelectrode placed in an

adult locust’s antennal lobe were used for this study [78, 79]. Half of the collected data was

used for training (training data), and the remaining half was used for further analysis (test

data). Three trained analysts independently tagged all of the spikes in the test data. Twenty

five APs (2 ms each; N = 30, C = 4), and 25 noise samples (∼ 30 ms each) were manually

selected from the training data and used to generate the matched template, s, and the noise
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covariance matrix, Σ, respectively. The noise statistics were assumed to be spatially white.

Detected APs, given 40 incrementally increasing thresholds, were compared against those

tagged by each trained analyst, with the analyst acting as the “ground-truth”. The TP

and FP rates at each threshold were then used to generate receiver operating characteristic

(ROC) curves for each analyst.

Results The detector performed well compared with all three analysts. The optimal

threshold for each analyst was determined by minimizing the distance between their respec-

tive ROC curve and theoretically perfect performance (100% TP, 0% FP). At the optimal

threshold, the detector performed with a TP rate of 90.79% and an FP rate of 20.66%

compared with Analyst 1, a TP rate of 80.00% and an FP rate of 10.31% compared with

Analyst 2, and a TP rate of 83.06% and an FP rate of 18.91% compared with Analyst 3.

The detector’s average TP and FP rates were 84.62% and 16.63%, respectively.

Conclusion The multi-sensor matched filter developed in this study was assessed against

three trained analysts and performed with average TP and FP rates of 84.62% and 16.63%,

respectively. The detector’s performance presents it as a great candidate for wide-spread

use as one of the only multi-sensor detectors of its kind. Furthermore, the algorithm’s

performance is likely under estimated as a vast majority of the spikes identified as FPs for

Analysts 1 and 2 were actually identified as TPs by Analyst 3. Because the analysts were

proven to be inconsistent and unreliable, we believe that the detector would perform even

better if compared against the ground-truth instead of trained analysts.

1.1.2.2 MaD

The work presented here is adapted from Szymanska et al. 2016 [103]. Briefly, a matched

filter for depolarization event detection (MaD) was designed and implemented to detect DEs
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TP = 90.8
FP = 20.7
a = 7

TP = 80.0
FP = 10.3
a = 5.5

TP = 83.1
FP = 18.9
a = 3.5

Figure 1.1: ROC Curves for all three analysts. TP and FP pairs were collected for 40
incrementally increasing thresholds, a, for each analyst. The black arrows point to the
detector’s optimal performance for each analyst, with the appropriate parameters listed
below.

from voltage-sensitive dye (VSD) imaged cardiomyocytes. We used 2-photon microscopy

of fluorescent VSDs to capture the membrane voltage of actively beating human induced
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pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). The efficacy of the MaD detector

was quantified by comparing detection results against manual DE detection by expert ana-

lysts. MaD accurately detected DEs with true positive rates of 98-100% and false positive

rates of 1-2%, at signal-to-noise ratios (SNRs) of 5 and above, given three hiPS-CM drug

treatments: propranolol, isoproterenol, and control.

Methods Prepared hiPS-CMs began spontaneously beating on approximately Days 12-15

of culture. On Day 33, the cells were stained with VSD, treated with β-adrenergic drugs,

and then imaged. One culture was treated with propranolol, two cultures were treated with

isoproterenol, and two cultures were left untreated as controls. Two-photon microscopy line

scan data was then collected for all of the cultures. The drug treated cultures were imaged

immediately after addition of drugs (less than 60 sec of exposure) and again 10 min or 15

min after addition to ensure complete exposure. This accounts for a total of 7 data traces,

from 5 cell cultures. The imaging data was then processed to extract fluorescence intensity

traces along a given cell membrane, and filtered to remove photobleaching artifacts. Intensity

traces, X, for all drug and control conditions were then plotted in Matlab, and three trained

human analysts independently identified DE peak times from each trace. Unanimous DEs

between all 3 analysts were used as the “ground-truth” for assessing MaD performance.

The detector was trained under three detection conditions: control, isoproterenol exposure,

and propranolol exposure. Twenty DEs (N = 800 ' 0.48 s), and 20 noise samples (∼ 30

ms each) were manually selected from the data and used to generate the matched template,

s, and the noise covariance matrix, Σ, respectively. The detector was tested using the full

noise covariance to estimate Σ.

Detected DEs, at 45 incrementally increasing thresholds, were compared against the analyst

estimated “ground-truth”, and TP and FP rates at each threshold were then used to generate

ROC curves for each detection case.
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Results The threshold at which detector performance is closest to TP = 100% and FP =

0% is the optimal threshold and constitutes the best detector performance for that detection

case. All following performance metrics are presented as TP or FP Rate [95% confidence

interval].

The best performance for the control case was TP = 97.92 [92.15, 100.00]% and FP = 1.75

[0.00, 5.26]%. The best performance for the isoproterenol case was TP = 100.00 [100.00,

100.00]% and FP = 0.78 [0.00, 2.33]%, and the best performance for the propranolol case

was TP = 98.81 [96.43, 100.00]% and FP = 1.19 [0.00, 3.57]%. Overall, the MaD detector

performed on par with human analysts and accurately identified DEs at SNR levels of 5 and

above.

In order to better test the MaD detector in low-SNR environments we also tested MaD

on a low-SNR control data set (SNR = 3.19), as well as a low-SNR isoproterenol exposure

data set (SNR = 0.65). Performance decreased in the low-SNR detection cases. The best

performance for the low-SNR control case was TP = 72.37 [61.84, 81.58]% and FP = 16.67

[7.58, 25.76]%, and the best performance for the low-SNR isoproterenol case was TP = 65.79

[49.99, 81.59]% and FP = 13.79 [0.44, 27.14]%.

Conclusion The MaD detector presented here provides a tool that is specifically designed

for automatic detection of VSD imaged cardiomyocyte DEs. It has proven to work excep-

tionally well, especially on data with SNR ≥ 5, with TP rates ranging from 98-100% and

FP rates ranging from 1-2%. Overall the MaD detector is a useful new tool for the study of

cardiomyocyte electrophysiology. Combined with the use of voltage-sensitive dyes, it allows

for non-invasive, image-based, and automated detection of cardiac DEs.
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Figure 1.2: MaD Performance. The figure consists of three pre-processed intensity traces
from the control (Top), isoproterenol (Middle), and propranolol (Bottom) drug treatments.
The circles above each data trace represent the DEs identified by analysts 1-3 (bottom
to top respectively). The triangles above each data trace represent MaD detected DEs,
using the optimal thresholds identified in the corresponding ROC curves to the right. The
optimal threshold is identified as the one resulting in the detector performance closest to
TP = 100% and FP = 0%. The error bars represent 95% confidence intervals. The optimal
performance for each drug treatment case is presented under each ROC curve. The MaD
detector performed with a TP rate of 98-100% and a FP rate of 1-2% for all 3 drug treatments.
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1.1.2.3 MMiCE

The work presented here is adapted from Szymanska et al. 2016 [104]. Briefly, we developed

a Matched filter for Multi-unit Calcium Event (MMiCE) detection to extract calcium events

(CEs) from fluorescence intensity traces of simulated and experimentally recorded neuronal

calcium imaging data. MMiCE performed with a TP rate of 98.27% (with a 95% confidence

interval of [96.89, 99.65]%), and an FP rate of 6.59% (with a 95% confidence interval of

[4.03, 9.15]%) on simulated data with SNR 0.2. It reached perfect performance on simulated

data with SNR ≥ 2. MMiCE performance on real data was also very promising (TP =

100 [100.00, 100.00]%, FP = 2.04 [0.00, 6.14]%). Overall, the MMiCE detector performed

exceptionally well on both simulated data at SNR as low as 0.2, as well as experimentally

recorded neuronal calcium imaging data. The MMiCE detector is accurate, reliable, and

well suited for wide-spread use.

Methods MMiCE was tested under 3 paradigms: (1) simulated somatic calcium imaging

data (ground-truth available), (2) experimentally recorded simultaneous somatic fMCI and

patch-clamp data (ground-truth available), as well as (3) experimentally recorded somatic

fMCI and dendritic spine fMCI data (no ground-truth available). In this summary we will

concentrate on paradigms (1) and (2) as they have ground-truth available for quantitative

analysis.

For the simultaneous somatic fMCI and patch-clam (fMCI-PC) recordings ex vivo organ-

otypic slice cultures were prepared from the hippocampus of 7 day old Wistar/ST rats [105].

These cultures were incubated in an OGB1 dye solution, washed, and mounted in a record-

ing chamber. CA3 pyramidal neurons selected for recording were then voltage-clamped at

0 mV. One data trace measuring spontaneous activity from a CA3 pyramidal neuron was

acquired for the fMCI-PC recordings.
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The simulated fMCI data was generated from 3 somatic fMCI data sets measuring sponta-

neous activity from CA1 pyramidal neurons from acute mouse brain slices. 400 µm horizontal

hippocampal slice of 3 week old C57Bl/6J mice [108, 74] were locally loaded with an OGB1

dye solution into the CA1 stratum pyramidale using a micro pipette.

Fluorophores for all of the collected data were excited at 488 nm with a laser diode and

visualized using a 507 nm long-pass emission filter. Regions of interest (ROIs) for all fMCI

data sets were identified manually using a custom software [40]. The average fluorescence

for each ROI was then calculated and used to determine the change in fluorescence ∆F/F

using a 2 second normalization epoch.

To generate the simulated data, 4 distinct CE shapes were identified manually from the

somatic fMCI data sets. 20 examples of each shape were averaged, low-pass filtered at 5 Hz,

and normalized to construct 4 distinct CE templates. Similarly, 80 samples of varying length

noise-only data were manually selected from the somatic fMCI data sets. Each sample was

normalized to be zero mean and unit variance. The noise samples were then all concatenated

into a single time series and the four CE templates were superimposed with the noise at

random time points such that no spikes overlapped, and there were 100 CEs of each spike

shape for a total of 400 CEs. The fluorescence traces were simulated at SNR levels of 0.2,

0.5, 1, 2, 4, 6, 9, and 14, where SNR 1 indicates that the signal has the same power as the

noise.

To train the MMiCE detector for the simulated data, 20 high-SNR CEs (N = 1.6-s) and 20

noise-only samples of various lengths, from multiple different ROIs, were identified manually

and used to generate s and Σ, respectively. For the fMCI-PC data, 20 noise-only samples

of various lengths were identified manually to generate Σ, however due to a limited number

CEs available in the single fMCI-PC data trace acquired, only 10 CEs (N = 1.6-s) were

selected for generating s. All data selected for training were omitted from the performance

analysis.

11



Detected CEs, at 100 incrementally increasing thresholds, were compared against the ground-

truth, and TP and FP rates at each threshold were then used to generate ROC curves for

each paradigm.

Results The MMiCE detector performed exceptionally well on the simulated data, even

at SNR levels as low as 0.2. Performance metrics are listed as TP or FP Rate [95% confi-

dence interval]. The MMiCE detector was first applied in its simplest form, assuming WGN

statistics when estimating Σ. Under this assumption, the MMiCE detector achieved per-

fect performance (TP = 100 [100.00, 100.00]%, FP = 0 [0.00, 0.00]%) for SNR ≥ 2. At

SNR 1 the performance was slightly affected (TP = 100 [100.00, 100.00]%, FP = 0.29 [0.00,

0.86]%), with a further dip in performance at SNR 0.5 (TP = 97.98 [96.84, 99.12]%, FP =

0.88 [0.00, 1.87]%) and SNR 0.2 (TP = 90.46 [87.35, 93.57])%, FP = 12.81 [9.34, 16.28]%).

To see if even better outcomes could be achieved for SNR 0.2 - 2, the MMiCE detector was

then applied using the full noise covariance. For simulated data sets of SNR 1 and SNR 2,

performance was not affected. Performance was improved for SNR 0.5 (TP = 99.71 [99.14,

100.00]%, and FP = 1.15 [0.03, 2.27]%), and for SNR 0.2 (TP = 98.27 [96.89, 99.65]%, and

FP = 6.59 [4.03, 9.15]%).

As in the simulated data case, the fMCI-PC data trace was filtered using the MMiCE detector

under the WGN assumption first and achieved a performance of TP = 95.83 [89.97, 100.00]%

and FP = 2.13 [0.00, 6.41]%, which constitutes 3 errors. The performance improved using

the full noise covariance with TP = 100.00 [100.00, 100.00]% and FP = 2.04 [0.00, 6.14]%,

constituting 1 error. Overall, the MMiCE detector did exceptionally well in CE detection

from somatic fMCI data, as verified via patch-clamp recording.
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Figure 1.3: MMiCE detector performance and fMCI-PC data. (Left) The top shows the
ground-truth patch-clamp recordings. In the middle is the corresponding ∆F/F data with
MMiCE CE peaks detected at the optimal threshold marked by red triangles. The spike-
train derived from the patch-clamp recordings is shown above the detected CEs for easy
comparison. The bottom trace shows the filter output using the full noise covariance and
the optimal detection threshold as determined by the ROC curves presented on the Right.
(Right) ROC curves for the fMCI-PC data shown on the Left, across 100 incrementally
increasing thresholds. The two curves depict the MMiCE detector’s performance under the
WGN assumption (cyan) and when using the full noise covariance (FC, magenta). The error
bars represent 95% confidence intervals. Optimal performances with 95% confidence errors
in parenthesis are presented under the curves.

Conclusion The MMiCE detector was designed to identify CEs in low-SNR environments,

and tested on both simulated and experimentally recorded fMCI data. This time ground-

truth data was available and the detector performed exceptionally well in both cases.

The simulated data was constructed from noise segments and CEs captured from real neu-

ronal somatic fMCI recordings and varied from SNR 0.2 to SNR 14. MMiCE reached perfect

performance at SNR 2 and above. Even at SNR 0.2 the MMiCE detector reached a TP Rate

of 98.27 [96.89, 99.65]% and a FP Rate of only 6.59 [4.03, 9.15]%. The MMiCE detector’s

performance was also tested on simultaneously recorded somatic fMCI and patch-clamp data

and achieved a TP Rate of 100.00 [100.00, 100.00]% and a FP Rate of = 2.04 [0.00, 6.14]%,

which constitutes only 1 error. This high performance level was on par with and in some
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cases exceeded that shown by existing methods [47, 88, 66, 119, 27], and did so while being

tested at SNR levels as low as 0.2, well below those used in previous studies (SNR ' 5 - 10).

Overall, these results indicate the MMiCE detector is a valuable tool for detecting low-SNR

neuronal CEs from imaging data.

1.1.3 Conclusion

In this section we presented three matched filters, all based on the same initial design intended

to find spikes within time series data. The first filter was adapted to detect APs from multi-

sensor extracellular recordings. It performed well on in vivo tetrode data and was able to

achieve an average performance of TP Rate = 85% and FP Rate = 17% as compared with

manual detection by 3 trained analysts. The second filter, the MaD detector, was adapted to

detect DEs from VSD imaged cardiomyocytes. It performed well on fluorescent line scan data

from in vitro hiPC-CMs with SNR ≥ 5. The MaD detector achieve TP rates of 98-100% and

FP rates of 1-2% as compared with unanimous DEs manually detected by 4 trained analysts.

The final filter, MMiCE, was adapted to detected CEs from fMCI data of neuronal somas

and dendritic spines. The detector performed exceptionally well on simulated somatic fMCI

data, with perfect performance at SNR ≥ 2, and TP Rate = 98% and FP Rate = 7% on

simulated data with SNR = 0.2. Furthermore, the MMiCE detector reached a performance

of TP Rate = 100% and FP Rate = 2% on experimentally recorded in vitro somatic fMCI

data, as verified by patched clamp. Overall, the matched filters presented here are robust

and flexible, able to accurately detect spikes from various kinds of biological data.
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1.2 Executive Summary: Classification

In most cases it is not enough to simply detect a signal of interest. Many if not most studies

of biological systems strive to compare different scenarios against one another, or distinguish

between the actions of several forces participating in a single phenomenon; this analysis

process is called classification. Classification is a two part problem. First the salient features

of the signal must be extracted. Then those features have to be clustered into classes. In

this work we concentrate on feature extraction, and use relatively well known algorithms for

clustering.

Our first feature extraction approach was developed to classify neurons from multi-sensor

extracellular neuronal recordings. The method we developed, MUSIC, is unsupervised and

focuses on finding the neurons’ locations from their recorded APs. These locations are

then used as classification features. The second approach presented here was developed to

distinguish between cardiomyocyte DEs affected by different drugs. We selected salient DE

features – upslope, width, and downslope – based on known cardiomyocyte DE behavior,

and compared then using a Kolmogorov-Smirnov test.

1.2.1 MUSIC

Neuron location is a classification feature that offers both stability against noise and re-

mains invariant in time and space. Several neuronal source localization algorithms have

been proposed and used in vivo [11, 14, 4, 94, 64], employing various approaches including

simple heuristic AP generative models [14, 4], as well as monopole [11], dipole [64], and line

source [94] approximations.

We explored a different localization method rooted in statistical signal processing [53]. The

multiple signal classification (MUSIC) algorithm has proven effective in our preliminary
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source localization experiments with tetrodes [53]. Here we tested the MUSIC algorithm, as

an AP classification feature extraction method, on tetrode as well as heptode extracellular

recordings.

1.2.1.1 MUSIC Algorithm Design

In the most basic case, we can treat the neuron as a point source and the surrounding

medium as an isotropic, homogeneous volume conductor. Although simplistic, the monopole

model has often been used in application to neural source localization [14, 4, 2, 11], and will

be used here as the basis of our forward model.

Consider a static linear system that outputs a C-sensor signal generated by a single source.

The system’s response to a unitary signal input is the lead field vector (LFV), m ∈ RC×1.

The MUSIC algorithm finds the source location r? for which m is most orthogonal to the

noise subspace [89]

r? = arg min
r

mT (r)ENE
T
Nm(r)

mT (r)m(r)
(1.2)

where EN ∈ RC×(C−1) is the noise subspace, calculated using singular value decomposition.

In the case of a single monopole-like source the LFV takes on the form of an electric monopole

with unitary charge located at some distance, dc from each recording sensor c. In order to

enhance the feature space, we also developed an adjusted monopole model that accounts for

different recording sensor impedances. This model is referred to as the impedance model.
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1.2.1.2 Applications

The MUSIC algorithm for feature extraction was applied to two different data sets - one col-

lected with a tetrode, and another collected with a heptode. The first application, using data

from the tetrode, applies the MUSIC monopole model and clusters the resulting features with

an expectation maximization and Bayes’ information criterion (EM-BIC) based approach.

Although no ground-truth was available, the resulting classified waveforms were compared,

and inter- and well as within-class analyses were preformed to test classification efficacy. The

second application, using data from the heptode, employs the MUSIC impedance model and

then clusters the resulting features with density-based clustering of applications with noise

(DBSCAN). In this case t-tests were used to compare waveforms across different classes.

Monopole Model with Tetrode

The data and results presented here are adapted from Szymanska et al. 2013 [99]. Briefly,

localization was performed using MUSIC under a monopole model. Six distinct source

neurons were classified from 20 seconds of extracellular tetrode recordings. On average, 89.5%

of the waveforms making up each class matched the shape of the average class waveform.

These results indicate that this classification scheme can successfully identify individual

neurons from multi-sensor AP recordings.

Methods Twenty seconds of data from four sensors of a planar microelectrode placed in an

adult locust’s antennal lobe were used for this study [78, 79]. Spike detection was performed

using the supervised matched filter for multi-sensor extracellular recordings presented in the

previous section [102]. The source of each detected AP was then localized using the MUSIC

algorithm, with a monopole source model. The EM algorithm was used to group MUSIC-

derived source locations into several different cluster models. The optimal cluster model,
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or number of clusters, was determined by maximizing the BIC across all models [90]. The

APs from each cluster were aligned to their peak values and averaged to demonstrate the

representative waveforms for each cluster. Waveform signatures, representing the relative

signal power across the four sensors, were then calculated for each AP, and used to determine

the within-class consistency between the waveforms.

Results All 1040 APs detected in the 20 second data stream were successfully localized

using the MUSIC monopole model. This data was classified yielding 6 distinct location

clusters. Only 34 source locations were classified as outliers, representing 3% of the data

set. The underlying AP waveforms representing each source location in a given cluster were

analyzed to assess classification efficacy.

Waveform signatures, defined here as the ranking of signal power across the four sensors for

each AP, were compared within clusters. For 4 of the clusters, N1, N3, N4, and N5, the wave-

form signatures were consistent with the average waveform signature among 98.9%, 95.4%,

98.1%, and 90.1% of the APs in each cluster, respectively. It is reasonable to conclude that

these clusters represent unique and singular neurons. The remaining two clusters, N6 and

N2, were slightly less consistent, with 77.2% and 77.5% of the APs, respectively, matching

their average waveform signatures. For the first one of these clusters, N6, the remaining

22.8% of waveforms match the waveform signature of a different cluster and therefore seem

to be mis-classified. The last cluster, N2, contained a broad spectrum of APs in the 22.5%

that did not match the average waveform. This may imply that some APs were either mis-

classified or some may have been a superposition from two or more neurons. Although these

clusters were less internally consistent, the results still indicate that they represent distinct

neurons.
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Figure 1.4: Average waveforms for each class, N1-N6, identified using MUSIC-derived source
locations as features and EM-BIC for clustering. Note that each class has a unique and
distinguishable waveform signature.

Conclusion Overall, classification based on our MUSIC monopole model feature extrac-

tion method successfully differentiated 6 unique and distinct classes from tetrode recorded

APs, with an average accuracy of 89.5%. The average AP waveforms for each class were

unique and distinguishable from each other. This is strong evidence that each class, repre-

sents a unique neuron. Given our results, this technique presents itself as a strong candidate

for broad use in extracellular signal analysis.

Impedance Model with Heptode

This study demonstrates the efficacy of a multi-sensor AP classification scheme using a

proxy for source “location”, calculated with the MUSIC impedance model, as a classification

feature. The approach was tested on extracellular heptode recordings, which we believe
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will provide better resolution and stability against noise than the previously tested tetrode

recordings. Five to six statistically distinct source neurons could be classified from a given

heptode recording, across the 3 independent recordings tested. This shows that the method

is effective for multi-sensor spike sorting.

Methods Extracellular heptode recordings were made through 1-2 mm burr holes above

M1 of the right hemisphere of two male Wistar rats. A motorized headstage was used to

lower the heptode into the cortex until a high activity and SNR recording site was reached

(∼ 700− 900µm into the cortex). Once the heptode was in position, 1-2 min of spontaneous

neuronal activity were recorded. A total of three experiments were performed. The first

two experiments, 1.1 and 1.2, were performed on a single animal at two different recording

sites, one 170µm below the other, and at 2.0% and 1.5% isoflurane, respectively. The third

experiment, 2.1, was performed on the second animal at 1.5% isoflurane.

Individual APs were detected from the heptode data using the supervised matched filter for

multi-sensor extracellular recordings presented in the previous section [102]. The APs were

then classified using the MUSIC impedance model for feature extraction, and DBSCAN for

clustering [16]. The classified APs were then aligned to their peak values and averaged to

demonstrate the waveform signature for each cluster. Peak AP values were compared using

t-tests (95% confidence level) across each recording sensor to quantitatively assess if classes

were statistically distinct.

Results 50% to 93% of the detected APs were successfully localized using the MUSIC

impedance model, depending on the experiment, with overlapping and low-SNR APs ac-

counting for most of the waveforms that could not be localized.

The MUSIC impedance model “localized” the APs to be tightly clustered around the heptode

sensors. DBSCAN identified 5, 6, and 6 classes from these features for experiments 1.1, 1.2,
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Figure 1.5: Spike sorting results using the MUSIC impedance model and DBSCAN. A
An aerial view of the feature space and clustering results. The black bar in the bottom
right corner represents 10 µm. (Left) Results of MUSIC localization for each experiment.
The black circles represent the heptode sensors, and the blue dots are MUSIC determined
source locations for each localized AP. (Right) DBSCAN clustering results for the features
presented on the left, with outliers removed. B Corresponding average waveforms for each
cluster identified in A. The number of APs in each class is listed below the waveform. T-
tests revealed that the waveforms within a given experiment are statistically distinct across
classes.

and 2.1 respectively. T-tests (95% confidence interval) were performed on the peak values

of the waveforms for each channel to quantitatively determine if the classes within a given

experiment were statistically distinguishable in the time domain. Each channel was compared

to the corresponding channel for another class (CH1 Class 1 vs CH2 Class 2 etc.). In all

case, at least 5 of the channels showed a statistical difference between the classes, and in

most cases all 7 were statistically different. To our mind, this indicates that all of the classes

in a given experiment are statistically distinguishable from each other.

Conclusion The MUSIC impedance model successfully classified 5-6 source neurons for

the 3 experiments presented here. Although not all of the sources could be localized using the

MUSIC impedance model, most of the feature extraction outliers were due to superimposed
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APs, which were unfortunately very common in these data sets. Other APs that could

not be localized suffered from low SNR. These are both clear limitations of the technique,

especially compared to the base MUSIC monopole model. On the other hand, the features

extracted using the MUSIC impedance model clustered more tightly than those achieved

using the monopole model. The classes are also very consistent, and appear to be less prone

to misclassification. Overall, the MUSIC impedance model was effective at classifying APs

from extracellular heptode data. Furthermore, both qualitative analysis as well as t-test

showed that the AP waveforms were consistent within each class, and that the waveforms

were statistically different between classes.

1.2.2 DEC

The work presented here is adapted from Szymanska et al 2016 [103]. Briefly, this study used

2-photon microscopy of fluorescent VSDs to capture the membrane voltage of actively beating

human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). We built a custom

and freely available Matlab software to quantify, and compare DEs of hiPS-CMs treated with

the β-adrenergic drugs, propranolol and isoproterenol. The classification approach aims to

distinguish the drug treated cardiomyocyte APs by extracting salient AP features, such as

upslope, width, and downslope, and then comparing them across drug treatments using a

Kolmogorov-Smirnov (K-S) test. The software, depolarization event comparison or DEC,

was able to distinguish control DEs from drug-treated DEs both immediately as well as 10

min after drug administration.

1.2.2.1 Methods

Spontaneously beating hiPS-CMs were stained with VSD, and treated with the β-adrenergic

drugs propranolol and isoproterenol. The cultures were imaged immediately after addition of
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drugs (less than 60 sec of exposure) and again 10-15 min after addition to ensure complete

exposure. One culture was treated with propranolol, and two cultures were treated with

isoproterenol. Two cultures were left untreated and imaged as controls. The imaging data

was then processed to extract fluorescence intensity traces along a given cell membrane, and

filtered to remove photobleaching artifacts.

Once the DEs were detected from each data trace, using the MaD detector, the individual

spikes were extracted from the data and normalized such that the average DE for any given

data trace had a minimum value of 0 and a maximum value of 1. This approach allowed

us to preserve within data trace variations around the average DE, while also normalizing

DE amplitudes across different data traces. Average waveforms were calculated for each

data trace, and the full-width half-max (width), the positive slope at half-max (upslope), as

well as the negative slope at half-max (downslope) were calculated for each identified DE.

These parameters were compared as a function of drug treatment and time elapsed after drug

treatment using a two-sample Kolmogorov-Smirnov (K-S) test at a 5% significance level.

1.2.2.2 Results

A total of 7 data traces, from 5 cell cultures, were tested. The first 5 conditions are a control

(cell culture 1, Control-1), immediately after addition of isoproterenol (cell culture 2, Iso-1

0min), 10 min after addition of isoproterenol (cell culture 2, Iso-1 10min), immediately after

addition of propranolol (cell culture 3, Pro-1 0min), and 10 min after addition of propranolol

(cell culture 3, Pro-1 10min). In order to better test DEC in low-SNR environments we

also provide results for a low-SNR control data case (cell culture 4, Control-2), as well as a

low-SNR 15 min after addition of isoproterenol case (cell culture 5, Iso-2 15min).

The higher SNR (SNR ≥ 5) drug treated data (Iso-1 and Pro-1) were compared to the

higher SNR control (Control-1). Both the Iso-1 0min and Pro-1 0min drug treatments
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were statistically distinguishable from Control-1 in width, upslope, and downslope. These

difference was maintained 10 min after drug administration (Iso-1 10min and Pro-1 10min).

To show that the method is also applicable in a low-SNR setting, we performed a DE

comparison analysis on Control-2 (SNR = 3.07) and Iso-2 15min (SNR = 0.63). The Iso-2

15min drug treatment was statistically distinguishable from Control-2 in width, but not in

either upslope or downslope. This is expected, as the DE width difference should be the

most pronounced and therefore least subject to noise.

The drug treatments were then compared in time to evaluate if the 0 min cases, exhibiting

initial shock from the drugs, could be distinguished from the 10 min cases, which should

exhibit a more stabilized response. The Iso-1 0min case was statistically distinguishable

from the Iso-1 10min case in all three parameters. The Pro-1 0min case was statistically

distinguishable from the Pro-1 10min case in width and upslope.

1.2.2.3 Conclusion

In summary, KS-tests of DE widths, upslopes and downslopes revealed that DEs immediately

after either isoproterenol or propranolol administration are distinguishable from controls, and

that these differences are maintained 10 min after drug administration. DEs immediately

after drug administration were also distinct from DEs 10 min after drug administration.

Lastly, isoproterenol treated cells were distinguishable from controls even at SNR ≤ 3.

These results indicate that DEC can accurately distinguish drug-treated DEs from controls,

even at low SNRs, and can also distinguish drug-treated DEs based on the time after drug

administration. Overall, DEC is a useful new tool for the study of cardiomyocyte electro-

physiology. Combined with the use of VSDs, it allows for non-invasive, image-based, and

automated analysis of cardiac DEs. This study demonstrates the ability of this tool to

quantify changes in DEs as a function of drug treatment and as a function of time.
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Figure 1.6: DE analysis with respect to drug treatment and time after drug administration.
6 panels are shown. Each panel shows the average DEs of the two specified drug treatments,
with standard deviations shaded around the average. The title of each panel identifies the two
treatments being compared. The text below the title indicates whether the DE populations
were different in width, upslope, and downslope, and provides p-values. The top 3 panels,
going from left to right, compare Iso-1 0min (green) to Control-1 (red), Iso-1 10min (light
teal) to Control-1, and Iso-1 0min to Iso-1 10min. Both Iso-1 0min and Iso-1 10min were
different from Control-1, and were different from each other, in all three parameters (width,
upslope, downslope). The bottom 3 panels, going from left to right, compare Pro-1 0min
(purple) to Control-1 (red), the Pro-1 10min (blue) to Control-1, and Pro-1 0min to Pro-1
10min. Both Pro-1 0min and Pro-1 10min were different from Control-1 in width, upslope,
and downslope. They were also different from each other in width, and upslope.
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1.2.3 Conclusion

In this section we presented two approaches to electrophysiological data classification.

The first classification problem focused on how to distinguish an unknown number of neurons

from multi-sensor extracellular recordings of neuronal APs. AP sources were localized using

MUSIC, as a feature extraction step, and the approach was tested on both tetrode and

heptode data. The algorithm applied to the tetrode data used the MUSIC monopole model

for feature extraction, and EM-BIC for clustering. Six distinct clusters were identified,

all exhibiting different AP waveform signatures. On average the within-class classification

consistency was 90%. Overall, this shows that the MUSIC monopole model used with an

EM-BIC clustering tool is an accurate classification method that can distinguish several

neurons from tetrode data. The algorithm applied to the heptode data used the MUSIC

impedance model for feature extraction, and DBSCAN for clustering. The resulting clusters

were very tightly grouped in the feature space. The average AP waveforms for each class

were statistically different, as determined by t-tests, for all tested data sets. Furthermore,

the classes were very consistent, implying a low rate of misclassification. Overall, the MUSIC

impedance model used with DBSCAN proved to be an accurate tool for sorting spikes from

heptode data.

The second classification problem focused on how to distinguish the DEs of actively beating

VSD imaged caridomyocytes, treated with 2 different β-adrenergic drugs (propranolol and

isoproterenol). Our algorithm, DEC, compared salient DE features - upslope, width, and

downslope - across the two different drug administrations using a K-S test. The drug treated

cells’ DEs were statistically different from the controls both immediately after as well as 10-

15 min after drug administration for both drugs, even at SNR ≤ 3. DEs immediately after

drug administration were also distinct from DEs 10 min after drug administration. Overall,
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DEC’s ability to accurately distinguish drug treated DEs from controls, even under a low-

SNR environment, makes it a valuable tool for cardiomyocyte drug assay studies.

1.3 Executive Summary: Discovery

The ultimate goal of developing the signal processing techniques outlined in the previous

sections is to apply them to electrophysiological data in the process of discovery. This next

section outlines exactly this process. Both the multi-sensor extracellular AP detector as well

as the MUSIC-based classification scheme came together with a few other statistical methods

to analyze extracellular heptode data looking at neuronal circuit dynamics as a function of

anesthesia depth.

The study presented in this chapter is adapted from Szymanska et al. 2017 [101] and takes

a multi-modal approach. Three types of neurological recordings were made simultaneously

- electrocorticography (ECoG), multi-unit activity (MUA), and local field potentials (LFP)

- to investigate how regional signals from the brain surface relate to neuronal activity from

deep cortical layers during varying levels of anesthesia. We found that higher anesthesia led

to higher AP frequency, no change in the number of active single units, and increased cross-

hemisphere functional connectivity. Additionally, all APs were restricted to ECoG bursts,

with no APs occurring during suppressed ECoG states.

1.3.1 Methods

Two male Wistar rats were implanted with two ECoG screw electrodes for recording over

M1 and V1 of the left hemisphere. Extracellular heptode recordings were made through a

1-2 mm burr hole above M1 of the right hemisphere. A motorized headstage was used to

lower the heptode into the cortex until a high activity and SNR recording site was reached
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(∼ 700− 900µm into the cortex). Once the heptode was in position, 1-2 min of spontaneous

neuronal activity were recorded at three monotonically increasing isoflurane anesthesia levels

- low, intermediate, and deep.

A total of three experiments were performed. The first two experiments, 1.1 and 1.2, were

performed on a single animal at two different recording sites. The third experiment, 2.1,

was performed on the second animal. Each recording will be referred to by the experiment

number followed by “Iso” and then the percentage of administered isoflurane.

Individual APs were detected from the heptode data using the supervised matched filter for

multi-sensor extracellular recordings presented in the previous section [102]. The APs were

then classified using the MUSIC impedance model for feature extraction, and DBSCAN for

clustering [16]. If there were not enough APs detected (N ≤ 100) to reliably cluster using the

mentioned algorithms, the APs were classified manually. Burst suppression ratios (BSR),

AP firing frequencies, and spike triggered averages (STA) were calculated for all data sets.

1.3.2 Results

The results focus on AP firing frequencies, STAs, and the number of neuron classes, as a

function of anesthesia depth.

The overall spiking activity decreased as the level of administered isoflurane increased, in

each of the three experiments. Interestingly, APs were only detected during ECoG bursting

activity (total of ∼ 15 min of recording, and 12,675 detected APs). Therefore the decrease

in overall spiking activity followed from the burst suppression ratio increasing. Furthermore,

the average AP firing frequency within a given ECoG burst was increasing as the level of

isoflurane was increasing. For experiment 1.1 the AP firing frequency began at 73 ± 18

APs/s, increased to 135 ± 47 APs/s, and then increased again to 243 ± 65 APs/s. The
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same trend was observed for experiment 1.2 where the firing frequency progressed from 108

± 32 APs/s, to 193 ± 30 APs/s, to 224 ± 31 APs/s. A similar increase, although more

modest, was also observed in experiment 2.1 (125 ± 17 APs/s, to 140 ± 15 APs/s, to 155

± 27 APs/s).These findings suggest that although overall activity decreases as the level of

administered isoflurane is increased, when APs do fire, they fire at an increased frequency

as the depth of anesthesia increases.

Spike triggered average analysis was performed on the data in order to investigate the re-

lationship between the MUA and ECoG. For all three experiments and across both ECoG

channels, the ECoG-STA amplitude as well as root-mean-square increases significantly as the

level of isoflurane is increased. This implies a stronger degree of coupling between the left

hemisphere (represented by the EEG signals), and M1 of the right hemisphere (represented

by the MUA), as the level of anesthesia is increased. LFP-STA analysis showed the same

results.

Spike sorting across the three anesthesia levels revealed that the same sub-population of

single units was active as anesthesia deepened. For experiment 1.1, the same 5 units were

identified for Iso 2.0% and Iso 2.5%. Four of the same units were also identified at Iso

3.0%. Similarly for experiment 2.1, the same 6 units were identified for Iso 1.5% 1 and Iso

1.5% 2. Five of these units were also identified for Iso 2.5%, alongside an additional unit

previously not present. For experiment 1.2 a total of 9 units were identified across the three

isoflurane levels. Although no single unit persisted through all three levels of isoflurane, 8

of the 9 units recurred at two of the isoflurane levels. Overall these results indicate that the

same sub-population of neurons is active as levels of isoflurane are increased during burst

suppression. Although a few units disappeared, and a few new ones appeared as the level of

anesthesia changed, for the most part the same units could be reconciled across the different

levels of isoflurane.
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Figure 1.7: As the level of isoflurane is increased, the resulting cross-hemisphere ECoG-
STA increases in magnitude for all three experiments. (A) (B), and (C) show ECoG-STAs
at varying isoflurane levels for experiment 1.1, 1.2, and 2.1, respectively. The left column
shows results for ECoG channel 1, and the right column for ECoG channel 2. The AP was
centered at 0 ms for all ECoG-STAs. Shaded regions represent 95% confidence intervals and
the number of APs being averaged over is depicted in the three legends. The ECoG-STAs
are color coded for isoflurane level, with blue being 1.5%, red 2.0%, green 2.5%, and orange
3.0%.
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1.3.3 Conclusion

Overall, our findings suggest that as isoflurane anesthesia is increased during burst suppres-

sion, neuronal activity remains bound to the same sub-population of neurons; these neurons’

overall activity decreases as the burst suppression ratio goes up. However, when activity

does occur it is at a higher firing frequency as the level of anesthesia is increased. Likewise,

the activity is increasingly more synchronous with cross-hemisphere activity, as measured by

ECoG, and local population activity as measured by LFP.
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Chapter 2

Detection

Detection is a crucial component of any biophysical signal processing algorithm. Although

spike detection in general has been an issue for many years, the problem is not completely

resolved. Electrophysiological data is generally very noisy, therefore signal detection tools

from other fields don’t readily apply. The noise coming from the recording hardware and

environment is in most cases white Gaussian noise and is relatively easy to process. However,

the presence of biological noise is much more problematic to spike detection because it is

often both correlated and statistically similar to the signal. This is especially an issue in

neuronal multi-sensor extracellular recordings where the activity of background neurons and

ion-channel noise contribute to a very low signal-to-ratio (SNR). Although biological noise

is less prominent in many imaging recording modalities, the low SNR issue still persist, and

other factors such as motion artifact correction, and photobleaching compound the detection

problem.

With that in mind we have developed several detection algorithms, all based on data driven

machine-learning techniques and a matched filter, to detect spikes from 1) extracellular

recordings of neurons, 2) calcium imaging of neurons, and 3) voltage sensitive dye imaging
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of cardiomyocytes - all electrically active cells that exhibit a ”spike” as the signal of interest.

The following chapter details the broad detector design, and then presents the three appli-

cations listed above. Other existing techniques, the motivation behind these applications, as

well details on the detector’s implementation are presented with the results for each modal-

ity. The chapter ends with some preliminary work on unsupervised approaches as well as

other ideas for further automation.

2.1 Background

The most popular detection algorithms can be separated into three broad categories, raw

data thresholding, abstract mathematical features, and template matching. Thresholding is

the most commonly used detection method due to its computational simplicity. It is also

therefore the standard that most other techniques are compared against. Overall, thresh-

olding is a very simple and useful approach. However, the average sensitivity is about 90%,

and the technique suffers tremendously in low-SNR environments, which largely limits its

scope [83, 57, 7, 48, 97]. Abstract mathematical features are also a very attractive approach

to spike detection. The most popular abstract mathematical detection approaches are inde-

pendent component analysis (ICA), principle component analysis (PCA), and, more recently,

morphological filters. Overall, abstract techniques perform better then thresholding, with

an average sensitivity of about 95% [57, 107, 41]. However, the approach is again sensitive

to low SNR.

2.2 Matched Filter

The matched filter is arguably the best detection approach available for deterministic sig-

nals in random noise. Although biological, and especially neurological noise is not random,
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matched filtering has proven to effectively detect spikes from various types of neurologi-

cal [107, 48, 122, 9, 99, 104, 47], as well as cardiological data [50, 112, 103]. The basis

behind template matching is to generate a template representative of electrophysiological

activity, and then compare the data to your template. Traditional template approaches are

supervised, and the template is generated from APs or spikes selected by an analyst from

the data [99, 103, 104, 26]. However, unsupervised algorithms using wavelets as templates

have been growing in popularity [122, 91, 9, 71, 100]. In general, template matching out-

performs other techniques [48, 107, 100, 104] and was therefore pursued as the detector of

choice in these studies. More specifically, a supervised template approach was adopted be-

cause it outperforms wavelet approaches in the kinds of low-SNR environments often seen

in electrophysiological recordings [122, 91, 48, 107, 104].

2.2.1 Matched Filter Design

Although the matched filters implemented throughout this work have analyzed very differ-

ent kinds of data, including 1) multi-channel extracellular recording of neurons, 2) voltage

sensitive dye imaging of cardiomyocytes, and 3) calcium imaging of neurons, they all share a

common base design, detailed below. The main differences lie in parameter and implemen-

tation details, explained further in the application section (Sec. 2.3).

2.2.1.1 General Likelihood Ratio Test

According to the Neyman-Pearson lemma, the likelihood ratio test (LRT) is the most pow-

erful discriminant of two underlying models from a deterministic signal. In the case of elec-

trophysiological signals, the two models being investigated represent noise-only data, and

data containing both spikes and noise. More formally, spike detection can be interpreted as

a hypothesis testing problem, where under the null hypothesis, H0, the signal contains noise
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only, and under the alternative hypothesis, H1, the signal contains both a spike and noise.

Given a C sensor array signal of length N , where C is the number of sensors and N is the

number of samples spanned by a spike, we can express the hypotheses mathematically as

H0 : x = n

H1 : x = s + n

where x ∈ RC×N is a signal of length N , s ∈ RC×N is a spike, and n ∈ RC×N is zero-mean

noise. The LRT for this problem can now be expressed as

L(x) = p(x|H1)
p(x|H0)

,
H1 if L(x) > γo

H0 if L(x) < γo

where x ∈ R1×CN is the row vector form of the signal matrix x, and γo is the threshold.

2.2.1.2 General Matched Filter

Assuming Gaussian noise statistics, the LRT takes on the form of a generalized matched

filter (GMF) [46]

S(x) = sΣ−1xT ,
H1 if S(x) > γ

H0 if S(x) < γ
(2.1)

where s ∈ R1×CN is the row vector form of the spike s, Σ ∈ RCN×CN is the spatio-temporal

noise covariance matrix of the row vector form of the noise n, and γ, which subsumes γo

and data-independent terms, is the threshold. Note that the test statistic, S(x), is linearly

dependent on the signal x. Even if the noise is not Gaussian, S(x) has the highest achievable

SNR of all other linear combinations of the data [46].
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2.2.1.3 Sliding Window Approach (Convolution)

The matched filter described in Sec. 2.2.1.2 performs a hypothesis test on x ∈ RC×N where

C is the number of sensors and N is defined as the number of samples spanned by a typical

spike. To detect spikes from a full data trace, X ∈ RC×T , where T � N , we have to apply

the matched filter iteratively across the entire trace. This type of approach is referred to as

a sliding window. Initially the filter tests a segment of the signal [X(1), X(2), · · · , X(N)].

The filter output given this window is a scalar that indicates the likelihood of a spike in the

center of the window, S(N
2

). Once finished, the test segment is advanced by one sample to

[X(2), X(3), · · · , X(N + 1)] and this new segment is filtered. The process is repeated until

the full data set X has been filtered. This is also referred to as a convolution.

2.2.2 Simplifying Assumptions

The CN × CN parameters of the covariance matrix Σ may be difficult to estimate reliably

given a finite amount of data available for training. If necessary, we can reduce the number

of parameters by making some simplifying assumptions about the noise statistics used to

calculate the covariance matrix, Σ.

2.2.2.1 Spatially White Noise Assumption

We can reduce the number of parameters calculated in the noise covariance, Σ, by making

the simplifying assumption that the noise statistics are spatially white, meaning that the

noise over a given channel is independent of the noise on other channels (uncorrelated in

space). To then perform the noise covariance calculation, using this simplifying assumption,
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we can represent Σ as

Σ =



Σ1,1 Σ1,2 · · · Σ1,C

Σ2,1 Σ2,2 · · · Σ2,C

...
...

. . .
...

ΣC,1 ΣC,2 · · · ΣC,C


(2.2)

where the submatrix Σi,i ∈ RN×N is the temporal covariance matrix of noise at sensor i,

and Σi,j ∈ RN×N (j 6= i) is the temporal cross-covariance matrix of noise at sensors i and

j. If the noise statistics are uncorrelated in space, then all Σi,j (j 6= i) are 0. Although

electrophysiological noise exhibits spatial correlations [100], our experience shows that the

spatially white noise assumption often outperforms fully colored noise in some detection

cases, namely multi-sensor extracellular APs [28].

2.2.2.2 White Gaussian Noise Assumption

Similarly, due to available noise sample constraints as well as processing time considerations,

it may be necessary to reduce the number of parameters in Σ even more drastically. We can

do this by assuming that the noise statistics are spatially and temporally white, meaning

each noise sample is independent of any other noise sample. Again, the noise in electrophys-

iological data is generally not white, as a large portion of it is biological noise. However,

we’ve seen that it is often better to use a white Gaussian noise (WGN) approximation than

risking a poorly estimated full noise covariance model [103].

Under the white Gaussian noise (WGN) assumption all parameters, Σi,j (j 6= i), of the

covariance matrix Σ, are zero. The remaining parameters Σi,i represent each sample point’s

autocorrelation, which is equivalent to the noise variance, σ2. The covariance matrix then

takes on the form
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Σ =



σ2 0 · · · 0

0 σ2 · · · ...

... · · · . . . 0

0 · · · 0 σ2


= σ2IN×N

where σ is the only parameter being estimated from the noise training sample. The gener-

alized matched filter is then reduced to a matched template

S(x) = s 1
σ2x

T ,
H1 if S(x) > γ

H0 if S(x) < γ
(2.3)

2.2.3 Setting Detection Thresholds

Thresholding parameters were calculated from the filtered signal which contains both spikes

and noise. Assuming that spikes are statistically sparse within the noise, we can effectively

approximate the mean and standard deviation of the filtered noise for each data trace X by

calculating the filter output’s median, M , and median-based standard deviation, σM [71].

σM =
M{| S(1))−M |, ..., | S(T )−M |}√

2Erf−1(1
2
)

(2.4)

where S is the filter output,M is the median operator, and T is the number of time samples

spanning X. This median-based approximation provides a more robust estimate of the filter

output’s noise parameters than simply taking the mean and standard deviation of the filter

output. The threshold, γ is then set as a multiple of σM , above the median, M

γ = M + aσM (2.5)

where a is the multiple and will be referred to as the thresholding sensitivity for the remainder

of this work.
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2.3 Applications

The matched filter is data driven and therefore very flexible by design. Throughout this

work it’s been specifically tailored to three applications, on three very disparate data types.

The first is multi-sensor extracellular recordings, where the purpose is to detect neuronal

action potentials (APs). The second application strays from electrical recordings and moves

into imaging; the matched filter was applied to detect depolarization events (DEs), which

are often also called APs, from voltage sensitive dye (VSD) imaged cardiomyocytes. The

third and last application remains in the realm of imaging, and goes back to neurological

data; the filter was applied to detect calcium events (CEs), a proxy for AP activity, from

calcium dye imaged neuronal cell populations as well as dendritic spines.

2.3.1 Multi-sensor Extracellular Action Potential Detection

The work presented in this section is adapted from Szymanska et al. 2013 [99]. Briefly, a

matched filter was designed and implemented to detect extracellular APs from multi-sensor

extracellular recordings. The detector was tested on tetrode data from a locust antennal

lobe and assessed against three trained analysts. 25 APs and noise samples were selected

manually from the data and used for training. To reduce complexity, the filter assumed that

the underlying noise in the data was spatially white. The detector performed with average

TP and FP rates of 84.62% and 16.63% respectively. This high level of performance indicates

the algorithm is suitable for widespread use.

2.3.1.1 Background on Extracellular Action Potential Detection

Before any signal analysis can be performed, APs representative of neurophysiological ac-

tivity must be identified from the data. Detection is therefore a crucial component of any

39



neurophysiological signal processing algorithm. Biological noise in extracellular neurophysi-

ological recordings is composed of the activity of background neurons and ion-channel noise.

It is therefore both correlated with, and statistically similar to the AP signal. This com-

pounds the detection problem and makes most standard signal detection tools used in other

fields unsuitable.

Template matching, or more generally the matched filter, have proven to effectively detect

spikes from various types of neurophysiological data [107, 48, 99, 122, 9, 26, 100, 91, 71]. Al-

though widely applied to single-sensor extracellular data, there are few examples of matched

filers applied to multi-sensor data. Gozani and Miller [26] developed a technique using mul-

tiple matched filters to simultaneously detect and classify multi-sensor APs. Their technique

tries to both maximize AP signal-to-noise ratio (SNR) and minimize the interference between

APs. However, this method relies on the construction of many AP templates, which requires

some prior knowledge of the number of recorded neurons, and may be very time consuming,

as a single tetrode in a neuron-dense region may record activity from up to 20 neurons [115].

Furthermore, minimizing the interference between APs may compromise their detectability.

The filter presented here concentrates on a more reliable and simpler supervised method that

uses only one template and takes into account the noise statistics of the data.

2.3.1.2 Methods

Data Collection Data used in this experiment is publicly available online [78] and the

full data collection procedure is described in Pouzat et al. 2002 [79]. Briefly, a planar silicon

probe was placed below the surface (∼50-100 µm) of an adult locust’s antennal lobe and

used for recording. Recorded data was sampled at 15 kHz and bandpass filtered from 300

- 5,000 Hz. A total of 20 seconds of data was provided from four of the probe tip sensors.

Half of the collected data was used for training (training data), and the remaining half was
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used for further analysis (test data). Three trained analysts independently tagged all of the

spikes in the test data.

Filter Training Twenty five APs, 2 ms each (N = 30, C = 4), were manually selected

from the training data, aligned to their peak values, and averaged to generate the matched

template, s. Similarly, 25 noise samples, roughly 30 ms each, were manually selected from

the training data, concatenated into a single four-sensor time series, and used to generate

the noise covariance matrix, Σ. From experience, we selected the optimal noise parameter

estimation model for this type of data as spatially white noise (Sec. 2.2.2.1).

The training noise was subdivided into 375 noise windows (N = 30) and auto-covariance

sequences, rc(k), were then calculated at lags k ∈ {−29, · · · , 29} for each window and each

sensor c ∈ [1, 4]. The sequences were averaged across all 375 noise windows, and used to

generate each Σi,i (Eq. 2.2), which were then used to construct Σ.

Performance Analysis Detected APs, given 40 incrementally increasing thresholds, a =

[1, 1.5, ..., 20.5] (Eq. 2.5), were compared against those tagged by each trained analyst, with

the analyst acting as the “ground-truth”. True positive (TP), and false positive (FP) rates

for each threshold and analyst were then calculated as

TP Rate =
TP

SpikesA
(2.6)

FP Rate =
FP

SpikesD
(2.7)

where SpikesA is the total number of spikes tagged by the analyst, and SpikesD is the total

number of spikes detected by the detector, and TP and FP are the total numbers of true
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positives, and false positives, respectively. The false negative (FN) rate can be calculated as

(1− FP ), however as it gives no new information about the detector performance, it is not

reported here. The TP and FP rates at each threshold were then used to generate receiver

operating characteristic (ROC) curves for each analyst.

2.3.1.3 Results

The detector performed well compared with all three analysts. The optimal threshold for

each analyst (Table 2.1) was determined by minimizing the distance between their respective

ROC curve (Fig. 2.4) and theoretically perfect performance (100% TP, 0% FP). At the

optimal threshold, the detector performed with a TP rate of 90.79% and an FP rate of

20.66% compared with Analyst 1, a TP rate of 80.00% and an FP rate of 10.31% compared

with Analyst 2, and a TP rate of 83.06% and an FP rate of 18.91% compared with Analyst 3

(Table 2.1). The detector’s average TP and FP rates were 84.62% and 16.63%, respectively.

Note that the optimal thresholds associated with the best performance for each analyst

differed. This is a result of the discrepancy in spike tagging between analysts, which can be

quantified in terms of signal-to-noise ratio (SNR). The SNR for each spike, u, tagged by the

analysts was calculated as

SNR(u) = max
c

{
σ2
c (u)

σ2
c (n)

}
(2.8)

where σ2
c (u) is the variance of spike u at sensor c, and σ2

c (n) is the variance of the training

noise at sensor c. The maximum SNR across sensors was taken as u’s SNR. Analyst 1 was

the most selective with a median SNR of 28, followed by Analyst 2 with a median SNR of

20, and Analyst 3 was the most liberal, with a median SNR of 7. An example of the types of

spikes tagged by each analyst, as well as the detected spikes at a = 5.5 is shown in Fig. 2.2.
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TP = 90.8
FP = 20.7
a = 7

TP = 80.0
FP = 10.3
a = 5.5

TP = 83.1
FP = 18.9
a = 3.5

Figure 2.1: ROC Curves for all three analysts. TP and FP pairs were collected for 40
incrementally increasing thresholding sensitivity with a = [1.0, 1.5, ..., 20.5] (Eq. 2.5), for
each analyst. The black arrows point to the detector’s optimal performance for each analyst,
with the appropriate parameters listed below.
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Figure 2.2: Raw tetrode data with the detection results for a = 5.5 marked as purple circles.
The spikes tagged by Analysts 1, 2, and 3 are shown as blue squares, green triangles, and
red stars, respectively. Note that this threshold is optimal for detecting the spikes tagged
by Analyst 2.

Table 2.1: Optimal detector performance for the three analysts. The corresponding thresh-
olding sensitivity a (Eq. 2.5) is listed in column 3 and each analyst’s median spike SNR is
provided for reference in column 4.

Analyst
Optimal Performance Threshold Median

TP Rate (%) FP Rate (%) Multiple ‘a’ Analyst SNR

1 90.79 20.66 7 28
2 80.00 10.31 5.5 20
3 83.06 18.91 3.5 7
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2.3.1.4 Discussion

Analyst Reliability The data used in this study was collected in vivo, therefore the

ground-truth in terms of spike times was not available and was instead estimated as the

spikes selected by each analyst. However, agreement between analysts was as low as 39%.

The variability in the analysts’ tagged spikes therefore implies that human analysts may not

be a reliable source of ground-truth estimation.

Besides not being consistent with each other, the analysts were also not internally consistent

in spike selection. Analysts were likely to arbitrarily increase or decrease their internal

thresholding criteria over time, even while tagging spikes in a single data set. Similarly, spikes

with a relatively low amplitude but surrounded by noise were very likely to be selected by

the analyst. However, similar spikes surrounded by other APs were less likely to be selected.

This bias artificially decreases the detector’s TP rate. In general human analysts are not a

reliable or consistent source of ground-truth for the detection of neurophysiological activity.

This conclusion was also drawn by Harris et al. [32] where 9 analysts sorting extracellular

tetrode data had FN and FP rates as high as 30%.

Detector Performance The presented algorithm’s performance is under estimated in this

study. As discussed previously, this is partially due to the analysts’ unreliability. To try to

better assess the detector’s performance, the FPs in the optimal cases for Analyst 1 were

further inspected. The detector performed optimally when compared against Analyst 1 at

a = 7. In this case the detector reported a 20.66% FP rate (Table 2.1). Because Analyst

1 is the most selective, we can compare these FPs to the spikes tagged by both Analysts 2

and 3. The comparison results show that 99% of these FPs were tagged by both Analysts 2

and 3. In other words, a majority of the analysts thought that 99% of the spikes identified

as FPs in this case were actually TPs. This implies that the FP rate should be closer to 0%.

Similar results were derived when analyzing the FPs identified against Analyst 2.
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Given these results, we believe that the detector would perform much better if compared

against the actual ground-truth as opposed to trained analysts. This can be accomplished by

patch-clamping several neurons and simultaneously recording extracellularly with a tetrode

as described in [32]. The patch-clamp recordings would be temporally matched against

tetrode recordings to determine precise AP times. These could then be used as the ground-

truth for detection results. Any spikes recorded from non-patched neurons would not be

included in such an analysis.

2.3.1.5 Conclusion

The multi-sensor matched filter developed in this study was assessed against three trained

analysts and performed with average TP and FP rates of 84.62% and 16.63%, respectively.

The detector’s performance presents it as a great candidate for wide-spread use as one of the

only multi-sensor detectors of its kind. Furthermore, the algorithm’s performance is likely

under estimated as a vast majority of the spikes identified as FPs for Analysts 1 and 2 were

actually identified as TPs by Analyst 3. Because the analysts were proven to be inconsistent

and unreliable, we believe that the detector would perform even better if compared against

the ground-truth instead of trained analysts.

2.3.2 Matched-filter for Depolarization Event Detection (MaD)

The work presented here is adapted from Szymanska et al. 2016 [103]. Briefly, we used

2-photon microscopy of fluorescent voltage-sensitive dyes (VSDs) to capture the membrane

voltage of actively beating human induced pluripotent stem cell-derived cardiomyocytes

(hiPS-CMs). We built a custom and freely available matched filter for depolarization event

detection (MaD) of VSD imaged hiPS-CMs. The efficacy of our software was quantified

by comparing detection results against manual DE detection by expert analysts. The soft-
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ware accurately detected DEs with true positive rates of 98-100% and false positive rates

of 1-2%, at signal-to-noise ratios (SNRs) of 5 and above, given three hiPS-CM drug treat-

ments: propranolol, isoproterenol, and control. MaD was part of a software package called

MaDEC which also quantified and compared the DEs treated with these β-adrenergic drugs

(Chapter 3.2).

2.3.2.1 Background on VSD Spike Detection

The derivation of human induced pluripotent stem cells (hiPS) from somatic human cells has

opened broad opportunities in the study of human cardiac cells. Previously limited by their

minimal proliferation, human cardiomyocytes were difficult to obtain in significant number

to allow widespread study. hiPS cells can be expanded into the required quantities and

then differentiated into cardiomyocytes (hiPS-CM) as a new, and seemingly endless, source

of cardiomyocytes [65, 123]. Accompanying this expanded availability, there has been an

acceleration of the development of new methods for assessing the electrophysiological effects

of drug compounds. Image-based tools for assessing excitable cells, such as cardiomyocytes,

have particularly come to the fore [8, 20, 50, 97, 109, 112], with voltage-sensitive dye (VSD)

imaging proving to be particularly popular [34, 120, 24, 33, 55].

Quantitative assessment of the heterogeneity of the DEs of actively beating cardiomyocytes

is critical to understanding the electrophysiology underlying these cardiac tissue models.

However, existing quantitative analysis tools studying cardiomyocyte activity were devel-

oped for calcium imaging applications [97, 50, 8, 3], and most are focused on automated

region of interest (ROI) identifications [97, 8, 3]. These image analysis tools are not readily

applicable to VSD imaging of cell membranes, where two-dimensional regions of interest, are

not necessarily spherical and are more difficult to identify. Algorithms focusing on line-scan

data have been developed for Ca2+ spark detection in cardiac ventricular myocytes [50], as
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well as elementary calcium release events in muscle [112]. However, they have not been

applied or tested with VSD based methods on cardiomyocyte DEs.

To quantitatively assess VSD acquired imaging data from hiPS-CMs, we built a custom Mat-

lab software capable of detecting individual VSD imaged DEs, using a generalized matched

filter, providing non-biased as well as reliable event selection even in low-SNR environments.

2.3.2.2 Methods

Data Collection The full data collection procedure is described in Appendix A.1 as well

as Szymanska et al. 2016 [103] and Heylman et al. 2015 [34]. Briefly, prepared hiPS-CMs

began spontaneously beating on approximately Days 12-15 of culture, and were stained with

VSD and imaged on Day 33. After staining with VSD, cells were qualitatively confirmed

to still be spontaneously beating after which β-adrenergic drugs were added to the cultures.

One culture was treated with propranolol, two cultures were treated with isoproterenol, and

two cultures were left untreated as controls. Two-photon microscopy line scan data was then

collected for all of the cultures. The drug treated cultures were imaged immediately after

addition of drugs (less than 60 sec of exposure) and again 10 min or 15 min after addition

to ensure complete exposure. This accounts for a total of 7 data traces, from 5 cell cultures.

The imaging data was then processed to extract fluorescence intensity traces along a given

cell membrane, and filtered to remove photobleaching artifacts. Intensity traces, X, for all

drug and control conditions were then plotted in Matlab, and three trained human analysts

independently identified DE peak times from each trace.

Filter Training The MaD detector is completely data driven as both s and Σ from Eq. 2.1

are estimated from the data. This allows the detector to be very flexible in accommodating

various DE sizes, shapes, and durations, depending on the drug treatment applied and the
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specific data collected. The detector was trained under three detection conditions. The

first was no drug exposure (control); the second was isoproterenol exposure and included

data immediately after and 10 min after addition of isoproterenol; the third was propranolol

exposure and included data immediately after and 10 min after addition of propranolol. The

appropriately trained detector was then used to extract DEs from the data.

In order to estimate s and Σ, 20 high-SNR DEs (N = 800 ' 0.48 s), as well as 20 noise-only

data samples, were identified manually for each detection condition (control, isoproterenol,

and propranolol). Analysts identified between 81 and 142 DEs in the control data, depend-

ing on the analyst (Table 2.7). Therefore, the 20 control training DEs represent 14-25%

of the total control DEs. Similarly, the 20 isoproterenol training DEs represent 15-16% of

the total isoproterenol DEs, and the 20 propranolol training DEs represent 24% of the total

propranolol DEs. These training DEs were then aligned to their peak values, and averaged

to construct s for each detection condition. The identified training noise samples were sub-

divided into windows (N = 800 ' 0.48 s), and auto-covariance sequences, r(k), were then

calculated at lags k ∈ {−399,−398, · · · , 399} for each noise window. The total available

noise in each detection condition is difficult to quantify, however we can present the training

noise for each detection condition in terms of a percentage of the full data for that detection

condition. The training noise samples in the control condition, isoproterenol condition, and

propranolol condition represent 14%, 7%, and 15% of the control, isoproterenol, and propra-

nolol data, respectively. The Σ for each detection condition was generated by averaging the

auto-covariance sequences across that detection condition’s noise windows. Both a full noise

covariance model (Sec. 2.2.1.2) and a white Gaussian noise covariance model (Sec. 2.2.2.2)

were tested.

The size of s and each noise window was empirically selected as N = 800 ' 0.48 s to ensure

that most DEs were captured in full, although some data sets did exhibit both wider and

slimmer DEs depending on the drug treatment. The number of noise windows for a given
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Table 2.2: Training sample information for each drug treatment. Average training DE SNR
is the average SNR of the 20 DEs selected for training for a given drug treatment. The
number of windows the training noise sample for each data set could be split into is also
listed.

Training Condition Average Training DE SNR Number of Training Noise Windows

Control 3.77 34

Isoproterenol 148.07 17

Propranolol 158.97 37

drug treatment varied depending on the length of available noise-only segments in the pre-

processed data. Likewise, the shape and SNR of DEs used for estimating s varied between

drug treatments. Examples of s from both propranolol and isoproterenol drug treatments,

as well as the control, are shown in Fig. 2.3. The average SNR of the training DEs, as well as

the number of training noise windows available for each drug treatment is listed in Table 2.6.

2.3.2.3 Results

A total of 7 data traces, from 5 cell cultures, were tested. The first 5 conditions are a

control (cell culture 1), immediately after addition of isoproterenol (cell culture 2), 10 min

after addition of isoproterenol (cell culture 2), immediately after addition of propranolol (cell

culture 3), and 10 min after addition of propranolol (cell culture 3). These conditions will

now be referred to as Control-1, Iso-1 0min, Iso-1 10min, Pro-1 0min, and Pro-1 10min,

respectively. In order to better test the MaD detector in low-SNR environments we also

provide results for a low-SNR control data case (cell culture 4), as well as a low-SNR 15

min after addition of isoproterenol case (cell culture 5). These two conditions will now be

referred to as Control-2 and Iso-2 15min, respectively.
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Figure 2.3: Examples of training templates s from control (left), isoproterenol (middle), and
propranolol (right) data. Each template is 0.48 s long.

Manual Depolarization Event Identification Three trained analysts identified DE

peak times in all 7 presented data traces. The number of identified DEs as well as the

average DE SNR for each analyst and each data trace is shown in Table 2.7. The SNR of a

given DE was calculated as SNRDE = E(DE2)/σ2
noise, where E is the expectation operator,

and σ2
noise was calculated from the 20 noise samples manually selected from each given data

trace during training. Each analyst’s percentage of agreement with unanimously identified

DEs is also presented as a global measure of analyst consistency.

The average SNR of the DEs identified in the Control-1 trace was 5.67. The unanimously

identified Control-1 DEs had a slightly higher SNR of 5.71. The average analyst agreement

with unanimous Control-1 DEs was 98.87% (only 1 DE was not unanimous). The average

SNRs for the Iso-1 and Pro-1 data sets were an order of magnitude higher than the Control-1

DEs. Iso-1 DEs identified by analysts had an average SNR of 69.74, and unanimous Iso-1

DEs had a slightly higher SNR of 70.58. Here the average analyst agreement was 99.03%
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(only 2 DEs were not unanimous). Analysts were unanimous about 100% of the Pro-1 DEs

and the average Pro-1 DE SNR was 30.97. Examples of the DEs identified by the analysts

in each of these drug treatments are shown in Fig. 2.4

The average SNR of the DEs identified in the Control-2 trace was 3.07. The unanimously

identified Control-2 DEs had a slightly higher SNR of 3.19. Given this relatively low SNR,

the average analyst agreement with unanimous Control-2 DEs was only 75.52%. The average

SNR of the Iso-2 15min trace was even lower, at 0.63. Unanimously identified Iso-2 15min

DEs had an SNR of 0.65. Similarly, the average analyst agreement with unanimous Iso-2

15min DEs was very low, at only 68.83%. Examples of the DEs identified by the analysts in

both of these low-SNR conditions are shown in Fig. 2.5

MaD Detector Performance A total of 5 detection cases were considered: Control-1,

Iso-1, Pro-1, Control-2, and Iso-2, where the last 2 (Control-2 and Iso-2) represent specially

selected low-SNR data. Unanimous DEs between all 3 analysts were used as the ground-

truth for assessing MaD performance. If a detected DE was within 0.12 s, or one quarter

of the length of a typical DE, of the true peak time, it was considered a true positive (TP).

Otherwise, the detected DE was considered a false positive (FP). Examples of detected DEs

are shown in Figs. 2.4 and 2.5.

A true positive vector tp was used to represent all of the ground-truth DEs in a given

detection case. If a given DE was successfully detected (TP) it was assigned a value of 1,

and 0 otherwise. Similarly, a false positive vector fp was used to represent all of the detected

DEs in a given detection case, with each detected DE assigned a value of 1 if the DE was a

FP, and 0 otherwise. The means of tp and fp, representing TP and FP rates respectively,

were then calculated at 45 incrementally increasing thresholds for each detection case. The

TP and FP rates at each threshold were then used to generate ROC curves for each detection

case (Figs. 2.4 and 2.5).
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Table 2.3: Number and average SNRs of manually identified DEs for each analyst and each
data trace. The last column shows the number and average SNR of DEs unanimous among
all 3 analysts. The percentage agreement between each analyst and the unanimous DEs is
also shown.

Treatment
Analyst Unanimous

1 2 3 Average DEs

Control-1
# DEs 60 59 60 59.67 59
Avg. SNR 5.64 5.71 5.64 5.67 5.71
Agreement (%) 98.31 100 98.31 98.87

Control-2
# DEs 81 142 94 105.67 76
Avg. SNR 3.12 2.91 3.18 3.07 3.19
Agreement (%) 92.18 53.52 80.85 75.52

Iso-1

0 min (# DEs) 63 63 62 62.75 62
10 min (# DEs) 66 67 67 66.50 66
Avg. SNR 69.76 69.32 70.15 69.74 70.58
Agreement (%) 99.22 98.46 99.22 99.03

Iso-2
15 min (# DEs) 43 107 46 65.33 38
Avg. SNR 0.70 0.58 0.61 0.63 0.65
Agreement (%) 88.37 35.51 82.61 68.83

Pro-1

0 min (# DEs) 55 55 55 55 55
10 min (# DEs) 29 29 29 29 29
Avg. SNR 30.97 30.97 30.97 30.97 30.97
Agreement (%) 100.00 100.00 100.00 100.00

The threshold at which detector performance is closest to TP = 100% and FP = 0% is the

optimal threshold and constitutes the best detector performance for that detection case. All

following performance metrics are presented as TP or FP Rate [95% confidence interval].

The best performance for the Control-1 case was TP = 97.92 [92.15, 100.00]% and FP =

1.75 [0.00, 5.26]% at a threshold of 4 standard deviations above the noise mean. The best

performance for the Iso-1 case was TP = 100.00 [100.00, 100.00]% and FP = 0.78 [0.00, 2.33]%

at a threshold of 8 standard deviations above the noise mean, and the best performance for

the Pro-1 case was TP = 98.81 [96.43, 100.00]% and FP = 1.19 [0.00, 3.57]% at a threshold
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of 6 standard deviations above the noise mean. Overall, the MaD detector performed on par

with human analysts and accurately identified DEs at SNR levels of 5 and above.

Performance decreased in the low-SNR detection cases. The best performance for the

Control-2 case was TP = 72.37 [61.84, 81.58]% and FP = 16.67 [7.58, 25.76]% at a threshold

of 4 standard deviations above the noise mean. The best performance for the Iso-2 case

was TP = 65.79 [49.99, 81.59]% and FP = 13.79 [0.44, 27.14]% at a threshold of 2 standard

deviations above the noise mean. Note that the training used for detection in the Control-2

and Iso-2 cases was derived from the Control-1 and Iso-1 data sets, respectively. The low

analyst agreement, ranging from 76% to 69%, in these low-SNR detection cases made it

very difficult to reliably select training samples from the Control-2 and Iso-2 data traces.

Therefore, training from the higher SNR data traces had to be used instead. If training data

could be reliably selected from the Control-2 and Iso-2 data traces, it is likely that the lower

quality of the training samples would adversely affect detection performance.

White Gaussian Noise vs Fully Colored Noise The full noise covariance extracted

from the training data (Sec. 2.2.1.2) is a very accurate estimate of the noise parameters.

However, if the training noise sample is too small the full noise covariance could be poorly

estimated and it may be advantageous to make the simplifying assumption that the noise is

white (Sec. 2.2.2.2). We therefore tested the effects of employing the WGN assumption on

the data presented in this work. All subsequent results are presented at best performance

as (TP% / FP%).

Although the WGN assumption is a less accurate representation of the noise parameters

than the full noise covariance, performance under the WGN assumption was not significantly

affected in the Iso-1 (100.00%/0.78%) or Pro-1 (97.62%/2.38%) detection cases (ROC curves

not shown). The Control-1 case, suffered slightly in performance (93.22%/5.17%), but is still

within the previously quoted confidence interval. The Control-2 case showed a more marked
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Figure 2.4: Detector Performance. The figure consists of three pre-processed intensity traces
from the control (Top), isoproterenol (Middle), and propranolol (Bottom) drug treatments.
The circles above each data trace represent the DEs identified by analysts 1-3 (bottom
to top respectively). The triangles above each data trace represent MaD detected DEs,
using the optimal thresholds identified in the corresponding ROC curves to the right. The
optimal threshold is identified as the one resulting in the detector performance closest to
TP = 100% and FP = 0%. The error bars represent 95% confidence intervals. The optimal
performance for each drug treatment case is presented under each ROC curve. The MaD
detector performed with a TP rate of 98-100% and a FP rate of 1-2% for all 3 drug treatments.
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Figure 2.5: Detector Performance At Low SNR. The figure consists of two pre-processed
intensity traces from the low SNR control (Top), and the low SNR isoproterenol (Bottom)
drug treatments. The circles above each data trace represent the DEs identified by analysts
1-3 (bottom to top respectively). The triangles above each data trace represent MaD detected
DEs, using the optimal thresholds identified in the corresponding ROC curves to the right.
The error bars represent 95% confidence intervals. The optimal performance for each drug
treatment case is presented under each ROC curve. As the SNR decreased, the performance
of the MaD detector also decreased. Performance was still adequate for SNR ' 3, but not
for SNR ≤ 1.

decrease in detection efficacy (85.53%/32.29%). Curiously, the Iso-2 case, which has the

lowest SNR of all of the data presented in this work, showed an increase in both the best

TP rate, and the best FP rate (89.47%/34.62%), which resulted in a comparable overall

performance.

These results imply that the matched filter under a WGN assumption is sufficient for DE

detection at SNR levels of 5 and higher, but may lead to a decrease in detection efficacy at

lower SNRs.
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Effects of Differing Training Samples For some applications, it may be advantageous

to reduce the training samples size, in the interest of time. In our experience, the noise

sample is highly dependent on the length of individual noise segments identified by the user.

If long noise segments (more than 10 times the window size) are available, then as little

as 10 segments can be sufficient for accurate DE detection. Similarly, the signal sample is

dependent on SNR. If high SNR (SNR ≥ 5) DEs are available for training, then as little

as 10 samples is sufficient for accurate DE detection. However, if the signal SNR is lower,

then at least 20 samples should be used to maximize detection efficacy. Note that data pre-

processing has little effect on SNR and serves only to remove large scale artifacts produced

by the motion of the beating cell membrane and photobleaching of the VSD. Therefore

variations in pre-processing methods should not affect the training paradigm.

It may also be useful to be able to re-use training samples between different data sets. To

determine how re-using training samples from one data set to detect DEs from a different

data set affects detection performance, we compared detection performance when a native

training sample (derived from the data being tested) is used with detection performance

when a non-native training sample (derived from data of a different cell membrane than

the one being tested) is used. For this analysis we only tested the Control-1, Iso-1, and

Pro-1 detection cases, as the low-SNR cases may not lead to reliable enough conclusions.

All subsequent results are presented at best performance as (TP% / FP%). Using a non-

native isoproterenol training sample on the Iso-1 data resulted in (96.88%/4.62%) using

the full noise covariance, and (99.22%/0.78%) under the WGN assumption (ROC curves not

shown). Similarly, using a non-native propranolol training sample on the Pro-1 data resulted

in (90.48%/9.52%) using the full noise covariance, and (100.00%/0.00%) under the WGN

assumption. In the Control-1 case, using a non-native control training sample resulted

in (98.31%/1.69%) using the full noise covariance, and (96.61%/1.72%) under the WGN

assumption. The detector worked well even when Iso-1 training was used on Pro-1 data

(85.71%/26.53% using full noise covariance; 100.00%/0.00% under the WGN assumption)
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and vice versa (79.69%/28.67% using full noise covariance; 98.44%/1.56% under the WGN

assumption).

In all of these cases we see that detection performance is maintained if a non-native training

sample is used. Furthermore, efficacy is most often preserved under the WGN assumption.

When the full noise covariance is used with a non-native training sample, detection perfor-

mance may begin to degrade, indicating that in the absence of a native noise covariance,

the filter may perform better using a WGN approximation than using a well estimated but

inaccurate, non-native noise covariance.

2.3.2.4 Discussion and Conclusion

VSDs address limitations of existing methods for measuring hiPS-CM DEs. Patch clamping

offers precise measurement of transmembrane voltages, but is invasive in nature, requiring de-

structive membrane puncture to position electrodes that prevents longitudinal experiments.

Only single cells may be assessed using a complex apparatus [5, 37, 111]. The growing

field of organ-on-a-chip platforms demands non-invasive fluorescence based in situ endpoints

for assessing hiPS-CM [35, 67]. VSD fluorescence intensity measurements using 2-photon

microscopy are noninvasive, non-destructive, and allow for longitudinal electrophysiological

assessment of live, 3D, cardiac tissues in microfluidic-based devices. Quantitative assessment

of the DEs of actively beating cardiomyocytes is critical to understanding the electrophysi-

ology underlying these cardiac tissue models.

The MaD detector presented in this work was developed to detect DE from VSD imaged

cardiomyocytes. Although some detection algorithms exist for similar use in calcium imaging

applications, they are either not tailored well to VSD data [97, 8, 3], or have not been tested

on cardiomyocyte data [50, 112]. The MaD detector provides a tool that is specifically

designed for automatic detection of VSD imaged cardiomyocyte DEs. It has proven to work
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exceptionally well, especially on data with SNR ≥ 5, with TP rates ranging from 98-100%

and FP rates ranging from 1-2%. This level of performance is largely maintained even if a

simplified noise covariance model (WGN) is used, and if a non-native training sample is used.

Furthermore, unlike other VSD-approaches that use pre-defined waveform features, the MaD

detector uses a data-driven sample of the entire waveform to detect DEs, resulting in a non-

biased DE selection criterion that can accurately detect waveforms. Furthermore, the MaD

detector’s data driven design means it can be easily modified to assess the electrophysiology

of other excitable cell populations [98] and data types [104].

Although the DEs presented here appear periodically, the MaD algorithm takes a generalized

approach to signal detection. This allows for the detection of irregular DEs that may be

indicative of drug-induced side effects. Early after depolarization (EAD) and delayed after

depolarization (DAD) events are potentially lethal and may occur at irregular intervals [23,

113]. MaD does not incorporate the expected periodicity of cardiac DEs into the detection

algorithm, allowing for the flexibility to detect these types of events. In the event that

periodic signals are explicitly desired at low-SNR, the MaD detector could be modified to

apply a variable threshold to pick up low-SNR DEs at the expected time intervals, without

increasing the number of FPs throughout the entire dataset. Future work with MaD will

focus on variability from DE to DE to detect these rare, but potentially lethal EADs and

DADs.

Overall the MaD detector is a useful new tool for the study of cardiomyocyte electrophysiol-

ogy. Combined with the use of voltage-sensitive dyes, it allows for non-invasive, image-based,

and automated detection of cardiac DEs. This study demonstrates the ability of this tool to

detect DEs across a wide range of SNRs and various levels of model complexity.
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2.3.3 Matched filter for Multi-unit Calcium Event detection (MMiCE)

The work presented here is adapted from Szymanska et al. 2016 [104]. Briefly, we developed

a Matched filter for Multi-unit Calcium Event (MMiCE) detection to extract calcium events

(CEs) from fluorescence intensity traces of simulated and experimentally recorded neuronal

calcium imaging data. MMiCE performed with a true positive (TP) rate of 98.27% (with

a 95% confidence interval of [96.89, 99.65]%), and a false positive (FP) rate of 6.59% (with

a 95% confidence interval of [4.03, 9.15]%) on simulated data with SNR 0.2. It reached

perfect performance on simulated data with SNR ≥ 2. MMiCE performance on real data

was also very promising (TP = 100 [100.00, 100.00]%, FP = 2.04 [0.00, 6.14]%). Trained

analysts indicated the algorithm was more consistent and reliable than manual CE tagging.

Detection time with MMiCE was reduced from roughly 24 hours per data set manually, to

just 75-s per data set on average (0.0047-s per region of interest per second of recording).

Overall, the MMiCE detector greatly reduced run time compared with manual CE detec-

tion, and performed exceptionally well on both simulated data at SNR as low as 0.2, and

experimentally recorded neuronal calcium imaging data. The MMiCE detector is accurate,

reliable, and well suited for wide-spread use.

2.3.3.1 Background on Calcium Event Detection

Functional multineuron calcium imaging (fMCI) has been particularly successful as a means

of studying the interactions of multiple (often hundreds) of neurons in large populations [106]

with specific applications both in vitro [12, 40, 86, 87, 88], and in vivo [47, 105]. Regardless

of the details in fluorescence imaging, or focus on either synaptic or somatic calcium waves,

calcium imaging in neurons often suffers from low SNR. This makes signal detection very

difficult, prompting the development of many automated or partially automated detection

approaches.
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Pioneers in the field first represented calcium imaging data as fluorescence changes (∆F/F ),

and established a link between somatic calcium transient waves and action potentials (APs) [92,

47]. Subsequent studies linked the amplitude of calcium transient waves to AP firing patterns

and rates [119, 66, 27]. Although it is now universally accepted that relative amplitudes of

fluorescent CEs are indicative of the frequency or number of APs fired by the cell, algo-

rithms back-calculating AP firing rates are difficult to generalize. The amplitude of a given

CE depends on the amount of fluorescent calcium indicator taken up by the cell, as well as

the proximity of the region of interest (ROI) to the focal imaging plane. When perform-

ing imaging population studies, such as those using fMCI [106], it is impractical and often

impossible to calculate the exact distance from the focal plane and to quantify the amount

of indicator present in each cell or ROI. Comparison of CE amplitudes across ROIs or data

sets is therefore unreliable. Furthermore, low-SNR signals where CEs are generated from 5

or fewer APs often fail to be detected [66]. When they are detected, the low-SNR CEs often

lack the necessary resolution for AP firing rate estimation. Although Sasaki et al. overcame

many of these issues with their support vector machine approach, they still fell victim to

rapid performance degradation at low SNR [88]. It may therefore be more advantageous to

sacrifice precision in AP firing rate estimation for better accuracy in CE detection at low

SNR.

Other approaches to CE detection less focused on AP firing rates include thresholding the

time derivative of fluorescent changes in given ROIs [81, 40], Hanning filters [12], and matched

filters [47]. These approaches work well in high-SNR settings (SNR ≥ 10) but their perfor-

mance is either not reported at low SNRs or quickly degrades. Since a large fraction of CEs

fall below SNR 2, there is a pressing need to develop automated methods for low-SNR CE

detection. Some denoising algorithms have been developed to enhance the SNR of calcium

imaging data [43, 60]. However, they are not applied or tested as detection tools, but rather

as post hoc analyses. Due to the various shortcomings of these methods, as well as availabil-
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ity and implementation hurdles, manual CE detection remains the primary means of scoring

calcium imaging data even though it is both prone to bias and incredibly laborious.

Our work focuses on the development of a Matched filter for Multi-unit Calcium Event

(MMiCE) detection specifically tailored for low-SNR CEs. Unlike the matched filter pre-

sented by Kerr et al. [47], the algorithm developed here is completely data driven. It is

also applied and tested in environments with SNR as low as 0.2, well below the range of

existing algorithms. Although only tested on fMCI data here, due to its data-driven design,

the algorithm is easily generalizable to other fluorescent neural imaging modalities, such as

voltage-sensitive-dye imaging [103].

2.3.3.2 Methods

Data Collection MMiCE was tested under 3 paradigms: (1) simulated somatic calcium

imaging data (ground-truth available), (2) experimentally recorded simultaneous somatic

fMCI and patch-clamp data (ground-truth available), as well as (3) experimentally recorded,

from now on referred to as real, somatic fMCI and dendritic spine fMCI data (no ground-

truth available).

The full data collection procedure for paradigms (2) and (3) is in Appendix A.2 as well

as Szymanska et al. 2016 [104]. Briefly, ex vivo organotypic slice cultures were prepared

from the hippocampus of 7 day old Wistar/ST rats [105]. These cultures were used for

simultaneous somatic fMCI and patch-clam recordings (2), as well as dendritic spine fMCI

recordings (3). For the simultaneous somatic fMCI and patch-clam (fMCI-PC) recordings

the cultures were incubated in an OGB1 dye solution, washed, and mounted in a recording

chamber. CA3 pyramidal neurons selected for recording were then voltage-clamped at 0 mV.

For the dendritic spine fMCI recordings, CA3 pyramidal neurons selected for recording were

voltage-clamped at -30 mV and loaded with a Fluo-4 solution. Lastly, 400 µm horizontal
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hippocampal slice of 3 week old C57Bl/6J mice [108, 74] were used for somatic fMCI record-

ing. The slices were locally loaded into the CA1 stratum pyramidale using a pipette filled

with an OGB1 dye solution. Fluorophores were excited at 488 nm with a laser diode and

visualized using a 507 nm long-pass emission filter. Videos were recorded at 10 Hz for the

fMCI-PC data and 50 Hz for all other fMCI data.

In total, one data trace was acquired for fMCI-PC recordings. The recording measured

spontaneous activity from a CA3 pyramidal neuron from the ex vivo slice cultures. Three

somatic fMCI data sets were acquired measuring spontaneous activity from CA1 pyramidal

neurons from the acute slices. Lastly, five dendritic spine fMCI data sets were acquired

measuring spontaneous synaptic inputs from CA3 pyramidal neurons from the ex vivo slice

cultures.

ROIs for all somatic and dendritic fMCI data sets were identified manually using a custom

software [40]. The average fluorescence for each ROI was then calculated and used to deter-

mine the change in fluorescence ∆F/F = (F1−F0)/F0, where F1 is the fluorescence intensity

at any time point, and F0 is the average baseline fluorescence intensity 1-s before and after

F1. This normalization with a 2-s epoch around the target frame is needed to compensate

for photobleaching. The resulting fluorescence intensity trace, X, for each ROI was then

used for further analysis.

Somatic and dendritic spine fluorescence intensity traces, X, were independently plotted

and CE peak times were manually identified by six trained human analysts. CEs were not

manually identified for fMCI-PC data.

Generating Simulated Data In order to assess the MMiCE detector’s performance at

varied SNR levels and to establish a ground truth for comparison, we simulated 8 fluorescence

traces, each with a different average SNR. To capture as much of the real data character-
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istics as possible, the simulated traces, XSim,i where i ∈ {1, 2, · · · , 8}, were generated using

fluorescence traces from the calcium imaged neuronal somas described in Sec. A.2.4.

Four different CE shapes were identified manually by human analysts from three somatic

fMCI data sets (Sec. A.2.4). 20 examples of each shape were then selected from among the

three data sets, averaged, low-pass filtered at 5 Hz, and normalized to construct 4 distinct

CE templates (Fig. 2.6(B)). The low-pass filter was necessary because averaging did not

sufficiently smooth the CE templates. The CE templates, sc, c ∈ {1, 2, 3, 4}, were cropped

to lengths of 1-s, 1.3-s, 1.2-s, and 1.3-s respectively.

Similarly, 80 samples of varying length noise-only data were manually selected from the three

somatic fMCI data sets. Each sample was normalized to be zero mean and unit variance.

The noise samples were then all concatenated into a single time series of length Tnoise =

89000 ' 29.7min at a sampling rate of 50 Hz. The four CE templates were superimposed

with the noise at random time points such that no spikes overlapped, and there were 100

CEs of each spike shape for a total of 400 CEs.

The SNR level was controlled by scaling the sizes of the CE templates being added to the

noise. Here we define SNR as

SNR =
E((f · s)2)
σ2
noise

= f 2E(s2) (2.9)

where E is the expectation operator, s ∈ R1×N is the CE template, f is a scaling factor, and

σ2
noise = 1 is the noise variance. We can then solve for the scaling factor fi,c for each SNRi

and each CE template sc.

The fluorescence traces were simulated at SNR levels of 0.2, 0.5, 1, 2, 4, 6, 9, and 14, where

SNR 1 indicates that the signal has the same power as the noise. The scaling factor for

each template at each SNR level is listed in Table 2.4. Figure 2.7(A) shows a 30-s excerpt
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Figure 2.6: (A) Examples of training templates s from (Left) somatic fMCI data set 1 and
(Right) dendritic spine fMCI data set 1. The scale bar corresponds to 0.5-s for both figures.
Note that the dendritic spine template is wider and has a much higher amplitude than the
somatic template. (B) CE templates used for generating simulated data, with s1, s2, s3, and
s4 in blue, red, green, and magenta respectively. (Left) Normalized and unfiltered templates.
(Right) Normalized and filtered (5Hz low-pass) templates. The scale bar corresponds to 0.5-s
for both figures.

containing 6 simulated CEs from each simulated data trace. Note that the only difference

between each simulated data trace is the SNR of the CEs; the noise and CE times remain

constant.

Filter Training The MMiCE detector is completely data driven, allowing it to maintain

high performance even if large variations exist between data sets. Both s and Σ from Eqs. 2.1

- 2.3 are estimated from the data. First, 20 high-SNR CEs (N = 1.2-s for real data, and

N = 1.6-s for simulated data) were identified manually, aligned to their peak values, and

averaged to estimate s for each data set. In order to ensure that the entire data set is well

represented, the CEs were always selected from multiple different ROIs (when possible), all

of which exhibit high SNR. The CEs were also selected to match the traditional sharp rise

and slow decaying shape of a calcium transient wave as much as possible. The specific SNR

values and CE shapes available for estimating s varied between data sets. Examples of s

from both somatic fMCI and dendritic spine fMCI data are shown in Fig. 2.6(A). Due to the
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Table 2.4: Scaling factor f for each template at each SNR level

Scaling Factor f
s1 s2 s3 s4

SNR Level

0.2 0.83 1.13 1.01 0.87
0.5 1.30 1.79 1.60 1.37
1 1.85 2.53 2.26 1.94
2 2.61 3.58 3.20 2.74
4 3.69 5.07 4.53 3.88
6 4.52 6.20 5.55 4.75
9 5.53 7.60 6.79 5.82
14 6.90 9.48 8.47 7.26

limited CEs available in the single fMCI-PC data trace acquired, only 10 CEs were selected

for training this data.

Next, 20 noise-only samples of various lengths, from multiple different ROIs, were identified

manually for each data set. The noise samples were then subdivided into noise windows

(N = 1.2-s for real data, and N = 1.6-s for simulated data). The number of noise windows

varied between real data sets depending on the lengths of the 20 noise samples selected for

training. The training noise samples were identical among all simulated data sets. Any data

points remaining after the subdivision were discarded. Auto-covariance sequences, r(k),

were then calculated at lags kreal ∈ {−0.58-s,−0.56-s, · · · , 0.58-s} for real data sets and

ksim ∈ {−0.78-s,−0.76-s, · · · , 0.78-s} for simulated data sets, for each noise window. The

sequences were averaged across all noise windows for a given data set, and used to generate

Σ for that data set.

The size of s and each noise window was empirically selected as N = 1.2-s for real data,

and N = 1.6-s for simulated data. The real data window, N = 1.2-s, ensured that most

somatic and spine CEs were captured in full, although some data sets did exhibit both

wider and slimmer CEs (independently of data type). The somatic CEs used to generate

the simulated data set were specifically selected to have a high SNR. These CEs tended to
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be wider than the average CE, and therefore the window size for the simulated data was

increased to N = 1.6-s. These window sizes are consistent with known typical CE durations

for AP bursts in neurons [47, 92].

Setting Detection Thresholds The 8 fMCI data sets used in this study (excluding the

fMCI-PC data trace) contained 179 ROIs on average, ranging from 75 to 313 ROIs. Because

calcium indicator concentration is not uniform across all ROIs, and the independent ROIs

may not all perfectly be in the focal plane of the camera, the resulting fluorescence intensity

traces exhibit varying amplitudes as well as varying SNRs. Therefore a single filter threshold

cannot be set for the entire data set. Similarly, it would be too laborious to manually set the

filter threshold for each ROI in a data set. It is therefore necessary to devise an automated

thresholding algorithm that can account for varying SNRs and amplitudes throughout a

given data set.

To accomplish this goal, threshold values were calculated independently for each fluorescence

intensity trace Xr, where r ∈ {1, 2, · · · , R}, and R is the total number of ROIs in the data

set. The thresholding parameters are calculated from the filtered signal which contains both

CEs and noise (Eqs. 2.4- 2.5). This thresholding approach generates thresholds that can

accommodate varying signal amplitudes and SNRs for each Xr, and allows the user to set a

specific sensitivity value, a, for the entire data set.

Performance Analysis CEs detected for each of the simulated data traces, as well as

those detected from the fMCI-PC data trace, were compared against the ground-truth spike

times. In the case of the fMCI-PC data, the ground-truth spike times were identified as

the peak times of the first APs in an AP burst, where a single AP burst consisted of APs

firing within 0.1-s of each other. The first 3.3 min of the simulated data traces were used for

training, and the remaining test data (26.4 min) contained 346 CEs. Similarly, 121-s of the
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fMCI-PC data trace was used for training and the remaining test data (179-s) contained 48

AP bursts. A detected CE was considered a true positive (TP) if the detected peak time was

within 0.8-s of the true peak time. This corresponds to half of the length of the simulated

CEs. Otherwise, the detected CE was considered a false positive (FP). Vector tp was used

to represent all of the ground-truth CEs, with each index assigned a value of 1 if the CE was

detected (TP) and 0 otherwise. Similarly, vector fp was used to represent all of the detected

CEs, with each index assigned a value of 1 if the CE was a FP and 0 otherwise. TP and

FP rates for 100 incrementally increasing thresholds were then calculated as the means of tp

and fp, respectively, at each of the thresholds. The false negative (FN) or omission rate can

be calculated as (1 − TP Rate). The TP and FP rates at each threshold were then used to

generate ROC curves for each simulated data trace.

2.3.3.3 Results

Detection on Simulated Data

Training for Simulated Data The simulated data traces were all treated as indepen-

dent data sets, and the MMiCE detector was separately conditioned on each set. In general,

a real data set will have a wide range of SNR levels, usually with some high-SNR spikes to

pick for training. The presence of low-SNR spikes in the training sample may result in a

poorly determined template s (Sec. 2.2.1), which would adversely affect detection. However,

in this case all of the CEs in each simulated data set have roughly the same SNR. The

training for each SNR level was kept separate in order to prove that the MMiCE detector

was accurate even if the CE training samples were of poor quality and very low SNR.

The first 3.3 min of the simulated data traces were used for training. Training CEs were

selected with prior knowledge of simulated CE peak times. Noise samples for training were
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selected manually, and were the same for all XSim,i. The training noise was subdivided into

56 noise windows (N = 1.6-s), and auto-covariance sequences from each window were then

averaged to generate the noise covariance matrix ΣSim (Sec. 2.3.3.2). The data used for

training was omitted when assessing MMiCE detection performance.

MMiCE Detector Performance on Simulated Data The simulated data sets were

filtered using the MMiCE detector and CE times were identified as the peaks of the filter

output above a given threshold. Performance was assessed at 100 incrementally increasing

thresholds with sensitivity values, a, ranging from 0.5 - 50.0 (Eq. 2.5). The resulting TP

and FP rates were used to generate ROC curves for all 8 simulated data sets (Figs. 2.7(B),

2.8). The MMiCE detector performed exceptionally well on the simulated data, even at

SNR levels as low as 0.2. Performance metrics are listed as TP or FP Rate [95% confidence

interval].

The MMiCE detector was first applied in its simplest form, assuming WGN statistics

(Sec. 2.2.2.2, Eq. 2.3). Under this assumption, the MMiCE detector achieved perfect per-

formance (TP = 100 [100.00, 100.00]%, FP = 0 [0.00, 0.00]%) for SNR ≥ 2. At SNR 1 the

performance was slightly affected (TP = 100 [100.00, 100.00]%, FP = 0.29 [0.00, 0.86]%),

with a further dip in performance at SNR 0.5 (TP = 97.98 [96.84, 99.12]%, FP = 0.88 [0.00,

1.87]%) and SNR 0.2 (TP = 90.46 [87.35, 93.57])%, FP = 12.81 [9.34, 16.28]%). The MMiCE

detector’s ROC curves, depicting performance at all thresholds under the WGN assumption,

are shown for each data set in Fig. 2.7(B). The best performances at each SNR level, and

the corresponding threshold sensitivity values are shown in Table 2.5.

To see if even better outcomes could be achieved for SNR 0.2 - 2, the MMiCE detector was

then applied in its full complexity, using the full noise covariance to construct the matched

filter (Sec. 2.2.1.2). For simulated data sets of SNR 1 and SNR 2, performance was not

affected. This is due to the fact that performance was already perfect for SNR 2 and very
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Table 2.5: Best MMiCE detector performances, and the associated threshold sensitivity
values a for each simulated data set. Both performances under the WGN assumption and
using the full noise covariance are shown. Because perfect performance was achieved under
the WGN assumption for SNR 4 and above, the full noise covariance detector was not applied
to these data sets. This is reflected by the lack of threshold sensitivity values for SNR 4-14
under Full Covariance

Best MMiCE Detector Performance
WGN Full Covariance

TP % FP% a TP% FP% a

0.2 90.46 12.81 2 98.27 6.59 3
0.5 97.98 0.88 3.5 99.71 1.15 4.5
1 100 0.29 4 100 0.29 7

SNR 2 100 0 4-8 100 0 10-11
Level 4 100 0 4.5-13 100 0 –

6 100 0 5-17.5 100 0 –
9 100 0 8-22.5 100 0 –
14 100 0 4.5-29 100 0 –

near perfect for SNR 1 under the WGN assumption. Performance was improved for SNR

0.5, with TP = 99.71 [99.14, 100.00]% (from 97.98 [96.84, 99.12]% before), and FP = 1.15

[0.03, 2.27]% (from 0.88 [0.00, 1.87]% before). Although the FP Rate slightly increased,

overall this is closer to perfect performance than under the WGN assumption. An even

greater improvement was seen for SNR 0.2, with TP = 98.27 [96.89, 99.65]% (from 90.46

[87.35, 93.57])% before), and FP = 6.59 [4.03, 9.15]% (from 12.81 [9.34, 16.28] before).

The MMiCE detector’s ROC curves, depicting performance at all 100 thresholds when the

detector employs the full noise covariance for training, are shown in Fig. 2.8 for simulated

data sets of SNR 0.2 - 2. The best performance at each SNR level, and the corresponding

threshold sensitivity values for SNR 0.2 - 2 are shown in Table 2.5.
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Figure 2.7: (A) 30-s excerpts of simulated data for SNR 0.2, 0.5, 1, 2, 4, 6, 9, and 14. Red
circles above each graph represent the peak locations of 6 inserted CE templates. Going from
left to right the inserted templates are s1, s4, s1, s4, s1, s3. (B) ROC curves for all simulated
data sets, across 100 incrementally increasing thresholds, with the MMiCE detector assuming
WGN statistics. The error bars represent 95% confidence intervals. The optimal performance
for each simulated data set is presented under each curve with 95% confidence errors in
parenthesis. Note that perfect performance (TP = 100 [100.00, 100.00]%, FP = 0 [0.00,
0.00]%) is reached for SNR 2 - 14. Performance only begins degrading significantly at SNR
0.2 (TP = 90.46 [87.35, 93.57])%, FP = 12.81 [9.34, 16.28]).

Detection on Simultaneous fMCI and Patch-Clamp Data

Training for fMCI-PC Data A single simultaneous somatic fMCI and patch-clamp

data trace was used for this experiment. 121-s of the trace was used for training. Due to

the limited amount of data available, only 10 CEs with relatively high SNRs, and smooth
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Figure 2.8: ROC curves for simulated data sets of SNR 0.2 - 2, across 100 incrementally
increasing thresholds, with the MMiCE detector employing the full noise covariance. The
error bars represent 95% confidence intervals. The optimal performance for each simulated
data set is presented under each curve with 95% confidence errors in parenthesis. Note that
perfect performance (TP = 100 [100.00, 100.00]%, FP = 0 [0.00, 0.00]%) and near perfect
performance (TP = 100 [100.00, 100.00]%, FP = 0.29 [0.00, 0.86]%) is still reached for SNR
2, and SNR 1, just as in the WGN case. However, performance improved significantly from
the WGN case for SNR 0.5 (TP = 99.71 [99.14, 100.00]%, FP = 1.15 [0.03, 2.27]%) and SNR
0.2 (TP = 98.27 [96.89, 99.65]%, FP = 6.59 [4.03, 9.15]%).

shapes could be manually selected to generate the training template, s. Similarly, the 20

manually selected noise samples were relatively short, therefore only 91 noise windows were

available for training (Table 2.6). This under-sampled training set could result in a poorly

determined s as well as Σ, and thereby adversely affect detection performance. The average

SNR of the training CEs was calculated as

SNRCE =
E(CE2)

σ2
Noise

(2.10)

where σ2
Noise was calculated from the training noise samples, and E(CE2) is the expected

value of a CE2. Note that unlike in Eq. 2.9, the CE in this case contains a noise component.
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Therefore the SNRs calculated from the real data will be biased. Due to this bias an SNR

of 2 calculated from the real data will roughly correspond with an SNR of 1 calculated for

the simulated data. The average SNR of the fMCI-PC training CEs is 8.23 (Table 2.6). All

data selected for training were omitted from the performance analysis.

MMiCE Detector Performance on fMCI-PC Data The ground-truth CEs for the

fMCI-PC data trace, identified as described in Sec. 2.3.3.2 had an average SNR of 10.54.

As explained in Sec. 2.3.3.3, this roughly corresponds with simulated data of SNR 9. As

in the simulated data case, the fMCI-PC data trace was filtered using the MMiCE detector

under the WGN assumption as well as using the full noise covariance. Performance for both

approaches was assessed at 100 incrementally increasing thresholds with sensitivity values,

a, ranging from 0.5 to 50.0 (Eq. 2.5). The resulting ROC curves for both the WGN case,

and using the full noise covariance are shown in Fig. 2.9 Left. Best performance under the

WGN assumption was TP = 95.83 [89.97, 100.00]% and FP = 2.13 [0.00, 6.41]%. The

corresponding a range was 3.5 to 4. This constitutes a total of 3 errors, 1 false positive, and

2 false negatives or omissions. The false positive was a result of misidentifying an artifact

of photobleaching as a CE resulting from cell activity. The first false negative was a failure

of the MMiCE detector to identify an AP burst that resulted in fMCI activity of SNR 2.07,

which is much lower than average for this data trace, and as explained in Sec. 2.3.3.3 is

equivalent to SNR 1 in the simulated data. The second false negative was the MMiCE

detector’s failure to identify one of two overlapping CEs. The first CE was identified but

the second was omitted. Best performance using the full noise covariance was TP = 100.00

[100.00, 100.00]% and FP = 2.04 [0.00, 6.14]% at a = 2.0. This constitutes 1 error, which is

the same false positive as in the WGN case, i.e. misidentifying an artifact of photobleaching

as a CE resulting from cell activity. The two false negatives, however, were resolved when

using the full noise covariance. An excerpt of the spike train as determined by patch-clamp

recordings, the fMCI data trace, detected CEs, and the filter output using the full noise
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Figure 2.9: MMiCE detector performance and real somatic fMCI data as verified by patch-
clamp recordings. (Left) The top shows the ground-truth patch-clamp recordings. In the
middle is the corresponding ∆F/F data with MMiCE CE peaks detected at the optimal
threshold (a = 3.5) marked by red triangles. The spike-train derived from the patch-clamp
recordings is shown above the detected CEs for easy comparison. The bottom trace shows the
filter output using the full noise covariance and the optimal detection threshold as determined
by the ROC curves presented on the Right. (Right) ROC curves for the fMCI-PC data
shown on the Left, across 100 incrementally increasing thresholds. The two curves depict
the MMiCE detector’s performance under the WGN assumption (cyan) and when using
the full noise covariance (FC, magenta). The error bars represent 95% confidence intervals.
Optimal performances with 95% confidence errors in parenthesis are presented under the
curves.

covariance are shown in Fig. 2.9. Overall, the MMiCE detector did exceptionally well in CE

detection from somatic fMCI data, as verified via patch-clamp recording.

Detection on Somatic fMCI and Dendritic Spine fMCI Data

The CE SNR in fMCI-PC data used for validation of the MMiCE algorithm in Sec. 2.3.3.3

was 10.54. Although CEs of this SNR do appear for some ROIs in many data sets, they

are not common. Therefore MMiCE detector performance was also tested in more realistic

SNR settings with SNR ranging from 1 to 3 in real fMCI data. Three somatic fMCI and
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Table 2.6: Training sample information for each real data set. Average training CE SNR
is the average SNR of the CEs selected for training for a given data set. The number of
windows the training noise sample for each data set was split into is also listed.

Data Set Average Cond. CE SNR Number Cond. Noise Windows

fMCI-PC 1 8.23 91

Somatic fMCI
1 1.80 328
2 1.22 159
3 1.51 152

Dendritic Spine fMCI

1 2.51 162
2 3.84 124
3 2.95 183
4 8.87 116
5 2.34 211

5 dendritic spine fMCI data sets were used for this experiment. Note that no ground-truth

was available for this data.

Training for Real Data The MMiCE detector was separately conditioned for each data

set. Because the fluorescent trace, Xr, for a given ROI, r, is too short to serve as an

adequate training sample, all of the fluorescent traces for a given data set were concatenated

into a single time series for training. For each data set, 20 CEs with relatively high SNRs,

and smooth shapes were then manually selected from each concatenated data and used to

generate training templates sl, for each data set l. An example of both a somatic and spine

template is shown in Fig. 2.6(A). The concatenated data were also used to manually select 20

training noise samples for each data set. The length of each noise sample varied depending

on the availability of long uninterrupted noise segments in the data. The average SNR of

each data set’s training CEs, as well as the number of windows the training noise could be

subdivided into, is listed in Table 2.6. The SNR was calculated as shown in Eq 2.10. All

data selected for training were omitted from the performance analysis.
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Manual CE Identification in Real Data Six trained analysts, two of whom also

collected the fMCI data, manually tagged CEs in the 3 somatic and 5 spine data sets. The

average CE SNR for each data set and each analyst is shown in Table 2.7. The SNR was

calculated as in Eq. 2.10, with σ2
Noise calculated from the training noise sample from each

corresponding data set. Agreement between analysts was defined as the percentage of CEs

that all analysts who worked with the data set agreed are CEs and not noise. The agreement

% for each analyst and each data set is listed in Table 2.7.

On average, the manually identified CEs in the somatic fMCI data sets had an SNR of 1.53.

Similarly, the CEs identified in the spine data sets had an average SNR of 2.43. As mentioned

previously, this very low SNR level is fairly typical of neural imaging data. Although some

ROIs exhibited SNR levels as high as 30, this was very rare.

More importantly, the level of agreement between analysts was very low. For the somatic

data sets, on average, analysts only agreed on 50.48% of the identified CEs. This means that

on average 49.52% of CEs identified by any analyst in a given data set, were considered noise

by at least one other analyst working with that data set. Similarly the average agreement

rate between analysts for the spine data sets was only 31.52%. These results are even worse,

meaning that 68.48%, or over two-thirds, of CEs identified by any analyst were considered

noise by at least one other analyst. Examples of the kinds of CEs tagged by the analysts

are shown in Fig. 2.10.

Overall, the analysts were not confident in their ability to accurately identify CEs at SNR

levels of 3 and below, which constitute most of the events present in these data sets. The

lack of agreement among analysts also shows that manual CE identification is unreliable and

error-prone. As has also been concluded by Sasaki et al. [88], manually identified CEs are

not a reliable estimate of the ground truth, especially at low SNRs. Furthermore, the process

proved to be extremely laborious. On average, each analyst spent roughly 24 working hours

identifying CEs in a single data set.
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Table 2.7: Average SNRs of manually identified CEs for each analyst and each fMCI data
set. Not all analysts identified CEs in all available data sets. The data sets not analyzed by
a given analyst are shown as blanks. The agreement % among analysts for each data set is
also shown. The agreement % is the fraction of CEs that all analysts who worked with the
data set agree are CEs and not noise.

Data Set SNR Agreement %

Analyst Analyst
1 2 3 4 5 6 Avg. 1 2 3 4 5 6 Avg.

Somatic
fMCI

1 1.59 1.35 1.34 1.28 2.17 – 1.55 58.20 53.38 65.03 48.77 73.26 – 59.93
2 2.20 1.45 1.53 2.01 1.93 – 1.83 71.79 50.79 67.11 74.93 58.81 – 64.69
3 1.37 1.14 1.11 1.19 1.30 – 1.22 47.83 18.97 28.28 6.96 31.43 – 26.83

Average 1.72 1.31 1.33 1.50 1.80 – 1.53 59.27 41.05 53.70 43.89 54.50 – 50.48

Dendritic
Spine
fMCI

1 1.88 1.79 1.78 – – 2.47 1.98 19.05 13.46 25.47 – – 38.07 24.01
2 2.84 2.11 2.17 1.54 – 2.91 2.31 41.33 29.48 38.26 9.86 – 42.06 32.20
3 2.23 1.77 2.11 1.35 – 2.20 1.93 34.01 22.83 29.45 6.95 – 42.43 27.15
4 3.23 4.47 5.23 3.19 – 5.07 4.24 31.84 53.22 67.70 29.21 – 60.01 48.40
5 1.42 1.49 1.48 – – 2.07 1.62 22.73 33.21 17.63 – – 48.84 30.60

Average 2.32 2.33 2.55 2.03 – 2.94 2.43 29.79 30.44 35.70 15.34 – 46.28 31.51

MMiCE Detector Performance on Real Data The MMiCE detector was applied

using the full noise covariance, and performed very well on real data. The detector could

consistently identify CEs with a specified sensitivity level. This was not true for manually

identified CEs, which were not consistent between traces or across data sets. Upon reviewing

detection results with varying threshold sensitivity values, each analyst identified a threshold

sensitivity value, a, that they considered to be optimal for each data set. The selected values

ranged from 2 to 4 for the somatic fMCI data, and 1.7 to 3 for the spine fMCI data. This

roughly corresponds to the thresholds for the best detection results at SNR 0.2 - 0.5 for the

simulated data sets. The average SNR of the real data is 1.53 - 2.43 (Table 2.7), which,

given the bias discussed in Sec. 2.3.3.3, is about equivalent to SNR 0.5 - 2 in the simulated

data case. These thresholds should therefore achieve near optimal performance.

Figure 2.10 Top shows examples of detected CEs in both a low-SNR case (Left) and a high-

SNR case (Right) for somatic fMCI data. Both data traces are from somatic fMCI data set

1, and both filter outputs are thresholded with a = 3. Similarly, Fig. 2.10 Bottom shows
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the same for the spine fMCI data, with both traces from spine fMCI data set 4, and both

filter outputs thresholded with a = 3. Note that the MMiCE detector was able to identify

many CEs of various shapes (Fig. 2.10 Bottom Right), even though only a single template

was used for each data set. Analysts indicated that they trust the filter output more than

their own judgment in identifying low-SNR CEs.

Comparison with Manually Identified CEs MMiCE detected CEs were compared

to the CEs identified manually. In this case there is no ground-truth to assess the detector’s

performance, therefore the analysts’ judgment was used as the ground-truth. Detected CEs

did not closely match the analysts’ CEs. Although the detector could always accurately

identify over 90% of any analyst’s CEs for any given data set at a low enough threshold,

this often resulted in an extremely high FP Rate, where again here a FP is defined relative

to the CEs identified by the analyst. This discrepancy is largely due to the analysts’ lack of

consistency in CE selection. Even taking the CEs that all analysts agreed on did not result in

a close match with the MMiCE detected CEs (TP ' 70%, FP ' 20%, data not shown). This

is largely due to the bias, and within-analyst inconsistency (i.e. the analyst is not consistent

with herself) of the analysts. This is further discussed in Sec. 2.3.3.4. Furthermore, when

analysts were shown the MMiCE detected CEs compared with their own identified CEs,

they were more likely to fault themselves with an omission or false positive than to attribute

an error to the detector. Lastly, the MMiCE detector greatly reduced detection time. The

computation time for CE detection was tested using Matlab and is 0.0047-s per every second

of recording per ROI (0.0047-s/ROI-s). This amounts to 75.0 ± 47.6-s on average per data

set, depending linearly on the length of the recordings, and the number of ROIs in the data

set. The same data sets took about 24 hours to tag manually.
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Figure 2.10: Four examples of CEs detected from real data. Each example consists of a
top trace showing the raw ∆ F / F data with MMiCE detected CE peaks marked by red
triangles, and a bottom trace showing the filter output and the detection threshold used. The
circles, going from bottom to top, represent spikes identified by analysts 1-6 respectively. The
top two examples are from somatic fMCI data set 1 in both a low-SNR case (Left) and a
high-SNR case (Right). The bottom two examples are from spine fMCI data set 4 in both a
low-SNR case (Left) and a high-SNR case (Right). All four filter outputs shown here were
thresholded with a = 3. Note that in the spine low-SNR case (Bottom Right) the MMiCE
detector was able to identify many different CE shapes even though only a single training
template was used. This is also the case where analysts did not agree on most of the spikes.
In the high-SNR cases (Right), the MMiCE detector agrees more closely with a majority of
the analysts, although even here the analysts are not unanimous about all of the spikes.

2.3.3.4 Discussion

WGN Assumption The MMiCE detector was tested both under a WGN approximation,

and using the full noise covariance. In general, the noise in neurological data is not white, as
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a large portion of it is biological noise coming from neighboring neurons [10]. Our results in

simulated data, however, indicated that using a WGN approximation is sufficient for precise

and accurate CE detection, especially at SNR ≥ 1. Once the SNR falls below 1, a WGN

approximation is no longer sufficient and the full noise covariance should be used.

Reliability of Manual CE Identification As shown in Sec.2.3.3.3, the level of agreement

between analysts was very low (50.48% for the somatic data, and 31.52% for the dendritic

spine data). As all analysts were thoroughly trained in identifying CEs, this discrepancy

is not due to any single analyst simply mis-identifying a majority of events. For the most

part, the disagreement occurred in low-SNR traces, where the signal was difficult to identify

accurately. There was also disagreement, especially in the spine data sets, due to overlapping

CEs and variations in CE shape. While some analysts would identify wide and oddly shaped

CEs as more than one event, others considered them a single CE. This discrepancy is the

reason why the spine data has a much lower agreement rate, while maintaining a higher

average SNR than the somatic data. As SNR increased and overlapping CEs exhibited two

or more clearly identifiable peaks, this discrepancy disappeared.

The analysts also proved to be inconsistent in CE identification. Although in one trace a

given analyst may identify a CE of SNR 1.5, in another trace they may fail to identify any

CEs below SNR 3. This is especially dependent on the number of higher SNR CEs in the

same trace. If there are CEs of SNR 5 and above in a trace, then spikes of SNR 1.5 will be

omitted by analysts. Conversely if the trace is mostly noise, or only has some CEs of SNR

≤ 3, then CEs of SNR 1.5 are very likely to be identified. This bias was true for all analysts.

Overall, manual CE identification is unreliable and error-prone.

Effects of Differing Training Samples Although only 20 samples of both CEs and noise

segments needed to be identified for training on a given data set, some may still find this
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process too laborious. It may therefore be advantageous to re-use training data samples

on several data sets. The MMiCE detector’s efficacy was therefore tested with the training

samples and test data coming from different data sets, and the results were qualitatively

compared.

When training samples for different somatic fMCI data sets were applied to the somatic

fMCI data, the detection results were virtually unchanged. Although the actual amplitude

of the filter output changed, the relative peaks in the filter output stayed consistent. A slight

dip in performance was observed when using training samples from somatic fMCI data set 2.

This training sample contained the lowest SNR CE samples (Avg. SNR = 1.22, Table 2.6)

of all of the data sets. The slight dip in performance, and low SNR of training CEs may

indicate that the training template s from this data set was poorly determined.

Similarly, if spine fMCI training data was varied between the spine fMCI data, the detection

results remained roughly the same. No dip in performance was observed for any training

sample. The filter output peaks were more pronounced when using the training CEs from

spine fMCI data set 4 (Avg. SNR = 8.87, Table 2.6), but this did not result in markedly

improved detection.

Detection performance did worsen when spine fMCI training data was used with somatic

fMCI data, but not vice versa. This is largely attributed to the fact that the spine training

CEs were wider than the somatic CEs. This caused the filtered CEs to be wider and lower in

amplitude in the case of somatic fMCI test data, which in turn may have negatively affected

detection. When somatic fMCI training spikes are used on spine fMCI data, the skinnier

CE template caused the filtered CEs the be thinner and higher in amplitude, which did not

significantly affect spike detection.

In general, re-using training samples from one data set to detect spikes in other data sets did

not negatively affect detection performance. Performance only degraded if the training CEs
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are of low quality and very low SNR. Although it is possible to use training samples from

one data type (such as somatic fMCI) on other data types (such as dendritic spine fMCI),

it is not recommended for best performance.

Note, however, that the imaging set-up for the data collected here was consistent. Fur-

thermore, one experimentalist collected all somatic fMCI data (Analyst 5 from Table 2.7)

and another experimentalist collected all dendritic spine fMCI data (Analyst 6 from Ta-

ble 2.7). Therefore, performance may degrade if training samples from data collected by a

given experimentalist are used on data collected by a different experimentalist whose proce-

dure may differ. Similarly, performance may degrade if training samples are used on data

with a different imaging set-up or a different sampling frequency. For best performance it is

recommended that training samples are only re-reused on data of the same type, collected

by the same experimentalist / under the same protocol, and using the same imaging set-up.

Otherwise, performance may be affected. Training samples from the fMCI-PC data were not

re-used because this data was taken at a sampling frequency of 10Hz, where as the other real

fMCI data was taken at a sampling frequency of 50Hz. The training samples were therefore

not compatible.

Limitations Like many pre-existing methods [12, 40, 47, 66, 81, 88], the MMiCE de-

tector does not focus on image processing, and requires ROIs to be pre-determined and

pre-processed into fluorescence intensity traces before being fed into the algorithm. As the

number of neurons that can be simultaneously imaged continues to increase, this may prove

to be a major limitation of this approach. Not only is manual ROI selection time consuming,

but it may also be subject to bias. Our previous work addresses this issue by developing a

stand alone algorithm for automatically extracting ROIs from somatic fMCI data [70]. Al-

though not applied here, the MMiCE detector can be easily paired with either this method,

or other algorithms for ROI extraction such as the ones presented in Mukamel et al. 2009 [68]
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or Cossart et al. 2003 [12]. Note, however, that the automated ROI extraction tools listed

here are developed for somatic fMCI data. To the best of our knowledge, manual ROI

selection is therefore still necessary for dendritic spine fMCI data.

Another limitation of this approach is the need for manual inspection of the data to obtain

training samples. Using a fully automated algorithm that relies on general templates from a

library of pre-constructed templates or on canonical filters such as wavelets, would remove

the need for human involvement. However, this automation step would come at the expense

of lowering detection performance. While CEs across different datasets tend to exhibit

stereotypical features, there are sufficient dataset-to-dataset differences that may not be

optimally accommodated with general templates. Furthermore, the general templates may

themselves be biased to the dataset that they were constructed from. This bias may be

mitigated with the use of wavelets. However, since they have to be zero-mean functions,

wavelets cannot be monophasic and are therefore suboptimally matched to the shape of

CEs. Therefore, performance is expected to degrade significantly if wavelets are used to

replace the data-driven CE templates presented in this study.

2.3.3.5 Conclusion

In this study we presented a Matched filter for Multi-unit Calcium Event (MMiCE) detection

that is designed to identify CEs in low-SNR environments. The algorithm is completely data

driven, making it applicable to a wide range of data types and testing environments. The

MMiCE detector was tested on simulated somatic fMCI data, and performed exceptionally

well. The simulated data was constructed from noise segments and CEs captured from real

neuronal somatic fMCI recordings and varied from SNR 0.2 to SNR 14. Even at SNR 0.2 the

MMiCE detector reached a TP Rate of 90.46 (3.11)% and a FP Rate of 12.81 (3.47)% when

applied in its simplest form, assuming WGN statistics. The performance was even better

when the full noise covariance was used in training, with a TP Rate of 98.27 (1.38)% and a FP
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Rate of only 6.59 (2.56)% at SNR 0.2. The detector reached perfect performance (TP Rate =

100 (0.00)%, FP Rate = 0 (0.00)%) at SNR 2 and above, even under WGN assumptions. The

MMiCE detector’s performance was also tested on simultaneously recorded somatic fMCI

and patch-clamp data. The patch-clamp recording provided a ground-truth to quantitatively

assess the MMiCE detector’s performance on real somatic fMCI data. Under the WGN

assumption the MMiCE detector reached a TP Rate of 95.83 (5.86)% and a FP Rate of 2.13

(4.28)%, which constitutes 3 errors. When the full noise covariance was used the results

improved to TP = 100.00 (0.00)% and FP = 2.04 (4.10)%, which constitutes only 1 error.

This high performance level was on par with and in some cases exceeded that shown by

existing methods [47, 88, 66, 119, 27]. Although the MMiCE detector did not attempt to

extract AP firing rates from the detected CEs, it is worth noting that it achieved similar

performance while being tested at SNR levels as low as 0.2, which are well below those used

in previous studies (SNR ' 5 - 10).

Lastly, the MMiCE detector’s performance was qualitatively presented for experimentally

recorded low-SNR somatic fMCI and dendritic spine fMCI data. The detector performed

very well, able to consistently detect CEs with a specific sensitivity level. Furthermore, the

detector was able to detect CEs of varying shapes and widths, even though only a single

training template was used for detection. Analysts who also identified CEs in the data sets

proved to be unreliable. The level of agreement between analysts in identifying CEs was

only 50.48% for the somatic fMCI data sets, and only 31.51% for the spine fMCI data sets.

Analysts indicated that they trust the MMiCE detector’s output over their own judgment,

especially for CEs with SNR ≤ 3. Furthermore the MMiCE detector reduced detection time

from 24 hours per data set manually to 75-s per data set on average (0.0047-s/ROI-s).

In order to accommodate the varying signal amplitudes and SNR levels found in different

ROIs of a given imaging data set, the MMiCE detector applied an innovative threshold-

ing approach. The threshold was determined independently for each ROI by calculating
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the detection filter output’s median and median standard deviation. These quantities effec-

tively estimate the mean and standard deviation of the filtered noise, respectively. The filter

threshold is then set as a multiple, a, of median standard deviations above the median, where

a is a thresholding sensitivity parameter set at the onset of detection. Optimal thresholding

sensitivity levels, a, set by the analysts ranged from 1.7 to 3 for spine and 2 to 4 for somatic

data. Optimal thresholds for the MMiCE detector using the full noise covariance on simu-

lated data with a similar SNR range (SNR 0.2 - SNR 1) were a = 5.00± 1.37. The optimal

thresholding sensitivity level for the fMCI-PC data ranged from 3 to 4. This thresholding

approach allows the MMiCE detector to accurately and consistently extract CEs with a

specified sensitivity level even across wide variations in signal and noise amplitudes.

The MMiCE detector was also shown to be very robust. Detection retains fidelity even

when training samples come from a data set that is not the one being tested. It is even

possible to share training samples across different data types, such as between somatic fMCI

and dendritic spine fMCI data. However, performance does begin degrading at this point,

therefore it is not recommended.

Overall, these results indicate the MMiCE detector is applicable for widespread use in de-

tecting low-SNR neuronal CEs from imaging data.

Acknowledgments I would like to extend a special thanks to N. Koe, M. Doty, and K.

Scannell for their help in manual CE identification.

2.3.4 Unsupervised Automation Approaches

In general, automated approaches to spike detection can be supervised or unsupervised.

Supervised detection assumes that measurements of both spikes and noise are available

before the detector is implemented. The matched-filter approach presented up to this point
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falls under this category as both spikes and noise segments are identified in the training

process, before the filter is applied. The thresholding process is also supervised, as the user

is given the option of selecting a desired threshold sensitivity value.

It may be desirable to further automate these processes. Although further automation goes

hand in hand with decreased performance, large data sets, or data sets where representations

of spikes are not readily available may benefit from further automation. In the work presented

below we go into some detail about possible automation approaches that can be applied to

the matched filter discussed throughout this chapter. More specifically, we will discuss

automating threshold setting, as well as automating the spike template construction via the

use of continuous wavelet transforms (CWTs). Although CWTs could be used with various

spikes including DEs and CEs, their shape is most applicable to APs, hence this modality

is where the automation step is explored.

2.3.4.1 Automating Sensitivity Setting

As seen in Sec. 2.3.1- 2.3.3, different analysts often disagree on an appropriate threshold

sensitivity setting, and tend to be poor estimators for the ground-truth. One of the best

ways to minimize bias in detection is therefore to completely automate threshold setting.

Assuming spikes are outliers within a Gaussian noise distribution, we can define an outlier

threshold as

γ = M + σM
√

2 lnT (2.11)

where T is the number of time samples spanning a data trace X, and σM is derived

in Eq. 2.4 [71]. This threshold is essentially an upper bound on the noise distribution,

therefore anything above it should belong to a different distribution, i.e. the signal.

86



For the extracellular AP data presented in Sec. 2.3.1 this gives γ′ = 4.88 and is roughly

equivalent to a = 6.0, falling somewhere between the sensitivity levels of Analysts 1 and 2.

For the fMCI-PC data trace presented in Sec. 2.3.3 this gives γ = 76.71. This is equivalent

to a threshold sensitivity setting of a = 3.9, which falls within the range of optimal thresh-

old sensitivity settings (a = 3 − 4) when MMiCE is applied under the WGN assumption

(Sec. 2.3.3.3, Fig. 2.9). It is higher than the optimal threshold when the full noise covariance

is used, which was a = 2. For the 5 dendritic spine fMCI data sets presented in the same

sections (Sec. 2.3.3) this gives an average threshold of γ = 51.48± 27.49, which is equivalent

to a threshold sensitivity of a = 4.16± 0.08. Similarly, the 3 somatic fMCI data sets had an

average optimal threshold of γ = 69.96 ± 28.71, corresponding to a threshold sensitivity of

a = 4.03± 0.06. The variability in γ is expected as it is intended to differ significantly based

on signal amplitude. The threshold sensitivity, a, on the other hand should remain relatively

constant throughout the data sets, which is also reflected here. This threshold sensitivity is

slightly above that set by analysts (1.7 to 3 for dendritic spine, and 2 to 4 for somatic data),

but corresponds well with the optimal threshold determined for the SNR 0.5 simulated data

set (a = 4.00± 0.50).

Overall, this approach seems to match optimal or near optimal thresholds presented in this

work, and is therefore a good candidate for implementing a more automated approach.

However, the algorithm breaks down if spikes begin to become prevalent enough in the data

that they can no longer be considered outliers. This is very rare in extracellular recordings,

but seen in some cells with fMCI, and very common in cardiomyocyte recordings. The

automation step is therefore most appropriate for extracellular recordings, and should not

be used with cardiomyocyte data.
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2.3.4.2 Automating Spike Template Generation

This section presents a rational design approach to building a multi-sensor extracellular AP

detector. The proposed method is rooted in statistical detection theory which is modified to

account for scenarios when the signals of interest are not known. Based on biophysical

constraints on the duration and shape of APs, we argue that the SNR of extracellular

recordings can be significantly improved using an appropriate continuous wavelet basis.

Background On Unsupervised Multi-sensor Extracellular AP Detection In un-

supervised (blind) detection, noise and AP templates are generally unknown. However, a

similar problem is commonly encountered in approximation theory, where blind signal/noise

separation is effectively accomplished in a suitable sparse representation basis [61]. Motivated

by these ideas, Nenadic and Burdick [71] applied Bayesian decision theory in a continuous

wavelet transform (CWT) domain to develop a fully unsupervised AP detection algorithm.

An extension of this work utilizes probabilistic models to identify APs as outliers in a noise

distribution [6]. However, both of these methods are only suitable for single-sensor data,

and to the best of our knowledge, there are no methods for unsupervised AP detection in

multi-sensor recordings.

Extracellular recordings often generate measurements that contain no visually discernible

APs. From this so-called noise-only data, the noise statistics can be estimated and utilized in

AP detection. Falling between the extreme cases of supervised and unsupervised detection,

this approach to AP detection can be referred to as semi-supervised, since it utilizes the

noise statistics but makes no use of information about the signal. In the context of tetrode

recordings, power detection [15] and a prewhitening transform [85] are good representatives

of this approach. The former method calculates the power of data over a short time segment

and compares it to that of background noise. Since the power of APs is expected to be above

the baseline, a suitable threshold can be defined that separates APs from noise [15, 31].
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The prewhitening approach, on the other hand, uses the spatial covariance matrix of noise

to decorrelate noise samples across channels and normalize their variance to 1. Detection

thresholds are then set for each channel in the prewhitened space [85].

The approach we present here will use the semi-supervised paradigm with the matched fil-

ter presented previously. Namely, the signal template s (Eq. 2.1) will be estimated using

the CWT, as opposed to from the data; Σ (Eq. 2.1), representing the noise statistics, will,

however, still be estimated from the data. Our prior work [71, 6] provides extensive ar-

guments for using the CWT of the biorthogonal class for AP representation. Briefly, the

shape of these wavelet functions is reminiscent of the predominantly biphasic shape of many

APs [39]. Furthermore, since APs are highly localized in time with characteristic durations

of ∼1 ms [39, 54], an extremely large set of CWT scales can be significantly reduced. Finally,

the translation invariance of the CWT ensures that the representation of an AP does not

depend on its relative position within the time series. These last two properties of the CWT

make it more suitable to AP detection than the commonly used discrete wavelet transform

with dyadic scales and translations [121, 76].

Methods To modify the matched filter in Eq. 2.1, we assume that the spike, s, can be

well estimated by discrete samples of compactly-supported wavelet functions, ψα,β ∈ R1×N ,

with scale α > 0 and translation β, where the same wavelet is applied across all channels c.

The spike representation then takes on the form

s = Ψα,β =



ψα,β

ψα,β
...

ψα,β


∈ RC×N (2.12)
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and we can rewrite Eq. 2.1 as

Sα,β(x) = Ψα,βΣ−1xT ,
H1 if Sα,β(x) > γ

H0 if Sα,β(x) < γ
(2.13)

where Ψα,β is the row-vector form of Ψα,β. Since β is a translation measure, we can also

think of Sα,β(x) as a single-scale test statistic Sα(X) ∈ R1×T , resulting from the template

Ψα,βΣ−1 being convolved over the entire data trace X (Sec. 2.2.1.3), and summed across

sensors, for a given wavelet with scale α.

The data used to investigate this approach is the same data as in Sec. 2.3.1, detailing the

matched-filter approach for extracellular action potential detection. The data is available

online [78], and additional details about the data collection procedure beyond that provided

in Sec. 2.3.1 are described in Pouzat et al. 2002 [79]. To objectively measure SNR, 20 APs and

25 noise segments (duration between 10 and 60 ms), were randomly selected and manually

delineated in the time series data. Extracting longer noise segments was not possible due to

the high firing rates of the neurons. The noise samples were used to calculate Σ, whereas

the APs was used for validation.

Based on a typical AP duration, we assumed a signal length of 2 ms (N = 31). For each noise

segment and each sensor pair {i = 1, 2, 3, 4; j ≥ i}, cross- and auto-covariance sequences,

ri,j(k), were calculated at lags k ∈ {−30,−29, · · · , 30}. These sequences were then averaged

over the 25 noise segments to obtain stable estimates. Note that unlike auto-covariance,

cross-covariance is not guaranteed to be an even function, although the values of ri,j(k) and

ri,j(−k) were very close. Therefore, the cross-covariance sequences were averaged over the

positive and negative lags, i.e. r̄i,j(k) = 0.5 [ri,j(k) + ri,j(−k)], k ∈ [0, 30], resulting in a total

of 310 (31×10) parameters. Finally, the p-values of r̄i,j(k) were estimated by a Monte-Carlo

simulation, and those r̄i,j(k) deemed statistically insignificant (p≥0.05) were set to 0. This
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further reduced the number of parameters to 269. The averaged and reduced sequences were

then used to generate Σ.

Biorthogonal wavelets (bior1.5 in MATLAB TMWavelet Toolbox.) were chosen for analysis

due to their AP-like shape. The scale α was chosen so that the duration of the dominant

two phases of the wavelet matches that of an AP. For most APs, this falls between 0.5 and 2

ms [39, 54], thus 16 scales were chosen to cover the [0.5, 2.0] ms range in 0.1-ms increments.

For each selected AP, ui ∈ R4×31 (i ∈ {1, 2, · · · , 20}), and noise segment, nj ∈ R4×dv

(j ∈ {1, 2, · · · , 20}; dv-variable), the SNR at sensor c was defined as:

SNRc(u) = median
j

{
‖ui‖∞
‖nj‖∞

}
(2.14)

Note that since nearly all detectors are threshold based, the SNR is more appropriately

defined using the L∞-norm than the commonly used L2-norm. Apart from scaling the SNR

values, the use of the L2-norm did not affect the results presented below.

Figure 2.11: A sample of 20 APs recorded with a tetrode (APs labeled 1-20, sensors labeled
1-4). Each trace is 2 ms long. The horizontal lines mark ±5σ bounds, and the number next
to each waveform represents its median SNR.
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Figure 2.12: Test statistic of 20 APs at 4 wavelet scales corresponding to the durations
0.8, 1.4, 1.6 and 2.0 ms. Each trace is 2 ms long. The horizontal lines mark ±5σ bounds
estimated from the test statistic of noise, and the number above each waveform represents
its median SNR.

Results Fig. 2.11 shows the APs selected for validation as well as the distribution of SNRs

across the APs and sensors. Visual inspection confirms the diversity of the sample, as there

appear to be at least 6 distinct classes of APs. The average SNR ranged from ∼2 (APs 3

and 10) to ∼4.5 (APs 1 and 6). Also shown are the noise bounds estimated by averaging

the noise standard deviation over the 25 noise segments.

Fig. 2.12 shows a similar plot for the data processed using the wavelet-approximated gener-

alized matched filter (AGMF) (Eq. 2.13). In this case, the SNR was not calculated across

sensors, c (Eq. 2.14), since the matched filter sums across all of the sensors; it was instead

calculated as a function of the wavelet scale α (which therefore replaced c in Eq. 2.14). In the

interest of space, Fig. 2.12 shows the EAP test statistic at 4 representative scales. Even from

this reduced set of scales, it is apparent that substantial SNR improvements are achieved by

the AGMF.

To formally ascertain the degree of SNR improvement, we performed statistical tests on the

SNR of the 20 APs. The maximum SNR per sensor was calculated for each of the 20 APs

in the original data. Similarly, the maximum SNR per scale was calculated for each AP in

the AGMF-processed data (Fig. 2.13). A sign test showed that the SNRs of the processed
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APs were significantly superior to those of the original data (p < 0.00004), with a median

improvement of 38%. A similar test was performed to compare the maximum SNR per sensor

to the SNRs at the 16 individual scales (i.e. without taking the maximum over scales). It

was found that the SNRs at 10 scales (1.1–2.0 ms) were superior to the maximum SNR

based on the original data. These results indicate that even if the analysis is performed at a

single wavelet scale, the SNR improvements with respect to the original data are significant

(Fig. 2.13).

Fig. 2.13 also shows the distribution of SNRs across APs achieved with the power method [15,

31] and spatial prewhitening [85]. The power method was implemented by calculating the

root-mean-square value of the data at each sensor in a 2-ms sliding window. The SNR on

a per sensor basis was then calculated using(Eq. 2.14). Finally, the spatial prewhitening

method was implemented by averaging the spatial covariance matrix over 25 noise segments.

The resulting matrix was then spectrally decomposed, and the prewhitening matrix was

calculated [116] and used to premultiply the tetrode data. As expected given Fig. 2.13, a

sign test showed that the SNR of the power method was significantly superior to the original

SNR (p < 0.0004), with a median improvement of 22%. The SNR of the prewhitening

method, however, was inferior to the original SNR (p < 2 ×10−6), with a median loss of

10%. In addition, both the power and prewhitening methods were significantly inferior to the

AGMF method, with p < 0.01 and p < 0.00004, respectively, and a median loss of 18% and

35%, respectively. The results were also compared to two popular unsupervised techniques:

principal and independent component analysis (PCA and ICA, respectively). PCA yielded

a median SNR improvement of 6% with respect to the original data, however, this gain was

not statistically significant (Fig. 2.13). ICA, on the other hand, resulted in a significant loss

(20%) of SNR with respect to the original data (Fig. 2.13).
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Figure 2.13: Maximum (per sensor) SNR of the original, power, and spatially prewhitened
(PW) data. Maximum (per scale) and best scale (b.s.) SNR of the AGMF-processed data.
Maximum (per component) SNR of the PCA- and ICA-processed data.

Discussion and Conclusion By combining statistical detection theory with continuous

wavelet representation, we derived an approximation of the generalized matched filter suit-

able for semi-supervised AP detection problems, where the noise samples are available, but

the signal samples (spikes or APs) are not. The method outperforms other multi-sensor AP

detection approaches by yielding a significantly higher SNR when tested on representative

AP and noise samples extracted from experimental data. A notable exception is AP 3, which

is characterized by weak signals at 3 sensors (Fig. 2.11). This is hardly surprising as the test

statistic, Sα,β(x), combines data across sensors, which in this case “dilutes” the SNR. Our

work also shows that the use of ad hoc multi-sensor data processing methods may not only

fail to improve the SNR, but may actually lower it. Future studies will focus on a formal

testing of the AGMF method for the detection of APs under different sensitivity-specificity

trade-offs and in the presence of APs with temporal overlap. Finally, we will also pursue the

development of a fully unsupervised multi-sensor AP detection method.
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2.4 Conclusion

In this chapter we’ve gone over three implementations of a supervised matched filter for

spike detection from time series data. Each application concentrates on a different data

type, starting from multi-sensor extracellular recordings, to VSD imaged cardiomyocytes,

and finally calcium imaged neuronal somas and dendritic spines. The chapter ends with

some exploration of more automated approaches.

2.4.1 Multi-sensor Extracellular Action Potential Detection

The first matched filter application tested the detector on tetrode recordings from a locust

antenna lobe. Because no ground truth was available, detector performance was assessed

by comparing detection results to APs tagged manually by 3 trained analysts. To reduce

complexity and avoid poorly estimating the noise statistics, the filter assumed that the data

noise was spatially white. The detector performed with an average TP rate of 85% and an

average FP rate of 17%, as determined by ROC curves comparing performance to the APs

tagged by the trained analysts.

The optimal thresholding sensitivity values, a, determined by the ROC curves, varied be-

tween the different analysts. The most selective analysts, Analyst 1, tagged APs with an

average SNR of 28 and had an optimal thresholding sensitivity of a = 7. Analyst 2 tagged

APs with an average SNR of 20 and had an optimal thresholding sensitivity of a = 5.5. The

most liberal analysts, Analyst 3 tagged APs with an average SNR of 7 and had an optimal

thresholding sensitivity of a = 3.5.

In general the agreement between analysts was poor (as low as 39%), which therefore implies

that analyst’s tagged spikes are not a good estimate of the ground-truth. The detectors

performance is therefore likely underestimated in this study. Nevertheless, the detection
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efficacy was still comparable to other methods, and the detector’s performance presents it

as a great candidate for wide-spread use.

2.4.2 MaD

The second application of the matched filter concentrated on detecting DEs from VSD imaged

cardiomyocytes. Once again no ground-truth was available, so detection efficacy was tested

against DEs manually identified from the data by trained analysts. DEs that were unanimous

among all analysts were considered the ground-truth. The MaD detector was tested primarily

using the full noise covariance.

Three different data cases were considered, isoproterenol treated hiPS-CMs, propranolol

treated hiPS-CMS, and controls hiPS-CMs. The MaD detector was fist tested on typical

data with an SNR range from 5 to 70. In the control case (Control-1, SNR = 6), the detector

reached a TP rate of 98% with a 95% confidence interval of [92, 100]%, and a FP rate of 2

[0.00, 5]%. In the isoproterenol case (Iso-1, SNR = 70) the detector reached a TP rate of

100 [100, 100]%, and a FP rate of 1 [0, 2]%. Lastly, in the propranolol case (Pro-1, SNR =

31) the detector reached a TP rate of 99 [96, 100]%, and a FP rate of 1 [0, 4]%. In order

to also test the detector in a more hostile, low-SNR setting, two low-SNR test cases were

also considered, a control and isoproterenol treated hiPS-CMs. In the low-SNR control case

(Control-2, SNR = 3) the detector reached a TP rate of 72 [62, 82]%, and a FP rate of 17

[8, 26]%, whereas in the low-SNR isoproterenol case (Iso-2, SNR = 1) the detector reached a

TP rate of 66 [50, 82]%, and a FP rate of 14 [0, 27]%. Clearly, the performance decreased for

these low-SNR data sets. We therefore conclude that the MaD detector performs best when

applied to VSD imaged cardiomyocyte data of SNR ≥ 5. However, like in the extracellular

recording case, the low-SNR data sets suffered from poor analyst agreement (as low as 36%)

making the ground-truth estimate unreliable. It is possible that performance would change
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if a more reliable estimate of the ground truth was available. Overall, the MaD detector is

a useful tool for cardiomyocyte DE detection from VSD imaging data.

2.4.3 MMiCE

The final matched filter application was used on calcium imaged neuronal somas and den-

dritic spines. The MMiCE detector was designed to identify CEs in low-SNR environments,

and tested on both simulated and experimentally recorded fMCI data. This time ground-

truth data was available and the detector performed exceptionally well in both cases.

The simulated data was constructed from noise segments and CEs captured from real neu-

ronal somatic fMCI recordings and varied from SNR 0.2 to SNR 14. MMiCE reached perfect

performance at SNR 2 and above. Even at SNR 0.2 the MMiCE detector reached a TP Rate

of 90 [87, 94]% and a FP Rate of 13 [9, 16]% under WGN statistics, and a TP Rate of 98

[97, 100]% and a FP Rate of only 7 [4, 9]% using the full noise covariance. The MMiCE

detector’s performance was also tested on simultaneously recorded somatic fMCI and patch-

clamp data. The patch-clamp recording provided a ground-truth to quantitatively assess the

MMiCE detector’s performance on experimentally recorded somatic fMCI data. Under the

WGN assumption the MMiCE detector reached a TP Rate of 96 [90, 100]% and a FP Rate

of 2 [0, 6]%, which constitutes 3 errors. When the full noise covariance was used the results

improved to TP = 100 [100, 100]% and FP = 2 [0, 6]%, which constitutes only 1 error. This

high performance level was on par with and in some cases exceeded that shown by existing

methods [47, 88, 66, 119, 27], and did so while being tested at SNR levels as low as 0.2, well

below those used in previous studies (SNR ' 5 - 10).

Lastly, the MMiCE detector’s performance was qualitatively presented for experimentally

recorded low-SNR somatic fMCI and dendritic spine fMCI data. The detector performed

very well, able to consistently detect CEs with a specific sensitivity level. Analysts who
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also identified CEs in the data sets proved to be unreliable and agreed on only 50% for the

somatic fMCI CEs, and only 32% for the spine fMCI CEs. Analysts indicated that they

trust the MMiCE detector’s output over their own judgment, especially for CEs with SNR

≤ 3.

The MMiCE detector was also shown to be very robust. Detection retained fidelity even

when training samples come from a data set that was not the one being tested. It is even

possible to share training samples across different data types, such as between somatic fMCI

and dendritic spine fMCI data. However, performance does begin degrading at this point,

therefore it is not recommended.

Overall, these results indicate the MMiCE detector is applicable for widespread use in de-

tecting low-SNR neuronal CEs from imaging data.

2.4.4 Further Automation

Although a fully composed detector using even more automated approaches was not designed,

we did explore some further automation methods that could be used with the matched filter

presented in this Chapter.

The first proposed automation step is unsupervised thresholding. Here we defined an outlier

threshold, assuming that spikes are outliers within a Gaussian noise distribution. This

assumptions seems to work very well, as thresholds calculated in this way provided near

optimal results for both the extracellular tetrode data as well as the calcium imaging data

tested in Sec. 2.3.1 and Sec. 2.3.3, respectively. This approach is however not appropriate

for the cardiomyocyte data presented in Sec. 2.3.2. In this case the APs appear too often to

be outliers, so the main assumption behind this automated thresholding approach is broken

and the resulting threshold is too high.
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The second proposed automation step is to replace the signal template with a CWT. Al-

though CWTs could be used with various spikes including DEs and CEs, their shape is most

applicable to APs, hence this modality is where the automation step is explored. Because

the noise covariance, Σ, is still derived from the data, the this method is referred to as

semi-supervised.

To test if this approach, which we refer to as AGMF, was suitable for extracellular AP

detection, we manually identified 20 AP from the locust antenna lobe tetrode data presented

in Sec. 2.3.1. The average AP SNR ranged from 1.3 to 6.1 and varied in shape. These APs

were then convolved with the AGMF at 16 scales ranging from 0.5 ms to 2 ms. The resulting

SNR as a function of scales ranged from 2.2 to 11.0. Overall, the SNR of the processed APs

saw a median improvement of 38% (p < 0.00004) and the AGMF outperformed other multi-

sensor AP detection approaches by yielding a significantly higher SNR when tested on the

20 APs presented here. This places the AGMF method as a good candidate for further

automation and incorporation into the current detection paradigm.
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Chapter 3

Classification

In most cases it is not enough to simply detect a signal of interest. Many if not most studies

of biological systems strive to compare different scenarios against one another, or distinguish

between the actions of several forces participating in a single phenomenon. One way to

accomplish this is data classification. Just like detection, data classification in biological

systems is not entirely straight forward. The signals are often noisy, and all of the parameters

affecting the signal are not necessarily known. This seems like a good case for machine-

learning approaches, such as evolutionary algorithms or neural-nets, however naive statistical

approaches more often than not do the job with a much lower computation cost and reduced

complexity. Although they are not necessarily naive, statistical approaches are the methods

we concentrate on in this work.

Classification is a two part problem. First the salient features of the signal must be ex-

tracted. Then those features have to be clustered into classes. If a good features space is

determined, the clusters are relatively obvious and a powerful clustering algorithm is un-

necessary. On the other hand, a powerful clustering algorithm can often accurately cluster
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disperse and/or overlapping features. In this work we have chosen to concentrate mostly on

feature extraction, and use relatively well known algorithms for clustering.

Our first feature extraction approach was developed to classify neurons from multi-sensor

extracellular neuronal recordings. A single electrode can generally record signals from 5 to

8 neurons simultaneously, although as little as 1 or as much as 20 is also possible. To really

understand neural network dynamics, signals from the different neurons must be identified

and delineated. The method we developed, MUSIC, focuses on finding neurons’ locations

from their recorded APs. Because each neuron should have a unique location, this feature

extraction approach has the potential to perform better than mathematically abstract ap-

proaches. We tested MUSIC on both tetrode (4 channel) and heptode (7 channel) recorded

signals. The features were then clustered using either expectation-maximization (EM) and

Bayes’ information criterion (BIC), or DBSCAN.

The second approach presented in this Chapter was developed to distinguish between car-

diomyocyte APs, or depolarization events (DEs) affected by different drugs. We selected

salient DE features – upslope, width, and downslope – based on known cardiomyocyte

DE behavior, and then compared these features across different drug treatments using a

Kolmogorov-Smirnov test.

This Chapter details the two methods mentioned above, and presents applications for both.

Other existing techniques for each analyzed data type, as well as the motivation behind these

applications are presented along with the application results for each method.
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3.1 Multi-sensor Extracellular Feature Extraction: MU-

SIC

Depending on the electrode impedance, a single extracellular recording data set can contain

signals from 1 to 20 different neurons [115]. This number can grow even larger when using

electrode arrays, which often cover more surface area and have more recording sensors. The

recorded APs must then be classified before yielding any useful information on neuronal func-

tion and organization. Neuronal source classification therefore represents a critical step in the

analysis of electrophysiological data. However, the task itself is non-trivial. Classification is

often based on spike amplitude, which is assumed to stay consistent for a single neuron over

the course of recording. This assumption is often broken due to small, unintentional move-

ments of the electrode, slight changes in the extracellular ion-concentration, shunt resistance

of the electrode, and internal firing variability of the neuron. Many techniques, including the

use of principle components as classification features ([25]), and EM based clustering [72],

have been proposed to tackle this issue. Our approach has particularly focused on using ei-

ther a combination of the EM algorithm and BIC or the density-based algorithm DBSCAN

for clustering. We’ve also used density based algorithms such as DBSCAN [16].

Although classification methods differ in their actual clustering algorithms, the defining fea-

ture that sets most classification schemes apart is their feature selection algorithm. Choos-

ing the correct feature largely determines the efficacy of extracellular AP classification.

While commonly used abstract mathematical features, such as the principal components

in PCA [32], or various template scores [42], can be used for classification purposes, their

calculated features may not be unique to single neurons, and may change significantly with

sensor location and across trials. Features that can reliably represent a single neuron, as

well as remain invariant across trials and sensor positions are preferable for classification

purposes. We believe source location is one such feature.
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3.1.1 Source Location as a Feature

Neuron location is a classification feature that offers both stability and remains invariant

in time and space. Source location is a superior classification feature to mathematical

abstractions for several reasons. First of all, source location remains relatively constant

even if the recording sensors are moved with respect to the neurons of interest. Although

abrupt movements that damage or drag the tissue will undoubtedly cause neuron locations

to change, slowly executed and small electrode movements should not disturb the location

of the recorded neurons. Therefore neuron locations should remain constant during unex-

pected sensor movements which are a common occurrence during extracellular recording

experiments. Secondly, source location can be used to identify and follow single neurons

across trials. In chronic recordings, where neuron populations may migrate with time, this

can provide both information on neural migration trends and allow for the migrating neurons

to be classified accurately, and grouped consistently across many consecutive trials. Note

also that localization does not require spike alignment, which decreases pre-processing time.

Due to these reasons, AP source locations were selected as our classification feature. Several

neuronal source localization algorithms have been proposed and used in vivo [11, 14, 4,

94, 64]. These methods employed various approaches ranging from simple heuristic AP

generative models [14, 4] to more biophysically realistic models, such as monopole [11],

dipole [64], and line source [94] approximations. The best example is the approach taken by

Chelaru and Jog, where a simplified monopole-like model is applied to the recordings and

source locations are estimated by solving nonlinear systems of equations. In contrast to this

numerical solution, our previous work showed that the monopole-model could be inverted

exactly, resulting in a closed-form solution [52]. Unfortunately, this method is very sensitive

to noise. Likewise, solutions come in pairs, one of which is spurious. Identifying which

solution is the accurate one can be tedious and sometimes impossible.
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Due to these limitations we explored a different localization method rooted in statistical

signal processing [53]. The multiple signal classification (MUSIC) algorithm used in this

work has proven effective in both electroencephalogram (EEG) and magnetoencephalogram

(MEG) source localization [118], as well as in our preliminary source localization experiments

with tetrodes [53]. The MUSIC algorithm is more robust against noise than the closed-form

solution, and generates a single localization result, eliminating the need to identify the

accurate and spurious solutions from a pair.

The work presented here concentrates on applying the MUSIC algorithm to localize multi-

sensor extracellular AP for the purposes of clustering and thereby classification. The multi-

sensor data explored includes a conical tetrode (4 sensors) and heptode (7 sensors).

3.1.2 Multiple Signal Classification (MUSIC)

In the most basic case, we can treat the neuron as a point source and the surrounding

medium as an isotropic, homogeneous volume conductor. Although simplistic, the monopole

model has often been used in application to neural source localization [14, 4, 2, 11], and will

be used here as the basis of our forward model.

If signals are generated by a single source, the MUSIC algorithm models measurements from

a C-sensor array, x(t) ∈ RC×1, as an output of the static linear system

x(t) = ms(t) + n(t) (3.1)

where t ∈ [1, T ] is the time instant, m ∈ RC×1 is the lead field vector (LFV) [118] representing

the system’s response to a unitary signal input, s(t) ∈ R is the signal amplitude, and

n(t) ∈ RC×1 is zero-mean noise. In the case of a single monopole-like source with current
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I(t) = s(t), the LFV becomes

m(r) =
1

4πσ

[
1

d1(r)

1

d2(r)
· · · 1

dC(r)

]T
(3.2)

where σ is the conductivity of the medium per unit length, dc is the distance between sensor

c and the source located at r = [x, y, z]T , and c ∈ {1, 2, · · · , C}. The components of x(t)

for any sensor c are then

x(t)c =
I(t)

4πσdc(r)
+ nc(t) (3.3)

The MUSIC algorithm proceeds by finding the source location r? for which the LFV is most

orthogonal to the noise subspace [89]. More formally, the optimal source location r? is found

by

r? = arg min
r

mT (r)ENE
T
Nm(r)

mT (r)m(r)
(3.4)

where EN ∈ RC×(C−1) is the noise subspace. This subspace can be obtained by the following

singular value decomposition,

X = UΛV T (3.5)

where X := [x(1)x(2) · · · x(t)] ∈ RC×T and T is the number of samples in the time series

data. If T ≥ C under the single-source assumption, the noise subspace can be defined as

EN := [u(2)u(3) · · · u(C)], where u represents the columns of U corresponding to the C − 1

smallest singular values of X. In other words, we assume that the first singular value of X

makes up the signal subspace, and the remaining values make up the noise subspace EN .

Note that σ cancels out in Eq. 3.4 so in this case localization is independent of medium

conductivity.
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3.1.2.1 Impedance Model

When applied to some the data in the following studies, the monopole LFV model pro-

duced very dispersed features that did not exhibit strong clustering behavior. A similar

phenomenon was also encountered by Chelaru and Jog [11] in their work using a combina-

tion of source locations as classification features and a self organizing map for clustering.

The underlying reason for this may be an extreme sensitivity of LFVs, especially for small dc,

which may be exacerbated in the presence of noise. The LFV was therefore regularized [18]

to mitigate the noise and also incorporate the impedance of the recording channels;

m(r) = λ
1

4πσ

[
1

d1(r)

1

d2(r)
· · · 1

dC(r)

]T
+ (1− λ)[Z1, Z2, · · · ZC ]T (3.6)

where Zc is the impedance of sensor c, and λ ∈ [0, 1] is a regularization factor. The value

of λ that produced optimally clustered features was empirically derived as λ = 0.5. The

impedance values used were measured for each sensor prior to recording in 9% saline at 1

KHz.

In this case σ does not cancel out so localization is in small part dependent on the medium

conductivity. We have assumed a standard conductivity for cerebral spinal fluid, σ = 0.3×

10−6 S/µm [36]. Perturbation of this parameter slightly affects the localization results, but

does not impact the feature clustering.

Although this new model is likely inaccurate for the purposes of real source localization,

the regularization forces very tight clusters in the feature space, enhancing clustering per-

formance. That being said, each cluster tends to be closely associated with a single sensor,

which means that the maximum number of clusters the algorithm can identify is C, the

number of sensors. Although we did not run into this issue, as the largest number of units

identified in a given recording was 6 while using a 7 sensor electrode, it is a possible limitation

of the approach.
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3.1.3 Proof of Concept

Originally the MUSIC localization approach was intended both as a classification feature, as

well as a tool to determine true neuron locations from multi-sensor extracellular recordings.

To determine if the algorithm would be capable of localizing an electrical source we first

tested it in a contrived setting, using a stimulator placed in artificial cerebrospinal fluid

(aCSF) and four recording micropipettes. The location of the source was estimated with

an accuracy and precision of ∼4 µm and ∼7 µm, respectively. These results suggested

that in vivo resolution of individual neuronal sources was feasible using MUSIC as a feature.

Although ultimately the MUSIC algorithm proved to be unsuccessful in true neuronal source

localization, these results led to our further studies on using the MUSIC algorithm to extract

classification features that did not necessarily correspond with physical neuronal locations.

The following work presents experimental verification of the MUSIC algorithm’s ability to

localize electrical sources in aCSF from tetrode recorded signals.

3.1.3.1 Methods

Our experimental setup utilized four glass micropipette electrodes for recording and a single

micropipette electrode for stimulation. MUSIC estimated source locations were compared

to the true source location, as determined from a microscope image. Since the precision

of the estimated source locations (∼7 µm) is smaller than the diameter of a typical soma,

we hypothesized that this method can resolve individual neuronal sources based on their

recorded APs.

Data Collection Five glass micropipettes (Fig. 3.1) filled with aCSF were placed in a

recording chamber maintained at 32◦C. Micropipettes 1-4 served for recording, while mi-

cropipette S served as a stimulator. The recording chamber was immersed in aCSF consisting
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Figure 3.1: Microscope image of the experimental preparation. The micropipette tips lie
in the microscope focal plane. The micropipettes were subsequently brought closer by a
micromanipulator (see Fig. 3.2).

of 127 mM NaCl, 26 mM NaHCO3, 3.3 mM KCl, 1.24 mM KH2PO4, 1.0 mM MgSO4, 1.0

mM CaCl2, and 10 mM glucose. Electric field potentials recorded by the four micropipettes

were acquired through an Axopatch 700B amplifier (Molecular Devices, Union City, CA)

with a sampling rate of 20 kHz. The stimulating micropipette generated a train of ten 38-

µA pulses, each pulse lasting 10 ms, followed by a 40-ms pause. To reduce the effects of noise,

a total of seven such trains were recorded. Images were collected during data acquisition

with an up-right microscope (Nikon, Tokyo, Japan) and captured with a cooled CCD camera

(iXon DV885, Andor Technology, Belfast, UK). The experimental procedure was performed

in accordance with the University of Tokyo guidelines.

MUSIC Application and Performance Analysis The recorded pulse trains were aligned

to the onset of the first pulse, corrected for dc offset, and averaged over the seven epochs.

Source location was then estimated using the MUSIC algorithm, and the accuracy of the

estimated source location was quantified by calculating the estimation error (bias) defined

as:

ε , ‖E{r∗} − rt‖ (3.7)
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where ‖·‖ represents the Euclidean norm, E is the expectation operator (average), r∗ ∈ R3×1

are estimated source locations, and rt ∈ R3×1 is the true source location. Similarly, the

precision of the estimate is quantified by a standard radius (generalized standard deviation)

defined as:

δ ,
√
δ2x + δ2y + δ2z (3.8)

where δx, δy and δz are the standard deviations of the x, y and z components of r∗, respec-

tively.

3.1.3.2 Results

The recorded pulse trains were processed and analyzed as described in Sec. 3.1.3.1. As

expected, the strongest signals were recorded by sensors 1 and 2, which lied closest to the

source (Fig. 3.2 (Left)).

The 10-ms data segments, corresponding to each of the 10 pulses were used as input to the

MUSIC algorithm, yielding one estimated source location for each pulse (Fig. 3.2 (Center)).

The MUSIC-derived source location average over the 10 pulses was (-6.45, 43.02, 4.70) µm

(B in Fig. 3.2 (Left)), with the origin defined at the source, S. This corresponds to an error,

ε, of 43.75 µm. While Fig. 3.2 (Center) shows that the solutions were consistent in the x-y

plane (δx = 0.03 µm, δy = 0.15 µm), the variance along the z-axis was high (δz = 22.25,

µm), yielding an overall standard radius, δ, of 22.25 µm.

This relatively large bias (∼44 µm) is consistent with our previous study (bias: ∼41 µm) [53].

It indicates that the modeling assumptions and, in turn, the constraint imposed on the

LFV (3.2) may not hold. In the simplest scenario, this bias can be attributed to medium

inhomogeneity and mitigated by allowing each source-sensor path to have a different con-
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ductivity value. This redefines the LFV (3.2) as:

m(r) =
1

4πσ

[
1

k1d1(r)

1

k2d2(r)

1

k3d3(r)

1

k4d4(r)

]T
(3.9)

where ki (i = 1, 2, 3, 4) is a constant making each conductivity value a multiple of some

baseline conductivity σ. This multiplier, referred to as an inhomogeneity correction factor

(ICF), can be found experimentally, provided the distance, di (i = 1, 2, 3, 4), is known. By

assuming that one of the stimulator-sensor paths has the baseline conductivity, k4 = 1, the

remaining ICFs can be found using (3.1) and (3.9), and taking the expectation of x over the

noise distribution:

kc(t) =
d4E{x4(t)}
diE{xi(t)}

, c = 1, 2, 3 (3.10)

where xc ∈ R is the cth component of x (for a given channel c). Although kc depends on

time, we have shown that its values remain fairly stable over time [53] and can be estimated

by taking the median value of kc(t). This yielded k1 = 1.20, k2 = 1.04 and k3 = 0.99. The

MUSIC algorithm can then be executed using the new LFVs (Eqs. 3.9- 3.10).

The localization results significantly improved upon ICF correction. The average estimated

source location was (0.20, 0.61, 3.78) µm (A in Fig. 3.2 (Left)), with corresponding error

ε = 3.83 µm. This is also highly consistent with our previously reported results (error: ∼3

µm) [53]. Likewise, ICF adjustment substantially reduced localization variance (δx = 0.40

µm, δy = 3.50 µm, and δz = 6.27 µm), yielding a standard radius, δ, of 7.20 µm. The

clustering of these sources is shown in Fig. 3.2 (Right).
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Figure 3.2: (Left) The final sensor-stimulator configuration. The sensors (the tips of mi-
cropipettes 1-4) are marked in green, and the source (the tip of the stimulating micropipette)
is marked in magenta. The average of estimated sources is marked by B. The equivalent
point after ICF adjustment is marked by A. (Center) The estimated locations of 10 sources
corresponding to the 10 pulses before ICF adjustment. (Right) The equivalent plot for the
pulse train after ICF adjustment.

3.1.3.3 Discussion and Conclusion

The sole purpose of ICF adjustment in our analysis was to validate the performance of

the localization algorithm. Since determining ICFs relies on known distances between the

sensors and the source, ICF adjustment cannot be performed on blind data collected in vitro

or in vivo. Source localization based on unadjusted signals, however, is likely to result in a

relatively large bias and increased variance.

As suggested in Section 3.1.3.2, the bias is believed to have been primarily caused by medium

inhomogeneity, although other factors such as medium anisotropy or non-uniform sensor

impedances could play a role. However, preliminary evidence suggests that impedance in-

consistency is not likely to be the cause, as similar bias values have been observed in our

previous study [53], performed using a single sensor placed at four recording locations.

Another potential source of bias could be a failure of the monopole model to accurately

describe the source. Our preliminary in silico work [53], as well as in vivo studies performed
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by Mechler and Victor [63], indicate that discrepancies between monopole-generated signals

and measured neuronal signals often result in localization solutions biased toward the sensors.

Furthermore, the main cause for the relatively low precision of source localization prior to

ICF adjustments was caused mostly by obtaining source locations that were geometrically

mirrored on either side of the sensor plane, with the z-coordinates across 10 localization trials

clustered at either ∼23 µm or −23 µm. Other work performed using this algorithm (not

discussed in this dissertation) also lacked effective z-axis resolution even with a 3D sensor

arrangements.

This leads us to conclude that the MUSIC algorithm presented here is too prone to bias for

accurate neuronal source localization. However, the localization precision, especially in the x-

y plane shows the MUSIC algorithm’s ability to distinguish electrical sources, using 4 sensor

recorded signals. Although a bias may appear, the precision of localization indicates that

this approach may be able to distinguish independent neurons from multi-sensor multi-unit

extracellular recordings, and makes it a good candidate for use in spike sorting.

Our further work therefore focuses on testing MUSIC as a feature extraction method for the

purposes of multi-sensor spike sorting.

3.1.4 Applications

The MUSIC algorithm for feature extraction was applied to two different data sets - one

collected with a tetrode, and another collected with a heptode. The first application, using

data from the tetrode, applies the base monopole model (Sec. 3.1.2) and clusters the resulting

features with an EM-BIC based approach. Although no ground-truth was available, the

resulting classified waveforms were compared, and inter- and well as within-class analyses

were preformed to test classification efficacy. The second application, using data from the

heptode, uses the impedance model (Sec. 3.1.2.1) and then clusters the resulting features
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with DBSCAN. In this case the waveforms were qualitatively inspected for classification

efficacy across several different experimental paradigms, and t-tests were used to compare

waveforms across different classes.

3.1.4.1 Monopole Model with Tetrode

Extracellular APs must be classified before they can yield any useful information on neuronal

function and organization. Neuronal source classification therefore represents a critical step

in the analysis of electrophysiological data. This study demonstrates the efficacy of a multi-

sensor AP classification scheme using source location as a classification feature.

The data and results presented here are adapted from Szymanska et al. 2013 [99]. Briefly,

localization was performed using the multiple signal classification (MUSIC) algorithm. Six

distinct source neurons were classified from 20 seconds of extracellular tetrode recordings.

On average, 89.5% of the waveforms making up each class matched the shape of the average

class waveform. These results indicate that this classification scheme can successfully identify

individual neurons from multi-sensor AP recordings.

Methods

Data Collection The data used to investigate this approach is the same data as in

Sec. 2.3.1, detailing the matched-filter approach for extracellular action potential detection.

The data is available online [78], and additional details about the data collection procedure

beyond that provided in Sec. 2.3.1 are described in Pouzat et al. 2002 [79]. Briefly, a planar

silicon probe was placed below the surface (∼50-100 µm) of an adult locust’s antennal lobe

and used for recording. Recordings were sampled at 15 KHz and bandpass filtered from
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300 Hz to 5,000 Hz. A total of 20 seconds of data from four of the probe tip sensors was

provided.

Data Analysis Spike detection was performed using the supervised matched filter for

multi-sensor data presented in Sec. 2.3.1. Half of the collected data was used for training, and

the remaining half was used for further analysis. 25 APs, 2.7 ms each, were selected from the

training data, and used to generate the matched template, s, and 20 noise samples, roughly

50 ms each, were used to generate the noise covariance matrix, Σ. Like in Sec. 2.3.1, the noise

statistics were assume to be spatially white to simplify the noise covariance calculation. The

matched filter output was thresholded at three standard deviations above the noise mean,

a = 3.

The source of each detected AP was then localized using the MUSIC algorithm, with a

monopole source model. MUSIC-derived locations from each detected AP were then classified

using an EM algorithm. The EM algorithm assumes Gaussian distributed clusters for APs

coming from a specific neuron, and a uniformly distributed cluster of outliers. The EM

algorithm was used to group points into several different cluster models, and the optimal

cluster model, or number of clusters, was determined by maximizing the BIC across all

models [90]. For a detailed derivation of this classifier please refer Appendix B.1.

After classification each cluster was analyzed for average location and spread. The spread

was quantified by a standard radius, which is the norm of each cluster’s x, y, and z standard

deviations. The APs from each cluster were aligned to their peak values and averaged to

demonstrate the representative waveforms for each cluster. Waveform signatures, represent-

ing the relative signal power across the four sensors, were then calculated for each AP, and

used to determine the within-class consistency between the waveforms.
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Figure 3.3: (Top) MUSIC source localization results for all 1040 detected APs (blue). Sensor
locations are depicted in black and marked S1-4. (Bottom) Classification results for AP
source locations shown above. Black points represent outliers, and all other colors represent
distinct source location clusters, labeled N1-6.
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Table 3.1: Location, standard radius, and classification accuracy of each class N1-6

Source N1 N2 N3 N4 N5 N6

Location
x (µm) 0.4 21.3 9.5 32.1 -24.8 -25.4
y (µm) 36.4 19.3 -25.7 -8.0 -14.4 13.5
z (µm) 0.5 -0.1 -0.1 -0.7 0.2 -0.2

Std. Radius (µm) 11.5 10.1 6.7 12.3 9.0 11.2

Accuracy (%) 98.1 77.5 95.4 98.1 90.1 77.2

Results All 1040 APs detected in the 20 second data stream were successfully localized

using MUSIC. The AP locations, projected onto the x-y plane, are shown in Fig. 3.3(Top).

This data was classified yielding 6 distinct location clusters, centered at (0.4 36.4 0.5), (21.3

19.3 -0.1), (9.5 -25.7 -0.1), (32.1 -8.0 -0.7), (-24.8 -14.4 0.2), (-25.4 13.5 -0.2) µm with standard

radii of 11.5, 10.1, 6.7, 12.3, 9.0, and 11.2 µm respectively (Fig. 3.3 (Bottom), Table 3.1).

Only 34 source locations were classified as outliers, representing 3% of the data set.

The underlying AP waveforms representing each source location in a given cluster were

analyzed to assess classification efficacy. The average waveforms are unique to each location

and distinguishable from each other (Fig. 3.4). This is strong evidence that each cluster

represents a unique neuron.

Although the average waveforms are unique, all six have relatively high standard deviations

at the AP peaks (up to 4.9 standard deviations of the noise). This is not surprising as

the waveforms were crudely aligned by peak AP values, greatly increasing the peak variance.

Additionally, biological noise is known to increase during spikes due to the correlated activity

of nearby neurons [30]. To determine more conclusively if this high waveform variance implies

misclassification, waveform signatures, defined here as the ranking of signal power across the

four sensors for each AP, were compared within clusters.

116



For clusters N1, N3, N4, and N5, the waveform signatures are consistent with the average

waveform signature among 98.9%, 95.4%, 98.1%, and 90.1% of the APs in each cluster,

respectively (Table 3.1). This implies that the variance in AP waveforms across these clusters

is most likely due to mis-alignment or biological noise. It is reasonable to conclude that these

clusters represent unique and singular neurons.

The remaining two clusters were slightly less consistent, with 77.5% and 77.2% of the APs in

N2 and N6, respectively, matching their average waveform signatures. For N6 the remaining

22.8% of waveforms match the waveform signature of N1, and therefore seem to be mis-

classified. N2 on the other hand had a broad spectrum of APs not matching the average

waveform. This may imply that some APs classified as N2 account for a different nearby

neuron, or a superposition from two or more neurons. Although these clusters were less

internally consistent, the results still indicate that they represent distinct neurons.

Overall, classification based on our feature extraction method successfully differentiated 6

unique and distinct neurons from tetrode recorded APs.

Discussion and Conclusion The misclassification observed in clusters N2 and N6 may

be due in part to the use of only 4 recording sensors, the minimum necessary for MUSIC

localization. The use of arrays with more than 4 sensors may decrease localization error and

misclassification rates. As 4 sensor localization is sensitive to outlying data, a larger number

of sensors may mitigate the effects of noise and decrease localization variance.

A notable characteristic of this feature extraction scheme is its limited sensitivity to noisy

or outlying signals. Unlike the approach presented by Chelaru and Jog [11], where 39%

of recorded spikes were filtered out and discarded as outliers prior to analysis, the feature

extraction scheme presented here did not filter out any spikes prior to analysis. Further-

more, only 3% of the classified spikes were identified as outliers, conserving most of the
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Figure 3.4: Average waveforms for each cluster shown in Fig. 3.3 (Bottom). Waveforms
are color matched to the clusters. Note that each cluster has a unique and distinguishable
waveform signature.

detected APs. This can increase the reliability of further analysis, and improve the amount

of information that can be gathered from a given recording session.

Overall, 6 distinct AP sources were successfully classified, with an average accuracy of 89.5%,

using MUSIC-derived source location as a classification feature. Furthermore, the classifi-

cation scheme used here does not rely on any prior knowledge of AP class characteristics,

and does not require the signals to be aligned prior to classification. This decreases the

amount of signal processing necessary for classification, allows a broader range of units to be

identified, and permits the algorithm to be completely unsupervised. Given our results, this

technique presents itself as a strong candidate for broad use in extracellular signal analysis.
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3.1.4.2 Impedance Model with Heptode

As mentioned previously spike sorting or neuronal source classification is crucial to the anal-

ysis of electrophysiological data. This study demonstrates the efficacy of a multi-sensor

AP classification scheme using a proxy for source “location” as a classification feature

(Sec. 3.1.2.1). Localization was performed using the multiple signal classification (MUSIC)

algorithm, with the impedance model (Sec. 3.1.2.1). The approach was tested on extracellu-

lar heptode recordings, which we believe will provide better resolution and stability against

noise than the previously tested tetrode recordings. Five to six statistically distinct source

neurons could be classified from a given heptode recording (Appendix A.3), across the 3 in-

dependent recordings tested. This shows that the method is effective for multi-sensor spike

sorting.

The results presented here were used in Szymanska et al. 2017 [101], but were not presented

in detail.

Methods The data collection procedure for this work is detailed in Appendix A.3 as part

of the study described fully in Chapter 4. Here we will summarize the data and methods

pertinent to spike sorting.

Two male Wistar rats participated in the study. Extracellular heptode recordings were made

through a 1-2 mm burr hole above M1 of the right hemisphere. A screw electrode placed

over V1 of the right hemisphere served as the ground. A motorized headstage was used to

lower the heptode into the cortex until a high activity and signal-to-noise ratio recording

site was reached (∼ 700−900µm into the cortex). Once the heptode was in position 1-2 min

of spontaneous neuronal activity were recorded at three monotonically increasing isoflurane

anesthesia levels. For the purposes of this work, we will concentrate on the lowest level of

anesthesia, where the bulk of spiking activity occurred.
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A total of three experiments were performed. The first two experiments were performed on

a single animal at two different recording sites, one 170µm below the other. These locations

are presumed to be far enough apart to be recording from a new population of neurons.

These two experiments will be referred to as experiment 1.1 and 1.2, and were performed at

2.0% and 1.5% isoflurane, respectively. The third experiment was performed on the second

animal at 1.5% isoflurane and will be referred to as experiment 2.1. For more details please

refer to Appendix A.3.

Individual APs were detected from the heptode data using the generalized matched filter

described in Sec. 2.3.1 and Szymanska et al. (2014). Manually selected APs and noise

segments from each data set served as the training data, and the filter thresholds used ranged

from 4.5-6.5 median standard deviations above the median filter output [102], depending on

the data SNR. The APs were then classified using the MUSIC algorithm impedance model

for feature extraction (Sec. 3.1.2.1), and DBSCAN for clustering [16] (Appendix B.2).

The classified APs were then aligned to their peak values and averaged to demonstrate the

waveform signature for each cluster. The waveform signatures were qualitatively compared

to assess classification efficacy. Peak AP values were compared using t-tests (95% confidence

level) across each recording sensor to quantitatively assess if classes were statistically distinct.

Results Almost all of the detected APs were successfully localized using the MUSIC

impedance model for experiment 1.2; only 84 out of 1249 detected APs (7%) could not be

localized. For experiment 1.1 only half of the detected APs (596 out of 1184) were success-

fully localized. Inspection of the un-localized waveforms revealed that almost all consisted

of overlapping APs. Since the overlapping APs likely originated from different neurons, it

is not surprising that MUSIC localization could not converge on a solution. Similarly only

2,437 of the 5,647 detected APs (43%) in experiment 2.1 were successfully localized. Here

about half of the un-localized waveforms contained overlapping APs, where as the other half
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did not contain any obvious imperfections aside from a lower average SNR than the localized

APs. The localization results are shown in Fig. 3.5 A (Left).

As shown by the localization results in Fig. 3.5 A (Left), the MUSIC impedance model has

“localized” the APs to be tightly clustered around the heptode sensors. This is in stark

contrast to the more diffuse localization results presented in Sec. 3.1.4.1, where only the

base monopole model was used. As mentioned in Sec. 3.1.2.1, this an expected result as

the assumption that each sensor is connected in series with the neuron is likely inaccurate

for the purposes of real source localization, but does constrain the AP sources to very tight

cluster in the feature space. The clusters therefore become extremely obvious.

Fig. 3.5 A (Right) shows the DBSCAN clustering results for the location features on the left.

As can be seen in the figure, DBSCAN does a good job clustering the features. DBSCAN

identified 35 outliers out of the 596 features (6%) for experiment 1.1, 42 outliers out of the

1123 features (4%) for experiment 1.2, and 162 out of the 2275 features (7%) for experiment

2.1. Some of the outliers could be classified with slightly more lax parameters for the density

based algorithm, however, here we selected to be very conservative, ensuring that only the

best APs were classified.

Five, six, and six classes were identified for experiments 1.1, 1.2, and 2.1 respectively. Fig. 3.5

B shows the waveform signatures for each class identified in the three experiments. The

waveform signatures are clearly distinct between the different classes. Furthermore, as the

plotted 95% confidence intervals show (they are almost invisible in the Figure), the APs in

each class were quite consistent. T-tests (95% confidence interval) were performed on the

peak values of the waveforms for each channel to quantitatively determine if the classes within

a given experiment were statistically distinguishable in the time domain. Each channel was

compared to the corresponding channel for another class. For example when comparing C1

and C2 for experiment 1.1, 7 t-tests would be performed comparing the peak AP values

between C1 CH1 / C2 CH1, C1 CH2 / C2 CH2 and so on. In all case, at least 5 of the
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Figure 3.5: Spike sorting results using the MUSIC impedance model and DBSCAN. A
An aerial view of the feature space and clustering results. The black bar in the bottom
right corner represents 10 µm. (Left) Results of MUSIC localization for each experiment.
The black circles represent the heptode sensors, and the blue dots are MUSIC determined
source locations for each localized AP. (Right) DBSCAN clustering results for the features
presented on the left, with outliers removed. B Corresponding average waveforms for each
cluster identified in A. The number of APs in each class is listed below the waveform.
Although 95% confidence intervals are plotted as shaded regions around the waveforms,
they are so small that they can not be seen for most of the waveforms. T-tests revealed that
the waveforms within a given experiment are statistically distinct across classes.

channels showed a statistical difference between the classes, and in most cases all 7 were

statistically different. The rare channels that were not statistically different were always the

channels with the lowest signal amplitude. To our mind, this indicates that all of the classes

in a given experiment are statistically distinguishable from each other.

Discussion and Conclusion The MUSIC impedance model algorithm successfully clas-

sified 5-6 source neurons for the three experiments presented here. Although not all of the

sources could be localized using the MUSIC impedance model, most of the feature extrac-

tion outliers were due to superimposed APs, which were unfortunately very common in these

data sets. Other APs that could not be localized suffered from low SNR. These are both
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clear limitations of the technique, especially compared to the base MUSIC monopole model,

which was able to localize all of the APs in the tetrode data set presented in Sec. 3.1.4.1.

This discrepancy could be a function of the data, since the data sets tested here contained

many superimposed APs and the one data set presented in Sec. 3.1.4.1 did not. Either way

it appears that this model is more sensitive to low SNR. On the other hand, the features

extracted using the MUSIC impedance model are much more tightly clustered than those

achieved using the monopole model. As can be seen by the very small 95% confidence in-

tervals plotted in Fig. 3.5, the classes are very consistent, and appear to be less prone to

misclassification.

Another possible limitation of this approach, also mentioned in Sec. 3.1.2.1, is the natural

upper-bound on the number of classes that can be identified. Because the source locations

tend to cluster around a specific sensor, the maximum number of clusters that can be iden-

tified depends on the number of recording sensors. In this case, this limitation proved not

to be an issue, as the maximum number of identified classes was 6, and a 7 sensor array was

used. However, it is a potential shortcoming of the technique compared with the MUSIC

monopole model which is not limited by this phenomenon.

It is worth noting that the data presented here was also treated with the MUSIC monopole

model (data not shown). Although the detected APs could be localized for the most part,

the features space was very crowded and the features were diffuse, therefore no individual

clusters could be identified. The data was also treated with several common spike sorting

techniques including WaveClus [80], and KlustaKwik [32], as well as a newer method the

Matched Subspace Detector (MSD) [117]. All were used with default setting. The results

for all three approaches was one large cluster containing roughly 50% of the APs. This

cluster contained several AP waveform shapes and was clearly riddled with misclassification.

The remaining APs were for the most part identified as outliers, with an occasional small

(< 100APs) second class. There approaches were therefore not viable for spike sorting
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of heptode data. We therefore conclude that although the impedance model suffers form

several limitations, it appears to be more apt than both the monopole model as well as

existing techniques at dealing with certain data sets.

Overall, the MUSIC impedance model was effective at classifying APs from extracellular

heptode data. Furthermore, both qualitative analysis as well as t-test showed that the

AP waveforms were consistent within each class, and that the waveforms were statistically

different between classes.

3.1.5 Limitations

As seen in Sec. 3.1.4, MUSIC based feature extraction suffers from several limitations. One

of the major limitations is the inability of the algorithm to always come up with a feature.

The number of these kinds of outliers ranges from 0% to 50%. Although, this is not ideal,

it is consistent with other existing methods, like KlustaKwik and WaveClus which routinely

reject about 50% of the data as outliers. Furthermore, unlike these existing techniques our

MUSIC based approach is the only one specifically tailored for multi-sensor data, as opposed

to single sensor data. Although both KlustaKwik and WaveClus can be adapted to multi-

sensor data, it is our experience that the performance degrades and becomes less reliable. For

example, given the heptode data presented in Sec. 3.1.4.2, both KlustaKwik and WaveClus

were unable to identify more than 2 distinct classes from any of the recordings and removed

up to 80% of the data as outliers. Our design therefore makes this approach uniquely suited

for multi-sensor data containing many units with similar waveform signatures that are likely

to be misclassified or rejected as outliers by other techniques.

Another limitation of this approach is that the z-axis, relative to the electrode, is notoriously

incorrectly estimated. All of the sources in the case of the monopole model are contained

right around z = 0, and all of the sources in the case of the impedance model are confined to
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the z-coordinates of the recording sensors. This indicates the MUSIC derived locations are

only related to the real source locations, and do not reflect the true neuronal soma positions.

Nevertheless, the exact locations of the neurons are not necessary for spike sorting. As long

as the relative locations in the x-y plane allow for accurate clustering, which in the cases

presented here seems to be true, sources can be accurately sorted even if the MUSIC features

are a distorted representation of the true neuronal location space.

Lastly, although the impedance model creates very tight clusters, even when the base

monopole model cannot (and sources cannot subsequently be sorted), it suffers from a major

limitations: the number of sources cannot exceed the number of recording channels. This

was discussed in detail in Sections 3.1.2.1 and 3.1.4.2. Although this limitation proved not

to be a major issue in our studies, it may be more problematic if the recording electrode is a

tetrode containing only 4 channels. The impedance approach is therefore best if used with

a high number of recording sensors.

3.2 Other Statistical Methods: DEC

Although many sophisticated statistical methods exist for distinguishing between various

data sets and variables, their complexity must be weighed against added value and improved

efficacy. In laymen’s terms, the simples approach is often the best. The work presented here

uses this philosophy to distinguish cardiomyocyte DEs being affected by two different drug

applications from controls.

The work presented here is adapted from Szymanska et al 2016 [103] and the data was

also presented in Sec. 2.3.2 detailing the MaD detector for voltage sensitive dye (VSD) im-

aged cardiomyocyte data. Briefly, this study used 2-photon microscopy of fluorescent VSDs

to capture the membrane voltage of actively beating human induced pluripotent stem cell-
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derived cardiomyocytes (hiPS-CMs). We built a custom and freely available Matlab software

to quantify, and compare DEs of hiPS-CMs treated with the β-adrenergic drugs, propranolol

and isoproterenol. The classification approach aims to distinguish the drug treated car-

diomyocyte APs by extracting salient AP features, such as upslope, width, and downslope,

and then comparing them across drug treatments using a Kolmogorov-Smirnov (K-S) test.

The software, depolarization event comparison or DEC, was able to distinguish control DEs

from drug-treated DEs both immediately as well as 10 min after drug administration.

3.2.1 Background on Cardiomyocyte Electrophysiology Analysis

As mentioned in Sec. 2.3.2, the popularity of human cardiac cell research as well as the

expanded availability of in vitro cardiomyocytes given various stem cell differentiation tech-

niques, has increased the need for new methods that can assess the electrophysiological

effects of various drug compounds on cardiac cells in vitro. Image-based tools for assessing

cardiomyocytes, such as voltage-sensitive dye (VSD) imaging, are proving to be particularly

popular [34, 120, 24, 33, 55] for these types of studies.

To quantitatively assess drug induced electrophysiological effects from VSD imaged car-

diomyocytes, we built a custom Matlab software for depolarization event comparison (DEC).

Most other processing tools for this type of data concentrate on signal detection [97, 50, 8, 3,

112], and do not provide further analysis tools for quantitatively assessing changes in tissue

or cell activity with varying experimental parameters (such as drug administration). Our

previous work has analyzed hiPS-CM electrophysiology by performing supervised machine

learning on pre-defined DE parameters [34]. Here detected DEs are compared using a K-S

test across treatments and time points. The chronotropic drugs propranolol and isopro-

terenol were selected to validate this VSD-based approach and the corresponding analysis

software. This method allows for quantitative assessment of the heterogeneity of DEs at pre-
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cise locations on the membranes of actively beating cardiomyocytes, as well as quantitative

assessment of how a given drug affects the DE shape.

3.2.2 Methods

3.2.2.1 Data Collection

The data used here is the same as that presented in Sec. 2.3.2. The full data collection

procedure is described in Appendix A.1 as well as Szymanska et al. 2016 [103] and Heylman

et al. 2015 [34]. Briefly, spontaneously beating hiPS-CMs were stained with VSD, confirmed

to still be spontaneously beating, and treated with the β-adrenergic drugs propranolol and

isoproterenol. The cultures were imaged immediately after addition of drugs (less than 60

sec of exposure) and again 10 to 15 min after addition to ensure complete exposure. One

culture was treated with propranolol, and two cultures were treated with isoproterenol. Two

cultures were left untreated and imaged as controls. This accounts for a total of 7 data

traces, from 5 cell cultures. The imaging data was then processed to extract fluorescence

intensity traces along a given cell membrane, and filtered to remove photobleaching artifacts.

3.2.2.2 DE Comparison (DEC) Analysis

Once the DEs were detected from each data trace, using the technique presented in Sec. 2.3.2,

the individual spikes were extracted from the data and normalized such that the average DE

for any given data trace had a minimum value of 0 and a maximum value of 1. This

approach allowed us to preserve within data trace variations around the average DE, while

also normalizing DE amplitudes across different data traces. We chose to normalize the

DEs because their amplitudes are highly dependent on photobleaching, exact position in the

imaging plane, as well as how much of the VSD each membrane initially absorbed. It is
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therefore unreliable to compare DE amplitudes across treatments and time. Each DE was

defined by a window consisting of 800 time points (' 0.48 s ) centered on the maximum

value of the DE. The average waveforms were calculated for each data trace. The full-width

half-max (width), the positive slope at half-max (upslope), and the negative slope at half-

max (downslope) were calculated for each identified DE. These parameters were compared

as a function of drug treatment and time elapsed after drug treatment using a two-sample

Kolmogorov-Smirnov (K-S) test at a 5% significance level.

3.2.3 Results

As mentioned in Sec. 2.3.2, A total of 7 data traces, from 5 cell cultures, were tested. The first

5 conditions are a control (cell culture 1), immediately after addition of isoproterenol (cell

culture 2), 10 min after addition of isoproterenol (cell culture 2), immediately after addition

of propranolol (cell culture 3), and 10 min after addition of propranolol (cell culture 3).

These conditions will now be referred to as Control-1, Iso-1 0min, Iso-1 10min, Pro-1 0min,

and Pro-1 10min, respectively. In order to better test DEC in low-SNR environments we

also provide results for a low-SNR control data case (cell culture 4), as well as a low-SNR

15 min after addition of isoproterenol case (cell culture 5). These two conditions will now

be referred to as Control-2 and Iso-2 15min, respectively.

The DEs detected at optimal thresholds as determined in Sec. 2.3.2 were used for spike

analysis. All p-values associated with this analysis, as well as the average DEs of the treat-

ments being compared, are shown in Figs. 3.6 and 3.7. Two DE groups were considered

distinguishable if at least one of the metrics being measured (DE widths, upslopes and

downslopes) were statistically different between the two groups, as determined by KS-tests.

The drug treatments were first compared with controls, and then across time elapsed since

drug administration.
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The higher SNR drug treated data (Iso-1 and Pro-1) were compared to the higher SNR

control (Control-1). The Iso-1 0min drug treatment was statistically distinguishable from

Control-1 in width (p-value = 3.6 × 10−5), upslope (p-value = 7.9 × 10−7), and downslope

(p-value = 6.4 × 10−6). This difference was maintained 10 min after isoproterenol was

administered (Iso-1 10min) (width p-value = 5.0× 10−8, upslope p-value = 0.02, downslope

p-value = 1.6 × 10−7). DEs measured immediately after propranolol administration (Pro-

1 0min) were also already statistically distinguishable from Control-1 in width (p-value =

7.0 × 10−11), upslope (p-value = 2.5 × 10−3), and downslope (p-value = 1.1 × 10−4). This

difference was also maintained 10 min after propranolol was administered (Pro-1 10min)

(width p-value = 1.5× 10−7, upslope p-value = 1.1× 10−8, downslope p-value = 5.5× 10−7).

These results (shown in Fig. 3.6) indicate that this analysis method can distinguish DEs

from control and drug treatments even less than a minute after the drug is administered

(0min cases). The distinctions are also maintained 10 min after drug administration.

To show that the method is also applicable in a low-SNR setting, we performed a DE

comparison analysis on Control-2 (average SNR = 3.07) and Iso-2 15min (average SNR =

0.63). The Iso-2 15min drug treatment was statistically distinguishable from Control-2 in

width (p-value = 0.02), but not in either upslope (p-value = 0.68) or downslope (p-value

= 0.25). These results are shown in Fig. 3.7. We would expect the DE width difference

to be most pronounced among these two cases. This is reflected in the results. As SNR

is decreased the DE widths remain the only distinguishable parameters, while upslope and

downslope no longer differ between the two cases.

The drug treatments were then compared in time to evaluate if the 0 min cases, exhibiting

initial shock from the drugs, could be distinguished from the 10 min cases, which should

exhibit a more stabilized response. The Iso-1 0min case was statistically distinguishable

from the Iso-1 10min case in all three parameters (width p-value = 2.2 × 10−4, upslope p-

value = 1.6× 10−5, downslope p-value = 8.3× 10−4). The Pro-1 0min case was statistically
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distinguishable from the Pro-1 10min case in width (p-value = 0.01) and upslope (p-value

= 1.4× 10−3), but was not statistically different in downslope (p-value = 0.28).

In summary, KS-tests of DE widths, upslopes and downslopes revealed that DEs immedi-

ately after isoproterenol administration are distinguishable from controls. Similarly, DEs

immediately after propranolol administration are distinguishable from controls. These dif-

ferences are maintained 10 min after drug administration. DEs immediately after drug

administration were also distinct from DEs 10 min after drug administration, in both the

isoproterenol and propranolol cases. Lastly, isoproterenol treated cells were distinguishable

from controls even at SNRs of 3 and below. These results indicate that KS-test comparisons

of DE widths, upslopes, and downslopes, can accurately distinguish drug-treated DEs from

controls, even at low SNRs, and can also distinguish drug-treated DEs based on the time

after drug administration.

3.2.4 Discussion and Conclusion

DEC Performance The automated DEC approach allows for quantitative comparison of

VSD imaged cardiomyocyte DEs recorded under different drug treatments and time points.

In this study, DEC was able to identify significant changes in DE width, upslope, and downs-

lope immediately after treatment with either propranolol or isoproterenol. These changes

were sustained when measured 10 min after exposure to each drug. Furthermore, DEC iden-

tified changes in DE width between isoproterenol treated cells and controls, even at SNRs

of 3 and below.

Propranolol and isoproterenol both act on β-adrenoreceptors in cardiac cells as a β-blocker

and β-adrenergic agonist, respectively. β-adrenoreceptors modulate calcium influx during an

action potential. Calcium transport from the L-type calcium channels determines the delay

before repolarization. This delay determines the width of the DE, also known as the plateau
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Figure 3.6: DE analysis with respect to drug treatment and time after drug administration.
6 panels are shown. Each panel shows the average DEs of the two specified drug treatments,
with standard deviations shaded around the average. The title of each panel identifies the two
treatments being compared. The text below the title indicates whether the DE populations
were different in width, upslope, and downslope, and provides p-values. The top 3 panels,
going from left to right, compare Iso-1 0min (green) to Control-1 (red), Iso-1 10min (light
teal) to Control-1, and Iso-1 0min to Iso-1 10min. Both Iso-1 0min and Iso-1 10min were
different from Control-1, and were different from each other, in all three parameters (width,
upslope, downslope). The bottom 3 panels, going from left to right, compare Pro-1 0min
(purple) to Control-1 (red), the Pro-1 10min (blue) to Control-1, and Pro-1 0min to Pro-1
10min. Both Pro-1 0min and Pro-1 10min were different from Control-1 in width, upslope,
and downslope. They were also different from each other in width, and upslope.
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Figure 3.7: DE analysis with respect to drug treatment for the lower SNR data. Iso-2 15min
(orange) and Control-2 (red) were different in width, but not in upslope or downslope.

phase. The upslope of a cardiac action potential, primarily driven by fast sodium channels,

would not be expected to be affected by β-adrenergic modulation [59]. The downslope may

be affected to a lesser degree than the width since the balance of decreasing calcium channel

activity and increasing delayed rectifier potassium channel (IKS, IKR, IK1) activity initiate

the downslope.

Both isoproterenol- and propranolol-treated cell behavior, quantified by DEC, exhibited

significant changes in width and downslope after drug administration. However, the cells

also demonstrated an unexpected difference in upslope after drug administration. For the

isoproterenol-treated cells, this difference decreased with time (p-value = 7.9×10−7 for Iso-1

0min vs Control-1, and p-value = 0.02 for Iso-1 10min vs Control-1), and seemed to be

trending towards being insignificant. This indicates that the difference in upslope may be

due to an initial shock from isoproterenol administration and that the effects may fade as

the tissue stabilizes. In contrast, the difference in upslope seemed to increase in time for

the propranolol-treated cells (p-value = 2.5× 10−3 for Pro-1 0min vs Control-1, and p-value

= 1.1 × 10−8 for Pro-1 10min vs Control-1). However, both of the p-values are so close to

zero, that they’re difficult to reliably compare. When low-SNR isoproterenol-treated cell
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data (Iso-2 15min) was compared with a low-SNR control (Control-2), only differences in

DE widths were detected. Finally, we’d like to note that the DE widths of isoproterenol-

treated cells increased with respect to controls, in both low-SNR and high-SNR scenarios.

The mechanism of action of isoproterenol (β-adrenergic agonists) would lead us to expect a

decrease in the width of the DE. Despite this unexpected, yet consistent, result, DEC still

correctly identified and quantified the effect of the drug, emphasizing its impartial approach

to DE detection and analysis.

MaD and DEC: MaDEC In order to provide a complete package for VSD imaged car-

diomyocyte analysis, the DEC analysis tool was combined with the MaD detector presented

in Sec. 2.3.2, for an integrated software called MaDEC. MaDEC was implemented in Matlab

and is freely available along with a graphical user interface.

MaDEC can automatically and accurately detect, extract, quantify, and compare VSD-based

DEs across drug treatments and time points after drug administration. Unlike other VSD-

approaches that use pre-defined waveform features, MaDEC uses a data-driven sample of

the entire waveform to detect DEs, resulting in a non-biased DE selection criterion that can

accurately detect waveforms at SNRs ≥ 3. Also, unlike other approaches, DE parameters

such as width, upslope and downslope, are compared across normalized waveform popula-

tions. The method’s lack of reliance on absolute fluorescence amplitude ensures that results

are not biased by the amount of dye the cells took up, or the cells’ exact positions in the

imaging plane.

Conclusion DEC is a useful new tool for the study of cardiomyocyte electrophysiology.

Combined with the use of VSDs, it allows for non-invasive, image-based, and automated

analysis of cardiac DEs. This study demonstrates the ability of this tool to quantify changes

in DEs as a function of drug treatment and as a function of time. The software is freely
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available and can be easily modified to assess the electrophysiology of other excitable cell

populations and data types.

3.3 Conclusion

In this chapter we presented two approaches to electrophysiological data classification. Two

main classification problems were discussed, each with a different premise and therefore

different solutions that were both nonetheless rooted in a statistical approach.

3.3.1 MUSIC

The first classification problem focused on how to distinguish an unknown number of neurons

from multi-sensor extracellular recordings of neuronal APs. Our method of choice focused

primarily on feature extraction, and used existing clustering algorithms. We selected neu-

ronal source location as our feature because it is both stable under noisy conditions, and

likely to be unique to individual neurons. We localized AP sources using MUSIC and tested

the algorithm on both tetrode and heptode data. Because ground truth was not available for

these experiments, within- and inter- class analyses were performed to assess classification

efficacy.

The MUSIC algorithm applied to the tetrode data used an underlying basic monopole model.

All of the 1040 detected APs were successfully localized and 6 distinct clusters were identified

in the feature space using EM-BIC. The EM algorithm identified 3% of the APs as outliers.

All of the 6 identified classes had different waveform signatures, defined as the signal power

ranking across the 4 sensors for each class’s average AP. The individual AP waveform sig-

natures were also compared within clusters to determine within-class consistency. Four of

the classes achieved above 90% consistency, while two classes were slightly less consistent
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at roughly 77%, implying some misclassification. On average the within-class classification

consistency was 90%. Overall, this shows that the MUSIC monopole model used with an

EM-BIC clustering tool is an accurate classification method that can distinguish several

neurons from tetrode data while minimizing the number of APs removed as outliers.

The MUSIC algorithm, this time using an underlying impedance model, was also applied to

heptode data. Three data sets were tested and 93%, 50%, and 57% of the detected APs were

successfully localized in the three data sets, respectively. This is in contrast to the MUSIC

monopole model tested on tetrode data, where all of the detected APs were successfully

localized. However, the resulting clusters were very tightly grouped in the feature space,

again unlike under the MUSIC monopole model. DBSCAN was then used to cluster the

features, and 5-6 classes were identified in each experiment. DBSCAN rejected 4%-7% of

the localized APs as outliers. The average AP waveforms for each class were statistically

different, as determined by t-tests, for each of the 3 experiments. Furthermore, the classes

were very consistent, as can be seen by the minuscule 95% confidence intervals on the average

AP waveforms for each class. This implies a very low level of misclassification. Overall, the

MUSIC impedance model used with DBSCAN proved to be an accurate tool for sorting

spikes from heptode data. Although the method seems to reject more APs as outliers (7%-

50% of the APs could not be localized), it also appears to reduce misclassification rates

compared with the MUSIC monopole model.

3.3.2 DEC

The second classification problem focused on how to distinguish the DEs of actively beating

caridomyocytes imaged using VSD. Being able to distinguish the DEs between different

experiments can help in studying the effects of various drugs on cardiomyocyte DE shape

and general behavior. Here we applied two β-adrenergic drugs, propranolol and isoproterenol
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to cultured hiPS-CMs and imaged the beating cell membranes using VSD. Salient features

- upslope, width, and downslope - of the DEs were then compared across two different drug

administrations using a K-S test. We called this depolarization event comparison tool DEC.

First, propranolol treated cells imaged immediately after as well as 10 min after drug admin-

istration, were compared against controls (not treated with any drug). The same approach

was adapted for the isoproterenol treated cells. The drug treated cells’ DEs were statistically

different from the controls in all three parameters both immediately after as well as 10 min

after drug administration for both drugs. The drug treated cells were then compared between

drug administration times. The propranolol treated cells immediately after drug administra-

tion were statistically different from 10 min after drug administration in upslope and width

whereas the isoproterenol treated cells were statistically different in all three parameters.

To further see if this approach can distinguish drug treated DEs from controls when the data

SNR is low, we compared a low-SNR control (SNR ' 3) as well as a low-SNR isoproterenol

treated cell culture imaged 15 min after drug administration (SNR ' 0.7). The average DEs

were statistically different in width, but not upslope or downslope.

Overall, DEC was able to accurately distinguish drug treated DEs from controls, even un-

der a low-SNR environment. It was also able to distinguish DEs immediately after drug

administration from DEs 10 min after drug administration. This study demonstrates DEC’s

ability to quantify changes in DEs as a function of drug treatment and as a function of time,

which can make it a valuable tool for cardiomyocyte drug assay studies.
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Chapter 4

Discovery

The ultimate goal of developing the signal processing techniques outlined in Chapters 2 and 3

is to apply them to electrophysiological data in the process of discovery. This next Chapter

outlines exactly this process. Both the multi-sensor extracellular AP detector presented in

Sec. 2.3.1 as well as the classification scheme presented in Sec. 3.1.4.2 came together with

a few other statistical methods to analyze extracellular heptode data looking at neuronal

circuit dynamics as a function of anesthesia depth.

The study presented in this chapter is adapted from Szymanska et al. 2017 [101] and takes

a multi-modal approach. Three types of neurological recordings were made simultaneously:

electrocorticography (ECoG) collected with intracranial screw electrodes, multi-unit activ-

ity (MUA) collected with a heptode, and local field potentials (LFP) also collected with a

heptode. Electroencephalography (EEG) and electrocorticography (ECoG) are increasingly

used in the clinical and laboratory setting to investigate brain activity. While they provide

information from large regions of the brain, little is known regarding how these signals relate

to local neuronal activity as measured by microelectrodes. To improve our understanding

of how regional signals from the brain surface relate to neuronal activity from deep cortical
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layers during varying levels of anesthesia, we recorded ECoG, MUA, and LFP signals during

anesthesia induced ECoG burst suppression states at three monotonically increasing anes-

thesia depths. Based on literature, we hypothesized that increasing anesthesia levels would

reduce action potential (AP) firing, reduce the number of active single units, and reduce

cross-hemisphere functional connectivity. However, we found that higher anesthesia led to

higher AP frequency, no change in the number of active single units, and increased cross-

hemisphere functional connectivity. Additionally, all APs were restricted to ECoG bursts,

with no APs occurring during suppressed ECoG states. This study demonstrates the effects

of deep anesthesia on spontaneous neuronal network dynamics, as well as on the relationship

between local (MUA) and global (ECoG and LFP) neurological activity. To our knowledge

this is the first study to systematically investigate the relationship between brain surface

signals and neuronal activity inside the cortex at various burs suppressed anesthesia depths.

4.1 Background on the Effect of Anesthesia on Neu-

ronal Network Dynamics

Animal and human studies of brain function are often performed under anesthesia, with par-

ticular anesthetic agents administered at various doses. However, unlike biochemical effects

of anesthetic drugs, which are commonly reported, the effect of anesthesia on neuronal net-

work dynamics remains poorly understood. Furthermore, few studies have focused on deep

anesthesia that renders brain activity into a burst suppression pattern on electroencephalo-

gram (EEG) and electrocorticogram (ECoG). Burst suppression activity demonstrates an

alternating high voltage pattern interspersed with a suppression pattern, and is commonly

achieved under very deep anesthesia and sedation. Little is known about the spiking ac-

tivity of individual neurons during burst suppression patterns. Similarly, there is a lack of

understanding of changes in functional connectivity in the brain during such deep anesthesia.
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The majority of studies investigating the effects of anesthesia on neuronal spiking activ-

ity concentrate on comparing anesthetized and awake brain states [82, 73, 29]. Although

this approach is necessary to determine differences in neuronal function under awake and

anesthetized conditions, it does little to elucidate the effects of anesthesia on neuronal net-

works as the level of anesthesia progressively deepens and the burst suppression ratio (BSR)

consequently increases.

Erchova et al. [21] is one of the few recent studies that has investigated neuronal spiking

activity under varying levels of anesthesia. The study looked at multi-unit activity (MUA)

at intermediate and deep levels of urethane anesthesia in rats, under both spontaneous and

stimulus-evoked conditions. The study showed that AP activity was grouped into “bursts”

during spontaneous activity, and that the overall spontaneous firing frequency steadily de-

creased as the level of anesthesia was deepened. However, since only MUA was measured, no

inferences could be made regarding the relationship of MUA with global neuronal activity

(i.e. functional connectivity), or the relationship of the AP “bursts” to burst suppression

activity.

One of the few groups to look at functional connectivity as a function of varying levels of

anesthesia, assessed blood oxygenation level dependent (BOLD) signals under light (0.5-

1% isoflurane) and moderate (2.9% isoflurane) anesthesia [110]. They found evidence of

decreased interhemispheric functional connectivity as isoflurane levels were increased from

light to moderate levels. However, the light anesthesia state tested in this study is not

traditionally associated with the induction of burst suppression patters, making it resemble

the awake vs. anesthetized studies mentioned previously and provides little insight into the

effects of increasing anesthesia during a burst suppression state. Furthermore, the BOLD

signal is subject to non-neuronal induced fluctuations and its relationship with neuronal

activity is often affected by the anesthetics being used [1, 62]. Electrophysiological activity

is therefore a more reliable metric for investigating functional connectivity.
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EEG as well as ECoG measure regional and global neuronal activity, and are thus good

candidates for looking at changes in functional connectivity, including across hemispheres.

Although the general consensus is that EEG and ECoG signals originate from the postsy-

naptic potentials of the apical dendrites of radially aligned pyramidal neurons in the cerebral

cortex [77, 58, 93], few studies have looked at the relationship between these signals and the

underlying neuronal spiking activity [114, 69, 93]. Most notably, Whittingstall et al. [114],

showed that EEG power in the gamma band and phase in the delta band were predictors of

MUA. However, none of these studies have investigated this relationship under anesthesia.

This study investigates neuronal firing and its relationship with ECoG signals under varying

levels of intermediate and deep anesthesia. To our knowledge, this is the first such study per-

formed. Three experiments were performed on two rats under isoflurane anesthesia. ECoG

signals were collected to monitor changes in burst suppression as well as cross-hemisphere

functional connectivity as the depth of anesthesia was increased. Similarly, MUA and LFP

signals were collected to determine the effects of varying the depth of anesthesia on neu-

ronal firing, and local activity of the neuronal populations. Our hypothesis was that as the

anesthesia level was increased, the AP firing frequency would decrease, the cross-hemisphere

functional connectivity would decrease, and the number of active single units would decrease;

this would be in line with findings from Erchova et al. [21], Noda et al. [73], and Wang et

al. [110], respectively. Contrary to our hypothesis, we found that as the level of anesthe-

sia increased, 1) AP firing frequency increased, even as overall AP activity went down, 2)

cross-hemisphere functional connectivity, represented by the ECoG-MUA relationship, as

well as local population functional connectivity, represented by the LFP-MUA relationship,

increased, and 3) the number of active single units was mostly unaffected. A fourth finding

we did not anticipate, was that 4) AP activity was strictly relegated to ECoG bursts, with

no APs present during suppressed ECoG.
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4.2 Methods

4.2.1 Data Collection

The data collection procedure for this work is detailed in Appendix A.3, and was also partially

presented in Sec.3.1.4.2. Briefly, two male Wistar rats were implanted with two ECoG screw

electrodes for recording over M1 and V1 of the left hemisphere. A burr hole allowing for

extracellular heptode recording was made over M1 of the right hemisphere. Figure 4.1 shows a

schematic of the locations of the recording sites, with A and C marking the ECoG recording

channels and B marking the extracellular recording site. This figure is also provided in

Appendix A.3 with a more detailed explanation of the full experimental set up including

ground electrodes.

Once the screw electrodes were placed, a motorized head stage was used to lower a heptode

into the cortex. The heptode was advanced until a high activity and signal-to-noise ratio

(SNR) recording site was found for the experiment. The heptode was used to record both

MUA and LFP signals.

4.2.2 Experimental Procedure

The heptode was advanced until a suitable recording site was found, providing adequate

SNR and spiking activity, which for these experiments was 1700-1900 µm from the top of

the skull. Due to visual limitations inside the burr hole, it was not possible to determine

when the heptode reached the surface of the brain; however, assuming a typical thickness

of the rat skull of 1 mm, this means the heptode was lowered roughly 700-900 µm into the

cortex.
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Figure 4.1: Schematic of burr hole locations, as well as ECoG screw electrode and heptode
placement. Burr holes are marked as black circles, and placed as specified by the indicated
distances from Bregma. The placement is symmetric over the left and right hemispheres.
Going from left to right, the top two burr holes are referred to as A and B, the middle
two as C and D, and the bottom one as E. Burr holes A, C, D and E are implanted with
screw electrodes, whereas B is left open for extracellular recording with a heptode. Screw
electrodes A and C are used for ECoG signal recording, screw E is used as the ECoG ground,
and screw D is used as the heptode ground.

Once the heptode was in position, 1-2 min of spontaneous neuronal activity were recorded

at three monotonically increasing isoflurane anesthesia levels - low, intermediate, and deep.

The first measured state represented the lowest level of administered isoflurane necessary

to maintaining burst suppression, while the last, deep, level represented the highest level

of administered isoflurane prior to a flat ECoG signal. To ensure that isoflurane levels had

stabilized prior to recording, a 3-5 min waiting period was observed after isoflurane levels

were increased.

The first two experiments were performed on a single animal. After the first recording,

another suitable recording site was found 170 µm below the original recording site. This
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location was presumably far enough from the initial heptode recording site to be recording

from a new population of neurons. These two experiments will be referred to as experiment

1.1 and 1.2, respectively. Experiment 2.1 was performed on the second animal. This animal

began going into hypoxia during the deep anesthesia stage, and therefore the last recording

was aborted. However, two recordings were made at the low anesthesia stage, one prior to

the isoflurane levels being stabilized, and another once the anesthesia level had stabilized.

Each recording will be referred to by the experiment number followed by “Iso” and then the

percentage of administered isoflurane. For the low anesthesia level recordings in experiment

2.1, the first recording will be referred to as 1 and the second as 2.

4.2.3 Data Processing

Individual APs were detected from the MUA data using the generalized matched filter de-

scribed Sec. 2.3.1 and Szymanska et al. (2014). The first collected data sets for each experi-

ment (experiment 1.1 Iso 2.0%, experiment 1.2 Iso 1.5%, and experiment 2.1 Iso 1.5% 1) were

used as training sets for that experiment. The filter threshold applied to the data ranged

from 4.5 - 6.5 median standard deviations above the median filter output [102], depending

on the data SNR.

APs were classified using the MUSIC algorithm impedance model for feature extraction

(Sec. 3.1.4.2), and DBSCAN for clustering [16] (Appendix B.2). APs identified as outliers by

DBSCAN (∼ 15-40 APs depending on the number of APs detected) were manually inspected

and re-assigned to existing DBSCAN classes if appropriate. For experiment 1.1 Iso 3.0%,

and experiment 1.2 Iso 3.0%, there were not enough APs detected to reliably cluster using

the above algorithms. In this case the single units were identified manually from the detected

AP waveforms. Only classes of 5 of more APs were retained.
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4.2.4 Data Analysis

Filtered data as well as the detected APs were further analyzed to determine various data

characteristics as a function of isoflurane level.

4.2.4.1 Burst Suppression Ratio

The burst suppression ratio (BSR) was calculated as one minus the sum of the total duration

of all ECoG bursts, divided by the total duration of the ECoG recording.

BSR% = 1− 1

T

∑
i

Bursti (4.1)

where Bursti is the duration of burst i, and T is the total duration of the signal.

4.2.4.2 AP Firing Frequency

The AP firing frequency was calculated for each ECoG burst detected in the collected data.

An ECoG burst was defined as a period of ECoG activity surrounded by a minimum of 1

s of suppressed ECoG on either side (Fig. 4.2 (A)). Within each ECoG burst, there were

an average of 1 to 5 AP packets. An AP packet was defined as a period of AP activity

surrounded by a minimum of 40 ms of silence on either side (Fig. 4.2 (B)). The frequency

of spiking activity for each AP packet was calculated as the number of APs detected in the

packet divided by the duration of the packet. The frequencies of spiking activity for all

packets in a given burst were averaged to determine the AP firing frequency for that burst.

All presented AP firing frequencies are calculated per ECoG burst, and then averaged over

the ECoG bursts in a given recording.
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Table 4.1: Summary metrics for collected data. The first three columns represent the an-
imal used, the corresponding experiment number, as well as the depth of the recording
heptode in the cortex (assuming a typical skull width of 1 mm) for each experiment. The
following columns provide details about the individual recordings, starting with the percent-
age isoflurane used for the low, intermediate, and deep anesthesia states, the resulting burst
suppression ratios, the average AP firing frequency (± SD), the number of units (or neurons)
identified in spike sorting, and the total number of detected APs.

Animal Expt.
∼ Heptode

Isoflurane (%) BSR (%)
Avg. AP Freq.

Units
Detected

Depth (µm) (AP/s ± SD) APs

1 1.1 700
2.0 68 73±18 5 1184
2.5 83 135±47 5 443
3.0 97 243±65 4 62

1 1.2 870
1.5 52 108±32 7 1249
2.5 88 193±30 5 295
3.0 96 224±31 5 66

2 2.1 780
1.5 41 125±17 6 5645
1.5 50 140±15 6 2624
2.5 80 155±27 6 1107

4.2.4.3 Spike Triggered Average

Spike triggered average analysis was performed on the data in order to investigate the re-

lationship between the MUA and ECoG as well as LFP signals. Once APs were detected

for a given data recording, the ECoG signals 300 ms before and after each AP were isolated

and averaged, for each ECoG channel. The resulting averaged ECoG signal is the ECoG

spike triggered average (ECoG-STA). Similarly, the LFP signals 300 ms before and after

each AP were isolated and averaged to calculate the LFP-STA. All STAs are centered on

the corresponding AP.
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4.3 Results

4.3.1 AP Firing Frequency

In order to investigate the behavior of neuronal firing under different anesthesia levels, all

MUA was first detected as described in Sec. 2.3.1. The total numbers of APs detected for

each recording are shown in Table 4.1. As expected, the overall spiking activity decreased as

the level of administered isoflurane increased, in each of the three experiments. Interestingly,

APs were only detected during ECoG bursting activity, throughout all of the experiments

presented here (total of ∼ 15 min of recording, and 12,675 detected APs). Therefore, the

decrease in overall spiking activity followed from the burst suppression ratio increasing. A

representative example of this phenomenon is shown in Fig. 4.2. Furthermore, the APs

seemed to also exhibit a bursting pattern, within the ECoG bursts, where groups of APs

were temporally clustered into 1 to 5 packets, on average, per burst (Fig. 4.2).

Further inspection revealed that the average AP firing frequency (Sec. 4.2.4) within a given

ECoG burst was increasing as the level of isoflurane was increasing (Fig. 4.4, Table 4.1). An

AP packet was defined as a period of AP activity surrounded by a minimum of 40 ms of

silence on either side (Fig. 4.2 (B)). The frequency of spiking activity for each AP packet

was calculated as the number of APs detected in the packet divided by the duration of the

packet. The frequencies of spiking activity for all packets in a given burst were averaged

to determine the AP firing frequency for that burst. The AP firing frequencies for each

ECoG burst were then averaged for each experiment and level of isoflurane (Fig. 4.4). For

experiment 1.1 the AP firing frequency began at 73 ± 18 APs/s for Iso 2.0%, increased to

135 ± 47 APs/s for Iso 2.5%, and then increased again to 243 ± 65 APs/s for Iso 3.0%. The

same trend was observed for experiment 1.2 where the firing frequency progressed from 108

± 32 APs/s, to 193 ± 30 APs/s, to 224 ± 31 APs/s as the level of administered isoflurane

was increased from 1.5% to 2.5% to 3.0%, respectively. The same increase, although more
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modest, was also observed in experiment 2.1 where the AP firing frequency began at 125 ±

17 APs/s and 140 ± 15 APs/s for Iso 1.5% 1 and Iso 1.5% 2, respectively, and increased to

155 ± 27 APs/s for Iso 2.5%. These results are shown in Fig. 4.4(A)

To determine if this increase in AP firing frequency was reflected in the power of the corre-

sponding ECoG bursts, the average ECoG burst power for each experiment and isoflurane

level was calculated as the squared sum of the ECoG burst normalized for the duration of

the burst. While the increase in AP firing frequency is apparent for each experiment, the

ECoG burst power doesn’t show any significant trends either across the two ECoG channels,

or across the three experiments (Fig. 4.4(B)).

Similarly, to investigate if other frequency dependent components of the ECoG burst were

coupled with the increasing AP firing frequency, we compared the ECoG spectrograms at

different anesthesia levels (Fig. 4.3). This analysis revealed that the frequency of the spectral

makeup of the ECoG bursts is minimally affected by increasing the depth of anesthesia. The

number and duration of the ECoG bursts were most affected.

These findings suggest that although overall activity decreases as the level of administered

isoflurane is increased, when APs do fire, they fire at an increased frequency as the level

of isoflurane, and therefore depth of anesthesia, increases. Furthermore, MUA is only

present during ECoG bursts, even though the MUA and ECoG activity are recorded cross-

hemisphere. The MUA also appears to exhibit a bursting pattern within the bounds of the

ECoG bursts, seemingly mimicking bursting behavior but on a smaller timescale.

4.3.2 ECoG-STA Analysis

Spike triggered average analysis was performed on the data in order to investigate the rela-

tionship between the MUA and ECoG. Once APs were detected for a given data recording,
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Figure 4.2: Representative ECoG data collected in this study. The ECoG bursts and AP
packets are from experiment 1.1 at 2.5% isoflurane. (A) Top Bursts of ECoG activity
on ECoG channel 1 are clearly visible between suppressed ECoG stretches. Middle Top
Corresponding MUA spike train. The spiking activity is very closely coupled with the ECoG
bursts. In fact, the data presented in this study did not contain any APs fired outside of
ECoG bursts. Middle Bottom Corresponding AP firing frequency (AP/s) calculated using a
40 ms sliding window. Bottom Spectrogram of the ECoG data displayed in the top panel.
(B) A zoom-in of the outlined data in (A), showing the activity around 2 ECoG bursts.
Looking at the MUA (Middle Top) and AP firing frequency (Middle Bottom) we can see
that the ECoG bursts (Top) contain burst-like MUA, where APs seem to be temporally
clustered into packets. The first burst contains 6 AP packets, whereas the second bursts
contains 3. In this case the individual packets have firing frequencies ranging from 50 to 80
APs/s.
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Figure 4.3: Representative ECoG spectrograms as the level of administered isoflurane is
increased. The data is from experiment 1.1, ECoG channel 1, at 2.5% isoflurane. As the
level of isoflurane is increased, the burst suppression ration increases, and the duration of
the bursts decreases. However, the frequency of the spectral makeup of the ECoG bursts is
minimally affected by increasing the level of administered isoflurane.

the ECoG signals 300 ms before and after each AP were isolated and averaged, for each

ECoG channel. The resulting averaged ECoG signal is the ECoG-STA. (Sec. 4.2.4).

4.3.2.1 General Observations

ECoG-STA analysis was performed on the three experiments across all administered isoflu-

rane levels (Fig. 4.5). The ECoG response, on both channel 1 and channel 2, was significantly

above the noise response across all experiments and isoflurane levels, indicating a high degree

of functional connectivity between the two hemispheres. This is in line with our previous

observation that MUA is highly coupled to ECoG bursts, with no APs present during sup-

pressed ECoG. Across the three experiments the ECoG-STA amplitude tends to be stronger,

for all isoflurane levels, for ECoG channel 1 than ECoG channel 2. This is likely due to the
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Figure 4.4: AP firing frequency increases as a function of isoflurane, while no obvious trends
are visible in the ECoG burst power. (A) AP firing frequency as a function of administered
isoflurane for experiment 1.1 (Left), 1.2 (Middle), and 2.1 (Right). The error bars represent
standard deviations. The firing frequency consistently increases as the level of isoflurane
increases. (B) ECoG Burst Power as a function of isoflurane level for ECoG channel 1
(Left), and ECoG channel 2 (Middle). The ECoG burst power was calculated as the squared
sum of the ECoG burst normalized for the duration of the burst. The error bars represent
standard deviations. The power per ECoG burst doesn’t exhibit a steady trend across the
three experiments or across the ECoG channels.

150



Figure 4.5: As the level of isoflurane is increased, the resulting cross-hemisphere ECoG-
STA increases in magnitude for all three experiments. (A) (B), and (C) show ECoG-STAs
at varying isoflurane levels for experiment 1.1, 1.2, and 2.1, respectively. The left column
shows results for ECoG channel 1, and the right column for ECoG channel 2. The AP was
centered at 0 ms for all ECoG-STAs. Shaded regions represent 95% confidence intervals and
the number of APs being averaged over is depicted in the three legends. The ECoG-STAs
are color coded for isoflurane level, with blue being 1.5%, red 2.0%, green 2.5%, and orange
3.0%.
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fact that ECoG channel 1 is over M1 in the frontal lobe, like the MUA recording heptode,

whereas ECoG channel 2 is further away over V1. It is therefore expected that channel 2

would exhibit a weaker ECoG-STA response in general, as these two areas are expected to

have a lower degree of functional connectivity than the two frontal lobes.

The shape of the ECoG-STA mostly consisted of a negative deflection just before or during

the AP and a positive spike immediately after. The exception is experiment 2.1 ECoG

channel 2, where the ECoG-STA was monophasic with a positive deflection centered on the

AP. Beyond this general shape, it is expected that the phase, width, and specific shape

of each ECoG-STA will vary across the three experiments, and in fact this is what we

found (Fig. 4.5). The variety of shapes is due to the different neuronal populations under

investigation. Although all located in M1, the populations are at slightly different depths

(Table 4.1) and from two different animals. They are therefore likely to have slightly different

ECoG responses, which manifests in our results as varying ECoG-STA shapes.

Overall, we observed a high amplitude ECoG-STA response, significantly above the noise

level, in all experimental cases. This implies a high degree of functional connectivity between

the M1 neuronal populations and the cross-hemisphere ECoG activity. Although there were

some similarities in the ECoG-STAs, the shapes differed between different neuronal popula-

tions as well as different isoflurane levels.

4.3.2.2 ECoG-STA vs. Isoflurane

Fig. 4.5 depicts all ECoG-STAs across the three experiments, ECoG channels, and isoflurane

levels, with 95% confidence intervals shown as shaded regions. For all three experiments and

across both ECoG channels, the ECoG-STA amplitude increases significantly as the level

of isoflurane is increased. This is most pronounced for experiment 1.1 channel 2 (Fig. 4.5

(A) Right), where the ECoG-STA positive peaks seem to be more aligned than in the other
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cases. The trend is less obvious for experiment 1.2 where the shape of the ECoG-STAs and

their phase with respect to the AP is less consistent. However the amplitude can still be

seen as increasing, with several areas of significance (non-overlapping confidence intervals)

in each case.

Furthermore, taking the ECoG-STA root-mean-square (RMS), a proxy for signal power,

reveals that even in the more ambiguous cases such as experiment 1.2, the ECoG-STA RMS

increases as a function of isoflurane level (Table 4.2). As the level of isoflurane increased

from the low to the intermediate state, the increase in ECoG-STA RMS ranged from 158%

to 445%. As the level of isoflurane anesthesia was further increased to a deep state for

experiments 1.1 and 1.2, the increase in ECoG-STA RMS was even more pronounced ranging

from 741% to 1200%.

The ECoG-STA analysis results show that a stronger response, both in terms of ECoG-STA

amplitude and ECoG-STA RMS, is produced as isoflurane levels are increased. This implies

a stronger degree of coupling between the left hemisphere (represented by the EEG signals),

and M1 of the right hemisphere (represented by the MUA), as the level of anesthesia is

increased.

4.3.3 LFP-STA

To investigate if this increase in response with increasing levels of anesthesia was also present

on the right hemisphere, the same STA analysis was also performed on LFPs ( 4.2.4). Because

each heptode channel is only 40 - 80 µm apart, the 7 recorded LFP channels were nearly

identical, therefore only one LFP channel, channel 1, is presented and discussed here. The

LFP-STA analysis agreed with the ECoG-STA analysis, showing that as the level of isoflurane

increased the response, both in terms of the LFP-STA amplitude and RMS, also increased
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Table 4.2: The root-mean-square (RMS) of the ECoG-STA increases as the level of isoflurane
increases, for all three experiments. This indicates that the signal is becoming increasingly
more coupled with the MUA as the administered isoflurane level is increased.

Experiment Isoflurane (%)
STA RMS (µV/ms)

ECoG CH 1 ECoG CH 2

1.1
2.0 286 147
2.5 360 312
3.0 1189 1085

1.2
1.5 239 137
2.5 348 251
3.0 1016 683

2.1
1.5 (1) 267 164
1.5 (2) 425 207

2.5 673 304

(Fig. 4.6). The LFP-STA shape was more consistent than the ECoG-STA shape. This could

be due to the more local nature of the LFP signal.

These results indicate that as the level of isoflurane is increased, global population activity

as represented by the ECoG, as well as local population activity as represented by the LFP,

become increasingly better coupled with the MUA in M1.

4.3.4 Spike Sorting

To further investigate neuronal firing and behavior under varying levels of anesthesia, de-

tected APs were sorted (Sec. 3.1.4.2) and compared across different isoflurane levels.

Fig. 4.7 shows the resulting average waveforms for each class, across all experiments and

levels of isoflurane. For experiment 1.1, 5 units were identified for Iso 2.0% and the same

5 units were also identified for Iso 2.5%. The neuron population persisted at Iso 3.0%,

where 4 of the same units were identified, but the fifth was no longer found. Similarly for
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Figure 4.6: As the level of isoflurane is increased, the resulting LFP-STA increases in mag-
nitude for all three experiments, just like the ECoG-STA. A, B, and C show LFP-STAs
at varying isoflurane levels for experiment 1.1, 1.2, and 2.1, respectively. The AP was cen-
tered at 0 ms for all STAs. Although there are shaded regions representing 95% confidence
intervals, they are very small and therefore difficult to discern. The number of APs being
averaged over is depicted in the three legends. The STAs are color coded for isoflurane level,
with blue being 1.5%, red 2.0%, green 2.5%, and orange 3.0%, just as in Fig. 4.5
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Figure 4.7: The same sub-population of neurons is active as the level of isoflurane is increased.
All detected APs were classified for each experiment and level of isoflurane. The 7-channel
waveforms for each class are shown, and units appearing across several levels of isoflurane are
arranged in columns and color coded. For experiment 1.1 (Top Left), 4 units can be traced
across all three isoflurane levels, while one unit is lost at Iso 3.0%. Similarly, for experiment
2.1 (Top Right), 5 units can be traced across all three isoflurane levels, while one unit is lost
and another unit is gained at Iso 2.5%. For experiment 1.2 (Bottom Left), no single unit can
be traced across all three isoflurane levels, however 8 of the 9 units are present in at least
two of the three isoflurane levels, indicating that the same sub-population is active across
all three levels of isoflurane.
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experiment 2.1, the same 6 units were identified for Iso 1.5% 1 and Iso 1.5% 2. Five of

these units were also identified for Iso 2.5%, alongside an additional unit previously not

present. For experiment 1.2 a total of 9 units were identified across the three isoflurane

levels. Although no single unit persisted through all three levels of isoflurane, like in the

other two experiments, 8 of the 9 units recurred in two of the isoflurane levels. Classes 1, 2,

5, and 7 were present for both Iso 1.5% and Iso 2.5%, classes 3, 4, and 8 were present for

both Iso 1.5% and Iso 3.0%, whereas class 6 was present for both Iso 2.5% and Iso 3.0%.

Overall these results indicate that the same sub-population of neurons is active as levels of

isoflurane are increased during burst suppression. Although a few units disappeared, and a

few new ones appeared as the level of anesthesia changed, for the most part the same units

could be reconciled across the different levels of isoflurane.

4.4 Discussion and Conclusion

In this study we investigated the effects of varying levels of isoflurane anesthesia on neuronal

firing and its relationship with ECoG signals. Our results consist of four main findings.

First, AP firing was tightly coupled with ECoG bursting activity. APs only fired during

ECoG bursts, and ECoG bursting always corresponded with AP activity, even though the

two signals were recorded on opposite hemispheres. Although in this study there were no

examples of APs firing outside of ECoG burst, from prior experience we have observed that

there are sometimes APs firing outside of ECoG bursts, but they account for less than 2%

of total spiking activity (data not shown).

Second, AP firing frequency increased as the level of anesthesia was increased. The AP

activity during ECoG bursts was organized into AP packets, which resembled the ECoG burst

but on a smaller time scale. This type of activity is in line with previous findings by Erchova

157



et al. As the level of anesthesia increased the overall spiking activity decreased, just like in

Erchova et al., due to a decreased number of ECoG burst. However, the AP firing frequency

within each AP packet increased as the level of anesthesia was increased. This seems to

imply that although neurons tended to fire less frequently overall, when activity occurred it

was highly synchronous between different neurons. Although Erchova et al. did not look at

the AP firing frequency within AP packets, the neuronal activity they recorded across several

extracellular electrodes seems to agree with our finding that individual neuronal activity was

increasingly more synchronous as the level of anesthesia was increased.

Our third finding was that STA amplitude and power, for both ECoG and LFP signals,

increased as the level of isoflurane was increased. These results indicate that ECoG, as

well as LFP signals become increasingly better coupled with the MUA as anesthesia is

progressively increased. This in turn implies an increase in global as well as local synchrony

as the level of anesthesia deepens. This is in line with Hanrahan et al. and Noda et al. who

also see evidence of increased AP-LFP phase locking as anesthesia is increased. This phase

locking could account for a larger amplitude in the LFP-STAs, although other mechanisms

may also be responsible for this phenomenon. The ECoG-STA also increases in amplitude

as the anesthesia level is increased, however, this result, implying an increase in functional

connectivity, is at odds with Wang et al. whose BOLD signal analysis indicates a decrease in

cross-hemisphere functional connectivity as anesthesia is increased. There are several reasons

for the discrepancy, the most obvious being that the relationship between BOLD signals and

neuronal spiking activity is not well understood, and subject to fluctuations. Although

hemodynamic activity is often a proxy to electrophysiological activity, their relationship can

change as a result of anesthesia as well as other non-neuronal factors. Another reason may

have to do with the scale of the neuronal populations being compared. BOLD signals provide

a global measure similar to EEG, which is unlike the very local neuronal activity measure

provided by MUA. A study looking at EEG or ECoG signals cross-hemisphere as anesthesia
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deepens in a burst suppressed state could identify if synchrony is affected differently at a

local / global level vs. a global / global level.

Our last finding was that the number of units seems relatively unchanged as the level of

anesthesia was increased. In fact, the same sub-population of neurons seemed to be active

throughout the different anesthesia levels. This finding seems to be at odd with Noda et

al. who found that the number of active units decreased as the isoflurane level administered

to the rat was increased. However, it is worth noting that their study looked at differences

between awake and anesthetized rats. It is possible that the number of active units decreases

as the isoflurane induces burst suppression, and then remains relatively constant as the anes-

thesia subsequently deepens. A study monitoring neuronal activity as isoflurane is increased

from an awake to a deeply anesthetized state may be able to answer this question.

Although these results are compelling, there are several limitations to this study that we

plan to address in our future work. Namely, the small sample size. Our future work will

concentrate on increasing the number of experiments. Secondly, it would be beneficial to

more precisely determine the layer of the cortex the MUA is being recorded from. The

experiments presented here have precise data on the distance traveled by the heptode from

the top of the skull, but no definitive data on the exact positioning of the electrode in the

brain. To gather this information future experiments should include histology. This would

also allow for comparison of the MUA as well as the ECoG-MUA relationship across several

cortical layers as a function of increasing anesthesia. Lastly, since this study records MUA

from the M1 region only, future studies should also investigate other regions of the brain.

Overall, our four findings suggest that as isoflurane anesthesia is increased during burst

suppression, neuronal activity remains bound to the same sub-population of neurons; these

neurons’ overall activity decreases as the burst suppression ratio goes up. However, when

activity does occur it is at a higher firing frequency as the level of anesthesia is increased.
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Likewise, the activity is increasingly more synchronous with cross-hemisphere activity, as

measured by ECoG, and local population activity as measured by LFP.
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release events using the á trous wavelet transform. Biophysical Journal, 90(6):2151–
2163, 2006.

[113] J. N. Weiss, A. Garfinkel, H. S. Karagueuzian, P.-S. Chen, and Z. Qu. Early afterde-
polarizations and cardiac arrhythmias. Heart Rhythm, 7(12):1891–1899, 2010.

169



[114] K. Whittingstall and N. K. Logothetis. Article frequency-band coupling in surface
EEG reflects spiking activity in monkey visual cortex. Neuron, 64(2):281–289, 2009.

[115] M. Wilson and B. McNaughton. Dynamics of the hippocampal ensemble code for
space. Science, 261(5124):1055–1058, 1993.

[116] S. Wu, A. Swindlehurst, P. Wang, and Z. Nenadic. Projection versus prewhitening
for EEG interference suppression. IEEE Transactions on Bio-medical Engineering,
59(5):1329–1338, 2012.

[117] S.-C. Wu, A. L. Swindlehurst, and Z. Nenadic. A novel framework for feature extraction
in multi-sensor action potential sorting. Journal of Neuroscience Methods, 253:262–
271, 2015.

[118] S. C. Wu, A. L. Swindlehurst, P. T. Wang, and Z. Nenadic. Projection versus
prewhitening for EEG interference suppression. IEEE Transactions on Bio-medical
Engineering, 59(5):1329–38, 2012.

[119] E. Yaksi and R. W. Friedrich. Reconstruction of firing rate changes across neuronal
populations by temporally deconvolved Ca2+ imaging. Nature Methods, 3(5):377–383,
2006.

[120] P. Yan, C. D. Acker, W.-L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sac-
coni, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew. Palette of
fluorinated voltage-sensitive hemicyanine dyes. Proceedings of the National Academy
of Sciences of the United States of America, 109(50):20443–8, 2012.

[121] X. Yang and S. Shamma. A totally automated system for the detection and classifica-
tion of neural spikes. IEEE Transactions on Bio-medical Engineering, 35(10):806–816,
1988.

[122] Y. Yuan, C. Yang, and J. Si. The M-Sorter: an automatic and robust spike detection
and classification system. Journal of Neuroscience Methods, 210(2):281–90, 2012.

[123] N. Zeevi-Levin, J. Itskovitz-Eldor, and O. Binah. Cardiomyocytes derived from human
pluripotent stem cells for drug screening. Pharmacology & Therapeutics, 134(2):180–8,
2012.

170



Appendix A

Data Acquisition Methods

This appendix contains detailed procedures for the collection of data used throughout this

work, with relevant citations included.

A.1 VSD Imaging of Human Induced Pluripotent Stem

Cell-Derived Cardiomyocytes

This section provides details on the data collection methods for the voltage sensitive dye

(VSD) imaged human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs)

used in Chapters 2.3.2 and 3.2. The data used here was also employed in Szymanska et

al. [103] as well as Heylman, et. al [34], and the detailed methods are also provided in these

articles.
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A.1.1 Human Induced Pluripotent Stem Cell-Derived Cardiomy-

ocyte (hiPS-CM) Culture and Differentiation

hiPS-CMs were prepared for interrogation per the protocol previously described by Heylman,

et. al [34]. Briefly, wtc11 hiPS cells were differentiated into cardiomyocytes using a serum-

free defined medium protocol [56]. Cells began spontaneously beating on approximately

Days 12-15 , and were stained with VSD and imaged on Day 33.

A.1.2 Voltage-Sensitive Dye Staining and Drug Exposure

Culture medium was replaced with fresh medium containing 1µM Di-4-ANE(F)PPTEA (pur-

chased from Leslie Loew, University of Connecticut) and incubated for 15 min at 37oC. Cells

were rinsed with RPMI/B-27 (+) insulin one time and then allowed to recover for at least 2

hours prior to imaging. After staining with VSD, cells were qualitatively confirmed to still

be spontaneously beating before addition of drugs. Medium was then replaced with fresh

medium containing either 10−5µM propranolol (SIGMA, P0884) or 10−7µM isoproterenol

(SIGMA, I6504). Data was collected immediately after addition of drugs (less than 60 sec of

exposure) and again 10 min or 15 min after addition to ensure complete exposure. Control

images were captured from VSD stained cultures not treated with either drug.

A.1.3 Two-Photon Microscopy

A Zeiss LSM 710 microscope (Carl Zeiss, Jena, Germany) with a 40X water immersion

objective (C-Apochromat 40X/1.20 W Korr M27) was used for all measurements. VSD

was excited by an 850nm light produced by a titanium:sapphire Mai Tai laser (Spectra-

Physics, Mountain View, CA). Excitation light was separated from emission signal with

a 760nm dichroic. VSD fluorescence was collected in the 489 - 645 nm range. Line scan
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mode with 128 pixels per line and a 1.58 µs pixel dwell time was used to acquire temporal

VSD depolarization data. Given a 1.67 kHz sampling rate, the total scan time per line

was 600 µs. Each measurement consisted of 100,000 line scan repeats (total scan time 60

s). The Zen software package (Zeiss, Jena, Germany) was used to control all microscope

components and acquisition processes. Brightfield images were used to identify clusters of

spontaneously beating cardiomyocytes. The system was then switched to line scan mode

with the parameters specified above. Line scan data were acquired along a line that was

manually drawn across cell membranes. After completion of data acquisition, the system was

switched back to brightfield mode to confirm that the cells were still spontaneously beating.

A.1.4 Data Pre-Processing

SimFCS commercial software developed in the Laboratory of Fluorescence Dynamics (LFD,

University of California, Irvine) was used to analyze raw fluorescence data. A Gaussian

tracking and correction algorithm (Supplemental Fig. A.1) was used to compensate for mo-

tion artifacts resulting from the spontaneous beating of cell clusters. Fluorescence intensity

along each corrected cell membrane trace was then extracted. Finally, a custom Matlab

script that fit and subtracted a biexponential function from the resultant data was used to

remove photobleaching artifacts (Supplemental Fig. A.2).

A.1.5 Manual Identification of Depolarization Event

Intensity traces, X, for all drug and control conditions, as described in Sec. A.1.2, were

derived as described in Sec. A.2.5, and plotted in Matlab. Three trained human analysts

then independently identified depolarization event (DE) peak times from each trace.
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Figure A.1: Motion Artifact Correction. Motion artifact resulting from the spontaneous
beating of cell clusters was compensated for in data pre-processing using a Gaussian tracking
and correction algorithm. Quantification of membrane 3 depolarization peaks using pre-
corrected raw data correlates well with membrane 1 depolarization peaks quantified using
data corrected with the Gaussian tracking algorithm.
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Figure A.2: Photobleaching Correction. Photobleaching was accounted for by fitting a
biexponential (y = aebx + cedx) and subtracting from the signal. (Top) Raw signal collected
by the instrument. (Middle) Overlay of second order exponential fit and raw signal. (Bottom)
Resultant signal after subtracting the exponential fit and normalizing to baseline fuorescence
of the membrane (Fo).
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A.2 Functional Multi-unit Calcium Imaging of Neu-

ronal Somas and Dendritic Spines

This section provides details on the data collection methods for functional multi-unit calcium

imaging (fMCI) of neuronal somas as well as dendritic spines. The data described here was

used in Chapter 2.3.3, and also employed in Szymanska et al. [104], where these details are

also provided.

A.2.1 Tissue Preparation

All animals used in this study were treated according to The University of Tokyo guidelines

for the care and use of laboratory animals. All performed experiments were approved by

the experiment ethics committee at the University of Tokyo, approval numbers: P24-5 and

P24-8.

Acute Slices Acute slices were prepared as described in Ueno et al. 2002 [108, 74]. Briefly,

400 µm horizontal slices of the hippocampus from 3 week old C57BL/6J mice were prepared

using a vibratome in ice-cold oxygenated cutting solution. The slices then rested in oxy-

genated artificial cerebrospinal fluid (aCSF) at room temperature for 1.5 hours prior to

imaging. For more details on the preparation and solutions used please see [108, 74].

Ex Vivo Cultures In order to facilitate the simultaneous visibility of many dendritic

spines during fMCI, organotypic slice cultures were used in this study. Ex vivo rat hip-

pocampal slice cultures were prepared as described in Takahashi et al. [105] from 7 day old

Wistar/ST rats. Briefly, 300 µm entorhinal-hippocampal organotypic slices were cut using

a vibratome, placed on Omnipore membrane filters (JHWP02500; Millipore, Bedford, Mas-
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sachusetts, USA), and incubated (5% CO2, 37oC) in culture medium (50% minimal essential

medium, 25% Hanks’ balanced salt solution, 25% horse serum, antibiotics) for 12-19 days

prior to imaging. The medium was changed every 3.5 days. For more details please refer

to [105].

A.2.2 Dye Loading

Simultaneous Somatic fMCI and Patch-Clamp Ex vivo slice cultures were transferred

into a dish (35-mm diameter) containing 2 ml of the dye solution and were incubated for 1-h

in a humidified incubator at 35◦C under 5% CO2. The dye solution was aCSF containing 10

µl of 0.1% Oregon Green BAPTA1-AM (OGB1) dissolved in DMSO, 2 µl of 10% Pluronic

F-127/DMSO and 2 µl of 5% Cremophor EL/DMSO. After being washed, the cultured slices

were incubated at 35◦C for 40 min and were mounted in a recording chamber.

Somatic fMCI Acute slices were loaded locally with OGB1 dissolved in DMSO containing

10% Pluronic F-127 to yield a concentration of 2 mM. Immediately before use, this solution

was 10× diluted with aCSF and loaded into pipettes (3 - 5 MΩ). The tip of the pipette was

inserted into the CA1 stratum pyramidale, and a pressure was applied using a 10-ml syringe

pressurizer (50–60 hPa for 5 min).

Dendritic Spine fMCI CA3 pyramidal neurons were selected for spine imaging from ex

vivo slice cultures. Selected neurons were voltage-clamped at -30 mV (MultiClamp 700B

amplifier and a Digidata 1440A digitizer controlled by pCLAMP 10.4 software) and loaded

with a Fluo-4 solution (97.3 CsMeSO4, 42.7 CsCl, 10 HEPES, 10 phosphocreatine, 4 MgATP,

0.3 NaGTP, and 0.2 Fluo-4, all in mM). The voltage clamp facilitated channel currents

mediated by NMDA receptors and calcium-permeable AMPA receptors.
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A.2.3 Patch-Clamp Recording

CA3 pyramidal neurons selected for simultaneous somatic fMCI and patch-clamp record-

ings were voltage-clamped at 0 mV (Axopatch 700B amplifier) using a borosilicate glass

pipettes (4 - 9 MΩ) filled with aCSF, and recorded from at a sampling frequency of 20kHz

(MultiClamp 700B amplifier and a Digidata 1440A digitizer controlled by pCLAMP 10.4

software).

A.2.4 Optical Recording

Fluorophores were excited at 488 nm with a laser diode (HPU50101PFS, FITEL, Tokyo,

Japan) and visualized using a 507-nm long-pass emission filter. Videos were taken at 10

Hz for the simultaneous somatic fMCI and patch-clamp data and at 50 Hz for the somatic

fMCI and dendritic spine fMCI data using a Nipkow-disk confocal microscope (CSU-X1;

Yokogawa Electric, Tokyo, Japan), and a cooled EM-CCD camera (iXon DU897, Andor,

Belfast, UK). A 16x objective was used for somatic fMCI data and a 60x objective was used

for the dendritic spine fMCI data (CFI75LWD16xW and CFI75LWD60xW Nikon, Tokyo,

Japan).

One data trace was acquired for simultaneous somatic fMCI and patch-clamp (fMCI-PC)

recordings. The recording lasted 300-s and measured spontaneous activity from a CA3 pyra-

midal neuron from the ex vivo slice cultures. Three somatic fMCI data sets were acquired

measuring spontaneous activity from CA1 pyramidal neurons from the acute slices. Record-

ings for each data set lasted 60-s and contained from 75 to 190 regions of interest (ROIs).

Five dendritic spine fMCI data sets were acquired measuring spontaneous synaptic inputs

from CA3 pyramidal neurons from the ex vivo slice cultures. Recordings ranged from 54-s

to 111-s and contained from 157 to 313 ROIs. Only spines located within 200 µm from the

soma were monitored to avoid the space clamp problem.
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A.2.5 Optical Data Pre-Processing

ROIs for all somatic fMCI and dendritic spine fMCI data sets were identified manually using

custom software in Microsoft Visual Basic [40]. A single analyst (Analyst 5 from Table 2.7)

identified all ROIs for the somatic fMCI data sets, and another analyst (Analyst 6 from

Table 2.7) identified all ROIs for the dendritic spine fMCI data sets. These common sets of

ROIs were used in all further analysis. The diameter of each ROI was tailored to the visible

size of the neuron soma or dendritic spine being identified. For fMCI-PC data, the ROI was

drawn to exclude the micropipette.

The average fluorescence for each ROI was then calculated and used to determine the change

in fluorescence, ∆F/F = (F1 − F0)/F0, where F1 is the fluorescence intensity at any time

point, and F0 is the average baseline fluorescence intensity 1-s before and after F1. This

normalization with a 2-s epoch around the target frame is needed to compensate for pho-

tobleaching. The resulting fluorescence intensity trace, X, for each ROI was then used for

further analysis.

A.2.6 Manual CE Identification

Somatic and dendritic spine fluorescence intensity traces, X, derived as described in Sec. A.2.5,

were independently plotted in Matlab. Six trained human analysts then identified CE peak

times from the traces. On average, the human analysts spent 24 working hours identifying

calcium events (CEs) in a given data set, where each data set contained between 75 and 313

ROIs (179 ROIs on average). CEs were not manually identified for fMCI-PC data.
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A.3 Extracellular and ECoG Recording from Anesthetized

Rats

This section provides details on the in vivo data collected from rats used to study the effects

of anesthesia depth on spontaneous neuronal network dynamics presented in Chapter 4. This

work has been submitted for publication [101] and the detailed methods will also soon be

provided in this article.

A.3.1 Animal Selection

Two male Wistar rats, both weighing 305 g were included in the study, and a total of three

experiments were performed. The animals were part of a separate study which called for

the implantation of intracranial screw electrodes [13]. The current study was performed

during the screw electrode implantation surgery. All animals were treated in accordance to

University of California, Irvine guidelines and the experimental procedures were approved

by the local Institutional Animal Care and Use Committee.

A.3.2 Screw Electrode Implantation Surgery

Rats were initially anesthetized in a seal-tight induction chamber connected to a vaporizer

supplying 5.0% isoflurane gas carried by 100% oxygen gas at 4L/min for 5 minutes. The rats

were then removed from the chamber and fitted with an adult animal facemask/nosecone

supplying 1.5-2.5% isoflurane. Adequate depth of anesthesia for the surgery was determined

by absence of corneal, forelimb, and/or hindlimb withdrawal reflex, and was continuously

monitored throughout the experiment. The rat’s heads were then shaved and they were
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secured in a stereotactic frame. A 2.5cm rostral-caudal incision was made in a sterile fashion

after cleaning the skin with iodine and allowing the iodine to dry.

Once the cranium was exposed, five 1.5-2 mm burr holes were drilled through the skull

using a mini hand drill. Bregma and lambda, two landmarks on the skull, were located

to measure the points at which burr holes would be drilled. Two frontal lobe burr holes

were drilled 2 mm anterior to bregma, and each 2.5 mm to the left and right of bregma,

corresponding to the M1 region of the motor cortex. These locations will be referred to as

A and B respectively. Two parietal burr holes were drilled 5.5 mm posterior to bregma, and

each 4 mm lateral on the left and right of bregma, corresponding to the V1 region of the

visual cortex. These locations will be referred to as C and D respectively. The last burr

hole, referred to as E, was drilled 3 mm posterior to lambda over the cerebellum. Figure A.3

shows a schematic of the locations of each burr hole.

Screw electrodes (Plastics One. Catalog number E363-20) were implanted into all burr holes,

except for burr hole B, which was used for MUA and LFP recording. Screw electrodes A and

C were used to collect ECoG signals, with screw electrode E serving as the ground. Note

that this type of recording is also often referred to as intracranial EEG. Screw electrode D

served as the reference for the MUA and LFP recordings.

A.3.3 Microelectrode Placement

Once screw electrodes A, C, D, and E were placed, the dura under burr hole B was removed

and a motorized head stage (Thomas Recording Tetrode Mini Matrix) housing a 7-channel

extracellular microelectrode (Thomas Recording), or heptode, was positioned over burr hole

B, immediately above the surface of the burr hole. The motorized head stage was used

to lower the heptode into the cortex, until a high activity and signal-to-noise ratio (SNR)

recording site was found for the experiment.
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Figure A.3: Schematic of burr hole locations, as well as ECoG screw electrode and heptode
placement. Burr holes are marked as black circles, and placed as specified by the indicated
distances from Bregma. The placement is symmetric over the left and right hemispheres.
Going from left to right, the top two burr holes are referred to as A and B, the middle
two as C and D, and the bottom one as E. Burr holes A, C, D and E are implanted with
screw electrodes, whereas B is left open for extracellular recording with a heptode. Screw
electrodes A and C are used for ECoG signal recording, screw E is used as the ECoG ground,
and screw D is used as the heptode ground.

182



Figure A.4: Image of implantation surgery, with all burr holes drilled and screw electrodes
placed.

A.3.4 Recording

ECoG data was acquired from implanted screw electrodes at 1526 Hz using a PZ2 pream-

plifier (Tucker-Davis Technologies Inc., Alachua, FL) and an RZ5D data acquisition system

(TDT).

The heptode was used to record both MUA and LFP signals. The signals collected by the

head stage were passed to a pre-amplifier (TDT, Medusa), and then to the data acquisition

system (TDT, RX7). The data acquisition system then band-pass filtered the data at 300-

3000 Hz and stored both the filtered and raw data. The filtered data was used to extract

MUA, whereas the raw data was used for LFP signals.

All collected data sets, including ECoG, MUA, and LFP signals, were notch filtered to

remove 60 Hz noise. The ECoG data was then band pass filtered at 2.5-110 Hz, and the

LFP signals were band pass filtered at 2.5-300 Hz. Because the heptode recording channels

were only 40-80 µm apart, the LFP recordings from each channel were essentially identical.

Therefore one LFP channel, channel 1, was used for all subsequent analysis.
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A.3.5 Experimental Procedure

Once all ECoG and extracellular recording electrodes were in place, the automated motorized

microdrive on the heptode headstage was used to lower the heptode into the burr hole and

then into the cortex. The heptode was advanced until a suitable recording site was found,

providing adequate SNR and spiking activity, which for these experiments was 1700-1900 µm

from the top of the skull. Due to visual limitations inside the burr hole, it was not possible

to determine when the heptode reached the surface of the brain; however, assuming a typical

thickness of the rat skull of 1 mm, this means the heptode was lowered roughly 700-900 µm

into the cortex.

Once the heptode was in position, 1-2 min of spontaneous neuronal activity were recorded

at three consecutively increasing isoflurane anesthesia levels - low, intermediate, and deep.

The first measured state represented the lowest level of administered isoflurane necessary

to maintaining burst suppression, while the last, deep, level represented the highest level

of administered isoflurane prior to a flat ECoG signal. To ensure that isoflurane levels had

stabilized prior to recording, a 3-5 min waiting period was observed after isoflurane levels

were increased, prior to the next recording.

The first two experiments were performed on a single animal. After the first recording,

another suitable recording site was found 170 µm below the original recording site. This

location was presumably far enough from the initial heptode recording site to be recording

from a new population of neurons. These two experiments will be referred to as experiment

1.1 and 1.2, respectively. Experiment 2.1 was performed on the second animal. This animal

began going into hypoxia during the deep anesthesia stage, and therefore the last recording

was aborted. However, two recordings were made at the low anesthesia stage, one prior to

the isoflurane levels being stabilized, and another once the anesthesia level had stabilized.

Each recording will be referred to by the experiment number followed by “Iso” and then the
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percentage of administered isoflurane. For the low anesthesia level recordings in experiment

2.1, the first recording will be referred to as 1 and the second as 2.

A.3.6 Post-experiment

Once the experiments were completed, the level of isoflurane was decreased to 1.5-2.5%, and

the extracellular probe was removed from burr hole B and replaced by a screw electrode, in

preparation for a subsequent study [13]. All screw electrodes were connected to an adapter,

and fixed in place using dental cement. The rats were then injected with buprenorphine 0.02

mg/kg subcutaneously for analgesia 5 min prior to stopping isoflurane and allowing recovery

from anesthesia.
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Appendix B

Clustering Methods

B.1 EM-BIC Method

The classification algorithm used on the MUSIC-derived source locations in Sec. 3.1.4.1 is

based on Expectation-Maximization (EM) and Bayes’ information criterion (BIC). Given

a number of expected clusters, the EM algorithm determines the best cluster parameters.

In the case of source location features, these parameters include each cluster’s center and

variance. Note that this means each feature point is assigned a specific cluster. Optimal

cluster assignments are determined using the EM algorithm for several cluster models. The

best model is then selected based on the BIC.
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B.1.1 Expectation Maximization

The central premise of the EM algorithm is to expand the data R into a more complete data

vector Y by introducing what’s called the missing data vector, B

Y =

[
R

B

]

where R is the vector of all 3-D localized APs detected from the data. The missing data

vector B should specify the cluster assignments of each feature, or location, ri ∈ R. The

algorithm assumes there are K clusters being modeled, each with a Gaussian distribution,

Gk, k ∈ [1, K]. The outliers, on the other hand, have a uniform distribution U . We can then

express the components of the missing data vector B as

bi =

{ [1, 0, · · · , 0] if ri ∈ U (outlier)

[0, 1, · · · , 0] if ri ∈ G1 (cluster 1)

. . .

[0, 0, · · · , 1] if ri ∈ GK (cluster K)

where bi ∈ R1×K takes on one of these values with probability τk,
∑K

k=0 τk = 1, τ0 represents

the probability of bi denoting an outlier, and τ = [τ0, · · · , τK ].

The ultimate parameters being solved for are each cluster’s center and variance, which can

be expressed as

θ =

[
A

υ

]

where A represents each clusters center in Cartesian coordinates, and υ represents each

cluster’s variance.
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The EM is designed to maximize the complete data log-likelihood

L(Y |θ) =
N∑
i=1

ln f(yi|θ)

where N is the total number of feature points, and f represents probability density function

(PDF). Because the missing data B is unknown, the complete data log-likelihood cannot

be evaluated and must be estimated instead. To do this we first estimate the complete

log-likelihood function

Q(θ) = E[L(Y |θ)|R, θj] (B.1)

where E is the expectation operator, and θj is a previous estimate of the parameter θ. Given

that B is a set of independent random variables we can express Eq. B.1 as

Q(θ) =
N∑
i=1

∑
all bi

ln f(yi|θ)× P (bi|ri, θj) (B.2)

The probability density f(yi|θ) can be derived fairly easily. Remember that yi is a point in

the full data vector Y which consists of both the extracted features, R, and the missing data,

B. The probability of bi being in cluster k is τk and the probability of ri being in cluster k

is Gk(ri, θ), for k ∈ [1, K], and U(ri), for k = 0.

f(yi|θ) =

{
τ0U(ri) if bi = [1, 0, · · · , 0] outlier

τkGk(ri, θ) else depending on the cluster k
(B.3)

We can now express the prior probability as

P (bi|ri, θj) =
f(ri|bi, θj)P (bi|θj)∑

all bi
f(ri|bi, θj)P (bi|θj)

(B.4)
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where the individual terms of Eq. B.4 are

f(ri|bi, θj)P (bi|θj) =

{
τ j0U(ri) if bi = [1, 0, · · · , 0] outlier

τ jkGk(ri, θj) else depending on the class k
(B.5)

and τ jk represents the previous estimate of the probability of bi denoting a given cluster k.

Given this we can finally calculate the complete log-likelihood function Q(θ) in Eq. B.1. This

is the expectation phase of the algorithm. The EM algorithm then applies the following

iteration:

• Initialization: Select initial parameter estimates θ0, and τ 0 as your current parameters.

Set the iteration limit to J .

• Expectation Phase: Estimate the complete log-likelihood function using your current

parameters, θj in Eq. B.2, and τ j in Eq. B.5

• Maximization Phase: Evaluate

θj+1 = arg max
θ
Q(θ) (B.6)

Note that this maximization will also implicitly determine τ j+1 = P (bi|θj+1).

• Iterate: If j + 1 < J and |θj+1 − θj|2 > ε, where ε is a preset tolerance parameter, set

j = j + 1 and repeat the Expectation Phase. Otherwise, the optimal parameters have

been evaluated.

B.1.2 Bayes’ Information Criterion

The EM algorithm determines the optimal cluster parameters given a set number of clusters

K. However, the initial number of clusters is not generally know. The calculation is therefore
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repeated for M different cluster models. Each model, Mi, i ∈ M , is then evaluated based

on the BIC

BIC(Mi) = L(R|Mi)− νi
2

lnN

L(R|Mi) ∼= L(Y |θ∗i )

(B.7)

where νi is the number of independent parameters in the model, N is the total number

of features in the data set, and the maximum log-likelihood was approximated by the EM

algorithm using the optimal parameters θ∗i for each model Mi. The optimal cluster model

is then selected as the one that maximizes the BIC

M∗ = arg max
M

BIC(M) (B.8)

B.2 NP-DBSCAN

The clustering algorithm used on the MUSIC-derived source locations in Sec. 3.1.4.2 and

Chapter 4, uses the density-based spatial clustering of applications with noise (DBSCAN) ap-

proach first introduced by Ester et al. [22]. The algorithm was expanded on by Daszykowski

et al. [16] to better detect natural patterns (NP) and this is the ultimate algorithm used here.

The algorithm is available online, and the full algorithm details are presented in Daszykowski

et al. 2001. For the benefit of the reader, this section we will briefly explain the basis of the

NP-DBSCAN algorithm.

DBSCAN is a single-scan approach that assumes density-based clusters. The main idea of

this approach is that the object density within a given neighborhood has to exceed a certain

specified threshold in order to form a cluster. The threshold is usually set as a minimum

number of objects, k, present within a neighborhood radius, ε.
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The approach identifies three types of objects in the data set. Core objects are objects that

contain the minimum number of neighbors, k, within their neighborhood radius, ε. Border

objects are within the neighborhood of a core object, but do not contain k neighbors in their

own neighborhood. Lastly, outliers do not contain k neighbors in their neighborhood, and

are not within the neighborhood of a core object. Core and border objects form clusters

within the data set.

Unlike with other approaches, including EM, there is no need to specify the number of

expected clusters prior to classification using this method. Instead, the main parameters

that need to be optimized are the minimum number of neighbors, k, and the neighborhood

radius, ε. Daszykowski et al. developed an approach for optimization of the neighborhood

radius that relies solely on the data size and the minimum number of neighbors, k. Given

an m × n feature set, F, where m is the number of features and n is the dimensionality of

the feature space, the NP approach simulates a set of m objects in the n-dimensional feature

space with the same range as the original features set F. However, the simulated objects are

uniformly distributed within the range of the experimental feature set. The distance from

each “artificial” object i to its kth nearest neighbor is then calculated, and ε is set as the

95% quantile distance.

For the purposes of MUSIC based spike sorting, m was the number of localized APs, and

n = 3 was the dimension of the features space. We set the minimum number of neighbors

to k = 12 and used a Euclidean distance measure.
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