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 Dendrite formation during electrodeposition while charging lithium metal batteries 
compromises their safety.1–6 While high shear-modulus (Gs) solid-ion conductors (SICs) 
have been prioritized to resolve pressure-driven instabilities that lead to dendrite 
propagation and cell shorting, it is unclear whether these or alternatives are needed to 
guide uniform lithium electrodeposition, which is intrinsically density-driven.7–9 Here, we 
show that SICs can be designed within a universal chemomechanical paradigm to access 
either pressure-driven dendrite-blocking or density-driven dendrite-suppressing 
properties, but not both. This dichotomy reflects the competing influence of the SIC’s 
mechanical properties and partial molar volume of Li+ (VLi+) relative to those of the lithium 
anode (GLi and VLi) on plating outcomes.9 Within this paradigm, we explore SICs in a 
previously unrecognized dendrite-suppressing regime that are concomitantly “soft”, as is 
typical of polymer electrolytes, but feature atypically low VLi+, more reminiscent of “hard” 
ceramics. Li plating (1 mA cm–2; T = 20 ˚C) mediated by these SICs is uniform, as revealed 
using synchrotron hard x-ray microtomography. As a result, cell cycle-life is extended 
(>300 cycles vs. ~100 cycles for control cells), even when assembled with thin Li anodes (~30 
µm) and high-voltage NMC-622 cathodes (1.44 mAh cm–2), where ~20% of the Li inventory 
is reversibly cycled. 
 Heterogeneous nucleation and ramified growth of lithium metal electrodeposits while 
charging lithium metal batteries is tied to uneven Li+ transport across the anode–electrolyte 
interface.7–11 Whereas the increasingly fractal character of this interface during battery cycling 
accelerates electrolyte degradation, rare events associated with dendrite formation, if left 
unchecked, can lead to device shorting and in some cases thermal runaway.1–6 Both early- and 
late-stage instabilities associated with dendrite formation and propagation can be modeled using 
Butler–Volmer physics,8 
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where i is the current density at either a deformed or undeformed interface, αa is the anodic 
charge transfer coefficient, and Δµe– is the change in electrochemical potential of the electron at a 



deformed interface. Notably, Δµe– is governed by the Li–SIC interfacial tension (ϒ) as well as the 
deviatoric and hydrostatic stresses in the system, according to, 
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where κ is the mean curvature at the interface, τdLi and τds are the deviatoric stresses (i.e., the 
traceless part of the stress tensor) at the Li electrode and electrolyte sides of the interface, and 
ΔpLi and Δps are the associated gage pressures. This model assumes that the sole cause of the 
change in chemical potentials of the different species involved in Li electrodeposition are the 
mechanical stresses and interfacial surface tension. To ensure that ideformed is lower than iundeformed 
at the dendritic tips and higher in the valleys for stable electrodeposition, it has been shown that 
Δµe– should be negative.7–9 In that γ is negligible and the deviatoric stress is always destabilizing, 
the hydrostatic stress term in this expression dominates Δµe– and therefore dictates plating 
outcomes (Fig. 1a).  

The hydrostatic stress term is nominally a function of VLi+, VLi, Gs, and GLi; in addition, 
the volume ratio υ = VLi+/VLi governs its sign. For υ > 1, Δµe– becomes negative only when 
Gs/GLi > 2.2, which agrees well with the prediction of Monroe and Newman that SICs with 
Gs/GLi > 2 are needed to block dendrite propagation in lithium-ion and lithium metal batteries.6,7 
In such instances, high shear-modulus SICs for which υ > 1 are characteristically reconfigurable 
with respect to their ion-conducting domains, but require placement within a suitably rigid host 
matrix, as might be possible with block co-polymer and related electrolytes.12–14 However, it 
follows from our expanded chemomechanical model that high shear-modulus SICs with 
minimally reconfigurable ion-conducting domains, such as ceramics, are outside the predicted 
stable plating regime, due to density-driven rather than pressure-driven instabilities. Recent 
studies of both block copolymer and ceramic SICs in Li metal cells are consistent with our 
analysis.15–17  

Somewhat surprisingly, then, Δµe– becomes negative when Gs/GLi < 0.7 and when υ < 1, 
with slight variations linked to the SICs Poisson’s ratio (Fig. 1a).9 In other words, density-driven 
suppression of dendrites is achievable with “soft” SICs that feature low volume changes as Li+ 
deposits at the anode–electrolyte interface. This is an unusual test-case for dendrite-suppressing 
SICs, since known “soft” electrolytes, particularly polymer electrolytes, typically undergo large 
volume changes as Li+ exits transiently-formed solvation “cages”, resulting in υ > 1. Thus, to 
access dendrite-suppressing character, SICs should be re-designed with minimally reconfigurable, 
ceramic-like, ion-conducting domains embedded in a soft, polymer-like matrix with relatively 
low shear modulus. In that the ion current should be high to avoid excessive cell polarization 
during cycling, maximizing the interface area between constituents in such a hybrid is also 
desirable,18 but rarely encountered or studied systematically within such a chemomechanical 
paradigm. 

 Here, we capture both the low VLi+ of inorganic SICs and the low Gs of polymers in a 
hybrid class of nanostructured SICs that transport Li+ along their heteromaterial interfaces and 
confirm their predicted dendrite-suppressing character in high-voltage Li metal cells with an N/P 
ratio of ~4 (i.e., the ratio of anode to cathode capacity). As the ion-conducting inorganic phase, 
we turned to lithium halides (LiX, where X– = F–, Cl–, Br–, or I–) whose bulk and interfacial ionic 
conductivity spans 10–6–10–2 S cm–1 at ambient temperature.19–21 Whereas all are reductively 
stable on lithium metal, only LiF is oxidatively stable against high-voltage NMC-622 cathodes. 
LiF is also dimensionally stable in carbonate electrolytes commonly used in Li–NMC-622 cells, 



due to its high enthalpy of formation and hence low solubility therein. This allows us to make 
use of them in nanostructured hybrids without morphological evolution. Unfortunately, due to its 
high enthalpy of formation, LiF is notably difficult to nano-structure in a soft polymer matrix.22–

24  
 

Synthesis of Dendrite-Suppressing LiF@PIM SICs by In-Situ Cation Metathesis 
 
We were successful in generating hybrid nano-LiF@polymer hybrid SICs using an in-situ 

cation metathesis. Soluble tetraalkylammonium fluoride precursors (e.g., tetrabutylammonium 
fluoride, TBAF) to insoluble LiF were loaded (0–60% w/w) into a microporous polymer host 
(e.g., PIM-1)25,26 and applied as a coating (typically, 0.5–2 µm) from homogeneous inks on a 
polyolefin separator (e.g., Celgard 2325). The coated separator was then assembled in either Li–
Li or Li–NMC-62227 cells along with a carbonate electrolyte containing an ionizable lithium salt 
(e.g., LiPF6). The cell was then aged to interconvert the polymer-embedded TBAF to the 
thermodynamically more favorable LiF using the electrolyte’s reservoir of lithium ions (Fig. 1b). 
The distribution of LiF in the polymer after cation metathesis was homogeneous, as evidenced 
by energy dispersive spectroscopy (EDS) of the composites (Supplementary Fig. 1). Given the 
overall simplicity of this scheme, a lithium electrode laminated with our TBAF@PIM-1 coated 
polyolefin separator constitutes an attractive component for battery manufacturing: a lithium 
electrode sub-assembly (LESA). 
 
 
 



  

 
Fig. 1: Classifying solid-ion conductors within a universal chemomechanical model for 
dendrite formation during electrodeposition. 
a, Chemomechanical model underlying the successes and failures of solid-ion conductors (SICs) 
in stabilizing lithium metal anodes while batteries incorporating them are charging. SICs can 
access either dendrite-blocking character or dendrite-suppressing character, but not both. 
Prototypical SICs that serve as the battery’s electrolyte are labeled in each region. This work 
focuses on SICs that are dendrite-suppressing, on account of their comparably low shear 
modulus GS (relative to GLi) and low Li+ partial molar volume VLi+ (relative to VLi). Such SICs 
are comprised of “soft” polymers infiltrated with nanostructured “hard” ceramics and transport 
Li+ across their heteromaterial space-charge regions. b, Homogeneous inks containing 
tetrabutylammonium fluoride (TBAF) and microporous polymer PIM-1 are first coated onto a 
mesoporous polyolefin support prior to integration with the Li anode in Li metal cells. This 
construct is denoted as a lithium electrode sub-assembly (LESA). Once the cell is assembled, in-
situ cation metathesis interconverts TBAF in the polymer into nano-LiF using the electrolyte’s 
reservoir of lithium ions.  
 
 

Cation metathesis results in a volume change that is commensurate with the amount of 
TBAF initially loaded into the film. We characterized the influence of TBAF loading on the 
resulting morphologies of LiF@PIM composites using SEM, which showed few aberrations for 
loadings of 0–5% (w/w); here, PIM-1 accommodates the volume change effectively (Fig. 2a–d). 
At TBAF loadings exceeding ~5% (w/w), the composite morphology is increasingly porous (Fig. 



2e,f). We characterized the length-scale of LiF domains generated (11.8–13.2 nm) using Scherrer 
analysis of the X-ray diffraction data (Fig. 2g and Table 1), and the final LiF loading was 
evaluated ex-situ using TGA (Table 1 and Supplementary Fig. 2).  
 

 
Fig. 2: Formulation dependent architectures, morphologies, and mechanical properties 
evidenced for LiF@PIM composites generated in-situ by cation metathesis. 
a–f, Top-view scanning electron micrographs of LiF@PIM composites, denoted LESAs 1–6, 
which vary in LiF content, spanning 0.5–8.5% w/w (Table 1). g, Confirmation that cation 
metathesis yields nano-LiF@PIM composites was gleaned from XRD of LESAs 1–6; reference 
peaks for LiF are depicted as grey bars. h, Shear modulus, Gs, as determined by dynamic 
mechanical analysis (Supplementary Fig. 3) and upper-bound estimates of LiF domain sizes in 
LiF@PIM composites, LESAs 1–6, determined by Scherrer analysis of the XRD data shown in g. 
 
 



Table 1. Chemomechanical characteristics of LiF@PIM nanocomposites, LESAs 1–6. 
 

 PIM-1 LESA-1 LESA-2 LESA-3 LESA-4 LESA-5 LESA-6 
LiF grain size 

(nm) N/A N/A* 11.76 11.84 12.50 12.98 13.23 

LiF loading 
(% w/w) 0 0.51 1.53 2.53 4.28 6.27 8.42 

Gs (MPa) 165 175 181 314 376 117 98 
σ20C 

** 
(10–5 S cm–1) 0.23 0.29 0.57 1.33 1.52 1.65 3.30 

* LESA-1 was not amenable to Scherrer analysis, as LiF peak intensity in XRD was too weak. 
** Determined by EIS for cells assembled with PIM-1 or LESAs 1–6 (Supplementary Fig. 4). 

 
 

Chemomechanical Characterization of Hybrid LiF@PIM SICs 
 
Loading nano-sized inorganics in polymers typically increases their tensile strength and 

shear modulus, which can be evaluated by dynamic mechanical analysis (DMA). From stress–
strain curves acquired for macroscopic specimens of each composite (Supplementary Fig. 3), we 
noted deviations from the expected mechanical behavior as a function of LiF loading (Fig. 2h). 
In the absence of LiF, PIM-1 has a shear modulus, Gs = 165 MPa. Introducing nano-LiF in PIM-
1 monotonically increases Gs to a maximum of 376 MPa when the LiF loading is 4.3% (w/w). 
However, when the LiF content is increased further, Gs decreases significantly, which we 
attribute to the emergent porosity of those composites arising from volume changes during the 
in-situ cation metathesis (Fig. 2e,f). Commensurate with these observations, composites with 
higher LiF loading experience less deformation before breaking. Within this design space, then, 
we access Gs/GLi values of 0.023–0.09, indicating nanostructured LiF@PIM-1 SICs are “soft” as 
designed. 
 The molar volumes of Li and Li+ determine the change in chemical potential 𝜇 of these 
species due to pressure according to the relation: Δ𝜇 = (𝜕𝜇/𝜕𝑝) Δ𝑝 = 𝑉Δ𝑝. The molar volume 
of Li in Li metal can be easily obtained as the inverse of its molar density. In contrast, the partial 
molar volume of Li+ in the electrolyte, 𝑉!!!, is hard to determine by direct measurement. For 
binary electrolytes, the Newman–Chapman relation states that the partial molar volume of an ion 
is inversely proportional to its transference number.28 However, this relation is not applicable for 
hybrid SICs, including ours. Therefore, we determined 𝑉!!! computationally by investigating the 
atomistic environment around the Li+ species during ionic conduction at the surface of LiF.  

The volume of the ion was determined using Bader charge analysis.29 An LiF (100) slab 
with 8% Li vacancy concentration was used as the model structure. Decreasing the Li vacancy 
concentration resulted in a change of less than 10 meV in the activation energy (Supplementary 
Fig. 5). Li+ at the surface was simulated hopping between its original site to a vacant site in five 
stages. The charge density required in the Bader charge analysis was obtained for the different 
stages of hopping using density functional theory (DFT) calculations. Supplementary Fig. 6 
shows isosurfaces of charge density used to calculate 𝑉!!!. From the calculation of the Bader 
volume of Li+, we obtained a value of v equal to 0.21, indicating that we are accessing the 
density-driven stability regime through our hybrid SIC (Fig. 1a). Bader volume of atoms capture 
reliably trends in molar volume of atoms in molecules and solids.30 We note that for LiF@PIM, 



the presence of the polymer in the vicinity of the inorganic phase may lead to a small increase in 
the Bader volume, but we expect this effect to be small due to the absence of highly 
electronegative species that can bind to the LiF surface and that v will therefore remain less than 
1.  

It has been previously reported that LiF has a low surface diffusion barrier for Li+,31 
which has been explained to be the cause of uniform lithium electrodeposition and dendrite 
suppression in Li anodes protected by it.22,23 However, previous DFT calculations of surface 
diffusion barrier used the Perdew–Burke–Ernzerhof exchange correlation functional,45 which has 
been known to grossly underestimate barrier heights.32 Here, we used the Bayesian error 
estimation functional (BEEF-vdW),33 which includes non-local van der Waals correlation and 
has been shown to perform better in accuracy than other functionals for the calculation of barrier 
heights32. Using this functional, we carried out nudged elastic band34 calculations on the LiF 
(100) surface slab used for Bader charge analysis. The energies of the five stages during Li 
hopping were calculated using DFT and the activation energy was obtained as the difference 
between the highest and the lowest energies. The activation energy (Ea) obtained was 0.34±0.13 
eV. In contrast, the value for bulk LiF using the same method was found to be 0.62±0.17 eV. 
The uncertainty estimate for Ea was done utilizing the built-in error estimation capabilities within 
the BEEF-vdW exchange correlation functional, which bounds the barriers obtained using other 
generalized gradient approximation (GGA)-level exchange correlation functionals 
(Supplementary Fig. 7).33 This analysis indicates that the surface of LiF could be highly 
conductive if surface Li+ ions aren’t pinned to any position on the LiF lattice, e.g., by 
coordinating (i.e., Lewis basic) moieties on the polymer. Notably, unlike conventional polymer 
electrolytes, such as PEO, PIM-1 does not feature a high density of Li+-coordinating motifs and 
is characteristically rigid, given its ladder-like backbone features no rotating σ bonds. These 
unique physical properties serve to un-entangle Li+ transport from polymer segmental chain 
dynamics at polymer–LiF interfaces and thereby ensures low VLi+. Nevertheless, the low density 
of nitrile-based coordinating motifs on PIM-1 is likely to increase, to a degree, the stability of the 
lithium at the surface, thereby affecting the barrier for Li+ hopping, which can be quantified 
experimentally.  

We experimentally determined the influence of PIM-1 on the Li+ hopping barrier in 
LiF@PIM-1 composites by evaluating their temperature-dependent ionic conductivity in Li–Li 
symmetric cells over a temperature range of 25–85 ˚C (Fig. 3b,c). Our determination of Ea = 0.42 
eV is consistent with those for other solid-ion conductors, and are distinguished from solvent-
mediated ion transport, e.g., within the mesopores of polyolefin separators, where Ea = 0.11 eV. 
Thus, PIM-1 increases the energetic barrier for interfacial Li+ along LiF by only 80 meV, 
consistent with our hypothesis that the low density of benzonitriles on PIM-1 is beneficial in 
keeping interfacial Li+ transport pathways minimally obstructed. Further support for interfacial 
ion transport in LiF@PIM composites is evidenced by the loading-dependent ionic conductivity, 
which increases by over an order of magnitude (σ20C = 2.9–33 µS cm–1) for LiF loadings 
spanning 0.5–8.4% (w/w) (Table 1); interestingly, σ20C is only 2.2 µS cm–1 for PIM-1, indicating 
the presence of LiF significantly enhances the ionic conductivity of the polymer host, even 
though the activation barrier increases as PIM-1’s gel-polymer electrolyte characteristics fade 
and the composite’s solid-ion conducting characteristics emerge with increased LiF loading. 
Based on composite morphology, interfacial resistance (Supplementary Fig. 8), and ionic 
conductivity, we advanced LESA-3 as our optimized formulation for further studies. 



To understand the fraction of the ion current contributed by Li+, we determined the cation 
transference number (t+

ss) of LESA-3 during potentiostatic lithium metal plating in Li–Li 
symmetric cells. The cell was polarized at 10 mV and the current at steady state (iss) was 
assessed after 10 h (Fig. 3c). We also acquired EIS spectra for the cell before polarization, and at 
steady-state (Fig. 3d). To calculate t+

ss, we employed the Bruce–Vincent method35. Notably, 
LESA-3 exhibits t+

ss = 0.69 ± 0.03, which is higher than that of the carbonate electrolyte (t+
ss 

~0.4).36 This suggests that LESA-3 should limit the extent of space-charge accumulation in the 
SIC during Li metal plating at high rate. 
 

 
Fig. 3: Li ion migration in LESA. 
a, Energy landscape of Li+ hopping at the surface and within bulk LiF. The insets show the 
different stages encountered during hopping from a Li site (encircled in solid pink) to a nearby 
vacant site. The experimentally determined activation barrier for Li+ hopping further takes into 
account the influence of PIM-1, which results in an 80 meV increase above the calculated result 
for LiF. b, EIS spectra measured at different temperatures for Li–Li symmetric cells assembled 
with either LiF@PIM (LESA-3) on Celgard 2325 or unmodified Celgard 2325. c, Arrhenius plot 



used to extract activation barriers for ionic conduction within LiF@PIM SICs (LESA-3) and 
liquid electrolyte-infiltrated Celgard 2325. d, Steady-state current determination under 10 mV 
polarization for Li–Li cells with LiF@PIM SICs (LESA-3). e, EIS spectra before and after Li–Li 
cell polarization. 
 
 
Li Metal Dendrite Suppression by LiF@PIM SICs 
 

To demonstrate the efficacy of LiF@PIM-1 SICs in suppressing dendrite formation 
during high-rate cycling, we carried out plate–strip tests in symmetric Li–Li cells configured 
with thin Li electrodes (~30 µm). Cells were cycled at 2 mA cm–2 at 20 ˚C with 1 mAh cm–2 of 
the lithium reversibly cycled (~33% of the Li inventory). Those configured with LiF@PIM-1 
formulation LESA-3 exhibited superior performance: the initial area-specific resistance (ASR) 
was ~18 Ω•cm2 and cycle-life was ~270 h, where ~540 mAh cm–2 cumulative capacity was 
cycled (Fig. 4a). In contrast, cells configured with Celgard (negative control) had an initial ASR 
of 29 Ω•cm2 and only lasted 10 cycles at 2 mA cm–2, before manifesting large, irreversible 
voltage increases; cells configured with PIM-1 on Celgard (positive control) performed in a 
similar manner, consistent with the predictions of our chemomechanical model (Fig. 4a). EIS 
spectra (Fig. 4b) were also acquired for cells configured LESA-3 taken before cycling, at steady 
state, and after cell failure. The initial interfacial resistance (RI = 135 Ω) and charge-transfer 
resistance (RCT = 80 Ω) were lower than those for the Celgard-only cell (RI = 260 Ω; RCT = 150 
Ω, see Supplementary Fig. 9). These data corroborate the low ASR observed for LESA-3 cells in 
Fig. 3a. At steady state, RI increased slightly, which may be due to the formation of a surface 
film on Li during cycling, arises from incomplete solvent blocking by the composite. Cell failure 
was attributed to a soft short, based on the shape of the EIS curve. 

These aggressive cycling conditions for cells configured with thin Li electrodes begin to 
establish the prospects for LiF@PIM-1 composite SICs to advance Li metal battery technology 
development, but are not direct evidence of dendrite suppression and dense Li plating mediated 
by the LiF–PIM-1 SICs. To bridge this gap, we carried out synchrotron hard X-ray 
microtomography15 to understand the evolution of the advancing and receding Li–SIC interfaces 
in Li–Li symmetric cells during plating/stripping at 1 mA cm–2 for those configured with either 
LESA-3 or Celgard. Cross-sectional analysis of the X-ray tomographs taken at 0, 1, 4, and 16 h 
revealed starkly contrasting behavior (Fig. 4c,d). For cells with LESA-3, there was no observable 
change in Li density throughout the plating experiment, even after 16 h of the polarization. The 
interface between Li and LESA-3 maintained excellent coherence for >80 µm of Li metal plated. 
On the other hand, for cells configured with Celgard, pits on the receding lithium electrode were 
evidenced within 1 h of stripping, and were increasingly prevalent and deep thereafter. 
Furthermore, after 4 h, the advancing Li electrode showed the onset of low-density lithium 
deposits, which were apparent across the entire electrode surface; the cell never recovered from 
this instability. Taken together, these data suggest that LESA-3 should slow the onset of low-
density (ramified) Li deposits, and thereby prolong the cycle life of Li metal batteries by slowing 
electrolyte degradation and mitigating density-driven instabilities that would otherwise lead to 
dendrite formation and cell shorting. 
 



 
Fig. 4: Uniform lithium metal electrodeposition enabled by dendrite-suppressing 
LiF@PIM-1 solid-ion conductors.  
a, Galvanostatic cycling of Li–Li cells configured with either LiF@PIM SICs (LESA-3), PIM-1, 
or Celgard 2325 at 2 mA cm–2, where 2 mAh cm–2 of Li was (de)plated in each cycle at 20 ˚C; 
30-µm thick Li electrodes were used throughout. b, EIS spectra measured for Li–Li cells 
configured with LiF@PIM SICs (LESA-3) before cycling, during steady-state, and after cycling. 
c, d, Cross-sectional analysis of synchrotron hard x-ray tomograms, visualizing both the 
advancing and receding electrode–electrolyte interfaces in Li–Li cells configured with either c 
LiF@PIM SICs (LESA-3) or d liquid electrolyte-infiltrated Celgard 2325, after the cells had 
been polarized for different durations at 1 mA cm–2. 
 
 
Influence of Dendrite-Suppressing LiF@PIM Hybrid SICs on Lithium-Metal Battery 
Performance 
 

LESAs comprised of thin lithium anodes laminated with a flexible, adherent, coated 
separator that interconverts to a thin LiF–PIM-1 dendrite-suppressing solid-ion conductor with 
low ASR are attractive, drop-in components for lithium metal battery manufacturing. To 
understand their prospects in that regard, we assembled high-voltage Li–NMC-622 cells with the 
optimized LESA-3 formulation in place, alongside 30-µm thick Li anodes and 1.44 mAh cm–2 
NMC-622 cathodes (Fig. 5a). Owing to the low N/P ratio, ~20% of the Li inventory was 
reversibly cycled. During galvanostatic cycling at 1 mA cm–2 at 20 ˚C, the capacity faded at a 
rate of ~0.07% per cycle while the Coulombic efficiency was >99%. After having reached an 
initial capacity of ~135 mAh g–1, 70% was retained after ~330 cycles. From cycle 1 to cycle 300, 
a gradual increase in overpotential was observed in both the charge and discharge curves (Fig. 
5b), which suggests capacity fade is tied to the increase in cell ASR. Nevertheless, these data 
compare quite favorably against those for Celgard-only (negative control) and PIM-1-coated 
Celgard (positive control) (Fig. 5a), where cells reached 70% of their initial capacity after 130 



and 100 cycles, respectively. This results in rates of capacity fade of ~0.23% per cycle for 
Celgard-based cells and ~0.3% per cycle for PIM-1-on-Celgard-based cells.  

Despite being a SIC, LiF@PIM-1 composites were unexpectedly more rate-tolerant from 
0.1–5 mA cm–2 than either Celgard- or PIM-1-on-Celgard-configured Li–NMC-622 cells (Fig. 
5c), whose Li-metal plating is liquid-coupled. The divergence was most obvious at 2.0 and 5.0 
mA cm–2. Furthermore, despite making excursions into high-rate discharge and charge regimes, 
once the cells returned to cycling at current densities of 1.0 mA cm–2, that discharge capacity 
remained stable at ~130 mAh g–1. After 30 cycles, we extracted the lithium anodes from full cells 
configured with either LESA-3 or Celgard. The anode the LESA-3 cell demonstrated dense Li 
deposits (Fig. 5d), whereas that for the Celgard cell showed low-density growth of anisotropic Li 
wires. These data, along with the synchrotron hard X-ray microtomography, continue to 
highlight how LiF@PIM-1 composites access advantageous dendrite-suppressing character 
within our chemomechanical paradigm via density-driven architectural design.  
 

 
Fig. 5: Divergent electrochemical performance of Li–NMC-622 cells assembled with thin Li 
anodes, highlighting the benefits of dendrite-suppressing LiF@PIM solid-ion conductors. 
a, Galvanostatic cycling at 20 ˚C of Li–NMC-622 cells (30-µm thick Li anode; cathode areal 
capacity = 1.44 mAh cm–2) configured with either LiF@PIM SICs (LESA-3), Celgard (negative 
control), or PIM-1-coated Celgard (positive control). C-rate was chosen to deliver a current 
density of 1 mA cm–2. b, Galvanostatic charge–discharge curves at various stages in the LESA-3 
cell’s cycling history. c, Rate tolerance of Li–NMC-622 cells (30-µm thick Li anode; cathode 
areal capacity = 1.44 mAh cm–2) cycled at 20 ˚C, configured with either LiF@PIM SICs (LESA-
3), Celgard (negative control), or PIM-1-coated Celgard (positive control). d,e, Top-down SEM 
images of lithium anodes from the Li–NMC-622 full cells with either d, LiF@PIM SICs (LESA-
3) or e, Celgard after 30 cycles. 
 
 



Discussion 
 
The arc developed here for LiF@PIM composites as dendrite-suppressing SICs in lithium 

metal batteries, within the larger narrative of a universal chemomechanical model for 
electrodeposition of metals, indicates that a sensible discourse is now possible when rationalizing 
both the successes and failures of SICs in preventing dendrite formation, whether the outcome is 
fundamentally pressure- or density-driven. Furthermore, confining nano-LiF domains to the 
open-pore network of structurally rigid polymer hosts is an exciting strategy by which to 
elaborate hybrid SICs that embody the unique transport physics of nanoionics. Macromolecular 
hosts with tailored interfaces in such hybrids are key to revealing properties and behaviors not 
typically available to all-inorganic platforms. Here, macromolecular nanoionics directed us to 
LiF@PIMs as “soft ceramic” SICs due to their unusual chemomechanical characteristics, which 
are put to work in dendrite-suppression in Li metal batteries. It is likely that similar 
nanostructured composites will become available using leading-edge sol-gel chemistry,37 atomic 
layer deposition,38 chemical condensation,39 ball-milling, and other techniques, allowing their 
use broadly in batteries known to suffer from dendrite-related failure. From such an expanded 
exploration, it will be further evident that SICs are incapable of accessing both dendrite-
suppression and dendrite-blocking character in the same material, as is delineated in our model. 
That said, we anticipate that there is an end-game, where both can be realized in the cell, as may 
be necessary for battery safety long term. Specifically, we see soft ceramic ion conductors such 
as LiF@PIM composites as useful for dendrite suppression, directly at Li metal, where only a 
thin layer is ultimately needed to take advantage of those characteristics; a second layer, on top 
of the soft ceramic, can stand-in as the fail-safe dendrite-blocking layer. Layered hybrids of this 
nature and complexity can be manufactured and integrated into the battery manufacturing 
infrastructure, suggesting a path forward for commercialization efforts where those batteries are 
key to widespread electrification of the transportation sector. 
 
 
Methods 
 
Computational methods. Self-consistent DFT calculations were carried out using the real-space 
projector-augmented wave (PAW) method40,41 as implemented in GPAW42,43. To model the LiF 
surface, slabs were created by repeating a Li4F4 cell in space to form four layers, two of which 
(bottom) were fixed. Li atoms were removed from the surface to achieve the desired vacancy 
concentration. Periodic boundary conditions were used for x and y directions and a vacuum of 15 
Å was used in the z direction perpendicular to the surface on both sides of the slab. A real-space 
grid spacing of 0.18 Å was used and the Brillouin zone was sampled using the Monkhorst Pack 
scheme44. All calculations were converged to energy <0.5 meV and force <0.01 eV Å–1. To 
determine the size of the system that would give the best computational cost-effective accuracy, 
a study of the effect of periodic images was conducted by investigating the Ea for hopping on 
surfaces of sizes yielding vacancy concentrations of 4, 5, and 8%. The Perdew–Burke–Ernzerhof 
(PBE) generalized gradient approximation functional45 was used for these calculations, and the 
k-point grid chosen was, respectively, (2×3×1), (3×3×1), and (5×3×1). The nudged elastic band 
method as implemented in atomic simulation environment46 was employed to create five stages 
for Li hopping on each of these different surfaces. Ea converged within 0.01 eV at a vacancy 
concentration of 8%, and was used for all subsequent simulations. The Bader charge method29 



was applied at each of the five stages on the 8% vacancy concentration surface to compute the 
volume of the mobile Li+, which was then used to determine the volume ratio of 0.21 reported in 
the main body of the paper. To quantify uncertainty in Ea, the energies of these five stages 
obtained earlier were calculated using the BEEF-vdW functional33, which gives an ensemble of 
2000 different energy values for each stage. Of these values, only those that yield a physically 
meaningful description of the energy landscape were used for the calculation of the average and 
uncertainty estimation. A similar process was used to determine the bulk LiF hopping barrier: an 
LiF structure periodic in all directions was created and a Li atom was removed, creating a 
vacancy concentration of 1.4%. The values for energy barrier for bulk and surface were then 
compared for each functional. The ratio between conductivity for each system is proportional to 
the exponential of the difference in hopping barrier divided by kBT (Supplementary Fig. 7).  
 
Preparation of coated separators. Inks of PIM-125,47 (100 mg mL–1) and TBAF (0–60% w/w) 
in chloroform were blade-coated onto Celgard 2535 to form luminous yellow coatings. Coated 
separators were dried overnight at 50 ˚C in vacuo before coin cell assembly.48  
 
Materials characterization. SEM images were acquired using a Zeiss Gemini Ultra-55 
analytical SEM at beam energy of 3 keV. For XRD and TGA, inks comprised of PIM-1 and 
TBAF were drop-cast on glass slides and dried overnight at 50 ˚C in vacuo. Cation metathesis 
was carried out using 1.0 M LiPF6 in EC:DMC (1:1) in Ar-glovebox for 48 h, after which the 
samples were washed with DMC and dried overnight at 50 ˚C in vacuo. XRD was conducted 
using a Bruker AXS D8 Discover GADDS X-Ray diffractometer (XRD), which is operated at 35 
kV and 40 mA with a Co Kα wavelength of 1.79Å. TGA was conducted using a TA Instruments 
Q5500 and performed in Ar from room temperature to 600 ˚C with a heating ramp of 10 ˚C min–

1, and a 2-h isothermal step at 600 ˚C. For DMA, freestanding films were cast in 3-cm diameter 
glass wells, and the solvent allowed to evaporate over 24 h. The films were then incubated in 1.0 
M LiPF6 in EC:DMC (1:1) in an Ar-glovebox for 72 h to generate the composites, which were 
then incubated in DMC overnight (4 times) and dried overnight at 50 ˚C in vacuo. Dynamic 
mechanical analysis (DMA) was conducted using a TA Instruments Q800, where stress–strain 
measurements were performed at room temperature up to 15 N with a stress ramp of 0.5 N min–1. 
 
Electrochemical characterization. Electrochemical studies were performed using CR2032 coin 
cells. A given LiF@PIM formulation, LESAs 1–6, or PIM-1 was coated on Celgard 2325 and 
assembled such that the coating was in direct contact with the lithium-metal electrode surface. 
Li–Li cells were assembled with thin lithium (30 µm) on copper foil (10 µm); the liquid 
electrolyte was 1.0 M LiPF6 in EC:DMC (1:1). Li–NMC-622 cells were assembled with 30-µm 
thick Li anodes and NMC-622 (LiNi0.6Mn0.2Co0.2O2) cathodes with areal capacity of 1.44 mAh 
cm–2, which were provided by the CAMP facility at Argonne National Lab; the liquid electrolyte 
was 1.0 M LiPF6 in EC:DMC (1:1) with 10% w/w fluoroethylene carbonate (FEC)49 and 1% w/w 
vinylene carbonate (VC)50.  
 
Synchrotron hard X-ray microtomography. Polarized Li–Li cells were dissembled, the 
Li/electrolyte/Li sandwiches were punched to quarter inch disks, and the disks were sealed in Al-
laminated pouches in an Ar-glovebox. Monochromatric hard X-ray (23 keV) microtomography 
was then carried out on beamline 8.3.2 at the Advanced Light Source at Lawrence Berkeley 
National Laboratory.15 The samples were rotated 180º under the X-ray, and the shadows cast by 



the samples were converted to image stacks with ~1,500 images in each stack. The stacks were 
re-sliced with Tomviz software to obtain the cross-sectional tomography slices. 
 
Data availability 
 
The data that support the findings of this study are available from the corresponding authors 
upon reasonable request. 
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Supplementary Fig. 1 | Top-Down scanning electron micrograph (SEM) of LESA-3 and 
EDS mapping of elemental fluorine distribution. a, Lateral smoothness of LiF@PIM 
composite formulation LESA-3 was evident in the SEM. b, EDS map in the imaged area showed 
uniform distribution of F, indicating homogeneous distribution of LiF nanostructured domains 
within the composite SIC. 
 

 
Supplementary Fig. 2 | Thermogravimetric determination of LiF loading in LiF@PIM 
composite SICs generated by cation metathesis. TGA was performed in Ar from room 
temperature to 600 ˚C with a heating ramp of 10 ˚C min–1, and a 1-h isothermal step at 600 ˚C. 
PIM-1 decomposes with no char residue, therefore the residual mass for LESAs 1–6 can be 
attributed to LiF. By varying the TBAF loading in PIM-1, the resulting LiF loading after cation 
exchange can be tuned, which was demonstrated here over the range of 0.5–8.4% w/w. 
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Supplementary Fig. 3 | Stress–Strain curves for PIM-1 and LESAs 1–6. Dynamic 
mechanical analysis (DMA) was conducted using a TA Instruments Q800, where stress–strain 
measurements were performed at room temperature up to 15 N with a stress ramp of 0.5 N min–1. 
Assuming a Poisson’s ratio of 0.33, PIM-1 has a shear modulus, GS , of 165 MPa. At relatively 
low LiF content, GS of LiF@PIM composites increase with LiF loading. GS reaches a maximum 
value of 376 MPa when the LiF loading is 4.3% w/w. When LiF content is increased further, GS 
decreases significantly, which is linked to the emergence of porosity due to the associated 
volume changes inherent to the cation metathesis. Composites with higher LiF loading 
experience less deformation before breaking, indicating their brittleness. 
 

  
Supplementary Fig. 4 | EIS spectra of symmetric stainless steel cells incorporating 
LiF@PIM SICs with variable LiF loading. Stainless steel spacers were used as the electrodes, 
between which was sandwiched a single layer of LiF@PIM composite, LESAs 1–6. The high-
frequency intercept of each cell’s EIS spectrum at 20 ˚C was used to calculate the SIC’s ionic 
conductivity, σ20C (Table 1). 
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Supplementary Fig. 5 | Periodic image effects on activation energy of hopping on LiF 
surface. The NEB method is used to calculate the activation barrier along with the required 
number of supercells to achieve the desired Li vacancy concentrations of 4, 5, and 8%. The 
analysis shows that the activation energy is converged to within 10 meV at a Li vacancy 
concentration of 8%. 
 
 

 
 

Supplementary Fig. 6 | Isosurfaces of charge density on LiF surface during Li hopping. The 
charge density is obtained using self-consistent DFT. The Bader volume for each atom is 
calculated by partitioning the density into zero-flux surfaces. 
 



 
Supplementary Fig. 7 | Probability distribution of the difference in activation energy of Li 
hopping between bulk and surface of LiF. The difference Δ𝐸! = 𝐸!!"#$ − 𝐸!

!"#$ is shown in a 
histogram corresponding to the calculation performed using an ensemble of exchange-correlation 
functionals. The ratio of ionic conductivity 𝑅 ≈ exp (Δ𝐸!/𝑘!𝑇) in each system at 300 K is also 
shown as a histogram. The values for specific exchange correlation functionals (PBE45, revised 
PBE, and PBEsol) are marked with dashed lines. The figure shows bulk ionic conduction in LiF 
is insignificant compared to surface. 
 

 

 
Supplementary Fig. 8 | EIS spectra and interfacial resistance of Li–Li cells incorporating 
PIM-1 and LESAs 1–6, which vary in LiF loading. a, EIS spectra measured at 20 ˚C for Li–Li 
cells incorporating LESAs 1–6 and PIM-1. b, Interfacial resistance of the cells extracted from the 
EIS spectra. All EIS curves show two semicircles: the first real-axis intercept of the curves 
represents the electrolyte resistance, Re, the first semicircle is related to the electrode–electrolyte 
interfacial resistance, RI, and the second semicircle is related to the charge–transfer resistance, 
RCT. The interfacial resistance, RI, was plotted as a function of the composite’s LiF content. 
 



   
Supplementary Fig. 9 | EIS spectra of Li–Li cells. a, EIS for Li–Li cells assembled with 
unmodified Celgard 2325 separators (negative control). b, EIS for Li–Li cells assembled with 
PIM-1 coated Celgard 2325 separators (positive control). The EIS curves show two semicircles: 
the first real-axis intercept of the curves represents the electrolyte resistance, Re, the first 
semicircle is related to the electrode–electrolyte interfacial resistance, RI, and the second 
semicircle is related to the charge–transfer resistance, RCT. Both controls show significantly 
higher RI than those configured with LESAs 1–6 (Supplementary Fig. 8a). 
  
 
 
 

	




