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ABSTRACT OF THE DISSERTATION

Kinetic Plasma Simulation: Meeting the Demands of Increased Complexity

by

Adam Ryan Tableman

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Warren B. Mori, Chair

This dissertation concerns the development and use of numerical simulation techniques

for studying nonlinear plasma systems in which accurate representations of the electron

distribution function are required. The kinetic description of the electrons is accomplished

via two different simulation modalities: the code OSHUN, which directly solves the Vlasov-

Fokker-Planck (VFP) partial differential equation, and the code OSIRIS, which uses the

particle-in-cell (PIC) method including an option for a separate Monte Carlo collision model.

The dissertation consists of ten chapters that are based on reprints of refereed publications

that describe the development and use of OSHUN and OSIRIS. The increasing complexity

of today’s computers necessitates an increase in the complexity of software to take full

advantage of the available computing resources. This requires that software be engineered

properly to ensure correct functioning and to enable more developers to contribute. The

dissertation includes examples of the creation — that is, combining new and novel algorithms

with software engineering techniques — and novel usage of simulation software packages

capable of exploiting the power of today’s computers to enable new capability and discovery.

OSHUN includes relativistic corrections to the Vlasov equation but uses a non-relativistic

description for the collision operator. The fields can be advanced in time using the full set

of Maxwell’s equations explicitly, just the electrostatic fields, or an implicit set of equations
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that includes Ampere’s law without the displacement current. An arbitrary number of spher-

ical harmonics can be included permitting efficient studies of physics when the distribution

function is nearly in or far from equilibrium. This can drastically reduce the computational

cost when only a few spherical harmonics are required. OSHUN was tested against a variety

of problems spanning collisional and collisionless systems including Landau Damping, the

two stream instability, Spitzer-Harm, and Epperlein-Haines heat flow coefficients in warm

magnetized and unmagnetized plasmas. It was also used to explore how the heat flow in

the laser entrance hole could modify Stimulated Raman Backscatter in Inertial Confinement

Fusion relevant plasmas.

New numerical/algorithmic techniques where implemented in the PIC code OSIRIS. In

particular, new software engineering techniques facilitated the addition of an algorithm which

uses PIC in the r-z coordinates system with a gridless description in the azimuthal angle φ.

The fields, equations, and current are decomposed into an azimuthal mode, m, expansion.

This Quasi-3D description permits 3D simulations at a drastically lower computational cost

(approaching the cost of 2D simulations) in systems that exhibit nearly azimuthal (cylindri-

cal) symmetry. This capability was used to examine laser wakefield acceleration (LWFA). It

was used to verify scaling laws for LWFA in a nonlinear, self-guide regime. The Quasi-3D

algorithm was coupled to an independently developed module in OSIRIS that allows simu-

lation of LWFA in a Lorentz-boosted frame. Doing the calculations in this frame yields a

computational savings that scales as γ2 (where γ is the Lorentz boost factor) which typically

ranges from 100 to 100,000 in the systems under consideration. These modules required the

development of novel field solvers and current deposition algorithms to eliminate a numerical

instability called the Numerical Cerenkov Instability (NCI). These were added to OSIRIS

using the new software engineering techniques now possible with Fortran 2003.

OSIRIS was updated to utilize the Graphics Processing Units (GPUs) present in exascale

systems like the Summit supercomputer recently built at the Oak Ridge National Laboratory.

A GPU version of OSIRIS was used to examine the interactions of Laser Speckles from

Stimulated Raman Scattering (SRS). It was found that speckles can mutually interact via
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scattering light, plasma waves, or non-thermal electrons transporting from speckles above

threshold from SRS. This can trigger SRS in speckles that were below threshold.

Efforts towards the ultimate (and ongoing) goal of fully integrating the Quasi-3D, Lorentz-

boosted frame, and GPU modules is described. When combined, these modules have the

potential speed up 3D laser-plasma simulations by immense factors of ≈ 1e6 or more.
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CHAPTER 1

Introduction

This dissertation is an anthology of published papers that directly use the work I conducted

as part of my doctorate research. They can be roughly divided into two categories. The first

3 papers concern work done involving the Vlasov-Fokker-Planck (VFP) code OSHUN. The

last 7 papers concern work done involving the particle-in-cell code OSIRIS.

OSHUN

The first version of OSHUN was written by my collaborator Michail Tzoufras in the language

C++ during his time as a postdoc at Oxford under the tutelage of A. R. Bell. I began working

with Michail when he later came to UCLA as a postdoc. The paper reprinted in Chapter 2

of this thesis [5] show some of the work I did with Michail. In particular, I helped him write

the prose of the article, setup and run some of the physics simulations used as examples, and

did the work on obtaining a Courant–Friedrichs–Lewy (CFL) condition for OSHUN (which

in practice means finding the CFL for the isotropic part of the collision operator... the CFL

gives a region of allowed parameters where stable, valid results can be expected). After this

paper, I spearheaded a rewrite of the C++ code - Version 2.0. The old code base used the

C++ Standard Template Libray (STL) for all it’s data access which is the ’recommended’,

’correct’, and ’generalized/abstracted’ way to write C++ code. Previous experience had

tought me to not trust STL — especially with numerical code. Replacing STL, amoung

other architectural changes, netted a factor 10,000 speed up of the code - making much

larger runs and simulating more far reaching physics possible. I also added was a GPU

version of the collision operator, yielding even more speed increase.
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During this time, I constructed a 1D pure python version of OSHUN that was intended

to have all the physics of OSHUN but be much simpler to use off-the-shelf for new users

and much simpler (then the optimized c++ code) to understand and add/test new physics

modules. I used this code to develop/test a new collision module that allows for a moving

ion species. This version has been used by various researchers as an introduction to OSHUN

and for smaller scale simulations. It has also been used by students to explore basic plasma

physics.

Also, during this time, I tackled the key - and often overlooked, unfortunately - issue of

validating the code against real physics benchmarks. To this end, I created a suite of test

cases which simulated various foundational plasma physics problems whose results which

could be compared against theory in order to validate OSHUN’s calculations. This suite

was such that it was easy to run so that the code could be continuously checked for physics

mistakes and programming errors. While setting up these physics test cases, I decided

that we needed to include one of the most classic (and uniquely) plasma plasma physics

problems: Landau Damping. This necessitated adding electrostatic field solver, wave driver,

and Poisson solver modules into OSHUN. The results for Landau Damping were especially

gratifying and where used as the basis for the work reprinted in Chapter 4[7].

Michail and I always had in mind that OSHUN should be usable in the wider scientific

community by other researchers. Lab-mate Ben Winjim became the first person outside

Michail and I to use OSHUN — our first ’client’ as it were. I worked with Ben extensively to

teach him how to use OSHUN, how to setup the simulations of the physics he was interested

in, and as a test subject to see what pitfalls new users would face using OSHUN (Ben was

extremely patient and helped me finds lots of pitfalls which I would semi-embarrassingly and

dutifully fix). Ben began using OSHUN in his research, one result of which is seen in the

work he and I did in designing, setting up, and running the OSHUN simulations seen in the

reprint which makes up Chapter 3 of this dissertation[6]

Archis Joglekar came to UCLA as a postdoc and began to work with OSHUN. Ben and

I worked with him extensively getting him trained on the usage and codebase of OSHUN.
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The reprint seen in Chapter 4[7] of this dissertation is the result of Archis’s very good work

which extends the OSHUN Version 2.0 code-base (including GPU support) and the initial

work I had done applying OSHUN to the Landau Damping problem.

OSIRIS

Describing in detail all of the work I did in the OSIRIS code-base would take us outside the

bounds of this introduction. Much of it – in fact – is not described within the anthology

of reprints that makes up this dissertation. Rather, it is codified in the living, working

code-base of OSIRIS. I will concern myself here with describing the portion needed to give

a context/central thread to the work described in this dissertation.

One highlight of my work during graduate school was the version of Osiris I wrote in

2013 which makes use of Graphics Processing Units (GPUs) — my GPU code gave OSIRIS

an approximate factor of 100 speed increase. As I wrote the GPU code, I wanted to ensure

that it wasn’t just a toy code or shallow bragging point about the speed of OSIRIS that

could only run selected, simple benchmark cases. Ben Winjim (once again.. thanks Ben!)

was my ’test case’.. for his work, he wanted to examine the interactions of Laser Speckles

from Stimulated Raman Scattering (SRS). This problem provided a perfect large, real world

physics application and I used it as my base test case/benchmark. The results of this work

are detailed in the reprint which makes up Chapter 11 of this dissertation.

Programming GPUs can be quite challenging on its own, but equally as challenging were

the issues of integrating such a complicated feature into the OSIRIS code-base. OSIRIS

was already a complicated piece of software... adding the GPU - or any sufficiently complex

- module to OSIRIS was more then the infrastructure could bare, resulting in convoluted,

mistake-prone, and unmaintainable code. In short, OSIRIS had outgrown itself.

This need to update OSIRIS was made manifest as I began work with lab-mate Asher

Davidson. As part of his graduate work, Asher began implementing the quasi-3D module.

This module implements an r-z coordinate system with a gridless description in the azimuthal

angle φ. Working off my experience adding GPU support, I worked with Asher extensively in
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the design and implementation of the structure of his code so it could fit within OSIRIS while

remaining as clear and maintainable as possible. I also helped with one of the most tricky

parts of adding new numerical simulation physics to any code — validation. By validation I

mean, in particular, choosing the best, most useful tests to make sure the code is doing what

it should (this is a process that requires experience and taste and it’s easy to get lost here.

One of the more straightforward examples of this trickiness: working around the vicissitudes

of finite precision floating point arithmetic especially when comparing results). The results

of this work are detailed in the reprint which makes up Chapter 5 [8].

As I worked with Asher, I took note of his difficulties (as an example of a student physicist

and using his experience as an example of the difficulties other grad students might face when

adding to OSIRIS) and adding his experience to mine, began designing a new structure for

OSIRIS. In late 2015, formal work began with Ricardo Fonseca (OSIRIS’s principle author)

and I co-designing the updated structure of this new OSIRIS - version 4.0. By mid to late

2016, principle coding on version 4.0 was complete and the codebase was mature enough

(i.e. we were confident it made proper physics and met it’s design goals) that we ’opened the

doors to the public’ — ending official future development of 3.0 and officially encouraging

users to switch to the new version. OSIRIS 4.0 represents a synthesis of lots and lots and lots

(from the important big picture to the small details) of the knowledge I learned in graduate

school and it is gratifying to see it out in the world being used.

Asher’s Quasi-3D module was the exemplar case Ricardo and I used while hacking out

OSIRIS 4.0’s design. After 4.0 was prêt-à-porter, I worked with Asher to port his Quasi-3D

code from OSIRIS 3.0 to OSIRIS 4.0. Part of this process was re-validating the physics

and ensuring correctness. This is part of the work that is behind the reprint that makes up

Chapter 6[9] of this dissertation.

During this time (beginning in 2015), I also began working with lab-mate Peicheng Yu

as he worked to add a module to OSIRIS which enables simulations — particularly Laser

Wakefield Acceleration (LWFA) — in a Lorentz-boosted frame where the plasma moves

towards the laser. I worked with Peicheng to integrate his module in OSIRIS 3.0 (and later
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into 4.0). I also worked with him on a number of issues relating to his project. I added the

Fast Fourier Transform that his work requires into OSIRIS taking special care to abstract

out (i.e. make easier to use) the various niggling details that the-care-and-feeding-of-FFTs

requires. This FFT work was especially challenging since Peicheng’s code primarily uses 1D

FFTs which are notoriously difficult to use in parallel computing systems (like the one we

use: MPI) in such a way to get good performance. What follows is not a scientific statement

but here it goes: some of the physics from Peicheng’s module felt a touch ’off’.. real numerics

can get messy and floating point always muddies things a bit.. but things felt more muddy

then I would expect. This led me to tracking down a pervasive (and startlingly easy to

make) mistake that we had in our Fortran code when dealing with complex numbers (luckily

complex numbers were not heavily used in most of OSIRIS so this issue was not seen too

often) that would cause a halving of precision. I also worked with Peicheng on issues related

to diagnostics (’diagnostics’ is the term borrowed from experiment given to the actual data

that we write out for the user to look at). Peicheng’s method calculates in a Lorentz frame..

but usually (most times) we want to see results in the lab frame, which requires a boost

back to the lab frame. The challenge comes from the structure of the Lorentz transform

(i.e. the mixing of space and time) which requires that data from multiple times steps be

used to reconstruct the a single time-step of lab frame data. OSIRIS, in general, did not

support keeping multiple time step’s worth of data in memory (and writing such data to

disk is very expensive so is not an option). I also worked with Peicheng on some details of

his scheme - in particular optimization of the windowing function he uses in Fourier space

and the strange (unresolved at this point) behavior that if his filtering technique is applied

to OSIRIS’s current density (the current density is then directly used to solve for the E/B

fields) things work well.. but if the same method is applied to the fields DIRECTLY, the

whole simulation becomes garbage (the fields become unstable) within a small number of

time-steps. This work is part of what makes up the reprint that is Chapter 7[10] of this

dissertation. Peicheng’s method was later extended by lab-mate Fei Li. Fei constructed a

finite-difference (versus FFT) version of Peicheng’s method. The help I gave Fei in integrating

his work into OSIRIS is part of what makes up Chapter 10[13] of this dissertation.
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Synthesis is Future

Peicheng had a dream. A crazy dream at the time (2015). He called it H3O (I had wanted

to call it in nomine Patris et Filii et Spiritus Sancti — his name is better ).

His dream — to combine GPU, Quasi-3D, and Lorentz Boosted frame — became my

dream. This could yield a factor 1e6 or more speed up for LWFA runs (roughly, GPU gives a

factor of 100, Quasi-3D a factor 100, and boosted frame a factor γ2 — where γ is the Lorentz

boost factor — typically ranging from 100 to 100,000). This would be amazing... allowing,

for example, unprecedented parameter scans to optimize LFWA runs.

I worked with Peicheng on his boosted frame code with H3O in mind (and indeed H3O was

part of what drove my work to create OSIRIS 4... since only a new software infrastructure

would be able to support the unification of these modules). I continued working with him as

he united two of the three modules, Quasi-3D + and Lorentz boosted frames. This work is

part of what went into the reprints which make up Chapter 8[11] and Chapter 9[12] of this

dissertation.

I leave my PhD with H3O not yet completed. The final addition of the GPU code remains

undone. But this is a great avenue for future work.
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To study the kinetic physics of High-Energy-Density Laboratory Plasmas, we have developed

the parallel relativistic 2D3P Vlasov-Fokker-Planck code OSHUN. The numerical scheme uses a

Cartesian mesh in configuration-space and incorporates a spherical harmonic expansion of the

electron distribution function in momentum-space. The expansion is truncated such that the

necessary angular resolution of the distribution function is retained for a given problem. Finite

collisionality causes rapid decay of the high-order harmonics, thereby providing a natural

truncation mechanism for the expansion. The code has both fully explicit and implicit field-solvers

and employs a linearized Fokker-Planck collision operator. OSHUN has been benchmarked against

well-known problems, in the highly kinetic limit to model collisionless relativistic instabilities, and

in the hydrodynamic limit to recover transport coefficients. The performance of the code, its

applicability, and its limitations are discussed in the context of simple problems with relevance to

inertial fusion energy. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4801750]

I. INTRODUCTION

A. Ubiquity of kinetic effects in laser-ablated plasmas

The transport of electrons through ionized matter is a

basic science and engineering problem, with applications

ranging from fusion plasmas, to astrophysics, to semiconduc-

tor technology. In each case, one needs to employ a model

that incorporates the essential physics of the background ma-

terial and the laws that govern its interaction with the flow of

electrons. The main challenge in developing an accurate sim-

ulation capability is finding a simple enough set of rules that

retains the pertinent features of the interaction, because a full

description of the microscopic physics of individual electron

trajectories for large spatial and temporal scales is not cur-

rently feasible even on the world’s largest computers.

Furthermore, even if such calculations become possible they

will not be the most efficient way to study the microphysics

for many scenarios.

Laser-ablated plasmas typically involve materials with

maximum density in excess of solid, that is, 1023 cm�3,

ionized by sub- lm, pico-second to nano-second pulses. Laser

energy is absorbed in the under-dense corona up to the

critical density, nc ’ 9:0663� 1021 cm�3 � ð0:351 lm=k0Þ2,

where k0 is the laser wavelength, and then conducted deeper

in the target by electrons. To a first approximation, the plasma

can be described as a fluid and heat conduction can be consid-

ered a local diffusion process that obeys Fourier’s law,

Qe ¼ jSHrTe, where Qe is the heat flux and jSH the effective

heat conduction coefficient calculated by Spitzer and H€arm

for a fully ionized plasma.27 This is a straightforward and

attractive approach, but it assumes that the electron distribu-

tion function remains Maxwellian everywhere and that the

scale-length of the electron temperature is long compared to

the collisional mean free path.

Non-Maxwellian distributions are, however, prevalent

in HEDLP. For example, even for moderate intensities, laser

absorption due to inverse bremsstrahlung is associated with

the Dum11,12-Langdon19-Matte23 distributions. For higher

intensities, the absorption is dominated by parametric insta-

bilities which produce distributions with high-energy tails. If

the intensity increases further more exotic mechanisms can

occur, that cause extreme distortions to the electron distribu-

tion. Meanwhile, even in a fully Maxwellian plasma, the

presence of a steep temperature gradient generates non-

Maxwellian features as energetic particles outrun the slower

ones. Moreover, these kinetic phenomena do not appear in

isolation; the distribution function generated from the

absorption of an intense laser pulse determines the character-

istics of the electron transport and vice-versa.

B. Vlasov-Fokker-Planck modeling for non-Maxwellian
plasmas

1. The Vlasov-Fokker-Planck equation

When the correlations between the fluctuating fields are

small, the evolution of a distribution of charged particles

f ðr; p; tÞ can be described by the Boltzmann equation

@f

@t
þ v � @f

@r
þ q Eþ v

c
� B

� �
� @f

@p
¼ df

dt

� �
c

; (1)

where E and B represent the ensemble-averaged fields and
df
dt

� �
c

the change in the distribution function due to colli-

sions. For a collisionless plasma, one can set ðdf
dtÞc ¼ 0 to

a)Paper YI2 3, Bull. Am. Phys. Soc. 57, 369 (2012).
b)Invited speaker. Electronic mail: mtzoufras@physics.ucla.edu.
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obtain the entropy-conserving Vlasov equation. In a plasma

with large number of particles in a Debye sphere

ND ¼ ð4=3Þnk3
D ¼ ð4=3ÞnðkBTe=4pnqÞ3=2 � 1, but not so

large as to render the plasma collisionless, the cumulative

effect of many distant interactions dominates the collision

operator which may be written as a conservation equation

df

dt

� �
FP

¼ � @

@v
� ½f hDvi� þ 1

2

@

@v

@

@v
: ½f hDvDvi�; (2)

where Dv is the velocity increment per unit time. This is the

Fokker-Planck collision operator. A compact expression for

this collision operator that is amenable to numerical solution

was derived by Rosenbluth et al.26 under the assumption that

changes in velocity are due to binary Coulomb interactions.

Substitution of the Fokker-Planck equation into Boltzmann’s

equation yields the Vlasov-Fokker-Planck equation

@f

@t
þ v � @f

@r
þ q Eþ v

c
� B

� �
� @f

@p
¼ df

dt

� �
FP

: (3)

This equation encompasses much of the kinetic physics of

interest to HEDLP, because it describes the evolution of an

arbitrary distribution function in the presence of both electro-

magnetic fields and small-angle binary collisions.

2. Exploitation of spherical geometry from VFP codes

Vlasov-Fokker-Planck codes solve Eq. (3) to simulate

the evolution of the electron distribution function, which is a

four- to six-dimensional quantity for a one- to three-

dimensional configuration-space, respectively. VFP simula-

tions, therefore, demand large amounts of computer memory

which, in practice, limits the number of time-steps that can

be taken. To get around this, some property of the system is

usually exploited, either to shrink the volume of the required

information or to solve a reduced set of equations and take

large time-steps (or both).

The “diffusive approximation” relies on angular scatter-

ing to maintain near-isotropy in momentum-space, while

relaxation to a Maxwellian is not assumed. The distribution

function may then be expressed as a sum of the isotropic dis-

tribution f0ðpÞ, where p � jpj, and a perturbation f 1ðpÞ multi-

plied by the direction cosines

f ðpÞ ’ f0ðpÞ þ
p

p
� f 1ðpÞ: (4)

Thus, the entire 3D momentum-space can be represented

with four 1D arrays, containing f0 and f 1. However, only

weakly anisotropic phenomena can be captured by this

scheme; any anisotropic physics must occur in time-scales

that are much longer than the characteristic time for momen-

tum isotropization due to electron-ion collisions, se{ ¼ se=Z

¼ 3
ffiffiffiffi
me
p ðkBTeÞ3=2

4
ffiffiffiffi
2p
p

nee4 ln K
. This stringent restriction on the shape of the

distribution notwithstanding, diffusive VFP simulations in

1D4,8,22,28 and 2D15–18,29 have been successful in revealing

many features of non-local electron transport.

The expansion to spherical harmonics, of which the dif-

fusive approximation is the first-order truncation, allows for

a complete representation of the electron distribution

function

f ðr; p; tÞ ¼
X1
‘¼0

X‘
m¼�‘

f m
‘ ðr; p; tÞP

jmj
‘ ðcos hÞe{mu; (5)

where f�m
‘ ¼ ðf m

‘ Þ
�; P

jmj
‘ ðxÞ are the associated Legendre pol-

ynomials, and we follow the same conventions as in

Tzoufras et al.,32 that is ðpx; py; pzÞ ¼ ðp cos h; p sin h cos u;
p sin h sin u). This expansion must be terminated for some

ð‘0;m0Þ such that the remainder of the series for ð‘ > ‘0;
or m > m0Þ is negligible.

Small-angle angular scattering yields a rate of decay

cd / ‘ð‘þ 1Þ=v3 for the amplitudes of the spherical harmon-

ics f m
‘ . Hence, convergence can be ensured for a given

momentum value as long as sufficient harmonics are

included. This property offers the key justification for using

the expansion (5). The more collisional the plasma, and the

lower the momenta of interest, the fewer terms are required.

However, the truncated expansion becomes increasingly

brittle for large momenta, because for any specific spherical

harmonic the decay rate vanishes as v�3. To determine

ð‘0;m0Þ one must first decide what part of the momentum-

space is important, and then perform a convergence study

in this region. Hence, systems involving energetic particles

require a large number of terms in the expansion, even if

the bulk of the plasma is accurately described by the diffu-

sive approximation. This will be discussed extensively in

Sec. III.

3. Synergies between VFP codes and other kinetic
approaches

An accurate method for incorporating non-local electron

transport in a hydrodynamic framework is crucial to model-

ing laser-irradiated plasmas. Yet, after more than three deca-

des of research, a universally accepted model remains

elusive. In fluid codes, a flux limiter f < 1 is often intro-

duced to prevent the heat flux Qe due to a sharp temperature

gradient from exceeding the “free-streaming heat flux”

Qf ¼ neTevt, i.e., the flux that would result if all of the elec-

trons were to free stream at their thermal velocity

vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=me

p
. The heat conduction equation may then be

written as Qe ¼ fjSHrTe. This heuristic approach artificially

bottles up the hot-electron energy that would otherwise be

carried by non-local electrons far from the hot region.

Improved models rely on the convolution of the local heat

flux with a non-local kernel that may be derived analytically

or inferred from VFP simulations.13 This convolution

approach, formulated by Bell2 and first incarnated by

Luciani et al.,20 can capture features of both the flux inhibi-

tion and the preheat associated with hot electrons. However,

it is only strictly valid for small temperature variations and

for time-independent problems, which excludes virtually all

laser-irradiated plasmas. Application of such a non-local

transport model must therefore be properly justified, espe-

cially because different methods can exhibit markedly differ-

ent behavior outside the sanctioned regime.

The development of Vlasov-Fokker-Planck codes has

largely been driven by the imperative of providing an

056303-2 Tzoufras et al. Phys. Plasmas 20, 056303 (2013)
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accurate description for non-local heat conduction in Inertial

Confinement Fusion (ICF) plasmas (see Thomas et al.30 and

references therein). VFP codes can be used to benchmark the

non-local electron transport models, or to replace them alto-

gether, by adding a VFP species to a hydro code. The latter

may be an overkill, because it saddles the hydro code with a

powerful but computationally intensive kinetic code

“merely” to get the heat conduction right. The reverse is

more common, fluid ions can be incorporated into a VFP

code3 to facilitate kinetic simulations over timescales for

which ion motion can play a role.

Another way of incorporating kinetic effects into fluid

codes is using the Particle-In-Cell approach. Instead of

describing the plasma in terms of ensemble-averaged fields it

models a single ensemble of finite-size particles. A modified

collision operator exists for the interaction between finite-

size particles, such that a Boltzmann equation can be derived

following the standard methods for point particles, and ther-

mal fluctuations can also be calculated. Thus, PIC simula-

tions allow instabilities to grow from “noise.” Nevertheless,

when the Vlasov-Fokker-Planck Eq. (3) is the appropriate

representation of the plasma, VFP codes are an attractive

way of solving it, particularly in situations where the noise

source is not critical. Whereas VFP and PIC are complemen-

tary approaches, coupling the two is also possible. For exam-

ple, a PIC species of super-hot particles can be added to a

background of weakly non-Maxwellian plasma that is

described by the VFP equation.

Until recently, the ability to develop and apply VFP

codes had been limited due to the lack of computational

resources. The advent of parallel computer clusters in the

last decade, and especially the last few years, opens the way

for dispensing with assumptions on the shape of the distribu-

tion function and performing multi-dimensional VFP simula-

tions with highly structured momentum-space.

4. Status of VFP codes

The most common VFP codes are those that employ the

spherical harmonic expansion—or the formally equivalent

approach of the Cartesian tensor expansion—in momentum-

space. For the diffusive approximation, both the formalism

and numerical techniques are robust and well-tested and a

number of such codes are currently being used to study the

modification of electron transport due to non-local

effects.4,8,15–18,22,28,29

A more detailed representation of the distribution func-

tion requires the KALOS5 formalism which describes the

effect of advection and electromagnetic fields on each

spherical harmonic. The implementation of these equations

is considerably more involved than those in the diffusive

approximation, even in a fully explicit scheme. A code

based on this scheme was described in Tzoufras et al.32 and

will be further discussed here in the context of HEDLP. The

KALOS approach is also being applied to the study of

cosmic ray acceleration6 and a new multi-dimensional

hybrid MHD-VFP code, where the VFP species is used for

the cosmic rays, has been recently developed by Reville

and Bell.25

In contrast, fully Cartesian codes facilitate use of fast

algorithms, but because they do not attempt to utilize any

a priori knowledge of the underlying physics they demand

excessive computing power. Such a Cartesian Maxwell-

Fokker-Planck-Landau code has been developed by Duclous

et al.10 and is mostly used for validation purposes.

C. Outline

In this article, we discuss the VFP code OSHUN
32

In Secs. II A-II C, we briefly review the algorithms we pre-

sented in Tzoufras et al.32 Subsequently, in Sec. II D, we

present the new implicit method for the electric field, and in

Secs. II E-II F the heat-source implementations. Good prac-

tices for setting up and diagnosing the simulations are dis-

cussed in Secs. III A-III C, and the applicability of the code

is demonstrated with two examples in Sec. IV. Finally, in

Sec. V, we enumerate the main conclusions from this work.

II. FORMULATION OF THE NUMERICAL SCHEME

The KALOS formalism5 was developed to allow VFP

codes to model arbitrary momentum distribution functions.

In OSHUN we have implemented the full KALOS formalism

in 2D3P along with a rigorous collision operator.

A. The KALOS formalism of the Vlasov equation

The KALOS formalism exploits the orthogonality of the

spherical harmonics to derive a hierarchy of equations

@f m
‘

@t
�
X
{¼x;y;z

ðAm
‘;{ þ Bm

‘;{ þ Em
‘;{Þ ¼ Cm

‘ þ Sm
‘ ; (6)

where Am
‘;{; Bm

‘;{, and Em
‘;{ are expressions for the effects of spa-

tial advection, magnetic fields, and electric fields respectively

on the evolution of each amplitude f m
‘ . These expressions

were presented by Bell et al.5 (Additional terms can be added

on the left hand side to accommodate a mixed coordinate

frame.25) In formulating a fully explicit algorithm for Eq. (6)

we derived a set of operators that describe how each f m
‘

affects the other amplitudes.32 The algorithm in OSHUN scans

the space of spherical harmonics and applies these operators

to each f m
‘ . The computational cost is split between the advec-

tion and electric-field operators, with the magnetic field being

almost an order of magnitude cheaper. The time-step associ-

ated with this fully explicit scheme is limited by the need to

resolve plasma waves. In Sec. II D, we present an implicit

algorithm for the electric field that removes this constraint by

dropping the displacement current.

The first term on the right hand side of Eq. (6) incorpo-

rates the effect of collisions. OSHUN utilizes a semi-anisotropic

collision operator that has been implemented using a semi-

implicit scheme.32 The presence of collisions facilitates the

convergence of the spherical harmonic expansion by damping

the high-order terms.

A laser pulse can be simulated directly by adding exter-

nal fields to the left hand side of Eq. (6). This requires that

both the laser period and wavelength be resolved. For a laser

with wavelength k0 ¼ 0:351 lm one needs Dx 	 k0=30

	 12 nm and Dt 	 k0=ð30cÞ 	 1:2fsec=30 	 0:04fsec. These

056303-3 Tzoufras et al. Phys. Plasmas 20, 056303 (2013)
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parameters are several orders of magnitude smaller than any

other scale of interest in a typical laser-solid interaction.

Instead, we can incorporate the macroscopic effect of laser

heating by adding external source terms, i.e. Sm
‘ , to the right

hand side of Eq. (6). In this article, we present two such

terms, a phenomenological heat source in Sec. II E and an

inverse bremsstrahlung source in Sec. II F.

B. Maxwell’s equations

In the explicit scheme, we update the electromagnetic

fields from Maxwell’s equations

@B

@t
¼ �r� E; (7)

@E

@t
¼ r� B� J; (8)

where we have adopted the same normalizations as in Tzoufras

et al.,32 namely, t! xpt; r ! kpr; q! q=e; m! m=me;
v! v=c; n! n=np; fE;Bg ! efE;Bg=ðmecxpÞ where np

is the plasma density, xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2np=me

p
the plasma fre-

quency and k�1
p ¼ c=xp the skin depth.

C. The semi-anisotropic Fokker-Planck collision
operator

The Fokker-Planck collision operator for a distribution f
of particles with mass m and charge q ¼ ze scattering off a

distribution F of particles with mass M ¼ lm and charge

Q ¼ Ze can be written as

1

CzZ

df

dt

� �
¼ 4p

l
Ff þ l� 1

lþ 1

� �
�rHðFÞ � �rf

þ
�r �rGðFÞ : �r �rf

2
; (9)

where �r is the gradient in velocity space, CzZ ¼ 4pðzZe2Þ2
lnK=m2 and H;G the Rosenbluth potentials26 are integral

operators for F. This collision operator is fully nonlinear and

couples the amplitude of each harmonic to all of the other

harmonics.

In Tzoufras et al.,32 we linearized Eq. (9) assuming that

the distribution functions are weakly anisotropic. Writing the

distribution functions F; f as a sum of an isotropic part

F0
0; f 0

0 and an anisotropic perturbation ~Fa; ~f a; F ¼ F0
0 þ ~Fa;

f ¼ f 0
0 þ ~f a, Eq. (9) yields

1

CzZ

df 0
0

dt

� �
¼ 4p

l
F0

0f 0
0 þ

l� 1

lþ 1

� �
�rHðF0

0Þ � �rf 0
0

þ
�r �rGðF0

0Þ : �r �rf 0
0

2
; (10a)

1

CzZ

d~f a

dt

� �
¼ 4p

l
½F0

0
~f a þ f 0

0
~Fa� þ

l� 1

lþ 1

� �
½ �rHðF0

0Þ � �r~f a

þ �rf 0
0 � �rHð ~FaÞ� þ

�r �rGðF0
0Þ : �r �r~f a

2

þ
�r �rf 0

0 : �r �rGð ~FaÞ
2

: (10b)

Equation (10a) is nonlinear for the zeroth order amplitudes.

On the other hand, Eq. (10b) is linear for the high-order

amplitudes. These expressions are valid for any set of spe-

cies, not just electrons and ions, and enable the development

of a multi-species VFP code. OSHUN currently assumes

immobile ions, l!1, with a density profile determined by

Gauss’ law. For immobile ions, there are no self-collisions

and the electron-ion collision operator reduces to an expres-

sion for angular scattering

df m
‘

dt

� �
e;{;l!1

¼ � ‘ð‘þ 1Þ
2

� n{Ce{

v3
f m
‘ : (11)

Below we discuss self-collisions, i.e., F � f .

1. Isotropic self-collisions

A formulation of the isotropic part of the collision oper-

ator that can be discretized in way that conserves the non-

relativistic energy and number density integrals was derived

by Bobylev and Chuyanov7

df 0
0 ðvÞ
dt

� �
ee

¼ 4pCee

3

1

v2

@

@v

1

v

@Wðf 0
0 ðvÞ; vÞ
@v

� �
; (12a)

Wðf 0
0 ; vÞ ¼ f 0

0

ðv

0

f 0
0 u4duþ v3f 0

0

ð1
v

f 0
0 udu

�3

ð1
v

f 0
0 udu

ðv

0

f 0
0 u2du; (12b)

where ð4p=3ÞCee � ð4p=3Þ4pe4 ln Kee=m2
e . In Tzoufras

et al.,32 we normalized time to x�1
p , velocity to the speed of

light c, and the distribution function f to ne=c3, in order to

maintain the same dimensionless units as the Vlasov part of

the code. However, this normalization is awkward for a non-

relativistic collision operator, and yields an expression no

more enlightening than Eq. (12) itself. Here, we use the

dimensionless units t ¼ t=se ¼
�

3
ffiffiffi
m
p
ðkTeÞ3=2

4
ffiffiffiffi
2p
p

nee4 ln K

��1

t; v ¼ v=vt,

and f0
0 ¼ ½ne=ð

ffiffiffiffiffiffi
2p
p

vtÞ3��1f 0
0 . In these units, a Maxwellian

distribution with thermal velocity vt, becomes

fMðvÞ ¼ e�v2=2. Noting that ½sene=ð
ffiffiffiffiffiffi
2p
p

vtÞ3��1 ¼ ð4p=3ÞCee

Eq. (12) becomes

df0
0ðvÞ
@t

� �
ee

¼ 1

v2

@

@v

1

v

@Wðf0
0ðvÞ; vÞ
@v

� �
: (13)

This expression can be discretized directly and shown to

conserve E ¼
PN

n¼1 ðf0
0Þnv4

nDn and N ¼
PN

n¼1 ðf0
0Þnv2

nDn,

where Dn ¼ ðvnþ1 � vn�1Þ=2.

The cell-size in velocity-space is determined by the

need to resolve the coldest distribution in the system. In

laser-ablated plasmas, the lowest temperature is usually

found in the high-density region of the plasma, where the

heat capacity is large and the distribution function nearly

Maxwellian. Under these conditions the cell-size is usually

chosen Dv � 0:1vt;cold ) Dv � 0:1. If this Dv is sufficient in

the beginning of the simulation, f ðvÞ should remain well-

resolved thereafter, as the laser raises the temperature of the
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plasma. A CFL condition for Eq. (12) can be written as

DtCFL / ðDvÞ2. Using a 4th order Runge-Kutta scheme we

performed an extensive parameter scan and derived the ap-

proximate CFL condition34

Dtiso�FP � 0:3ðDvÞ2 () Dtiso�FP � 0:3
Dv
vt

� �2

se: (14)

Although this numerical scheme conserves the non-

relativistic integrals E and N, it does not conserve the fully

relativistic energy and number density integrals. When this

operator is used in conjunction with a fully relativistic

scheme for the Vlasov description, as is done in OSHUN,

energy and—to a lesser degree—density may not be con-

served exactly. In laser-ablated plasmas, this can affect the

under-dense corona which has low heat capacity and its tem-

perature can be raised by laser irradiation to values above

5 keV.

2. Anisotropic self-collisions

The anisotropic part of the collision operator (10b)

yields an expression for each of the amplitudes of the spheri-

cal harmonics.32 Including angular scattering and anisotropic

self-collisions the expression for f m
‘ becomes df m

‘ =dt

¼ ½M‘ðf 0
0 Þ �

‘ð‘þ1Þ
2
� n{Ce{

v3 I�f m
‘ , where the matrices M‘ðf 0

0 Þ are

linear functions of f 0
0 that depend on ‘, and I is the unit ma-

trix. Whereas the isotropic self-collisions are advanced sepa-

rately by solving equation (10a) we can calculate for each ‘

the matrix M‘ðf 0;½nþ1�
0 Þ to develop the implicit scheme

f
m;½nþ1�
‘ ¼ 1þ ‘ð‘þ 1Þ

2

n{Ce{Dt

v3

� �
I � DtM

½nþ1�
‘

� ��1

f
m;½n�
‘ ;

(15)

where M
½nþ1�
‘ denotes M‘ðf 0;½nþ1�

0 Þ. Because M
½nþ1�
‘ does not

depend on the m index, only ‘ matrices need to be inverted.

Finally we note that if the determinant of ð1þ ‘ð‘þ1Þ
2

n{Ce{Dt
v3 ÞI

�DtM
½nþ1�
‘ vanishes this indicates that Dt is too large to yield

realistic results. Dt � se{ is necessary to ensure accurate mod-

eling of electron transport.

D. Implicit solver for the electric field

Collisions in dense plasmas tend to damp high-

frequency waves. It is therefore common to drop the dis-

placement current from Ampère’s law, i.e., J ’ r� B, to

avoid having to resolve inconsequential high-frequency phe-

nomena including electromagnetic and plasma waves.

Moreover, in such plasmas, the conservation of charge guar-

antees quasi-neutrality r � J ¼ 0() @tq ¼ 0. For the nu-

merical scheme, this means that Ampère’s law becomes an

expression for updating the current, as opposed to the elec-

tric field

@B

@t
¼ �r� E½n�

� �
! B½nþ1�; (16a)

J½nþ1� ¼ r � B½nþ1�: (16b)

A separate expression is then required to update the electric

field. The fact that Eq. (16a) must be satisfied by the distribu-

tion function can be used to predict the electric field E½nþ1�

e{|kr|B
½nþ1�
k ¼ J½nþ1�

{ ¼ J½nþ1�
{ ð0Þ þ dJ{ðdE|Þ

dE|
� E½nþ1�

| ; (17)

where J½nþ1�
{ ð0Þ is the current in the absence of an electric

field, dJ{
dE|

a “conductivity” tensor which shows the effect of

electric field perturbations dE| on the current dJ{, and E½nþ1�
|

to be determined.35 Before discussing how Eq. (17) is to be

treated we remind that the current is directly connected to

the first order spherical harmonics

Jx ¼ �
4p
3

ð1
0

dp
p3

c
f 0
1 ; (18a)

Jy þ {Jz ¼ �
8p
3

ð1
0

dp
p3

c
<½f 1

1 � � {=½f 1
1 �

	 

: (18b)

To calculate J½nþ1�
{ ð0Þ we first complete the explicit part

of the calculation with E ¼ 0. This includes the effect of the

magnetic field and spatial advection on f, the collisions for

the isotropic part of f, and the heat source (if any). We denote

the resulting value of f as f ½nþ1�;expl? , where the “?” symbol

indicates that the effect of the electric field on f has been

omitted. We then apply the anisotropic part of the collision

operator to f 0
1 and f 1

1 to obtain ðf 0
1 Þ
½nþ1�ð0Þ; ðf 1

1 Þ
½nþ1�ð0Þ, and

therefore J½nþ1�ð0Þ from Eqs. (18).

For the conductivity tensor, we start from f ½nþ1�;expl? and

find the plasma response to three perturbations dE{ê{;
{ ¼ x; y; z. The electric field operators (expressions

(A1)–(A8) in Tzoufras et al.32) do not need to be applied to

all of the harmonics, just those that affect the values of

ðf 0
1 Þ
½nþ1�

and ðf 1
1 Þ
½nþ1�

. For a second order method, e.g., RK2,

these calculations will involve harmonics with ‘ 
 3 for the

first sub-step and ‘ 
 2 for the second. A map of the operator

applications for a second order scheme is presented in Fig. 1.

For dExêx we need to perform the operations on the top row

and then use the anisotropic part of the collision operator on

f 0
1 and f 1

1 to obtain J½nþ1�ðdExêxÞ. The process is repeated for

dE{ê{; { ¼ y; z to obtain J½nþ1�ðdEyêyÞ and J½nþ1�ðdEzêzÞ.
Substitution of the resulting tensor dJ{=dE| into Eq. (17)

yields

e{|kr|B
½nþ1�
k ¼ J½nþ1�

{ ð0ÞþJ½nþ1�
{ ðdE|Þ�J½nþ1�

{ ð0Þ
dE|

E½nþ1�
| : (19)

This is a 3� 3 system of equations for E½nþ1�. The final steps

are to use this electric field to update the entire distribution

function and then apply the anisotropic part of the collision

operator.

This algorithm imposes negligible computational cost,

and because it drops high-frequency waves it allows for large

time-steps to be taken. We typically choose the time-step on

the order of the collision time. In OSHUN the user can decide

between this scheme and the algorithm described in Secs.

II A-II C in the input file.
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E. Phenomenological laser source

To incorporate a phenomenological laser source we

assume that a portion 0 
 a < 1 of the distribution function

f ðtÞ is converted to a new “hot” distribution in a time interval

Dt, i.e., f ðtþ DtÞ ¼ afhotðtÞ þ ð1� aÞf ðtÞ, where the distribu-

tion fhotðtÞ can be specified by the user. The temperature rise is

then expressed as DT ¼ Tðtþ DtÞ � TðtÞ ¼ a½ThotðtÞ � TðtÞ�.
For a specified heat-source profile, the deposition of energy

DE{ in each cell “{” causes a temperature rise equal to

DT{ ¼ DE{=ðn{V{Þ, where n{ is the local density and V{ the cell

volume. This yields the local value for a{ ¼ DE{=
½n{V{ðThot;{ðtÞ � T{ðtÞÞ�. We usually assume that fhotðtÞ is a

Maxwellian with temperature determined from the local laser

intensity.

F. Inverse bremsstrahlung operator

The inverse bremsstrahlung source associated with a

dipole electric field EðtÞ ¼ E0 cosðx0tÞ can be written as19

@f 0
0 ðvÞ
@t

¼ A

3

vos

v

� �2 @

@v

gðvÞ
v

@f 0
0 ðvÞ
@v

� �
; (20)

where gðvÞ ¼ ½1þ ðvx=vÞ6��1; A ¼ 2pn{Z
2 e4

m2
e

log Ke{; vos

¼ eE0=ðmex0Þ, and the coefficient vx is determined from the

expression �e{ðvxÞ ¼ A=v3
x ¼ x0=2. To simplify Eq. (20),

we assume a quasi-neutral plasma ne ’ Zn{ and

log Ke{ ’ log Kee. Using dimensionless velocity v ¼ v=vt

(and vos ¼ vos=vt) and time t ¼ t=se, and substituting

A ¼ 3v3
t ð

ffiffiffiffiffiffiffiffi
p=8

p
ÞðZ=seÞ into Eq. (20) we obtain

@f 0
0 ðvÞ
@t

’
ffiffiffi
p
8

r
Zv2

os

1

v2

@

@v

gðvÞ
v

@f 0
0 ðvÞ
@v

� �
: (21)

Equation (20) may be discretized in the same way as expres-

sion (13) for the self-collision operator, and we have incor-

porated such an explicit inverse bremsstrahlung source into

OSHUN.

In Fig. 2, we show the benchmark of the inverse brems-

strahlung operator against an external dipole electric field; to

our knowledge this is the first such comparison. We initialize

a Maxwellian plasma with thermal velocity vt ¼ 0:04421c,

that is Te ’ 1 keV, density ne ¼ 1:5� 1021 cm�3 and Z ¼ 12.

The distribution function at initialization is shown with a solid

black line. A laser with intensity I ¼ 6:95� 1015 W= cm2 and

wavelength k0 ¼ 0:351 lm is assumed, such that vos ’ 0:025c
’ 0:57vt. For these parameters, we performed a simulation

with an external electric field E¼ E0 cosðx0tÞêy, where

ð‘0;m0Þ ¼ ð3;2Þ and Dt¼ 0:0123x�1
0 , and the resulting elec-

tron distribution function after 2.666 ps is shown in Fig. 2

with the dotted red line. We repeated the simulation using the

inverse bremsstrahlung operator instead of the external dipole

field and the new distribution after 2.666 ps is shown with the

broken blue line. Both of these approaches recover the flat-top

shape near the origin and the sharp fall-off at large velocities

predicted by Langdon19 and they are in excellent agreement

with each another.

FIG. 1. A map of the operations necessary to calculate the effect of

dE{ê{; { ¼ x; y; z on the current in a second order scheme. The top row shows

the algorithm for dExêx, which requires a total of 11 operations. The bottom

row is for dEyêy or dEzêz and it requires a total of 17 operations.

FIG. 2. An initial Maxwellian plasma (solid black line) heated by the inverse

bremsstrahlung operator (broken blue line) or a dipole electric field (dotted

red line). The inverse bremsstrahlung operator recovers the shape of the

DLM11,12,19,23 distribution function calculated using a dipole electric field.
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III. DIAGNOSING NUMERICAL ARTIFACTS AND
EXTRACTING PHYSICS FROM VFP SIMULATIONS

A. 1D2P simulations

The most glaring failures of a numerical scheme for

simulating HEDLP are those accompanied by unphysical

moments of the distribution function, for example, when

the plasma density or the temperature become negative.

Unfortunately, numerical artifacts originating from an incon-

siderate truncation of the spherical harmonic expansion do

not always manifest themselves so blatantly, because most

quantities of interest are associated with the isotropic zeroth-

order harmonic that is only indirectly affected by the trunca-

tion. Furthermore, to establish the validity of a kinetic code,

we must examine kinetic information, namely, distribution

functions or particle trajectories; integrals over the particle

distribution can obscure underlying unphysical structures.

Here, we present such a convergence study for a 1D2P non-

local transport problem under conditions similar to those

found in ICF Hohlraums.

We consider a 1D system, 0 
 x½cm� 
 1, with

initial temperature 1 keV; Z ¼ 4, and constant density 5

� 1020 cm�3. The plasma is heated by an inverse bremsstrah-

lung source corresponding to a laser with intensity profile

I ¼1016e�0:5½x=ð1:21mmÞ�2 W=cm2 and wavelength k0 ¼ 0:33lm,

such that Z� v2
os ’ 1:0. The heating profile is constant in time,

the boundaries are reflecting, and the implicit algorithm is used

for the electric field. This allows us to choose a timestep

Dt¼ 30x�1
p ’ se{=32’ 24fs. The simulation is terminated after

200 ps at which time the maximum temperature in the simula-

tion domain is about 5keV. The maximum magnitude of mo-

mentum in the p-mesh is set to pmax ¼ 0:6mec, such that a

plasma with temperature 5keV and thermal velocity vt;5keV ’
0:1c can be accommodated. The total number of mesh-points in

p-space is 432 to ensure that the coldest distribution, the initial

Maxwellian with vt;1keV ¼ 0:4421, is finely resolved with

30Dv< vt;1keV.

In Fig. 3, we show the projection of the distribution

function onto Cartesian phase-space after 200 ps, i.e.

f ðpx; x; 200psÞ ¼
Ð1
�1
Ð1
�1 f ðp; x; 200psÞdpydpz, from four

simulations using: the diffusive approximation, 4 harmonics,

8 harmonics, and 32 harmonics. The color bars show the

amplitude of f ðpx; x; 200psÞ in logarithmic scales. For

positive/negative values of f ðpx; x; 200psÞ we use the orange/

blue color-scale. The maximum value for the blue color-

scale is reduced from panel to panel to allow us to discern

negative values for f ðpx; x; 200psÞ as the number of harmon-

ics increases. In principle f ðpx; x; 200psÞ should be positive

definite, negative values are numerical artifacts. We note

that these negative values are merely projections of the dis-

tribution produced by data post-processing, they are not used

in the code which only cares for spherical harmonics.

During the simulation, the plasma is heated on the left

side of the box and multi-keV particles start streaming across

the simulation domain generating non-Maxwellian tails for

px > 0. The plasma self-consistently generates a return-

current to maintain charge neutrality. In the first panel on the

left in Fig. 3 we plot the distribution function from a simula-

tion using the diffusive approximation. Negative values are

prevalent throughout the simulation for px � �0:2mec. For

momenta jpxj < 0:2mec the diffusive approximation seems

sufficient. For jpxj > 0:2mec angular scattering is not strong

enough to damp the high-order harmonics and the electron

distribution exhibits negative values. (For positive momenta,

the presence of the non-local electrons masks any artifacts of

the background population.) When we increase the number

of harmonics to 4, see second panel from the left, we notice

that the negative values show up for px � �0:27mec and

they are two orders of magnitude smaller. Increasing the

number of terms in the expansion to 8, and then to 32, we

observe that the negative values continue to shift farther out

in the tail of the distribution and their absolute values

become vanishingly small. In the last plot, for ‘0 ¼ 31, the

errors due to the truncation are negligible, compared, for

example, with the errors due to the usage of a non-

relativistic collision operator, and we can safely argue that

the expansion has converged.

Another way of tracking the accuracy of the diffusive

approximation, is to monitor the ratio of f 0
1 ðpÞ=f 0

0 ðpÞ and

report instances of f 0
1 ðpÞ=f 0

0 ðpÞ 	 1. However, unless there is

a mitigation strategy, or at least a way of finding out how the

lack of convergence at p� pt affects the physics at lower

momenta, the usefulness of this approach is going to be

limited. Full convergence studies are advisable unless

f 0
1 ðpÞ=f 0

0 ðpÞ � 1; 8p.

FIG. 3. Four non-local transport simulations using different numbers of spherical harmonics and projected onto a Cartesian mesh. A plasma with density

5� 1020 cm�3; Z ¼ 4, and initial temperature 1 keV is heated from the left with an inverse bremsstrahlung source with profile I ¼ 1016e�0:5½x=ð1:21mmÞ�2 W=cm2

and k0 ¼ 0:33 lm. This set of simulations shows that convergence can be achieved when sufficient number of spherical harmonics is used.
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B. 2D3P simulations

To describe the three-dimensional p-space two indices

ð‘ 
 ‘0;m 
 m0 
 ‘0Þ are needed, as opposed to just one

ð‘ 
 ‘0Þ for 1D2P simulations. In Tzoufras et al.,32 we

argued that m0 < ‘0 may often be used with no apparent dif-

ference in the physics. (In particular we showed that the

structure of the current filaments in the early non-linear stage

of the electromagnetic instability were virtually identical

for simulations with ‘0 ¼ 48 and 3 
 m0 
 48.) We have

observed that using m0 < ‘0 also works well for many laser-

irradiated plasmas. However, if either ‘0 or m0 is set to values

much lower than those required for convergence the code can

produce strikingly artificial structures. Paradoxically the dif-

fusive approximation, with m0 ¼ ‘0 ¼ 1, is the least prone to

such artifacts and diffusive simulations tend to run rapidly

and stably generating seemingly plausible results. This insidi-

ous feature of the diffusive approximation is likely due to the

fact that m0 ¼ ‘0 ¼ 1 precludes anisotropic pressure and tem-

perature from building up and driving numerical instabilities,

such that would expose the need for a more careful treatment.

C. The current-filamentation instability as a numerical
artifact

The growth of the current-filamentation instability33

from numerical noise is one of the biggest challenges for

multi-dimensional simulations with OSHUN. This instability

grows whenever there is anisotropy in the particle distribu-

tion function and it is associated with a feedback mechanism

between magnetic fields and current filaments.14 Its manifes-

tation can vary depending on the degree of anisotropy in the

distribution function9 and the level of collisionality.24 For

modes with long wavelength the growth rate reduces—but

remains non-zero—with the wavenumber of the perturba-

tion, c 	 OðkÞ. The maximum growth rate of the instability

occurs at much shorter wavelengths.9,24,31

In VFP codes, there is no natural noise for instabilities

to grow from. To study instabilities, one must provide suita-

ble well-resolved perturbations, otherwise, they may grow

from the only source of noise in the system, that is, the

numerical mesh. In multi-dimensional VFP simulations, we

typically choose cell-sizes several orders of magnitude larger

than the natural wavelength for the current-filamentation

instability, i.e., Dx� Oðc=xpÞ. As a result, the fastest-

growing mode supported by the mesh has filaments with

width equal to the cell-size. The presence of the instability is

then correctly predicted by the code, but neither its growth

rate nor its wavelength is physical.

In Sec. IV B, we consider the interaction of a moderate-

intensity (	1016 W=cm2) laser with an inhomogeneous

plasma with density ranging from underdense to solid. PIC

simulations show that the absorption is dominated by para-

metric instabilities and there is no evidence of the current-

filamentation instability even though the resulting electron

distribution in the underdense region is anisotropic. In order

to model non-local heat conduction for realistic temporal

and spatial scales, we ignore the microphysics of the para-

metric instabilities and use OSHUN with an external heat

source that describes the macroscopic effect of laser heating.

However, an unintended consequence of dropping these

competing phenomena, is that the current-filamentation

instability can grow from numerical noise in the underdense

plasma. In this scenario, we may need to look for ways of

suppressing this instability.

The most straightforward solution is to perform electro-

static simulations. This may be sufficient in problems where

no significant magnetic fields arise. Alternatively, the diffu-

sive approximation allows us to use magnetic fields and sup-

presses the instability by prohibiting temperature/pressure

anisotropy. Another option, one that facilitates both mag-

netic fields and a detailed description of the particle distribu-

tion, is to use very coarse resolution in configuration-space

to reduce the growth of the instability enough that it remains

effectively suppressed for the entire simulation. This

approach was used in Sec. IV B.

IV. EXAMPLES

A. A physical picture for flux-limited heat conduction

For a time-independent sinusoidal temperature perturba-

tion TðxÞ ¼ T0 þ T1 sinðkxÞ, with T1 � T0, the corresponding

heat flux is1 QðxÞ ¼ Q1 sinðkxþ p=2Þ. A general temperature

profile TðxÞ ¼ T0 þ ~T 1ðxÞ may then be decomposed into har-

monic functions with amplitude T̂ðkÞ which result in a heat

flux with magnitude Q̂ðkÞ. An effective heat conduction coef-

ficient ĵðkÞ can be defined such that Q̂ðkÞ ¼ �{kĵðkÞT̂ðkÞ.
The inverse Fourier transform of this expression yields a con-

volution integral for heat conduction QðxÞ ¼ �
Ð1
�1 {kĵðkÞ

T̂ðkÞe{kxdk ¼ �
Ð1
�1 Gðx� x0Þr ~T1ðx0Þdx0, where GðxÞ ¼

Ð1
�1

ĵðkÞe{kxdk. The challenge is finding an expression for the ker-

nel GðxÞ or equivalently for the effective heat conduction coef-

ficient ĵðkÞ. Epperlein and Short13 performed a series of VFP

simulations for high-Z materials with 1D sinusoidal perturba-

tions ~T1ðxÞ ¼ T1 sinðk{xÞ to obtain the values for ĵðk{Þ. Here,

we repeat these tests using OSHUN with the explicit electric-

field solver for Z ¼ 1. A more detailed discussion including

higher Z was recently presented by A. Marocchino et al.21

We initialize a homogeneous plasma with density

1023 cm�3 and a sinusoidal temperature profile T½eV�
¼ 307 eVþ 12:5 eV� sinðk{xÞ in a 1D periodic box with

size L{ ¼ 2p=k{. The maximum box size for this parameter

scan is L1 ¼ 1000ke, where the mean free path is ke ¼ vtse.

The simulation time is sS ¼ 40se to allow particles at the

tail of the distribution with velocity v 	 3vt to undergo 90�

scattering. The p-space was resolved with 108 cells and

pmax ¼ 0:15mec ’ 6mevt. Sufficient spherical harmonics are

kept in the expansion to accurately capture the angular pro-

file of the distribution function.

Quoting a single number for the effective heat conduc-

tion coefficient from each simulation suggests the existence

of a steady state. For a smooth temperature profile, L{ � ke,

the ratio QðxÞ=rTeðxÞ reaches steady state after about 20se

and is nearly constant throughout the simulation box. The

effective heat conduction coefficient may then be measured

unambiguously. For the highly non-local cases (i.e., those

with short perturbation wavelength) a steady state is estab-

lished more quickly, as hot electrons decouple from the

background and travel many times around the box sharing
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their energy with the entire plasma and causing rapid disso-

lution of the temperature perturbation. In all cases, the ratio

QðxÞ=rTeðxÞ is measured at steady state, when its value

becomes constant across the simulation box. The parameter

scan has been repeated for different types of perturbations,

and the results are identical once a steady state is established.

This confirms that the effective heat conduction coefficient

only depends on the wavelength of the perturbation normal-

ized to the mean free path.

The ratio of the effective heat conduction coefficient

ĵðk{Þ from VFP simulations to the Spitzer and H€arm value

jSH ¼ 3:20 is shown with red squares in Figure 4. This ratio

can be viewed as a “flux limiter” fðk{Þ ¼ ĵðk{Þ=jSH . The lon-

gitudinal axis is the temperature wavenumber normalized to

the mean free path keðhTeiÞ. For long wavelengths most of

the electrons transfer their energy locally, and f 	 1. As the

wavenumber increases, the hot electrons decouple from the

system and belong collectively to the entire simulation box,

rather than any one location. Fewer electrons are then avail-

able to transfer energy locally, and those that do have less

energy to carry. This causes an apparent reduction in the

local heat flux which is captured by the drop in the ratio

ĵðk{Þ=jSH .

To derive an analytical estimate based on this physical

picture we consider an electron moving with velocity

vc ¼ avt. The time it takes for this electron to undergo 90�

scattering is sc ¼ a3se and the distance it travels is

vcsc ¼ a4ke. If the mean free path vcsc exceeds the “de-

coupling” length the contribution of this electron to the heat

flux can be ignored. This de-coupling length is the distance

that must be traveled to ensure that rT switches sign. For a

sinusoidal temperature profile, this distance is equal to half

the wavelength of the perturbation, i.e., p=k ¼ a4ke ) vc

¼ ðkke=pÞ�1=4vt. Electrons with initial velocities jvxj > vc

form a “superfluid” that belongs collectively to the entire

system and does not contribute to the local heat flux.

In a Maxwellian plasma, the heat flux of the electrons

with velocity jvxj > vc is hv2jvxjijvxj>vc
¼ 4

ffiffi
2
pffiffi
p
p v3

t ð
v2

c

4v2
t
þ 1Þ

e�v2
c=ð2v2

t Þ. The ratio of the effective heat conduction

coefficient to jSH becomes f ¼ 1� hv
2jvxjijvx j>vc

hv2jvxjijvx j>0
. From the dis-

cussion above, we can substitute the velocity vc in the

expression for the heat flux to obtain

ĵðkÞ
jSH
	 1� 1þ 1

4

ffiffiffiffiffiffiffi
p

kke

r� �
e�

1
2

ffiffiffiffi
p

kke

p
: (22)

The ratio ĵ=jSH from Eq. (22) is shown in Figure 4 and

agrees well with the detailed VFP calculations for kke � 1.

B. Asymmetric heating of a solid-density target

One of the main motivations for developing OSHUN is to

model multi-dimensional non-local transport in laser-

irradiated plasmas. Here, we present an example of such a

simulation, part of a study we have undertaken to understand

how asymmetry in the irradiation pattern affects the pressure

profile in dense targets. At present ion motion has not been

incorporated into the code and simulation times must be rela-

tively limited.

We consider a planar target with constant temperature

500 eV; Z ¼ 4, and a sharp density gradient rising from

1021 cm�3 to 1023 cm�3 within about 30 lm. The exact den-

sity profile is replicated on top of each of the plots in Figure

5. A phenomenological heat source is introduced with inten-

sity profile I¼ 1016e
� y2

2�ð250lmÞ2�½1�ð1� t
10ps
ÞHð1� t

10ps
Þ� W

cm2,

where HðxÞ¼
Ð x
�1dðtÞdt is the Heaviside step function. We

assume that the laser energy is deposited in the low-density

region—as one might expect from laser-plasma instabilities—

with a Gaussian profile e
�ðxþ180lmÞ2

ð120lmÞ2 . The “hot” Maxwellian dis-

tribution has temperature Thot¼Te þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I
1014 W=cm2

q
k0

lm
keV,

where I is the heat source intensity and k0¼ 0:351lm. The

simulation employs the implicit solver for the electric field

presented in Sec. II D. The system is resolved with

Dx¼ 7:3lm and Dy¼ 31:25lm, where the resolution in x is

set by the need to resolve the density gradient and in y to

resolve the structure of the heat source and its imprint on the

plasma. 300 cells are used for the magnitude of momentum

with pmax¼ 0:6mec, and ð‘0;m0Þ¼ ð16;4Þ, that is 75 terms in

the harmonic expansion. The implicit time-step was set to

Dt{mpl’ 0:65se{;0:5keV’ 1:68fs.

The pressure and temperature profiles, as well as the

longitudinal electric (Ex) and transverse magnetic (Bz) fields

are shown in Figure 5 after 10 ps (top row) and 20 s (bottom

row). (The results in the bottom row have been reflected to

facilitate comparison with those on the top row.) A detailed

discussion of the physics requires further analysis and addi-

tional simulations; here we briefly point out the salient fea-

tures of the interaction.

A heat-front develops in the under-dense corona and

starts climbing the sharp density gradient. Pressure builds on

the gradient reaching 110 Mbar at the end of the simulation.

Meanwhile, non-local electrons travel in the solid-density

plasma (up to 100 lm) and lead to a measurable change in

both temperature and pressure. The sharp density gradient

generates an electric field Ex ¼ �rP=e. Transversely

FIG. 4. The ratio of the effective heat conduction coefficient from VFP sim-

ulations to the Spitzer and H€arm value, f ¼ ĵðk{Þ=jSH , is shown with red

squares as a function of the wavenumber of the temperature perturbation.

We have also overlaid a blue solid line that corresponds to expression (22)

in the text. Good agreement between the VFP results and expression (22) is

observed for kke � 1.
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asymmetric heating on this gradient can be expected to gen-

erate an electric field with maximum magnitude on axis,

thereby driving a magnetic field (due to the Biermann bat-

tery). However, here the situation is more complex. The heat

source resides in a region with constant density, and early in

time the gradient is heated by non-local electrons which are

accompanied by a resistive electric field. This field has the

opposite sign from the one due to rP. From Figure 5, we

see that jExð10psÞj is smaller on-axis in the region between

the dotted lines, where rn 6¼ 0. At the same time, resistive

electric fields are visible both to the left and right of the gra-

dient. At 20 ps the heat front has reached the region between

the dotted lines and jExð20psÞj is maximum on axis. The

resistive electric field in the solid density material at 20 ps is

also more prominent. The evolution of the electric field leads

to the large changes observed in the Bz structure from 10 ps

to 20 ps. It is conceivable that for systems with higher peak

density and longer irradiation time Bz on the surface of the

target is strong enough to magnetize the plasma. The relative

importance of the underlying phenomena depends on the

density and heat-source profiles.

V. CONCLUSIONS

We have developed the VFP code OSHUN to study High

Energy Density Laboratory Plasmas. OSHUN employs the

spherical harmonic expansion in momentum-space to facili-

tate the description of arbitrarily anisotropic distribution

functions in the presence of collisions. It implements the

KALOS hierarchy of equations5 for the effects of spatial

advection, electric and magnetic fields, and incorporates a

rigorous semi-anisotropic Fokker-Planck collision operator.

The code is currently being used for a number of studies rel-

evant to Inertial Fusion Energy (IFE), which have motivated

further advances in the numerical scheme and have allowed

us to assess the potential and the limitations of OSHUN

(1) An implicit algorithm for the electric field has been

developed. Its computational cost is nearly the same as

that of the explicit algorithm in Tzoufras et al.,32 but it

allows us to circumvent the CFL condition(s) due to

high-frequency waves, thereby enabling nsec-scale elec-

tron transport simulations.

(2) An inverse bremsstrahlung source has been implemented

and shown to recover the DLM distribution functions.

Benchmarks against simulations with a dipole electric

field yield excellent agreement.

(3) A careful convergence study is always required to justify

the truncation of the spherical harmonic expansion.

Otherwise it is difficult to identify whether the simula-

tion results are physical or numerical artifacts.

(4) Non-local transport leads to anisotropic particle distribu-

tions which are susceptible to the current-filamentation

instability. Although VFP codes are noiseless, the insta-

bility can still grow from numerical noise. We can avoid

this by carefully choosing the simulation parameters.

(5) Non-local transport can be simulated for realistic IFE

target geometries and time-scales. To perform such sim-

ulations we must incorporate mobile ions. This can be

done either by modeling the ions as a fluid or adding

them as a separate distribution function. Both approaches

will be pursued.

FIG. 5. The corona of a planar solid-density

target is heated by a source with intensity

I¼1016e
� y2

2�ð250lmÞ2�½1�ð1� t
10ps
ÞHð1� t

10ps
Þ�

W
cm2. The pressure and temperature profiles,

as well as the longitudinal electric (Ex) and

transverse magnetic (Bz) fields are shown

after 10 ps and 20 ps.
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In ignition scale hot plasmas, temperature gradients and thermal transport modify electron

distributions in a velocity range resonant with Langmuir waves typical of those produced

by stimulated Raman scattering. We examine the resultant changes to the Landau damping

experienced by these Langmuir waves and the levels of thermal plasma fluctuations. The form

factor and Thomson scattering cross-section in such plasmas display unique characteristics of the

background conditions. A theoretical model and high-order Vlasov-Fokker-Planck simulations

are used in our analysis. An experiment to measure changes in thermal plasma fluctuation levels

due to a thermal gradient is proposed. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4939603]

I. INTRODUCTION

This paper deals with non-Maxwellian electron distribu-

tion functions (EDFs) resulting from thermal transport in

plasmas relevant to large-scale inertial confinement fusion

(ICF) experiments. We examine the linear plasma response

under such conditions, with focus given to the linear plasma

wave damping and Thomson scattering (TS) cross-section.

Local thermal transport theories such as the Spitzer-

H€arm (SH) model1 or Braginskii’s transport relations2 follow

from a perturbative solution of a Boltzmann-Vlasov (kinetic)

equation for plasma with local electron temperature Te,

density ne, thermal velocity vth, and ionic charge state Z. In

such treatments, the leading term in the expansion of the

EDF is a local Maxwellian and the expansion is carried

out in terms of the smallness parameter dT ¼ kei=LT � 1,

where kei is the electron-ion (e-i) mean free path and

LT ¼ jr lnðTeÞj�1
is the scale length of the profile of Te.

More precisely, the parameter that occurs naturally in

the expansion of the EDF is dT

ffiffiffi
Z
p

(see, e.g., Ref. 3). It has

been established4–8 that dT must be small, on the order of

0.01, for classical transport theory to be valid. For example,

in the theory of nonlocal hydrodynamics of Ref. 9, signifi-

cant deviations from the SH or Braginskii thermal transport

coefficients have been observed for dT � 0:065=
ffiffiffi
Z
p

. In the

following, we will discuss several examples of inhomogene-

ous plasmas where dT is within or near the theoretically

predicted limit of validity of classical hydrodynamics.

However, the corresponding EDFs display significant devia-

tions from the equilibrium state, leading to changes in the

linear plasma response based on these EDFs.

An important example of a plasma where our findings

are of relevance is the indirect drive ICF target, where laser

light must heat and propagate through plasma within a hohl-

raum. Near the laser entrance hole (LEH) of the hohlraum,

many laser beams overlap, heating a plasma of volume

�1 mm3 primarily via inverse Bremsstrahlung radiation.

This localized heating establishes a negative temperature

gradient from the LEH along the trajectories of beams within

the plasma. In ICF experiments, such as those carried out at

the National Ignition Facility (NIF), stimulated Raman scat-

tering (SRS) produces deleterious plasma reflectivities of up

to �30% along beam trajectories that pass close to the target

capsule (along 23� and 30� cone paths at the NIF). During

SRS, light scatters from and drives Langmuir waves. The

SRS process, and accordingly interpretations of experimental

SRS spectra, is sensitive to the Landau damping of these

Langmuir waves. Furthermore, Landau damping of

Langmuir waves is a source of hot electrons that prematurely

heats the ICF target, impeding efficient target compression.

Studies have indicated that SRS may occur both deep

into the hohlraum10 and near the LEH via a collective (many-

beam) process.11 We find under ICF-relevant conditions that

heat flow along the direction of beam propagation (opposite

to the thermal gradient) results in an increase in Landau

damping relative to that of a thermal (Maxwellian) plasma

across a broad range of parameters. This occurs via a reso-

nance between heat-carrying electrons and SRS-produced

Langmuir waves. Conversely, Landau damping is reduced in

the opposite direction (the direction relevant to the rescatter-

ing of light that is produced by back-scattering via SRS).

The ICF plasmas we consider are of a length on the

order of several millimeters or a thousand kei. It is sufficient

in order to demonstrate the physics that we wish to discuss

to consider a problem with one spatial dimension (1D).
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Furthermore, such a simplification permits close comparison

between theory (both existing and new) and numerical simu-

lations. Accordingly, we specify the EDF as ~f ¼ ~f ðx;~v; tÞ,
where x, ~v, and t are position, velocity, and time, respec-

tively, and x is parallel to the direction of heat flow. The ki-

netic description of the EDF evolution is given by the

Vlasov-Fokker-Planck (VFP) equation

@~f

@t
þ~v � ~r~f � e

m
~E � @

~f

@~v
¼ �Cee

~f ; ~f
� �

� Cei
~f
� �
; (1)

where Cee is the Landau electron-electron collisional opera-

tor, Cei is the Lorentz electron-ion collision operator, and

here ~r ¼ ð@=@x; 0; 0Þ.
The standard approach to finding the solution for

~f ðx;~v; tÞ involves expansion in the Legendre polynomials Pl

~f ðx;~v; tÞ ¼
X1
l¼0

~f lðx; v; tÞPlðlÞ; (2)

where v ¼ j~vj; l ¼ cos h, and h is the polar angle of~v rela-

tive to the x-axis. In the most basic approximation, two terms

(harmonics) in the sum of Eq. (2) are kept: ~f ¼ ~f 0 þ l~f 1. In

high-Z plasmas, the e-e collision operator in the equation for

the first harmonic, ~f 1, is often neglected. The electric field E
may be calculated in 1D from a zero-current condition. The

two-term truncation of the sum in Eq. (2) constitutes the so-

called diffusive approximation.3 In this limit, the SH result is

obtained when the isotropic part (zeroth-order harmonic) of

the EDF, ~f 0, is taken to be the local Maxwellian,
~f M ¼ ~f M½v; TeðxÞ�, giving (see, e.g., Ref. 12),

~f 1 x; vð Þ ¼
ffiffiffiffiffiffi
2

9p

r
v

vth

� �4

4� v2

2v2
th

 !
~f MdT : (3)

For both the diffusive approximation and the SH model

to be valid, ~f 1 must be smaller than ~f 0 and ~f M, respectively.

However, it is clear from Eq. (3) that the ratio j~f 1j=~f M will

always reach values larger than 1 at sufficiently high electron

velocities for given dT. One is required therefore to consider

values of dT small enough such that the validity of these

transport models extends over an adequately wide range of

velocities. In particular, one should ensure that j~f 1j=~f M < 1

for v=vth � 3:7, where from Eq. (3) contributions of ~f 1 to the

heat flux are at a maximum. The same limitation applies to

other theories based on similar approximations, such as the

M1 model of Ref. 13.

Modeling of ICF experiments requires treating heat

transport. Experimental scales make fully kinetic simulations

that solve the VFP equation, using, e.g., continuum or parti-

cle-in-cell representations of the EDF, computationally

impossible for three and sometimes even two spatial dimen-

sions. Approximate treatments are therefore required, such

as the hydrodynamics codes Hydra and Lasnex. Recently,

the high flux model14 (HFM) has been widely-used in such

ICF simulations. In the HFM, the electron heat flux, qe, is

taken to be equal to the smaller out of the values given by ei-

ther the SH expression qSH ¼ �jSHrTe or the reduced free

streaming expression qFS ¼ fqnevthTe, where jSH / dT is

defined in full in Ref. 1 and fq is a so-called flux limiter typi-

cally equal to 0.15. The condition j~f 1j=~f M < 1 for velocities

v � 4vth corresponds to the flux limiter fq 	 0:1 (cf. e.g.,

Sec. 7.2 of Ref. 12).

Central to the motivation of this work is the observation

that electrons responsible for the heat flow are resonant with

SRS-produced Langmuir waves. At the NIF, the majority of

SRS light is thought to originate in regions where ne/nc � 0:1
and Te ¼ 2:5 keV, where nc is the critical density of 351 nm

light.10,15 Electrons satisfying 3 �~v � ~kL=ðvthkLÞ � 4 will

modify the Landau damping of SRS-produced Langmuir

waves, where ~kL is the wave vector of the Langmuir wave.

From Eq. (3), it is evident that electrons responsible for heat

flow have velocities within this range. Contributions to the

modification of Landau damping are made by both the iso-

tropic and anisotropic parts of the EDF. A sufficiently large

modification of the distribution function due to heat flow may

in principle result in Langmuir waves becoming unstable.16

However, in the cases we have studied, we do not observe

instability in our simulations when enough terms (harmonics)

in Eq. (2) are kept such that the result is numerically con-

verged; this is discussed further in the following.

The paper is organized as follows: Section II introduces

the VFP code OSHUN. ICF-relevant temperature profiles

generated using OSHUN by the relaxation of a hot spot and

the resulting EDFs are discussed. Landau damping rates in

EDFs generated in the diffusive approximation and using

many (15) harmonics are compared to those of a Maxwellian

EDF. In Sec. III, a new theory using 3 harmonics is proposed

and applied to an ICF-relevant profile. This theory is demon-

strated to perform significantly better than the SH model in

ICF-relevant temperature profiles generated using OSHUN.

From this theory, an analytic expression for the Landau

damping of Langmuir waves that depends on the first and

second spatial derivatives of the temperature profile is

obtained. Section IV describes a Thomson scattering experi-

ment that could provide an experimental measurement of the

non-Maxwellian EDFs present during heat flow. Section V

discusses the implications of this work.

II. SIMULATIONS AND LINEAR PLASMA RESPONSE

The principal part of our work involves numerical

simulations using the VFP code OSHUN.17–19 OSHUN uses

a Cartesian mesh (here 1D) in configuration space and

applies a spherical harmonic expansion of the EDF in mo-

mentum space to solve the VFP equation. The e-e collision

term in Eq. (1) is the Landau operator that acts on all terms

in the harmonic decomposition of the EDF; there is no valid-

ity constraint on Z. The number of harmonics (including the

zeroth-order harmonic), Nh, necessary to obtain a converged

solution can vary depending on the nature of the problem

and it is large (Nh¼ 15) for the presented profiles when we

investigate the high velocity tail of the EDF. In order to

make direct comparisons with simulations where Nh¼ 2,

results from the SH model are shown without the use of a

flux limiter.
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A. Hot spot relaxation

We have applied OSHUN to the hot spot relaxation

problem18,20 in which a localized temperature perturbation

relaxes due to thermal conduction. As in previous studies, an

initial hot spot is used to produce a temperature gradient and

related EDF on a spatial scale of relevance to experimental

conditions. In the cases we consider here, the relaxed state

(which is analyzed) has a temperature profile characteristic

of hydrodynamic simulations of ICF plasmas, sampled from

the 3D volume along a 1D trajectory that corresponds to an

inner (23� or 30� cone at the NIF) laser beam. Laser light fol-

lowing this path sees a temperature that is highest near the

LEH and falls deeper into the hohlraum. We are interested in

changes to the linear plasma response along such a 1D trajec-

tory. Related studies3,20 have examined non-Maxwellian

EDFs and thermal transport under similar conditions in the

direction perpendicular to the laser propagation direction.

In our simulations, the initial electron temperature

profile is prescribed according to Teðx; t ¼ 0Þ ¼ T0

þT1 expð�x2=2l20Þ, where l0, T0, and T1 are constants, and

the density is homogeneous (ne does not evolve in our simula-

tions due to the 1D geometry and zero-current condition). The

region x> 0 is displayed and analyzed after relaxation for

varying choices of initial conditions. In Fig. 1, the initial tem-

perature profile using T0 ¼ 1 keV, T1 ¼ 5 keV, and

l0 ¼ 0:043L ¼ 0:25 mm is shown for a plasma with Z¼ 2

(He) and ne ¼ 1021 cm�3 	 0:1nc. Also shown is Te at t ¼
66:5=�ei generated using (i) OSHUN (Nh¼ 15, black solid

line), (ii) oshun (Nh¼ 2, blue solid line), and (iii) the SH model

(blue dashed line). The e-i collision rate �ei is given here by

�ei ¼ Z�ee ¼ 4ð2pÞ1=2Znee4K=ð3m1=2
e T

3=2
0 Þ, evaluated by

using K¼ 7 for the Coulomb logarithm and Te ¼ T0. The sys-

tem length L¼ 5.7 mm is large enough to ensure system boun-

daries do not affect our analysis and L
 kei ¼ vth=�ei ¼ 10:7
lm where kei has also been evaluated using T0.

The plotted SH heat transport model result is given by

solving

3

2
ne
@Te

@t
¼ j

@

@x
Te

5=2 @Te

@x

� �
; (4)

j ¼ 128

3p
Z þ 0:24ð Þ
Z þ 4:2ð Þ

neT0

me�ei T0ð Þ
; (5)

where Te � Te=T0. In Fig. 1, the SH model result differs

from the VFP (OSHUN) results for Nh¼ 2 as well as Nh¼ 15.

The three temperature profiles shown at t ¼ 66:5=�ei in Fig. 1

agree to within 20% for x � 0:2. For x � 0:2, fast weakly col-

lisional electrons in the VFP simulations form a hot tail in the

spatial profile of Te that is not captured by the SH model; rela-

tive to the VFP calculation, Te in the SH model reaches a

steeper gradient, and plasma preheat is reduced. Shown next,

the EDF and its resultant impact on the linear plasma response

differs significantly between the three cases even for x � 0:2.

Displayed in the inset in Fig. 1 and discussed later, dT is calcu-

lated using Teðx; t ¼ 66:5=�eiÞ.

B. Electron distribution functions

In Fig. 2, the EDFs from VFP simulations integrated

over velocities perpendicular to the thermal gradient, v?
(with azimuthal angle u), are shown, where f ðx; u; tÞ
¼
Ð Ð

Cv?~f ðx;~v; tÞ dv? du and u ¼ lv. EDFs are sampled at

x ¼ 0:1L ¼ 0:57 mm (dT ¼ 0:035 for Nh¼ 15 and dT ¼ 0:03

for Nh¼ 2) and x ¼ 0:15L ¼ 0:86 mm (dT ¼ 0:017 for

Nh¼ 15 and dT ¼ 0:018 for Nh¼ 2). All EDFs are unitless,

normalized to the local value of ne=vth. The upper pair of

plots, (a) and (c), shows the anisotropic part of the EDF,

f � f0, while the lower pair, (b) and (d), shows the deviation

of the isotropic component of the EDF from Maxwellian,

f0 � fM, where fM ¼ ð1=
ffiffiffiffiffiffi
2p
p
Þ exp½�u2=ð2v2

thÞ�. Solid lines

indicate results from VFP simulations using, as before,

Nh¼ 15 (black solid line) and Nh¼ 2 (blue solid line), while

the black dashed line refers to an analytic calculation given

in Sec. III.

The normalized anisotropic EDF component differs lit-

tle between the two VFP cases, exhibiting the usual form of

a flux of fast heat carrying electrons and a slow return cur-

rent. The isotropic deviation from Maxwellian f0 � fM shows

a substantial difference between the cases Nh¼ 15 and

Nh¼ 2 at x ¼ 0:1L, although f0 in both cases differs from fM
by an amount on the order of the anisotropic component.

The SH model assumes f0 ¼ fM and therefore fails to

describe a key feature of the VFP simulations.

In Fig. 3, the ratio of the anisotropic part of the EDF to

the isotropic part ðf � f0Þ=f0 at x ¼ 0:1L is shown. It is evi-

dent that the SH model (evaluated at dT ¼ 0:03) violates the

assumption required for justifying a truncation of an expan-

sion of the EDF at Nh¼ 2, namely, that jf1j is small com-

pared to f0, for u � 3vth. Under such conditions, calculations

of derived quantities in this region of the EDF (and perhaps

outside this region) such as Landau damping (or indeed a

spontaneous growth rate due to an inversion of the distribu-

tion) using the diffusive approximation may not be physi-

cally meaningful; this point is demonstrated in the following.

In Fig. 3, a clear trend of convergence with increasing

terms in the expansion of the EDF is apparent: From the SH

model (black dashed line) where f ¼ fM þ f1, to the diffusive

approximation (Nh¼ 2, solid blue line) VFP calculation

where f ¼ f0 þ f1, and to the converged VFP result (Nh¼ 15,

FIG. 1. Relaxation of an initial hot spot (t¼ 0, black dashed line) where

Z¼ 2 to three different states at t ¼ 66:5=�ei, using (i) oshun (Nh¼ 15, black

solid line), (ii) oshun (Nh¼ 2, blue solid line), and (iii) the SH model [blue

dashed line; see Eq. (4)]. Inset, dT calculated using Teðx; t ¼ 66:5=�eiÞ from

the oshun calculations is shown.
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solid black line). Note that using a large number of harmon-

ics in the expansion of the EDF leads to a cancellation of

contributions to higher velocity tails in the projected distri-

bution functions. As a result, one expects limu!61ðf � f0Þ=
f0 ¼ �1; the Nh¼ 15 VFP simulation in Fig. 3 observes this

limit.

C. Linear plasma response

The linear plasma response, and in particular, the linear

Landau damping of Langmuir waves, is of interest in many

applications. In typical calculations, the EDF is assumed

Maxwellian, and the impact of heat-carrying electrons reso-

nant with the Langmuir waves is not considered. For a linear

Langmuir wave (with arbitrary EDF), the Landau damping

rate is proportional in the resonant approximation to

@f=@uju¼vph
, while for a Maxwellian EDF, it is given approx-

imately by cL 	 �½px3
L=ð2k2Þ�@f=@uju¼vph

, where vph �
xL=kL is the phase velocity, xL 	 ðx2

pe þ 3k2v2
thÞ

1=2
is the

frequency, and xpe is the electron plasma frequency.21,22

Using EDFs from VFP simulations, the ratio of the damping

rate to that of a Maxwellian EDF, cL=cM, is evaluated as a

function of vph (the grey box corresponds to

0:3 � kkD � 0:4) and plotted in Fig. 4 for Langmuir waves

propagating both antiparallel (~kL k � ~rTe, the linear SRS

scattering geometry in ICF hohlraums) and parallel

(~kL k ~rTe, the rescatter geometry in ICF hohlraums) to the

thermal gradient. As in Fig. 2, the EDFs are sampled at x ¼
0:1L and x ¼ 0:15L.

In Fig. 4, but true generally of our simulations, we

observe that Langmuir waves propagating parallel to the

thermal gradient experience a reduction in Landau damping,

while Langmuir waves propagating antiparallel experience

an increase relative to a Maxwellian EDF; the effect we

observe is maximized for these two geometries. In the reso-

nant approximation, cL is proportional to @f=@u and there-

fore very sensitive to details of the EDF that at higher

velocities are not properly modeled in the diffusive approxi-

mation (Nh¼ 2). The breakdown of this approximation is

illustrated by the negative damping rates in Fig. 4 for Nh¼ 2:

It is a consequence of the large ratios of jf1j=f0 and the in-

valid truncation of the expansion of the EDF. We observe

that VFP results using Nh¼ 15 exhibit a dramatic reduction

of cL relative to cM for ~k k ~rTe, but never a change of sign.

III. THEORETICAL MODEL

In the preceding numerical simulations, we have consid-

ered temperature profiles characterized by dTðxÞ and their

corresponding EDFs of relevance to experimental conditions

in hot ICF plasmas. It is not computationally feasible to per-

form a VFP simulation of an entire hohlraum using a code

such as oshun in three spatial dimensions and with the requi-

site number of harmonics to achieve convergence. A need is

present therefore for an improvement to modeling heat flow

and the EDF for applications in which the linear plasma

response is important. In this section, we give a perturbative

expansion of the 1D VFP equation, similar to that of Spitzer-

FIG. 2. Electron distribution functions

projected on the opposite direction to

the temperature gradient, where

� ~rTe �~v ¼ j ~rTeju, at the two loca-

tions from Fig. 1. Thermal velocities,

vth, are calculated locally, at x ¼ 0:1L
[panels (a) and (b)] and x ¼ 0:15L
[panels (c) and (d)]. Upper panels, (a)

and (c), show anisotropic EDFs that

are compared with dashed lines corre-

sponding to theoretical calculations of

Sec. III. Lower panels, (b) and (d),

show deviations of the isotropic solu-

tion, f0, from the Maxwellian distribu-

tion function, fM. The two solutions

from oshun, Nh¼ 15 (black) and

Nh¼ 2 (blue), are marked on panel (b).

On all other panels, they are almost

indistinguishable in spite of producing

quite different damping coefficients in

Fig. 4 below.

FIG. 3. Ratio of the total anisotropic harmonics to the zeroth order har-

monic, projected on the direction of the temperature gradient, as a function

of normalized velocity. Physical parameters are the same as in Fig. 1 and the

oshun results are at x ¼ 0:1L for both Nh¼ 2 and Nh¼ 15. The SH results

are evaluated for dT ¼ 0:03 and theory curve is based on the results of Sec.

III.
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H€arm1 where solutions to the VFP equation are sought by

finding the EDF corresponding to a quasi-stationary Te pro-

file. However, there are two key differences to our approach:

(i) We work to higher order in dT, retaining the first 3 terms

in the expansion of the EDF rather than 2, and (ii) We permit

the evolution of the isotropic (typically non-Maxwellian)

component of the EDF. The importance of the latter differ-

ence is well-known; see, e.g., Ref. 8.

We begin by defining fe ¼ F0 þ df , where the perturba-

tion df ¼ df ðx; v; lÞ is computed up to second order in dT,

and F0 is a zero-order isotropic term that fully defines the

electron density and temperature TeðxÞ. As before, we have

u ¼ lv and l ¼ cos h. Consistent with the initialization of

the VFP simulations, F0 will be a local Maxwellian. df is

expanded into a series of Legendre polynomials, Pl, accord-

ing to df ¼
P

l�0flPlðlÞ and ~f ¼ fe is substituted into the

VFP equation given by Eq. (1). Truncating the series beyond

l¼ 2 (Nh¼ 3), linearizing e-e collisions, and retaining terms

up to order ðdTÞ2, one finds

@f0
@t
þ v

3

@f1

@x
� eE

3mev2

@v2f1

@v
¼ Cee f0;F0½ �; (6)

@f1

@t
þ v

@F0

@x
� eE

me

@F0

@v
¼ ��eif1 þ Cee f1;F0½ �; (7)

@f2
@t
þ 2v

3

@f1

@x
� 2eEv

3me

@

@v

f1
v

� �
¼ �3�eif2 þ Cee f2;F0½ �: (8)

Note that Eq. (7) contains terms only up to order ðdTÞ; the

(neglected) next order terms such as ðeE=meÞ @f0=@v are of

order ðdTÞ3.

Our approach to solving Eqs. (6)–(8), and in particular,

to the treatment of e-e collisions, borrows from past work on

nonlocal transport in Refs. 9 and 23. The key difference in

our work lies in the initial conditions, which are replaced

here by the prescribed temperature gradient that drives parti-

cle transport and non-Maxwellian EDFs. Since we retain

terms only up to Nh¼ 3, we will not obtain solutions used in

the derivation of nonlocal transport relations.9,23,24

We solve Eqs. (6)–(8) in a quasi-stationary approxima-

tion, keeping terms up to second order in the temperature

gradient. The lowest order anisotropic harmonic of the EDF,

f1, is found to be

f1 ¼
ffiffiffiffiffiffi
2

9p

r
keiw1

v

vth

� �
d ln Te

dx
F0; (9)

where the basis function w1 satisfies the equation

w1 �
v3kei

v4
thF0

Cee w1;F0½ � ¼ S1; (10)

S1 ¼
v4

v4
th

Aþ 3

2
� v2

2v2
th

 !
: (11)

The coefficient A is defined from the zero-current condition

after substitution of eE=Te ¼ �A½d lnðTeÞ=dx�:
In the strongly collisional limit for high-Z plasma, one

can neglect e-e collisions. Under this approximation, one has

w1 ¼ S1 and A¼ 5/2, and finds an expression for f1

f1 x; vð Þ ¼
ffiffiffiffiffiffi
2

9p

r
v

vth

� �4

4� v2

2v2
th

 !
F0

kei

Te

dTe

dx
; (12)

that follows the SH form [cf. Eq. (3)]. By substituting the

expression for f1 given by Eq. (9) into Eqs. (6) and (8), one

can define corrections to the isotropic part of the EDF, f0, as

well as the second harmonic of the EDF, f2. The two pertur-

bations, fa (a¼ 0, 2), are of the same order and display a sim-

ilar dependence on the temperature gradient

fa x; vð Þ ¼ k2
ei

2

9p
w1

a

d2 ln Te

dx2
þ w2

a

d ln Te

dx

� �2
" #

F0: (13)

The basis functions wA
a (a¼ 0, 2; A¼ 1, 2) satisfy

1

�ei vthð ÞF0

Cee wA
a ;F0

� �
� 3v3

th

v3
wA

a da2 ¼ SA
a ; (14)

with different source terms: S1
0 ¼ vw1=ð3vthÞ; S1

2 ¼ 2S1
0;

S2
0 ¼ w1½v3=ð2v3

thÞ þ v=ð2vthÞ þ Að2vth=v � v=vthÞ�=3 þ vth

ðdw1=dvÞ½A � v2=ð2v2
thÞ�=3; and S2

2 ¼ 2S2
0 � w1 Að6vth=vÞ.

dij is the Kronecker delta function. The solutions to Eqs. (10)

and (14) can be found by expanding basis functions w1 and

wA
a in generalized Laguerre polynomials, Lð1=2Þ

n

wA
a ðvÞ ¼

X1
m¼0

wA
a;mLð1=2Þ

m ½v2=ð2v2
thÞ�: (15)

The first two coefficients, wA
0;0 and wA

0;1, define perturba-

tions of ne and Te, respectively. However, ne and Te are

FIG. 4. The local linear electron

Landau damping coefficient, cL, calcu-

lated using EDFs from Fig. 2, divided

by the damping rate for a Maxwellian

EDF, cM
L . EDFs are taken at (a) x ¼

0:1L and (b) x ¼ 0:15L. Damping rates

are given for Langmuir waves propa-

gating both parallel and antiparallel to

the temperature gradient. The failure

of the 2-harmonic approximation is

demonstrated by negative values of cL.

The shaded areas correspond to

0:3 � kkD � 0:4.
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fully specified by the initial condition and are assumed

invariant in our theory. Therefore, one has wA
0;0 ¼ wA

0;1 ¼ 0

and the expansion for wA
0 in Eq. (15) starts with m¼ 2

term.

The theoretical EDF is a function of two parameters, dT

and bT ¼ k2
eid

2ln Te=dx2, which depend on the temperature

profile. By comparing collisional terms in Eqs. (6) and (8),

one can estimate that the second harmonic f2 is Z times

smaller than f0. Results of theoretical calculations, shown by

dotted curves, are compared with oshun VFP simulation

results in Fig. 2. Our theory improves upon the SH result for

f1 [cf. Eq. (12)] because it accounts for e-e collisions and the

modification of the isotropic part of the EDF. Figure 2 shows

that the theory works very well at x ¼ 0:1L where correc-

tions to the isotropic part of the EDF, f0, are in close agree-

ment with the OSHUN Nh¼ 2 result. The agreement

between theory and simulations is poorer at x ¼ 0:15L since

this location is further from the initial hot spot region and

consequently the EDF is affected by a higher fraction of fast

electrons that produce a larger local deviation from the equi-

librium EDF.

For high-Z plasmas, where one can neglect the effect of

e-e collisions, we can estimate the correction to f0 using Eq.

(12) for the first harmonic. Taking the first non-vanishing

term in the polynomial expansion given by Eq. (15) results

in the following expression for f0:

f0 vð Þ ¼ Z g1bT þ g2d
2
T

	 

15� 10

v2

v2
th

þ v4

v4
th

 !
F0; (16)

where g1 ¼ 80
ffiffiffi
2
p

=ð9pÞ and g2 ¼ 40
ffiffiffi
2
p

=p.

The expressions for f0 and f1 given by Eqs. (16) and (12)

permit a quick and effective estimate of the EDF resulting

from the specified temperature gradient. From this theoreti-

cal EDF, further estimates of kinetic effects may be made,

such as the local linear Landau damping, cL, of Langmuir

waves

cL ¼
ffiffiffi
p
8

r
~v4

phkvth exp �
~v2

ph

2

� �


 1þZ g1bT þ g2d
2
T

	 

~v4

ph� 10~v2
phþ 15

� ��

�cosn
~v6

ph� 9~v4
phþ 3~v2

phþ 9

3
ffiffiffiffiffiffi
2p
p þ 3e~v2

ph=2

2~vph
erfc

~vphffiffiffi
2
p
� �( )

dT

#
;

(17)

where n is the angle between the wave vector ~k and the

direction of the temperature gradient and ~vph ¼ vph=vth is the

normalized phase velocity of a Langmuir wave. The above

expression is valid for dT < 3
ffiffiffiffiffiffi
2p
p

=j~v6
ph � 9~v4

phj. This

restricts, for example, the value of dT to dT < 0:015 for

~vph ¼ 3:5, and dT < 0:004 for ~vph ¼ 4.

We compare the Landau damping rate computed using

Eq. (17) with that given by direct calculation using the EDF

from oshun simulations. We adopt the profile of Fig. 1

(T0 ¼ 1 keV, ne ¼ 1021 cm�3) but increase the ion charge to

Z¼ 10 such that the collisionality is consistent with the

assumptions in the theory above. The initial temperature pro-

file is the same as in Fig. 1 and the e-i collisional mean free

path is keiðT0Þ ¼ 2:14 lm.

The temperature profiles and parameters dT and bT are

shown in Fig. 5 at time 66:5=�ei. The temperature profile in

Fig. 5 is very similar to the results from Fig. 1, but the

shorter e-i mean-free-path reduces dT, placing these results

well within the parameter validity range of local transport

theory. Taking the EDF from OSHUN simulations (Nh¼ 15)

at x ¼ 0:1L, we calculate the linear Landau damping rate

(solid colored lines) and compare it in Fig. 6 with Eq. (17)

(dashed colored lines) and the damping rate corresponding to

a Maxwellian plasma (solid black line), cM
L . Calculations are

performed for plasma waves propagating against the temper-

ature gradient (~kjj � ~rTe, blue lines) and parallel to the tem-

perature gradient (~kjj ~rTe, red lines). As in Fig. 4, the grey

region in Fig. 6 corresponds to 0:3 � kkD � 0:4. Theory and

FIG. 5. Temperature profiles for an ini-

tial condition identical to Fig. 1 but for

Z¼ 10. Relaxed profiles are again

shown at t ¼ 66:5=�ei. The increased

plasma collisionality in this case is bet-

ter suited for comparison with theoreti-

cal calculations. The two parameters

required in the theory, dT and bT, are

calculated from the relaxed oshun pro-

file and shown in inset.
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simulations are in reasonable agreement: the curves corre-

sponding to Eq. (17) illustrate well the main feature of the

distribution functions, namely, that the Landau damping is

reduced or increased for wave propagating according to
~kjj � ~rTe or ~kjj ~rTe, respectively. This property of the theo-

retical results is also seen for the example shown in Fig. 4 (a

comparatively low-collisionality case that violates the

assumptions of the derivation above); the Landau damping

in this case is plotted in Fig. 7. Note that the failure of the

Nh¼ 2 approximation that leads to cL > 0 in the OSHUN

results shown in Fig. 4 is not present in the theoretical

results.

IV. NONTHERMAL FLUCTUATIONS AND THOMSON
SCATTERING

Electrostatic fluctuations in plasmas out of thermody-

namic equilibrium are always of interest. These fluctuations

define initial levels of ion acoustic and Langmuir modes for

the growth of parametric instabilities (such as SRS) and can

modify particle collisionality. Furthermore, the correlation

function of electron density fluctuations can be measured in

scattering experiments, thereby providing a means of experi-

mental characterization of such nonequilibrium systems. In

this section, we describe an experimental measurement that

offers the opportunity to test the basic premise of this work,

namely, the anisotropic modification of the linear plasma

response due to heat flow. Calculations in the following

suggest that the proposed measurement is sufficiently sensi-

tive so as to demonstrate the inability of the Spitzer-H€arm

approximation to describe the linear plasma response under

ICF-relevant conditions.

The following TS experiment is well-suited to obtain

quantitative measurements of thermal transport and features

of the EDFs discussed in this work (cf. also Ref. 25).

Consider a plasma that is heated by a heater beam to estab-

lish an inhomogeneous temperature profile that is similar to

one of the temperature profiles shown in Figs. 1 or 5. A

probe laser (e.g., of wavelength k0¼ 0.351 lm) that is scat-

tered in the collective regime from ion acoustic and

Langmuir wave fluctuations is then applied to the heated

volume. Non-Maxwellian EDFs due to thermal transport and

the return current will lead to significant changes in the

scattered light spectrum as compared to predictions based on

a Maxwellian distribution. In hot ICF related plasmas, the

wavelength of plasma fluctuations that can be probed by

scattering of the pump at the k0 wavelength is much shorter

than the characteristic collisional mean free path, and there-

fore, the standard collisionless dynamical form factor26

Sð~k;xÞ can be employed in the calculations of the TS cross-

section. The collisionless Sð~k;xÞ reads

S ~k;x
	 


¼ 2p
k

fe j1þ vij2 þ Zfi jvej2
h i
j1þ ve þ vij2

; (18)

where f a ¼ f aðx=kÞ is the distribution function projected

onto ~k and va ¼ vaðx; ~kÞ is the susceptibility for species

a ¼ e; i. In this proposed TS experiment, the ~k-vector is

defined by the geometry of the scattering process, ~k ¼
~ks � ~k0 (satisfying x ¼ xs � x0), where k0;s ¼ 2p=k0;s and

x0;s are the wave number and frequency of the pump (0) and

scattered (s) light waves. In experiments, the angle / between
~k0 and ~ks is typically fixed, but the magnitude of ks is changed

as different frequencies (wavelengths ks) are examined in the

scattered light spectrum. It is customary to plot Sð~k;xÞ as a

function of ks, and this will be done in the following.

Figure 8 illustrates the geometry of the proposed TS

experiment. The scattered wave vector ~ks is shown in two

cases, labeled 1 and 2: (1) ~k ¼ ~k1 is approximately anti-

parallel to ~rTe, such that ~k1 ¼ ~k0 � ~ks1 and the scattered

light is red-shifted (red arrow), and (2) ~k ¼ ~k2 is approxi-

mately parallel to ~rTe, such that ~k2 ¼ ~ks2 � ~k0 and the scat-

tered light is blue-shifted (blue arrow). For scattering from

ion acoustic fluctuations, one has ks ’ k0, while for

FIG. 6. Comparisons of the Landau damping coefficient cL calculated from

theory given by Eq. (17) (dashed lines) and oshun simulations (solid red and

blue lines) using Nh¼ 15, using EDFs from the case shown in Fig. 5 sampled

at x ¼ 0:1L. Landau damping for a Maxwellian EDF is also shown (solid

black line).

FIG. 7. Comparisons of the Landau

damping coefficient cL calculated from

theory given by Eq. (17) (dashed lines)

and oshun simulations (solid red and

blue lines) using Nh¼ 15, using EDFs

from the case shown in Fig. 1 sampled

at (a) x ¼ 0:1L and (b) x ¼ 0:15L.

Landau damping for a Maxwellian

EDF is also shown (solid black line).
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scattering from electron plasma waves, this relation does not

hold. In the following analysis, we assume for simplicity that
~k is always either parallel or anti-parallel to ~rTe. While this

assumption may be removed, the impact of this assumption

is typically small and may be below the experimental

resolution.

Consider first the temperature profile from Fig. 5 and

respective EDF at x ¼ 0:1L. This example is characterized by

a weak temperature gradient corresponding to dT ¼ 0:007.

Using the EDF obtained from OSHUN (Nh¼ 15 approxima-

tion) in Eq. (18), we obtain Sð~k;xÞ and compare to form fac-

tors obtained using both a Maxwellian EDF and the SH

distribution function. The results are shown in Fig. 9 in the

low-frequency range of ion acoustic fluctuations and in Fig.

10 for higher-frequency Langmuir wave fluctuations.

In Figs. 9 and 10, xpeS is plotted as a function of the

wavelength shift between the scattered light and the pump,

ks � k0. The frequency x in Eq. (18) is defined by the

frequency difference between x0 ¼ ck0 ¼ 2pc=k0 and

xs ¼ cks ¼ 2pc=ks. In Fig. 9, the angle between ~ks and ~k0 is

120� and kkD ¼ 0:34 (more precisely, kkD ¼ 0:34 is

achieved only for ks ¼ k0, but varies little over the range of

ks � k0 in Fig. 9). For Langmuir wave fluctuations (Fig. 10),

kkD varies between 0.44 at ks � k0 ¼ �1200 Å and 0.27 at

ks � k0 ¼ 2250 Å.

The asymmetry between the red- and blue-shifted ion

acoustic peaks [Figs. 9(a) and 9(b), respectively] is a well-

known effect of the return current of slow electrons. In Fig.

9(a), the ~k-vector of fluctuations points along the background

temperature gradient, ~kjj ~rTe, while in Fig. 9(b), ~kjj � ~rTe.

In addition to the heat flow and the temperature gradient, the

important parameter here is the ion Landau damping given

FIG. 8. Geometry of the proposed Thomson scattering measurement. By

varying the scattered light wavenumber ks for fixed angle / relative to the

pump vector ~k0, different orientations of plasma waves (wavevector ~k) rela-

tive to the thermal gradient are probed. Both the redshift case ~k ¼ ~k1 ¼
~k0 � ~ks1 and blueshift case ~k ¼ ~k2 ¼ ~ks2 � ~k0 are shown.

FIG. 9. Dynamical form factor calculated using Eq. (18) at ion acoustic

wavelengths. The plasma parameters are those of Fig. 5, sampled at

x ¼ 0:1L. The dashed lines correspond to a Maxwellian (M) EDF. The SH

curves (solid blue lines) are calculated using SH distribution function

f ¼ fM þ f1 [cf. Eq. (3)] using dT ¼ 0:007. VFP curves (solid black line) are

calculated using EDFs from oshun simulations where Nh¼ 15. The panel (a)

shows blue-shifted peaks in the TS spectrum for ~k jj ~rTe and the panel (b)

shows red-shifted spectra for ~k jj � ~rTe.

FIG. 10. As in Fig. 9, but for Langmuir waves.
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by a Maxwellian ion distribution function and the ion tem-

perature (here, Ti¼ 1500 eV, Te¼ 2375 eV, and Z¼ 10). For

ZTe=Ti 
 1, the temperature gradient can drive an ion

acoustic instability27,28 resulting in the growth of ion acous-

tic waves propagating along the temperature gradient [red-

shifted peaks in Fig. 9(a)]. Note that the form factors in Fig.

9 that are calculated using Maxwellian distribution functions

(M, black dashed line) are symmetric for both directions of
~k.

The asymmetry of the SH results (solid blue line) is con-

sistent with the electron damping (or growth) rate of ion

acoustic waves calculated using the anisotropic distribution

given by Eq. (3). From, e.g., Eq. (12) of Ref. 28, one has

cSH
e kð Þ ¼ c0kkD

1þ k2k2
D

	 
2
�16

3

2

kvth

xIAW

� �
dT

� �
; (19)

where c0 ¼
ffiffiffiffiffiffiffiffi
p=8

p
ðx2

pi=xpeÞ; xIAW is the ion acoustic wave

frequency, “þ” corresponds to ~kjj ~rTe, and “�” corresponds

to ~kjj � ~rTe.

In Fig. 9(a), the narrowing and increased peak height

corresponds to a reduction in ion acoustic wave damping rel-

ative to a Maxwellian distribution, while in Fig. 9(b), the

broadening and reduced peak height corresponds to an

increase in ion acoustic wave damping. Note that in addition

to the changes in peak heights, results of OSHUN simula-

tions (VFP, solid black line) show frequency shifts that result

in slightly different locations of the two resonances. While

the height differences between the M, SH, and VFP curves

could be easily measurable in experiments, these frequency

shifts are unlikely to be resolved.

These potential resolution problems are less significant

for the Langmuir wave spectra shown in Fig. 10 for the same

set of parameters and the temperature profile of Fig. 5. One

may gain insight into the Maxwellian and OSHUN results

for the form factors by comparing them with Landau damp-

ing coefficient of Fig. 6. Note that we need to account for the

range of wave numbers defined by the geometry of the TS

measurement that are probed in Fig. 10(a), i.e.,

0:4 � kkD � 0:44, that corresponds to 2:85 � jvphj=vth �
3:05 (for ~kjj ~rTe) and in Fig. 10(b), 0:27 � kkD � 0:28, that

corresponds to 3:96 � jvphj=vth � 4:02 (for ~kjj � ~rTe).

The red-shifted VFP peak in Fig. 9(a) is enhanced above

the Maxwellian peak, consistent with Fig. 6. The SH result

deviates significantly from the VFP curve, illustrating the

high sensitivity of our results to details of the EDF, particu-

larly in the regime of relatively small velocities of resonant

electrons. Similar to the low frequency spectra in Fig. 9(a),

the red-shifted peak VFP with ~kjj ~rTe is enhanced in Fig.

10(a). There is much better agreement between SH and VFP

results at higher phase velocities in Fig. 10(b) for the spectra

corresponding to the enhanced damping and ~kjj � ~rTe.

For the simulation case corresponding to Fig. 1 (and

EDFs shown in Fig. 2), Sð~k;xÞ is shown in Fig. 11 in the

low-frequency range of ion acoustic fluctuations and in Fig.

12 for Langmuir wave fluctuations. The geometry of the TS

experiment is unchanged from Figs. 9 and 10. Here,

Ti¼ 1000 eV, Te¼ 2315 eV, and Z¼ 2. Due to the small

value of ZTe=Ti ¼ 4:6, the ion Landau damping of ion

acoustic waves is large and prevents the return current insta-

bility from developing. As a result, differences in peak heights

are small in Fig. 11 despite the relatively large value of

dT ¼ 0:035. Results for the SH approximation are not shown

since this value of dT lies far outside the range of validity of

the SH approximation (and the Nh¼ 2 oshun simulations),

resulting in a change of sign of the Langmuir wave Landau

damping coefficient. Again, results for Sð~k;xÞ in the

Langmuir wave regime (Fig. 12) are consistent with Fig. 7(a).

TS has been used previously to investigate thermal

transport in laser produced plasmas, either by spatially

resolved measurements of the thermal front propagation29 or

by interpreting ion acoustic scattering spectra by means of

non-Maxwellian EDFs due to the thermal transport.30 The

novelty of our proposed TS experiment follows from

FIG. 11. As in Fig. 9, but using parameters taken from the case shown in

Fig. 1 (Z¼ 2, Nh¼ 15, x ¼ 0:1L; dT ¼ 0:035).

FIG. 12. As in Fig. 10, but using parameters taken from the case shown in

Fig. 1 (Z¼ 2, Nh¼ 15, x ¼ 0:1L; dT ¼ 0:035).
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exploiting the asymmetry between Langmuir wave peaks

present in Figs. 10 and 12 that arises due to resonance

between heat-carrying electrons and Langmuir waves. This

feature of the TS cross section is particularly significant in

hot ICF-relevant plasmas.

V. SUMMARY AND CONCLUSIONS

Non-Maxwellian EDFs are ubiquitous in experimental

plasmas that are heated non-uniformly and maintain inhomo-

geneous temperature profiles. For a given temperature gradi-

ent, classical transport theories1,2 describe modifications of

the EDF up to the first order in the parameter dT ¼ kei=LT . In

these models, the perturbed EDFs describe deviations from a

local Maxwellian due to the heat carrying electrons with

velocities in the range 3 � v=vth � 4. dT must therefore be

small, on the order of 10�2 or smaller, for these perturbative

solutions of the VFP equation to be valid.1,2 For sufficiently

high v, any truncation in the expansion of the EDF will cease

to be valid, but when this truncation occurs after only the

first anisotropic component of the EDF, the assumption that

jf1j=f0 is small is frequently incorrect for v=vth � 3 in ICF-

relevant plasmas and a calculation of the linear plasma

response under this framework will not be physically

meaningful.

In our simulations, typical of ICF plasmas where

Te ¼ 2� 4 keV and ne ¼ 1021 cm�3, the linear response of

the plasma to Langmuir waves driven by stimulated Raman

scattering is significantly modified by heat-carrying electrons

resonant with the Langmuir waves: damping is reduced for

waves propagating parallel to the thermal gradient and

enhanced for waves propagating antiparallel to the gradient.

In VFP simulations, a high number of harmonics (15) in the

expansion of the EDF were typically required to reach a con-

verged solution.

In addition to the loss of laser energy due to SRS, two-

plasmon decay (TPD) of laser light (relevant to both direct

and indirect-drive ICF experiments) may also lead to the

absorption of laser energy at densities lower than intended

and generate very fast electrons.31 It has been shown that

TPD can be mitigated by the damping of Langmuir and ion

acoustic waves,32 and we expect therefore that the evolution

of TPD will be sensitive to modifications of the EDF by heat

flow. Observations of SRS spectra33–35 from plasmas with

peak density above nc=4 often presented a “gap” in SRS

reflectivity corresponding to densities between some mini-

mum value nmin and nc=4. The effect of a background

temperature gradient and increased damping on Langmuir

waves could be a factor contributing to these observations.

Similarly, in the novel method to ignite thermonuclear fuel

by shock ignition,36 control of SRS and its timing is critical

for the scheme to work.37

Another important result of our paper is a new approxi-

mate expression for Landau damping in plasmas with a tem-

perature gradient, derived from a theoretical model of the

EDF, given by Eq. (17). These theoretical EDFs have been

derived to second order in dT (and to first order in bT). This

theory allows for an evolution of the isotropic part of the

EDF away from Maxwellian.

Our results suggest the need for including kinetic effects

in mainline ICF simulations of laser-plasma interaction and

in the post-processing of these results via modified calcula-

tions of the threshold conditions and gain coefficients of

scattering instabilities.

ACKNOWLEDGMENTS

We would like to acknowledge useful discussions with

Laurent Divol, Pierre Michel, and Ed Williams. This work

was partly supported the Natural Sciences and Engineering

Research Council of Canada and by the Russian Foundation

for Basic Research. This work was partly performed under

the auspices of the U.S. Department of Energy (DOE) by

Lawrence Livermore National Laboratory under Contract

No. DE-AC52-07NA27344, by the DOE Office of Science,

Fusion Energy Science under FWP 100182, and funded by

the Laboratory Research and Development Program at

LLNL under project tracking code 15-ERD-038. Support

was also provided in part from DOE under Grant Nos. DE-

NA0001833 and DE-FC02-04ER54789.

1L. Spitzer, Jr. and R. H€arm, Phys. Rev. 89, 977 (1953).
2S. I. Braginskii, in Review of Plasma Physics, edited by M. A. Leontovich

(Consultants Bureau, New York, 1965), Vol. 1, p. 205.
3S. Brunner and E. Valeo, Phys. Plasmas 9, 923 (2002).
4A. R. Bell, R. G. Evans, and P. J. Nicholas, Phys. Rev. Lett. 46, 243 (1981).
5J.-P. Matte and J. Virmont, Phys. Rev. Lett. 49, 1936 (1982).
6A. R. Bell, Phys. Fluids 26, 279 (1983).
7J. F. Luciani, P. Mora, and J. Virmont, Phys. Rev. Lett. 51, 1664 (1983).
8J. R. Albritton, E. A. Williams, I. B. Bernstein, and K. P. Swartz, Phys.

Rev. Lett. 57, 1887 (1986).
9V. Yu. Bychenkov, W. Rozmus, V. T. Tikhonchuk, and A. V. Brantov,

Phys. Rev. Lett. 75, 4405 (1995).
10D. E. Hinkel, M. D. Rosen, E. A. Williams, A. B. Langdon, C. H. Still, D.

A. Callahan, J. D. Moody, P. A. Michel, R. P. J. Town, R. A. London, and

S. H. Langer, Phys. Plasmas 18, 056312 (2011).
11P. Michel, L. Divol, E. L. Dewald, J. L. Milovich, M. Hohenberger, O. S.

Jones, L. Berzak Hopkins, R. L. Berger, W. L. Kruer, and J. D. Moody,

Phys. Rev. Lett. 115, 055003 (2015).
12S. Atzeni and J. Meyer-Ter-Vehn, The Physics of Inertial Fusion (Oxford

University Press, Oxford, 2004).
13B. Dubroca, J.-L. Feugeas, and M. Frank, Eur. Phys. J. D 60, 301 (2010).
14M. D. Rosen, H. A. Scott, D. E. Hinkel, E. A. Williams, D. A. Callahan,

R. P. J. Town, L. Divol, P. A. Michel, W. L. Kruer, L. J. Suter, R. A.

London, J. A. Harte, and G. B. Zimmerman, High Energy Density Phys. 7,

180 (2011).
15J. D. Moody, D. J. Strozzi, L. Divol, P. Michel, H. F. Robey, S. LePape, J.

Ralph, J. S. Ross, S. H. Glenzer, R. K. Kirkwood, O. L. Landen, B. J.

MacGowan, A. Nikroo, and E. A. Williams, Phys. Rev. Lett. 111, 025001

(2013).
16D. Del Sorbo, J.-L. Feugeas, Ph. Nicola€ı, M. Olazabal-Loum�e, B.

Dubroca, S. Guisset, M. Touati, and V. Tikhonchuk, Phys. Plasmas 22,

082706 (2015).
17M. Tzoufras, A. R. Bell, P. A. Norreys, and F. S. Tsung, J. Comput. Phys.

230, 6475 (2011).
18A. Marocchino, M. Tzoufras, S. Atzeni, A. Schiavi, Ph. D. Nikolai, J.

Mallet, V. T. Tikhonchuk, and J.-L. Feugeas, Phys. Plasmas 20, 022702

(2013).
19M. Tzoufras, A. Tableman, F. S. Tsung, and A. R. Bell, Phys. Plasmas 20,

056303 (2013).
20O. V. Batishchev, V. Yu. Bychenkov, F. Detering, W. Rozmus, R. Sydora,

C. E. Capjack, and V. N. Novikov, Phys. Plasmas 9, 2302 (2002).
21A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles

of Plasma Electrodynamics (Springer, Berlin, 1984).
22S. Ichimaru, Statistical Plasma Physics, Vol. I: Basic Principles (Addison-

Wesley, Reading, 1992).
23A. V. Brantov, V. Yu. Bychenkov, V. T. Tikhonchuk, and W. Rozmus,

JETP 83, 716 (1996).

012707-10 Rozmus et al. Phys. Plasmas 23, 012707 (2016)

27



24A. V. Brantov, V. Yu. Bychenkov, V. T. Tikhonchuk, and W. Rozmus,

Phys. Plasmas 5, 2742 (1998).
25R. J. Henchen, S. X. Hu, J. Katz, D. H. Froula, and W. Rozmus, Bull. Am.

Phys. Soc. 60, 166 (2015).
26D. H. Froula, S. H. Glenzer, N. C. Luhmann, Jr., and J. Sheffield, Plasma

Scattering of Electromagnetic Radiation: Theory and Measurement
Techniques (Elsevier, Amsterdam, 2011).

27V. T. Tikhonchuk, W. Rozmus, V. Yu. Bychenkov, C. E. Capjack, and E.

Epperlein, Phys. Plasmas 2, 4169 (1995).
28A. V. Brantov, V. Yu. Bychenkov, and W. Rozmus, Phys. Plasmas 8, 3558

(2001).
29G. Gregori, S. H. Glenzer, J. Knight, C. Niemann, D. Price, D. H. Froula,

M. J. Edwards, R. P. J. Town, A. Brantov, W. Rozmus, and V. Yu.

Bychenkov, Phys. Rev. Lett. 92, 205006 (2004).

30J. Hawreliak, D. M. Chambers, S. H. Glenzer, A. Gouveia, R. J. Kingham,

R. S. Marjoribanks, P. A. Pinto, O. Renner, P. Soundhauss, S. Topping, E.

Wolfrum, P. E. Young, and J. S. Wark, J. Phys. B 37, 1541 (2004).
31W. Seka, D. H. Edgell, J. F. Myatt, A. V. Maximov, R. W. Short, V. N.

Goncharov, and H. A. Baldis, Phys. Plasmas 16, 052701 (2009).
32J. F. Myatt, H. X. Vu, D. F. DuBois, D. A. Russell, J. Zhang, R. W. Short,

and A. V. Maximov, Phys. Plasmas 20, 052705 (2013).
33H. Figueroa, C. Joshi, and C. E. Clayton, Phys. Fluids 30, 586 (1987).
34R. E. Turner, Phys. Fluids 26, 579 (1983).
35D. W. Phillion, Phys. Fluids 25, 1434 (1982).
36R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and

A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).
37O. Klimo and V. T. Tikhonchuk, Plasma Phys. Controlled Fusion 55,

095002 (2013).

012707-11 Rozmus et al. Phys. Plasmas 23, 012707 (2016)

28



Validation of OSHUN against collisionless
and collisional plasma physics

Archis S Joglekar1,2 , Benjamin J Winjum1,2, Adam Tableman1,2,
Han Wen1,2, Michail Tzoufras3 and Warren B Mori1,2

1Department of Physics and Astronomy, University of California—Los Angeles, Los Angeles, CA, United
States of America
2 Electrical Engineering Department, University of California—Los Angeles, Los Angeles, CA, United
States of America
3 Spin Transfer Technologies, Inc., Fremont, CA, United States of America

E-mail: archis@ucla.edu

Received 31 January 2018, revised 22 March 2018
Accepted for publication 26 March 2018
Published 4 May 2018

Abstract
OSHUN, a Vlasov–Fokker–Planck–Maxwell code, is successfully validated against a few
collisionless and collisional plasma physics test problems. In OSHUN, the distribution function
is expanded in velocity (or momentum) space into an arbitrary number of spherical harmonics.
OSHUN is shown to accurately recover Landau damping by including a relatively small number
of spherical harmonics for an initial value problem as well as a driven plasma wave. The Fokker–
Planck operator (both electron–electron and electron-ion) is shown to be able to reproduce the
Epperlein–Haines heat-flow coefficient in warm, un-magnetized and magnetized plasmas with
varying degrees of ionization. These collisionless and collisional problems are of disparate time-
and length- scales ranging from femtoseconds to nanoseconds, and from microns to millimeters.
OSHUNʼs ability to handle these test problems successfully illustrates the power of the
spherical-harmonic expansion when studying both weakly-collisional and collisional plasmas
relevant to high-energy-density physics. The implementation and use of new features such as a
ponderomotive wave driver and an implicit collision operator is also discussed.

Keywords: Vlasov–Fokker–Planck, kinetic modeling, spherical harmonic, cartesian tensor

(Some figures may appear in colour only in the online journal)

Plasma physics phenomenon can occur over disparate time-
and length-scales as well as plasma densities and tempera-
tures. However, plasmas with the same number of particles
per Debye sphere, p l= ( )N n4 3D D

3 , behave similarly in
terms of normalized parameters. In particular, the ratio of the
electron-ion collision frequency to the plasma frequency is
proportional to -N NlogD D

1 . For many plasmas, ND is so large
that collisions are unimportant. However, in high-energy-
density plasmas (HEDP), ND can range from 102 to 104 so
that both collisionless and collisional phenomenon occur
simultaneously over time-scales of interest.

In the presence of sufficient collisions, the electron dis-
tribution function in a plasma is nearly spherically symmetric
in velocity space. In weakly collisional plasmas, the effect of
Coulomb collisions is to attempt to limit the perturbation of the

distribution away from a spherical distribution function and to
bring the isotropic part close to a Maxwellian. This naturally
motivates the use of a spherical harmonic decomposition for
the electron distribution function. Historically, a Cartesian
tensor expansion, which has been shown to be equivalent to a
spherical harmonic decomposition [1–3], has been employed
for this purpose. The Cartesian tensor expansion of the electron
distribution function, ( )f x v, , is given by

= + + +( ) ( ) · ( ) ( ) ( )f f v
v

x v
v

vx v x
v

f
vv

f x, , , : , ... 10 1 2 2

The expansion-based technique was first used to study
kinetic effects from nearly-Maxwellian plasmas. In the pre-
sence of steep temperature gradients, non-local heat transport
arises, and the description of heat flow requires a kinetic
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treatment. Various authors [4–7] showed that the relevant
kinetic information is contained in the first two terms of the
expanded distribution function given by equation (1), and
used this approach to perform self-consistent calculations of
non-local heat flow.

To improve upon the work of Braginskii [8], Epperlein
and Haines also used the expansion technique, up to the first
order, to compute the electron transport coefficients for var-
ious ionization states and magnetizations [9]. Epperlein
[10, 11] provided details of the numerical implementation of
the equations in multiple spatial dimensions, provided an
improvement for the Fokker–Planck operator [12] and used
the code to study non-local effects in filamentation [13], high-
intensity irradiation [14], and ion-acoustic waves [15]. A
modification to the collision operator that applies to the zeroth
order term enabled the modeling of inverse-bremsstrahlung
heating while retaining effects such as the development of a
super-Maxwellian electron distribution function [16, 17].

With an increased availability of high-performance com-
puting, the technique has since been specialized for certain
applications. Fully implicit algorithms that solve for the first
three terms in equation (1) have been developed [18, 19]. These
excel at calculating transport problems in nearly-Maxwellian,
magnetized plasmas over long time-scales [20, 21].

As noted above, complementary to the Cartesian tensor
expansion is an expansion in spherical harmonics. Such an
expansion is more appropriate for distribution functions
which are further away from a Maxwellian such as arises for
weakly collisional plasmas and in laser-plasma interactions.
In [22–25], a code called KALOS was described which
employed the spherical harmonic expansion to describe a
cold, collisional background plasma together with the evol-
ution of fast electrons which are collisionless.

Here, we present results using the code, OSHUN, which is
a fully general code that follows the same expansion form-
alism by expanding the velocity distribution function into an
arbitrary number of spherical harmonics, that includes the full
Maxwell solver or an implicit field solver, and that includes a
non-relativistic electron–electron and electron-ion collision
operator that is linearized in the self-interaction of the sphe-
rical harmonics, but is fully nonlinear in the zeroth harmonic.
It is the first software that implemented the spherical har-
monic expansion algorithm in parallel. It was developed in C
++ with a framework conducive for high performance and
runs on personal as well as national leadership class
machines. It has shown the ability to be able to model colli-
sionless physics [26] when many terms in the expansion are
used in addition to the fully explicit solver. OSHUN has also
been shown to be able to study nonlocal heat transport pro-
blems when an implicit field solver is used [27], to recover
kinetic features of inverse bremsstrahlung heating [16]. Using
the new implicit solver enabled the self-consistent calculation
of electron distribution functions in the presence of very steep
temperature gradients that require more than two terms in the
spherical harmonic expansion [28].

In addition, non-local transport models based on including
only the first two terms in the spherical harmonic expansion and

an implicit electric field solver have been implemented and
benchmarked in radiation hydro-dynamics codes [29–32].

Other implementations of the spherical harmonic
expansion technique include the ability to model electrons
with the explicit formalism while in the presence of strong
hydrodynamic flow by the use of an alternate-rest-frame
equation set [33]. Finally, the expansion technique has also
been used to model relativistic electron transport within a
hybrid framework [34]. More details on the development and
use of expansion-based Vlasov–Fokker–Planck–Maxwell
(VFPM) codes towards HEDP applications is given by
Thomas et al [35].

Here, we focus on the validation of both the fully explicit
and the implicit field solve algorithms for the advance of the
Vlasov equation in OSHUN. We expand upon the work in [27]
by comparing collisionless Landau damping from OSHUN to
theory. Furthermore, we also emphasize that the electron–
electron- and electron-ion- Fokker–Planck collision terms in
OSHUN agree with theoretical calculations of transport coef-
ficients. Reproducing the transport coefficients requires
evolution over long time-scales. This is accomplished by
using the implicit scheme in OSHUN for solving the fields
[27]4. By presenting results of both collisionless and colli-
sional regimes, we aim to show that OSHUN offers a unique
capability to study, in detail, the dynamics between self-
organizing forces and velocity-dependent collisions, in plas-
mas ranging from nearly-collisionless to strongly collisional.

1. OSHUN

The expansion technique implemented in OSHUN rests on the
assumption that the distribution function, ( )f x v, , can be
represented by a reasonable number of spherical harmonics
such that ( )f x v, is given by

å å q= f

= =-

( ) ( ) ( ) ( )f f v t Px v x, , , cos e , 2
l

N

m N

N

l
m

l
m m

0

i
l

m

m

where N N, ,l m are the number of terms in the expansion. In
equation (2), fl

m is the coefficent (depends on position,
magnitude of v, and time) of each harmonic in the expansion
of the distribution function, q( )P cosl

m is the associated
Legendre polynomial for the fl

m term of the expansion.
Typically, the angle θ is defined with respect to the ẑ axis.
However, in OSHUN it is with respect to the x̂ axis. Therefore,
in 1D geometry, gradients only exist in the x̂. We note that
OSHUN has the option for using a spherical harmonic
expansion for ( )f x p, coupled with a relativistically correct
Vlasov equation. However, the collision operators are still
non-relativistic. f0

0 is the isotropic component of the dis-
tribution, while f m

1 carries the first order vector information.
Consequently, the density, temperature, and current are
moments of the individual terms in the spherical expansion

4 To perform these tests, a ponderomotive driver and implicit f0
0 collision

operator was implemented in addition to the previously published algorithms
in OSHUN [26, 27]. The new algorithms are discussed in the appendix.
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of the distribution function. The density is given by =n
på Dv f v4 2

0
0 , the temperature by p= å DT v f v2 4

0
0 , and the

current (in x̂) by p= å D( )j e v f v4 3x
3

1
0 . The distribution

function information is only stored, and computed, for the
velocity amplitude (speed), v.

The equations, algorithms, and normalizations used in
OSHUN have been described previously [22, 26, 27]. The
equations are normalized to units defined by the speed of
light, c, the electron mass, m, and charge, e, an arbitrary time-
scale, w-

0
1 where the density is normalized as w w[ ]p0 0

2 where
wp0 is the plasma frequency defined at a location where the
density is n0. An immobile, uniform profile of ions provides a
neutralizing background. OSHUN is parallelized by spatial
domain decomposition using MPI.

In the collisionless regime, OSHUN can resolve electron
plasma wave oscillations that occur on the inertial length
scale, l w=¯ c p. For HED laboratory plasmas, this regime
typically represents time and length scales of -10 16 s
and 10 nm. In the collisional regime, where phenomenon
occurring on the plasma period time-scale are typically not of
interest, OSHUN can step over multiple plasma periods using
an implicit solver for the fields. The collision operator
resolves collisional time-scale behavior and the time step
needs to chosen to resolve this as well. In HED plasmas, this
is ps time-scale behavior occurring over 10 μm length-scales
and the length of the simulation in time and space are ns and
mm respectively. These parameters describe the need for
multi-scale modeling required in HEDP, or in describing
plasma with density satisfying < <N100 10000D , e.g. the
solar corona. This paper demonstrates the ability of OSHUN to
span these scales. This is done by testing OSHUN against well-
known plasma physics problems in the collisionless and
collisional regime, where essentially each term in the non-
relativistic Vlasov–Fokker–Planck equation is tested.

In this paper, we describe the ability for OSHUN to
accurately reproduce the results for the linear dispersion
relation for electrostatic (ES) waves in plasma. This includes
carefully comparing results from OSHUN against the theor-
etical calculations on collisionless, i.e., Landau [36], damping
of an electron plasma wave (EPW). We also test the colli-
sional module against previous calculations in Epperlein and
Haines [9] for the steady-state heat-flow coefficient for var-
ious ionization states and magnetizations. This test also
verifies the ´v B term in the Vlasov equation. Last, we
discuss newly implemented features in OSHUN that broaden
its capabilities.

2. Testing collisionless physics

The following subsections discuss the retrieval of the real and
imaginary parts of the dispersion relation ES waves in an
unmagnetized plasma (electron plasma waves, EPW, for fixed
ions). Although not presented here we have also investigated
EM waves and found agreement with theory (EM waves do
not damp due to wave-particle interactions). The dispersion
relations are analytically calculated by linearizing the Vlasov
equation and combining it with Maxwellʼs equations.

Therefore, testing against the dispersion relation enables
us to test OSHUNʼs electric and magnetic field advance and
spatial advection terms The time-advance set of equations
used here is given by

m

¶ = + ´ ¶
¶ = ¶
¶ = +  ´
¶ =  ´

( ) ·
·

( )

f f

f f

E v B
v

E j B
B E. 3

t

t

t

t

v

x

0

In what follows we only present results for ES waves
where in 1D we update the electric field from Ampereʼs law
by setting ´ =B 0 rather than solving Poissonʼs equation.

2.1. Electron plasma wave dispersion relation

The development of VFP codes, particulary those that use a
Cartesion tensor or a spherical harmonic expansion, was
driven by the interest in studying behavior in which collisions
keep the distribution funtion nearly symmetric (problems in
which only a few terms in the expansions are needed).
However, we show here that such a code, OSHUN, can
accurately model collisionless, i.e., Landau damping, of
EPWs even when only a limited number of harmonics is kept.
OSHUN was previously shown to be able to model the two
stream instability [26].

2.2. Landau damping

To study Landau damping, we excite a wave with a specified
wavenumber and then let it evolve (an initial value problem).
We then compute the real and imaginary values for the fre-
quency for the chosen wave number based on the kinetic

EPW dispersion relation, = - ¢
l

w( )( )
Z0 1

k kv

1

2 2D
2 2

th
where Z

is the plasma dispersion function [37] and l wº vD pth is the
Debye length, and k is the wavenumber of the wave.

We begin by describing a series of simulations for the
same wavenumber, lk D, but different spatial and velocity
space resolution. A sinusoidal single mode plasma wave is
generated using an external term in Ampereʼs law (similar to
adding an external force). In these simulations, the plasma
density in the simulation is set to 1, =( )n x 1, such
that the normalizing frequency w w= p0 . The box length is
one wavelength long and periodic boundary conditions
are used.

The EPW is driven for w-60 0
1 with w= = -t t 10rise fall 0

1

and w= -t 40flat 0
1 and the meaning of these variables are

given in the appendix. The drive is given by D D =E tx

w-( ) ( )a t kx tsin0 (recall that the electric field is normalized
to wmc ep ) where the maximum value of = -a 100

8, and
=k 7.5. Recall that for =n 10 , k is normalized to w cp . The

EPW frequency is given by solving the dispersion relation for
=( )n x 1 and =( )v x c0.04th which corresponds to l =k D

0.3. For l =k 0.3D the dispersion relation gives a real frequency
of w = 1.159847. We limit the velocity to a maximum value of

=v v8max th and the box length is w=L c0.837758 p which
corresponds to one wavelength. Note that =N 0m for an EPW,
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i.e., for a longitudinal wave there is no coupling between dif-
ferent m modes.

We vary N N N, , ,x v l andDt to quantify the accuracy of the
damping rate. Data from these simulations is provided in table 1
and the the evolution in time of the amplitude of the wave
results is plotted for three of the simulations in figure 1 for
which the number of harmonics and time step were kept fixed at

=N 8l and D =t 0.01 respectively. The damping rate from
the simulations is measured as the slope of the amplitude for the
first harmonic (red line) in figure 1. The slope corresponding to
the damping rate predicted from the dispersion relation is shown
as a dashed line. As seen in table 1, the damping rate is found to
be most sensitive to the variation of Nx such that the simulation
with = = = D =N N N t128, 256, 8, 0.01x v l recovers the
Landau damping rate to within 1 percent. However, there are
other errors that arise when Nv or Nl are decreased. To describe
these, we refer to figure 1, where = =k k0, 1, and k=2
harmonics are shown for three different simulations.

In figure 1(a), we show data from the spatial-Fourier-
transform of the electric field computed in the simulation that
shows the best agreement with the Landau damping rate. The
magnitude of the k=1 mode is plotted on the left axis, and the
k=0 and k=2 modes are plotted on the right axis. The dotted
line nearly overlaps the k=1 mode confirming the accurate
reproduction of the Landau damping rate. The k=2 mode is
nearly -10 7 smaller than the k=1 mode suggesting that the
signal-to-noise ratio is very small. The k=0 mode is barely
above machine precision levels when the wave driver is on, and
collapses to machine precision levels when the driver turns off.
Therefore, the need for techniques like divergence cleaning or
the removal of k= 0 mode is not necessary in OSHUN.

Data from the test with =N 16x is shown in figure 1(b)
where the k= 1 mode is underdamped by nearly 15%. Data
from the test with =N 64v is shown in figure 1(c) where the
damping rate shows excellent agreement. However, the
simulation shows recurrence effects in k=1 near w= -t 175 0

1

that are common to Vlasov methods [38]. For this case with
poor resolution in velocity space, the recurrence occurs much
earlier for the k=2 mode.

In figure 2 we show that both the real and imaginary
frequencies obtained from OSHUN. For the OSHUN data in this
figure, a series of ten simulations lk D was varied from
0.1, 0.14, 0.18, 0.22, 0.26, 0.3, 0.34, 0.38, 0.42, 0.46, 0.5.
The numerical parameters were chosen to be the ‘standard’
values, = = = D =N N N t64, 256, 8, 0.01x v l . The solid
curves correspond to the theoretical values. The results show

that OSHUN recovers both the real and imagninary values very
accurately when appropriate resolution in real and velocity
space is used.

Table 1. Variance in the Landau damping rate percentage error with respect to different numerical discretization parameters. The standard set
of parameters used here is = = = D =N N N t64, 256, 8, 0.01x v l . The columns distinguish the various parameters. The numerically
measured damping rate is always smaller than the theoretical value.

Nx % error Nv % error Nl % error Dt % error

16 18.1 64 1.40 4 16.4 0.08 66.3
32 5.13 128 1.49 8 1.54 0.04 1.54
64 1.53 256 1.53 16 1.21 0.02 1.54
128 0.06 512 1.55 32 1.21 0.01 1.54

Figure 1. An EPW is driven from w- -0 60 0
1 after which Landau

damping occurs. In the above, Nl=8 and D =t 0.01. The k=1
mode is plotted on the left axis and the k=0 and 2 modes are
plotted on the right. (a) For Nx=128 and Nv=256, we find
excellent agreement with the theoretical calculation. For Nx=16
and Nv=256 (b), the loss of resolution in x̂ results in a poor
calculation, while for Nx=64 and Nv=64 (c), the correct damping
rate is recovered but recurrence occurs on a very short time-scale.
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3. Testing collisional physics

The Fokker–Planck operator in OSHUN is fully nonlinear for
f0

0 and linearized for fl
m. The fl

m operator contains the effect
of electron-ion collisions. In Epperlein and Haines [9], the
authors use the f f,0

0
1
0, and f1

1 equations, along with full
treatment of electron–electron and electron-ion collisions to
calculate the electron transport coefficients for magnetized
plasmas for a range of ionization states, Z. In previous work
[27], OSHUN was shown to reproduce the heat flow coefficient
for Z= 1 in an unmagnetized plasma with a long temperature
gradient-scale-length, and to study non-local heat-flow over
shorter gradient-scale-lengths. Here, we further validate the
code by reproducing the heat-flow coefficient for heat-flow
perpendicular to the magnetic field, k̂ , for various Z over a
long gradient-scale-length. This offers a robust test of the
f f,0 1 equation set and its Fokker–Planck operator over a
collisional time-scale.

3.1. Heat flow coefficient—various Z and ωcτ

To calculate the heat flow coefficient, k̂ for various ioniz-
ation states, Z, and magnetic field strengths, a sinusoidal
temperature profile is initialized. The simulations use one
spatial direction, x̂, and the magnetic field points in the ẑ
direction. The implicit electric field solver [27], and the
implicit collision operators described in the appendix, enable
time-steps on the order of collision-times. As in the reference
calculation [9], only one term in the spherical harmonic
expansion is used (and required). k̂ ( )Z is calculated by
dividing the gradient of the temperature by the heat flow,

p= å( )q v f v2 3 d5
1
0 . For the 1D cases studied here, k̂ ( )Z , is

in the x̂ direction which is perpendicular to the applied
magnetic field. We examine k k= ^( ) ( )Z Zx even when there
is no magnetic field.

For the following simulations, = =-n v10 cm ,0
21 3

th

0.07 c. A sinusoidal temperature profile is imposed with
D =T T 0.010 . The relevant collisional parameters such as
the mean free path and collision frequency are found using
the NRL formulary [37]. A uniform profile of immobile ions
provides a neutralizing background.

Large-time-step, and large-spatial-cell calculations are
enabled because the collision operators and the electric field
solver are implicit. However, some care must be taken when
discretizing the grids. When modeling such plasmas in
OSHUN using the implicit field solver, one still needs to
resolve the collision time, and to some extent, the collisional
mean-free-path. In problems such as these, it is typically more
intuitive to work in collisional units where the velocity is
normalized by the thermal velocity, space normalized by the
collisional mean-free-path, and time normalized by the col-
lision time, i.e. l t= = =v v v x x t t, ,n n ei n eith .

Using this description, the gradient scale length can be
quantified by l =T T 1000 ei. A shallow temperature gra-
dient ensures heat flow remains local. Since the collisional
mean-free-path varies by Z, the size of the simulation domain
is scaled to preserve the specified gradient scale length.

To acquire the data displayed in figures 3 and 4(a) no
magnetic field was applied and the simulations had D ~t
t lD ~x1 , 10ei ei. For the low-Z simulations, the timestep can
be very large in units of the inverse plasma frequency, e.g., for
the conditions listed above, and w= D > -Z t2, 50 p

1. Figure 3
shows the heat flow coefficient evolving to the steady state
value for Z=2 and Z=60. To reach the steady-state solution
[9], the system needs to be run for over t( )10 ei. The coef-
ficients plotted in figure 4 correspond to the steady state values.

Although not shown here, there is a significantly weaker
dependence of the simulation results on the spatial discretiza-
tion e.g. k l k lD ~ » D ~( ) ( )x x100 10ei ei . However, better
spatial resolution will be necessary when modeling steeper

Figure 2. The Landau damping rate is reproduced accurately in
OSHUN for various lk D.

Figure 3. The evolution of the heat-flow coefficient in an
unmagnetized plasma. It evolves towards the steady-state value
computed by Epperlein and Haines [9] for (a) Z = 2, and (b) Z = 60.
For the low-Z calculation in (a), the off-diagonal components of the
fm

l electron–electron collision operator are used for greater accuracy.
In both cases, we find that the steady-state is reached after ( )10
collision times.
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plasma gradients where non-local flow effects that depend on
accurately resolving the gradient in space of the distribution
function become important.

In addition to gradients in temperature and density,
OSHUN has the ability to have gradients in the ionization state,
Z. All three should be kept in mind when considering the
optimal time-step and grid size for a particular simulation.

Simulations with Z 20 require the full electron–elec-
tron collision operator given in equation (9) (see appendix)
for greater accuracy. When the terms that form a tri-diagonal
matrix in the collision operator are used (e.g., when Z 20),
time-steps on the order of the collision time are possible. To
recover the transport coefficient within 5% for Z 20, the
terms describing the Rosenbluth potentials of f1

0,1 are
necessary. This slows the calculation in two ways. A dense
matrix must now be solved using an iterative method rather
than the fast, tri-diagonal solver that can be used for Z 20.
To accurately recover the heat-flow, the extra terms require
time-steps smaller than the collision time. For example, for
Z=2, we used a time-step smaller by a factor of 4 to acquire
the data in figure 3(a).

Similar simulations are performed in the presence of a
constant external magnetic field in the ẑ direction. OSHUN has
the ability to impose an external magnetic field in the system.
Using this feature, the plasma is held at the desired level of
magnetization. Figure 4(b) shows excellent agreement
between the results from OSHUN and the calculation in
Epperlein and Haines [9] over a range of magnetizations,
w t = 0.01, 0.06, 0.1, 0.6, 1, 3c ei for both Z=2 and Z=60.
Here, wc is the gyrofrequency and tei is the electron-ion col-
lision frequency.

4. Conclusion

We have shown that OSHUN successfully reproduces well-
known results for both collisionless and collisional HEDP
regimes. We find that Landau damping (the imaginary part of
the frequency from the EPW dispersion relation) can be
accurately recovered if ( )10 terms are kept in the spherical
harmonic expansion when the collision operator is disabled.
Although not shown here (they will appear in a separate
publication), we have also found that OSHUN can accurately
model nonlinear EPWs if more spherical harmonics are kept,
( )102 and if finer time-, space-, and velocity-resolution is
used. We have also shown that the implicit field and collision
operator algorithms in OSHUN can model collisional
phenomenon with as few as three spherical harmonics and
with relatively lax time and space resolution.

These two problems validate OSHUN. The EPW test
problems demonstrates that even collisionless physics can be
accurately modeled using the spherical harmonic expansion
method in the Vlasov equations by itself. The Fokker–Planck
operator is tested against the calculation of the heat-flow
coefficient carried out by Epperlein and Haines [9]. In these
tests we used the implicit field solvers and an implicit col-
lision operator (described in the appendix). Furthermore, we
used different approximations to the e–e collision depending
on the Z of the plasmas. These features in OSHUN enable

tD ~t ei and lD ~x 10 ei to be used to recover the heat-flow
coefficient for a range of ionization states and magnetizations.
By recovering the correct coefficients, we validated the
implicit field solver and implicit collision operators, in addi-
tion to the magnetic field operator.

Currently, OSHUN be used with periodic and reflecting
boundaries. Future development will include the imple-
mentation of absorbing and open boundary conditions. An
absorbing boundary condition for the plasma can be imple-
mented by the use of the collision operator [39] while the
absorbing boundary conditions for the fields are well estab-
lished [40]. Open boundary conditions can be modeled by
expanding the domain of the grid efficiently through the use
of non-uniformly-spaced grid cells [41].

Laser-plasma experiments often involve weakly-colli-
sional plasmas. The tests described in this paper as well as
those presented in [26, 27] show that spherical harmonic
expansion-based VFPM codes such as OSHUN can accurately
model collisionless and collisional physics. Therefore, such
codes are ideal tools to model aspects of these experiments as

Figure 4. The heat flow coefficient after 10 ps in a 1 mm plasma for
various (a) ionization states and (b) magnetizations. The solid lines
are calculated using formulas from Epperlein and Haines[9]. For
(a) t lD = D =t x1 , 10ei ei such that for w= D = -Z t2, 330 0

1,
while for (b), the time-step must be reduced as w tc increases.
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well as develop theoretical models for weakly-collisional
plasma physics phenomenon. The collisionless physics results
are relevant to the study of laser-plasma interactions for
inertial fusion, of radiation generation mechanisms, and of
astrophysical plasma environments. Being able to model the
collisional physics using an ab initio tool such as a VFPM
code is vital to assessing the performance of magnetohy-
drodynamics codes that are used to model laser-plasma HEDP
and ICF experiments. OSHUN is the latest among such VFP
codes, and offers some unique capabilities for studying the
weakly-collisional physics in 1X-2V, 1X-3V, 2X-3V
dimensionalities. It is available as open source software [42].
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Appendix. Code modifications and improvements

A.1. Input decks and code

The code and input decks used to acquire, and the Jupyter
notebooks used to process and plot data presented here are
available on the PICKSC [42] website. The data is also
available in HDF5 format.

A.2. Implicit f 00 collision operator

The f0
0 collision operator originally implented in OSHUN and

described in Tzoufras et al [26], is fully nonlinear and
explicit. It also contains a modification to include inverse-
bremsstrahlung heating without resolving the laser frequency
[27]. For large laser intensities, the explicit operator requires
relatively small time-steps such that the benefit of the implicit
E solver is negated. Here, OSHUN is supplemented with the
implicit, improved Chang–Cooper f0

0 collision algorithm
described in [12, 18, 43]. We implemented a version [44] of
this in OSHUN and for completeness, we provide the details in
what follows. The equation set to be solved is
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-10 13 and Lln ee is calculated from the NRL formulary [37]
using the local density and temperature. To solve equation (4)
implicitly, a tridiagonal matrix can be formed by appro-
priately differencing the above equations such that the num-
erical implementation is given by
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where a b g, , form the subdiagonal, diagonal, and super-
diagonal of the tridiagonal matrix. *+Ck
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The boundary conditions for this set are d d= =+N1 2 1 2v

0.5. An inner iteration is performed to calculate +Dk 1 2 and
d +k 1 2. Adding inverse Bremsstrahlung heating into this
algorithm via the Langdon heating operator [16] requires
modifying +Dk 1 2 as outlined in Epperlein et al [10]. This
capability has also been added.
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A.3. f ml collision operator

The linearized fl
m collision operator is reproduced in
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where the coefficients A A B B B B, , , , ,1 2 1 2 3 4 are provided in
Tzoufras et al [26]. -( ) ( )I v J v,2 1 , and ( )I v0 are the Rosenbluth
potentials of ( )f v0 .

The first four terms of equation (9) are proportional to fl
m

or its first or second derivatives. This enables the discretiza-
tion of the first four terms implicitly, forming a tri-diagonal
matrix. The last four terms describe the evolution of fl

m due to
the interaction of itʼs own Rosenbluth potentials with f0.
Including these terms gives a dense matrix that is more
computationally expensive to solve. It is recommended to
include these terms as a check for low Z calculations where
the off-diagonal terms describing electron–electron collisions
have non-negligible contributions. In practice, we find that the
tri-diagonal terms recover most calculations within 5%–10%
as long as the discretization is carefully considered.

A.4. Initializing electron plasma waves

The ability to initialize or drive up and external waves as a
function of space and time has been added to OSHUN. The
pulse shape and duration of the external drivers can be spe-
cified by including rise, fall, and flat times. The shape of the
rise and fall is determined by a fifth-order polynomial that
smoothly and quickly reaches 0 and 1 on opposite sides. This
function is given by

¢ =
¢ - ¢ + ¢

- ¢ + ¢ - ¢

⎧

⎨
⎪⎪

⎩
⎪⎪

( ) ( )A t

t t t

t t t

0 before rise time
6 15 10 during rise time
1 during flat time

1 6 15 10 during fall time
0 after fall time,

10

5 4 3

5 4 3

where ¢t is

¢ =
- - ( )/

/

t
t t

t
. 11rise fall

pulse center

rise fall

To drive an electric or magnetic field an external source of
the form ( )A x t, is added to Ampereʼs law or Faradayʼs law
respectively when


E or


B is being updated. For the plasma wave

problems, wµ -( ) ( )A x t kx t, sin where wavenumber, k, and
frequency, ω, can be specified as inputs. k is chosen for the lk D

of interest and ω is chosen close to the real part of the frequency
from the dispersion relation.

The values for ( )A x t, and the rise, flat, and fall times are
chosen to provide the desired amplitude and proper initial
values for the distribution function. This capability is used
extensively for the simulations used to generate figures 2
and 4.
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For many plasma physics problems, three-dimensional and kinetic effects are very 
important. However, such simulations are very computationally intensive. Fortunately, 
there is a class of problems for which there is nearly azimuthal symmetry and the 
dominant three-dimensional physics is captured by the inclusion of only a few azimuthal 
harmonics. Recently, it was proposed [1] to model one such problem, laser wakefield 
acceleration, by expanding the fields and currents in azimuthal harmonics and truncating 
the expansion. The complex amplitudes of the fundamental and first harmonic for the 
fields were solved on an r–z grid and a procedure for calculating the complex current 
amplitudes for each particle based on its motion in Cartesian geometry was presented 
using a Marder’s correction to maintain the validity of Gauss’s law. In this paper, 
we describe an implementation of this algorithm into OSIRIS using a rigorous charge 
conserving current deposition method to maintain the validity of Gauss’s law. We show 
that this algorithm is a hybrid method which uses a particles-in-cell description in r–z
and a gridless description in φ. We include the ability to keep an arbitrary number of 
harmonics and higher order particle shapes. Examples for laser wakefield acceleration, 
plasma wakefield acceleration, and beam loading are also presented and directions for 
future work are discussed.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Particle-in-cell simulations are widely used and well established for simulating plasmas in fields ranging from magnetic 
fusion, inertial confinement fusion, plasma based acceleration, and space and astrophysics. These simulations are conducted 
in one, two, and three dimensions. The two dimensional simulations are often conducted in Cartesian “slab” geometry or 
r–z “cylindrical” geometry. While the two dimensional simulations can be very useful for carrying out parameter scans and 
illuminating physics, there are some problems in which three dimensional effects lead to both qualitative or quantitative 
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differences. For example, in plasma based acceleration the space charge forces of an intense particle beam or the radiation 
pressure of an intense laser, drive plasma wave wake fields as they propagate through long regions of plasmas. The wakefield 
structure, the self-trapping of electrons, the beam loading of wakes by trailing beams, and the evolution of the drive particle 
or laser beams are not properly modeled in 2D slab geometry due to geometrical effects. Therefore r–z PIC simulations have 
been used to properly describe the structure of the wakefield. However, the use of an r–z code precludes hosing and the 
effect of asymmetric spot sizes of both the drive and trailing particle beams. In addition, a linearly polarized (or circularly 
polarized) laser is not typically azimuthally symmetric (azimuthally symmetric laser pulses are radially polarized) so a laser 
driver cannot even be modeled using an r–z code.

Several methods have been developed for more efficiently modeling plasma-based acceleration in three dimensions (or 
in lower dimensions). These include the moving window method [2], quasi-static methods [3–5], the ponderomotive guid-
ing center (PGC) method for modeling laser propagation [3,6], and the use of simulating the physics in Lorentz boosted 
frames [7–10]. In some cases these methods are combined. For example, a combination of quasi-static field equations and 
the ponderomotive guiding center approximation are used in QuickPIC [5,4] to model laser wakefield acceleration. In ad-
dition, each of these methods has advantages and disadvantages when compared to full PIC methods in the rest frame of 
the plasma. The quasi-static methods cannot accurately model self-injection, and the ponderomotive guiding center model 
can have difficulty modeling nonlinear laser–plasma interactions over pump-depletion distances (a method to avoid some of 
these difficulties was discussed in [11]). Despite the recent progress on understanding the numerical Cherenkov instability, 
there is still research left on the use of Lorentz boosted frames to model nonlinear regimes of laser wakefield acceleration 
[12–14]. In addition, parameter scans over the plasma length are more straightforward in the lab frame. In a single simula-
tion with a long plasma length, the beam energy, wakefield, and laser, can be plotted as a function of propagation length. 
In the boosted frame a longer plasma length can be used as well. However, the data needed to plot quantities at a fixed lab 
frame time correspond to many boosted frame times. Work continues on each of these methods.

Very recently, an algorithm was proposed that would allow modeling laser propagation with similar computational 
costs to an r–z code. In this algorithm the fields and currents are expanded into azimuthal harmonics (modes) where the 
amplitudes of each harmonic are complex and functions of r and z. This expansion is substituted into Maxwell’s equations 
to generate a series of equations for the complex amplitudes for each harmonic. In [1] the expansion was truncated at 
a maximum of m = 3. Recently, simulations with modes up to m = 6 were presented by Corde et al. [15]. The particles are 
pushed in 3D Cartesian geometry and are then used to obtain the complex amplitudes for each harmonic of the current. 
In [1] the current deposition method did not conserve charge so a Marder’s method [16] was used to maintain the accuracy 
of Gauss’s law. The Marder’s method is an approximation to the Boris correction [17,18] in which a correction, Ec is added 
to an uncorrected field, E′ such that ∇ · (E′ + Ec) = ρ . The correction to the field is defined as Ec = −∇φc where ∇2φc =
∇ · (E) − ρ . They also showed results for laser wakefield acceleration and found agreement with a full PIC code.

In this paper, we describe the implementation of such a truncated azimuthal Fourier decomposition (i.e., harmonic 
expansion) into the OSIRIS simulation framework. OSIRIS is a fully parallelized PIC finite-difference code that has been used 
in 1D, 2D, 3D geometries [19]. For 2D simulations a Cartesian slab (xz) or a cylindrical (rz) geometry can be used. We reused 
as much of the existing 2D r–z structure as possible. We view this algorithm as a hybrid between a traditional PIC method 
where quantities are defined on an r–z grid and a gridless method [20] in φ where quantities are expanded in global basis 
functions (e.g., Fourier modes) defined at all locations and the expansion is truncated. This strategy of combining gridded 
and gridless algorithms is actually not new. For example, in the early 1980s Godfrey and collaborators developed IPROP 
[21,22], which was capable of following an arbitrary number of azimuthal modes to study filamentation as well as hosing 
of high current electron beams propagating in the atmosphere.

In the implementation for OSIRIS an arbitrary number of harmonics can be kept. In addition, OSIRIS uses a rigorous 
charge conserving current deposition for the PIC part. Therefore, we have used this as a starting point to develop a current 
deposition scheme which conserves charge for each harmonic particle by particle. OSIRIS can also use higher order particle 
shapes so we have implemented this into the PIC part of the algorithm. For the gridless part we have used point parti-
cle shapes but have described how to extend this to higher order particle shapes. In addition, OSIRIS can model plasma 
wakefield acceleration and beam loading. We therefore give examples of such simulations using the new algorithm. We also 
note that this algorithm could be combined with the PGC as well as Lorentz boosted frame ideas for even more dramatic 
speed-ups over full 3D simulations.

In Section 2 we will discuss the mathematical description of Maxwell’s equations using an azimuthal harmonic expan-
sion for the electromagnetic fields and currents. In Section 3 we discuss the specific numerical implementation of these 
equations, as well as the complications which need to be considered in the cell closest to the cylindrical axis. We also de-
rive the charge conserving current deposition algorithm and discuss its implementation. In Section 4 we give examples from 
the code of laser wakefield acceleration, plasma wakefield acceleration and beam loading in laser driven wakes including 
comparison with full 3D simulations. We also test the charge conservation and accuracy of Gauss’s law for one test case. 
Last, in Section 5, conclusions and directions for future work are presented.
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2. Theory

2.1. Electromagnetic fields expressed in azimuthal harmonics

We begin by expanding the electromagnetic fields and the charge (ρ) and current densities (J), expressed in cylindrical 
coordinates, into a Fourier series in φ,

F(r, z, φ) = �
{∑

m=0

Fm(r, z)eimφ

}
(1)

= F0(r, z) + �{
F1} cos(φ) − �{

F1} sin(φ)

+ �{
F2} cos(2φ) − �{

F2} sin(2φ)

+ · · · . (2)

Note that the amplitudes of each Fourier harmonic (for all fields) Fm are complex, whereas the physical fields they are 
describing, F, are real. As shown in [1] a major advantage of this expansion is that it allows modeling a linearly polarized 
laser with only the first harmonic. Consider a laser with a polarization angle φ0 and amplitude E0,

E(r, z, φ) = E0 cos(kz z − ωt) cos(φ0)x̂ + E0 cos(kz z − ω0) sin(φ0) ŷ (3)

B(r, z, φ) = −E0 cos(kz z − ωt) sin(φ0)x̂ + E0 cos(kz z − ω0) cos(φ0) ŷ, (4)

and let a(r, z) = E0 cos(kz z − ωt). Decomposing the Cartesian unit vectors into cylindrical coordinates unit vectors then 
gives the radial and azimuthal field components which will have sin(φ) and cos(φ) terms. By equating these fields to the 
expansion in Eq. (1), it can be easily shown that these fields are represented by the m = 1 terms

E1
r = a(r, z)

[
cos(φ0) − i sin(φ0)

]
(5)

E1
φ = a(r, z)

[
sin(φ0) + i cos(φ0)

]
(6)

B1
r = a(r, z)

[− sin(φ0) − i cos(φ0)
]

(7)

B1
φ = a(r, z)

[
cos(φ0) − i sin(φ0)

]
. (8)

Circularly and elliptically polarized lasers can be obtained by adding two linearly polarized lasers with equal or non-equal
amplitudes and phase and polarization offset by π/2.

The time-evolution of electromagnetic fields is described by Faraday’s and Ampere’s equations (effectively written in 
normalized units),

∂B

∂t
= −∇ × E, (9)

∂E

∂t
= ∇ × B − J. (10)

Substituting the expansions for each field into these equations, we obtain the following equations for each mode, m,

∂ Bm
r

∂t
= − im

r
Em

z + ∂ Em
φ

∂z
(11)

∂ Bm
φ

∂t
= −∂ Em

r

∂z
+ ∂ Em

z

∂r
(12)

∂ Bm
z

∂t
= −1

r

∂

∂r

(
rEm

φ

) + im

r
Em

r (13)

∂ Em
r

∂t
= im

r
Bm

z − ∂ Bm
φ

∂z
− Jm

r (14)

∂ Em
φ

∂t
= ∂ Bm

r

∂z
− ∂ Bm

z

∂r
− Jm

φ (15)

∂ Em
z

∂t
= 1

r

∂

∂r

(
rBm

φ

) − im

r
Bm

r − Jm
z (16)

We use different conventions for the coordinate system than that used in Ref. [1], but the idea is identical. In vacuum, 
each mode evolves independently of every other mode. In addition, for a linear plasma response there is also no coupling 
between modes because under this limit each harmonic for the current is only driven by the same harmonic for the fields. 
However, there is coupling between harmonics due to the macroparticle motion, i.e., nonlinear currents. The finite difference 
expression of these equations and associated complications near the r = 0 axis will be discussed in Section 3.
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Fig. 1. The layout of the grid for the field components in relation to the cylindrical axis. The grid indices associated with the field point are indicated on 
the superscript. The Er , Bz and Bφ lie on the cylindrical axis for the axial cell.

2.2. Symmetry properties of the axis

When implementing the field equations expressed in cylindrical coordinates one inevitably comes across singularities 
at the axis (r = 0). The exact location of the singularities will depend on the layout of the grid values, but you can solve 
the singularities using symmetry-based arguments. As pointed out in Ref. [1], Constantinescu and Lele [23] discuss in detail 
how the field values behave at the cylindrical, r = 0, axis. To summarize, for any scalar and Cartesian fields (Ez, Bz) only the 
m = 0 mode is non-vanishing on the r = 0 axis (this was already used in OSIRIS). On the other hand, for cylindrical field 
components (Er, Br, Eφ, Bφ ), only the m = 1 mode is non-vanishing on the r = 0 axis.

2.3. Boundary conditions for fields and particles

Currently, we use conducting boundary conditions for the fields, and an absorbing boundary condition for the particle at 
r = rmax. We also use a moving window in the z direction. In the future, more boundary conditions will be added in both r
and z, including the ability to launch a laser from a wall or a moving antenna.

3. Algorithm

The truncated azimuthal mode geometry has been incorporated into the OSIRIS simulation framework. The electromag-
netic fields were calculated on 2m +1 2D grids; one grid representing the cylindrically symmetric (and real) 0th order mode, 
while the rest represented the real and imaginary components of the higher order modes. Each field mode was advanced 
in accordance to Eqs. (11)–(16), whose implementation will be discussed in more detail in Section 3.1. The macroparticle 
values (x, y, z, px, p y, pz) were stored in 3D coordinates. When the fields were interpolated onto the particles, the mode 
contributions were added together as per Eq. (1), and converted into Cartesian coordinates. The particles were then ad-
vanced according to the relativistic equations of motion,

d

dt
P = q

(
E + (v/c) × B

)
, (17)

d

dt
x = (1/mγ )P, (18)

where q and m are the macroparticle charge and mass, respectively. Using the motion of the particles the current can be 
deposited onto the 2m + 1 2D grids using a charge-conserving deposition scheme, particle by particle, as described in detail 
in Section 3.2.

3.1. Field solver

The Maxwell’s equations (11)–(16) for each harmonic were discretized over a uniform grid defined on the Yee lattice
[24]. Due to staggering, fields of the same index lie in different positions with respect to the axis, as is shown in Fig. 1. 
Some field values reside exactly on the cylindrical axis, which in this case will cause a singularity when solving Eqs. (13)
and (14). It is important to note here that the location of the axis in our simulation is different from that of Lifschitz [1], 
where the equations for Br and Ez present a singularity. Although the singularities occur for different field components, the 
logic with which we resolve these issues are effectively the same.

As discussed in Section 2.2, the axial fields are usually zero. The only axial fields we need to solve for are B0
z , E1

r , and B1
φ ; 

the last of which does not pose a singularity. We use the integral form of Faraday’s Law to find B0
z on the axis by integrating ∮

E · dl in a loop around the axis, resulting in

B0,i,1
z = B0,i,1

z − 4
�t

2
× E0,i,2

φ

�r
. (19)
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This is the same method that was used in the 2D cylindrical simulation that was already implemented in OSIRIS. As for the 
m = 1 mode, we use the fact that

lim
r→0

im

r
Bm

z = im
∂ Bm

z

∂r
,

to define

im

r
Bm,i,1

z = im
∂ Bz

∂r

∣∣∣∣
r=0

= im
Bm,i,2

z

�r
,

where the fact that Bm,i,1
z = 0 was used. We then obtain a nonsingular expression for ∂ E1

r
∂t at the axis,

∂ Em=1,i, j=1
r

∂t
= i

1

�r
B1,i,2

z − 1

�z

(
B1,i,1

φ − B1,i−1,1
φ

) − J 1
r , (20)

where j = 1 is the radial index of the cell that sits on the axis.

3.2. Charge conserving current deposition

In OSIRIS Gauss’s law is maintained by using a rigorously charge conserving deposit. For example, in 3D Cartesian geom-
etry the particles have a shape

Sx
(
x − xp(t)

)
S y

(
y − yp(t)

)
Sz

(
z − zp(t)

)
,

and the cell corners (where the charge density is defined) are defined at xg, yg, zg . The charge density at a time t at the 
grid locations is therefore,

ρ = Sx
(
xg − xp(t)

)
S y

(
yg − yp(t)

)
Sz

(
zg − zp(t)

)
.

The current is defined at different locations (the cell faces) and it is defined such that

∂

∂t
ρ + ∇ · J = 0,

where – indicates a finite difference representation of the derivative, e.g.,

∂

∂t
ρ

∣∣∣∣
t+�t/2

= 1

�t

[
Sx

(
xg − xp(t + �t)

)
S y

(
yg − yp(t + �t)

)
Sz

(
zg − zp(t + �t)

)

− Sx
(
xg − xp(t)

)
S y

(
yg − yp(t)

)
Sz

(
zg − zp(t)

)]
. (21)

There is not a unique solution for a J such that ∂
∂t ρ + ∇ · J = 0 as one can always add a curl to one solution. To 

determine J, OSIRIS implements the Density Decomposition method described by Esirkepov [25], which is the generalization 
of the method developed by Villasenor and Buneman [26] for arbitrary particle shapes. In the method of Villasenor and 
Buneman, linear particle shapes are assumed. If the particle motion stays within a cell and moves from xi , yi to x f , y f in 
one time step, then this method can be viewed as averaging the current contribution over all paths that are decomposed 
into segments that include motion orthogonal to a cell face. If the particle motion crosses cell boundaries, then the motion 
is split into segments lying entirely inside individual cells, and the method in the previous sentence is applied to each 
individual segment.

Extending the charge conserving current deposit to 2D r–z is relatively straightforward because the cells are still rect-
angular. In this case, one needs to recognize that Sr(r − rp(t)) includes a 1/rg term. Viewed another way each simulation 
particle represents a fixed amount of charge so as it moves closer to the r = 0 axis the charge density must increase. The 
Jφ component is simple to define in such a code as it is simply ρvφ,p , where vφ,p is the velocity of the particle in the φ
direction.

On the other hand, it is not straightforward to define Jφ in the new algorithm. In particular, for the m = 0 harmonic 
the standard method works but for the m �= 0 harmonics more thought is needed. However, as we show next, Jm

φ can 
be determined using the J⊥ from existing charge conserving deposition scheme for the m = 0 mode. We begin from the 
definition of the particle shape in cylindrical coordinates.

S ≡ Sr
(
r − rp(t)

)
Sφ

(
φ − φp(t)

)
Sz

(
z − zp(t)

)
so the charge density is Q S , where Q is the charge of a simulation particle. We also note that Sr has a 1/rg factor so that∫

drrdφdzS = 1.

42



1068 A. Davidson et al. / Journal of Computational Physics 281 (2015) 1063–1077

It should be noted here that in the simulation grid the charge is defined on discrete grid points. For b-splines, if the integral 
over the charge density is unity, then the discrete sum of the charge over the grid points is also unity. The particle positions 
are known at full integer values of time, t +�tn, and the particle momentum (and velocity) are known at half integer values 
of time, t + �t(n + 1

2 ). In addition, the currents are only defined on the r–z grid, i.e., there is no grid in φ.
Next, we look for solutions for J that satisfy the finite difference operator version of the continuity equation

∂

∂t
ρ

∣∣∣∣
n+ 1

2

=
∑

p

Q p
[

Sr
(
r − rn+1

p

)
Sφ

(
φ − φn+1

p

)
Sz

(
z − zn+1

p

)

− Sr
(
r − rn

p

)
Sφ

(
φ − φn

p

)
Sz

(
z − zn

p

)]
= −∇ · Jn+ 1

2 , (22)

where Q p is the charge associated with the particle p. For simplicity Q p = 1 for the rest of this derivation. The next step is 
to expand Sφ in global basis functions (azimuthal harmonics),

Sφ(φ − φp) =
∑

m

Sφ,m(φp)eimφ, (23)

where

Sφ,m ≡
2π∫
0

dφ′

2π
e−imφ Sφ

(
φ′ − φp

)
.

If Sφ ≡ δ(φ − φp) then Sφ,m = 1
2π e−imφp . In addition, ρ and J defined on the r–z grid are expanded in azimuthal harmonics

(
ρ
J

)
=

∑
m

(
ρm(rg, zg, t)
J̄m(rg, zg, t)

)
eimφ, (24)

where the – refers to a quantity defined only on the grid. The continuity equation can be written as

∂

∂t
ρ + ∇⊥ · J⊥ + 1

r

∂

∂φ
Jφ = 0, (25)

where ⊥ refers to the r–z plane. Substituting Eqs. (23) and (24) into Eq. (25) gives

∑
m

eimφ

{∑
p

1

�t

[
Sr

(
rg − rn+1

p

)
Sφ,m

(
φn+1

p

)
Sz

(
z − zn+1

p

)

− Sr
(
rg − rn

p

)
Sφ,m

(
φn

p

)
Sz

(
z − zn

p

)]

+ ∇⊥ · J̄
n+ 1

2⊥,m + im

r
J

n+ 1
2

φ,m

}
= 0 (26)

We next recognize that by definition, for each particle

ρ =
∑

m

ρmeimφ, and ρm = ρ0 Sφ,m, (27)

where ρ0 is the charge for one particle on the r–z grid for the m = 0 mode (recall Sφ,0 = 1 by normalization). Likewise

J̄⊥ =
∑

m

J̄⊥,meimφ, and J̄⊥,m = J̄⊥,0 Sφ,m (28)

in the continuous time limit. We next show that using these definitions and a J̄⊥,0 defined to conserve charge for the m = 0
mode (what already existing in OSIRIS) leads to an expression for Jφ . Substituting these expressions into Eq. (26) gives for 
each m and p in the sum

1

�t

[
Sr

(
rg − rn+1

p

)
Sφ,m

(
φn+1

p

)
Sz

(
zg − zn+1

p

) − Sr
(
rg − rn

p

)
Sφ,m

(
φn

p

)
Sz

(
zg − zn

p

)]

+ Sφ,m
(
φ

n+ 1
2

p
)∇⊥ · J̄

n+ 1
2⊥,0 + im

r
J̄
n+ 1

2
φ,m = 0. (29)
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By definition ∂
∂t ρ0 + ∇⊥ · J̄⊥,0 = 0, so we are left with

J
n+ 1

2
φ,m = i

1

�t

r

m

{
Sr

(
rg − rn+1

p

)
Sz

(
zg − zn+1

p

)[
Sφ,m

(
φn+1

p

) − Sφ,m
(
φ

n+ 1
2

p
)]

− Sr
(
rg − rn

p

)
Sz

(
zg − zn

p

)[
Sφ,m

(
φn

p

) − Sφ,m
(
φ

n+ 1
2

p
)]}

. (30)

For Sφ = δ(φ − φp) we have Sφ,m = 1
2π e−imφp . We then define φp ≡ φn+1

p +φn
p

2 and �φp ≡ φn+1
p − φn

p , to obtain the result we 
use in OSIRIS for each particle,

Jφ,m = i
r

m

1

�t

e−imφp

2π

[
Sr

(
rg − rn+1

p

)
Sz

(
zg − zn+1

p

)(
eim

�φp
2 − 1

)

− Sr
(
rg − rn

p

)
Sz

(
zg − zn

p

)(
e−im

�φp
2 − 1

)]
, (31)

where the particle shapes in r and z are still general. Currently, OSIRIS implements linear, and quadratic, interpolation for the 
new algorithm. The treatment of the current at the boundary is a simple extension of what has already been implemented 
in the r–z version of the OSIRIS framework. Due to the finite size of the particles, some current is deposited in the guard 
cells located across the physical access. Due to the symmetry of the azimuthal modal geometry, we can merely ‘fold’ these 
current values into the physical cells located above the access, at each time step ( Jm,i, j=0,1,1 is added to J 0,1,2, J 0,1,0 is 
added to J 0,1,3, and so on).

3.3. Complex exponentials

When evaluating expressions like Eqs. (1) and (31), you need to evaluate the complex exponential eimφ . The particle 
variables are stored in Cartesian coordinates, and nowhere in the simulation is φ directly stored or calculated. In addition, 
evaluating trigonometric functions will be computationally inefficient. Instead, we use double and triple angle formulas to 
obtain these values up to m = 4,

eiφ = (x + iy)/r (32)

ei2φ = ((
x2 − y2) + 2ixy

)
/r (33)

ei3φ = (
4x3/r3 − 3x/r

) − i
(

y3/r3 − 3y/r
)

(34)

ei4φ = ((
x2 − y2)2 − 4x2 y2)/r4 + 4ixy

(
x2 − y2)/r4. (35)

This same optimization is used by Lifschitz [1]. In order to calculate e−imφ one only needs to swap the sign of the imaginary 
part. One may extend this method to an arbitrary number of modes using the exponential relation eimφ = eiφ × ei(m−1)φ , 
which is what is done in OSIRIS to capture any number of modes specified by the user.

4. Results

In this section we present examples from simulations using the new algorithm. We present simulation results for a laser 
wakefield accelerator (LWFA), a plasma wakefield accelerator (PWFA), and an LWFA case with beam loading (combining the 
laser and beam propagation capabilities) case respectively. In [1] only an LWFA example was given. We also demonstrate 
the degree to which Gauss’ law is conserved with the new current deposit algorithm. The new algorithm has many more 
potential applications than LWFA and we will discuss some in the conclusions and directions for future work section. For 
the “hybrid” r–z simulations, we typically use 2 particles per cell in the r–z directions, and 8 or 16 particles distributed 
evenly over 0 ≤ φ < 2π (the particles are distributed along spokes at each z). The former can be considered as 16 particles 
per cell when comparing to the speed-up from the full 3D simulation. The effect of the particle resolution in φ will be 
discussed for some of the examples, but for these simulations 8 particles appeared to be enough to capture the physics. We 
note that different methods for initiating the particles can be considered and we leave this for future work.

For the LWFA simulations, we model the example given in Lu et al., [27]. In this example a circularly polarized 
200 TW, 30 fs, 0.8 μm laser pulse with a spot size of 19.5 μm propagates through a fully ionized plasma of density 
n = 1.5 × 1018 cm−3. The laser has a normalized vector potential of magnitude a0 = 4. In Ref. [27], it was found using 
full 3D OSIRIS simulations that such a laser could generate an ultrashort (10 fs) self-injected mono-energetic bunch with 
an energy centered at 1.5 GeV. We have reproduced the 3D simulation for this paper using quadratic splines (linear splines 
were used in [27]).

4.1. Charge conservation tests

We start by checking the degree to which charge, i.e., Gauss’ law is conserved. To test the effectiveness of the deposition 
scheme in Eq. (31), we need to carefully examine Gauss’ law for the new algorithm. We begin by expanding Gauss’ law as 
per Eq. (1),
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Fig. 2. A wake formed by a circularly polarized laser penetrating 0.1 mm into the plasma, presented here in the m = 0 azimuthal mode of the charge 
density. The charge conservation tests presented in Fig. 4 correspond to this result of this simulation. If you take the divergence of the electric fields in 
mode 0, it will correspond to this plot exactly.

Fig. 3. The deviation of the charge conservation (Gauss’ law) of the real part of mode m = 1, for a simulation utilizing quadratic particle interpolation. The 
deviation in the Gauss’ law is maintained to within the accuracy of double precision arithmetic.

∇ · E − ρ = �
{∑

m

∇ · [Em(r, z)eimφ
] −

∑
m

ρm(r, z)eimφ

}
= 0 (36)

�⇒ ∇⊥ · Em + i
m

r
Eφ − ρm = 1

r

∂

∂r
(rEr) + ∂ Ez

∂z
+ i

m

r
Eφ − ρm = 0. (37)

This means that the charge of each mode must be conserved independently from each other mode, and that the divergence 
is simultaneously affected by both the real and imaginary parts of the fields. If Eq. (37) is not satisfied, as would be the 
case in a non-charge-conserving code, we would have to add a correction to the longitudinal part of the electric field (this 
was done in [1]). We used the LWFA case described above as the test case. For these tests we used a smaller computational 
window of dimensions 76.4 μm × 127 μm, and 3000 × 256 grid points. We let the laser pulse propagate (0.1 mm) into the 
plasma, so that a well defined wake is formed as shown in Fig. 2. We used 2 particles per cell in the r–z direction and 
8 particles in the φ direction, giving a total of 16 particles per cell. We ran simulations keeping up to the 2nd harmonic 
and the charge conservation of each mode was tested rigorously. Both linear and quadratic interpolations were tested (the 
particle shape in the φ direction was a delta function). The output of the charge conservation diagnostic for the real part of 
mode 1 (for which the numerical noise was the greatest) is shown in Fig. 3. In these simulations we used double precision 
floating point numbers, which have 15 numerical orders of accuracy in decimal units. When subtracting two nearly identical 
numbers, a roundoff error 10−15 below the working order of magnitude, which in this case is 2.83 will be observed. In Fig. 3
charge is conserved to within the roundoff error of the double precision arithmetic at each grid point of the simulation. The 
noise is slightly larger as r approaches zero, since the field values are scaled to 1/r when calculating the divergence.

The lineout along the axis of the charge conservation for each mode is presented in Fig. 4. The numerical noise was 
slightly higher for the quadratic interpolation than the linear interpolation, but in each case the charge conservation was 
satisfied to roundoff error for every mode. In addition, the largest residual error is in the m = 1 harmonic which includes 
the laser field. The error in Gauss’s law can accumulate over time since it is an integral over time of the continuity equation. 
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Fig. 4. The deviation of charge conservation (Gauss’ law), along r = 0, for modes 0, 1, and 2. Quadratic interpolation (right) shows a slightly larger roundoff 
error than the linear interpolation result (left). The error in m = 1 (the component with the laser) is the largest in both cases.

Fig. 5. These are the electron charge density distributions for the full 3D simulation at 0.1 cm (left) and the cylindrical mode simulation at 0.1 cm (right). 
The cylindrical mode density cross-sections are taken at φ = 0, which corresponds to the top half of the cross section of the 3D simulation at y = 0.0. Both 
simulations used quadratic interpolation, and both simulations used the same cell sizes.

However, the signs of the errors are random so the accumulation of the errors will be less than the accumulation of the 
magnitude of the errors. In the future we may include a Marder’s correction to clean up any accumulated errors to the 
longitudinal part of the electric field if necessary. These tests validate the use of Eq. (31) and the existing current depositing 
algorithm for the m = 0 harmonic in the r–z grid. We have also tested the charge conservation for many more cases.

4.2. Comparison of LWFA results with 3D simulations

We next present results from the LWFA simulation described earlier keeping only up to the m = 1 harmonic. The LWFA 
simulation discussed at the beginning of this section was run to about 0.1 cm. For the full 3D simulation, a 4000 ×300 ×300
grid with dimensions 101.9 μm×149.2 μm×149.2 μm was used with 2 particles per cell. The time step was chosen as close 
as possible to the Courant limit. The hybrid r–z simulation used a computational window of dimensions 101.9 μm×74.6 μm
and 4000 × 150 grid points. The simulation was conducted with 2 particles per cell in the r–z directions with 16 particles 
in the φ direction. For typical LWFA simulations, the m = 1 mode captures enough modal asymmetry to effectively simulate 
the physics for round laser beams without any tilts. In later publications we will describe the additional physics that can be 
studied by including more harmonics. Note that the wake excited by a linearly or circularly polarized cylindrically symmetric 
laser is itself cylindrically symmetric. For the hybrid r–z simulations we use a time step as close to the stability limit as 
possible. We note that we empirically found that this limit is close to the 3D Courant limit where we use an “effective” 
cell size in the φ direction roughly given by �rπ/mmax where mmax is the highest harmonic kept. In addition, we found 
that only 8 particles across 0 ≤ φ < 2π were needed to avoid substantial noise in the first bubble. The signal-to-noise ratio 
scales as 

√
mmax, so the fewer modes you use the fewer particle resolution you need across the φ coordinate [1]. Therefore, 

the effective speed-up is roughly proportional to the number of simulation particles. In a 3D simulation n3D
p = NxN y Nz Npc

particles are used, where Nx, N y , and Nz are the number of cells in each Cartesian direction, and Npc is the number of 
particles per cell. In the 2D hybrid simulation it is n2D-hybrid

p = Nz
Nx
2 Np,r-z Np,φ , where Np,r-z is the number of particles in 

the r–z plane and Np,φ is the number of particles distributed over 0 ≤ φ < 2π .
We show results after the laser was propagated through the plasma over a distance of 0.1 cm. Two-dimensional density 

plots corresponding to a cut across the data of the 3D simulation or the φ = 0 plane for the hybrid simulation are shown in 
Fig. 5. The 2D density contours for the wake were identical throughout most of the simulation, aside from a small number 
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Fig. 6. Lineouts along the laser for the Ez and Ex fields for the 3D (black) and 2D hybrid (red) simulations. The lineout of Ex is zoomed in to more easily 
see the matching of the phase of the laser. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 7. The spectrum of the trapped particles from the 3D (black) and 2D hybrid (red) simulations. The laser has propagated 0.1 cm into the plasma. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The p1x1 phase-space plot for the 3D (left) and 2D hybrid (right) simulations, after the laser had propagated 0.1 cm into the plasma.

of particles which had been trapped late in the full 3D simulation. However, this did not significantly affect the acceleration 
process of the mono-energetic bunch. The accelerating electric fields of the 3D and the 2D hybrid modal simulations are 
shown on the left hand side, and the laser profiles are shown on the right hand side of Fig. 6. The spectrum of the trapped 
particles in the two cases are shown in Fig. 7 and longitudinal momentum distribution in Fig. 8. There is excellent agreement 
between the hybrid simulation keeping up to mode 1 and the 3D simulation, both quantitatively and qualitatively.
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Fig. 9. Lineouts of Ez along the laser for LWFA simulations including beam loading. The black is the wake without beam loading. The red and blue lines 
show the wake as it is loaded with a Gaussian beam with its center at z0 = 260c/ω0, and z0 = 280c/ω0, respectively. The center of the laser is initially at 
503c/ω0, and the laser has propagated 0.1 mm into the plasma.

4.3. Beam loading in LWFA

Implementing the new algorithm into OSIRIS immediately provides the capability of modeling beam driven plasma based 
acceleration concepts as well as beam loading of laser produced wakes as well as modeling beam loading over pump 
depletion distances. Beam loading in particle beam driven wakes has been studied extensively using r–z PIC simulations as 
well as 3D quasi-static PIC simulations. On the other hand, beam loading studies for laser driven wakes has had to rely on 
a limited number of full 3D simulations or ponderomotive guiding center simulations (3D, r–z, or quasi-static). However, 
the ponderomotive guiding center has limitations for high laser intensities. Therefore, combining the ability for studying 
laser propagation in r–z together with the ability to launch a particle beam will permit rapid parameter scans for LWFA 
beam loading scenarios. We next show preliminary results where we beam load the wake in the LWFA simulations shown 
previously. Recently, Tzoufras et al. [28] described how to analyze beam loading in nonlinear wakes, but there has been very 
little computational studies of beam loading in nonlinear wakes created by lasers due to the inability to routinely study 
this in three dimensions. Here we show that the hybrid scheme could be a very useful tool for such studies. We loaded 
a Gaussian beam with kpσz = 0.5 and kpσr = 0.2, and a peak density such that (nb/np)k2

pσ
2
r ≡ Λ ≈ 2 into the wake. Here 

1/kp is the plasma skin depth, and σz and σr are the standard deviation of the Gaussian profile in the r and z dimensions, 
respectively. nb is the peak density of the beam profile, and np is the density of the plasma. The charge per unit length, Λ, 
is the critical normalized parameter which describes the degree of nonlinearity in the wakefield driven by the beam [27,29]. 
For np = 1.5 × 1018 cm−3, this corresponds to a bunch with σz = 2.2 μm, σr = 0.87 μm, and N ≈ 1.9 × 109 (≈ 300 pC). The 
spacing between the laser and the particle beam was varied. The trailing beam was initialized with an energy of 20 GeV, 
i.e., with a proper velocity of γ vz = 40000.0c. The beam loading of the wake is presented in Fig. 9. This figure shows how 
the wake is loaded differently depending on the spacing between the laser and the trailing beam. In the future, the hybrid 
scheme will enable routine studies of how the qualities of the trailing bunch and the overall efficiency depend on the 
location, shape, and current profile of the bunch. It will provide detailed parameter scans including the lowest order three 
dimensional effects and point towards parameters for full 3D simulations.

4.4. Hosing of particle beam driver

In this section we present an example of a particle beam driver, i.e., PWFA. Axisymmetric r–z simulations have been 
effectively utilized to study PWFA. However, such simulations cannot investigate asymmetric effects such as hosing and 
asymmetric spot-size effects. Here we present a sample result for a PWFA simulation including m ≤ 2 harmonics. The 
parameters are nb/np = 10.0, with kpσz = 1, and kpσr = 0.2, Λ = 0.4. The simulation box size was 600c/ωp × 120c/ωp in 
the z and r directions, respectively. The initial beam proper velocity was γ vz = 40000.0c. The plasma was simulated with 
16 particles across φ, while the beam was simulated with 32 particles across φ. There were 4 particles per r–z cell both 
species. The beam was initialized as an azimuthally symmetric beam.

For this simulation we kept up to the 2nd harmonic. Initially, as expected, the beam produces an azimuthally symmetric 
wake (and the beam remains symmetric). For short propagation distances the m = 1 and m = 2 modes are not important 
and the 2D r–z and hybrid 2D results look the same as seen in Fig. 10. The 2D r–z plot was generated by mirroring the 
result from positive r to “negative” r. We also note that the 2D r–z code and full 3D results have been compared for round 
beams with no tilt and excellent agreement was found [30]. For longer propagation distances hosing occurs. Hosing theory 
[31,32] is based on coupling the m = 1 modes for the centroid of the beam to that of the wake. In this simulation hosing 
grows from random noise in the beam density and it can clearly be seen in Fig. 11. The upper plot is from a 2D r–z
simulation where hosing is precluded. The lower plot is from a 2D hybrid simulation. We emphasize that the result from 
a 2D hybrid and full 3D simulation will not quantitatively agree if physics which grows from a random noise source is 
important. However, if the dominant source for growth is the beam tilt agreement should exist and the growth rates should 
agree well. After a longer period of time the spot size begins to deviate due to a higher modal (m = 2) effect. This is shown 
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Fig. 10. The density from PWFA simulations with a 2D cylindrical geometry simulation (top) and an m ≤ 2 hybrid simulation (bottom). The beam has only 
moved 500c/ωp into the plasma. The bottom plot was created by summing the modes at φ = 0 on the top half of the grid, and at φ = π on the bottom, 
which gives us the y = 0 cross-section of the three-dimensional beam. The 2D cylindrical simulation plot simply mirrors the bottom half from the top. For 
short distances the two simulations agree very well.

Fig. 11. The density plots after the beam has propagated 22000.18c/ωp into the plasma. Hosing is observed m ≤ 2 hybrid simulation (bottom). A result 
from an equivalent 2D cylindrical simulation is shown for comparison (top). The bottom plot was created by summing the modes at φ = 0 on the top half 
of the grid, and at φ = π on the bottom, which gives us the y = 0 cross-section of the three-dimensional beam. The 2D cylindrical simulation plot was 
generated by simply mirroring the bottom half from the top.
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Fig. 12. Cross section of the beam and plasma density for the x–z (top) and y–z (bottom) planes.

in Fig. 12. If the m = 2 was not present then hosing would only occur in a single plane. The fact that it is occurring in both 
planes shows that m = 2 is present. In principle, the more azimuthally asymmetric the problem being simulated, the more 
modes we would want to retain. For example, if an initial tilt was provided for the beam, the greater the tilt, the greater 
number of modes we would want to converge with full 3D results. Future work will include modeling beams with tilts and 
studying how the results change as the harmonic number increases.

5. Conclusion

In this paper, we describe how we have implemented into OSIRIS the ability to expand the fields on an r–z grid into 
an arbitrary number of Fourier harmonics in φ. We used the fact that this is a hybrid PIC and gridless algorithm to de-
velop a rigorous charge conserving current deposit for the hybrid algorithm. We showed that if the current amplitude for 
each harmonic in the r–z plane is defined as J⊥,m = J⊥,0e−imφp where J⊥,0 is the current for the particle in the existing 
axisymmetric code and φp is the angle of the particle at the velocity time indicates, then an expression for Jφ on the grid 
can be derived that conserves charge for any particle order. We give examples that show the new scheme conserved charge 
to round off errors. We also present examples demonstrating the new algorithm’s ability to efficiently study key physics in 
plasma based acceleration including LWFA, PWFA, and beam loading.

The new algorithm reproduces qualitatively and quantitatively results from Lu et al. [27] in the non-linear self-guided 
blowout regime for LWFA. The 3D Cartesian simulation requires 2 × 300 = 600 more cells (2 × Nz where Nz is the number 
of cells in the transverse direction, and the factor of 2 comes from only needing half the box in r) and 600/8 = 75 more 
particles (the factor of 8 comes from the number of particle empirically needed in φ).

We also showed that keeping a few harmonics allows hosing of a particle beam to be studied and that both beam 
loading in laser driven wakes and hosing of the trailing beam can be studied by keeping only the m = 0 and m = 1 modes. 
The new code is currently ≈ 1/2 the speed of the r–z code in a per particle basis when the m = 1 mode is included.

Directions for future work include optimizing the algorithm to reduce the overhead of keeping m copies of the mesh 
and interpolating the forces on the particles, including ionization, binary collision, and the PGC approximation, as well as 
additional field solvers with improved dispersion properties, and boundary conditions such as perfectly matched layers. We 
are interested in using the new hybrid code to study asymmetric spot size self-modulation and self-focusing and other 
self-modulation processes [33–35, and references therein] for the laser and also how these couple to related instabilities for 
the trailing particles. We are also interested in using the new hybrid code to study laser solid interactions involved in fast 
ignition [36–38] and proton acceleration [39], as well as stimulated Raman scattering [40,41] and the high frequency hybrid 
instability of a single speckle [42]. We will also pursue using this new scheme in a Lorentz boosted frame to obtain even 
more dramatic speed-ups.

50



1076 A. Davidson et al. / Journal of Computational Physics 281 (2015) 1063–1077

Acknowledgements

This work was supported by the U.S. Department of Energy contracts DE-SC0008491, DE-SC0008316, DE-NA0001833, DE-
FC02-04ER54789, DE-FG02-92ER40727, U.S. National Science Foundation under grants ACI 1339893, the European Research 
Council (EU) through the Advanced Grant Accelerates (ERC-AdG2010 no. 267841) and by the European Commission through 
Laserlab-Europe, EC-GA 284464, and in China under the NSFC Grant 11175102, thousand young talents program.

References

[1] A. Lifschitz, X. Davone, E. Lefebvre, J. Faure, C. Rechatin, V. Malka, Particle-in-cell modelling of laser–plasma interaction using Fourier decomposition, 
J. Comput. Phys. 228 (5) (2009) 1803–1814, http://dx.doi.org/10.1016/j.jcp.2008.11.017.

[2] C.D. Decker, W.B. Mori, T. Katsouleas, Particle-in-cell simulations of Raman forward scattering from short-pulse high-intensity lasers, Phys. Rev. E 50 (5) 
(1994) R3338–R3341.

[3] P. Mora, T. Antonsen, Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas, Phys. Plasmas 4 (1) (1997) 217–229, 
http://dx.doi.org/10.1063/1.872134.

[4] C. Huang, V. Decyk, M. Zhou, W. Lu, W. Mori, QuickPIC: a highly efficient fully parallelized pic code for plasma-based acceleration, J. Phys. Conf. Ser. 
46 (2006) 190–199, http://dx.doi.org/10.1088/1742-6596/46/1/026.

[5] W. An, V.K. Decyk, W.B. Mori, T.M. Antonsen Jr., An improved iteration loop for the three dimensional quasi-static particle-in-cell algorithm: QuickPIC, 
J. Comput. Phys. 250 (2013) 165–177, http://dx.doi.org/10.1016/j.jcp.2013.05.020.

[6] D. Gordon, W. Mori, T. Antonsen, A ponderomotive guiding center particle-in-cell code for efficient modeling of laser–plasma interactions, IEEE Trans. 
Plasma Sci. 28 (4) (2000) 1224–1232.

[7] J.L. Vay, Noninvariance of space- and time-scale ranges under a Lorentz transformation and the implications for the study of relativistic interactions, 
Phys. Rev. Lett. 98 (13) (2007), http://dx.doi.org/10.1103/PhysRevLett.98.130405.

[8] J.L. Vay, C.G.R. Geddes, E. Cormier-Michel, D.P. Grote, Effects of hyperbolic rotation in Minkowski space on the modeling of plasma accelerators in 
a Lorentz boosted frame, Phys. Plasmas 18 (3) (2011), http://dx.doi.org/10.1063/1.3559483.

[9] S.F. Martins, R.A. Fonseca, W. Lu, W.B. Mori, L.O. Silva, Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simula-
tion in Lorentz-boosted frames, Nat. Phys. 6 (4) (2010) 311–316, http://dx.doi.org/10.1038/NPHYS1538.

[10] S.F. Martins, R.A. Fonseca, J. Vieira, L.O. Silva, W. Lu, W.B. Mori, Modeling laser wakefield accelerator experiments with ultrafast particle-in-cell simu-
lations in boosted frames, in: 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society, Atlanta, GA, November 02–06, 
2009, Phys. Plasmas 17 (5) (2010), http://dx.doi.org/10.1063/1.3358139.

[11] C. Benedetti, C. Schroeder, E. Esarey, W. Leemans, Efficient modeling of laser–plasma accelerators using the ponderomotive-based code inf&rno, in: 
Proceedings of ICAP2012, 2012.

[12] X. Xu, P. Yu, S.F. Martins, F.S. Tsung, V.K. Decyk, J. Vieira, R.A. Fonseca, W. Lu, L.O. Silva, W.B. Mori, Numerical instability due to relativistic plasma drift 
in EM-PIC simulations, Comput. Phys. Commun. 184 (11) (2013) 2503–2514, http://dx.doi.org/10.1016/j.cpc.2013.07.003.

[13] P. Yu, X. Xu, V.K. Decyk, W. An, J. Vieira, F.S. Tsung, R.A. Fonseca, W. Lu, L.O. Silva, Modeling of laser wakefield acceleration in Lorentz boosted frame 
using EM-PIC code with spectral solver, J. Comput. Phys. 266 (1) (2014) 124–138, http://dx.doi.org/10.1016/j.jcp.2014.02.016.

[14] B.B. Godfrey, J.-L. Vay, Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm, J. Comput. Phys. 
248 (2013) 33–46, http://dx.doi.org/10.1016/j.jcp.2013.04.006.

[15] S. Corde, C. Thaury, A. Lifschitz, G. Lambert, K.T. Phuoc, X. Davoine, R. Lehe, D. Douillet, A. Rousse, V. Malka, Observation of longitudinal and transverse 
self-injections in laser–plasma accelerators, Nat. Commun. 4 (2013), http://dx.doi.org/10.1038/ncomms2528.

[16] B. Marder, A method for incorporating Gauss law into electromagnetic PIC codes, J. Comput. Phys. 68 (1) (1987) 48–55, http://dx.doi.org/
10.1016/0021-9991(87)90043-X.

[17] A.B. Langdon, On enforcing Gauss law in electromagnetic particle-in-cell codes, Comput. Phys. Commun. 70 (3) (1992) 447–450.
[18] C. Birdsall, A. Langdon, Plasma Physics via Computer Simulation, Adam Hilger Ser. Plasma Phys., McGraw–Hill, 1985, http://books.google.com/

books?id=7TMbAQAAIAAJ.
[19] R. Fonseca, L.O. Silva, F. Tsung, V. Decyk, W. Lu, C. Ren, W.B. Mori, S. Deng, S. Lee, T. Katsouleas, OSIRIS: a three-dimensional, fully relativistic particle 

in cell code for modeling plasma based accelerators, in: Lect. Notes Comput. Sci., vol. 2331, 2002, pp. 342–351.
[20] J. Dawson, The electrostatic sheet model for a plasma and its modification to finite-size particles, in: B. Alder, S. Fernbach, M. Rotenberg (Eds.), Methods 

in Computational Physics. IX. Plasma Physics, Academic Press, London, UK, 1970, pp. 1–28.
[21] B. Godfrey, M.R.C.A. NM, The IPROP Three-Dimensional Beam Propagation Code, Defense Technical Information Center, 1985, http://books.google.com/

books?id=hos_OAAACAAJ.
[22] B. Godfrey, M.M. Campbell, M.R.C.A. NM, IVORY: A Three-Dimensional Beam Propagation Code, Defense Technical Information Center, 1982.
[23] G. Constantinescu, S. Lele, A highly accurate technique for the treatment of flow equations at the polar axis in cylindrical coordinates using series 

expansions, Comput. Phys. Commun. 183 (1) (2002) 165–186, http://dx.doi.org/10.1006/jcph.2002.7187.
[24] K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag. 14 (3) 

(1966) 302–307, http://dx.doi.org/10.1109/TAP.1966.1138693.
[25] T. Esirkepov, Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor, Comput. Phys. Commun. 135 (2) (2001) 

144–153, http://dx.doi.org/10.1016/S0010-4655(00)00228-9.
[26] J. Villasenor, O. Buneman, Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun. 69 (1992) 306–316, 

http://dx.doi.org/10.1016/0010-4655(92)90169-Y.
[27] W. Lu, M. Tzoufras, C. Joshi, F. Tsung, W. Mori, J. Vieira, R. Fonseca, L. Silva, Generating multi-GeV electron bunches using single stage laser wakefield 

acceleration in a 3D nonlinear regime, Phys. Rev. Spec. Top., Accel. Beams 10 (2007) 061301, http://dx.doi.org/10.1103/PhysRevSTAB.10.061301.
[28] M. Tzoufras, W. Lu, F. Tsung, C. Huang, W. Mori, T. Katsouleas, J. Vieira, R. Fonseca, L. Silva, Beam loading by electrons in nonlinear plasma wakes, Phys. 

Plasmas 16 (2009) 056705, http://dx.doi.org/10.1063/1.3118628.
[29] W. Lu, C. Huang, M. Zhou, W.B. Mori, T. Katsouleas, Nonlinear theory for relativistic plasma wakefields in the blowout regime, Phys. Rev. Lett. 96 (2006) 

165002, http://dx.doi.org/10.1103/PhysRevLett.96.165002.
[30] R.G. Hemker, Particle-in-cell modeling of plasma-based accelerators in two and three dimensions, PhD thesis, University of California, Los Angeles, 

2000.
[31] D. Whittum, W. Sharp, S. Yu, M. Lampe, G. Joyce, Electron-hose instability in the ion-focused regime, Phys. Rev. Lett. 67 (8) (1991) 991–994, 

http://dx.doi.org/10.1103/PhysRevLett.67.991.
[32] C. Huang, W. Lu, M. Zhou, C.E. Clayton, C. Joshi, W.B. Mori, P. Muggli, S. Deng, E. Oz, T. Katsouleas, M.J. Hogan, I. Blumenfeld, F.J. Decker, R. Is-

chebeck, R.H. Iverson, N.A. Kirby, D. Walz, Hosing instability in the blow-out regime for plasma-wakefield acceleration, Phys. Rev. Lett. 99 (25) (2007), 
http://dx.doi.org/10.1103/PhysRevLett.99.255001.

51



A. Davidson et al. / Journal of Computational Physics 281 (2015) 1063–1077 1077

[33] W. Mori, The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers, IEEE J. Quantum Electron. 33 (11) (1997) 
1942–1953, http://dx.doi.org/10.1109/3.641309.

[34] B. Duda, W. Mori, Variational principle approach to short-pulse laser–plasma interactions in three dimensions, Phys. Rev. E 61 (2) (2000) 1925–1939, 
http://dx.doi.org/10.1103/PhysRevE.61.1925.

[35] P. Sprangle, J. Krall, E. Esarey, Hose-modulation instability of laser-pulses in plasmas, Phys. Rev. Lett. 73 (26) (1994) 3544–3547, 
http://dx.doi.org/10.1103/PhysRevLett.73.3544.

[36] J. Tonge, J. May, W.B. Mori, F. Fiuza, S.F. Martins, R.A. Fonseca, L.O. Silva, C. Ren, A simulation study of fast ignition with ultrahigh intensity lasers, in: 
50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society, Dallas, TX, February 01, 2008, Phys. Plasmas 16 (5) (2009), 
http://dx.doi.org/10.1063/1.3124788.

[37] F. Fiuza, M. Marti, R.A. Fonseca, L.O. Silva, J. Tonge, J. May, W.B. Mori, Efficient modeling of laser–plasma interactions in high energy density scenarios, 
Plasma Phys. Control. Fusion 53 (7) (2011), http://dx.doi.org/10.1088/0741-3335/53/7/074004.

[38] J. May, J. Tonge, F. Fiuza, R.A. Fonseca, L.O. Silva, C. Ren, W.B. Mori, Mechanism of generating fast electrons by an intense laser at a steep overdense 
interface, Phys. Rev. E 84 (2,2) (2011), http://dx.doi.org/10.1103/PhysRevE.84.025401.

[39] D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R.A. Fonseca, L.O. Silva, W.B. Mori, C. Joshi, Collisionless shocks in laser-produced plasma generate 
monoenergetic high-energy proton beams, Nat. Phys. 8 (1) (2012) 95–99.

[40] L. Yin, B.J. Albright, H.A. Rose, K.J. Bowers, B. Bergen, R.K. Kirkwood, Self-organized bursts of coherent stimulated Raman scattering and hot electron 
transport in speckled laser plasma media, Phys. Rev. Lett. 108 (24) (2012), http://dx.doi.org/10.1103/PhysRevLett.108.245004.

[41] B.J. Winjum, J.E. Fahlen, F.S. Tsung, W.B. Mori, Anomalously hot electrons due to rescatter of stimulated Raman scattering in the kinetic regime, Phys. 
Rev. Lett. 110 (16) (2013), http://dx.doi.org/10.1103/PhysRevLett.110.165001.

[42] B. Afeyan, E. Williams, Unified theory of stimulated Raman-scattering and 2-plasmon decay in inhomogeneous plasmas – high-frequency hybrid insta-
bility, Phys. Rev. Lett. 75 (23) (1995) 4218–4221, http://dx.doi.org/10.1103/PhysRevLett.75.4218.

52



An Examination of the Scaling Laws for LWFA in the
Self-Guided Nonlinear Blowout Regime

Asher Davidson1,a),b), Adam Tableman1,c), Peicheng Yu1,d), Weiming An1,e), Frank
Tsung1,f), Wei Lu3,g), Ricardo A. Fonseca2,h) and Warren B. Mori1,i)

1University of California, Los Angeles, CA 90095, USA.
2GoLP/Instituto de Plasmas e Fuso Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
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Abstract. A detailed study of the scaling laws for LWFA in the self-guided, nonlinear blowout regime is presented. The
study is enabled through the recent implementation of the quasi-3D algorithm into OSIRIS, which permits particle-in-
cell simulations of LWFA at lower densities and higher laser energy. We find that the scaling laws continue to work well
when we fix the normalized laser amplitude, pulse-length, and spot size, while reducing the plasma density. We examine
parameters for which the self-injected electron energies are between 1 and 10 GeV. Over a wide parameter space, the
evolution of the electron energy and laser spot size are similar when plotted in normalized units.

INTRODUCTION

In Ref. [1], a set of phenomenological scaling laws for laser wakefield acceleration in the nonlinear blowout regime
is presented and discussed. Full-scale particle-in-cell simulations were presented on how 1–2 GeV electrons could be
generated for 100 TW class lasers. Differences and similarities between this regime and what is referred to as the
bubble regime [2] were also presented. It was noted that the phenomenom of self-guiding does not “scale” the same
as other phenomena, so that further analysis was needed to understand how this regime of LWFA would scale to 10
GeV or higher energies. In particular, as the laser energy is increased, then the ratio of the acceleration distance to the
Rayleigh length increases. It was suggested in ref. [1] that to ensure self-guiding would still occur over the “longer”
laser propagation distances, the normalized laser amplitude would have to scale as a0 ∼ (1/np)1/5. At that time, sim-
ulations were not feasible to examine how self-guiding would perform at lower plasma densities. Due to a recent
implementation of the quasi-3D geometry into the OSIRIS framework [3, 4], simulations that include the proper geo-
metrical effects of self-guiding are now feasible over a wide range of plasma and laser parameters. Laser self-focusing
is very different in 2D slab (cartesian) and 2D cylindrical geometries. In the quasi-3D simulations, the particle-in-cell
method is used on a r-z coordinate mesh, and fields and currents are expanded into azimuthal harmonics. The particles
are pushed in full 3D geometry. A laser with an azimuthally symmetric spot can be represented by the first azimuthal
harmonic1, thereby permitting quasi-3D simulations for nearly round laser beams with the computational cost of a 2D

1Even if the spot of a laser is symmetric, the electromagnetic fields of the laser are not, in general, azimuthally symmetric.
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r-z code. This has permitted us to revisit studying LWFA in the self-guided blowout regime for low plasma densities
and long acceleration distances.

The issue of self-guiding, where there is a balance of diffraction with local pump depletion, brings forth two
important questions that must be considered when extrapolating the scaling laws of Ref. [1] to higher electron energies.
First, we want to know how well the laser remains self-guided for longer dephasing lengths, in units of Rayleigh
lengths, if the normalized laser amplitude is kept constant. Second, we are interested to know how well the self-
guiding and the scaling laws work, if we scale the laser amplitude as (1/np)1/5. The goal is to achieve higher electron
energy. As a result, we present two different sets of simulations: one set, in which a0 is kept constant as we scale to
lower densities and longer dephasing lengths, and another, in which we scale a0 ∼ (1/np)1/5 as we explore results for
lower densities.

Performing simulations at progressively lower densities, with parameters scaled to longer dephasing lengths and
higher beam energies, quickly becomes computationally impractical if one were conducting fully 3D Cartesian sim-
ulations. Estimates for the number of particle steps for a sequence of such simulations are presented in Table 1. The
required number of CPU hours would be proportional to the number of particle steps, if parallel scalability and load
balancing are ideal, so they provide a lower estimate on the necessary CPU hours. The estimates were calculated by
assuming a “standard” resolution of ∆z = 0.2k−1

0 , ∆r = 0.1k−1
p , and a box size of about 5.2W0 in the longitudinal

direction (width comparable to the original Lu et al. runs), and a transverse box size equal to the initial spot size times
the total number of Rayleigh lengths over the dephasing lengths (LdW0/ZR) 2. We also assumed four particles were
initialized per cell. When we use a quasi-3D algorithm, however, we can expect a speedup on the order of the number
of cells in the transverse dimension (which is a dimension we no longer have to resolve). This can mean more than a
hundred times the speedup, and the parameters presented in Table 1 were proven to be feasible using this geometry.

TABLE 1. A list of laser and plasma parameters for simulations that could test the scaling laws
of [1]. The table also includes estimates of the number of particle steps required for full 3D or

quasi-3D OSIRIS simulations.

Est. Particle Steps Power np W0 Ld a0 ∆E
-3D- -Quasi-3D- (TW) (cm−3) (µm) (cm) (GeV)

1.9 × 1015 8.5 × 1012 200 1.5e18 19.5 1.53 4.0 1.58
6.0 × 1015 2.1 × 1013 324 1.0e18 22.0 2.62 4.44 2.52
4.6 × 1016 1.2 × 1014 649 5.0e17 31.7 7.37 4.44 5.28
3.6 × 1017 6.6 × 1014 1298 2.5e17 44.8 20.8 4.44 10.57
...

...
...

...
...

...
...

...

For comparison, Table 1 also shows the number of particle steps for equivalent simulations in the quasi-3D geom-
etry, with 16 particles per r-z cell (they were loaded at 8 locations in the azimuthal angle). If it takes 500 ns to advance
a particle each timestep, the third and fourth rows in Table 1 correspond to 3 million and 26 million CPU hours for the
full 3D Cartesian simulations. Using the quasi-3D framework can give hundreds of times the speedup in comparison
to these full 3D simulations, which make these simulations very feasible. We use quadratic splines for the particle
shapes.

SIMULATION RESULTS

Two sets of LWFA simulations were conducted to better understand the scaling to higher energies and the effective-
ness of adjusting the laser’s normalized amplitude to scale self-guiding to lower densities. In one set, the normalized
amplitude was kept fixed at a0 = 4.44 and the matched spot size and pulse length were scaled as the density was
lowered. The plasma density was varied from np = 1.0 × 1018 cm−3, to 5.0 × 1017 cm−3, and finally to 2.5 × 1017

cm−3. According to [1], the estimated particle energies would scale from 2.52 GeV, 5.28 GeV, and to 10.57 GeV,
respectively. In the other set of simulations, the normalized laser amplitude was scaled to a0 = 5.1 and 5.86 for the

2We found that for our simulations we needed large box sizes to accurately simulate laser evolution over many Rayleigh lengths, even with
PML boundary conditions (for information on this ‘perfectly matched layer’ method for absorbing boundaries, see Ref. [5]).

3Ref. [1] conducted this simulation over 0.75 cm, and not the entire dephasing length, Ld .
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FIGURE 1. The evolution of the spot sizes at the location of the maximum laser amplitude is plotted over distance in Rayleigh
lengths is presented. Self-guiding over many Rayleigh lengths is clearly demonstrated. The plot for vacuum diffraction is shown

for comparison, and two simulations with a0 < 4.0 are also presented to show that, at low normalized laser amplitudes,
self-guiding is not effective.

np = 5.0 × 1017 cm−3 and 2.5 × 1017 cm−3 cases, as suggested in [1]. The energy estimates for these simulations are
5.8 GeV and 13.9 GeV. Each simulation was conducted with the quasi-3D OSIRIS algorithm with only the azimuthal
modes m ≤ 1, with 2 particles initialized in each r-z cell, and 8 particles initialized along φ of 2π. The cell sizes
are ∆z = 0.2k−1

0 , ∆r ≈ 0.1k−1
p , respectively. The laser’s longitudinal pulse was symmetric and defined by a smooth

polynomial spacing [1].
It was argued in [1] that self-guiding would not be as effective, as we scale to higher energies (i.e., lower densities),

if a0 is kept constant. For the a0 = 4.44 cases, according to [1], the acceleration distance corresponds to 13.8ZR and
26.4ZR for the 5.0×1017 cm−3 and 2.5×1017 cm−3 densities, respectively, where ZR is the Rayleigh length. In Fig. 1, we
plot the evolution of the spot size at the axial slice of the maximum laser amplitude in units of the initial spot sizes. As
can be seen, self-guiding clearly occurs under the appropriate conditions. For properly matched beams, the evolution
of the laser spot size appears to be very stable, even as the acceleration distance is nearly doubled in Rayleigh lengths,
indicating that self-guiding works better than might be expected.

In order to illustrate how well the scaling laws describe the phenomena, on the left side of Fig. 2 we plot the
plasma density of the wake and self-injected electrons (m = 0 mode) for the three a0 = 4.44 simulations, in the scaled
units, at a laser propagation distance corresponding to half the calculated dephasing distances, Ld, in each case. In
each plot, the transverse and axial units are scaled to the initial spot size, W0. In absolute units, the simulation box
gets larger as the density is lowered. These plots not only show that the physics behind the scaling laws is correct,
but that the physics scales so well that a single simulation with its normalized units can be used to represent family
results for different absolute units. We note that this self-similarity is for different reasons than argued in Ref. [6]. The
plot shows that, in scaled units, the details of the wake, including the location of the self-injected electrons, look very
similar. The scaling is not expected to be perfect, because some aspects of the laser evolution depends on the ratio of
the propagation distance to the number of Rayleigh lengths. This ratio increases for lower densities, i.e., the Rayleigh
length does not scale the same as the spot size. However, the results indicate that self-focusing “scales” better than
might have been anticipated, if the normalized laser amplitude is kept fixed.

On the two lower panels of the right side of Fig. 2, results from simulations in which the normalized laser am-
plitudes are adjusted are shown. As expected, the results do not scale as well. Part of the differences is due to the
larger number of self-trapped particles. The reason for increasing the normalized laser amplitude, a0, was to improve
self-guiding, and, hence, to ensure that the acceleration length is longer, so that higher electron energies are obtained.
On the top right of Fig. 2, we plot the evolution of the laser spot sizes for all of the simulations to show that the laser
remains self-guided in each case, and to show that, indeed, increasing a0 does improve the self-guiding. However, as
just discussed, the evolution of the bubble structure is different. The evolution of the electron energy (the maximum
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FIGURE 2. Evolution of the wake and laser. On the left, the 0-th azimuthal mode of the density of the np = 1.0 × 1018 (top),
np = 5.0 × 1017 (middle), and np = 2.5 × 1017 (bottom) for fixed a0 = 4.44. On the right, a0 = 5.1 (middle right), and 5.86 (bottom
right) for the np = 5.0 × 1017 and np = 2.5 × 1017 cases, respectively. The laser has traversed 0.5Ld into the plasma. The horizontal
axis is measured as the distance ξ, expressed in terms of the initial spot sizes, W0, from the front of the initial laser profile, ξ f ront.
On the top right, we also show a plot of the evolution of the spot size of the laser, illustrating how the laser remains self guided in

each of these simulations.
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FIGURE 3. The evolution of the maximum trapped particle energies in normalized units (left), and in absolute units (right) for
each scaled simulation.

energy for a self-injected electron) with propagation distance, in scaled units, is shown on the left side of Fig. 3. This
shows that for fixed a0, that the shapes of the curves are remarkably similar. The curves for the higher a0 are also
somewhat similar, but they have different shapes than lower a0 cases. On the right-hand side of Fig. 3 we show the
evolution of the maximum energy, in absolute units, against the propagation distance in normalized units. This shows
that, although self-focusing works better when a0 is scaled upward, the final electron energy in absolute units is not
higher. This appears to arise because the laser front gets steeper, causing the bubble size to increase, which effectively
shortens the dephasing length. More detail will be provided in future publications.

CONCLUSION

The implementation of the quasi-3D geometry in the OSIRIS simulation framework has enabled a more detailed
study of the Lu et al. scaling laws for LWFAs operating in the self-guided, nonlinear blowout regime [1]. When
plotted in scaled parameters, the evolution of the self-trapped electron energy and the evolution of the wake scale
well for fixed a0. Self-guiding continues to occur sufficiently as the density is lowered and the laser parameters are
scaled properly. We find that self-guiding does improve, if a0 is scaled upward as the density is decreased, but that the
evolution of the laser, wake, the particle energy evolve differently.
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a b s t r a c t

A hybrid Maxwell solver for fully relativistic and electromagnetic (EM) particle-in-cell (PIC) codes is
described. In this solver, the EM fields are solved in k space by performing an FFT in one direction, while
using finite difference operators in the other direction(s). This solver eliminates the numerical Cerenkov
radiation for particles moving in the preferred direction. Moreover, the numerical Cerenkov instability
(NCI) induced by the relativistically drifting plasma andbeamcanbe eliminatedusing this hybrid solver by
applying strategies that are similar to those recently developed for pure FFT solvers. A current correction
is applied for the charge conserving current deposit to ensure that Gauss’s Law is satisfied. A theoretical
analysis of the dispersion properties in vacuum and in a drifting plasma for the hybrid solver is presented,
and compared with PIC simulations with good agreement obtained. This hybrid solver is applied to both
2D and 3D Cartesian and quasi-3D (in which the fields and current are decomposed into azimuthal
harmonics) geometries. Illustrative results for laser wakefield accelerator simulation in a Lorentz boosted
frame using the hybrid solver in the 2D Cartesian geometry are presented, and compared against results
from 2D UPIC-EMMA simulation which uses a pure spectral Maxwell solver, and from OSIRIS 2D lab
frame simulation using the standard Yee solver. Very good agreement is obtained which demonstrates
the feasibility of using the hybrid solver for high fidelity simulation of relativistically drifting plasmawith
no evidence of the numerical Cerenkov instability.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fully relativistic, electromagnetic particle-in-cell (PIC) codes
are widely used to study a variety of plasma physics problems. In
many cases the solver for Maxwell’s equations in PIC codes use
the finite-difference-time-domain (FDTD) approachwhere the cor-
responding differential operators are local. This locality leads to
advantages in parallel scalability and ease in implementing bound-
ary conditions. However, when using PIC codes to model physics

∗ Corresponding author.
E-mail address: tpc02@ucla.edu (P. Yu).

problems, including plasma based acceleration [1] in the Lorentz
boosted frame, relativistic collisionless shocks [2,3], and fast igni-
tion [4–6] particles or plasmas stream across the grid with speeds
approaching the speed of light. In these scenarios, the second or-
der FDTD Maxwell solvers support light waves with phase veloc-
ities less than the speed of light. This property of the FDTD solver
leads to numerical Cerenkov radiation from a single particle that is
moving near the speed of light. In addition, when beams or plas-
mas are moving near the speed of light across the grid a violent
numerical instability known as the numerical Cerenkov instabil-
ity (NCI) arises due to the unphysical coupling of electromagnetic
modes and the Langmuir modes (main and higher order aliased
beam resonance). The beam resonances are at ω + 2πµ/1t =

(k1 + 2πν1/1x1)v0, where µ and ν1 refer to the time and space

http://dx.doi.org/10.1016/j.cpc.2015.08.026
0010-4655/© 2015 Elsevier B.V. All rights reserved.
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aliases,1t and1x1 are the time step and grid size, and the plasma
is drifting relativistically at a speed v0 in the 1̂-direction.

The NCI was first studied more than 40 years ago [7]. However,
it has received much renewed attention [8–14] since the identifi-
cation [15,16] of this numerical instability as the limiting factor for
carrying out relativistic collisionless shock simulations [2,3], and
Lorentz boosted frame simulations [17–20] of laser wakefield ac-
celeration (LWFA) [1].

This early and recent work on the NCI [7–11,16,21] have shown
that the NCI inevitably arises in EM-PIC simulationswhen a plasma
(neutral or non-neutral) drifts across a simulation grid with a
speed near the speed of light. Analysis shows that it is due to the
unphysical coupling of electromagnetic (EM)modes and Langmuir
modes (including those due to aliasing). As a result, significant
recent effort has been devoted to the investigation and elimination
of the NCI so that high fidelity relativistic plasma drift simulations
can be routinely performed [10–13,19,20].

In previous work Refs. [9,10], we examined the NCI properties
for the second order Yee solver [22], as well as a spectral solver
[23,24] (in which Maxwell’s equation are solved in multi-
dimensional k⃗ space). We note that what we refer to as simply a
spectral solver, others [25] refer to as a pseudo-spectral time do-
main (PSTD) solver. The NCI theory developed in [9,10] were gen-
eral and it could be applied to anyMaxwell solver. It was found that
in the simulation parameter space of interest the fastest growing
NCI modes of these two solvers are the (µ, ν1) = (0,±1)modes,
where µ and ν1 defined above are the temporal aliasing, and spa-
tial aliasing in the drifting direction of the plasma. The (µ, ν1) =

(0,±1) modes for both solvers reside near the edge of the fun-
damental Brillouin zone (for square or cubic cells), and can be
eliminated by applying a low-pass filter. However, due to the sub-
luminal EM dispersion along the direction of the drifting plasma
in the Yee solver, the main NCI mode (µ, ν1) = (0, 0) of the Yee
solver has a growth rate that is of the same order as its (µ, ν1) =

(0,±1) counterpart, and these modes reside close to the modes of
physical interest. However, the (µ, ν1) = (0, 0) NCI mode in the
spectral solver has a growth rate one order of magnitude smaller
than the (µ, ν1) = (0,±1)modes due to the superluminal disper-
sion of spectral (FFT based) solver. Furthermore, as shown in [10]
these (µ, ν1) = (0, 0)modes can be moved farther away from the
physics modes and their harmonics by reducing the time step in
the spectral solver, and can be fully eliminated by slightly modify-
ing the EM dispersion in the spectral solver. Using these methods,
it was demonstrated in [10] that a spectral EM-PIC can perform
high fidelity simulations of relativistically drifting plasmas where
the LWFA physics is highly nonlinear with no evidence of the NCI.

A multi-dimensional spectral Maxwell solver has a superlumi-
nal dispersion relation in all the propagation directions. This is due
to the fact that the first order spatial derivatives in the Maxwell’s
equation are greater thanNth order accurate (whereN is the num-
ber of grids) since we are solving the Maxwell’s equation in k⃗
space. This superluminal dispersion relation leads to highly local-
ized (µ, ν1) = (0, 0) NCI modes and the reduction of their growth
rates (compared with their Yee solver counterpart). In this paper,
we propose to use a hybrid Yee-FFT solver, in which the FFT is per-
formed in only one direction, namely the drifting direction of the
plasma,while keeping the finite difference formof the Yee solver in
the directions transverse to the drifting direction. In other words,
EM waves moving in the 1̂ direction will have a superluminal dis-
persion (due to the Nth order accurate spatial derivatives) while
those moving in the 2̂ (and 3̂ in 3D) directions will have a sublu-
minal dispersion due to the second-order-accurate spatial deriva-
tives. The advantages of this approach over a fully spectral solver is
that the field solver is local in the transverse directions so that bet-
ter parallel scalability than a fully FFT based solver can be achieved

(assuming the same parallel FFT routines are used). In addition, it
is easier to include a single FFT into the structure of mature codes
such asOSIRIS [26]. Furthermore, this ideaworkswellwith a quasi-
3D algorithm that is PIC in r − z and gridless in φ [27,28], where
the FFTs cannot be applied in the r̂ direction. We note that re-
cently a method for achieving improved scalability for FFT based
solvers was proposed [25] in which FFTs are usedwithin each local
domain, but it introduces as yet unquantified errors in the longi-
tudinal fields. The relative advantages and tradeoffs between the
variety of approaches being proposed will be better understood as
they begin to be used on real physics problems.

We use the theoretical framework for the NCI developed in
Refs. [9,10] to study the NCI of the hybrid solver. As we show be-
low, the fastest growing NCI modes for the proposed hybrid solver
behave similarly to those for the spectral solver. In k⃗ space they
reside at the edge of the fundamental Brillouin zone for square or
cubic cells. More importantly, the (µ, ν1) = (0, 0) NCI mode for
the hybrid solver has almost the same properties (pattern, growth
rates) as that of a spectral solver. The NCI can therefore be effi-
ciently eliminated in the hybrid solver by applying the same strat-
egy as in the spectral solver. Moreover, simulations have shown
that the NCI properties of the quasi-3D r − z PIC and gridless in φ
algorithm [27,28] are similar to that of 2D Cartesian geometry [29].
Therefore, the idea of a hybrid Yee-FFT solver can be readily applied
to quasi-3D geometry.We also note that the use of local FFTs in do-
mains along z [25] could also be used within the hybrid approach
described here.

In this paper, we first discuss the algorithm for the hybrid Yee-
FFT Maxwell solver in Section 2. In Section 3, we apply the the-
oretical framework in Refs. [9,10] to study the NCI properties of
the hybrid solver analytically and in PIC simulations. We compare
OSIRIS [26] results with the hybrid solver against UPIC-EMMA [11]
results with a fully spectral (FFT based) solver. In Section 4, it is
shown that the strategies used to eliminate theNCI for purely spec-
tral solvers are also valid for the hybrid solver. In Section 5, we
extend the hybrid solver idea to the quasi-3D algorithm in OSIRIS
and present simulation studies of the NCI properties in this geom-
etry. We then present 2D OSIRIS simulations of LWFA in a Lorentz
boosted frameusing the newhybrid solver. Very good agreement is
found when comparing simulation results using the hybrid solver
in OSIRIS against results from 2D lab frame OSIRIS using Yee solver
and 2D Lorentz boosted frame UPIC-EMMA [11] simulations us-
ing spectral solver. Last, in Section 7 we summarize the results and
mention directions for future work.

2. Hybrid Yee-FFT solver

The basic idea of the hybrid Yee-FFT solver is that the theoret-
ical framework developed in [9,10] indicates that the NCI is easier
to eliminate when EM waves are superluminal along the direction
of the plasma drift. This can be accomplished with higher order
solvers or with an FFT based solver in the drifting direction of the
plasma (denoted as 1̂-direction).We note that it is more difficult to
satisfy strict charge conservation (Gauss’s law) for higher order fi-
nite difference solvers by modifying the charge conserving current
deposition in real space. Herewe replace the finite difference oper-
ator of the first spatial derivative ∂/∂x1 in the Maxwell’s equation
in Yee solver with its FFT counterpart that has an accuracy greater
than order N . We then correct for this change in the current de-
posit to maintain strict charge conservation. Without loss of gen-
erality, in the following we will briefly describe the algorithm of
the Yee-FFT solver in two-dimensional (2D) Cartesian coordinate.
The straightforward extension to the 3D Cartesian case is also dis-
cussed.
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2.1. Algorithm

We start from the standard algorithm for a 2D Yee solver, in
which the electromagnetic fields E⃗ and B⃗ are advanced by solving
Faraday’s Law and Ampere’s Law:

B
n+ 1

2
1,i1,i2+ 1

2
= B

n− 1
2

1,i1,i2+ 1
2

− c1t ×
En
3,i1,i2+1 − En

3,i1,i2

1x2
(1)

B
n+ 1

2
2,i1+ 1

2 ,i2
= B

n− 1
2

2,i1+ 1
2 ,i2

+ c1t ×
En
3,i1+1,i2 − En

3,i1,i2

1x1
(2)

B
n+ 1

2
3,i1+ 1

2 ,i2+
1
2

= B
n− 1

2
3,i1+ 1

2 ,i2+
1
2

− c1t ×

En
2,i1+1,i2+ 1

2
− En

2,i1,i2+ 1
2

1x1

+ c1t ×

En
1,i1+ 1

2 ,i2+1
− En

1,i1+ 1
2 ,i2

1x2
(3)

En+1
1,i1+ 1

2 ,i2
= En

1,i1+ 1
2 ,i2

− 4π1t × j
n+ 1

2
1,i1+ 1

2 ,i2

+ c1t ×

B
n+ 1

2
3,i1+ 1

2 ,i2+
1
2

− B
n+ 1

2
3,i1+ 1

2 ,i2−
1
2

1x2
(4)

En+1
2,i1,i2+ 1

2
= En

2,i1,i2+ 1
2

− 4π1t × j
n+ 1

2
2,i1,i2+ 1

2

− c1t ×

B
n+ 1

2
3,i1+ 1

2 ,i2+
1
2

− B
n+ 1

2
3,i1− 1

2 ,i2+
1
2

1x1
(5)

En+1
3,i1,i2 = En

3,i1,i2 − 4π1t × j
n+ 1

2
3,i1,i2

+ c1t ×

B
n+ 1

2
2,i1+ 1

2 ,i2
− B

n+ 1
2

2,i1− 1
2 ,i2

1x1

− c1t ×

B
n+ 1

2
1,i1,i2+ 1

2
− B

n+ 1
2

1,i1,i2− 1
2

1x2
(6)

where the EM field E⃗ and B⃗, and current j⃗ are defined with the
proper half-grid offsets according to the Yee mesh [22]. If we per-
form a Fourier transform of Eqs. (1)–(6) in both x1 and x2, and in
time, Maxwell’s equations reduce to

[ω]B⃗ = −[k⃗] × E⃗ (7)

[ω]E⃗ = [k⃗] × B⃗ + 4π j⃗ (8)

where

[k⃗] =


sin(k11x1/2)

1x1/2
,
sin(k21x2/2)

1x2/2
, 0


[ω] =
sin(ω1t/2)
1t/2

.

(9)

In vacuum where j⃗ = 0, the corresponding numerical dispersion
relation for the EM waves is

[ω]
2

= c2([k]21 + [k]22). (10)

The idea of a hybrid Yee-FFT solver is to keep the finite differ-
ence operator [k]2 = sin(k21x2/2)/(1x2/2) in the directions
transverse to the drifting direction, while replacing the finite dif-
ference operator [k]1 in the drifting direction with its spectral
counterpart [k]1 = k1. To achieve this, in the hybrid solver we will
solve Maxwell’s equations in k1 space. The current is deposited lo-
cally using a rigorous charge conserving scheme that is equivalent
to [30]. For the EM field and current, we first perform an FFT along
x1 so that all fields are defined in (k1, x2) space. After that we apply

a correction to the current in the drifting direction
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where j̃1 is the corrected current. In [25], the current is also cor-
rected where they combine a pure FFT solver with a charge con-
serving current deposit. This correction ensures that Gauss’s Law
is satisfied throughout the duration of the simulation if it is satis-
fied initially, aswill be discussed inmore detail in Section 2.3. After
the current correction we advance the EM field as
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where k1 = 2πκ1/N and N is the number of grids in x1 direction,
and κ1 = 0, 1, . . . ,N/2−1 is themode number. Note in the hybrid
solver, the EM fields E⃗, B⃗, and current j⃗ have the same temporal and
spatial centering as in the Yee solver, and
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k11x1
2

i
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is the phase shifting due to the half grid offsets of the E1, B2,3, and
j1 in the 1̂-direction. Compared with the standard Yee solver algo-
rithm, it is evident that if we replace −ik1 with the corresponding
finite difference form we can recover the standard 2D Yee algo-
rithm.We note for this method one can use a different [k]1, e.g. the
[k]1 proposed in [31], to allow error-free vacuum EM dispersion in
1̂-direction.

2.2. Courant condition

The Courant condition of the hybrid solver can be easily
derived from the corresponding numerical EM dispersion Eq. (10).
Substituting into Eq. (10) the finite difference operator in time [ω]

[ω] =
sin(ω1t/2)
1t/2

(19)

and the finite difference operators in space

[k]1 = k1 [k]2 =
sin(k21x2/2)

1x2/2
(20)

we can obtain the corresponding constraint on the time step

1t
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≤ 1. (21)
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Note the k⃗ range of the fundamental Brillouin zone is |k1| ≤

π/1x1, |k2| ≤ π/1x2, we can obtain the Courant limit on the
hybrid solver

1t ≤
2

π2

1x21
+

4
1x22

. (22)

For square cells with1x1 = 1x2, this reduces to1t ≤ 0.5371x1.

2.3. Charge conservation

In the hybrid Yee-FFT solver, we rely on the Faraday’s Law and
Ampere’s Law to advance the EM field. On the other hand, the local
charge conserving current deposition [30] ensures the second-
order-accurate finite difference representation of the continuity
equation,
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is satisfied, where
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where Gn is an arbitrary scalar quantity. Therefore, when
combining this scheme with the second order accurate Yee solver,
Gauss’s Law is rigorously satisfied at every time step if it is satisfied
at t = 0. However, when the hybrid solver is used together with
the charge conserving current deposition scheme,weneed to apply
a correction to the current, as shown in Eq. (11), in order that the
Gauss’s Law is satisfied at every time step. This can be seen by first
performing Fourier transform in the x1 direction for Eq. (23),
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then applying the divergence operator of the hybrid solver to the
left and right hand side of the Ampere’s Law, Eqs. (15)–(17). Using
Eq. (25), we obtain
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which shows that if Gauss’s Law for the 2D hybrid solver given by
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is satisfied at t = 0, it is satisfied at each time step.

2.4. 3D Cartesian geometry

It is straightforward to extend the hybrid solver to 3D Carte-
sian geometry. In 3D Cartesian coordinates, we solve Maxwell’s
equation in (k1, x2, x3) space where we use the same second order
accurate finite difference formof theYee solver in the 2̂ and 3̂ direc-
tions. As in the 2D Cartesian case, the current correction is applied
to j1 to ensure the Gauss’s Law is satisfied. We have implemented
the hybrid solver in 2D and 3Dwith current correction in our finite-
difference-time-domain (FDTD) code OSIRIS [26].

3. Numerical Cerenkov instability

To investigate the NCI properties of the hybrid solver, we
first consider its corresponding numerical dispersion relation.
Employing the general theoretical framework established in

Table 1
Crucial simulation parameters for the 2D relativistic plasma drift simulation. np is
the reference plasma density, and ω2

p = 4πq2np/me , kp = ωp (c is normalized to
1).

Parameters Values

grid size (kp1x1, kp1x2) (0.2, 0.2)
time step ωp1t 0.41x1
boundary condition Periodic
simulation box size (kpL1, kpL2) 51.2 × 51.2
plasma drifting Lorentz factor γ = 50.0
plasma density n/np = 100.0

Refs. [9,10], we can calculate in detail the NCI modes for any
Maxwell solver. The roots of the numerical dispersion relation that
lead to the NCI can be found numerically by solving Eq. (17) in [9],
or by the analytical expression in Eq. (19) of [10]. For convenience
we present the corresponding numerical dispersion and analytical
expressions of Eq. (17) of [9] in Appendix. For the Yee solver the k
space representation of the finite difference operator is

[k]i =
sin(ki1xi/2)
1xi/2

(28)

where i = 1, 2 in 2D. Meanwhile, in the hybrid solver the k⃗
space operator in the drifting direction is replaced with that of the
spectral solver [k]1 → k1. By substituting the respective operators
for eachdirection into Eq. (19) of Ref. [10] [or Eq. (A.4) inAppendix],
we can rapidly find the set of NCI modes for the hybrid solver. In
Fig. 1(a)–(d), we plot the (µ, ν1) = (0, 0) and (µ, ν1) = (0,±1)
modes for the hybrid and spectral solvers by scanning over the
(k1, k2) space in the fundamental Brillouin zone and solve for the
growth rates of the corresponding unstablemodes. The parameters
used to generate this plot are listed in Table 1.

We can see from Fig. 1(a) and (b) that the (µ, ν1) = (0,±1)NCI
modes of the two solvers reside near the edge of the fundamental
Brillouin zone, although the patterns are slightly different due to
their different finite difference operators in the 2̂-direction, which
leads to the slightly different EM dispersion curves. In Fig. 1(e) and
(f) we show how different EM dispersion curves leads to different
(µ, ν1) = (0,±1) NCI modes for the two solvers. These modes are
distinct, and far removed from the modes of physical interest, and
are relatively easy to eliminate.

More importantly, we see from Fig. 1(c) and (d) that the hybrid
solver leads to (µ, ν1) = (0, 0) NCI modes that are very similar
to their spectral solver counterpart. The pattern of the (µ, ν1) =

(0, 0) modes for these two solvers are both four dots (in 2D) and
highly localized in the fundamental Brillouin zone. We also use
the theory to perform parameter scan to study the dependence of
growth rates (of the fastest growing mode) and the locations in
k space of the (µ, ν1) = (0, 0) modes on 1t/1x1 for the hybrid
solver, and compare this result against that of the fully spectral
solver, as shown in Fig. 2(a) and (b).We likewise carried out OSIRIS
simulations using the hybrid solver and UPIC-EMMA [11,32] using
the spectral solver, to compare against theoretical results. Very
good agreement is found between theory and simulations. Fig. 2(a)
and (b) shows that both the k1 location, and growth rates of the
(µ, ν1) = (0, 0) modes are almost identical for the two solvers.
This indicates that, just like the spectral solver, the growth rate of
the (µ, ν1) = (0, 0) modes of the hybrid solver is reduced, while
their location in k1 increases when the time step is reduced.

In Fig. 2(c) and (e) we show the locations of the unstable
(µ, ν1) = (0,±1), and (µ, ν1) = (0, 0) NCI modes for the
hybrid solver in OSIRIS for 2D Cartesian geometry. The agreement
between Figs. 2(c) and 1(b), and between Figs. 2(e) and 1(d) are
excellent.

The main advantage of the purely spectral solver regarding its
NCI properties in comparison to a purely FDTD solver is that the
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Fig. 1. The pattern of the (µ, ν1) = (0,±1)modes for the two solvers are shown in (a) and (b). The pattern of the (µ, ν1) = (0, 0)modes for two solvers are shown in (c)
and (d). The intersection between the EM dispersion relations with the first spatial aliasing beam modes for the full spectral solver and the hybrid solver are shown in (e)
and (f). When generating these plots we use1x1 = 1x2 = 0.2k−1

0 , and1t = 0.08ω−1
0 . Other parameters are listed in Table 1.

superluminal dispersion relationmakes itmuch easier to eliminate
the NCI modes at (µ, ν1) = (0, 0): the modes have a growth rate
that is one order of magnitude smaller than that for the (µ, ν1) =

(0,±1)modes, their locations are highly localized in k⃗ space, and
they can be moved away from the modes of physical interest
by reducing the time step. We showed above that similar NCI
properties can be achieved by using a hybrid FDTD-spectral solver,
where the Maxwell’s equation are solved in Fourier space only in
the direction of the plasma drift. Comparing with an EM-PIC code
using a multi-dimensional spectral solver which solves Maxwell’s
equation in k⃗ space, there are advantageswhen solving it in (k1, x2)
space in 2D [and (k1, x2, x3) space in 3D]. Firstly, the hybrid solver
saves the FFT in the other directions; secondly, since the solver
is FDTD in the directions transverse to the drifting direction, it is
easier to integrate the algorithm into existing FDTD codes such as
OSIRIS where the parallelizations and boundary conditions in the
transverse direction can remain untouched. Last but perhaps most
important, the idea that one can obtain preferable NCI properties
by solving Maxwell’s equation in k1 space in the drifting direction
can be readily extended to the quasi-3D algorithm [27], as we can
solve the Maxwell’s equation in (k1, ρ, ψ) space.

4. Elimination of the NCI modes

In Ref. [10], we proposed strategies to eliminate the NCI in
the spectral solver. These strategies can be readily applied to the
hybrid solver. For square (or cubic) cell, the pattern of the fastest
growing modes resides in a narrow range of k1 near the edge of
the fundamental Brillouin zone. Thereforewe can apply a low-pass
filter in k1 to the current to eliminate the fastest growing modes.
Since the fields are already in k1 space when solving the Maxwell’s

equations, the filtering can be done efficiently by applying a form
factor to the current only in k1.

As for the (µ, ν1) = (0, 0) mode, if they are near the main or
higher order harmonics of the physical modes, we can move them
away and reduce their growth rates by simply reducing the time
step. To furthermitigate the (µ, ν1) = (0, 0)NCImodeswhen they
are far away from the physical modes, one can modify the EM dis-
persion relation, according to the procedure described in Ref. [10],
to completely eliminate them. In Fig. 3 we plot how the modifi-
cation is accomplished in the hybrid solver. As shown in Fig. 3(a)
except for the bump region formost k1 the [k]1 for a particular k1 is
k1 itself; near the bump, the [k]1 for k1 is k1 +1kmod, where1kmod
is a function of k1 with

1kmod = 1kmod,max cos


k1 − k1m
k1l − k1m

π

2

2

(29)

where k1l, k1u are the lower and upper k1 to be modified, k1m =

(k1l + k1u)/2, and 1kmod,max is the maximum value of 1kmod. The
values of k1l, k1u and 1kmod,max are determined by the position of
the (µ, ν1) = (0, 0) modes and their growth rates. According to
the NCI theory, for the parameters in Table 1, when the [k]1 is as
defined in Fig. 3(a) (with k1l/kg1 = 0.15, k1u/kg1 = 0.26, and
1kmod,max/kg1 = 0.01), there is no unstable (µ, ν1) = (0, 0) NCI
modes, i.e., the (µ, ν1) = (0, 0) mode has a theoretical growth
rate of zero. To verify the theoretical results in the hybrid solver, in
Fig. 3(b) we plot the E2 energy growth with and without the mod-
ification. In these simulations we used the parameters in Table 1.
The blue curve in Fig. 3(b) represents the case without the modifi-
cation, while the red and black curves are those with themodifica-
tion to k1. The cases with blue and red curves used quadratic par-
ticle shapes, while the case for the black curve used cubic particle
shapes. We have likewise plotted the E2 spectra at the time point
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Fig. 2. In (a) and (b) the dependence of the growth rate and k1 for the fastest growing (µ, ν1) = (0, 0) mode on the time step is shown. The four lines correspond to the
theoretical prediction for the hybrid solver in 2D, results from OSIRIS and UPIC-EMMA simulations for the spectral and hybrid solvers in 2D Cartesian geometry, and results
for the hybrid solver in the quasi-3D geometry (where the k2 is obtained from a Hankel transform). In (c)–(f) the spectrum of E2 (Eρ ) is plotted for OSIRIS simulations with
the hybrid solver in 2D Cartesian or the quasi-3D geometry. In (c) and (d) results from runs where no filter in k1 is used to eliminate the (µ, ν1) = (0,±1)modes. In (e) and
(f) a filter in k1 was used to eliminate the (µ, ν1) = (0,±1) modes and now the (µ, ν1) = (0, 0) modes are seen. These results show that the 2D Cartesian and quasi-3D
geometries have very similar properties and that the strategies used to eliminate the NCI in 2D Cartesian can be applied to the quasi-3D case.

t = 3200ω−1
0 indicated in Fig. 3(c) and (d) for the two cases with

the modifications (red and black curves in 3(b)). We can see from
Fig. 3(b) and (c) that after the modification, the growth rate of the
(µ, ν1) = (0, 0) NCI modes reduces to zero. Meanwhile, the red
curve rises later in time due to the (µ, ν1) = (±1,±2)NCI modes.
As we showed in Ref. [10] the growth rate of these higher order
modes can be reduced by using higher order particle shape. There-
forewhen cubic particle shapes are used, as is the case for the black
curve, the (µ, ν1) = (±1,±2) NCI modes do not grow exponen-
tially and are therefore much less observable in the corresponding
spectrum at t = 3200ω−1

0 in Fig. 3(d) as compared to 3(c).

5. hybrid solver in quasi-3D algorithm

As mentioned in Section 1, the idea of the hybrid solver can be
easily incorporated into the quasi-3D algorithm [27,28] in which
the fields and current are expanded into azimuthal Fourier modes.
We canobtain thehybrid Yee-FFT solver for the quasi-3Dalgorithm
by using FFTs in the z (x1) direction and finite difference operators
in r (x2) direction in the equations for each azimuthal mode. Note
in quasi-3D OSIRIS we use a charge conserving current deposition
scheme for the Yee solver (as described in [28]), therefore for the
hybrid solver adapted for the quasi-3D algorithmwe can apply the
same current correction for the use of FFTs to j1 in order that the
Gauss’s Law is satisfied throughout the duration of the simulation.

The NCI properties of the hybrid solver for the quasi-3D algo-
rithm are similar to that of the 2D Cartesian geometry [29]. While
a rigorous NCI theory for the quasi-3D algorithm is still under de-
velopment, we can empirically investigate the NCI for this geome-
try through simulation. In Fig. 2(d) and (f) we plot the Er data at a

time during the exponential growth of the EM fields due to the NCI,
which shows the (µ, ν1) = (0,±1) and (µ, ν1) = (0, 0)modes for
the hybrid solver in quasi-3D geometry. For the Er data,we conduct
an FFT in x1 and a Hankel transform in x2. Similarly to the 2D Carte-
sian case, we isolate the (µ, ν1) = (0, 0)modes by applying a low-
pass filter in the current in k1 space to eliminate the fastest growing
(µ, ν1) = (0,±1) NCI modes. The parameters used in the simula-
tions are listed in Table 1, and a conducting boundary is used for
the upper r boundary. We kept azimuthal modes of m = −1, 0, 1
in the simulations.

By comparing Fig. 2(c)–(f) it can be seen that the pattern of the
NCI modes are similar for the (x2, x1) and (r, z) geometries. We
have also plotted the dependence of the growth rate and k1 posi-
tion of the (µ, ν1) = (0, 0) NCI modes for the quasi-3D geometry
in Fig. 2(a) and (b). These plots show that when the time step de-
creases the growth rates of the (µ, ν1) = (0, 0) NCI modes in the
quasi-3D geometry decreases, while the k1 position increases (and
move away from the physical modes), in a nearly similar fashion
to 2D Cartesian geometry. This indicates that the same strategies
for eliminating NCI in 2D Cartesian geometry can be applied to the
quasi-3D geometry. The fastest growingmodes residing at the edge
of the fundamental Brillouin zone can be eliminated by applying a
low-pass filter in the current. The (µ, ν1) = (0, 0) NCI modes can
be mitigated by either reducing the time step to lower the growth
rate and move the modes away from the physics in k1 space, or by
modifying the [k]1 operator as discussed in Section 4 to create a
bump in the EM dispersion along the k1 direction. We have imple-
mented themodification to the [k]1 operator into the hybrid solver
for the quasi-3D OSIRIS code, and have confirmed that this modi-
fication completely eliminate the (µ, ν1) = (0, 0) NCI modes. The
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Fig. 3. In (a) the perturbation to [k]1 that is used to eliminate the (µ, ν1) = (0, 0) NCI modes is shown. In (b) the evolution of the log10 |E2|2 for a reference case and for two
cases with the EM dispersion modification (one with quadratic and another with cubic particle shapes). In (c) and (d), the spectrum of E2 at t = 3200ω−1

0 is shown for the
two cases with the EM dispersion modifications. In (c) quadratic particle shapes are used, while in (d) cubic particle shapes are used. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

coefficients used for the modification are the same as those for the
2D Cartesian case discussed in Section 4.

6. Sample simulations

In this section, we present preliminary results of Lorentz
boosted frame LWFA simulations using the hybrid solver in OSIRIS.
For comparison, we performed simulations with the same param-
eters using UPIC-EMMA which uses a spectral Maxwell solver.
Table 2 lists the simulation parameters. We use a moving antenna
in both cases to launch lasers into the plasma. The results are sum-
marized in Fig. 4.

In Fig. 4(a)–(b) the E1 field at t ′ = 3955ω−1
0 for simulations

with both the hybrid solver and spectral solver in the Lorentz
boosted frame are plotted, where ω0 is the laser frequency in the
lab frame. Both the spectral solver and hybrid solver give simi-
lar boosted frame results, and there is no evidence of NCI affect-
ing the physics in either case. We plot the line out of the on-axis
wakefield in Fig. 4(c), which shows very good agreement with
one another. The very good agreement can also be seen when
we transformed the boosted frame data back to the lab frame. In
Fig. 4(d)–(h) we plot the on-axis E1 field for the OSIRIS lab frame
data, the transformed data for the OSIRIS boosted frame simula-
tion with the hybrid solver, and the transformed data from the
UPIC-EMMA boosted simulation at several values of time in the lab
frame. As seen in Fig. 4(d)–(h), the transformed data from the two
boosted frame simulations agrees very well with each other.

In this paper, wemainly focus on LWFA simulations in a Lorentz
boosted frame. However, it is worth pointing out that the hybrid
solver can likewise be used for LWFA lab frame simulations with
a moving window. When a self-injected or externally injected
electron beam is accelerated by the wakefield, it will also suffer
from numerical Cerenkov radiation (NCR), and may even be
susceptible to the NCI in some cases. The resulting unphysical

Table 2
Parameters for a 2D LWFA simulations in the lab frame and Lorentz boosted frame
that were used for in 2D Cartesian geometry with the hybrid solver in OSIRIS and
with a fully spectral solver in UPIC-EMMA. The laser frequency ω0 and number
k0 in the lab frame are used to normalize simulation parameters. The density is
normalized to the critical density in the lab frame, n0 = meω

2
0/(4πe

2).

Plasma
density n0 1.148 × 10−3n0γb
length L 7.07 × 104k−1

0 /γb
Laser
pulse length τ 70.64k−1

0 γb(1 + βb)

pulse waistW 117.81k−1
0

polarization 3̂-direction
normalized vector potential a0 4.0

Lab frame simulation (γb = 1)
grid size (1x1,1x2) (0.2k−1

0 , 2.75k−1
0 )

time step1t/1x1 0.996
number of grid (moving window) 4000 × 512
particle shape quadratic

2D boosted frame simulation (γb = 14)
grid size1x1,2 0.0982k−1

0 γb(1 + βb)

time step1t/1x1 0.125
number of grid 8192×512
particle shape quadratic

EM fields can lead to unphysical emittance growth. Applying the
hybrid solver in lab frame simulations will greatly reduce the NCR,
which may lead to more accurate emittance values. As a result,
although not shown in this paper, we likewise benchmarked the
hybrid solver with Yee solver in LWFA lab frame simulation by
comparing thewakefields and laser evolution in the two cases, and
very good agreement was obtained.

7. Summary

Weproposed to use a hybrid Yee-FFT and a rigorous charge con-
serving current deposit for solving Maxwell’s equations in order
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cba

d e f g h

Fig. 4. Comparison between OSIRIS lab frame, OSIRIS with the hybrid solver in the boosted frame and UPIC-EMMA in the boosted frame. In (a) and (b), 2D plots of E1 for
OSIRIS with the hybrid solver and UPIC-EMMA at t ′ = 3955ω−1

0 are shown in the boosted frame, where ω0 is the laser frequency in the lab frame. In (c), lineouts along the
laser propagation direction of the same data are shown. In (d)–(h), lineouts of the E1 data transformed back to the lab frame are shown. The colored lines correspond to an
OSIRIS lab frame simulation, an OSIRIS hybrid solver simulation in the Lorentz boosted frame, and UPIC-EMMA simulation in the Lorentz boosted frame. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

to eliminate the numerical Cerenkov instability in PIC codes when
modeling plasmas or beams that drift with relativistic speeds in a
particular direction. In this solver we solve theMaxwell’s equation
in k1 space along the drifting direction (x̂1 direction), and use sec-
ond order finite difference representation for the derivatives in the
other directions. This provides greater than Nth order accuracy for
the spatial derivatives in the x̂1 direction,while keeping the locality
of the field solve and current deposit in the directions transverse
to 1̂. For the current deposit, we start from the charge conserving
deposit in OSIRIS and then correct it so that it still satisfies the con-
tinuity equation for the hybrid solver. Thus, Gauss’s law remains
rigorously satisfied at every time step if it is satisfied initially.

It is found from the NCI theory that such a hybrid solver has
similar NCI properties in comparison to a full spectral solver that
solves Maxwell equation in multi-dimensional k⃗ space. As a result,
the (µ, ν1) = (0, 0) NCI modes have a growth rate one order of
magnitude smaller than the fastest growing (µ, ν1) = (0,±1)NCI
modes, and are highly localized. In addition, the growth rates of the
(µ, ν1) = (0, 0) modes decrease as one reduces the simulation
time step, and their locations in Fourier space also move farther
away from the physics.

Compared with the spectral solver, the hybrid solver performs
an FFT only along the drifting direction of the plasma. As a result,
it saves the computation of FFT in the other directions if this ulti-
mately becomes an issue for parallel scalability. In addition, it can
be readily adapted into fully operational FDTD codes without the
need to modify various boundary conditions in the transverse di-
rections. Very importantly, this idea can be readily applied to the
quasi-3D algorithm in which the quantities are decomposed into
azimuthal harmonics. In this algorithm FFTs cannot be used in the
r̂ direction. We demonstrate the feasibility of the hybrid Yee-FFT
solver in 2D/3D Cartesian geometry, as well as in the quasi-3D ge-
ometry. Although we have not conducted a rigorous theoretical
analysis for the NCI in the r–z or quasi-3D geometries, we find in

simulations that the hybrid solver in quasi-3D geometry has very
similar NCI properties to that in the 2D Cartesian geometry.

We show that the strategy to eliminate NCI in the hybrid solver
for 2D/3D Cartesian geometry, as well as quasi-3D geometry, is
similar to that for the spectral solver. The fastest growing NCI
modes can be eliminated by applying a low-pass filter in the cur-
rent. The (µ, ν1) = (0, 0) NCI modes can be eliminated by re-
ducing the time step which both reduces their growth rates and
moves them away from the physical modes in Fourier space. These
NCI modes can also be fully eliminated by slightly modifying the
EM dispersion relation along k1 direction at the location in Fourier
space where the (µ, ν1) = (0, 0) modes reside. This approach is
demonstrated in both Cartesian and quasi-3D geometry.

We showed that the new hybrid solver in OSIRIS can be used
to conduct 2D LWFA simulations in a Lorentz boosted frame. With
the low-pass filter applied to current and using reduced time step,
we observe no evidence of NCI affecting the physics in the sim-
ulation. Very good agreement is found between the results from
OSIRIS with the hybrid solver, UPIC-EMMA simulations, as well as
OSIRIS lab frame simulations with the standard Yee solver. This
demonstrates the feasibility of using the hybrid solver to perform
high fidelity relativistic plasma drift simulation.
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Appendix. Numerical dispersion for relativistically drifting
plasma and NCI analytical expression in hybrid solver

According to Refs. [9,10], the numerical dispersion for the
hybrid solver can be expressed as
(ω′

− k′

1v0)
2
−
ω2

p

γ 3
(−1)µ

Sj1SE1ω′

[ω]



×


[ω]

2
− [k]E1[k]B1 − [k]E2[k]B2

−
ω2

p

γ
(−1)µ

Sj2(SE2[ω] − SB3[k]E1v0)
ω′ − k′

1v0


+ C = 0 (A.1)

where C is a coupling term in the dispersion relation

C =
ω2

p

γ

(−1)µ

[ω]


Sj1SE1ω′

[k]E2[k]B2(v20 − 1)

+ Sj2SE2[k]E2[k]B2(ω′
− k′

1v0)

+ Sj1[k]E2(SE2[k]B1k2v0 − SB3k2v20[ω])


(A.2)

and for the hybrid solver

[k]E1 = [k]B1 = k1 [k]E2 = [k]B2 =
sin(k21x2/2)

1x2/2
. (A.3)

We can expand ω′ around the beam resonance ω′
= k′

1v0 in
Eq. (A.1), and write ω′

= k′

1v0 + δω′, where δω′ is a small term.
This leads to a cubic equation for δω′ (see [10] for the detailed
derivation),

A2δω
′3

+ B2δω
′2

+ C2δω
′
+ D2 = 0 (A.4)

where

A2 = 2ξ 30 ξ1
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where

ξ0 =
sin(k̃11t/2)

1t/2
ξ1 = cos(k̃11t/2)

ζ0 = cos(k̃11t/2) ζ1 = − sin(k̃11t/2)1t/2

k̃1 = k1 + ν1kg1 − µωg . (A.6)

We use

sl,i =


sin(ki1xi/2)
1xi/2

l+1

(A.7)

as well as use the corresponding interpolation functions for the EM
fields used to push the particles

SE1 = sl,1sl,2sl,3(−1)ν1 SE2 = sl,1sl,2sl,3 SE1 = sl,1sl,2sl,3
SB1 = sl,1sl,2sl,3 SB2 = sl,1sl,2sl,3(−1)ν1

SB3 = sl,1sl,2sl,3(−1)ν1 (A.8)

when using themomentum conserving field interpolation, and use

SE1 = sl−1,1sl,2sl,3(−1)ν1 SE2 = sl,1sl−1,2sl,3
SE1 = sl,1sl,2sl−1,3

SB1 = sl,1sl−1,2sl−1,3 SB2 = sl−1,1sl,2sl−1,3(−1)ν1

SB3 = sl−1,1sl−1,2sl,3(−1)ν1 (A.9)

when using the energy conserving field interpolation. The (−1)ν1
term is due to the half-grid offsets of these quantities in the 1̂
direction. With respect to the current interpolation,

Sj1 = sl−1,1sl,2sl,3(−1)ν1 Sj2 = sl,1sl−1,2sl,3
Sj3 = sl,1sl,2sl−1,3. (A.10)

We note that we use expressions for charge conserving current de-
position scheme that are strictly true in the limit of vanishing time
step 1t → 0. The coefficients A2 to D2 are real, and completely
determined by k1 and k2. By solving Eq. (A.4) one can rapidly scan
the NCI modes for a particular set of (µ, ν1).
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When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) 
algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βbc towards 
the laser, which can lead to a computational speedup of ∼ γ 2

b = (1 − β2
b )−1. Meanwhile, 

when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields 
and current are decomposed into a limited number of azimuthal harmonics, speedups 
are achieved by modeling three dimensional (3D) problems with the computational loads 
on the order of two dimensional r − z simulations. Here, we describe a method to 
combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key 
to the combination is the use of a hybrid Yee–FFT solver in the quasi-3D geometry that 
significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a 
Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes 
of the relativistically drifting plasma in these simulations. In addition, based on the space–
time distribution of the LWFA data in the lab and boosted frame, we propose to use a 
moving window to follow the drifting plasma, instead of following the laser driver as is 
done in the LWFA lab frame simulations, in order to further reduce the computational 
loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, 
the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, 
and the use of a moving window, and compare the results from these simulations against 
their corresponding lab frame cases. Good agreement is obtained among these sample 
simulations, particularly when there is no self-trapping, which demonstrates it is possible 
to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. 
We also discuss the preliminary speedups achieved in these sample simulations.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Laser wakefield acceleration (LWFA) [1] offers the potential to construct compact accelerators that have numerous po-
tential applications, including the building blocks for a next generation linear collider and the electron beam source for 
ultra-compact XFELs. It has thus attracted extensive interest, and the last decade has seen an explosion of experimental 
results. Fully nonlinear particle-in-cell (PIC) simulations have been instrumental in this progress as an aid in designing new 
experiments, in interpreting experimental results, and in testing new ideas. Furthermore, developing predictive theoretical 
models is challenging due to the strong nonlinear effects that are present in the blowout and bubble regimes of LWFA [2]; 
therefore numerical simulations are also critical in exploring the physics of LWFA. Particle-in-cell simulations have been 
extensively applied in LWFA research because the PIC algorithm follows the self-consistent interactions of particles through 
the electromagnetic (EM) fields directly calculated from the full set of Maxwell equations. When modeling LWFA using the 
PIC algorithm the laser wavelength needs to be resolved which is usually on the scale of 1 μm; meanwhile, the length of 
the plasma column that the laser propagates through can be on the scale of 104 to 106 μm. As a result of this disparity in 
cell size and propagation distance, full three-dimensional (3D) PIC simulations of LWFA can be very CPU-time consuming. 
To capture the key physics while reducing the computation time, reduced models are continually being proposed. These 
include models that combine the ponderomotive guiding center with full PIC for the wake [3] or with the quasi-static ap-
proach [4,5]. However, these models cannot as yet model full pump depletion lengths, and the quasi-static approach cannot 
model self-injection.

Recently, two methods have been proposed that can speed up the LWFA simulation without losing key physics in the 
modeling of LWFA. One method is the Lorentz boosted frame technique [6]. In this method the LWFA simulations are 
performed in an optimized Lorentz boosted frame with velocity vb , in which the length of the plasma column is Lorentz 
contracted, while the laser wavelength is Lorentz expanded. Assuming the reflection of the laser light is not important in 
the lab frame, then in a properly chosen Lorentz transformed frame the time and space scales to be resolved in a numerical 
simulation are minimized, and savings of factors that scale as γ 2

b = (1 − v2
b/c2)−1 can be achieved.

Another speedup method that has been recently proposed is to decompose the EM fields and current density into a 
Fourier series in the azimuthal angle φ,

�F (r, z, φ) = Re

{∑
m=0

�F m(r, z)eimφ

}

= �F 0(r, z) + Re{�F 1} cosφ − Im{�F 1} sinφ

+ Re{�F 2} cos(2φ) − Im{�F 2} sin(2φ)

+ . . .

and truncate the expansion at a low m value [7]. This expansion is substituted into Maxwell’s equations to generate a series 
of equations for the complex amplitudes for each harmonic. The harmonics are then summed to get the total fields. The 
particles are pushed in 3D Cartesian geometry and are then used to obtain the complex amplitudes for each harmonic of 
the current. This method can reduce the computational costs of modeling 3D problems with low azimuthal asymmetry to 
that on the order of 2D r − z simulations. This algorithm, together with a charge conserving current deposition scheme in 
quasi-3D geometry has been implemented in OSIRIS [8].

It was pointed out in Refs. [9,10] that it would be intriguing to combine these two methods in order to combine the 
speedups provided by each. Similar to full PIC simulations in the Cartesian geometry, it was found that in the quasi-3D 
geometry one of the main obstacles to performing Lorentz boosted frame simulations is the multi-dimensional Numerical 
Cerenkov Instability (NCI) [11–14] that inevitably arises due to the unphysical coupling between Langmuir modes (main and 
aliasing) and EM modes of the relativistic drifting plasma in the simulations. The coupling arises in the Lorentz boosted 
frame between modes which are purely longitudinal (Langmuir modes) and purely transverse (EM modes) in the lab frame. 
The coupling occurs at specific resonances (ω − 2πμ/�t) = (kz − 2πνz/�z)vb where μ and νz are the time and space 
aliases and �t and �z are the time step and grid size respectively, and ω and kz are the frequency and wave number in ẑ
direction.

While the multi-dimensional NCI theory in Cartesian coordinates has been well studied (see e.g. [12–18]), there are 
currently no analytical expressions for the numerical dispersion relation of a relativistic plasma drift in the quasi-3D ge-
ometry. However, OSIRIS [22] simulations have shown that its behavior in the quasi-3D r − z geometry is very similar to 
that in the Cartesian geometry. It was therefore recently proposed and demonstrated that a hybrid Yee–FFT solver could be 
used to suppress the NCI in the Cartesian and quasi-3D geometries [18]. In the regular Yee (a finite difference) solver in a 
quasi-3D geometry [7,21], Maxwell equations are solved in (r, z) space for each azimuthal mode m. In the hybrid Yee–FFT 
solver, we perform a (discrete) Fourier transform in the drifting direction of the plasma (denote as ẑ direction), and solve 
Maxwell equations in kz space for each azimuthal mode m; meanwhile, in the r̂ direction the derivatives are represented 
as second order finite difference operators on a Yee grid. The current is corrected to maintain the satisfaction of Gauss’ 
Law. When Maxwell’s equations are solved in this way, the corresponding NCI modes can be systematically eliminated by 
applying similar strategies used for a multi-dimensional spectral Maxwell solver [14,17]. The fastest growing modes of the 
NCI at (μ, ν1) = (0, ±1) can be conveniently suppressed by applying a low-pass filter in the current, the highly localized 
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(μ, νz) = (0, 0) NCI modes can be moved away from physical modes by reducing the time step, and can be subsequently 
eliminated by modifying the EM dispersion at the kz range where the (μ, νz) = (0, 0) NCI modes are located. Furthermore, 
higher order spatial aliasing NCI modes can be mitigated by applying higher order particle shapes. In this paper, we present 
OSIRIS simulation results which show that Lorentz boosted simulations of LWFA can be performed in this geometry with no 
evidence of NCI. It is worth noting that recently a PIC algorithm based on a fully spectral solver in quasi-3D geometry has 
been proposed by Lehe et al. [23] and was demonstrated with a single-node algorithm.

In addition, according to how the lab frame information is located in the (z′, t′) space, we show that the computational 
loads can be further reduced by applying a moving window in the boosted frame simulation. In the boosted frame the 
window follows the plasma as opposed to the laser, which is the case when using a moving window in the lab frame.

The remainder of this paper is organized as follows: in section 2 we briefly discuss the hybrid Yee–FFT solver in quasi-3D 
geometry, and the corresponding NCI mitigation strategies. In section 3, we discuss the simulation setups for modeling LWFA 
in the Lorentz boosted frame. We discuss the distribution of the data needed for the reconstruction of lab frame information 
with an emphasis on showing that using a moving window in the direction of the plasma drift can further reduce the 
computational load. We then show sample quasi-3D simulations of LWFA in the Lorentz boosted frame in section 4, and 
compare the results with the corresponding 3D boosted frame and lab frame data. In particular, we concentrate on the 
study of the laser driver evolution as it propagates through the plasma. Good agreement is obtained when comparing the 
driver evolution in lab frame against that obtained from the boosted frame simulation. This demonstrates the feasibility of 
combining Lorentz boosted frame technique, quasi-3D algorithm, and a moving window. We also discuss the preliminary 
speedups achieved in these sample simulations. The results are summarized in section 5.

2. NCI elimination scheme in quasi-3D geometry

2.1. Quasi-3D hybrid Yee–FFT solver

A key issue that needs to be addressed when performing LWFA simulations in a Lorentz boosted frame is the existence 
of a violent numerical instability, called the Numerical Cerenkov Instability (NCI). The NCI arises when a plasma drifts rel-
ativistically on the grid. There has been much recent progress in identifying the NCI as the source of the instability, in 
deriving the numerical dispersion relations and determining growth rates, and in identifying mitigation strategies [11–18]. 
In Ref. [18] a hybrid Yee–FFT solver was proposed for the elimination of the NCI in the Cartesian geometry. In this solver, 
Maxwell equations are Fourier transformed in the drifting direction of the plasma (denoted as the ẑ direction). The fields 
are solved in the corresponding (kz, x, y) space, where conventional second order finite difference operators on a Yee mesh 
are used in (x, y). When Maxwell equations are solved in this way, the corresponding EM dispersion of the solver leads to 
NCI patterns that are very similar to those from a fully spectral Maxwell solver in which Maxwell equations are solved in 
multi-dimensional �k-space. Therefore one can systematically eliminate the main and first spatial aliasing NCI using approxi-
mately the same strategies developed for a fully spectral solver. More importantly, the hybrid Yee–FFT solver works for both 
Cartesian geometry (z, x, y), and quasi-3D geometry (z, r, φ). Although at present there is no rigorous theory on the NCI 
in the quasi-3D geometry, it has been found through OSIRIS simulations that the NCI patterns and growth rates are very 
similar to its counterpart in Cartesian 2D geometry [9]. Therefore, the idea of hybrid Yee–FFT solver can be readily applied 
to the quasi-3D geometry.

When the Maxwell solver is modified from a standard Yee solver to a hybrid Yee–FFT solver, essentially the spatial finite 
difference operator in the ẑ direction is modified from second-order accuracy (derived from its finite difference form) into a 
greater than N-th order accuracy. However, in OSIRIS (and most of the modern PIC codes) the �E and �B fields are advanced 
using Faraday’s Law and Ampere’s Law, while Gauss’s Law is satisfied by applying a charge conserving current deposition 
scheme [8,24,25]. This scheme begins by calculating the current using the charge conserving current deposit scheme of 
[24,25] for a purely r − z code. It then uses this as a common factor in the amplitude for each azimuthal harmonic of J z

and Jr together with a factor that depends on the particle position in φ at the half time step; and it uses this together 
with the particle motion in φ to get Jφ for each harmonic (see section 3.2 of Ref. [8] for more details). If the continuity 
equation is rigorously satisfied at each time step then by taking the finite difference version of the divergence of Ampere’s 
law, Gauss’ Law is seen to be satisfied if it is satisfied at t = 0.

However, the rigorous charge conserving current deposit is known only for second order finite difference operators in 
the ẑ direction. Therefore, when we use a FFT for the differential operator along ẑ direction in Faraday’s and Ampere’s Law, 
we need to modify the current appropriately so the continuity equation is still true for the modified differential operator. 
To accomplish this, for each azimuthal mode of current �Jm(z, r) obtained from the charge conserving current deposition 
scheme described in [8], we Fourier transform it along ẑ-direction, and then apply a correction with the form,

J̃m
z (kz, r) = [k]z

kz
Jm

z (kz, r) (1)

where

[k]z = sin(kz�z/2)

�z/2
(2)
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is the second order first spatial finite difference operator. This correction ensures the satisfaction of Gauss’ Law throughout 
the simulation, as will be discussed shortly afterwards.

Each azimuthal mode of the EM fields is initially stored in the memory in (z, r) space, and is advanced in (kz, r) space. 
We Fourier transform �E and �B along ẑ-direction, and solve Faraday’s Law and Ampere’s Law for each azimuthal mode m, 
and each Fourier mode kz , using the corrected current as the source term,

∂t Bm
r = − im

r
Em

z − ikz Em
φ (3)

∂t Bm
φ = ikz Em

r + ∂r Em
z (4)

∂t Bm
z = −1

r
∂r(rEm

φ ) + im

r
Em

r (5)

∂t Em
r = im

r
Bm

z + ikz Bm
φ − Jm

r (6)

∂t Em
φ = −ikz Bm

r − ∂r Bm
z − Jm

φ (7)

∂t Em
z = −1

r
∂r(rBm

φ ) − im

r
Bm

r − J̃m
z (8)

Here �Em , �Bm , and �Jm are all in (kz, r) space. Note that ∂t and ∂r adopt the conventional finite difference form as in the Yee 
solver. The code is gridless in φ so ∂φ is replaced with im. The fields are then transformed back to (z, r) space, summed 
over m modes, and gathered for the particle pushing.

The reasoning behind the current correction Eq. (1) is that the charge conserving current deposition scheme described 
in [8] ensures that

∂tρ
m(kz, r) + i[k]z Jm

z (kz, r) + ∇r Jm
r (kz, r) + im

r
Jm
φ (kz, r) = 0 (9)

where [k]z is given in Eq. (2) for this expression, and ∇r(·) is the second order accurate finite difference operator in r̂ . 
Therefore this correction ensures that Gauss’s Law in the hybrid solver

ikz Em
z (kz, r) + ∇r Em

r (kz, r) + im

r
Em

φ (kz, r) = 4πρm(kz, r) (10)

is satisfied throughout the simulation if it is satisfied at t = 0 (see section 2.3 of Ref. [18] for more details).

2.2. Elimination of Numerical Cerenkov Instability

We have found previously that the NCI pattern for the quasi-3D hybrid Yee–FFT solver is similar to its counterpart in 
the Cartesian 3D geometry [9,18]. As a result, we can apply approximately the same mitigation strategies used for the fully 
spectral solver in Cartesian geometry to systematically eliminate the NCI modes for this solver [14,17].

We first eliminate the fastest growing (μ, νz) = (0, ±1) modes (νz is the spatial aliasing in ẑ direction) by applying 
a low-pass filter in the current. The filter covers the entire kz range in which the (μ, νz) = (0, ±1) NCI modes reside to 
prevent an unphysical exponential energy growth in these kz modes. This can be efficiently accomplished since the current 
density is already in kz space after the Fourier transform. For instance, in the sample simulation in section 4 we are using 
a low pass filter that has the following expression:

F (kz) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, |kz| < flkgz

sin2
(

kz − fukgz

flkgz − fukgz

π

2

)
, flkgz ≤ |kz| ≤ fukgz

0, fukgz < |kz|
(11)

where kgz = 2π/�z. This filter cuts off all the kz modes larger than fukgz , while allowing modes smaller than flkgz to 
go through the filter. A sine square function connects the two regions to ensure a smooth filtering function. The filter 
parameters fl and fu are listed in Table 1 and 2.

The second fastest growing NCI modes (μ, νz) = (0, 0) can be eliminated by reducing the time step, and then slightly 
modifying the kz operator to create a small bump in the dispersion relation to precisely avoid intersections between the 
main EM modes and main Langmuir modes that are highly localized in kz [17]. When determining the simulation time step, 
we first choose a time step such that the (μ, νz) = (0, 0) NCI modes are significantly far away from the physical modes. 
After that, we apply the [k]z modification in the highly localized |kz| range. This modification makes the growth rate of the 
(μ, νz) = (0, 0) NCI modes to be zero in theory. The [k]z modification is straightforward in a hybrid Yee–FFT solver since we 
are essentially solving the Maxwell equation in kz space. In the sample simulation presented in section 4 we applied the 
following correction to the [k]z operator
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Table 1
Parameters for the 3D and quasi-3D LWFA simulations in the Lorentz 
boosted frame (discussed in section 4.1). The laser frequency ω0 and num-
ber k0 in the lab frame are used to normalize simulation parameters. 
The density is normalized to the critical density in the lab frame, n0 =
meω

2
0/(4πe2). The normalized vector potential a0 for the laser corresponds 

to linear polarization.

Plasma
density np 8.62 × 10−4n0γb

length L 8.0 × 104k−1
0 /γb

Laser
pulse length τ 86.9k−1

0 γb(1 + βb)

pulse waist W 153.0k−1
0

polarization circular
normalized vector potential a0 4.0

Quasi-3D boosted frame simulation (γb = 15.0)

grid size �z = �r 0.1k−1
0 γb(1 + βb)

time step �t/�xz 0.125
number of grid (moving window) 2048 × 256
particle shape quadratic
particle per cell (ẑ, r̂, φ̂) (2,2,16)

[k]z modification ([k]zl,kzm,�kmax)/kgz (0.141,0.240,0.007)

low pass filter ( fl, fu) (0.3,0.35)

Full 3D boosted frame simulation (γb = 15.0)

grid size �z = �r = �y 0.1k−1
0 γb(1 + βb)

time step �t/�z 0.125
number of grid (moving window) 2048 × 512 × 512
particle shape quadratic
particle per cell (ẑ, x̂, ŷ) (2,2,2)

[k]z modification ([k]zl,kzm,�kmax)/kgz (0.141,0.240,0.007)

low pass filter ( fl, fu) (0.3,0.35)

Table 2
Parameters for the quasi-3D LWFA simulations in the lab frame and 
Lorentz boosted frame (discussed in section 4.2). The laser frequency 
ω0 and number k0 in the lab frame are used to normalize simulation 
parameters. The density is normalized to the critical density in the lab 
frame, n0 = meω

2
0/(4πe2). The normalized vector potential a0 for the 

laser corresponds to linear polarization.

Plasma
density np 1.433 × 10−4n0γb

length L 1.63 × 106k−1
0 /γb

Laser
pulse length τ 296.4k−1

0 γb(1 + βb)

pulse waist W 351.9k−1
0

polarization circular
normalized vector potential a0 4.44

Lab frame simulation (γb = 1)

grid size in (ẑ, r̂) (0.2k−1
0 ,4.74k−1

0 )

time step �t/�xz 0.9974
number of grid (moving window) 7920 × 1248
particle shape quadratic
particle per cell (ẑ, r̂, φ̂) (2,1,8)

Boosted frame simulation (γb = 26.88)

grid size (square cell) 0.2k−1
0 γb(1 + βb)

time step �t/�xz 0.25
number of grid (moving window) 8192 × 792
particle shape quadratic
particle per cell (ẑ, r̂, φ̂) (2,2,16)

[k]z modification ([k]zl,kzm,�kmax)/kgz (0.135,0.231,0.005)

low pass filter ( fl, fu) (0.3,0.35)

[k]z =
⎧⎨
⎩

kz + �kmax cos2
(

kz − kzm

kzl − kzm

π

2

)
, kzl < |kz| < kzu

kz, otherwise
(12)

where kzu = 2kzm − kzl , and kzm , kzl , �kmax are listed in Table 1 and 2.
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Fig. 1. Range of important data in lab and boosted frame simulations. (a) Range of data in lab frame (stationary plasma) simulation with a moving window, 
(b) range of data in a boosted frame simulation at γb = 20 with a moving window following the drifting plasma, (c) range of data in a boosted frame 
simulation at γb = 5 with a moving window following the laser driver, and (d) range of data in a boosted frame simulation at γb = 20 without a moving 
window. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

As for higher order NCI modes, their growth rates can be reduced if needed by applying higher order particle shapes. 
However, for the parameter space explored in this paper, the higher order NCI modes have growth rates several orders of 
magnitude smaller than the fastest growing modes, and are not seen in the simulations even when the modes with higher 
growth rates are suppressed. Therefore, for the simulations presented here we used the quadratic particle shapes.

Applying the strategies described above, we can systematically mitigate the NCI modes in the quasi-3D geometry. Note 
the Fourier transform of the current into kz space is not only important for the efficient filtering of the NCI modes, but 
also required to accurately correct (compensate) the current in kz space to exactly match the modified Maxwell solver. It is 
worth noting that it is now a common practice to modify either the Maxwell solver or the field interpolation to change the 
EM dispersion relation in order to obtain a more desirable dispersion relation [12–19]. Within these schemes, Gauss’ Law 
is satisfied by either directly solving it (as is the case in UPIC [26–28]), or by using a current that satisfies the continuity 
equation through a correction (compensation) to match the current deposition scheme with the Maxwell solver (as is the 
case here and in [18]).

3. Simulation setups in the boosted frame

The setup of a quasi-3D LWFA simulation in a Lorentz boosted frame is almost identical to its counterpart in Cartesian 
2D/3D geometry. In a boosted frame with a Lorentz factor γb that moves in the propagation direction of the laser, the 
laser pulse is colliding with a counter-propagating relativistically drifting plasma [29–31]. Due to the Lorentz transform, the 
plasma density increases by γb while the total plasma column length contracts by γb . The laser wavelength and pulse length 
stretch by γb(1 + βb), while its Rayleigh length contracts by γb . To avoid initializing a laser with very wide transverse size 
due to the contracted Rayleigh length and stretched pulse length, a moving antenna is placed at the edge of the plasma 
boundary to inject a laser pulse into the plasma [32,33].

3.1. Relationship between lab and boosted frame data

In LWFA simulations in the lab frame (i.e., a stationary plasma) the use of a moving window [34], which only follows the 
physical domain near the laser, significantly reduces the computational load. The moving window essentially drops plasma 
sufficiently far behind the laser and adds fresh plasma in front of the laser. This is illustrated in Fig. 1 (a) where we plot 
the range of space time data from a lab frame simulation. The solid box shows the total space time area while the dashed 
box shows the reduced area through the use of a moving window. The moving window has a length 800 [k−1

0 ], and the 
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Fig. 2. Simulation setup for a typical LWFA simulation in the boosted frame. The moving window follows the drifting plasma moving from right to left. 
A moving antenna injects laser pulse that propagates from left to right, and a damping region is located at the rear end of the moving window.

simulation duration is tmax = 100000 [ω−1
0 ] (where ω0 and k0 are the frequency and wave number of the laser in the lab 

frame). We also show the simulation data that is dumped as colored lines. The data is dumped every 20000 [ω−1
0 ]. The red 

ends of the data lines indicate the starting end of the moving window, while the blue ends indicate the rear end. Connecting 
the red ends of the data lines, we obtain the z − t relation for the head of the moving windows, t = z (the speed of light 
c is normalized to 1). The data obtained in the lab frame (assuming the code dumps data at a constant time interval) 
rotates in space–time in the boosted frame since the Lorentz transform is essentially a hyperbolic rotation of coordinates in 
Minkowski space [31,35]. Therefore lines of data in ẑ taken at fixed time from a Lorentz boosted frame are rotated by the 
Lorentz transform, i.e., t′ = t/γb − βb z′ . The slope of each data line now becomes −βb , where βb = (1 − γ −2

b )−1/2 and each 
data line in the lab frame which belongs to the same point in time in lab frame is now spread over a range of t′ and z′ . 
Interestingly, when we connect the red end of each data line in the boosted frame it still has a slope of c, i.e. t′ = z′ . The 
range of data in the boosted frame is shown in Figs. 1 (b), (c) and (d). The data in Figs. 1 (b), (d) corresponds to γb = 20
while that in Fig. 1 (c) corresponds to γb = 5. In Figs. 1 (b) and (c) we also show the smallest area (domain enclosed by 
dashed lines) in t′, z′ space that includes the area needed to reconstruct the lab frame data for the two different values 
of γb . This illustrates that the space–time area in the boosted frame can be minimized by using a moving window in this 
frame. In Fig. 1 (b) it is seen that this window moves to the left (backwards); while in Fig. 1 (c) the window moves to 
the right (forwards). In the LWFA Lorentz boosted frame simulations presented in section 4 we use the moving windows 
to follow the drifting plasmas, as indicated by Fig. 1 (b). Currently, in UPIC-EMMA boosted frame simulations in Cartesian 
2D/3D geometry a stationary window is used [see Fig. 1 (d)] [20].

From Fig. 1 it is evident that in lab frame simulations we usually dump data sparsely in time (large time intervals 
between time outputs), but the data at each grid is dumped at each time output. On the other hand, in order to recover 
the equivalent lab frame data in a boosted frame simulation, we need to sample boosted frame data at a much higher rate 
in time, but only need a small number of spatial locations. This can be seen by plotting a line across z′ for a fixed t′ in 
Fig. 1 (b). This line only intersects the equivalent lab frame data at the same number of spatial locations as the number of 
time outputs. We typically dump the boosted frame data in a standard form (all grid points at small number of time steps) 
as well as the data needed to transform the results back to the lab frame (a small number of interpolated grid points at a 
large number of time steps). We then post-process the later data by performing the inverse rotation back into lab frame for 
comparison with the lab frame data. When running in the lab frame we also plot the necessary data needed to reconstruct 
the data into a boosted frame. This inverse construction method is useful during the development of a boosted frame code, 
as one can transform the lab frame data that has been extensively cross checked with theory, to the boosted frame, and 
compare the results against the results obtained by the boosted frame code.

3.2. Basic setup

In Fig. 2, we present a typical setup for a boosted frame simulation. The moving window moves from right to left 
following the drifting plasma. The moving antenna is also moving from right to left and injects the laser pulse from the left 
plasma boundary into the plasma. We place a damping section at the rear (right) end of the moving window (there is a gap 
between the plasma and the damping region) to damp the EM field to zero in this region. This is done because periodic 
boundary conditions are applied in the ẑ direction when using the hybrid Yee–FFT solver, which requires that the EM fields 
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need to be zero at the rear end of the simulation window to match the fields at the opposite side; otherwise the EM field 
at the rear end will reappear at the starting end. We note that there will be a low level of EM reflection from the damping 
section. In the hybrid Yee–FFT solver, the group velocity of light propagating in ẑ direction in vacuum is slightly greater 
than the speed of light, however, the drifting plasma is drifting ultra-relativistically in the same direction, the reflected 
wave does not have enough time to catch up with the drifting plasma for the cases of interest. Hence the physics inside 
the plasma will not be affected by the reflecting EM waves. We have compared cases with the moving window plus the 
damping regions against cases without the moving window to confirm that the moving window plus damping region works 
[10]. We also note that for high γb boosted frame simulations, we find that the modified pusher described in Ref. [36] is 
required in order to get the evolution of the bubble correct. As pointed out in Ref. [36] the usual leap frog staggering [37]
leads to issues for the Lorentz force when there is near cancellation of the electric and magnetic forces for relativistically 
moving particles. Determining at what γb the modified pusher in [36] is needed is an area of future work.

4. Sample simulations

In this section, we present two sets of sample simulations. In section 4.1, we compare results from two boosted frame 
simulations where in one case we use full 3D OSIRIS and in the second case we use quasi-3D OSIRIS, in order to justify 
the truncation of higher azimuthal modes m in the quasi-3D boosted frame simulations. In both cases hybrid Yee–FFT 
solvers and the corresponding NCI mitigation schemes are used. The parameters match those in Ref. [2] whereby a 200 
TW laser is focused to a spot size of 19.5 μm at the entrance of a 1.5 × 1018 cm−3 density plasma. The FWHM pulse 
length of the laser was 35 fs and the normalized vector was a0 = 4.0 for a linearly polarized laser or a0 = 4.0/

√
2 for a 

circularly polarized laser. This corresponds to a 1.3 GeV output electron energy according to the scaling laws in Ref. [2]. 
The numerical parameters are shown in Table 1. We then compare the output in the boosted frame for various azimuthal 
mode numbers. This comparison requires the use of a post-processing algorithm which decomposes the full 3D data into 
azimuthal modes [38].

In section 4.2 we compare the data of a LWFA boosted frame simulation in quasi-3D lab with the corresponding quasi-3D 
boosted frame simulation. For these simulations we explore parameters for which a full 3D lab frame simulation is not 
feasible due to the large CPU hours required. The parameters correspond to a 1.8 PW laser focused to a spot size of 45 μm
at the entrance of a 2.5 × 1017 cm−3 density plasma. The FWHM pulse length of the laser was 130 fs and the normalized 
vector potential was a0 = 4.44 for a linearly polarized laser or a0 = 4.44/

√
2 for a circularly polarized laser. This corresponds 

to a 10.4 GeV output electron energy according to the scaling laws in Ref. [2]. The numerical parameters are shown in 
Table 2. The data from the boosted frame simulation is transformed back to the lab frame and it is compared against the 
data from the lab frame simulation.

4.1. Comparison of 3D vs quasi-3D boosted frame data with a 1.3 GeV case

When modeling LWFA in quasi-3D geometry, whether it is in the lab frame or boosted frame, the accelerating (Ez) 
and focusing fields (Er and Bφ ) in the bubble are mainly in the m = 0 modes of the EM fields. On the other hand, the 
fields associated with the laser are associated with the |m| = 1 mode of the fields. Therefore, by keeping at least the 
|m| ≤ 1 modes the self-consistent evolution of the laser and wake fields can be examined when there is nearly azimuthal 
symmetry. For this comparison we truncate the azimuthal harmonics keeping only the |m| ≤ 1 modes [7,8]. More modes 
can be kept in principle to study laser hosing and asymmetric spot size effects as well as to test the convergence of the 
results. In addition, the results and the needed truncation can be verified by comparing LWFA boosted frame simulation 
results from the full 3D and quasi-3D geometries. To verify the azimuthal mode truncation, we decompose the data from 
the full 3D boosted frame OSIRIS simulation into azimuthal harmonics and compare it against the corresponding quasi-3D 
simulation using the parameters listed in Table 1. In Fig. 3, we plot the azimuthal decomposition of the 3D data for Ez and 
Er at t′ = 4494.99 [ω−1

0 ], and compare it against the corresponding quasi-3D boosted frame data at the same time. For the 
|m| ≤ 1 modes, very good agreement is observed. In addition, we plot the higher order m = 2, 3 modes from the 3D data 
in Fig. 4. We can see that the higher order modes are at least one order of magnitude smaller than those of the m = 0, 1
modes, which verifies the truncation of azimuthal harmonics at |m| ≤ 1 in the quasi-3D simulations when the laser is nearly 
symmetric.

The main purpose of this subsection is to justify the truncation of higher azimuthal modes in quasi-3D boosted frame 
simulations. Nonetheless, in Appendix A we show comparison of the final self-injected electron spectra in the lab frame 
transformed from the two boosted frame simulations, as well as from a 3D lab frame simulation [2]. Reasonable agreement 
is obtained but this is an area for future work.

4.2. Comparison of quasi-3D lab frame vs boosted frame data with a 10.4 GeV case

Next, we compare data from a quasi-3D LWFA simulation in the lab frame against data Lorentz transformed back to the 
lab frame from a quasi-3D simulation. A laser with normalized vector potential of a0 = 4.44 (converted to linear polariza-
tion) with pulse length of 130 fs, and spot size of 45 μm propagates into a plasma column 20.8 cm long (in the lab frame). 
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Fig. 3. Comparison of simulation results in 3D and quasi-3D geometries for the a0 = 4.0 (converted to linear polarization) 1.3 GeV LWFA stage run (as 
discussed in section 4.1). All results are from boosted frame simulations. On the left are the m = 0 modes of Ez and Er . On the right are the real part of 
Em=1

z and Em=1
r . Results from a full 3D boosted frame case are compared against a quasi-3D OSIRIS case where only |m| ≤ 1 modes were kept. Simulation 

parameters are listed in Table 1.

We use a boosted frame with γb = 26.88, and use a moving window as described earlier that follows the relativistically 
drifting plasma. A moving antenna injects the laser pulse into the plasma, and a damping region absorbs the EM field at 
the rear end of the moving window. In the upper r̂ boundary of the simulation box we applied the Perfectly-Matched-Layer 
boundary condition (see Ref. [10] for more details). The plasma density is uniform along the ẑ direction. It is uniform in 
r̂ direction from 0 ≤ r ≤ 7000 [k−1

0 ] (where k0 is the wave number of the laser in the lab frame), and then the density 
linearly ramps to zero at r = 8000 [k−1

0 ] near the r̂ upper boundary (an additional gap of 500 [k−1
0 ] is left between the r̂

upper plasma boundary and simulation box boundary). The linear plasma density ramp is used to prevent reflection when 
the laser crosses the upper r̂ plasma boundary into vacuum. Detailed simulation parameters are listed in Table 2.

As mentioned in section 3, in the boosted frame each azimuthal mode of the EM field is dumped frequently in time, 
and sparsely in space. The results can be transformed back to the lab frame for post-processing. In Fig. 5 (a) we present 
2D envelope plots of the real part of Em=1

r fields. The upper plot in Fig. 5 (a) is the boosted frame simulation results 
(transferred back to lab frame), while the lower plot is the lab frame data. The 2D envelope of Em=0

z fields for the two 
simulations is presented in Fig. 5 (b). In Figs. 5 (c)–(h) we present the corresponding line outs from the two simulations. 
As we can see from Fig. 5 the data from the two simulations agree well with each other, except for the area around the 
rear of the first bubble, which indicates that the two simulations give different self-injection results. On the other hand, the 
laser profiles from the two cases agree extremely well [Figs. 5 (e)–(h)]. In Fig. 5 (c) and (d) line outs of Em=0

z at various 
time steps are plotted, and they show that in the transformed boosted frame data there is stronger beam loading, which 
indicates that more charge is self-injected into the bubble. This may be due to the difference in statistics between the lab 
frame simulation and boosted frame simulation. In the boosted frame a macro-particle represents ∼ 2γ 2

b more charge than 
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Fig. 4. Higher order m modes of Re(Ez) and Re(Er) obtained from a full 3D LWFA boosted frame data (as discussed in section 4.1). On the left are Re(Ez)

and Re(Er) for mode m = 2, while on the right are Re(Ez) and Re(Er) for mode m = 3. The simulation parameters used are listed in Table 1.

Fig. 5. Simulation results for a a0 = 4.44 (converted to linear polarization) 10.4 GeV LWFA stage run (as discussed in section 4.2). (a) shows the comparison 
of 2D envelope of Re(Em=1

r ) field, which shows the evolution of laser driver as it propagates through the plasma; (b) shows the corresponding comparison 
of the amplitude of Em=0

z , which shows how the wakefield of the bubble varies in the two frames due to the different self-injection results; (c), (e), and 
(g) are comparisons of the Em=0

z lineout, laser envelope Re(Em=1
r ) lineout, and laser spot size respectively at lab frame time t = 101802.7 ω−1

0 , while (d), 
(f), (h) are the corresponding plots at t = 570095.3 ω−1

0 . The simulation parameters used are listed in Table 2.

in the lab frame, while particles in the boosted frame are ∼ 2γb times “fatter” since the grid size in the boosted frame is 
∼ 2γb times larger, and this could affect the self-injection process.

To confirm the differences in wakefield are related to the self-injection process, we repeated the lab frame and boosted 
frame simulations in regimes with no self-injection, at a0 = 3.0 (converted to linear polarization), while keeping the other 
parameters as listed in Table 2. In Figs. 6 (a) and (b) we show the line out of the wakefield Em=0

z at two different times 
in the lab frame, and in Figs. 6 (c) and (d) we show the corresponding line outs of the envelope of Re(Em=1

r ). We see 
from Fig. 6 that for this case where there is no self-injection in the lab frame simulation, the wake field results from the 
lab frame and boosted frame simulations agree very well. It still appears to be challenging to accurately modeling the 
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Fig. 6. Line outs of wakefield Em=0
z and line outs laser field envelope of Re(Em=1

r ) at various lab frame time for a a0 = 3.0 case (as discussed in section 4.2). 
Since there are no self-injection in the lab frame for this case, much better agreements are obtained for the wakefield part. The simulation parameters used 
are listed in Table 2.

Fig. 7. Evolution of the laser spot size and peak amplitude (discussed in section 4.2). (a) shows the comparison of laser spot size evolution as the laser 
propagates into the plasma for the two frames. The laser spot size is defined at the location where the laser has the maximum amplitude. The corresponding 
maximum laser amplitude evolution is shown in (b). The simulation parameters used are listed in Table 2.

self-injection process in the LWFA blowout regime. Determining the best practices for using the boosted frame technique to 
study self-injection at high γb is an area for future work.

We plot the laser envelope and spot size obtained from the two cases in Figs. 5 (e)–(h). Excellent agreement can be 
seen for the two time points presented in Fig. 5. Excellent agreement is also seen for the evolution of the spot size, and 
laser amplitude of the laser driver as it propagates through the plasma column. In Fig. 7 we show a detailed time history 
of the laser spot size and amplitude at the position of the laser where its amplitude is largest. Fig. 7 clearly supports the 
conclusion that very accurate results can be obtained when using Lorentz boosted frame technique in quasi-3D geometry to 
study the evolution of laser driver in the plasma.

We have not yet attempted to optimize choices of parameters or the algorithm itself. However, it is still useful to 
compare the total CPU hours for the limited set of lab and boosted frame simulations presented in the paper. The quasi-3D 
lab frame simulations presented in section 4.2 used around 1.6 million CPU hours. Load balancing significantly reduced the 
performance, and a corresponding full 3D simulation (using 8 particles per cell) would take around 300 million CPU hours 
in theory. Meanwhile the corresponding quasi-3D boosted frame simulation takes 2000 CPU hours. The speedup from the 
quasi-3D lab frame is around 800. Note when calculating the speedup we take into account the fact that the transverse 
resolution, and particle per cell are different in the two simulations. Correspondingly the speedup achieved from the full 3D 
lab frame simulation to quasi-3D boosted frame is on the order of 100,000. Note if the full 3D simulation was run on large 
number of processors then load balancing issues can sometimes increase the CPU hours by a factor of between 5 and 10. 
We note the theoretical speedup for boosted frame simulations is actually not straightforward to calculate as it depends 
on γb , the plasma length, and the laser pulse length. In addition, load imbalance is another factor that would greatly affect 
the speedup.

5. Summary

In this paper, we described how it is possible to perform LWFA simulations in Lorentz boosted frames using the quasi-3D 
algorithm. In order to carry out high fidelity Lorentz boosted frame simulations in this geometry, we use a hybrid Yee–FFT 
solver that solves the Maxwell equation in kz space in the direction that the plasma drifts, while keeping the second order 
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finite-difference operators in the transverse directions as in a conventional Yee solver. Using this Maxwell solver we can 
then use the same strategies for eliminating main and first spatial NCI in Cartesian geometry to significantly mitigate them 
in the quasi-3D geometry. For the parameters that we have simulated this appears to have practically eliminated the NCI. 
A current correction is applied to ensure the code rigorously conserves charge. In addition, we analyzed the space–time area 
of the lab and boosted frame simulation data. We showed how using a moving window which follows the drifting plasma in 
the boosted frame further reduces the computational load. We were able to combine Lorentz boosted frame technique with 
quasi-3D algorithm, together with moving window technique, leading to significant speedup and potential unprecedented 
speedup for the modeling of LWFA. In the future we will optimize the algorithm for performance both on a single core, and 
in parallel computers.

We presented comparisons of lab frame against boosted frame simulation results for a 10.4 GeV LWFA example that 
operates in the blowout regime. It was shown that the evolution of the laser driver in the plasma can be very well repro-
duced by the boosted frame simulation. We also found that the self-injection process is different in the boosted frame. This 
is probably due to the difference in statistics between the simulations in the two frames since in the boosted frame each 
macro-particle represents many more real particles than in the corresponding lab frame simulation. We found excellent 
agreement between the lab and boosted frame results for the wake fields when a0 was reduced to avoid self-injection. 
An area of future work is to systematically explore methods to accurately model self-injection process in the Lorentz 
boosted frame simulation. Another area is the integration of this algorithm into our GPU and Intel-Phi enabled version 
of OSIRIS.
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Appendix A. Comparison of final spectrum of injected particles of 1.3 GeV case

In this Appendix, we present the comparison of the final spectrum in the lab frame of the injected particles for the 
1.3 GeV simulation in the 3D lab frame, 3D boosted frame, and quasi-3D boosted frame that are previously discussed in 
section 4.1. The parameters for the 3D/quasi-3D boosted frame simulations are listed in Table 1, and the corresponding lab 
frame simulation parameters are listed in Table A.3 below.

We can see from Fig. A.8 that the final particle energy spectrum for the three cases agree reasonably well. The two 
boosted frame simulations almost overlap each other, while the lab frame data is shifted to higher energy with a similar 
shape. We note that determining how the Lorentz boosted frame factor γb , cell sizes, time step, particle per cell, and other 
simulation parameters affect the modeling of LWFA in the Lorentz boosted frame remains an open question, and will be 
part of our future work.

Table A.3
Parameters for the 3D lab frame LWFA simulation (discussed 
in section 4.1 and Appendix A). The laser frequency ω0 and 
number k0 in the lab frame are used to normalize simulation 
parameters. The density is normalized to the critical density 
in the lab frame, n0 = meω

2
0/(4πe2). The normalized vector 

potential a0 for the laser corresponds to linear polarization.

Plasma
density np 8.62 × 10−4n0

length L 8.0 × 104k−1
0

Laser
pulse length τ 86.9k−1

0
pulse waist W 153.0k−1

0
polarization circular
normalized vector potential a0 4.0

Simulation parameters
grid size (�x1,�x2,3) (0.2k−1

0 ,3.4k−1
0 )

time step �t/�x1 0.995
number of grid (moving window) 4000 × 512 × 512
particle shape quadratic
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Fig. A.8. Comparison of the final spectrum of the injected particles for the 1.3 GeV simulation in the 3D lab frame, 3D boosted frame, and quasi-3D boosted 
frame for the a0 = 4.0 (converted to linear polarization) 1.3 GeV LWFA stage run (as discussed in section 4.1 and Appendix A). The simulation parameters 
used are listed in Table 1 and A.3.
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Abstract. Recently it was proposed in [A. F. Lifschitz, et. al., J. Comp. Phys. 228, 1803 (2009)] that laser wakefield
acceleration could be modeled efficiently using a particle-in-cell code in cylindrical coordinates if the fields and currents
were expanded into Fourier modes in the azimuthal angle, φ . We have implemented this algorithm into OSIRIS, including a
new rigorous charge conserving deposition routine applicable for it [A. Davidson, et. al., J. Comp. Phys. 281, 1063 (2014)].
This algorithm can be interpreted as a PIC description in r − z and a gridless description in φ in which the expansion into
φ modes is truncated at a desired level. This new quasi-3D algorithm greatly reduces the computational load by describing
important three-dimensional (3D) geometrical effects with nearly two-dimensional calculations. In this paper, we propose to
combine this algorithm with the Lorentz boosted frame method for simulations of Laser wakefield acceleration (LWFA). We
show preliminary results, including an investigation of the unstable numerical Cerenkov instability modes for this geometry,
and discuss directions for future work. These preliminary results indicate that combining the quasi-3D method and the Lorentz
boosted frame method together may provide unprecedented speed ups for LWFA simulations.

Keywords: Particle-in-cell, laser wakefield acceleration, numerical Cherenkov instability, quasi-3D algorithm, Lorentz boosted frame

1. INTRODUCTION

Laser wakefield acceleration (LWFA) [1] has attracted extensive interest due to its potential for developing ultra-
compact, high-gradient accelerators that have numerous potential applications, including the building blocks for next
generation linear colliders and being the driver for compact light sources. Due to relativistic and nonlinear effects,
numerical simulations that follow the trajectories of individual electrons are critical for studying the physics of LWFA.
In particular, particle-in-cell (PIC) simulations include the necessary physics and have therefore played an integral
role in the development of LWFA. In the nonlinear blowout regime [2, 3, 4], it is important to include 3D geometrical
effects in order to accurately model laser propagation, wakefield excitation, and beam loading [5]. Therefore, 3D
rather than 2D slab (x− y) simulations are required for quantitative rather than qualitative predictions. Although 2D
r − z PIC simulations have proven useful and accurate for modeling beam driven wakefield acceleration (PWFA),
they are not amenable to LWFA modeling because the laser fields are not purely azimuthally symmetric (they are
radially polarized). Unfortunately, simulating LWFA using a standard PIC code in 3D can be very CPU demanding.
For example, 3D PIC simulations of ∼10 GeV stages for the nonlinear blowout regime are already reaching the
limits of the CPU resources currently available. This makes it difficult to carry out parameter scans in full three
dimensions. Therefore, reduced models of LWFA such as the ponderomotive guiding center [6, 7, 8] and the quasi-
static approximation have been proposed to find the balance between accuracy of the models and the computational
load [8, 9]. In addition, the Lorentz boosted frame has been proposed to significantly reduce the needed CPU time.
However, this method is still being tested in the nonlinear blowout regime where self-trapping of electrons is occurring.

Recently, Lifschitz et. al. [10] proposed a method to use r− z 2D PIC simulations to model LWFA. The idea was
to expand the electromagnetic fields and the currents into azimuthal modes, eimφ , and to truncate the expansion. This
is effective because a linearly polarized laser is represented by only the m = 1 mode. Therefore, LWFA for nearly
azimuthally symmetric cases can be simulated by truncating the expansion after m = 1. This can reduce modeling a
3D problem with low azimuthal asymmetry into a similar computational cost as using a 2D r− z code. This algorithm
was implemented into OSIRIS, which required development of a new rigorous charge conserving scheme valid for the
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azimuthal mode expansion[11]. The new charge conserving scheme makes clear that this algorithm is a hybrid scheme
between a PIC description in r − z and a gridless description in φ . It should be noted that the use of such a hybrid
scheme was considered many years earlier to study particle beam plasma interactions [12].

As noted earlier, it has been proposed and demonstrated that by performing the simulation in an optimal Lorentz
boosted frame with normalized velocity β , the time and space scales to be resolved in a numerical simulation may
be minimized [13]. The basic idea is that in the boosted frame the plasma length is Lorentz contracted while the
plasma wake wavelength and laser pulse length are Lorentz expanded. The number of laser cycles is an invariant, so
the necessary number of cells needed to resolve the laser is also an invariant while the cell size and hence time step
are Lorentz expanded. The increase in time step and cell size, and decrease in the plasma length lead to savings of
factors of γ2 = (1−β 2)−1 as compared to a lab frame simulation using the so-called moving window [14]. Although
straightforward in principle, this idea is challenging because the physics on a grid is actually not Lorentz invariant.
This is seen by the fact that in a frame where the plasma drifts there is a violent numerical instability, called the
Numerical Cerenkov Instability (NCI) [15]. The potential of the Lorentz boosted frame technique has led to a detailed
reexamination of the NCI and to techniques to mitigate (effectively eliminate) it [16, 17, 18, 19, 20, 21].

In this paper, we propose to combine together the Lorentz boosted frame technique and the quasi-3D algorithm to
achieve unprecedented speed-ups in LWFA simulations. If successful, this will provide the ability to perform rapid
parameter scans and real-time steering of experiments. Based on these parameter scans, full 3D (including boosted
frame) simulations can be performed for quantitative prediction. We have implemented the quasi-3D algorithm into
our finite-difference-time-domain (FDTD) EM-PIC code OSIRIS [22], and have recently begun to explore using it to
carry out LWFA simulations in a Lorentz boosted frame.

The rest of the paper is organized as follows. In section 2 we discuss the NCI and explore the unstable modes in
the r− z geometry of the quasi-3D code. We show that the optimal time step derived for cartesian geometry [17, 18]
still works for the r − z geometry. In section 3, we present preliminary simulation results. We compare simulation
results from quasi-3D OSIRIS against UPIC-EMMA (which uses a spectral Maxwell solver) [23, 24] simulations.
Good agreement is seen in some cases, illustrating the potential speed-ups that can be possible by combining these
two methods. The results are summarized in section 4.

2. NUMERICAL CERENKOV INSTABILITY

When modeling LWFA in the Lorentz boosted frame, the plasma is drifting relativistically towards the laser. This
inevitably leads to a numerical instability called the Numerical Cerenkov Instability (NCI) that is due to the unphysical
coupling between the plasma Langmuir modes and EM modes [17, 18, 21]. This numerical artifact interferes with the
physics being studied in the simulation, and therefore it is crucial to reduce the NCI growth rate to enable accurate
modeling of physics problem involving relativistically drifting plasmas.

To study behavior of the NCI in the r − z geometry, we performed simulations using the quasi-3D OSIRIS with
only a cold relativistic plasma drift, i.e., no laser. Conducting boundary conditions were used in the r direction, while
periodic boundary conditions are used in the z direction. The plasma has a drift velocity corresponding to γ = 50 in
the z direction. It has a very small but finite temperature in order to seed the instability. The Yee solver [25] is used in
this simulation. For comparison, we likewise performed a 2D Cartesian OSIRIS simulation with the same simulation
setups and parameters.

In Fig. 1 (b) and (c) we present snapshots of the NCI spectrum observed in the simulations, for both the quasi-3D
and 2D Cartesian algorithms. For the quasi-3D case we use the m = 0 fields. In Fig. 1 (a) the corresponding growth
rates are plotted for various time steps. When calculating the spectra of the NCI, we performed a Fourier transform to
E2 in both x1 and x2 directions (where x1 is the drifting direction) for the 2D cartesian case, and performed a Fourier
transform in the z direction and a Hankel transform in the r direction for the quasi-3D case. Interestingly, the two
geometries show very similar patterns when the same simulation parameters are used. In addition, the growth rates are
also close to each other. More importantly, as is well known for the NCI in Cartesian coordinates, when the momentum
conservation field interpolation scheme (others refer to this as the uniform field interpolation) is used (as is the case
in this paper), we find an optimal time step [17, 18, 26] at which the maximum NCI growth rate is minimized. It is
interesting to see that this same optimal time step is the same value for both the 2D and quasi-3D geometries, and we
used this optimal time step in the quasi-3D OSIRIS LWFA simulations in a Lorentz boosted frame. We are currently
working on the theory of the NCI for the quasi-3D algorithm in order to explain what we observe in Fig. 1 (a).
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FIGURE 1. (a) The dependence of the maximum NCI growth rate on the time step used in the 2D Cartesian and quasi-3D
simulations. In both cases an optimal time step at c∆t = ∆x/2 can be found, where ∆x is the grid size along the drift direction. (b)
Snapshot of the FFT of E2 field of a 2D Cartesian OSIRIS simulation. (c) Snapshot of the FFT of Eφ field for the corresponding
quasi-3D OSIRIS simulation. In (b) and (c) only the first quadrants are shown due to the symmetry of the pattern.

3. PRELIMINARY LWFA SIMULATIONS

The simulation setup used for performing LWFA in the boosted frame using quasi-3D OSIRIS is very similar to that
for Cartesian 2D and 3D OSIRIS simulations. The plasma is drifting relativistically in z direction at βz = −β , where
γ = (1−β 2)−1/2 is the Lorentz factor of the boosted frame. The length of the plasma column contracts by γ , while its
density increases by γ . Due to the Lorentz transform, the laser wavelength and pulse length stretch by γ(1+β ), and
its Rayleigh length contracts by γ . Meanwhile the spot size at the focal point (which is always at the moving plasma
edge) does not change. As a result, when γ is sufficiently large one needs to use a moving antenna [27] to launch
the laser pulse in order to avoid using a simulation box that is too wide in the r direction. In the quasi-3D OSIRIS,
each azimuthal mode is independently launched by the moving antenna. We are currently using conducting boundary
conditions in the r direction and a moving window in the z direction, and are implementing the perfectly-matched-
layers in the r direction in the quasi-3D OSIRIS code.

To investigate the feasibility of combining the quasi-3D OSIRIS and the LWFA boosted frame technique, we
conducted 5.8 GeV stage runs [4] using both quasi-3D OSIRIS and UPIC-EMMA. The parameters of the 5.8 GeV
stage run in the lab frame is listed in Table 1. We performed quasi-3D OSIRIS simulations at γ = 4 and γ = 8, and
UPIC-EMMA simulation at γ = 30. Moving windows are used for the quasi-3D OSIRIS run, and we chose the optimal
time step in order to minimize the NCI growth rate. As for the UPIC-EMMA run, we used a low-pass filter to eliminate
the fastest growing modes of NCI [18, 21, 24].

In Fig. 2 (a) we present a snapshot of the plasma density in the boosted frame for a γ = 4 quasi-3D OSIRIS run. As
seen in Fig. 2 (a), the NCI is present at the left edge of the simulation box (these are short wavelength perturbations).
However, we are mostly interested in the physics of the first bubble where there is much less evidence of the NCI. We
likewise compared the corresponding wakefield in the first bubble in the lab frame by transforming the data from the
γ = 4,8 quasi-3D OSIRIS, and the γ = 30 UPIC-EMMA simulations back to the lab frame. This is shown in Fig. 2 (b).
Good agreement is found within the first bubble. There is significantly more noise in the quasi-3D OSIRIS simulations
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at the rear of the first bubble. This noise is due to the unphysical numerical Cerenkov radiation from the self-trapped
electrons. As noted in [24] there can be differences in the amount of self-trapped particles (and the associated beam
loading) in boosted frame simulations with different γ . This is expected since the macro-particles in each simulation
have different charges. For fixed number of particles per cell, the charge represented by a simulation particles increases
in proportion to ∼ γ2 due to length contraction of the plasma and the increase in the cell size. Therefore, the statistics
and the resolution of the details of the physics is different in the various frames. A full exploration of how the simulation
codes, setups, and parameters influence the modeling of self-injection process in the Lorentz boosted frame are areas
of future work.

TABLE 1. Parameters of LWFA 5.8 GeV stage simulations using quasi-3D OSIRIS and UPIC-
EMMA. k0 is the wavenumber of the driving laser.

Parameters Values
Plasma

Density n [cm−3] 5×1017

Length L [m] 0.08
Laser

Wavelength λ [nm] 800
Pulse length τ [fs] 80
Waist width W0 [µm] 35
Normalized vector potential a0 5.1

Quasi-3D OSIRIS simulation parameters
Boosted frame Lorentz factor γ = 4,8
Grid size (∆xz,∆xφ ) [k−1

0 ] (0.2γ(1+β ),5.0)
Time step c∆t 0.5∆xz
Particle shape quadratic

UPIC-EMMA simulation parameters
Boosted frame Lorentz factor γ = 30
Grid size (∆x1 = ∆x2 = ∆x3) [k−1

0 ] 0.196γ(1+β )
Time step c∆t 0.184∆x1
Particle shape quadratic

(a)
(b)

FIGURE 2. (a) shows the snapshots of plasma density for a quasi-3D OSIRIS simulation in the Lorentz boosted frame with
γ = 4. (b) shows the on-axis wakefield line outs for the quasi-3D simulations at γ = 4,8 and UPIC-EMMA simulations at γ = 30.

4. SUMMARY AND FUTURE WORK

In this paper, we propose combining a new quasi-3D (a hybrid PIC in r− z and gridless in φ ) algorithm [10] together
with the Lorentz boosted frame technique to obtain unprecedented speed-ups for LWFA simulations. We recently
incorporated the quasi-3D algorithm into OSIRIS, including a new rigorous charge conserving scheme [11]. We
present preliminary results of performing Lorentz goosed frame LWFA simulations using the quasi-3D algorithm
within OSIRIS. We first investigated the NCI in the quasi-3D algorithm and found that both the pattern in k space and
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growth rates of the NCI are similar to its counterpart in 2D Cartesian coordinates. In particular, the same optimal time
step which minimizes the NCI growth rate in cartesian coordinates is found for the quasi-3D algorithm. We present
sample LWFA simulations of a 5.8 GeV stage in the nonlinear self-guided regime using both the quasi-3D boosted
frame simulations at γ = 4 and γ = 8, as well as UPIC-EMMA simulations at γ = 30. We compared the corresponding
on-axis wakefield line outs by transforming them back to the lab frame. Good agreement was found between the three
simulations, especially in the z range where the front half of the first bubble and the laser are located. The disagreement
appears to be due to numerical Cerenkov radiation as well as due to the different statistics of self-trapped electrons.
These results demonstrate the potential of conducting Lorentz boosted frame simulation using the quasi-3D OSIRIS.

In the future, we plan on experimenting with smoothers, and alternative field solvers, to eliminate both the NCI and
the numerical Cerenkov radiation of the trapped electrons, which would allow for modeling LWFA in higher γ frames.
We will also work to incorporate the quasi-3D algorithm onto our GPU and Intel Phi [28] enabled versions of OSIRIS
for even greater speed ups. The quasi-3D code runs at the same speed as a 2D simulation. If we take 5.8 GeV case
as an example, the combination of using the quasi-3D algorithm, the Lorentz boosted frame, and GPUs or Intel Phis
could lead to a speed up of ∼500000.
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a b s t r a c t

In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the
particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov
instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when
using the PIC algorithm.We control the EM dispersion curve in the direction of the plasma drift of a FDTD
Maxwell solver by using a customized higher order finite difference operator for the spatial derivative
along the direction of the drift (1̂ direction). We show that this eliminates the main NCI modes with
moderate |k1|, while keeps additional main NCI modes well outside the range of physical interest with
higher |k1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes
which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible
advantage of improved parallel scalability because it can be easily partitioned along 1̂ which typically has
many more cells than other directions for the problems of interest. We show that FFTs can be performed
locally to current on each partition to filter out themain and first spatial aliasing NCImodes, and to correct
the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures
that Gauss’ Law is satisfied. We present simulation examples of one relativistically drifting plasma, of
two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a
Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized
Maxwell solver together with its NCI elimination scheme.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

When modeling physics problems involving relativistically
drifting plasmas or particle beams using the electromagnetic (EM)
particle-in-cell (PIC) algorithm, a violent numerical instability,
called the numerical Cerenkov instability (NCI) [1–5], arises due
to the unphysical coupling of the electromagnetic (EM) modes and

∗ Corresponding author.
E-mail address: tpc02@ucla.edu (P. Yu).

Langmuir modes (both main and aliasing) of the drifting plasma in
the numerical system [6]. Such scenarios arise in laser wakefield
acceleration [7] simulations in the Lorentz boosted frame [8,9]
in which a laser pulse is colliding head-on with a relativistically
drifting plasma (henceforth moving in the 1̂ direction), and in
relativistic collisionless shock simulations in which two counter-
propagating relativistically drifting plasmas collide head-on with
each other [10–13]. The NCI creates unphysical energy exchange
between the kinetic energy of the drifting plasma, and EM field
fluctuations. The growth of the fastest growing modes drives
fluctuations that can quickly dwarf the physical processes being

http://dx.doi.org/10.1016/j.cpc.2017.01.001
0010-4655/© 2017 Elsevier B.V. All rights reserved.
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studied, while slower growing modes can affect the physics in
subtle ways. Thus, it is essential to eliminate all NCI modes for the
accurate modeling of physics problems.

Recently, several studies have focused on the understanding
and elimination of this instability [3–6,14–17]. This includes the
use of a multi-dimensional spectral solver [6,18–20], or a hybrid
Yee-FFT solver that uses a FFT in the direction of the drifting plasma
[16]. Applying these solvers together with current correction
and filtering strategies, one can systematically eliminate the NCI
modes. The key idea is that by changing the EM dispersion relation
of the solver it is possible to eliminate NCI modes at moderate
|k⃗| leaving all the remaining NCI modes of interest at high |k⃗|
in the fundamental Brillouin zone. These high |k⃗| modes can be
filtered without altering the physics of interest. However, each
of these solvers is FFT-based, either in all directions for the pure
spectral solver, or only in the drifting direction of the plasma. The
use of FFTs in the Maxwell solver can limit the parallel scalability
of the algorithm when there are many more cells along a given
direction. Typically, in parallel PIC codes based on FFT solvers, one
uses a domain decomposition one order lower than the physical
dimension because there are currently no effective parallel 1D
FFTs. In the hybrid Yee-FFT solver, there is only a 1D FFT, so the
problem can only be decomposed in the two transverse directions.

In this paper, we take advantage of the previous progress
described in [6,16], and develop a method to design a finite-
difference-time-domain (FDTD) solver that has similar (yet differ-
ent) NCI properties to the FFT-based solver described in [6,16].
Although it was based on the use of FFTs, when examined more
carefully the previous progress showed that the key to essentially
eliminate the NCI is to first isolate the range of unstable k⃗’s for
which we refer to as the main NCI mode. This is accomplished
by using a solver that has sufficiently small numerical errors in
the spatial derivatives (and thus small dispersion errors for light
waves) for moderate |k1|. Even with perfect dispersion for light
waves in vacuum, therewill always be an intersection from the first
spatial aliased beammodes at high |k1| that needs to be filtered out,
and coupling between the EMmode and the main Langmuir mode
at moderate |k1|. We note that for this reason the use of the PSATD
solver described in Ref. [14] does not appear to have advantages
with respect to eliminating the NCI. Aswe have recently shown [6],
when the main mode is isolated to a small range of k⃗s then a small
modification to the dispersion for the range of unstable modes can
remove the coupling between the EM (purely transverse in the lab
frame) modes and Langmuir (purely longitudinal in the lab frame)
modes.

Recognizing how the NCI is being controlled and eliminated by
the use of an FFT along the plasma drifting direction (1̂ direction)
leads us to consider the possibility to design a customized and
higher order finite difference operator for the spatial derivatives
that provides sufficiently accurate dispersion for moderate |k⃗|.
This finite difference operator for the spatial derivative can be
implemented into a FDTD solver which is purely local and should
thus scale well on massively parallel computers using domain
decomposition. This new solver can eliminate the unstablemain (0,
0) modes which exist at a moderate |k⃗| by introducing a localized
modification to the numerical dispersion relation only near the
unstable modes. However, such a solver will not conserve charge,
i.e., Gauss’s law will not be satisfied. The current can be corrected
by performing local FFTs such that the continuity equation is now
satisfied for the higher order solver and this does not use any global
communication. In addition, a low pass filter can be applied to the
local current to eliminate themodes at high |k⃗| near the edge of the
first Brillouin zone.

Similar to the hybrid Yee-FFT solver, to ensure the Gauss’ Law
is satisfied for the customized solver, we correct the component of

the current in the 1̂ direction in k1 space. This is done locally on
each parallel partition along 1̂ and because the current is already
in k1 space, we can also use a low pass filter and eliminate the
unstable high k1 NCI modes. This filter can also be included into
the current correction. We will show that overall this method
is effective at eliminating the NCI while allowing good parallel
scalability when domain decomposition is required along 1̂.

Wenote that in Ref. [21] a PIC algorithmbased on using a ‘‘local’’
FFT Maxwell solver was proposed. Their work was motivated
for maintaining high parallel efficiency and was not focused on
eliminating the NCI. They did show results from LWFA simulations
in a boosted frame, however, no analysis for the NCI for FFT
based algorithms was presented. We note that there are distinct
differences between their approaches and ours. In our case, FFTs
are performed only on current. This is done to ensure that the
continuity equation is satisfied, and also to filter the current for
NCI elimination. Because the current from a single particle is
not global this can lead to a current that satisfies the continuity
equation at every location and it can eliminate the NCI. The EM
fields remain in real space and are advanced using Faraday’s and
Ampere’s law. So long as the solution for the current satisfies
the continuity equation locally for the finite difference operators
used in Ampere’s Law, then Gauss’s law will be maintained. If
the longitudinal components of the fields are also solved using
local FFTs in each partition (as is proposed in Ref. [21]), there will
be errors in the longitudinal components of E⃗ and B⃗ due to the
enforcement of periodicity.

The remainder of this paper is organized as follows. In Section 2
we first present amethod to construct a customized FDTDMaxwell
solver that has preferable NCI properties. The corresponding cur-
rent correction and filtering strategies are discussed in Section 3.
We show that the use of local FFTs can provide a current that sat-
isfies the continuity equation for a customized solver. We then
present sample simulations in Section 4 showing that good accu-
racy and scalability can be obtained. Finally, in Section 5 a summary
is given.

2. Customized Maxwell solver

The Numerical Cerenkov Instability (NCI) occurs when a plasma
drifts relativistically on a grid in a PIC code due to the unphysical
coupling between the Langmuir modes (both main and aliasing)
and electromagnetic (EM) modes [6]. Categorizing the NCI modes
with their temporal aliasing mode number µ, and spatial aliasing
mode number ν1, it is found that usually the most violently
growing NCI modes are those at (µ, ν1) = (0, ±1) (we call them
first spatial aliasing NCI modes), and (µ, ν1) = (0, 0) (main NCI
modes) [6]. The first spatial NCI modes usually reside near the
edges of the fundamental Brillouin zone, making them relatively
easy to eliminate with a sharp low-pass filter to the current. On
the other hand, the main NCI modes are usually located within the
inner half of the k⃗ modes, where modes of physical interest are
located. It was shown for typical FDTD solvers that these modes
were contained in a broad spectrum such that they cannot be
eliminated through a low pass or mask filter. On the other hand, as
shown in [6,16], for FFT-based solvers (and cell sizes ∆x1 ≤ ∆x2),
the main NCI modes are very localized in k⃗ space and they move to
large |k⃗| as the time step is reduced.

Therefore, as discussed in [6,16], to eliminate the NCI modes in
FFT-based solvers, the first step is to find a reduced time stepwhich
moves the main NCI modes away from the physical modes. After
thesemodes are far enough from the physical modes, one can then
apply a highly localized modulation to the EM dispersion relation
in k⃗ space where the (µ, ν1) = (0, 0) modes reside in order
to completely eliminate them. For a multi-dimensional spectral
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solver, the modification of the EM dispersion is accomplished
by directly modifying the finite difference operator [k⃗] in that
localized area in k⃗ space [6]. For the hybrid Yee-FFT solver, only the
operator [k1] ismodified in the k1 rangewhere themainNCImodes
are located [16]. The modification of the operator usually creates
a bump in the dispersion curve in the range where the main NCI
modes are located, which removes the coupling between the EM
modes and the Langmuir modes in that area, thereby eliminating
the main NCI modes in that range completely.

When solving the Maxwell’s equation using the FFT-based
solvers, the differential operators in k⃗ space are explicitly used
in the equations, therefore it is straightforward to modify the
operators in k⃗ space. However, as mentioned in introduction, the
use of a 1D FFT when there are many cells along that direction
affects the scalability of the solver (or a multi-dimensional FFT
solver when there are ‘‘many’’ more cells along one direction).
Therefore, a question that naturally follows iswhether it is possible
to design an FDTD solver to imitate the characteristics of the EM
dispersion curves of a FFT-based solver that make it possible to
effectively eliminate the NCI. In the following sections, we describe
a ‘‘recipe’’ for designing a finite difference derivative that when
written in k⃗ space leads to the proper characteristics for the EM
dispersion.

In [16] it is found that by replacing the finite difference spatial
derivative in the direction of the plasma drift from a stencil that is
second order accurate in cell size with a spectral solver (which is
greater than Nth order accurate), one can restrict the (µ, ν1) =

(0, 0) NCI modes to a highly localized area in the fundamental
Brillouin zone [16]. Meanwhile, the spatial derivatives in the other
direction(s) can be kept as second order accurate. Therefore, when
we design an FDTD solver for the purpose of NCI elimination, it
is natural to start with a ‘‘hybrid’’ FDTD solver that resembles the
hybrid Yee-FFT solver.We use a higher order FDTD finite difference
stencil [22,23] in the direction of the drift while keeping them
second order accurate in the other direction(s). Examination of the
NCI growth rate where [k1] is replaced with the expression for
a higher order stencil reveals that indeed the NCI is localized. In
addition, we find that new (µ, ν1) = (0, 0) modes arise at large
k1 where the EM dispersion curve rolls over, i.e., the phase velocity
drops. We then show how to modify the expression [k1] for the
higher order finite difference operator such that the EM dispersion
curve has a slight bump atmoderate |k1| in order to precisely avoid
the coupling between the EM modes and main Langmuir modes
for the main, (µ, ν1) = (0, 0), NCI modes of moderate |k1|. To
accomplish that, we expand the number of terms in the stencil [see
Eq. (3)] to add extra degrees of freedomwhich can create the bump
in the k1 rangewhere themainNCImodes reside, aswewill explain
in the following sections. In addition the new (µ, ν1) = (0, 0)
modes at high k1 can be filtered out since they are outside the range
of physically relevant modes.

2.1. NCI for high order finite difference solvers

Without loss of generality, we describe the method outlined
above in the 2D Cartesian geometry. In a Maxwell solver, the
electromagnetic fields E⃗ and B⃗ are advanced by solving Faraday’s
law and Ampere’s law,

B⃗n+ 1
2 = B⃗n− 1

2 − c∆t∇+

p × E⃗n (1)

E⃗n+1
= E⃗n

+ c∆t∇−

p × B⃗n+ 1
2 − 4π∆t J⃗n+

1
2 (2)

where the EM fields E⃗ and B⃗, and current J⃗ are defined on the
staggered Yee grid [24], and ∇

±
p =


∂±
p,x1 , ∂

±

2,x2


is the discrete

finite difference operator for the staggered scheme. We now

show that an FDTD solver can be designed such that for small to
moderate (to be defined later) |k1| the corresponding [k1] = k1
plus a bump near the unstable (0, 0) main NCI modes. We apply a
pth order operator in the 1̂ direction and a standard second order
Yee solver in the 2̂ direction. The pth order operator is defined as

∂+

p,x1 fi1,i2 =
1

∆x1

p/2
l=1

Cp
l


fi1+l,i2 − fi1−l+1,i2


∂−

p,x1 fi1,i2 =
1

∆x1

p/2
l=1

Cp
l


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
(3)

where f is an arbitrary quantity and the coefficients of the finite
difference operator Cp

l can be expressed as [22,23]:

Cp
l =

(−1)l+1161− p
2 (p − 1)!2

(2l − 1)2( p
2 + l − 1)!( p

2 − l)!( p
2 − 1)!2

. (4)

If we perform a Fourier transform to Eqs. (1) and (2) in both time
and space, Maxwell’s equations become

[ω]B⃗ = −[k⃗] × E⃗ (5)

[ω]E⃗ = [k⃗] × B⃗ + 4π i⃗J (6)

where the operators in frequency and wavenumber space are

[ω] =
sin(ω∆t/2)

∆t/2

[k⃗] =


p/2
l=1

Cp
l
sin[(2l − 1)k1∆x1/2]

∆x1/2
,
sin(k2∆x2/2)

∆x2/2

 (7)

where ω and k1,2 are the frequency and wave numbers, and ∆t
and∆x1,2 are the time step and grid sizes of the PIC system, respec-
tively. Note thatwhen the current vanishes, J⃗ = 0⃗, in Eq. (6),we ob-
tain the numerical dispersion relation for EMwaves in vacuum, i.e.,

[ω]
2

= c2

[k1]2p + [k2]22


(8)

where [k1]p and [k2]2 are the components of [k⃗], and the order of
accuracy is denoted by the subscripts outside the square brackets.

We plot the numerical dispersion relation ω v.s. k1 (assuming
k2 = 0) in Fig. 1. We can see from Fig. 1 that, when the order
p of [k1] increases, the dispersion curve is converging to (but
never approaches) that of the spectral solver (black solid line). To
quantify the locations and growth rates of the NCI modes for high
order solvers, in Fig. 2, we plot the patterns of the (µ, ν1) = (0, 0)
and (0, 1) NCI modes over the (k1, k2) space in the fundamental
Brillouin zone. The plot is generated by applying the pth order
finite difference operator in k1 and second order finite difference
operator in x2 into the theoretical framework developed in
Refs. [5,6]. For completeness we write out the dispersion relation
in the Appendix. From Fig. 2(a)we can see that themainNCImodes
of a high order solver split into two parts: a highly localized part,
i.e., a ‘‘dot’’, near k1/kg1 = 0.2 (that has a lower growth rate),
and another ‘‘strip’’ component that is very close to the edge of
the fundamental Brillouin zone (that has a higher growth rate). To
make both visible on the same scale we multiply the growth rate
of the ‘‘dot’’ modes by ten. It is interesting to note that the highly
localized ‘‘dot’’ part of the main NCI modes is located at almost the
same place as for the hybrid Yee-FFT solver [shown in Fig. 2(c)].
Meanwhile, the ‘‘strip’’ component has a growth rate on the same
order ofmagnitude as themain NCImodes of the Yee solver, which
are comparable to the (µ, ν1) = (0, 1) modes for either FFT or
finite difference solvers [see Fig. 2(b) and (d)]. This canbe explained
by the fact that in the low k1 range the dispersion curve of the
higher order solver almost overlaps that of the hybrid solver, while
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Fig. 1. 1D numerical dispersion relations of different finite difference solver and
spectral solver. ∆x1 = 0.2k−1

0 and ∆t = 0.05ω−1
0 are used to generate this plot.

Fig. 2. The NCI patterns of 16th order solver and hybrid Yee-FFT solver. (a) and (b)
show the (µ, ν1) = (0, 0) and (µ, ν1) = (0, 1) NCI mode of the high order (16th
order) solver. The values in the dashed line box in (a) are multiplied by 10 for better
visualization. (c) and (d) show the (µ, ν1) = (0, 0) and (µ, ν1) = (0, 1) NCI mode
of the hybrid solver. ∆x1,2 = 0.2k−1

0 , ∆t = 0.05ω−1
0 and np = 30n0 are used to

generate the plots, where n0 is the reference density used in the simulation and
ω2

0 = 4πe2n0/me, k0 = ω0/c.

for the high k1 range the curve bends down, resulting in a similar
NCI pattern to that of the Yee solver (which rolled over for lower
k1 values). In the meantime, the (µ, ν1) = (0, ±1) modes of the
higher order solver reside very close to the edge of the fundamental
Brillouin zone [shown in Fig. 2(b)], which is similar to the case
of the hybrid Yee-FFT solver [Fig. 2(d)]. This enables us to readily
eliminate these modes by applying a low-pass filter to the current
in k1-space.

Just aswas the case for the hybrid Yee-FFT solver, the location of
the ‘‘dot’’ part of the main NCI modes also changes for the higher
order solver as one reduces the time step. In Fig. 3, we scan the
location of the ‘‘dot’’ part of the main NCI modes with different
time steps for various solvers. We can see that themain NCI modes
at moderate |k⃗| move towards higher |k⃗| for both the hybrid Yee-
FFT solver, 16th order solver, and 24th order solver. Therefore, it is
possible to apply the strategies used for the hybrid Yee-FFT solver
to effectively eliminate the NCI for the hybrid higher order-Yee
solver. In addition, as ∆t/∆x1 decreases, so do the growth rates
for the ‘‘dot’’ part of the main NCI modes.

Fig. 3. The position of the split ‘‘dot’’ in (µ, ν1) = (0, 0) NCI mode at different
time step for 16th order, 24th order solver and Yee-FFT hybrid solver. We scan the
position using ∆x1,2 = k−1

0 and np = n0 , from ∆t = 0.1∆tCFL to ∆t = 0.9∆tCFL .

For given simulation parameters,we first calculate the locations
of the main NCI modes for the 16th order solver (16th order in 1̂
direction, and 2nd order in other directions). If they are too close
to the physicalmodes, we reduce the time step tomove them away
from the center towards the edge of the fundamental Brillouin
zone. In the next section, we describe how to modify the higher
order stencil such that its k1 v.s. [k1]p curve has a bump to eliminate
the ‘‘dot’’ part of the main NCI modes.

2.2. Customization of [k]1

In this subsection, we explain howwe customize a higher order
finite difference first derivative that also has a slight modification
near the location of the NCI modes in wave number space. For
the FFT-based solvers described in [6,16] this modification to
the EM dispersion relation in the k1 range where the main NCI
modes are located can be easily implemented. Specifically, this
is accomplished by changing the definition of k1 inside the field
solver to [k1](k1) in the range k1 ∈ [k1l, k1u], where the (µ, ν1) =

(0, 0) NCI modes reside close to [k1] = k1 + ∆kmod(k1) where
∆kmod(k1) is a small localized perturbation (see Fig. 3(a) in [16]).
It usually takes the form of

∆kmod(k1)

=

∆kmod,max sin


π
k1 − k1l
k1u − k1l

2

, k1l ≤ k1 ≤ k1u

0, otherwise
(9)

where k1l, k1u are the lower and upper bounds of the region that
is modified, and ∆kmod,max is the maximum of ∆kmod. In an FFT-
based solver this modification is straightforward to implement,
while in a high order FDTD solver, one has to find a stencil that has
both higher order accuracy for the derivative over a wide range
of wave number space as well as a modification in a local region
of wave number space. For a regular pth order solver (where p
is an even number), there are p/2 coefficients, Cp

l , for the stencil
and the numerical dispersion relation is uniquely determined. It
naturally follows that if we want to customize the dispersion
relation based on the high order solver, we will need to add more
degrees of freedom, i.e., more coefficients, into the operator. This
means the stencil will be broader. The coefficients will still need
to be constrained so that the operator has higher-order accuracy,
while at the same time it has the desired modification in a local
region of k1 space.
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We denote the high order solver as ∇
±
p∗ =


∂±
p∗,x1 , ∂

±

2,x2


. The

first component has the form

∂+

p∗,x1 fi1,i2 =
1

∆x1

M
l=1

C̃p
l


fi1+l,i2 − fi1−l+1,i2


(10)

∂−

p∗,x1 fi1,i2 =
1

∆x1

M
l=1

C̃p
l


fi1+l−1,i2 − fi1−l,i2


(11)

while the second component is still the standard second order
accurate operator. The modified solver has M coefficients, C̃p

l ,
where M > p/2. The corresponding finite difference operator in
k-space becomes

[k1]p∗ =

M
l=1

C̃p
l
sin[(2l − 1)k1∆x1/2]

∆x1/2
. (12)

In order to construct the ‘‘bump’’ in the dispersion curve for the
proposed solver, we need to find an ‘‘optimized’’ set of C̃p

l such
that [k1]p∗ will best approximate the modified [k1] = [k1]p + ∆k
described in Eq. (9). For the purpose of simplifying the notation, in
the followingwe normalize [k1]p∗, [k1]p,∆kmod, k1l, k1u and k1, with
kg1 = 2π/∆x1. In the spirit of the least square approximation, we
construct a function F1

F1 =

 1/2

0


[k1]p∗ − [k1]p − ∆kmod

2 dk1 (13)

whichwewill minimize to find an optimum set of C̃p
j . We note that

a weight function w(k1) can be employed and this is an area for
future work. In addition, the high order solver should also meet
the requirement of pth order accuracy and satisfy the condition
∂±
p∗,x1 → ∂x1 as ∆x1 → 0. Therefore, the coefficients should be

subject to the linear equations below

M ˜⃗C
p

= ˆ⃗e1 (14)

where ˜⃗C
p

= (C̃p
1 , . . . , C̃

p
M)T , ˆ⃗e1 = (1, 0, . . . , 0)T and the elements

of the matrix M are Mij = (2j − 1)2i−1/(2i − 1)! (i =

1, . . . , p/2) and (j = 1, . . . ,M). This is a constrained least-square
minimization problem so we can use the Lagrange multipliers to
solve it.

The Lagrangian is defined byL = F1+F2 where F2 = λ⃗T (M ˜⃗C
p
−

ˆ⃗e1) and λ⃗ = (λ1, . . . , λp/2)
T . Solving the constrained least-square

minimization problem is equivalent to solving,

∂L/∂ C̃p
j = 0 (j = 1, . . . ,M) and

∂L/∂λi = 0 (i = 1, . . . , p/2). (15)

It can be straightforward to show that this results in the following
set of equations,

∂F1
∂ C̃p

j

=


1

2π2
(C̃p

j − Cp
j − Aj), 1 ≤ j ≤

p
2

1
2π2

(C̃p
j − Aj),

p
2

+ 1 ≤ j ≤ M
(16)

∂F2
∂ C̃p

j

=


i

λiMij (17)

∂F2
∂λj

=


i

MjiAi − ej (18)

where

Aj =
8∆kmod,max(cos[(2j − 1)πk1u] − cos[(2j − 1)πk1l])

(2j − 1)[(2j − 1)2(k1u − k1l)2 − 4]
. (19)

Combining Eqs. (16)–(18), we can reformat Eq. (15) into a matrix
equation 1

2π2
I⃗ MT

M 0⃗

 ˜⃗C
p

λ⃗


=

 1
2π2

(A⃗ + C⃗p)

ˆ⃗e1

 (20)

where I⃗ is the M × M unit matrix and C⃗p
= (Cp

1 , . . . , C
p
p/2, 0, . . . ,

0)T . For given ‘‘bump’’ parameters ∆kmod,max, k1l and k1u, Eq. (20)
can be solved numerically. Henceforth, in this paperwe useM = p.

In Fig. 4 we show the comparison of the [k1] operator and the
NCImode patterns between the regular and customized high order
solver. We use a 16th order solver as an example. In Fig. 4(a), we
show that a perturbation (red line) can be introduced to the [k1]16
operator within the bump region, while the operators [k1]16 and
[k1]16∗ are almost overlapped outside the region. Fig. 4(b)(c) show
the NCI mode patterns for the regular 16th order solver. We can
see the dot of (µ, ν1) = (0, 0) modes presented in the middle
of the fundamental Brillouin zone, for which we aim to eliminate
through the use of the modified solver. In Fig. 4(d), the dot has
been eliminated and (µ, ν1) = (0, 1) modes and the remaining
of (µ, ν1) = (0, 0) modes are almost identical to what was seen
for the regular high order solver.

2.3. Courant condition

The derivation of the Courant condition for the proposed high
order solver is straightforward. From the numerical dispersion
relation

[ω]
2

= c2

[k1]2p∗ + [k2]22


, (21)

it can be shown that to keep ω a real number, the corresponding
constraint on the time step must be satisfied, i.e.

∆t
2

 M
l=1

C̃p
l
sin[(2l − 1)k1∆x1/2]

∆x1/2

2

+


sin(k2∆x2/2)

∆x2/2

2

≤ 1. (22)
Note that |k1| ≤ π/∆x1 and |k2| ≤ π/∆x2, we obtain the Courant
condition of the proposed high order solver

∆t ≤ 1/




M
l=1

C̃p
l

2

∆x21
+

1
∆x22

. (23)

For the standard high order solver, given the cell sizes, the
Courant limit only depends on cell sizes and the order solver’s ac-
curacy. For instance, the Courant limit of a 16th order solver (16th
order in x1, while second order in x2) is ∆tCL = 0.6575∆x1 with
∆x1 = ∆x2. As for the customized solver, although the speci-
fied solver coefficients C̃p

l depend on the modification of numer-
ical dispersion we introduce, the Courant limit on the time step
varies little as we alter the ‘‘bumps’’ in the numerical dispersion
curve. Taking the 16th order customized solverwith 16 coefficients
and ∆x1 = ∆x2 for example, the Courant condition reduces to
∆tCL = 0.6550∆x1 for kl = 0.1, ku = 0.3, ∆kmod = 0.01, and
∆tCL = 0.6562∆x1 for kl = 0.15, ku = 0.3, ∆kmod = 0.005. As we
can see, the Courant condition changes little when switching from
the standard high order solver to the customized solver.

2.4. Cartesian 3D and quasi-3D scenarios

As can be seen from previous sections, this FDTD solver only
modifies the finite difference operator in the plasma drifting
direction. As a result, although not presented in this paper, the
method described above can be extended to Cartesian 3D and
quasi-3D geometry [25,26] in a straightforward way.
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Fig. 4. In (a) the perturbation (red line) introduced by the modified 16th order solver is shown. The blue line denotes the [k1]-k1 relation of the regular 16th order solver.
The lower and upper limits of perturbation are k1l/kg1 = 0.18 and k1u/kg1 = 0.33. The perturbation magnitude ∆kmod,max = 0.01. (b) and (c) are (µ, ν1) = (0, 0) and
(µ, ν1) = (0, 1) NCI mode patterns of the regular 16th order solver respectively. The values in the dashed line box in (b) are multiplied by 10 for better visualization.
(d) and (e) are the patterns of the modified 16th order solver. When generating these plots we use ∆x1,2 = 0.2k−1

0 , ∆t = 0.05ω−1
0 and np = 50n0 . (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

3. Charge conservation and parallelization of the solver

Similar to the case in hybrid Yee-FFT solver, when the [k1] of
the solver is different from the second order accurate [k1]2, one
needs to apply a correction to the current in order to satisfy Gauss’
Law. This is due to the fact that in a typical FDTD EM-PIC code,
the EM fields are advanced by the Faraday’s law and Ampere’s law,
while the Gauss’ Law is satisfied by applying a charge conserving
current deposit [27]. The charge conserving current deposition is
second order accurate in all directions, which matches exactly the
standard Yee solver. As a result, when the finite difference operator
for the derivative along a particular direction changes in a solver,
Gauss’ Law is no longer satisfied if the current is not corrected
correspondingly.

More specifically, the charge conserving current deposition
ensures the second-order-accurate finite difference representation
of the continuity equation,

∂

∂t
ρn

+ ∇
−

2 · J⃗n+
1
2 = 0 (24)

where ∂
∂t G

n
=

Gn+1
−Gn

∆t for an arbitrary scalar quantity Gn. For the
Yee solver, Gauss’s law is rigorously satisfied every time step if it
is satisfied at the beginning. However, when combining the high
order solver and the second-order-accurate current deposition
scheme, we need to apply a correction to the current in the drifting
direction in order that Gauss’s law remains satisfied throughout
thewhole simulation. After the current has been calculated locally,
we then ‘‘correct’’ them by performing an FFT along the x1
direction,

J̃
n+ 1

2
1 =

[k1]2
[k1]p∗

J
n+ 1

2
1 (25)

where J̃1 is the corrected current, in a similar manner to what
was employed for the hybrid Yee-FFT solver. Performing Fourier
transform in the x1 direction and applying the correction scheme
in Eq. (25), we guarantee

∂

∂t
ρn(k1, x2) + i[k1]p∗ J̃

n+ 1
2

1 (k1, x2) + ∂−

2,x2
J
n+ 1

2
2 (k1, x2) = 0. (26)

Combining Eq. (26) with Ampere’s law, Eq. (2), (replacing ∇
−
p with

∇
−
p∗ to be consistent with the modified high order solver), we

obtain

∂

∂t


−4πρn

+ i[k1]p∗En
1 + ∂−

2,x2
En
2


= 0. (27)

We carry out inverse Fourier transform to retrieve the equation in
real space,

∂

∂t


−4πρn

+ ∇
−

p∗E⃗
n


= 0 (28)

which indicates that Gauss’s law is satisfied if it is satisfied initially.
It is important to note that one effect that arises from the

current correction is that the current from one particle extends to
more cells. Therefore, an originally localized current distribution
would be spread out over more cells after we correct the current
in the k-space and transform back to real space. This results from
the use of a ‘‘less’’ local operator for the derivative. Nevertheless,
the current still rigorously satisfies the continuity equation for the
desired particle shape.

To quantify the broadening of the current from a single particle
(which is needed when determining how many guard cells are
needed each parallel domain), we assume that the current is only
located at a single point (grid) in the real space, located at the grid
index i1 = 0, i.e. J1,i1 = δ(i1). After performing the discrete Fourier
transform, the current in the k-space becomes unity for all k1, i.e.
J1,κ1 = 1,where κ1 = −N/2, . . . ,N/2−1 is themodenumber, and
k1 = 2πκ1/N∆x1 with N the number of cells in x1 direction. The
corrected current J̃1,κ1 in Fourier space is therefore the correction
factor

[k1]2
[k1]p∗


κ1

=
sin


π
N κ1



l
C̃p
l sin


(2l−1)π

N κ1

 . (29)

When the corrected current is transformed back to real space by
applying an inverse discrete Fourier transform (IDFT), the retrieved
current is seen to extend to all grids outside of the original grid.
However, as we show next the values of the corrected current
for an initial delta function (at the origin) fall off rapidly for grids
away from the origin. In fact, the values fall below double precision
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accuracy quickly making the corrected current effectively only
non-zero in finite region. We illustrate this through 1D numerical
calculations. We initialize the current as a Dirac-delta distribution
in the center of the grid, i.e. J1 = δ(x0). Then we perform a 1D FFT
to the current, use the correction according to Eq. (25) for solvers
with different orders in the k-space, and finally perform an IFFT
to transform the current back into real space. Fig. 5 shows the
spatial distribution of the corrected current. It can be seen that the
extent of the current is widened by the correction process and the
width increases as the order of the solver is increased. Nonetheless,
the expansion remains in a localized region in real space and
beyond this region the amplitude is on the order of 10−16, which
corresponds to double precision roundoff. The fact that the current
is localized indicates that the current correction can be done on a
local domain so long as a sufficient number of guard cells are used.
This permits using domain decomposition along the 1̂ direction
and the use of a local FFT on each subdomain. For example, we
have decreased the size of the subdomain from 256 gridpoints in
Fig. 5(a) to 128 gridpoints in Fig. 5(b). The current distribution, the
width expansion, and noise level are almost the same. Therefore,
we can see that the size of a parallel partition makes little impact
on the simulation results. Although the width of the current from
each particle is now greatly expanded as mentioned before, the
precision of the numerical algorithm essentially limits the width
to a finite number of grids so it is in a sense localized. When a
sufficient number of guard cells for each simulation partition is
used, this current correction schemewill be nearly free of any error
brought by the current expansion. Here, we take the 16th order 16-
coefficient customized FDTD solver as an example. Typically, the
number of guard cells (on each boundary of a subdomain) is two
times that of the EM field solver coefficients. As shown in Fig. 5, the
current of a single particle after a 16th order correction expands to
around 20 gridpoints (half width) (see Fig. 5) whereas the number
of guard cells used is 32, so that there are enough guard cells to
contain the expanded current.

In addition, because of the assumption of periodicity, when
using local FFTs on each subdomain to correct the current so that
Gauss’s law remains satisfied and to filter the current to eliminate
the (0, 1) NCI modes, we also include additional data from the
neighboring subdomains. The total number of guard cells each
side is N + D where for the cells of thickness D we multiply the
data by a function that smoothly goes to zero. This eliminates
any spurious signal that arises because we are using FFTs on a
subdomain and the function over the entire domain is not periodic
over the subdomains. The value ofN is set from the arguments from
above to be twice the order of the solver. The value of D is obtained
through empirical experimentation. For the 16th order customized
solver we use N = 32 and D = 12.

4. Sample simulations

In this section we present sample simulations using the
customized solver and its corresponding NCI elimination schemes.
In these simulations, we used the low-pass filtering for current in
the form of

F(k1) =


1, |k1| < flkg1

sin2


k1 − fukg1
flkg1 − fukg1

π

2


, flkg1 ≤ k1 ≤ fukg1

0, |k1| > fukg1.

(30)

The filter retains the k1 modes smaller than flkg1 and cuts off the
modes larger than fukg1. A sin2 function is used between flkg1 and
fukg1 for smooth connection between unity and zero.

Fig. 5. Effect of the current expansion tested by point current. Numerical
calculations are carried out on 256 gridpoints (a) and 128 gridpoints (b), to model
the cases using different partition sizes. Current with Dirac-delta distribution is
initialized and the current corrections of different orders of solver are applied in
the k-space. (a) and (b) show the current distributions in real space with different
correction schemes. We set ∆x1 = 1 for the calculations.

Table 1
Simulation parameters for the 2D drifting plasma simulation. The parameters are
normalized to the plasma density np with ω2

p = 4πq2np/me , kp = ωp/c.

Parameters Values

grid size (∆x1, ∆x2) (k−1
p /

√
2, k−1

p /
√
2)

time step ∆t 0.25∆x1
number of grids 512 × 512
particle shape quadratic, cubic
[k1] modification (k1l, k1u, ∆kmod,max)

customized FDTD solvera (0.1, 0.3, 0.005)
hybrid Yee-FFT solverb (0.1, 0.3, 0.01)

lowpass filter (fl, fu)
customized FDTD solver (0.325, 0.35)
hybrid Yee-FFT solver (0.325, 0.35)

electron drifting momentum p10 19.975mec
plasma density np

a It corresponds to the blue and green lines in Fig. 6.
b It corresponds to the dashed line in Fig. 6.

4.1. Drifting plasma

In this subsection we demonstrate the NCI elimination capabil-
ity of the customized FDTD Maxwell solver with a 2D Cartesian
OSIRIS simulation of drifting plasma. We fill the simulation box
with a plasma drifting relativistically at γ = 20 along 1̂ direc-
tion. The plasma has a very small but finite temperature to seed
the NCI. Periodic boundary conditions are used for both the 1̂ and
2̂ directions. We performed simulations using both the 16th or-
der solver, the customized solver, and the hybrid Yee-FFT solver,
with and without the low-pass filters. Other simulation parame-
ters are presented in Table 1, and the corresponding coefficients
for the customized solver are listed in Table 2.

We can see from Fig. 6 that, by comparing the red line (16th
order solver without any filters) and the orange line (16th order
solver plus low-pass filter), that applying the low-pass filter to a
16th order solver significantly reduces the growth of the E2 energy.
This is because the fastest growing (µ, ν1) = (0, ±1) NCI modes
are eliminated by the low-pass filter. Besides using the low-pass
filter, whenwe add the bump to the 16th order solver (thusmaking
it a customized solver), the growth rate is further reduced since the
mainNCImodes are completely eliminated (see the blue line). Even
higher order NCI modes [6] are attributed to the slight growth in
energy for this case (blue line in Fig. 6), andwhen the cubic particle
shape is applied, the corresponding energy growth is effectively
suppressed (green line in Fig. 6). We can see that when the low-
pass filter, bump, and higher order particles are applied to the cases
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Table 2
Coefficients C̃16

i in Eq. (12) for the customized solver based on the 16th order solver, for
the single plasma drift simulation discussed in Section 4.1.

Coefficients Values Coefficients Values

C̃16
1 1.237042976225048 C̃16

2 −0.102548201854464

C̃16
3 0.022015354460742 C̃16

4 −0.009258452621442

C̃16
5 0.000410036656959 C̃16

6 0.002572239519500

C̃16
7 0.001482836071727 C̃16

8 −0.001392055950412

C̃16
9 −0.001472515326959 C̃16

10 0.000478783514362

C̃16
11 0.001200462462019 C̃16

12 −0.000187062256742

C̃16
13 −0.001059471474041 C̃16

14 0.000873314953435

C̃16
15 −0.000281855449164 C̃16

16 0.000034281167855

Fig. 6. Evolutions of the E2 energies in the numerical systems for various setups
in drifting plasma 2D Cartesian PIC simulations, as discussed in Section 4.1. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

of both customized solver (green line) and hybrid Yee-FFT solver
(black dotted line), both the hybrid Yee-FFT solver and customized
solver schemes effectively eliminate the NCI.

4.2. Relativistic shock

Wenext present an examplewhere two plasmas collide against
each other which is relevant for relativistic shock simulations. The
two plasmas drift towards each other with a Lorentz factor of
γ = 20.0. The simulation has a box size of 131 072 × 2048 cells,
for which the number of cells in the 1̂ direction is much larger
than that in the 2̂ direction. For a 2D code with FFTs one typically
uses a 1D decomposition and the number of cores is limited by
the number of cells in the direction with the least number of cells
(2̂ in this case). When using the hybrid FFT/FD solver to remove
the NCI the FFT is done in the drifting direction (1̂ in this case)
for which there are many more cells. At the moment we are not
aware of an efficient 1D parallel FFT so the problem can only be
decomposed in the 2̂ direction as well. We are currently exploring
using OpenMP/MPI hybrid parallelization approaches including 1D
parallel FFTs to see if the parallel scaling of the aforementioned
approaches can be improved. However, with the customized solver
and corresponding NCI elimination scheme, we are able to also
partition in the 1̂ direction in a straightforward manner. For this
example, we used a 2D domain decomposition with 256 × 16
partitions along the 1̂ and 2̂ directions respectively. For each
subdomain, there are 512 × 128 cells (guard cells not included)
in total. When correcting the current, along the 1 direction, we

Table 3
Parameters for 2D relativistic collisionless plasma simulations in lab frameusing the
modified high order solver andYee solver. The plasmadensity n0 and corresponding
wave number k0 are used to normalize the simulation parameters. The parameters
of [k1] modification are normalized to kg1 ≡ 2π/∆x1 .

Parameters Values

Plasma
density npe, npi n0
initial Lorentz factor γ0 20.0
initial thermal velocity vth,e,i 8.7 × 10−5c
mass ratiomi/me 32

Simulation using customized high order solver
cell size ∆x1,2 0.5k−1

0
time step ∆t/∆x1 0.2
number of cells 217

× 211

particle shape quadratic
particle per cell (1, 2)
[k1] modification (k1l, k1u, ∆kmod,max) (0.1, 0.35, 0.01)
lowpass filter (fl, fu) (0.275, 0.3)

Simulation using standard Yee solver
cell size ∆x1,2 0.5k−1

0
time step ∆t/∆x1 0.5
number of cells 217

× 211

particle shape quadratic
particle per cell (1, 2)

used 44 additional cells (N = 32 and D = 12) on each side
of the subdomain. When advancing the fields we need 32 guard
cells. Other simulation parameters are listed in Table 3, and the
corresponding coefficients for the customized solver are listed in
Table 4.

In Fig. 7 we plot the 2D color isosurface plots of the ion density,
and line outs of the x2 averaged ion density for the Yee solver and
customized solver. For the Yee solver case, we used both a time
step that is close to the Courant limit and one that is equal to the
optimal time step of ∆t = 0.5∆x1 for which the NCI is minimized.
We also use a 5-pass smoothing and compensation for the current
which is done to limit self-heating from aliasing. These results
show clearly that the NCI is occurring in the upstream region (the
area enclosed by the dashed box in Fig. 7(a)–(c)) for both Yee
cases. The evidence of the NCI is very noticeable when using a time
step near Courant limit, where the presence of the NCI prevents
filaments from occurring at all at the shock front. For the case with
the customized solver, we used the same NCI elimination scheme
as is used for the single drifting plasma case, but with slightly
different coefficients because we used different time steps and
plasma densities (the location of the unstable modes depends on
the density and time step). We can see from Fig. 7(c) that there are
noticeable differences between this simulation and the Yee cases.
The filaments are narrower and much cleaner in the upstream
region than when compared to Yee solver case with the optimized
∆t . On the other hand, the differences in the transversely averaged
ion density are much less pronounced. The averaged ion density
profile of the customized solver and the Yee with optimized ∆t
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is very similar except for the evidence of noise in the upstream
region for the Yee case. This noise arises from theNCI (see Fig. 7(e)).
However, as shown above the density filaments are narrower in
the shock for the customized solver. Additional differences can
be seen in the particle phase space plots. In Fig. 8, it is clearly
shown that the plasma in the upstream region is heating up due
to the NCI for the two Yee cases. This also affects how the reflected
ions penetrate into the upstream region. For the Yee case with ∆t
near Courant limit, the heating is very severe while for Yee with
optimized ∆t the NCI is significantly suppressed. The presence of
the NCI clearly still leads to plasma heating in the upstream region
and as noted above it affects the penetration of the reflected ions
into the upstream region. For customized solver, no heating (no
evidence of the NCI) is shown and p1 vs. x1 always is narrow along
p1 in the upstream region.

From our NCI theory we know that the Yee solver with the
optimized time step does not eliminate the main (µ, ν1) = (0, 0)
modes. The growth rate for these modes is reduced, but they are
not localized in space; instead they reside within the range of
physics. It is not obvious when, and how these modes are altering
the physics. On the other hand, the customized solver together
with our filters completely removes the (µ, ν1) = (0, ±1) and
(µ, ν1) = (0, 0) modes; and the use of the higher order particle
shapes reduces the growth rate for the next highest growing
modes. These preliminary results show that the NCI (even the
slowly growing (µ, ν1) = (0, 0) modes) can seed to noise
that affects the plasma in the shock and downstream regions.
Understanding the details of the physics and studying shock
formation and particle acceleration in relativistic shockswill be left
for future work.

4.3. LWFA boosted frame simulation

In this subsection, we present 3D Cartesian LWFA boosted
frame PIC simulations using the customized FDTD Maxwell solver
in OSIRIS. For comparison, we carried out simulations using
the hybrid Yee-FFT solver and customized FDTD Maxwell solver
respectively. The corresponding lab frame simulation is the 1.3GeV
case discussed in [28], and we have also listed the parameters
in Table 5. Note that although the simulation parameters in
this scenario are different from those of the relativistic shock
simulations discussed in Section 4.2, the locations of the main
NCI modes for a 16th order solver under these two sets of
parameters are very close to each other. Therefore we used the
same coefficients for the customized solver as in Section 4.2, as
listed in Table 4.

In Fig. 9(a) and (b) we plot the E1 field at t ′ = 3746 ω−1
0

for simulations with either a modified high order solver or a
hybrid Yee-FFT solver. Both solvers give nearly identical results
and no evident numerical Cerenkov radiation is observed in either
cases. In Fig. 9(c) and (d) 2D plots of the electron density in the
two cases are given. We also plot the line out of the on-axis E1
fields for different time points in the boosted frame, as shown
in Fig. 9(e)–(h). As we can see from the comparisons, very good
agreement between the results with these two solvers is obtained.

We note that there are differences for the bump parameters
listed in Table 5 between those for the customized high order
solver and for the Yee-FFT hybrid solver. Although the position of
the unstable (0, 0) mode is essentially the same for both solvers,
the customized solver cannot accurately replicate the bump in [k1]
that is used for the hybrid solver. Since the construction of the
bump in [k1] of the customized solver is based on approximating
a specified function using only a limited number of C̃ l

p, the bump
obtained from the resulting coefficientsmay not be ideal. The error
gets smaller as the order of the customized solver gets higher or the
number of C̃ l

p increases.We thenmodify the target function slightly

Fig. 7. The 2D plots of ion densities for (a) Yee solver with∆t approaching Courant
limit, (b) Yee solver with ∆t = 0.5∆x1 and (c) customized solver, and (d) their
average along x2 for a relativistic shock simulation. The corresponding simulation
parameters are listed in Table 3. (e) The zoom-in details of the dashed box in (d).
These plots are generated at t = 4525ω−1

pi .

Fig. 8. The 2D plots of x1–p1 phase space for (a) Yee solver with ∆t approaching
Courant limit, (b) Yee solver with ∆t = 0.5∆x1 and (c) customized solver. These
plots are generated at t = 4525ω−1

pi . The colormap is shown in logarithmic scale.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

to see if the resulting approximate function actually more closely
resembles the original target function. This iterative process is
carried out one or two times. Optimizing this process is an area
for future work.
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Table 4
Coefficients C̃16

i in Eq. (12) for the customized solver based on the 16th order solver, for
the relativistic shock simulations, and LWFA simulations in the Lorentz boosted frame, as
discussed in Sections 4.2 and 4.3.

Coefficients Values Coefficients Values

C̃16
1 1.243205632406442 C̃16

2 −0.096527073844747

C̃16
3 0.017018941335700 C̃16

4 −0.013839950216042

C̃16
5 0.003588768352855 C̃16

6 0.005153133591937

C̃16
7 0.000007068893273 C̃16

8 −0.002317133408538

C̃16
9 −0.001166192174494 C̃16

10 0.000552266782136

C̃16
11 0.001508596910066 C̃16

12 −0.000134050410326

C̃16
13 −0.001599956501178 C̃16

14 0.001305552125425

C̃16
15 −0.000423469804615 C̃16

16 0.000051829248350

Fig. 9. Comparison of simulations in the boosted frame between the customized high order solver and Yee-FFT hybrid solver. 2D plots of E1 field at t ′ = 3746 ω−1
0 for both

solvers are shown in (a) and (b). The electron density profiles are shown in (c) and (d). (e)–(h) Plot the on-axis lineouts of E1 fields at different times.

5. Summary

In this paper, we have presented a new customized high-
order FDTD solver combined with a current correction (such that
Gauss’s law remains satisfied) that effectively eliminates the NCI.
The current is corrected and filtered by using a local FFT on each
parallel partition when using domain decomposition. The cus-
tomized higher order solver, and the corresponding current cor-
rection/filtering that is done locally on each partition permit the
systematic elimination of theNumerical Cerenkov Instability (NCI),
while also permitting high parallel scalability in particle-in-cell
codes. Using the theoretical framework we developed previously
[5,6] and through the results from illustrative PIC simulations, it
is found that a high-order FDTD solver has similar NCI properties
to that of a fully spectral solver or a hybrid Yee-FFT solver. By re-
ducing the time step, the fastest growing (µ, ν1) = (0, ±1) NCI

modes and (µ, ν1) = (0, 0) NCI modes can reside very close to
the edge of the fundamental Brillouin zone. This enables the use
of a lowpass filter on the current to effectively eliminate the NCI.
For regular high-order FDTD solvers, highly localized NCI modes
[which are part of the (µ, ν1) = (0, 0) modes] are seen in anal-
ogy to those observed in a spectral or hybrid Yee-FFT solver. These
modes reside close to the physicalmodes in k⃗-space. Elimination of
thesemodes can be achieved by a combination of applying reduced
time step and creating a bump in the EM dispersion relation in k1
space. This solver can be readily implemented in 2D/3D Cartesian
and quasi-3D geometries containedwithin the existing framework
of OSIRIS without the need to modify the boundary conditions in
the transverse directions. We note that the boundary conditions in
the 1̂ direction do not need to be changed since we can gradually
reduce the order of the solver from 16th to 2nd order in the last 16
cells to match the second order accurate boundary condition.
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Table 5
Parameters for a 3D LWFA simulations in the Lorentz boosted frame using the
customized high order solver and hybrid Yee-FFT solver. The laser frequency ω0 ,
wave number k0 and the critical density n0 = meω

2
0/(4πe2) in the lab frame are

used to normalize the simulation parameters. The parameters of [k1] modification
are normalized to kg1 ≡ 2π/∆x1 .

Parameters Values

Plasma
density np 8.62 × 10−4n0γb

length L 8.0 × 104k−1
0 /γb

Laser
normalized vector potential a0 4.0
focal waist w0 153.0k−1

0
pulse length τ 86.9k−1

0 γb(1 + βb)

polarization circular
Simulation setups
cell size ∆x1,2,3 0.1k−1

0 γb(1 + βb)

time step ∆t/∆x1 0.125
number of cells 2048 × 512 × 512
particle shape quadratic
particle per cell (2, 2, 2)

NCI elimination parameters
Customized solver

[k1] modification (k1l, k1u, ∆kmod,max) (0.1, 0.35, 0.01)
lowpass filter (fl, fu) (0.3, 0.325)

Hybrid Yee-FFT solver
[k1] modification (k1l, k1u, ∆kmod,max) (0.141, 0.24, 0.007)
lowpass filter (fl, fu) (0.3, 0.325)

When the finite difference operators are modified, then the
charge conserving current deposit must also be appropriately
modified. We first deposit the current using the second order
accurate charge conserving current deposit [27] in OSIRIS. The
current is then Fourier transformed on each local partition, and
then corrected, and filtered; it is then transformed back to real
space for use in the field solver. The use of a current deposit that
satisfies the continuity equation for the higher order divergence
operator is necessary such that Gauss’ Law remains satisfied at
each time step. We show that making such correction to the
current will expand the range of cells over which the current for
a particle is increased. Although a point current would extend
very widely after the correction, it falls below the double precision
roundoff within a finite number of cells. Therefore, the current
from a single particle is effectively localized. This permits using
FFTs and the current correction and filtering for only the data on
each parallel partition if the number of guard cells is properly
chosen.

We have shown how the customized solver, together with
its NCI elimination scheme, can systematically eliminate the
NCI in a single drifting plasma. We have also shown that this
scheme eliminates the NCI when it is applied to colliding plasma
simulations that are used to study relativistic shocks without
sacrificing the parallel scalability of an FDTD EM-PIC code for
problems with disproportionate number of cells in one direction.
We have also shown the usefulness of the proposed high-order
solver combined with local FFTs by conducting full 3D LWFA
simulations in a Lorentz boosted frame.
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Appendix. 2D Numerical dispersion for relativistically drifting
plasma and NCI analytical expression in customized solver

According to Ref. [5,6], the numerical dispersion for the hybrid
solver can be expressed as

(ω′
− k′

1v0)
2
−

ω2
p

γ 3
(−1)µ

Sj1SE1ω′
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
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where C is a coupling term in the dispersion relation
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ω2

p
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Sj1SE1ω′
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0[ω])


(A.2)

and for the customized solver discussed in this paper, [k]E1 =

[k]B1 = [k1]p∗, where [k1]p∗ is defined in Eq. (12), and

[k]E2 = [k]B2 =
sin(k2∆x2/2)

∆x2/2
. (A.3)

We can expand ω′ around the beam resonance ω′
= k′

1v0 in
Eq. (A.1), and write ω′

= k′

1v0 + δω′, where δω′ is a small term.
This leads to a cubic equation for δω′ (see [6] for the detailed
derivation),

A2δω
′3

+ B2δω
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+ D2 = 0 (A.4)
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where

ξ0 =
sin(k̃1∆t/2)

∆t/2
ξ1 = cos(k̃1∆t/2)

ζ0 = cos(k̃1∆t/2) ζ1 = − sin(k̃1∆t/2)∆t/2

k̃1 = k1 + ν1kg1 − µωg . (A.6)

We use

sl,i =


sin(ki∆xi/2)

∆xi/2

l+1

(A.7)
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aswell as use the corresponding interpolation functions for the EM
fields used to push the particles

SE1 = sl,1sl,2sl,3(−1)ν1 SE2 = sl,1sl,2sl,3 SE3 = sl,1sl,2sl,3
SB1 = sl,1sl,2sl,3 SB2 = sl,1sl,2sl,3(−1)ν1 SB3 = sl,1sl,2sl,3(−1)ν1

(A.8)

when using the momentum conserving field interpolation. The
(−1)ν1 term is due to the half-grid offsets of these quantities in
the 1̂ direction. With respect to the current interpolation,

Sj1 = sl−1,1sl,2sl,3(−1)ν1 Sj2 = sl,1sl−1,2sl,3
Sj3 = sl,1sl,2sl−1,3.

(A.9)

We note that we use expressions for charge conserving current
deposition scheme that are strictly true in the limit of vanishing
time step ∆t → 0. The coefficients A2 to D2 are real, and
completely determined by k1 and k2. By solving Eq. (A.4) one can
rapidly scan the NCI modes for a particular set of (µ, ν1) for the
customized solver.
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We examine the possible interactions of two laser speckles due to the exchange of particles and
waves generated by stimulated Raman scattering (SRS) using two-dimensional particle-in-cell simu-
lations. By controlling the relative polarization, spatial placement, and timing of two laser speckles,
one above-threshold and one below-threshold for SRS, we isolate and characterize SRS growth stim-
ulated in below-threshold speckles due to inter-speckle interactions via energetic electrons, scattered
light waves, and scattered plasma waves. We show that scattered light alone or electrons alone can
be an intermediary trigger for SRS. Possible theory statement to put in two-speckle paper.

PACS numbers: 52.38.Bv, 52.35.Mw, 52.35.Fp, 52.65.-y

Under proper conditions, a light wave traveling
through a plasma can decay into a scattered light wave
and an electron plasma wave (EPW), a process known
as stimulated Raman scattering (SRS). The growth of
this parametric instability depends on the wave ampli-
tudes, damping rates, frequencies, and wavenumbers. If
a primary light wave enters a region of plasma in which
there exists a non-zero amplitude scattered light wave, or
in which the local electron distribution is such that the
Landau damping rate of EPWs is modified, then the level
of SRS activity for that light wave may not match the
theoretically predicted growth of SRS for an equivalent
light wave traveling through a quiescent plasma. This
potential scenario can arise for any laser beam with a
non-uniform intensity profile. Regions of the laser beam
which are most intense and have the highest SRS growth
rate can, via SRS, generate a spectrum of light waves,
EPWs, and accelerated electrons that travel from unsta-
ble regions into neighboring regions which in isolation
would be stable against SRS. As a result, the entire laser
beam can generate more SRS than one might initially
predict.

SRS is of particular interest to laser-driven inertial fu-
sion energy devices such as the National Ignition Facility
(NIF), where SRS can decrease the driving laser energy
and threaten to preheat the fuel by generating energetic
particles. The laser beams at NIF consist of a distribu-
tion of hot spots, or speckles, due to their smoothing by
phase plates. These speckles are on the order of 5f2λ0
long by fλ0 wide [12], where f is the laser f-number and
λ0 is the laser wavelength. While the theoretical growth
rate for the average laser beam intensity may be rela-
tively low in the given volume of plasma, a percentage of
the speckles may have a relatively large growth rate and
undergo significant SRS. Instability growth in one speckle
will produce scattered waves and particles that travel into
neighboring speckles. An important question is how the

influx of these waves and particles into speckles that oth-
erwise would not undergo significant SRS in isolation will
result in different SRS behavior for the laser beam as a
whole. A collective increase in SRS activity for speck-
led laser beams due to interspeckle interactions has been
shown by Yin et al. [2–4]. However, Yin et al. claim that
neither electrons nor scattered waves alone can alter the
SRS threshold in below-threshold speckles. Rousseaux et
al. [5] and Glize et al. [6] demonstrated experimentally
and numerically that a strong laser speckle could trigger
SRS in a weak speckle, though their work was for plasmas
in which kλD < 0.2 (k is the EPW wavenumber and λD
the electron Debye length) and hot electrons enhanced
the fluctuation levels underlying SRS growth rather than
modified the collisionless Landau damping.

Here we show the mechanisms by which SRS in a
below-threshold laser beam can be triggered in the ki-
netic regime solely by electrons or scattered light result-
ing from SRS in a neighboring laser beam. “Above-”
and “below-”threshold are here defined in the context of
a threshold between strongly damped convective growth
and kinetically inflated growth. Most SRS at NIF is in
the strongly damped convective regime (in contrast to the
regime studied in Refs. [5, 6]), but for convective growth
of SRS, an EPW may grow to an amplitude at which it
can trap particles for more than a bounce period. The
EPW’s damping rate will then drop and SRS can tran-
sition into the weakly damped or even absolute regime.
Kinetic inflation of SRS has been demonstrated in seeded
SRS simulations [11], but the present results are also a di-
rect demonstration of kinetically inflated SRS due solely
to a modification of the electron distribution function.
Through two-dimensional (2D) particle-in-cell (PIC) sim-
ulations of two neighboring laser beams (speckles), one
below-threshold for SRS and one above-threshold, we iso-
late the intermediary interactions by varying the speck-
les’ relative polarization, spatial position, and timing and
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FIG. 1: Transverse electric field showing the relative speckle
positions in (I) side-by-side scenario and (II) staggered sce-
nario with the below-threshold speckle placed ahead of the
above-threshold speckle.

by utilizing an external magnetic field.

In this article, we simulate the scattering processes in
2D using the electromagnetic PIC code OSIRIS [1]. The
electrons have a temperature Te = 2.5 keV and density
ne = 0.13ncr (kλD ≈ 0.27 for backward SRS); ions are
fixed to focus solely on SRS interactions. We emulate
f/8 speckles with Gaussian laser beams of wavelength
λ0 = 0.351µm and focal width ws = fλ0 = 2.8µm (inten-
sity full-width half-max) launched from an antenna at the
boundary. We study one above-threshold laser of focal
intensity 2× 1015 W/cm2 (eE/mcω0 = 0.0134) interact-
ing with neighboring laser speckles with intensity ranging
between 5 and 8× 1014 W/cm2 (eE/mcω0 = 0.0067 and
0.0078). The lasers propagate along x̂ and the above-
threshold laser is polarized out of the 2D plane in ẑ. The
simulations have absorbing boundaries for the fields and
thermal-bath boundaries for the particles. We used 256
particles per cell with quadratic interpolation and 10740
x 2004 cells to simulate plasma of size 120 x 33.6 µm2.

We show two scenarios in this article for spatial place-
ment: one scenario is for side-by-side placement (Fig-
ure 1-I), and a second is for staggered placement in x̂
(Figure 1-II). We will use “Sb” (“Sa”) to refer to the
below-threshold (above-threshold) speckle. Sa is always
focused below Sb in ŷ, and in the staggered scenario, Sb is
focused ahead of Sa in x̂, with “ahead of” referring to the
laser propagation direction (+x̂). The simulation length
corresponds to the central portion of an f/8 speckle of
length 5f2λ0 = 120µm and the width is such that 4ws
separate the speckle centers from each other transversely
and separate each speckle from the boundary. The lasers
have a rise time of 300ω−10 but are otherwise always on
during the duration of the simulation (35000ω−10 , or ap-
proximately 6.6 ps).

To begin, we tested our notion of above- and below-
threshold by simulating single laser beams. For these
plasma parameters, there was an abrupt onset of SRS
at 9 × 1014 W/cm2. Again, we emphasize that this is
a threshold for kinetically inflated growth. Previous au-
thors have commented on the abrupt onset of SRS due
to kinetic inflation [10, 11, 17], and we have previously

noted that the onset of kinetically inflated growth in sim-
ulations occurs when the number of gain lengths is ap-
proximately equal to the system length [18, 19]. We can
calculate the approximate number of gain lengths in the
system using the convective gain length Lc = γpv−/γ20 ,
where γp is the EPW damping rate, v− is the scattered

light’s group velocity, γ0 = (kvosc/4)(ωp/
√
ω(ω0 − ω)) is

the homogenous undamped temporal growth rate [20],
vosc is the electron quiver velocity, and ω and k are
the EPW frequency and wavenumber, respectively, for
which we initially solve by using both the frequency and
wavenumber matching conditions for SRS and the kinetic
dispersion relation, 1− (1/2(kλD)2)Z ′

(
ω/
√

2vthek
)

= 0,
with Z ′ the derivative of the plasma dispersion function.
For a light wave with I0 = 9 × 1014 W/cm2, L/Lc ≈ 2,
matching our notion that kinetic inflation can be seen
for lengths on the order of a gain length. This scaling
will be explored more fully in a subsequent article. Here
we note that for I = 2 × 1015 W/cm2 there was signif-
icant SRS with time-averaged reflectivity of 22%, while
for I = 5−8×1014 W/cm2 there was no SRS over 6.6ps.

Next, we place Sa and Sb side-by-side (Figure 1-I)
and set Sb with Ib = 7 × 1014 W/cm2. For relative
polarizations that are parallel, SRS is triggered in Sb,
while if they are perpendicular, SRS in Sb is not trig-
gered. This is illustrated in Figure 2, where we plot
the time evolution of the EPW activity due to SRS via

Ē2(y, t) = L−1x
∫ Lx

0
dx|Ex(x, y, t)|2 and plot the reflected

light at the incident edge as the deviation of the Poynting
flux from its initial value. For both relative polarizations,
strong bursts of reflected light and EPW activity can be
seen in the region of Sa, while weaker or no bursting ac-
tivity is seen in the region of Sb. The bursts from Sa are
similar to single-speckle simulation results.

There is clearly speckle interaction when the polariza-
tions are parallel (Fig. 2A). Scattered light from Sa can
be convectively amplified as it passes through Sb, and
secondly, it can resonantly trigger further SRS growth
in Sb even though Sb is below-threshold by itself. The
reflected light diagnostic has streaks between Sa and Sb
which are indicative of scattered light traveling at an an-
gle within the box and getting to the domain edge at
later times for larger angles and/or for positions deeper
into the domain. This initially triggers low levels of EPW
activity at ω0t ≈ 10000. At ω0t ≈ 17000, these EPWs
grow to larger amplitude, and several bursts of reflected
light occur in the region of Sb. They are small in ampli-
tude relative to the burst of reflected light from Sa, but
one must keep in mind that the intensity of Sb is approxi-
mately three times smaller than that of Sa. Even a burst
of 100% reflectivity from Sb would only be about half the
amplitude of the initial reflectivity burst of Sa. The total
time-averaged reflectivity over the entire domain is ap-
proximately 21% and does not deviate significantly from
the reflectivity of Sa alone. This again is due to the rel-
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atively small amplitude of Sb relative to Sa, even if it is
contributing to the SRS activity.

There is no speckle interaction when the polarizations
are perpendicular (Fig. 2B). The absence of SRS ac-
tivity for Sb is due to the fact that (i) Sb does not un-

dergo SRS when beating with the perpendicularly po-
larized scattered light streaming into it from Sa and (ii)
Sb’s interaction with the particles coming from Sa is too
weak to trigger it to undergo SRS. Figure 3A shows, at
one time during an SRS burst of Sa in Fig. 2B, the
charge density of electrons with kinetic energies between
25 and 50 keV, that is, electrons that have been accel-
erated above the phase velocity of the daughter EPW
during SRS. The region of largest charge density is that
region where SRS is occurring in Sa. Particles resonant
with the SRS EPW are those traveling in the +x̂ direc-
tion with velocity range [vφ − vtr, vφ + vtr], where vφ is
the EPW phase velocity and vtr is the trapping velocity.
The resonant electrons also have a spread of transverse
momenta characteristic of the background thermal distri-
bution; the EPW traps and accelerates electrons only in
x̂. Since there is therefore an angular dependence to the
charge density of resonant electrons that exit an unstable
region of SRS, the modification to local electron distri-
bution functions that neighbor SRS activity depend on
their location relative to the unstable region. For exam-
ple, the electron distributions spatially averaged over the
labeled sub-regions of Fig. 3A are plotted in Fig. 3B,
where averaging has also been carried out over trans-
verse momentum. The distribution functions first flat-
ten at px ≈ 0.30, corresponding to vφ of the SRS EPW.
However, the degree of flattening is quite different de-
pending on whether one considers region 1 versus region
4. The speckles are focused to the boundary of regions
2 and 3, and the daughter EPWs that grow due to SRS
spray trapped particles most strongly toward regions 3
and 4, that is, those regions ahead of the speckles’ foci
and into which any daughter SRS EPWs travel. It follows
that a neighboring speckle will encounter a more strongly
modified electron distribution, and therefore be more im-
pacted by influxing electrons, if it is focused ahead of the
unstable speckle.

We tested a scenario in which the intensities of Sa and
Sb are the same as in Figure 2 but in which Sb is fo-
cused ahead of Sa, that is, the relative speckle placements
are staggered as shown in Figure 1-II. With these place-
ments, the energetic electrons generated by SRS bursts
of Sa now have a higher flux into Sb. Figure 4 shows that
indeed Sb is triggered in this case. Triggering by hot elec-
trons alone is possible, provided the distribution function
is sufficiently modified. Simply altering the relative spa-
tial placement of Sb can influence speckle interactivity.
We note that Yin et al. [3] focused a below-threshold
speckle behind an above-threshold speckle, likely influ-
encing their conclusion that electrons alone could not
trigger a below-threshold speckle.

In addition to altering the speckle’s placement, one
could simply increase the intensity of Sb while still keep-
ing it below threshold. We repeated the side-by-side sce-
nario of Fig. 2B and increased Ib to 8 × 1014 W/cm2.
Though we do not show results here, this scenario in-
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deed resulted in Sb undergoing SRS. Despite having the
lower influx of trapped particles when being side-by-side
with Sa, the slightly higher Ib brings Sb closer to thresh-
old, and it therefore requires less modification of the local
distribution for Sb to transition into a kinetically inflated
state.

To investigate another claim of Ref. [3] that scat-
tered light alone could not trigger a below-threshold
speckle either, we applied an external 42 T magnetic
field aligned along x̂, the laser-propagation direction.
eBx/mcω0 = 0.00138 gives a gyroradius of 2.8 µm for
an electron with v⊥ = vth, i.e., a gyroradius equal to the
speckle width. Using the same set-up as for Fig. 2A, the
magnetic field has essentially no effect on the amount of
SRS triggered in Sb. EPW activity is shown in Figure
4B at two times. In this case, we conclude that scattered
light is solely responsible for the speckle interaction, and
in contrast with Ref. [3], conclude that scattered light
alone can trigger a below-threshold speckle. Neverthe-
less, despite the reduction in trapped particle motion
between Sa and Sb due to the B-field, there can arise
a modified electron distribution in the region of Sb due
to SRS stimulated by the scattered light interaction. In
Figure 4B, the EPWs at yω0/c ≈ 400 and ω0t = 11632
have a negative slope, due to their being stimulated by
the scattered light coming from Sa. At the later time,
ω0t = 22334, the EPWs stretch horizontally and have a
shape similar to a burst of SRS in a single speckle. Be-
tween the two times shown, the EPWs produced in the
region of Sb during the initial scattered light interaction
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have accelerated electrons and modified the electron dis-
tribution function local to the region of Sb, which itself
contributes to the later bursts of SRS.

The effect of B fields is in fact more complex. B fields
that constrain electrons to stay within a speckle alter the
nonlinear damping and may act to make any SRS more
1D-like. This could result in lower thresholds along the
speckle axis or different damping rates across a speckle
transversely, affecting for example transverse localiza-
tion. These effects should be considered more carefully
before claiming that B fields limit SRS activity, and is
left for future work.

Finally, we have investigated the action of electron
plasma waves as a trigger for below-threshold speckles.
To do so, we focused both speckles at the same point
in ŷ and x̂ but altered their timing. Sa was on be-
tween ω0t = 0 − 17000 and Sb was turned on after-
wards from ω0t = 20000 − 35000. The time between
ω0 = 17000− 20000 was left for the most energetic elec-
trons to exit the region of SRS activity. The EPW ac-
tivity along the central axis is shown in Figure 5. SRS
activity that grows during Sa’s presence creates plasma
waves. These EPWs that are left behind serve as the
background for the below-threshold speckle and its re-
sulting SRS. This interaction is sensitive to the damping
rate of the plasma waves, which is in turn sensitive to the
remaining energetic electrons. It is quite difficult to sepa-
rate the action of EPWs from the energetic electrons, but
we conclude that remnant EPWs left behind by bursts of
SRS activity can act as a stimulus for subsequent speck-
les.

In conclusion, by controlling the relative placement,
polarization, and timing of two laser speckles, as well
as by using an external B-field, we have shown that
plasma waves, scattered light waves, and energetic elec-
trons stimulate SRS in below-threshold speckles. The
spray of energetic electrons creates a background dis-
tribution that lowers the threshold for SRS, scattered
light is the most efficient intermediary, and plasma waves,

100



5

while tied together with hot electrons, may nevertheless
affect a changing speckle pattern. In addition to inci-
dent laser and plasma parameters, total SRS levels will
be determined by the evolving state of scattered waves
and particles. Even though reflectivity from SRS stim-
ulated in below-threshold speckles may be smaller than
that from above-threshold speckles due to their lower in-
tensity, the intensity distribution of speckled laser beams
is likely to include many such speckles, and collective ef-
fects can dominate over the activity of any one speckle.
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CHAPTER 12

Conclusion

This dissertation detailed the production and use of two kinetic plasma simulation software

packages. Examined first was OSHUN - a VFP code capable of modeling large systems by

fully exploiting modern (i.e. massively parallel) computing resources. Then the addition of

3 modules to the PIC code OSIRIS were detailed:

• Quasi-3D: a novel coordinate system that allows 3D simulations at costs approaching

those of 2d (speed up of ≈ 100 )

• Lorentz Boost Frame: simulating systems in a relativistic frame (speedup of ≈ γ2 —

typically 100 to 100,000 in LWFA systems).

• Graphics Processing Units (GPUs): Adding support for cutting-edge massive-parallelism

(speed up of ≈ 100 )

If used simultaneously, these modules can give an amazing factor ≈ 1e6 or more speed

increase for 3D laser-plasma simulations. The full scale unification of these three modules

required to enable such immense speed increases is challenging. The dissertation described

efforts to reach this goal including the creation of OSIRIS Version 4.0 which provides the

infrastructure to enable complex software integration. Initial results coupling Quasi-3D to

the Lorentz Boosted Frame were shown. This work is an ongoing and rich area for future

researchers.
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