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Cytotoxic KLRG1+ IL-7R-
effector CD8+ T cells
distinguish kidney transplant
recipients controlling
cytomegalovirus reactivation
Yumeng Sun1, Subha Sen1, Rajesh Parmar1,
Janice Arakawa-Hoyt2, Monica Cappelletti 1, Maura Rossetti 1,
David W. Gjertson1, Tara K. Sigdel3, Minnie M. Sarwal3,
Joanna M. Schaenman4, Suphamai Bunnapradist5,
Lewis L. Lanier2, Harry Pickering1† and Elaine F. Reed1*† for CMV
Systems Immunobiology Group‡

1Department of Pathology and Laboratory Medicine, University of California, Los Angeles,
Los Angeles, CA, United States, 2Department of Microbiology and Immunology, Parker Institute for
Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States,
3Department of Surgery, Division of Multi Organ Transplantation, University of California,
San Francisco, San Francisco, CA, United States, 4Division of Infectious Diseases, David Geffen School
of Medicine, University of California, Los Angeles, Los Angeles, CA, United States, 5Division of
Nephrology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles,
CA, United States
Introduction: Cytomegalovirus (CMV) viremia remains a major contributor to

clinical complications in solid organ transplant (SOT) patients, including organ

injury, morbidity and mortality. Given their critical role in antiviral defense, CD8+

T cells are essential for protective immunity against CMV.

Methods: Using single-cell RNA sequencing, we investigated the transcriptional

signatures and developmental l ineages of CD8+ T cells in eight

immunosuppressed kidney transplant recipients (KTRs) who received organs

from CMV-seropositive donors. Results were validated in a cohort of 62 KTRs

using immunophenotyping.

Results: Our data revealed a significant influence of CMV serostatus on

transcriptional variance of CD8+ memory T cells, associating with the first

principal component from a global analysis of CD8+ T cells (p =0.0406),

forming a continuum with five principal differentiation trajectories driven by

CMV primary infection or reactivation. Following CMV primary infection, CD8+ T

cells were hallmarked by restrained effector-memory differentiation. CD8+ T

cells during CMV reactivation diverged non-linearly into senescent-like cells with

signatures of arrested cell cycle, diminished translational activity and

downregulated ZNF683 and longitudinally expanding effector cells with robust

cytotoxic potential and upregulated ZNF683, acting as a reservoir for long-lived

effector cells supporting long-term protection. Notably, CD28lo KLRG1hi IL-7R

(CD127)lo HLA-DRhi CD8+ T cells present prior to the detection of viremia in

CMV-seropositive patients emerged as a key feature distinguishing patients who
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did or did not undergo CMV reactivation after prophylaxis discontinuation (p

=0.0163). Frequencies of these cells were also positively correlated with CMV-

stimulated secretion of IFN-g (p =0.0494), TNF-a (p =0.0358), MIP-1a (p

=0.0262), MIP-1b (p =0.0043).

Discussion: These results provide insights into the transcriptional regulation that

influences the generation of CD8+ T cell immunity to CMV and may inform

strategics for monitoring host immune response to CMV to better identify and

introduce therapeutic intervention to patients at risk of developing clinically

significant CMV viremia.
KEYWORDS

kidney transplantation, cytomegalovirus (CMV), single-cell RNA sequencing (sc-RNA
seq), CD8+ T cells, effector T cell differentiation
1 Introduction

Cytomegalovirus (CMV) infection is a globally prevalent viral

pathogen and causes most ly quiescent infect ions in

immunocompetent individuals. However, in immunocompromised

solid organ transplant (SOT) and hematopoietic stem cell transplant

(HSCT) recipients CMV can cause severe organ-invasive disease,

morbidity, and mortality (1, 2). The risk of experiencing post-

transplant (Tx) CMV infection is stratified by pre-transplant CMV

serostatus of organ donors and recipients, defined by the presence of

circulating anti-CMV antibodies. CMV-seronegative transplant

recipients (R-) have the highest risk of CMV infection if they receive

organs from CMV-seropositive donors (D+) and have the worst death-

censored patient and graft survival rates; CMV-seropositive recipients (R

+) carry the latent virus and bear the second highest risk for CMV

transmission and reactivation post-Tx (3–5). CMV causes remarkable

changes in host immunity, including sustained CD8+ T cell expansion, a

phenomenon termed memory inflation, that plays a critical role in

controlling CMV Infection (6, 7).

Although immunophenotypes of circulating CD8+ T cells

following antigen stimulation in vitro have been subdivided into

subsets by their expression of canonical markers and their degree of

differentiation increasing from naïve T cells to stem-like memory T

cells (TSCM), central memory T cells (CM), effector memory T cells

(EM), and terminal effector memory T cells (TEMRA), the

identification of heterogeneous mixtures of rare or transitional T

cell subsets have led to an alternative concept that T cell phenotypes

exist in a continuum that is shaped by the type of antigen, infection

history, and by systemic inflammation elicited during antigen

encounter (8–12). The effector-memory phenotypes induced by

CMV comprise a highly heterogenous population of T cells, and the

extent to which these cells provide a protective advantage remains

poorly understood. While commonly used antiviral drugs and

prophylactic regimens are effective in preventing and treating

CMV disease, they may cause significant side effects and drug
02
resistance and demand additional management in case of refractory

CMV infection (13, 14). Further investigation into incorporating

cellular immune parameters into clinical risk stratification could

enhance CMV management and improve patient outcomes.

In this study, we assessed the spectrum of phenotypic and

transcriptomic states that circulating CD8+ T cells assume and their

associated functions during CMV infection in kidney transplant

recipients (KTRs). We analyzed the temporal phenotypic states of

CD8+ T cells in a cohort of D+R+ KTRs experiencing CMV

reactivation (R+, PCR+) and compared them to CD8+ T cells

from D+R- KTRs experiencing primary infection (R-, PCR+). Our

data identified a restrained CD8+ T cell effector-memory

differentiation state during primary infection. During CMV

reactivation, CD8+ T cells expanded senescent-like cells and

robust, cytotoxic effector cells with the latter showing CD8+

CD28lo KLRG1hi CD127lo HLA-DRhi phenotypes that

distinguished PCR+ and PCR- patients before detection of CMV

viremia. Our data provide deep insight into the molecular

characteristics of CD8+ T cells emerging from CMV viral

infection and may guide definition and monitoring of host

immunological response to CMV to better predict patients who

will develop clinically significant CMV viremia.
2 Materials and methods

Additional materials and methods may be found in

Supplementary Materials and Methods.
2.1 Study population and design

The study design included IRB consented KTRs with (PCR+)

and without CMV viremia (PCR-) enrolled 2013-2015 in a single

center retrospective UCLA cohort of 62 KTRs (IRB#11-001387),
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including 31 CMV PCR+ KTRs and propensity-score matched

CMV PCR- KTRs. CMV PCR+ was defined as the presence of

CMV DNA exceeding 137 IU/mL in the patient’s blood through

PCR test (Cobas AmpliPrep/Cobas TaqMan CMV test, Roche).

Patients received either anti-thymocyte globulin (ATG) or

basiliximab for induction therapy and were maintained on triple

immunosuppression, including tacrolimus, mycophenolate mofetil,

and prednisone. All KTRs were sampled 3 and 12 months after

transplant, with additional samples 1 week and 1 month after CMV

viremia for PCR+ individuals. Patient clinical characteristics are

summarized in Table 1 and previously described (15).
2.2 Single-cell transcriptomic sequencing
and analyses

CD8+ T cells were isolated from longitudinal PBMCs of eight

KTRs (CD8+ T cell isolation kit, Miltenyi Biotec) and underwent

single-cell RNA-sequencing (10X Genomics). Data were QC-ed and

analyzed in R (version 4.3.2) using Seurat package (Version 4.3.0 for

QC, batch-correction, normalization, scaling, dimension reduction

and clustering, and Version 5.0.1 for differential expression

analyses). Pseudotime analyses were performed using Monocle3

package (Version 1.3.1) (16–18).
Frontiers in Immunology 03
2.3 Multi-color flow
cytometry immunophenotyping

Cryopreserved PBMCs were thawed in pre-warmed RPMI 1640

(Gibco, 12633012) supplemented with 10% fetal bovine serum (FBS,

Omega Scientific, FB-02), 1% penicillin-streptomycin (Gibco,

15140163), and washed with phosphate-buffered saline (PBS, Corning,

21040CM). Dead cells were labeled using viability dye (LIVE/DEAD

Fixable Blue Dead Cell Stain Kit, Invitrogen L34962). PBMCs were then

washed with FACS buffer (PBS with 1% heat-inactivated FBS) and pre-

incubated with human TrueStain FcX (BioLegend, 422302) at 4°C for 30

minutes. Cells were subsequently stained with fluorochrome-conjugated

antibodies (Supplementary Table S1) at 4°C for 30 minutes and fixed

with Fluorofix buffer (BioLegend) following manufacturer’s procedures.

Samples were acquired on a LSRFortessa™ Cell Analyzer (BD

Bioscience) and raw FCS files were imported into R and analyzed as

described below, using R packages ConsensusClusterPlus (19), flowCore

(20) and flowWorkspace (20). Dead cells and doublets were removed,

and raw mean fluorescence intensity (MFI) values were arcsinh

transformed with a cofactor parameter of 150. Live CD3+CD8+ T cell

subsets were identified in an unsupervised manner using the FlowSOM

(21) algorithm, which initially defined 100 clusters using a Self-

Organizing Map (SOM). These clusters were combined into 40 meta-

clusters by hierarchical clustering.
TABLE 1 Patient demographics.

CMV PCR+ (n=31) CMV PCR- (n=31)
Sc-RNAseqB

CMV PCR+ (n=4)
Sc-RNAseqB

CMV PCR- (n=4)

Recipient mean age (range) 54.4 (22-77) 54.4 (30-74) 57.0 (22-59) 56.5 (30-74)

Recipient female (%) 10 (32.3%) 12 (38.7%) 2 (50%) 2 (50%)

Race/ethnicity
Asian
Black or African American
Hispanic or Latino
OtherA

White

6 (19.4%)
7 (22.6%)
9 (29.0%)
2 (6.5%)
7 (22.6%)

4 (12.9%)
3 (9.7%)
9 (29.0%)
3 (9.7%)
12 (38.7%)

1 (25%)
1 (25%)
0 (0%)
1 (25%)
1 (25%)

0 (0%)
0 (0%)
0 (0%)
1 (25%)
3 (75%)

Received ATG
Yes
No

9 (29.0%)
22 (71.0%)

9 (29.0%)
22 (71.0%)

0 (0%)
4 (100%)

0 (0%)
4 (100%)

Donor type
Deceased
Living

17 (54.8%)
14 (45.2%)

15 (48.4%)
16 (51.6%)

2 (50%)
2 (50%)

0 (0%)
4 (100%)

Rejection in 1 year
No
Yes

26 (83.9%)
5 (16.1%)

27 (87.1%)
4 (12.9%)

3 (75%)
1 (25%)C

4 (100%)
0 (0%)

Recipient CMV Serostatus
Seropositive (R+)
Seronegative (R-)

24 (77.4%)
7 (22.6%)

24 (77.4%)
7 (22.6%)

2 (50.0%)
2 (50.0%)

2 (50.0%)
2 (50.0%)

Median days after transplant (IQR)
Baseline
Long-term
1-week post-viremia
1-month post-viremia

55 (39-78)
345 (287-413)
92 (56-167)
176 (88-277)

90 (85-159)
363 (321-381)

-
-

62 (50-73)
359 (300-375)
125 (81-167)

-

153 (118-186)
309 (285-332)

-
-

GFR decline from 6 to 12-month (median, IQR) 8.4% (3.2%-11.5%) 9.8% (3.1%-23.5%) 12.1 (4.6%-22.8%) 20.8% (9.8%-32.5%)
AMultiracial, Native Hawaiian, or Pacific Islander. BSingle-cell RNAseq was conducted on 8 of the 62 patients in the cohort. CAcute rejection was diagnosed at the time of transplant and was given
standard of care treatment. No rejection at the time of or after sampling.
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2.4 CMV-stimulated cytokine and
chemokine profiling

PBMCs were rested overnight and stimulated for 8 hours with

an t i -CD28 and an t i -CD49a monoc lona l an t ibod i e s

(BD Biosciences, 347690), GolgiPlugTM Protein Transport

Inhibitor (BD Biosciences, 555029) and one of the following

stimuli: 1) no stimulation, 2) overlapping 15 amino acid peptide

pools representing CMV virus proteins from the 9 most

immunodominant antigens, including UL55, UL83 (pp65), UL99,

UL36, UL48_sub1, UL48_sub2, UL122 (IE-1), UL123 (IE-2), and

US32 (JPT Peptide Technologies, PM-Pan-CMVselect-1) at a final

concentration of 5 mg/mL. Cell supernatants were collected and

assessed for cytokines and chemokines via 38-plex Luminex

multibead arrays (Millipore). To correct for background analyte

production, finalized concentrations (pg/mL) of CMV-stimulated

analytes were defined as the CMV-stimulated condition minus the

unstimulated condition.
2.5 Statistical analyses

Longitudinal change in pseudotime in single-cell analysis with

respect to time of sample collection was determined using mixed-

effect linear regression, with patient ID as a random effect variable.

Pseudotime change with respect to time and serostatus was

determined by an interaction term of time and serostatus in the

linear mixed-effect model. Longitudinal changes in flow cytometry-

identified cell cluster and concentrations of CMV-stimulated cytokine

with respect to time in PCR+ patients were determined by mixed-

effect linear regressions with patient ID as a random effect variable. P-

values comparing PCR+ and PCR- groups at one timepoint were

determined by Mann-Whitney test. Correlation of CD28lo KLRG1hi

CD127lo HLA-DRhi cluster frequency with CMV-stimulated cytokine

production for each patient was determined by Spearman’s rank

correlation coefficient. Results of statistical tests are indicated as p

>0.05: ns; p <0.05: *; p <0.01: **; p <0.001: ***; p <0.0001: ****.
3 Results

3.1 Single-cell transcriptomic profiles of
CD8+ T cells separated CMV primary
infection and reactivation

To comprehensively characterize the longitudinal phenotypic

changes in CD8+ T cells in KTRs experiencing CMV primary

infection or reactivation, we performed single-cell RNA sequencing

(scRNA-seq) on purified peripheral blood CD8+ T cells collected at

pre-viremia baseline (BL, approximately 3-months post-Tx), 1-week

post-viremia (1W), and long-term (LT, approximately 1-year post-

Tx) from a selected cohort of R- (n=4) and R+ (n=4) KTRs (Table 1).

After batch-correction and QC, all non-CD8+ T cells were removed

and CD3+CD8+ cells were partitioned into twenty-two clusters and

visualized by Uniform Manifold Approximation Projection (UMAP)

(Figure 1A). We annotated these clusters based on differentially
Frontiers in Immunology 04
expressed gene markers and canonical gene expressions, including

naïve (CCR7+ CD28+ c1, 3, 4, 5, 7, 16), proliferating (MKI67+, c20),

central memory (CM, CCR7+ SELL (CD62L)+ JUNB+ STAT3+ c2,

12, 18), effector memory (EM, CCR7- KLRG1+ GZMK+ c8, 9, 11, 14,

19), terminal effector (TE, GZMB+ KLRG1+, c0, 6, 10, 13, 21), tissue-

resident memory (TRM, ITGAE (CD103)+, c17), and mucosal-

associated invariant T (MAIT, KLRB1+ CCR6+, c15) cells

(Figures 1A, C, Supplementary Figure S1). A pattern of increasing

differentiation was seen from the lower region to the upper region on

the UMAP (Figure 1B). Cells were distinctly separated by their CMV

serostatus and PCR status: late-differentiated cells were enriched at

BL and LT in both PCR- and PCR+ R+ patients, and at 1W R- PCR+

and R+ PCR+ patients were well-separated into distinct clusters

(Figure 1D). Comparing proportions of different subsets of CD8+ T

cells in each group of patients, we found CD8+ T cells from R+

patients had much larger proportions of EM and TE cells over other

CD8+ T cell subsets, with R+ PCR+ patients having the most

pronounced TE expansion (Figure 1E).
3.2 Pseudotemporal analysis defines
multiple differentiation lineages and their
associated transcriptomic profiles of CD8+
T cells

Though regions of variable CD8+ T cell differentiation can be

broadly defined, cells distributed based on continuous expression of

their canonical T cell markers and partitioned into more distinct and

heterogeneous clusters of TE phenotype (Figure 1A). To define

progression along the transcriptional continuum of CD8+ T cell

differentiation, we placed the single cells on pseudotime trajectory

[Monocle 3 (16–18)] originating from root node ①, the

computationally-defined region of least differentiated cells

(Figure 2A, Supplementary Figure S2A). We used spatial

autocorrelation analysis to identify differentially expressed genes

(DEGs) along the trajectories and their associated gene modules

(Figure 2B, Supplementary Table S2). By further clustering the 22

defined cell clusters based on aggregated module expression, we

obtained CD8+ T cells as being in early (E, naïve clusters),

transitional (T, mostly CM and EM clusters) and late (L, EM and

TE clusters) stages of differentiation (Figures 2A, B). Of the gene

modules identified, those with distinct expression patterns across cell

clusters after hierarchical clustering: modules 1, 3, 4, 7, and 9, along

with module 8, 6, and 5, which encompassed more DEGs compared

to modules they clustered with, were analyzed in detail and assigned

with functions based on their most upregulated genes (Figure 2B,

Table 2). To validate the ordering of cells at each stage of

differentiation, we performed KEGG pathway analysis on

differentially expressed genes among cell developmental stages and

found that cells at E-stage are enriched for “Ribosome” pathway, at T-

stage are enriched for multiple signaling pathways relevant to T cell

activation, and at L-stage are associated with cytotoxic functions and

pathological outcomes of viremia and of transplantation (Figure 2C,

Supplementary Figure S2B). Similar properties were seen by GO term

enrichment analysis (Supplementary Figure S2C). Five lineages with

different ending nodes of each branch of the pseudotime trajectory,
frontiersin.org
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representing the transcriptional changes that CD8+ T cells with

different fates undergo, were highlighted, revealing tracks that led

to T-staged clusters T1: CM-c12 and T2: MAIT-c15, and L-staged

clusters L1: TE-c21, L2: TE-c13 and L3: TE-c10 (Figure 2D). Modules

3, 7 and 4 each described the regional gene expression profiles at E-,

T-, and L-stage cells, respectively (Figure 2E). Tracking cells along T-

lineages, T1 ended in low cytotoxic T cell functions (Module 4) and

T2 ended in high TCR signaling (Module 7) (Figures 2E, F). In L-

lineages, as cells developed from early to later pseudotime, their Naïve
Frontiers in Immunology 05
and TSCM properties (Module 3) increased and then decreased, their

cytotoxic T cell functions (Module 4) gradually increased and

remained high but showed decline in L2 and L3 compared to L1

(Figures 2E, F). Modules 2, 5, 6, 1 and 9 had similar patterns in

Lineages T1 and T2 but highlighted the differences between the three

L-lineages in greater detail (Figure 2E). Overall, as cells differentiated,

they experienced higher cell cycle regulation (Module 5 and 6) and

lower cell division and proliferation (Module 1) and translational

activities (Module 9), and these modules maintained a relatively low
FIGURE 1

Single-cell RNA transcriptional landscape of CD8+ T cells in KTRs. (A) Single-cell RNA-sequencing (10X Genomics) was performed on isolated CD8+
T cells in a subset of CMV PCR+ (R-: n=2; R+: n=2) and matched PCR- control KTRs (R-: n=2; R+: n=2). QC-ed and annotated CD8+ T cell clusters
were projected on UMAP. Colors encode cell cluster assignment. (B) Expression level of selected genes projected on UMAP. Colors encode low to
high expression. (C) Heatmap of top5 DEGs (p <0.05, average Log2(Fold Change) >0.5) of each cluster. (D) UMAP of single-cell data separated by
timepoint of collection. Colors encode patient CMV serostatus and viremia result. (E) Proportions of cells in cell subsets (pie chart) and at different
timepoints (donut chart) from each group of patients.
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FIGURE 2

CD8+ T cell transcriptomes dictated by pseudotime. (A) Pseudotemporal trajectories (black lines) were constructed via Monocle 3 revealing the
amount of transcriptional change that a cell undergoes from the starting state to the end state. Root node (①) indicates the start of the trajectories
and was programmatically determined at the node with highest occupancy of cells from BL samples. Colors encode pseudotime, the path between
a cell on trajectory and the root node. (B) Heatmap of gene module expressions of each cell cluster. Expression of differentially expressed genes
(DEGs, q-value <0.05) across UMAP space were identified using spatial autocorrelation analysis were grouped into gene module via Louvian
community analysis. Aggregated gene module expressions of each cluster were subject to clustering (Ward.D) into E-, T- and L-staged cells.
(C) Enriched KEGG pathways using DEGs comparing E, T, and L-staged cells. (D) Lineage of cell differentiation defined by the track from root node
to the ending nodes of clusters 12 (T1: CM-c12), 15 (T2: MAIT-c15), 21 (L1: TE-c21), 13 and 19 (L2: TE-c13), and 10 and 14 (L3: TE-c10).
(E) Aggregated expression of gene modules of individual cells projected on UMAP. (F, G) Expression of aggregated modules with respect to
pseudotime of cells in lineage T1, T2, L1, L2 and L3. Lines indicate the centroid module expressions of cells within pseudotime window of 1.
Frontiers in Immunology frontiersin.org06
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level of expression as cells continued differentiating (Figures 2E, G).

As these lineages separated apart from the main trajectory around

pseudotime of 30, L2 upregulated modules involved in cell cycle and

proliferation regulation (Module 5 and 6) and downregulated

modules involved in cell division (Module 1) and translation

(Modules 9), reminiscent of senescent-like T cells, being terminally

differentiated but with restricted proliferation and translational

activity and high levels of cell cycle arrest (Figures 2E, G). Cells

differentiating along L1 into TE-c21 likely represented circulating

long-lived effector cells (LLECs) capable of sustaining a pool of potent

effector that can rapidly respond to infections (Figure 2G). Compared

to L1 and L2, cells following L3 to TE-c10 showed lower proliferative

and terminal effector T cell function (Modules 1 and 2), likely

representing non-CMV-associated populations (Figure 2G).
3.3 CD8+ T cells during primary CMV
infection adopted transcriptional programs
with restrained proliferation
and differentiation

To further investigate CMV-driven CD8+ T cell fates, we

performed principal component analysis (PCA) on cluster

composition of each sample and found PC1 primarily

distinguished samples by CMV serostatus (p =0.0406)

(Figure 3A). Loadings of PC1 indicated that EM-c11, c19 and TE-

c0, c6, c21 clusters strongly contributed to profiles of R+ patients,

whereas CM-c12 and MAIT-c15 were the top 2 clusters associated

with R- patients and the pseudotime lineages T1 and T2

(Figure 3B). Longitudinal expansion of CM-c12 in both PCR- and

PCR+ R- patients indicated it’s likely non-CMV-related, but MAIT-

c15 was expanded after primary CMV infection having been higher

at BL in the PCR- group (Figure 3C). Elevated expression of genes

involved in TCR signaling (Module 7) suggests they potentially have

antiviral functions (Figure 2F).
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Using pseudotime metric as an indicator of level of differentiation

in each patient group, we found significantly advanced differentiation

of CD8+ T cells in R+ PCR+ patients at 1W and remained high at LT

(BL to 1W: p =7.98e-137; BL to LT: p =8.51e-138), whereas in R- PCR

+ patients there was no significant LT variation (p =0.499)

(Figure 3D). Additionally, while primary infection led to a

significant 1W change in differentiation (BL to 1W: p =1.72e-08), it

was significantly less pronounced than the 1W change after CMV

reactivation (“Interaction”, p =1.22e-33) (Figure 3D). The lower

magnitude of transcriptional changes in primary infection was also

reflected in the longitudinal expressions of gene modules, where

modules 3 and 9 had higher expression in R- compared to R+

patients, but their levels of expressions remained stable over time in

R- patients (Supplementary Figure S3). We then asked whether

specific genes were differentially expressed from BL to 1W and to

LT during primary infection and reactivation (Figure 3E). Only 31 and

28 genes were up- and downregulated from BL to 1W in primary

infection, whereas 376 and 1349 up- and downregulated genes were

identified from BL to 1W in reactivation. At LT, though more DEGs

were found, primary infection still had overall less transcriptomic

change compared to reactivation. By analyzing transcription factors

and signal transducers among the DEGs, we found that during 1W

post-primary infection, transcripts involved in T cell activation

[ZC3H12A (22), NFKBIA (23) and BCL3 (24)] and downstream

TCR signal transduction [FOSB (25), MYC (26), and GADD45B

(27)] were downregulated, suggesting an impeded T cell response

upon antigen-engagement (Figure 3F). Moreover, suppressors for T

cell effector function and proliferation, GADD45A (28), CITED2 (29),

DDIT3 (30), and KLF6 (31) were upregulated (Figure 3F). Though

KLF2, another upregulated transcription factor, has been reported to

enhance effector T cell programing in CAR-T cells, it is also involved

in restricting the migration of activated T cells (32, 33). At LT, an anti-

proliferation program was also seen with upregulation of IL-2

suppressors [CREM (34) and TOB1 (35)], and continued expression

of suppressor genes upregulated at 1W (Figure 3G). In addition,
TABLE 2 Selected modules and assigned functions.

Module Top 20 DEGs (ranked by Z-score) Function

1 B2M, S100A4, SH3BGRL3, TMSB4X, PFN1, ACTB, S100A6, CD52, GAPDH, TMSB10, CFL1, MYL6, LGALS1, IL32,
CD99, HCST, CLIC1, ACTG1, CD3D, IFITM2

Cell division and proliferation

2 ZEB2, NEAT1, DDX5, PIK3R1, PTPRC, NR4A2, ATG2A, XIST, PPP2R5C, ADGRE5, RNF213, MYO1F, SRSF7, FUS,
RUNX3, SYNE1, CEMIP2, ITGAL, KLF6, SYNE2

Terminal differentiation

3 LTB, IL7R, CCR7, MTRNR2L8, LEF1, SARAF, TRABD2A, PABPC1, FOXP1, RCAN3, TXK, NDFIP1, SATB1, TXNIP,
VIM, MTRNR2L1, SERINC5, TCF7

Naïve and stem-like memory T cell
(TSCM) properties

4 NKG7, CCL5, GZMH, CST7, GNLY, FGFBP2, GZMA, HLA-B, HLA-C, HLA-A, CTSW, IFIT2, IFIT3, EFHD2,
FLNA, CYBA, KLRD1 HLA-DRB1, GZMB, GZMM

Cytotoxic T cell functions

5 DDX17, SMCHD1, PCSK7, NKTR, PPRC2C, CELF2, OGA, SFPQ, HNRNPU, MDM4, SRRM2, OGT, SMG1,
ANKRD44, ARID1B, LENG8, RBM25, POLR2J3, SRSF11, CASP8

Cell proliferation regulation

6 MALAT1, ATM, LUC7L3, PNISR, AAK1, N4BP2L2, LIMD2, STK4, TNRC6B, SON, FYB1, TTC14, ZRANB2, PHF3,
ATXN7, FTX, NAP1L4, SECISBP2, ETS1, RIPOR2

Cell cycle regulation

7 DUSP2, KLRB1, GZMK, UBC, JUNB, FTH1, SRGN, ZFP36L2, NFKBIA, ZFP36, CD74, JUND, DUSP1, CMC1,
CXCR4, JUN, FOS, EIF1, ZNF331, SLC4A10

TCR signaling

9 TPT1, EEF1A1, EEF1B2, EEF1G, NACA, FAU, RACk1, GAS5, UBA52, NPM1, EIF3E, FXYD2, NOSIP, BTF3, LDHB,
COX7C, TOMM7, MAL, CD27, PFND5

Translational activity
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transcription factors important for T cell renewal and differentiation,

TBX21 (T-be t ) (36 ) and ZEB2 (37 , 38 ) , we re not

upregulated (Figure 3G).

At 1W post-CMV reactivation, transcriptional programming of

the CD8+ T cell memory response was accompanied by upregulated
Frontiers in Immunology 08
AP-1 family members JUN/FOS (39, 40) and BCL2 (41), loss of

naivety [downregulated TCF7 (42, 43) and LEF1 (42)], unimpeded

cell proliferation (downregulated anti-proliferative and apoptotic

genes TOB1, GADD45A and CREM), and enhanced terminal

differentiation [upregulated ZEB2 and HOPX, downregulated
FIGURE 3

Transcriptional change in CD8+ T cells in CMV primary infection and reactivation. (A) PCA plot performed on cluster composition of each sample,
colored by patient serostatus, viremia result, and timepoint. Mixed effect linear regression with patient identity as a random term was used to
determine whether serostatus significantly affects each PC. (B) Loadings of clusters contributing to PC1. (C) Longitudinal cluster proportions of CM-
c12 and MAIT-c15. (D) Box-and-whisker plots of cells at BL, 1W, and LT, separated by patient serostatus and viremia result. The lower and upper
hinges of the boxes, lines within the boxes and the whiskers each represent the first and third quartiles, the mean, and the range of data no further
than 1.5*inter-quartile range (IQR). Outliers are 1.5*IQR from the borders of the box and shown beyond the end of whiskers. Asterisks indicate p-
values comparing the change in pseudotime of cells from BL to 1W and BL to LT in 4 groups of patients, and the interaction between patient
serostatus and their change in pseudotime from BL to 1W (labeled as “Interaction”), determined by mixed effect linear regression, with patient
identity as a random effect. Significance levels as defined in Methods. (E) Venn diagrams of unique and shared up- and down-regulated genes at 1W
and LT over BL between primary infection and reactivation. Genes are differentially expressed if their adjusted p-value <0.05 and average Log2(Fold
change (FC)) > 0.5 or <-0.5. (F) Average Log2(FC) of transcription factors and signal transducers that are differentially expressed at 1W over BL during
primary infection, (G) at LT over BL during primary infection, (H) at 1W over BL during reactivation, and (I) at LT over BL during reactivation.
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downstream effector transcriptional programs through BCL3 and

BACH2 (44)] (Figure 3H). These trends were maintained at LT,

coupled with downregulation of CD28, further substantiating

memory inflation and terminal differentiation (Figure 3I).
3.4 CMV reactivation expands effector CD8
+ T cell clusters essential for acute and
long-term protection

Clusters that accumulated in R+ patients resided in two lineages:

L1, comprising a gradual progression of clusters EM-c11, TE-c0, TE-

c6 and TE-c21 with increasing differentiation levels following EM-c8
Frontiers in Immunology 09
and EM-c9, and L2, consisting of clusters EM-c19 and TE-c13

branching off from the main trajectory of EM-c8 and EM-c9

(Figures 4A, B). The four clusters in L1 exhibit a KLRG1hiIL7Rlo

phenotype, along with increasing expression of cytotoxic markers

such as GZMB, GNLY and IFNG and transcription factors ZEB2 and

ZNF683 (Hobit), suggesting a progressive differentiation into highly

cytotoxic, terminally differentiated effector cells, likely specialized for

immediate antiviral response (Figure 4I) (45). The less differentiated

EM-c11 and TE-c0 clusters were observed at higher frequencies at BL

in PCR- patients compared to PCR+ patients, suggesting they played

a protective role against CMV reactivation (Figures 4C, D). The more

differentiated TE-c6 and TE-c21 clusters were virtually absent in R-

and PCR- R+ patients, but noticeably expanded longitudinally after
FIGURE 4

Longitudinal frequency and transcriptomes of CMV reactivation-expanded effector CD8+ T cell clusters. (A) Cluster localization in L1 and (B) L2.
(C-H) Longitudinal frequencies of L1 and L2 clusters that explained variance of PC1 indicated in Figure 3B. (I) Dot plot of expression levels of KLRG1
and Top 10 markers of each cluster (p <0.05, average Log2(Fold Change) >0.5, difference in percentage of expression >0.1). (J) Volcano plot of DEGs
comparing EM-c19 with EM-c11 and (K) TE-c13 with TE-c0. Transcription factors and regulators are labeled.
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reactivation (Figures 4E, F). TE-c0, positioned immediately upstream

of TE-c6 in pseudotime, expanded acutely following reactivation but

its frequency declined at LT (Figure 4D). Along with their effector

functions, TE-c6 and TE-c21 likely represent cells differentiated from

TE-c0 that remain elevated in number in the circulation to provide

robust immune control in the long-term.

In L2, EM-c19 and TE-c13 were both induced acutely at 1W

post-CMV reactivation (Figures 4G, H). Similarly high ZEB2

expression suggested that these cells were committed to an effector

differentiation pathway, with TE-c13 more differentiated than EM-

c19, evidenced by higher KLRG1 expression, but both clusters had

less pronounced cytolytic activities as indicated by lower expression

of effector molecule transcripts such as IFNG, GNLY and GZMB

compared to L1 clusters (Figure 4I). To investigate the transcriptomic

differences driving the distinct differentiation paths, we compared

EM-c19 with EM-c11 and TE-c13 with TE-c0, as they appeared to

differentiate in parallel, indicated by similar pseudotime values, and

highlighted the transcription factors among DEGs (Figures 4J, K).

While upregulation of FOXP1, FOX andNR4A3 in EM-c19 suggested

activation, functionality and proliferation were dampened, as

evidenced by upregulation of SOCS3 (46) and downregulated

PRMT1 (47), STAT1 (48) and IRF4 (49). This aligns with their

senescent-like properties, based on their association with a gene

module enriched for cell cycle regulation and longitudinal decline

post-CMV reactivation (Figures 2G, 4J). Fewer transcription factors

were found differentially regulated between TE-c13 and TE-c0, but

both EM-c19 and TE-c13 had a transcriptomic profile of ZNF331

upregulation and ZNF683 downregulation, suggesting effector-like

nature of these cells, with attenuated inflammatory responses

evidenced by downregulated PRMT1, FOS and NFKBIA (Figure 4K).
3.5 CD28lo KLRG1hi CD127lo HLA-DRhi CD8
+ T cells associate with controlling
CMV reactivation

Clusters EM-c11 and TE-c0 had higher proportions at BL in R+

patients who resisted CMV reactivation and subsequently expanded

post-viremia in those who had reactivation, suggesting that cells of

similar KLRG1hi IL7Rlo phenotype may predict whether R+ patients

would be susceptible to CMV reactivation post-Tx. We validated

CD8+ T cell phenotypes in a cohort of 31 PCR+ KTRs and their

propensity score-matched 31 PCR- KTRs by flow cytometry and

identified a CD28lo KLRG1hi CD127lo HLA-DRhi cluster using

FlowSOM unsupervised clustering (Figure 5A). Similar to single-

cell clusters EM-c11 and TE-c0, flow cytometry-validated CD28lo

KLRG1hi CD127lo HLA-DRhi cluster consisted of EM and TEMRA

cells and was less frequent in R+ PCR+ patients at BL compared to R

+ PCR- group (p =0.0163) and showed significant expansion over

time post-reactivation (p =5.77E-04) (Figures 5A, B). To determine

whether these cells may be functionally active in controlling CMV, we

assessed CMV-induced cytokine and chemokine secretion by

stimulating patient PBMCs with CMV peptides and correlated

their concentrations with cluster proportion of CD28lo KLRG1hi

CD127lo HLA-DRhi cluster (Figure 5C). CMV-stimulated effector
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cytokine IFN-g (p =0.0494) and TNF-a (p =0.0358) secretion was

strongly correlated with CD28lo KLRG1hi CD127lo HLA-DRhi cluster

proportion in R+ PCR+ KTRs (Figures 5C, D, F). R+ PCR+ patients

had suppressed production of IFN-g in response to CMV at BL, yet

the recall response recovered, increasing significantly from BL to LT

(p =0.002) (Figure 5E). TNF-a production showed similar trends

over time, with significantly lower capability at BL (p =0.0476)

compared to PCR- group (Figure 5G). Chemokines MIP-1a
(CCL3) and MIP-1b (CCL4) secretion also strongly correlated with

CD28lo KLRG1hi CD127lo HLA-DRhi cluster proportion in PCR+

patients alone (MIP-1a: p =0.0262; MIP-1b: p=0.0043) and in all

patients (MIP-1a: p =0.0416; MIP-1b: p=0.0031) (Figures 5C, H, J),
and their longitudinal trends were like IFN-g and TNF-a, although
not statistically significant (Figures 5I, K).
4 Discussion

In this study, we delineated CD8+ T cell diversity and dynamics

in response to CMV infection in KTRs by interrogating the

transcriptional identities of CD8+ T cells at the single-cell level

and determined the genes responsible for their positioning along

the pseudotime trajectory from naïve to highly differentiated states.

Our results showed that CD8+ T cell phenotypes form a continuum

largely influenced by CMV exposure, both historical and current.

Within this continuum we identified expansion of cells with MAIT

cell signatures after CMV primary infection and cell trajectories

leading to LLEC (L1) and senescent-like cell (L2) expansion after

CMV reactivation. Along L1, CD28lo KLRG1hi IL7Rlo HLA-DRhi

CD8+ T cells present in R+ patients prior to detection of viremia

may act as a critical line of defense against CMV reactivation and

serve as a source of LLECs for long-term viral surveillance in those

who developed an infection, supported further by flow cytometry

profiling of the complete cohort.

Our data revealed clear transcriptional differences of CD8+ T

cell differentiation based on history of CMV infection. After

primary infection, transcription factors that facilitate proliferation

and effector-memory differentiation were not upregulated acutely

or at long-term post-viremia. While one week might be too early for

effector-memory differentiation to occur in naïve T cells, the

absence of such signatures one year later still suggested

obstructed T cell activation, providing transcriptional evidence of

the lack in efficient generation and maintenance of CMV-specific

memory response. Our data is consistent with other reports

showing a lack or impaired cellular immunity to CMV in D+R-

transplant recipients (50). In another study 30-40% of R- patients

had CMV-responsive CD8+ T cells, yet the mean frequency of IFN-

g+CD137+CD8+ T cells was only 0.05% in R- compared to 0.64% in

R+ patients (51). On the contrary, in a study of 11 R- patients, the

authors reported CMV-specific T cell responses that were strong

and comparable to R+ patients (52). While these data differ from

ours and listed sources, it is possible that patient-to-patient

variability in this small cohort could have influenced the results.

The inability of R- patients to generate CD8+ T cell memory is

likely due to a combination of CMV prophylaxis and maintenance
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immunosuppression. A recent study in D+R- liver transplant

recipients compared those receiving preemptive antiviral therapy

(PET) versus prophylactic antiviral therapy (PRO) and found lower

proportions of polyfunctional CD8+ T cells in PRO group at 3, 6

and 12-months post-Tx (53). In addition, calcineurin inhibitors, a

widely used component of immunosuppressive therapies, are more

effective in preventing activation of naïve T cells than pre-existing

memory T cells (54, 55). Interestingly, clusters with MAIT cell

signatures at T-stage development with transcriptomic profiles
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similar to CM/EM clusters were found to be expanded LT post-

primary infection. MAIT cells are considered as ‘innate-like’ due to

their monomorphic MHC class I-related (MR1) molecule-restricted

T cell receptor (TCR) and rapid response to bacterial and fungal

antigens, and they can be activated independently of TCR through

inflammatory cytokines IL-12, IL-15 and IL-18 (56–58). No

functional role of MAIT cells has been established in CMV

infection, but their frequency has been shown to be lower in

CMV R+ healthy donors with high CMV antibodies compared to
FIGURE 5

CD28lo KLRG1hi CD127lo HLA-DRhi cluster frequency and correlation with CMV control. (A) Flow cytometry was performed on PBMCs of 31 PCR+
and propensity score matched 31 PCR- KTRs to profile CD8+ T cells. Live CD3+CD8+ T cells were subject to unsupervised clustering (FlowSOM)
and projected onto t-SNE. Expression levels of selected markers were highlighted for the cluster of CD28lo KLRG1hi CD127lo HLA-DRhi phenotypes.
(B) Longitudinal frequencies of the CD28lo KLRG1hi CD127lo HLA-DRhi cell cluster of R+ PCR- patients (orange) at BL (n=24) and LT (n=24) and R+
PCR+ patients (pink) at BL (n=18), 1W (n=21), 1M (n=24) and LT (n=12). Error bars indicated standard error of mean (SEM). P-values comparing PCR-
and PCR+ patients at BL and LT were determined by Mann Whitney test; Change over time after viremia in PCR+ patients was determined by mixed-
effect linear regressions with patient identity as a random effect. (C) PBMCs were stimulated with CMV peptides or left unstimulated in 8 hours.
Secretomes were analyzed using human 38-plex Luminex. Concentrations of analytes were correlated (Spearman) with proportions of CD28lo

KLRG1hi CD127lo HLA-DRhi cell cluster in all R+ patients and PCR+/- patients separately. Correlation coefficients were colored in heatmap and p-
values were annotated as asterisks. (D) Correlation of concentrations of CMV-stimulated IFN-g secretion with CD28lo KLRG1hi CD127lo HLA-DRhi cell
cluster frequency and their concentrations at longitudinal levels (E). Correlations and longitudinal frequencies were depicted similarly for (F, G) TNF-a,
(H, I) MIP-1a and (J, K) MIP-1b. Significance levels as defined in Methods.
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low-levels of antibodies, and in R+ HSCT recipients with high-level

CMV reactivation compared to low-level reactivation (59–61).

Although it is unknown whether MR1 can present CMV

antigens, one study described immune evasion of CMV by

downregulating MR1 in vitro (62). Given that MAIT cells may

play a role in antiviral response, further evaluation of their

abundance and functional properties in the context of CMV

infection is required.

In R+ patients, we identified and validated CD28lo KLRG1hi

CD127lo HLA-DRhi CD8+ T cells as a key feature distinguishing

patients who did or did not develop detectable reactivation. These

cells had higher frequencies at BL in PCR- than PCR+ groups and

strong correlation with patients’ ability to produce IFN-g and TNF-

a in response to CMV stimulation, signatures of polyfunctionality

of CD8+ T cells, and CCL3 and CCL4, chemoattractants that recruit

act ivated CD8+ T cel ls (63, 64) . In murine models ,

KLRG1hiCD127lo cells have been termed as short-lived effector

cells (SLECs), which are transient populations that achieve memory

inflation by continuous replenishment (65). Later, this concept was

challenged by the discovery of LLECs, which displayed a similar

KLRG1hiCD127lo phenotype and were capable of immediate

cytotoxic effector functions, but remained long-lived in mice and

human (66, 67). The cells we identified suggest that both theories –

SLEC-driven memory inflation and LLEC-mediated long-term

cytotoxicity – can coexist as a result of CMV infection, as our

data support the concept of T cells existing along a continuum of

differentiation. Within this continuum, KLRG1+ cells differentiate

along the trajectory with increasing expression of terminal effector

markers. Additionally, the evidence of TE-c0 long-term contraction

and the pseudotime trajectory analysis suggest that this population

can differentiate into later-stage TE-c6 and TE-c21, continuously

replenishing them over time. The result is the continual expansion

of TE-c6 and TE-c21, which were found at high frequencies one-

year post-Tx. This dynamic supports a model where KLRG1+

progenitor cells not only provide immediate cytotoxic functions

as SLECs but also contribute to the sustained pool of LLECs.

Consistent with features of long-lived effector CD8+ T cells

induced by CMV described in the literature, cell clusters along L1

exhibit potent cytolytic potential with increasing transcription

factors ZEB2 and ZNF683 (Hobit), both of which are markers of

terminal differentiation (68). Studies in mice have defined ZEB2 as a

transcriptional repressor that drives CD8+ T cells towards a fully

functional, terminally differentiated cytotoxic state while limiting

the generation of memory subsets (37, 38). Hobit, a homolog of

Blimp-1, has been reported to express in quiescent state CMV-

specific effector CD8+ T cells capable of immediate IFN-g
production in humans (69). Together, CD8+ T cells persist at

terminal stage of effector differentiation for an extended period

even in the absence of clinically detectable CMV. In contrast, acute

1W expansion followed by long-term contraction of L2 clusters

EM-c19 and TE-c13 suggests different transcriptomic programs.

With high expression of genes associated with cell cycle arrest and

defective killing abilities reflected by higher GZMK profile versus

GZMB and GNLY, these cells aligned with characteristics of cellular

senescence (reviewed in (67)). In addition, these cells have relatively

high ZNF331 and low ZNF683 expression compared to cell clusters
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with similar levels of differentiation. One study reported ZNF331

expression in T cell clusters in breast cancer with resident effector

memory phenotype co-expressing regulatory elements that may

involve in cell cycle regulation and upregulating GZMK over GZMB

and PRF1, aligning with our observations (70). With limited

information on ZFN331, it remains unclear whether these cells

expand in an antigen-dependent manner, to what extent they can

contribute to antiviral immunity and whether their limited

cytotoxic activity is a result of immunosuppression. Identifying

the interaction partners of ZNF331 and ZNF683 in T cells and

exploring the genes regulated by these transcription factors will

enhance our understanding of the heterogeneity of CMV-induced

CD8+ T memory recall response of R+ patients.

Current strategies to mitigate late-onset CMV infection or

disease include risk stratification based on D/R CMV serology

mismatch, clinical monitoring of DNAemia and/or assessment of

absolute lymphocyte count or CMV-specific cell-mediated

immunity (CMI) pre-transplant or at the termination of CMV

prophylaxis (71–74). The presence of CD28lo KLRG1hi CD127lo

HLA-DRhi CD8+ T cells prior to detection of viremia may serve as

additional key biomarker for predicting which patients are likely to

resist or develop CMV infection, potentially guiding early care and

treatment strategies. The observations that they are not end-stage

effectors, but instead retain the potential to establish long-lived

capabilities, make them an ideal model for designing adoptive

transfer strategies using engineered cells in patients that are

vulnerable to refractory CMV infection. However, it is important

to note that these cells are generated by prior CMV exposure in R+

patients, limiting the applicability of this approach in R- patients.

This study highlighted potential new and important findings

related to CMV-mediated CD8+ T cell differentiation in KTRs and

practicality of using immunophenotyping to predict CMV viremia,

but limitations remain. First, although the single-cell experiments

were performed on propensity matched KTRs to control for patient

heterogeneity and we validated cell phenotypes identified in the

single-cell experiment using flow cytometry in the larger, complete

cohort, expanding the number of participants in future studies will

be beneficial. In addition, while our KTR cohort all followed

standard immunosuppressive regimen, the duration of

prophylaxis varied based on CMV serostatus and could have

affected the CD8+ T cell response observed. Despite smaller

sample size, longitudinal trends of immune profiles and

functionality and their associated transcriptomic signatures align

with other studies in transplant (4, 15, 51, 53, 60, 68). Second, the

measure of the cytokine secretome of PBMCs responding to CMV

peptide stimulation may be confounded by immune cells other than

CD8+ T cells. To overcome it, CMV peptide pools were designed to

encompass the most immunodominant T cell antigens and exclude

those that activate NK receptors. Additionally, we used a relatively

short stimulation (8 hours), to preferentially assess CD8+ T cell

memory response. Third, while our study primarily focuses on the

effects of CMV – the most common virus encountered by transplant

recipients – on CD8+ T cells, it is important to acknowledge that

other viruses, such as Epstein-Barr virus (EBV), herpes simplex

virus (HSV), and BK polyomavirus could also drive differences in

CD8+ T cells. We recognize this as a limitation and associated the
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key CD28lo KLRG1hi CD127lo HLA-DRhi CD8+ T cell population

with measurements of CMV-induced cellular immunity to

underscore the unique impact of CMV. Whether similar CD8+ T

cell phenotypes could be observed in response to other viruses

remains an open question that warrants investigation.

In conclusion, CMV infection induces a continuum of

transcriptionally diverse CD8+ T memory cells across time.

Notably, persistence of immunity to CMV in R- KTRs

experiencing primary infection was significantly impaired, and in

R+ KTRs CMV reactivation control was associated with increased

frequency of CD28lo KLRG1hi CD127lo HLA-DRhi CD8+ T cells,

which have the potential to differentiate into long-lived effector cells

to provide durable immunosurveillance. Our data provided

transcriptional insights into CD8+ T cell differentiation along

different trajectories and underscore the possibility of using

cellular markers to predict viremia onset.
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