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ABSTRACT OF THE DISSERTATION

Neural dynamics of probabilistic perceptual decision making in the human brain

by

Nuttida Rungratsameetaweemana

Doctor of Philosophy in Neurosciences with a specialization in Computational Neurosciences

University of California San Diego, 2020

Professor John T. Serences, Chair

Our visual world is full of ambiguous sensory signals, from which we have to extract
relevant and meaningful information in order to guide optimal actions. To maximize the
efficiency of this process, our visual system relies on foreknowledge to prioritize the processing
of relevant or expected features. Knowledge of statistical regularities in the environment can
lead to faster detection and recognition of objects when they are encountered in an expected
context (e.g., a bird in a backyard) than when they are encountered in unlikely context (e.g., a
bird in a washing machine). In addition, knowledge about the current task goals can also
support faster and more accurate processing of relevant over irrelevant items--a mechanism
referred to as selective attention. In what manner do these “top down” modulatory factors
individually and jointly affect visual sensory processing, decision making, and behavior? In three
studies, we examined how perceptual decision making is modulated by prior expectation about
stimulus probabilities alone and in the context where knowledge about the current behavioral

goals were available. We examined these effects both neurally via electroencephalography

Xi



(EEG) and behaviorally through psychophysics and also in amnesic patients in relation to age-
matched controls. To this end, we first devised an experimental paradigm where prior
expectation and selective attention could be individually manipulated. The behavioral readouts
from this paradigm were continuous which made it possible for the temporal evolution of the
effects of expectation and attention on decision process to be probed both behaviorally and in
relation to the continuous neural (EEG) measures. We first demonstrated that prior expectation
improves decision processes by primarily affecting post-perceptual operations such as initiation
and execution of motor responses, instead of directly improving the efficiency of early sensory
processing. This finding confirms an idea that has been put forth by traditional theoretical
framework that prior expectation affects decision making by preferentially modulating motor
responses that correspond to sensory inputs with high probability of occurring. Further, we
showed that while both expectation and attention improved behavior, the underlying neural
mechanisms that give rise to these effects differed: while attention operates on the early
processing of sensory inputs, expectation affects the late stage of decision making by biasing
motor responses towards the most likely decision choice. These differential temporal dynamics
of expectation and attention were observed bot h behaviorally and neurally. Finally, we
demonstrated that an ability to utilize knowledge about current task goals and to form
expectation based on statistical regularities of the sensory environment can be independent of a

declarative memory system.
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Introduction:

Dissociating the impact of attention and expectation

on early sensory processing
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Dissociating the impact of attention and expectation on early

sensory processing

Nuttida Rungratsameetaweemana' and John T Serences’**

Muost studies that focus on understanding how top-down knowledge
influences behavior attempt to manipulate either ‘attention’ or
‘expectation’ and often use the terms interchangeably. However,
having expectations about statistical regularities in the environment
and the act of willfully allocating attention to a subset of relevant
sensory inputs are logically distinct processes that could, in
principle, rely on similar neural mechanisms and influence
information processing at the same stages. In support of this
framework, several recent studies attempted to isolate expectation
from attention, and advanced the idea that expectation and attention
both modulate early sensory processing. Here, we argue that there is
currently insufficient empirical evidence to support this conclusion,
because previous studies have not fully isolated the effects of
expectation and attention. Instead, most prior studies manipulated
the relevance of different sensory features, and as a result, few
existing findings speak directly to the potentially separable
influences of expectation and attention on early sensory processing.
Indeed, recent studies that attempt to more strictly isolate
expectation and attention suggest that expectation has little
influence on early sensory responses and primarily influences later
‘decisional’ stages of information processing.
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Attention, expectation, and perceptual inference
Over the past 40-50 years, a tremendous amount of effort has been spent
trying to understand how prior knowledge shapes human information
processing from the earliest stages of sensory analysis w decision-making to
the execution of motor responses. Prior knowledge is a ‘top-down” modu-
latory factor to the extent that priors reflect internal stares and neural
representatons that could influence percepton and behavior [1]. One

impormant “top-down’ factor relates toknowledge about the probability that
certain simuli will occur ina specific context: a traffic lightis likely totum
red after it turns yellow, atoaster is likely to be on top of acounterinstead of
under the kitchen sink, and so forth [2,3]. These top-down priors also code
for more complex swmdstical regularties about stimulus identdty and
component features: a building is likely to have swructures that are
composed of straight lines mather than curvatures. Thus, expectations
based on fore-knowledge can exert a powerful influence on object identi-
fication and scene understanding [2,3], and a growing body of research
focuses specifically on the impact of expectations on early sensory proces-
sing [4.5%%,6].

Another type of top-down knowledge pertains to the relevance of
specific saimuli in the context of current behavional goals: when looking
for your car inthe parking lot, knowle dge of its color, shape, and size can
be exploited to improve search efficiency by reducing the set of stimuli
stical

that must be interrogated. Crtically, expectations about s
regularities and knowledge about relevant features could have dissocia-
ble influences on information processing, as the probability that a
stimulus will be encountered in a given context is not necessarily linked
to its behavioral relevance [4,5]. Thus, following Summerfield and de
Lange, we define expectation as the mechanism that operates based on
the probability of stimulus occumrence, and we define attention
mechanism  that based on the behavioral

as the operates

relevance of different stimuli [4,5%°].

The classic Posner cueing paradigm highlights the difficulties associated
with dissociating the effects of expectation from the effects of arrention. The
task manipulates the probability that a target stimulus will appear on the left
or the right of fixadon, and participants have to press a button when they
detect the onset of the perdpheral light [7]. This manipulation alters the
probability that the target stimulus will appear in one spatial locanon, which
in turn leads to faster response tdmes and more accurate responses. This
seminal result, which has given rise to thousands of subsequent studies using
varnants of this basic paradigm, was orginally interpreted as evidence for
more efficienteary sensory processing related to the selective deploymentof
spatal artention. However, later work demonstrated that these resules, as
well as results from more complex visual search tasks, can often be explained
vigan increase in the willingness of participants to indicate that they saw a
target at the cued location, irrespective of how much sensory evidence was
present to supporta ‘yes' response (Le. the cue led to a change in decisional
factors) [B-11].

This debate about how to interpret what is perhaps the most widely used
paradigm in the field of ‘selective attention’ illustrates two im portant points.
Fi

distinct notions of expectation (where a stmulus is likely to appear) and

t, this simple variant of a cueing paradigm conflates the theoretically

attention to relevant features in the environment (which spadal position is
likely o contain the msk-relevant information). As a result, any influence of
the cue on information processing is difficult to atribute to either factor or to
somecombinatonof the two. Second, the behavioral results can be explained
either by achange in the sensitivity of eardy sensory processing or by a change
in decisional factors. Importandy, similar issues arise in many other studies
within the literature, as expedmenters typically manipulate either the
probability that a known wrget sumulus will appear or they manipulate
informaton about which sumulus s most task-relevant. As a result, the field
lacks a coherent fraimework that respects the potendally distinet influence of
different tyvpes of wp-down knowledge on sensory processing, In tum, the
lack of a clear famework has important implications for canonical models of

2



Box 1 Perception as Bayesian inference

In the domain of visual perception, Bayesian models frame inference as the
product of the prior probability of a stimulus [denoted p(stimulus), or pis)] and
the probability of a pattern of neural responses (r) given that stimulus [referred to
as a likelihood function, denoted pirjs)]. The prior is a probability distribution
over a stimulus space such as orientation or motion direction, and reflects the
initial degree of belief in the current state of the world. In contrast, the likelihood
function reflects the probability that a given outcome — for example a pattern of
responses over a population of feature-selective sensory neurons — will be
observed for each possible stimulus value. The prior and the likelihood function
are then combined to form a posterior distribution [denoted plslr)]. The peak of
the posterior provides an estimate of the most likely stimulus, and the uncer-
tainty associated with the posterior is determined by the precision of the prior
and the likelihood functions.

Typically, the prior is thought to encode current expectations held by an
observer, and these expectations can be based on a variety of factors such as
previous experience in a given context or statistical regularities that are
observed in natural scenes [70]. In contrast, other factors — such as attention
induced neural gain [27] — can increase the fidelity of a pattern of neural
responses and bias the shape of the likelihood function. In this context, better
understanding how expectation and attention operate on both early sensory
and later decision-related processing will inform guestions about how priors
and likelihoods are implemented during perception.

informaton processing such as the notion of perceptdon as inference [12,13]
[see Box 1], as well as for long-standing debates about the cognitive
penetrability of perceptdon [14-16].

The effects of attention and expectation on
cortical information processing

Very few smdies have independendy manipulated expectation and
attention to assess the impact of each factor on sensory processing,
However, studies that attempt to focus on either expectation or attention
have claimed that both factors modulate pre-stimulus neural responses
[17,18], stimulus-evoked responses [19%,20-22,23%24-27], and the effi-
ciency of sensory read-out by putative decision mechanisms in parietal
and frontal cortex [28-31]. For the sake of brevity, we focus here on
response modulations in eary sensory cortices, both before and after a
stimulus has been presented. We first briefly review studies about the
effects of selective attention on these responses, and then review recent
studies that attempt to experimentally dissociate attention and expec-
tation to assess the separability of their effects on early sensory
processing.

The impact of attention to relevant features on early sensory processing

Many single-unit phvsiology [32] and fMRI [17] studies demonstrate
that attending to relevant locations modulates neural responses in early
visual cortex, even before a sumulus is presented [33-35]. Manipulating
the relevance of spatal positions or low-level visual features also
modulates the SNR and feature-selectivity of sensory-evoked responses
that are associated with attended stimuli [24.27.33,36-41]. For example,
work by Treue ¢ af. demonstrated that attention increases the precision
of modon-selective population response profiles in M'T", and more recent
fMRI work shows that these increases in feature-selectivity can occur
even in theabsence of an overall increase inthe BOLD response [19%,20]
(Figure 1a,b). Cndcally, at least some of these studies cued a behavior-
ally relevant feature, such as a location or a direction of motion, without
inducing any expectation about the proba v of the likely target
feature [19%,36,39]. Thus, according to the operational definitions of
attention and expectation outlined above, both pre-stimulus and post-
stimulus modulatons appear to occur due to manipulations of behavioral
relevance, independent of changes in event probabilities.

The impact of expectation on early sensory processing

Ininal reports regarding the impact of expectation on sensory-evoked
responses demonstrated that large-scale cortical responses measured
with fMRI were smaller than responses associated with unexpected
stimuli [21,22,25]. This finding is consistent with generative models that
frame perceprual inference as the iterative combinadon of priors with
sensory evidence, because sensory evidence that is consistent with priors
can support a rapid perceptual inference without the need for extensive
processing. In turn, total cortical activity, as measured using methods
such as fMRI, should be lower compared rto situations where disparate
priors and sensory evidence must be reconciled. In addition to attenu-
ated BOL D responses, studies also suggest that expected stimuli evoke
a more precise feamre-selective pattern of responses in eady visual
comex compared to response pattems associated with unexpected sti-
muli, similar to the modulations observed with feature-based attention
[19%,36,42). Again, this observation is in line with the idea that consistent
priors and sensory evidence should lead to a precise inference, even
though overall cortical activity is reduced.

In one study, Kok er &/, [23°] used fMRI and a task that cued participants
on a trial-by-trial basis thatan impending target was either going to be a
45" or a 135° oriented grating. The authors analyzed the pattern of
responses  across voxels in  primary  wvisual cortex (V1) using
multivariate pattern classification anal (MVPA) and demonstrated
that expectation increased the separability between response patterns
associated with each grating, even before stimulus onset (Figure 1c,d).
MRI studies have also shown that expectation for a pamicular object
category can bias pre-stimulus activation in face-selecdve regions of I'T
cortex [43,44]. Finally, spontaneous flucmations in pre-stimulus IMRI
signals in sub-regions of visual cortex predict the probability that a
particular feature or object will be reported when viewing an ambiguous
or weak sensory sumulus [42,45] These spontaneous fluctuations may
reflect endogenously mediated shifts in expectation, and they highlight
the Bayesian notion that small shifts in expectation can have a large
impact on perceptual inference when sensory evidence is weak or
ambiguous [5%%].

Reconciling the effects of attention and
expectation on early neural modulations in
sensory cortices

Despite the apparent similarity of the early neural moduladons atwib-
uted to selective attention and to changing expectations, studies that
manipulate expectation typically have done so by explicitly providing
prior information about the identity of an upcoming samulus (e.g. a 457
or 135° grating, as in Refs. [18,23%]). As a result, participants not only
knew what target feature to expect, but they also knew what target
feature was relevant to performing the behavioral task on each trial. A
similar argument can be made about several other studies [18,
46-50,51%,52% 53] and based on the operational definitions of attention
and expectation articulated in Summerfield and de Lange, the expecta-
tion cue can be expected to induce a shift of attention to the cued
(expected) stimulus feature [5%°]. Given this consideration, anv changes
in behavior or associated modulations in early visual cortex were likely
influenced to an unknown degree by both expecration and selective
attention as opposed to expectation alone.

Recently, several studies have tried to more directly compare the effects
of expectation and attention on behavior and on neural responses in
visual cortex. One behavioral study used cues to manipulate the proba-
biliry that a faint stimulus would be presented. These expectation cues
increased both hits and false-alarm rates, whereas manipulatng stimulus
relevance (attention) improved the precision of sensory processing by
selectvely lowering false-alarm rates [53]. Using the reverse-comrelation
method and modelling, this study further suggested that the differential
effects of actention and expectation could be accounted for by the fact
that attendon suppressed internal noise and thus increased precision
while expectation biased the baseline activity of sensory processing in
favor of the cued stmulus. In addition, a fMRI study found that

attention increased the separability of response patterns associated with
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Increased gain medulation of visual respenses by attention and expectation. (a) Schematic of the experiment design used in Ref. [197). Participants fixated
on the central cue, while attending to either the orientation or contrast of the gratings in alternating blocks of trials. The orientation of one grating always
closely matched the oriented cue line presented at fixation, while the orientation of the remaining grating either matched or mismatched the orientation of
the first grating by a small CW or CCW offset. Similarly, the contrast of the second grating either matched or mismatched the contrast of the first grating by
a small contrast change. On attend-orientation blocks, the participants had to indicate whether the two gratings were rendered at the same orientation
(match trials) or at different orientations (mismatch trials). On attend-contrast blocks, the participants had to ignore differences in orientation and to report
whether the contrasts of the two gratings matched or did not match. Additionally, on orientation-mismatch trials, the central cue was presented in green or
red to indicate either a CW or CCW rotational offset between the two gratings. (b) The orientation selectivity of population responses in V1 [68,69], as
measured with fMRI, as participants were performing the orientation discrimination task (i.e. attend-orientation) or the contrast discrimination task (i.e.
attend-contrast). Data shown here were shifted such that the 0° channel indicates the cued orientation and positive values on the x-axis indicate responses
in orientation channels that were offset in the cued direction, whereas negative values indicate responses in orientation channels offset in the uncued
direction. Despite similar overall amplitude of responses in attend-orientation and attend-contrast condition, attention shifts the orientation tuning toward the
cued offset when participants attend to the orientation of a grating instead of to the contrast of the grating [197. In contrast, responses in neural populations
away from the attended feature are relatively muted. (c) Schematic of the experiment design used in Ref. [19°]. Each trial began with an auditory cue, which
indicated (with 75% validity) the overall orientation of the subsequent gratings (~45° or ~135°). Following the cue, participants saw two consecutive gratings
which differed slightly in terms of orientation, contrast, and spatial frequency. In separate blocks, participants judged whether the second grating rotated CW

or CCW with respect to the first (i.e. orientation task); or whether the second grating had higher or lower contrast than the first (i.e. contrast task). D.
Expected orientations evoke less overall activity in V1 relative to unexpected orientations as measured with the BOLD response (bars). However, MVPA
orientation classification accuracy of the grating orientation in V1 was higher for expected relative to unexpected orientations (line plots) [237] (with

permission from the authors).

expected and unexpected stimuli in I'T cortex [50]. However, even in
these studies, the cueing scheme is set up so that expecration was
manipulated by cueing relevant stimuli over a longer time frame
whereas attention was cued on a trial-by-trial basis. So, while this
manipulation leads to separate sources of top-down information that
operate on different time scales, it is not entirely clear that one tvpe of
cue solely modulated expectation and the other attention as both cues
provided information about what to expect and what features were more
likely to be behaviomally relevant.

One way to isolate the effects of expectation from attention on sensory
processing s to design an experiment where stimulus regularities are
manipulated without using an explicit cue. For example, Rungratsa-
meetaweemana ef /. used a variant of an orientation discrimination task,
where targets were either coherently oriented red or blue bars at 0°
(horizontal ) or 90” (vertical) [547]. This gave rise to four possible target
types: red horizontal, red vertical, blue horizontal, and blue vertical.
Each response button was associated with a specific conjunction of color
and orientation. T'he probability that a specific color or orientatdon was a
target feature was independently manipulated on a block-by-block basis
such that within each block, mrgets were presented more frequently in
one color (e.g. red; color expectation) or one odentation (e.g. vertical;
orientation expectation). Thus, expectadons about these sensory fea-
tures (i.e. color and orientation) were induced through stmulus history
without an explicit cue. By not using an explicit probabiliey cue, this

study minimized the possibility that partici pants shifted their attention
to the expected stimulus features and thus the resules are less likely to be
influenced by selective attention. That said, it is possible that an
implicitly induced expectaton about a target feature could lead pari-
cipants to allocate more attention toward the feature that is most likely to
be presented [55]. However, even if participants noticed the expectation
manipulation, knowledge about the most likely sensory feature would
not provide informadon about the relevant behaviorl response because
targets were defined by the conjunction of color and orienttion.

Using this behavioral paradigm allowed for a manipulation of expecta-
tion about two low-level sensory fearures (color and orientation) while
measuring EEG markers that index early sensory processing and the
accumulation of sensory evidence during decision-making (the visual
negative potential, or VN, and the centroparietal positive potential or
CPP, respectively). Importantly, the paradigm also included an inde-
pendent manipulation of sensorv evidence to validate these markers of
sensory processing and to provide a point of comparison for any
expectation-related modulations. The behavioral results revealed that
expectations about likely sensory features improved the speed and
accuracy of decision-making in a manner analogous to increasing the
amount of available sensory evidence. However, while manipulations
of sensory evidence increased the amplitude of the VN and the
amplitude and slope of the CPP, expectations about sensory features
had no impact on either of these components despite the robust effect
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Recent studies that isolate the effects of expectation from attention on sensory processing. (a) The CPP is used as an EEG marker of the accumulation of sensory
evidence during decision-making and its pre-peak amplitude is shown to be sensitive to manipulations that increase the amount of sensory evidence in the
stimulus display. (b) Despite the CPP being sensitive to increases in sensory evidence, expectation does not impact the pre-peak CPP amplitude. Instead,
violations of expectation modulate the post-peak CPP amplitude which could be associated with later stages of processing after early sensory processing [54°).
(c) Behaviorally, predictive (left and right) cues led to criterion shift toward to the cued direction both when presented before and after the gratings. Critically.
direct comparisons of the effects of pre-cues and post-cues showed that expectation induced via post-cues had a stronger effect on participants® performance,
which must be due to a shift in the dedision criterion because the cue was presented after sensory processing of the stimulus was complete [56°7). (d) Both pre-
cues and post-cues have comparable influence on stimulus sensitivity (d') [56%]. (e) A reverse correlation analysis was performed to investigate whether pre-cues
or post-cues affected paricipants® information usage at any time throughout the 30 frames of stimulus presentation. Higher beta values indicate that participants
placed more weight on the information provided by a particular stimulus frame. Temporal information usage for predictive (left and right) and neutral cues did not
differ by cue time (pre-cues or post-cues), showing that expectation induced via pre-cues and post-cues had similar effects on temporal information usage
throughout each trial. Note that noisier plots of nevtral-cue condition are due to a smaller number of trials [56]. (f) Feature information usage for predictive (left
and right) and neutral cues also did not differ by cue time (pre-cues or post-cues), suggesting that pre-cues and post-cues have the same effect on feature-based

information usage (reprinted from Ref. [56%°] with permission from the authors).

of expectations on behavior (Figure 2a,b). Instead, expecration modu-
lated the amplitude of posterior alpha and frontal theta oscillations,
signals thought to index overall time-on-task and cognitive conflice.
Together, these findings suggest that expectations about low-level
sensory features, even when the expectations do not provide informa-
tion about the behavioral relevance of sensory stimuli, primarily
operate at post-perceptual stages of information processing.

Another recent study by Bang and Rahnev also converges on the idea
that expectations do not impact early sensory processing but instead
modulate decision criteria [56*°]. Participants pedformed a discrimina-
tion task where thev judged whether the overall orientation bias in a
series of gratings was tilted left (clockwise) or right (counterclockwise)
from vertical. The grating stimuli were either preceded or followed by
a predictive cue (L.e. pre-stimulus cue or a post-stimulus cue, respec-
tively) indicating with 66.67% wvalidity whether the overall
orientation was more likely to be left or aght of vertical. An additional
condition was also included where neutral (uninformative) cues were
presented. A pre-stimulus cue could impact both sensory signals and
later decision processes, whereas a post-stimulus cue could only
influence decision processes. By comparing the behavioral effects of
pre-stimulus cues and post-stimulus cues, the study could assess the
impact of expectadon on early sensory processing and on deci
related crterion shifts.

Direct compansens of pre-cues and post-cues demonstrated s
effects of both cue types on ulus sens v (d"). However,
cues induced a greater shift in decision criteron (¢) compared to pre-
cues (Figure Ze,d). To further examine how participants used cue-based-
information in both the temporal and feature domains, the authors
emploved a reverse correlation method, in which they compared the
impact of predicdve and neutral pre-cues and post-cues. The results
demonstrated that pre-cueing and post-cueing exered a similar influ-
ence on the use of temporal informationand feamre-specific information
provided by predictive and neutral cues. Since the post-cues could only
influence later decisional processes but not early sensory signals, the
comparable effects of pre-cues and post-cues suggest that expectations
primarily impact decision criteria rather than directly modulating the
efficiency of sensory processing (Figure 2e,f). Together with the study
by Rungratsameetaweemana ¢f af., these results are more in line with
classic theoretical frameworks such as signal detection theory (SIT) and
suggest that knowledge about statistical regularities of the sensory
environment primarily influence later cognitive operations related to
response selection and execution [57-61].

Conclusions

While we argue here thatit is premature to assert that expectations about
statistical regulandes impact eady sensory processing, there is substan-
tial evidence that manipulations of expectatdon have a profound impact



on behavior and on responses in higher-order parieral and frontal regions
that are thought to be more directly involved in regulating decision-
making and behavioral responses (i.e. saccades, reaching movements
[62,63]). Saccade-selective neurons in frontal contex show a pre-stimulus
response bias as a function of target probability [64], stimulus-evoked
responses in the superior colliculus are mediated based on the certainey
associated with a planned saccade [65,66], and disrupting saccade-
selective regions in human frontal cortex attenuates the impact of target
probability on behavioral performance [67]. "This evidence is consistent
with the hypothesis that expectations can mediate priors to influence
response selecdon. These findings are also in line with the idea that
expected stimuli might exert a larger impact on sensorimotor decision
mechanisms via changes in the ‘read-out” of sensory-evoked responses
rather than affecting the perceptual processing of the sensory signal
itself. Moreover, as articulated in Summerfield and de Lange [5%],
observers should exploit information about both smtistical regularities
and behavioral relevance to guide optimal decision making, as both
sources of information should suppornt the efficient processing of infor-
mation to guide behavior. Future studies are needed to more thoroughly
explore when and where expectation impacts informaton processing,
and to orthogonally manipulate expectation and amention within the
same paradigm to test for differences in tem poral dynamics, modulations
in different cortical areas, and influences on behavior.
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Chapter 1.

Expectations do not alter early sensory processing

during perceptual decision-making
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Expectations Do Not Alter Early Sensory Processing during
Perceptual Decision-Making
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Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093-0109, *Learning Institute, King Mongkut’s University of
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Psychology, University of California, San Diego, La Jolla, California 92093-0109, and *Kavli Institute for Brain and Mind, University of California, San Diego,
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Two factors play important roles in shaping perception: the allocation of selective attention to behaviorally relevant sensory features, and
prior expectations about regularities in the environment. Signal detection theory proposes distinct roles of attention and expectation on
decision-making such that attention modulates early sensory processing, whereas expectation influences the selection and execution of
motor responses. Challenging this classic framework, recent studies suggest that expectations about sensory regularities enhance the
encoding and accumulation of sensory evidence during decision-making. However, it is possible, that these findings reflect well docu-
mented attentional modulations in visual cortex. Here, we tested this framework in a group of male and female human participants by
examining how expectations about stimulus features (orientation and color) and expectations about motor responses impacted electro-
encephalography (EEG) markers of early sensory processing and the accumulation of sensory evidence during decision-making (the early
visual negative potential and the centro-parietal positive potential, respectively). We first demonstrate that these markers are sensitive to
changes in the amount of sensory evidence in the display. Then we show, counter to recent findings, that neither marker is modulated by
either feature or motor expectations, despite a robust effect of expectations on behavior. Instead, violating expectations about likely
sensory features and motor responses impacts posterior alpha and frontal theta oscillations, signals thought to index overall processing
time and cognitive conflict. These findings are inconsistent with recent theoretical accounts and suggest instead that expectations
primarily influence decisions by modulating post-perceptual stages of information processing.

Key words: cognitive control; decision-making; electroencephalography (EEG); expectation; sensory modulation
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Significance Statement

Expectations about likely features or motor responses play an important role in shaping behavior. Classic theoretical frameworks
posit that expectations modulate decision-making by biasing late stages of decision-making including the selection and execution
of motor responses. In contrast, recent accounts suggest that expectations also modulate decisions by improving the quality of
early sensory processing. However, these effects could instead reflect the influence of selective attention. Here we examine the
effect of expectations about sensory features and motor responses on a set of electroencephalography (EEG) markers that index
early sensory processing and later post-perceptual processing. Counter to recent empirical results, expectations have little effect
on early sensory processing but instead modulate EEG markers of time-on-task and cognitive conflict.
J

expectations based on learned statistical regularities in incoming
sensory signals or motor responses can also facilitate decision-
making, even if the expectations concern features or responses
that are irrelevant with respect to current behavioral goals (Sum-
merfield and de Lange, 2014). Selective attention is thought to
improve information processing primarily by modulating the re-

Introduction
Selectively attending to relevant sensory inputs (i.e., selective at-
tention) leads to faster and more accurate decisions. In addition,
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sponse properties of neurons in early sensory areas (Desimone
and Duncan, 1995; Reynolds and Chelazzi, 2004; Maunsell and
Treue, 2006; Serences and Kastner, 2014; Itthipuripat and Ser-
ences, 2016). In contrast, classic theoretical frameworks such as
signal detection theory (SDT) hold that expectations do not in-
fluence early sensory responses, but instead bias later cognitive
operations related to response selection and execution (Wald and
Wolfowitz, 1949; Green and Swets, 1966; Wolfe, 1998; Berti and
Schriger, 2004; Alvarez et al., 2007). Consistent with this idea, a
recent behavioral study has shown that stimulus expectations
modulated decision criteria without affecting the quality of early
sensory signals (Bang and Rahnev, 2017).

Challenging this traditional SDT-based account, recent work
suggests that expectations can improve the efficiency of early
sensory processing, even when expectations are independent of
behavioral goals (Kok et al., 2012a; Wyart et al., 2012b; Summer-
field and de Lange, 2014; Cheadle et al., 2015). On this account,
expectations increase the precision of information processing by
sharpening population-level response profiles in early visual cor-
tex (Lee and Mumford, 2003; Spratling, 2008; Kok et al., 2012a;
Jiang et al, 2013). Accordingly, it has been proposed that
expectation-related modulations in early visual cortex should di-
rectly increase the efficiency of early sensory processing during
perceptual decision-making (Summerfield and de Lange, 2014).

However, previous studies examining the impact of expecta-
tions on early sensory processing used explicit cues to indicate
which stimulus feature had the highest probability of being a
target (Wyart et al., 2012b; Cheadle et al., 2015; Kok et al., 2012a,
2016). Importantly, these explicit cues are similar to cues used in
other studies to direct the allocation of visual attention to behav-
iorally relevant spatial locations or features (Motter, 1993; Mc-
Adams and Maunsell, 1999; Martinez-Trujillo and Treue, 2004;
Scolari etal., 2012, 2014; Itthipuripat et al., 2014a,b; Stérmer and
Alvarez, 2014; Ester et al., 2016). Therefore, reported expectation
effects may actually reflect the operation of the same mechanisms
that have been well documented in the selective attention litera-
ture (Motter, 1993; McAdams and Maunsell, 1999; Martinez-
Trujillo and Treue, 2004).

Here we test the classic SDT account and this new sensory
enhancement account to better understand how expectations im-
pact early sensory processing (Kok et al., 2012a; Summerfield and
de Lange, 2014). We manipulated expectations about two differ-
ent low-level sensory features (color and orientation). We also
included two additional conditions: (1) a manipulation of the
amount of sensory evidence available in each stimulus display to
validate electroencephalography (EEG) markers of early sensory
processing, and (2) an independent manipulation of motor ex-
pectation as a point of comparison with feature expectation. Fi-
nally, expectations were established based on implicitly learned
regularities and we independently manipulated expectations
about each component of the task so that statistical regularities in
one feature dimension (e.g., color) would not provide informa-
tion about the relevance of a target defined in the other feature
dimension (i.e., orientation). As a result of these design features,
the task dissociated manipulations of expectations from the ef-
fects of using an explicit cue to provide information about the
behaviorally relevant target feature.

Materials and Methods

Participants. Twenty healthy volunteers (8 males; all participants right-
handed; mean age = 21.8, SD = 3.3) participated in the experiment. All
were neurclogically intact and had normal or corrected-to-normal color
vision. Participants gave written informed consent and were compen-
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sated $15/h for participation. Ethical approval was granted by the Insti-
tutional Review Board at the University of California, San Diego. Each
participant underwent two EEG recording sessions (sessions were ~2 h
each, with 1920 trials collected in total). Three participants were ex-
cluded from data analysis for having <<70% artifact-free trials in any of
the conditions of interest {due to excessive muscle movement and eye
movements), leaving 17 participants in the final analyses (see EEG re-
cording and analysis section for details).

Stimuli. Visual stimuli consisted of 200 blue bars and 200 red bars
(length = 1.39°, width = 0.18°) displayed in an annulus (outer diameter,
22% inner diameter, 2.4°) surrounding a black fixation point on a dark
gray background of 42.68 = 2.20 cd/m?. Blue and red bars within the
annulus flickered at 33.33 Hz (33.33% on-—off duty cycle) and 50 Hz,
respectively (50% on—off duty cycle; or vice versa) for the duration of the
trial, and the location of each bar was randomly reassigned within the
aperture at the beginning of each flicker cycle. The combination of color
and flicker rate was counterbalanced across trials. At the beginning of
each trial, each bar was first randomly assigned to one of eight possible
orientations (0—157.5° in 22.5° increments). For a target display, 68.5%
of either red or blue lines were assigned a common orientation of either
0° or 90° whereas all other bars were assigned one of seven remaining
orientations. Participants were instructed to report the predominant ori-
entation of these iso-oriented bars via a USB compatible keypad.

Stimuli were presented on a PC running Windows XP using MATLAB
(MathWorks) and the Psychophysics Toolbox v3.0.8 (Pelli, 1985; Brain-
ard, 1997). Participants were seated in a sound-attenuated and electro-
magnetically shielded room (ETS Lindgren) 60 cm from the CRT
monitor running at 100 Hz with a gray background of 42.68 + 2.20 ed/m ™.

Procedures. Participants performed two sessions of an orientation dis-
crimination task in which feature expectation (i.e., color expectation and
orientation expectation) and motor expectation were independently ma-
nipulated on a block-by-block basis (Fig. 1). As described, targets were
red or blue bars coherently oriented at 0° (horizontal) or 90 (vertical),
hence there were four possible target types: red horizontal, red vertical,
blue horizontal, and blue vertical targets. Each response button was as-
sociated with a specific conjunction of color and orientation. Half of the
participants were instructed to map the left button to red horizontal and
blue vertical targets and the right button to blue horizontal and red
vertical targets. The other half of the participants were given the opposite
response-mapping instructions. This stimulus—response mapping was
adopted so that we could completely dissociate expectation about sen-
sory features and expectation about motor responses.

To familiarize participants with the task and the response mapping,
participants performed a behavioral training session before the first EEG
session. During this training session, participants had to complete 10 full
blocks of the experimental task, with each block containing four trials
from each of the four expectation types (neutral, color expectation, ori-
entation expectation, motor expectation; see the next paragraph). The
training session was terminated once participants achieved perfect per-
formance on all blocks, and each block was repeated until participants
reached 100% accuracy.

After training, each EEG session was comprised of 16 experimental
blocks with 60 trials in each block. This yielded four blocks of trials for
each of the four expectation types: neutral, color expectation, orientation
expectation, or motor expectation (Fig. 1). In the neutral blocks, all four
target types were presented equally often. In the remaining blocks, fea-
ture and motor expectations were manipulated orthogonally, such that
feature expectation and motor expectation were never manipulated at
the same time within the same block. Feature expectation was manipu-
lated by presenting either one color more frequently (i.e., color expecta-
tion) or one orientation more frequently (i.e., orientation expectation)
than the other value in that feature dimension. For example, on one type
of color expectation block, the target would be rendered in red on 70% of
the trials and in blue on 30% of the trials. Importantly, on these color
expectation blocks, target identity was perfectly balanced such that 50%
of the target was horizontal and 50% was vertical. In contrast, on an
orientation expectation block, 70% of the targets would be horizontal
and 30% of the targets would be vertical, with an equal number of targets
composed of blue and red lines. Finally, on a motor expectation block,
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targets associated with the left button (e.g., red
horizontal and blue vertical) were presented on
70% of the trials whereas the targets mapped to
the right button (e.g., blue horizontal and red
vertical) were presented on 30% of the trials.
This experimental design thus enabled us to
independently manipulate expectation about
sensory features (i.e., target color and orienta-
tion) and expectation about motor responses.
In addition, we could also control expectation
within the “feature”™ domain by separately ma-
nipulating expectation about color and orien-
tation of the target stimulus, as both features
provided equal amount of information toward
decision choices (left/right button press) on
each trial. Together, this study design allowed
us to examine the effects of feature expectation
on information processing during decision-
making in the absence of motor expectation
and response bias.

Every block started with four practice trials
that corresponded to each target type (red hor-
izontal/red vertical/blue horizontal/blue verti-
cal) to ensure that participants understood the
assigned stimulus—response mapping. Partici-
pants had to provide correct responses for all
four practice trials before the main task would
proceed; otherwise the practice trials would re-
peat until participants met criterion perfor-
mance. In the main task, each trial began with a
pre-target display consisting of colored bars
flickering at 33.33 and 50 Hz that lasted for
91-127 ms. During this pre-target interval, the

—

motor expectation. Expectation types were manipulated on a
block-by-block basis. Each target composed of two features:
color and orientation, and the expectation status of the target
was manipulated in the three expectation conditions by pre-
senting one type of target more frequently than the other tar-
get type within the same target feature. That is, for a given
block (e.g., color expectation block), one target type (e.g., red
target) was expected, whereas the other target type (i.e., blue
target) was unexpected. The other target feature (i.e., orien-
tation) was orthogonal to this expectation manipulation, and
it was equally likely that the target would be vertical or hori-
zontal. Note that the ratio of expected— unexpected trials
within each block is 70:30, such that in a color expectation
block where red target is expected, the probabilities of red
horizontal target, red vertical target, blue horizontal target,
and blue vertical targetare 35, 35, 15, and 15% respectively. In
the neutral expectation block, the probabilities of each of the
four possible targets were 25% accordingly. B, Behavioral re-
sults. Accuracy was higher on the expected trials than on the
unexpected trials in all three expectation types {orientation/
color/motor expectation). Accuracy was also higher on trials
where stimuli were presented at a fast compared with a slow
flicker rate. RTs for correct responses were also shorter for fast
flicker-rated stimuli than for show flicker-rated stimuli. ¢, Per-
formance as a function of the number of cumulative trials in
each block (i.e., trial 1-10, 1-15, 1-20, etc. within each block
of 60 trials). Data were collapsed across fast and slow flicker
rate trials to examine the temporal dynamics of the expecta-
tion effects on RTs and accuracy. Across the three expectation
types, the effects of expectation on behavior are clearly ob-
served after 20 cumulative trials. Thus, in later EEG analyses
where a null effect of expectation is observed, we ran addi-
tional analyses after discarding the first 20 trials.



orientation of each bar was pseudorandomly selected from a uniform
distribution such that no coherent global orientation signal was present.
Following the pre-target interval, the orientation target was presented for
850 ms, followed by a 600 ms post-target display in which the orientation
of all bars was again pseudorandomly drawn from a uniform distribu-
tion. The post-target display was followed by a feedback display which
indicated whether the response on that trial was “too early” (made <85
ms after target onset), “correct”, “incorrect”, or “too slow” (made after
trial offset). The feedback display was presented for 300 ms and imme-
diately followed by an 800—1200 ms blank intertrial interval.

Behavioral analysis. We used a three-way repeated-measures ANOVA
with factors for the expectation type (3 levels: color expectation, orien-
tation expectation, and motor expectation), flicker rate (2 levels: fast and
slow), and the status of the target (3 levels: expected, neutral, and unex-
pected) to test the main effects and interactions on the accuracy and
reaction times associated with correct trials.

EEG recording and analysis. EEG data were recorded using a 64 + 8
channel BioSemi ActiveTwo system at a sampling rate of 512 Hz. Two
reference electrodes were placed at the mastoids. We monitored vertical
eye movements and blinks via two pairs of electrodes placed above and
below the eyes. Horizontal eye movements were monitored via another
pair of electrodes placed near the outer canthi of the eyes. The EEG data
were referenced online to the BioSemi CMS-DRL reference, and all off-
sets from the reference were maintained <20 pV. The data were prepro-
cessed with a combination of EEGlab 11.03.1b (Delorme and Makeig,
2004) and custom MATLAB scripts.

After data collection, we re-referenced the continuous EEG data off-
line to the mean of the left and right mastoid electrodes and applied 0.25
Hz high-pass and 58 Hz low-pass Butterworth filters (third order). An
additional 10 Hz low-pass filter was applied before plotting the data, but
all reported statistics were performed on the 58 Hz low-pass filtered data
(Luck, 2005; for similar methods, see Hickey et al., 2010; Itthipuripat and
Serences, 2016). The data were then segmented into epochs extending
from 1500 ms before to 4000 ms after the trial onset. Prominent eyeblink
artifacts were first rejected by independent component analysis (Makeig
et al.,, 1996). We then visualized data from each trial and discarded ep-
ochs contaminated by residual eye blinks and vertical eye movements
(=*£80-150 wV deviation from 0, with thresholds chosen for each sub-
ject), horizontal eye movements (> =75-100 uV deviation from 0}, ex-
cessive muscle activity, or drifts. This procedure resulted in the rejection
of 12.25% of trials on average (£ 1.07% SEM across subjects; ranged
from 3.9 to 21.8% of trials). Data from three participants were excluded
from further analysis due to the rejection rate of >30% of trials (31.35,
60, and 89%, respectively).

Next, we sorted artifact-free EEG epochs into different experimental
conditions based on expectation type (color expectation, orientation ex-
pectation, and motor expectation), the status of each target in the context
of a given block (expected, neutral, or unexpected), and on the flicker
rate of the target (fast or slow). To compute event-related potentials
(ERPs), the EEG data from each experimental condition were first
baseline-corrected from 200 to 0 ms before the onset of a target or a
response. ERPs were then computed by averaging target-locked and
response-locked EEG data for each experimental condition. In addition,
the EEG data for individual subjects were also wavelet-filtered using a
Gaussian filter with a 0.2 factional bandwidth centered on eight frequen-
cies in 1 Hz incremental steps from 4 to 12 Hz, yielding analytic ampli-
tude estimates for oscillatory EEG components in the theta (4—8 Hz) and
alpha frequency bands (9—12 Hz; for similar methods, see Canolty et al.,
2006; Itthipuripat et al., 2013a). Next, the single-trial alpha and theta data
were sorted into different experimental conditions (just like the ERPs).
Maximal time-domain SDs of the Gaussian wavelet filters were com-
puted separately for alpha and theta (ie., alpha: SD = 208 ms; theta:
5D = 468 ms). Alpha and theta data were then baseline-corrected across
atime window extending 200 ms before their respective time-domain 5D
(i.e., alpha data were baseline-corrected from 408 to 208 ms before target
onset and theta data were baseline-corrected from 668 to 468 ms before
target onset).

We then examined the impact of expectation type, flicker rate, and the
expectation status of target on two ERP components: the occipital
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negative-going component recorded from the Oz electrode and the cen-
tral parietal positive (CPP) component recorded from the central poste-
rior (CPz) electrode. We used three-way repeated-measures ANOVAs
with within-subject factors for expectation type (3 levels: color expecta-
tion, orientation expectation, and motor expectation), flicker rate (2
levels: fast and slow), and the expectation status of the target (3 levels:
expected, neutral, and unexpected) to evaluate the influence of these
factors on the amplitude of the ERP components. These ANOVAs were
performed on the mean ERP amplitudes across consecutive 50 ms win-
dows from 250 ms before to 1500 ms after target onset for the target-
locked data and from 300 ms before to 100 ms after the response onset for
the response-locked data. Corrections for multiple comparisons was im-
plemented using the false discovery rate (FDR) method (Benjamini and
Hochberg, 1995) based on both target-locked and response-locked data
from CPz and Oz electrodes. The impact of expectation type, flicker rate,
and expectation on the CPP slope was examined on both target- and
response-locked data. The CPP slope was measured as the slope of a
straight line fitted to the ERP waveform for each subject, using the inter-
val 200 to 550 ms for the target-aligned CPP and —350 to 0 ms for the
response-aligned CPP (for similar methods, see Kelly and O’Connell,
2013). We then performed 1 tests to examine the impact of flicker rate and
a one-way ANOVA to assess the impact of expectation on the CPP slope.
In the case of no significant main effects, follow-up one-tailed ¢ tests and
Bayes factor analyses were performed on the signals collapsed across
consecutive 50 ms windows.

The same ANOVA analyses were then performed on the induced pa-
rietal alpha amplitude recorded from the Pz electrode and frontal theta
amplitude recorded from the FCz electrode. These electrodes were cho-
sen as they displayed maximum response amplitude in the alpha and
theta range respectively. ANOVAs were performed on the mean theta
amplitudes across consecutive 50 ms windows from 700 ms before to
1500 ms after target onset for the target-locked data and from 300 ms
before to 100 ms after the response onset for the response-locked data.
The same ANOVAs were performed on the mean alpha amplitudes from
450 ms before to 1500 ms after target onset for the target-locked data and
from 300 ms before to 100 ms after the response onset for the response-
locked data. In addition, we performed follow-up one-tailed ¢ tests to
compare the impact of flicker rates and a one-way ANOVA to assess the
impact of expectation on both ERP components as well as theta and alpha
amplitude from each individual expectation type (color expectation/
orientation expectation/motor expectation). Note that corrections
for multiple comparisons were computed separately for alpha and
theta based on its target-locked and response-locked data from the Pz
and FCz electrode respectively. In the case of significant main effects
of either flicker rate or expectation, one-tailed follow-up tests were
performed on individual expectation type signal amplitudes averaged
across significant time windows.

To further examine the impact of expectation, we performed a post hoc
Bayes factor t tests (Edwards et al., 1963; Wagenmakers, 2007; Rouder et
al,, 2009) on VN amplitude, CPP slope, and CPP amplitude during the
time windows where the effect of flicker rates was significant. We report
Bayes factors expressing the probability of the data given H1 (i.e., there
was an expectation effect) relative to HO (i.e., there was no expectation
effect). Although Bayes factors are not evaluated against a fixed threshold
to determine significance, a Bayes factor >3 is generally considered to
indicate positive evidence in favor of H1, whereas a value <0.33 is gen-
erally considered evidence for HO.

Results

Behavioral results

In the present study, participants performed an orientation dis-
crimination task in which feature expectation and motor expec-
tation were independently manipulated on a block-by-block
basis (Fig. 1). Targets were red or blue bars coherently oriented at
0° (horizontal) or 90° (vertical), and participants indicated the
target by pressing the left (L) or right key (R). Each response
button was associated with a specific conjunction of color and
orientation. Half of the participants were instructed to map the



left button to red horizontal and blue vertical targets and the right
button to blue horizontal and red vertical targets (this mapping
was reversed for the other half of the participants). There were
four main conditions in the task: neutral (no expectation), color
expectation, orientation expectation, and motor expectation.
Each target was composed of two features: color and orientation,
and the expectation status of the target was manipulated by pre-
senting one type of target more frequently than the other target
type within the same target feature. That is, for a given block of
trials (e.g., a color expectation block), one target type (e.g., red
target) was expected, whereas the other target type (i.e., blue
target) was unexpected. The other target feature was orthogonal
to this expectation manipulation (i.e., it was equally likely that the
target would be vertical or horizontal).

We manipulated the flicker rate of the stimuli to manipulate
the amount of sensory information being presented per unit
time, with more information about the stimuli available as the
flicker rate increased. Consequently, participants should have
higher accuracy and faster reaction times on trials where stimuli
were rendered at a fast compared with a slow flicker rate. In
addition, we also predicted better performance when the target
feature or its corresponding motor response was expected.

As shown in Figure 1, there was a significant main effect of the
flicker rate manipulation on behavioral performance such that
participants were faster and more accurate on trials where stimuli
were presented at a fast (50 Hz) compared with slow (33.33 Hz)
flicker rate (RT: Fy 4 = 152.73, p < 0.001, accuracy: Fy 15 =
12.69, p = 0.003). This effect of flicker rate on behavior confirms
that our manipulation successfully impacted the amount of sen-
sory evidence available on each trial. Also, shown in Figure 1 was
a significant main effect of expectation on both RT and accuracy
(expected/neutral/unexpected, RT: F ;¢ = 97.51, p < 0.001;
accuracy: F, 1o = 77.26, p << 0.001). Post hoc t tests revealed that
participants were faster in the expected compared with the neu-
tral (f;,5, = 8.21, p < 0.001) and unexpected conditions (1,5, =
12.60, p << 0.001). Similarly, accuracy was higher in the expected
compared with the neutral (f,,, = 5.81, p < 0.001) and unex-
pected conditions (4 = 10.09, p < 0.001). Participants were
also faster (1,5, = 6.64, p << 0.001) and more accurate in the
neutral compared with the unexpected conditions (#,5, = 8.18,
p < 0.001). However, there was no significant interaction be-
tween expectation and flicker rate on either RT or accuracy (ex-
pected/neutral/unexpected vs fast/slow flicker, RT: F, |, = 0.59,
p = 0.56; accuracy: F; 15, = 1.36, p = 0.27). Finally, there was no
main effect of expectation type on RT or accuracy (expectation
about color/orientation/motor response, RT: F, |, = 1.01,p =
0.38; accuracy: F(, 15, = 0.64, p = 0.54), and there was no inter-
action between expectation type and flicker rate (color expecta-
tion/orientation expectation/motor expectation versus fast/slow
flicker rate, RT: F 3 | gymax = 1.20, Pr = 0.325 accuracy: Fip gymax =
034,p,. = 0.85).

EEG results

The early visual negative (VN) potential

We used an early visual negative potential (VN), which peaked —150—
300 ms after target onset at the central occipital electrode (Oz) to index
the magnitude of early sensory-evoked visual responses. The amplitude
of this early sensory ERP increases as the amount of sensory evidence
increases (e.g., visual contrastor motion coherence: Johannes etal., 1995;
Wryart et al., 2012a; Itthipuripat et al., 2014b, 2017; Loughnane et al.,
2016) and we used Oz because the visual stimuli were presented at the
center of the screen. We predicted that presenting stimuli at a fast, com-
pared with a slow flicker rate, should lead to an increase in the amount of
sensory evidence per unit time and thus greater sensory-evoked re-

sponses as indexed by an increase in VN amplitude. According to the
sensory enhancement account, expectation about stimulus features or
associated motor responses should also increase the VN amplitude if
expectation improves the efficiency of early sensory processing. The clas-
sic SDT account, on the other hand, would predict expectation to have no
effect on this neural measure of early sensory processing.

Fast flicker rate increases VN amplitude

We analyzed differences in both target-locked and response-locked VIN
amplitude in sliding 50 ms windows and corrected for multiple compar-
isons using FDR method based on both target-locked and response-
locked data from CPz and Oz electrodes (see Materials and Methods).
We found that VN amplitude was significantly larger on fast compared
with slow flicker rate trials from 200 to 300 msafter target onset (F(; ;) =
10.43-20.20; p = 0.0004-0.0052, FDR-corrected threshold = 0.0059; see
Fig. 24, left). This flicker rate effect was consistent across expectation
type (f;;5 = —3.98, —4.65, —4.89 with all p values <0.001 for color
expectation, orientation expectation, and motor expectation, respective-
ly; Fig. 24, right).

Expectation does not affect VN amplitude

In contrast, expectation had little impact on the VN, with only 1 of 35
time windows showing a trend toward significance that occurred out-
side the peak window of the VN and did not survive FDR correction
(Fi3.16) max = 445, prin = 0.02, FDR-corrected threshold = 0.0059; Fig.
2B). Note also that during this time window, VN amplitude was margin-
ally higher on unexpected compared with expected trials. This marginal
effect is in the opposite direction from that predicted by the sensory
enhancement account. A post hoc analysis of the Bayes factor indicated
either slightly positive or equivocal evidence in favor of the hypothesis
that expectation had no effect on VN amplitude (BF |, = 0.33-1.35across
all comparisons; Table 1).

We then examined the interaction between flicker rate and expecta-
tion on the amplitude of the VN and found that although one time window
showed a trend toward an increased VN amplitude on fast-flickered ex-
pected trials, none survived correction for multiple-comparison (F_,, =
4.66, prmin = 0.02, only one time window had a p value <0.05, FDR-
corrected threshold <<0.001).

Excluding the first 20 trials following a change in expectation type
does not influence the null effects of expectation on the VN

We next examined whether these null effects of expectation on the VN
could be caused by a failure of participants to build an expectation until
the end of each experimental block. To evaluate this account, we first
examined the time course of expectation effects on behavioral accuracy
and RT. We found that expectation had a relatively fast impact on RT and
accuracy early in each block (Fig. 1C). Specifically, after excluding the
first 20 trials following a change in expectation types, we found signifi-
cant effects of flicker rate and expectation on RT (flicker rate: F(y 1, =
125.29, p << 0.001; expectation: F, |, = 118.29, p << 0.001) and accuracy
(flicker rate: F{l.]s} = 11.19, p = 0.0004; expectation: ‘F[z.ls} =77.22%,p<
0.001) across expectation type.

Moreover, we replicated our main findings with respect to VN ampli-
tude after discarding the first 20 trials from each experimental block
(Fig. 3). VN amplitude was greater on fast compared with slow flicker
rate trials from 200 to 300 ms after target onset (F, |, = 4.99-11.01;p =
0.004-0.04, FDR-corrected threshold = 0.0043; Fig. 34, left). This effect
was consistent across expectation type (t, 16y = —3.76, —4.84, —6.52 with
all p values << 0.001 for color expectation, orientation expectation, and
motor expectation, respectively; Fig. 34, right). In contrast, manipula-
tions of expected target features did not impact the VN amplitude
(Fi2,16)max = 3.36, Prmin = 0.05, FDR-corrected threshold = 0.0043; Fig.
3B). A post hoc analysis of the Bayes factor indicates either slightly posi-
tive or equivocal evidence in favor of the hypothesis that expectation had
no effect on VN amplitude (BF,; = 0.25-0.48 across all comparisons).
Finally, we examined an interaction effect between flicker rate and
expectation on CPP amplitude and found that no time window sur-
vived correction for multiple comparisons (F ., = 5.92, p_;, = 0.007,
FDR-corrected threshold <<0.001). Together, these results demonstrate
that even though the VN is a sensitive marker of the amount of sensory
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Table 1. Bayes factor analyses of flicker rate and expectation status of the target

Flicker rate comparison

Expectation comparisons

Neural measures Fast vs slow flicker rate

Expected vs unexpected

Expected vs neutral Neutral vs unexpected

VN amp, tg-locked,

200to 300 ms t= —551,p << 0.001, BF;; = 545.62 = 091,p = 0.38,BF,; = 0.36
(PP slope t=1352,p = 0.003,BF,; = 1534 t=0.48,p = 0.64,BF,, = 0.28
(PP amp, tg-locked,

200to 750 ms t = 1.36,p < 0.001, BF,, = 11,528 t=
(PP amp, resp-locked,

—300to —200ms = 3.75p = 0.002, BF,; = 23.55

—100to 0 ms t=3.45p = 0.003,BF,, = 13.69 t=0.18,p = 0.86,BF,; = 0.25

—0.93,p = 0.37,BF,, = 036

t=—1.10,p = 0.29,BF,, = 0.42

t = 2.06,p = 0.06, BF;g = 135
t=—164,p=012,BF,, = 076

t= —081,p = 043, BF,, = 0.33
t =185, p = 0.08, BF,, = 101

t=—0001,p=1.00,BF,, =025 t=—064p=053,8F, =030

t=—047,p = 065BF,, = 027
t=—0.60,p = 056,BF,, = 0.29

t=—053,p = 0.60,BF,, = 0.8
t=081,p = 043, BF,, = 033

evidence available in the display, manipulating expectations about target
features or motor responses has a negligible impact on its magnitude.

The centro-parietal positive potential (CPP)

The CPP recorded from the CPz electrode is an established ERP
marker thought to track a running sum of sensory evidence over time
(Squiresetal., 1973, 1975a,b; O’Connell et al., 2012; Kelly and O’Connell,
2013; Itthipuripat et al., 2015; Loughnane et al., 2016; Twomey et al,,
2015). Thus, we predicted an increase in CPP amplitude and slope before
its peak when stimuli were rendered at a fast flicker rate. The sensory
enhancement account would also predict this pattern of results when the
feature of the target or its associated motor response is expected. On the
other hand, the classic SDT account would not predict any expectation-
related modulations of either the amplitude or slope of the pre-peak CPP.

Fast flicker rate increases the pre-peak amplitude and decreases
the post-peak amplitude of the CPP

We found a significant increase in CPP amplitude on trials where stimuli
were rendered at a fast compared with slow flicker rate (Fig. 44, left). The
increases in the amplitude of the CPP were most prenounced from 200 to
750 ms after target onset (F(, s = 10.43-47.74; p = 0-0.0052, FDR-
corrected threshold = 0.0059); and from 300 to 200 ms and from 100 to
0 ms before response onset (F, ¢ = 13.21-13.36; p = 0.0021-0.0022,
FDR-corrected threshold = 0.0059; F |, = 10.08-12.36; p = 0.0029—
0.0059, FDR-corrected threshold = 0.0059, respectively; Fig. 44, left).
Post hoc t tests revealed that the effects of flicker rate on CPP amplitude
were consistent across expectation type (from 200 to 750 ms after target
onset: 5 = 5.49, 427, 6.98 with all p << 0.001 for color expectation,
orientation expectation, and motor expectation, respectively; from 300
to 200 ms before response onset: #,,, = 2.36, 1.04, 5.55 with p = 0.02,
0.16, and <<0.001 for color expectation, orientation expectation, and
motor expectation, respectively; from 100 to 0 ms before response onset:
fr1gy = 2.76, 1.56, 3.99 with p = 0.01, 0.07, and << 0.001 for color expec-
tation, orientation expectation, and motor expectation, respectively; Fig-
ure 4A, right). In addition, after the peak of the target-locked CPP, there
was a significant decrease in CPP amplitude from 1050 to 1100 ms after
target onset (‘Ftl.ls) = 11.57; p = 0.004, FDR-corrected threshold =
0.0059), suggesting that decision-making associated with the faster
flicker rate target required less processing time as evidenced by the earlier
offset of the post-peak CPP amplitude. Post hoc t tests revealed that the
flicker rate effect during this time window was consistent across expec-
tation type (t;,,, = —2.78, —2.19, —2.07 with p = 0.01, 0.02, 0.03 for
color expectation, orientation expectation, and motor expectation, re-
spectively).

Expectation does not impact the pre-peak amplitude of CPP but
violations of expectation modulates the post-peak amplitude of
CPP

We next evaluated the impact of expectation on CPP amplitude. We
found no effect of expectation on target-locked CPP amplitude before
the peak or on response-locked CPP amplitude. A post hoc Bayes factor
analysis was generally consistent with these null results (BF;, = 0.25—
0.42; Table 1). While there was no effect of expectation on target-locked
CPP amplitude before the peak amplitude, expectation did have an im-
pact on the amplitude of the CPP after the peak amplitude from 950 to
1200 ms after target onset (F; ., = 11.53-17.08; p = 0—0.0002, FDR-
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corrected threshold = 0.0059; Fig. 4B, left). During this interval, the
amplitude of the CPP was higher on unexpected compared with neutral
(fr16 = —5.17, p << 0.001) and expected trials (14 = —5.08, p < 0.001).
Follow-up repeated-measures one-way ANOVAs also showed that this
expectation effect was consistent across expectation type (F, 14 = 3.65,
13.77, 8.15 with all p << 0.05 for color expectation, orientation expecta-
tion, and motor expectation, respectively; Fig. 4B, right). Finally, we
examined the interaction between flicker rate and expectation on the
amplitude of CPP and found that no time window survived correction
for multiple comparisons (target-locked: F,,,,, = 3.17, pyi, = 0.06; re-
sponse-locked: F,, = 0.78, p_.. = 0.46, FDR-corrected threshold
<0.001).

Fast flicker rate increases the CPP slope but expectation does not
We then more directly examined the rise-time (or slope) of the target-
locked CPP, which was computed over an interval from 200 to 550 ms
after target onset (see Materials and Methods). We found a higher slope
when targets were rendered at a fast compared with slow flicker rate
(mean slopes = 1 SEM = 0.032 = 0.003 and 0.027 = 0.004 uV/ms for fast
and slow flicker rate, respectively; t; ¢, = 3.52, p = 0.003). Post hoc t tests
also revealed that the effect of flicker rate on CPP slope was consistent
across expectation type (f;, = 2.46, 2.82, 2.67 with all p < 0.05 for color
expectation, orientation expectation, and motor expectation respec-
tively). Given this demonstration of the CPP’s sensitivity to changes in
sensory evidence, we tested whether expectation also impacted the effi-
ciency of early sensory processing in a manner similar to increasing the
amount of sensory evidence. However, unlike the flicker rate effect, we
found no effect of expectation on the slope of the CPP (mean slopes = 1
SEM = 0.029 = 0.004, 0.031 = 0.004 and 0.028 = 0.004 pwV/ms for
expected, neutral, and unexpected conditions, respectively; F, o, =
1.91, p = 0.16), and this was true for all manipulations of expectation
type (F, ¢ = 2.67, 1.86, 1.75 with p = 0.08, 0.17, 0.19 for color expec-
tation, orientation expectation, and motor expectation, respectively).
Further, post hoc Bayes factor analysis indicated either slightly positive or
equivocal evidence in favor of the hypothesis that expectation had no
effect on CPP slope (BF;, = 0.28-1.01; Table 1).

Excluding the first 20 trials following a change in expectation type
does not influence the effects of expectation on the CPP

Discarding the first 20 trials from each block following a change in ex-
pectation type did not influence the CPP effects reported above (Fig. 5).
The amplitude of pre-peak CPP was greater on fast compared with slow
flicker rate trials from 250 to 750 ms after target onset and from 250 to
200 ms before response onset (target-locked: F 15 = 11.01-33.05 p <
0.001-0.0043; response-locked F, |, = 11.50; p = 0037, FDR-corrected
threshold = 0.0043, respectively; Fig. 54, left). These flicker rate effects
were consistent across expectation type (from 250-750 ms after target
onset: #,., = 5.38, 2.40, 4.68 with all p < 0.05 for color expectation,
orientation expectation and motor expectation, respectively; from 250 to
200 ms before response onset: 1, = 2.11, —0.02, 4.77 with p = 0.03,
0.51, and << 0,001 for color expectation, orientation expectation, and
motor expectation, respectively; Figure 5A, right). In addition, the post-
peak amplitude of the CPP was lower on fast compared with slow
flicker rate trials from 1050 to 1100 ms after target onset (F 4 =
11.11; p = 0.004, FDR-corrected threshold = 0.0043). This decrease
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in post-peak CPP amplitude with the fast flicker targets was consis-
tent across expectation type (t.,, = —3.03, —2.24, —1.93 with p =
0.004, 0.02, 0.04 for color expectation, orientation expectation, and
motor expectation, respectively).

Similar to the null result obtained when we included all trials, we
found no effect of expectation on the pre-peak target-locked CPP ampli-
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tude or on response-locked CPP amplitude. Post froc Bayes factor analysis
was generally consistent with these null results (BF,; = 0.25-0.34). In-
stead, expectation had an impact on the post-peak amplitude of the CPP
from 950 to 1100 ms and from 1150 to 1200 ms after target onset (950—
1100 ms: Fi516) = 6.97-11.74; p = 0-0.0002; 1150-1200 ms; F5 1, =
11.53-17.08; p = 0-0.0002; FDR-corrected threshold = 0.0043, respec-
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%9 <20.1,**p < 0,05, ***p < 0.001.

tively; Fig. 5B, left). During these intervals, the amplitude of the CPP was
higher on unexpected compared with neutral and expected trials (950—
1100 ms: t;15) = —3.26, p << 0.01; f,5) = —3.56, p < 0.01, respectively;
11501200 ms: t 5, = —3.52, p < 0.01; t;,, = —2.89, p << 0.01, respec-
tively). Further, this expectation effect was consistent across nearly all
expectation types (950-1100 ms: F, |, = 2.33,5.19, 4.84 withp = 0.11,

0.01, 0.01 for color expectation, orientation expectation, and motor ex-
pectation, respectively; 1150-1200 ms: F, ., = 0.27, 7.66, 9.10 with
p’s = 0.76, 0.002, <<0.001 for color expectation, orientation expectation,
and motor expectation, respectively; Fig. 5B, right). In addition, we ex-
amined the interaction between flicker rate and expectation on the am-
plitude of the CPP and found that no time window survived correction
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for multiple comparisons (target-locked: F,,., = 3.33, pin = 0.05; re-
sponse-locked: F ., = 0.29, p;, = 0.75, FDR-corrected threshold
<0.001).

Finally, discarding the first 20 trials from each block following a
change in expectation types did not influence the effects of flicker rate
and expectation on the CPP slope. We found a higher slope when targets
were rendered at a fast compared with slow flicker rate (mean slopes + 1
SEM = 0.031 = 0.004 and 0.025 = 0.004 pwV/ms for fast and slow flicker
rates, respectively; f;,5 = 4.17, p < 0.001). This flicker rate effect was
consistent across expectation types (f;,, = 2.97, 2.59, 2.65 with all p <
0.05 for color expectation, orientation expectation, and motor expecta-
tion, respectively). Similar to what we previously reported when all trials
were included, there was no effect of expectation on the slope of the CPP
(mean slopes = 1 SEM = 0.027 = 0.004, 0.029 = 0.003 and 0.028 = 0.004
wV/ms for expected, neutral, and unexpected conditions, respectively;
Fia16) = 033, p = 0.72), and this was true across expectation type
(F(5,16) = 1.55, 2.01,0.02 with p = 0.23, 0.15, 0.98 for color expectation,
orientation expectation, and motor expectation, respectively). Further,
post hoc Bayes factor analysis indicated slightly positive or equivocal ev-
idence in favor of the hypothesis that expectation had on effect on CPP
slope (BF, = 0.26—0.43), as Bayes factor revealed no substantial evi-
dence in favor of HI.

Together, the lack of expectation effects on the CPP slope and the
significant post-peak expectation-related modulation of CPP amplitude
suggest that expectation did not directly impact the efficiency of early
sensory processing during perceptual decision-making. Instead, viola-
tions of expectation may slow down decision-making by affecting pro-
cessing after sensory evidence has already been accumulated.

Parietal alpha activity

The duration of poststimulus reductions in alpha amplitude over parietal
cortex has been previously established as an index for alertness and task
engagement (von Stein et al., 2000; Fries et al., 2001; Sauseng et al., 2005;
Klimesch et al,, 2007; Rihs et al., 2007; Hanslmayr et al,, 2008; Busch et al.,
2009; Kelly et al., 2009; Mathewson et al., 2009; Zhang et al., 2010; Foxe
and Snyder, 2011; Bosman et al., 2012). If expectations primarily impact
total time on task without modulating early sensory processing, then
alpha modulations should build over the course of the trial and track
response times.

Flicker rate does not affect parietal alpha activity

First, we examined the effect of flicker rate on alpha amplitude. We found
that a few time windows showed a trend but did not survive correction
for multiple comparisons (target-locked: F,,, = 9.92, ppin, = 0.01, FDR-
corrected threshold = 0.002; response-locked: F,, = 2.62, p.;, = (.13,
FDR-corrected threshold = 0.002; Fig. 64, left). Overall, this result sug-
gests that parietal alpha does not reflect the efficiency of early sensory
processing.

Violations of expectation induces reductions in parietal

alpha amplitude

We found significant expectation effects on alpha amplitude from 800 to
1150 ms following target onset (Fi3 1) = 7.52-10.48; p = 0.0003—0.002,
FDR-correct threshold = 0.002; Fig. 6B, left). During these time win-
dows, alpha amplitude was significantly lower in the unexpected com-
pared with the expected condition (#,;, = 3.42, p = 0.002) and the
neutral condition (t;,,, = 2.71, p = 0.008). Follow-up one-way ANOVAs
showed that these expectation effects were consistent across expectation
type (Fz,16) = 6.57, 3.94,9.21 with p < 0.01, < 0.05, < 0.001 for color
expectation, orientation expectation, and motor expectation, respective-
ly; Fig. 6B, right). Note that the expectation effect on the alpha activity
emerged after the CPP peaked. This suggests that the violations of expec-
tation occurred only after early sensory processing had been completed,
thus violations of expectation may induce surprise, higher vigilance and
more prolonged task engagement (Zimmer et al., 2010; cf. Talsma et al.,
2012; Wessel and Aron, 2017).

Frontal theta activity
Last, we examined the amplitude of frontal theta activity, which has been
previously used to index multiple attributes of executive function in the
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prefrontal cortex, including novelty detection, conflict-monitoring, er-
ror detection, response inhibition, and working memory (D’Esposito et
al,, 1995; Carter et al., 1998; Curtis and Esposito, 2003; Kane and Engle,
2003; Ridderinkhof et al., 2004; Cavanagh et al., 2011, 2012; Itthipuripat
et al., 2013b; Aron et al., 2004, 2014, Botvinick et al., 1999, 2001, 2004;
Cavanagh and Frank, 2014; Wessel and Aron, 2017). According to the
classic SDT account, unexpected targets or motor responses should lead
to higher theta amplitude because unexpected events put greater de-
mands on several aspects of executive functions including novelty detec-
tion and conflict monitoring. In contrast, the sensory enhancement
account would not predict an expectation effect on this neural measure
of post-sensory processing.

Fast flicker rate increases frontal theta amplitude

We found significant increases in frontal theta amplitude on trials with a
fast compared with slow flicker rate over a temporal window extending
from 400 to 900 ms after target onset (F(, 15 = 10.76-20.95; p = 0.0003—
0.005, FDR-correct threshold = 0.007; Fig. 7A, left). This flicker rate
effect was consistent across nearly all expectation conditions (1, =
1.64, 3.60, 2.43 with p = 0.06, < 0.01, 0.05 for color expectation, orien-
tation expectation, and motor expectation, respectively; Fig. 74, right).
Thisis consistent with the idea that presenting more sensory information
per unit time leads to an earlier and stronger engagement of frontal
executive control processes.

Violation of expectation increases frontal theta amplitude

The effect of expectation on frontal theta activity was found from 300-50
ms before response onset (F(Z,m] = 5.90-7.98; p = 0.002-0.007, FDR-
correct threshold = 0.007; Fig. 7B, left). During these time windows,
theta amplitude was significantly higher in the unexpected compared
with the expected (1, = —3.17, p = 0.003) and the neutral condition
(t1g) = —1.97, p = 0.03). Follow-up ANOVAs showed that these expec-
tation effects were consistent across most expectation types (F, ., =
3.07, 9.71, 3.46 with p = 0.06, << 0.001, << 0.05 for color expectation,
orientation expectation, and motor expectation, respectively; Fig. 7B,
right). These results are consistent with the notion that violations of
expectation engaged the frontal executive control network, which in turn
led to the slowing of motor responses.

Discussion

Expectations about likely sensory features and motor responses
can modulate the speed and accuracy of decision-making. Ac-
cording to classic accounts, expectation about a motor response
should reduce the amount of evidence needed to trigger a deci-
sion (i.e., introduce a response bias; Wald and Wolfowitz, 1949;
Green and Swets, 1966; Ratcliff, 1978; Voss et al., 2004; Mac-
millan and Creelman, 2005; Bogacz et al., 2006; Ratclift et al.,
2016). However, the impact of expectations about sensory fea-
tures on decision-making is controversial. Some accounts hold
that expectation about low-level sensory features such as color,
orientation, and motion direction improves sensory encoding by
modulating the quality of sensory responses in early visual cortex
(Lee and Mumford, 2003; Spratling, 2008; Kok et al., 2012b,
2014). If modulations of sensory responses in visual cortex im-
pact decision-making, they should do so by increasing the effi-
ciency of sensory processing (Diederich and Busemeyer, 2006;
Summerfield and de Lange, 2014; Cheadle et al., 2015; Forstmann
et al., 2016). However, previous studies of the effect of expecta-
tion on sensory processing often used an explicit cue that pro-
vided information about a relevant stimulus feature. However
cues about the relevance of an impending target lead to the deploy-
ment of selective attention, which is well known to influence early
sensory responses (Moran and Desimone, 1985; Hillyard and Anllo-
Vento, 1998; McAdams and Maunsell, 1999; Treue and Martinez
Trujillo, 1999; Reynolds et al., 2000; Martinez-Trujillo and Treue,
2002; Cohen and Maunsell, 2009; Stérmer et al., 2009; Scolari et
al., 2012; Anderson et al., 2013; Itthipuripat et al., 2014a,b, 2017;
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higher on expected trials during this period. Significant main effects of flicker rate and expectation: *p << 0.05, **p << 0.01, and ***p << 0.001.

Saproo and Serences, 2014; Stérmer and Alvarez, 2014). As an
alternative to this sensory enhancement account, violations of
expectation might influence behavior by interfering with later
stages of response selection and response execution, thus leading
to slower overall responses.

Here we tested these accounts by orthogonally manipulating
expected and relevant feature (e.g., expectation was about target
color, but target was defined by orientation). In addition, we also
independently manipulated amount of available sensory evi-

dence and motor expectation. We found that increasing the
amount of sensory evidence led to faster and more accurate re-
sponses, as did manipulations of expectation with a comparable
magnitude. Moreover, manipulations of sensory evidence in-
creased the amplitude of the VN and the amplitude and slope of
the CPP. However, feature and motor expectation had no impact
on either of these components. This suggests that even though
expectation impact behavior, it does not directly modulate early
sensory processing. Note that although interpreting null ef-
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fects is often difficult, the lack of expectation effects on the VN
and the CPP cannot be easily explained as a simple lack of
sensitivity. We reported comparable effects of flicker rate and
expectation on RT and accuracy, yet only found an impact of
flicker rate on the VN and the CPP. Furthermore, we found no
interaction effects between these two factors on performance
or on ERP components.

Note that we did not assess participant’s awareness of the
expectation manipulation at the end of each block as we wanted
to keep the block-by-block manipulation implicit throughout the
experiment. We also did not ask participants to report their
awareness after the very last block because each participant per-
formed two sessions of the task and we felt that a single response
about which feature occurred more frequently in the last block of
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Session 2 would not be a robust indication of their overall per-
ception of the experimental manipulation. That said, if the par-
ticipants were aware of the expectation manipulation, our
observed null effects of expectation on VN and CPP would be
even more compelling.

The lack of expectation-related modulations of early sensory
responses in our dataset stands in contrast to other recent reports.
Using fMRI, one previous study reported that expectation about
the orientation of an imperative stimulus improved the quality of
stimulus representations in human primary visual cortex (V1;
Kok et al., 2012a). However, the design of that study did not
clearly disentangle expectations about selective attention to rele-
vant sensory features (the auditory cue used to convey informa-
tion about expectation also indicated the relevant stimulus
feature i.e., an oriented stimulus rendered at 45 or 135°). Note
that this was not the case in the present study, because expecta-
tion was always built on one feature (e.g., color) without provid-
ing additional information about overall target relevance since
the target feature (i.e., orientation) was equally likely across ex-
pected and unexpected trials. In addition, fMRI lacks the time
resolution necessary to establish whether early modulationsin V1
influence behavior. Related experiments also provide behavioral
evidence that expectation may selectively enhance sensitivity to
low-level stimulus features (Wyart et al.,, 2012a; Cheadle et al.,
2015). Although consistent with a sensory enhancement account,
it is notoriously difficult to use behavioral evidence alone to dis-
tinguish between early sensory processing and a reweighting, or
selective readout, of sensory information during decision-
making (Palmer et al., 1993; Shimozaki et al., 2012; cf. Eckstein et
al,, 2002, 2013, Law and Gold, 2008, 2009).

Finally, complementing the present report, another recent
study also provides evidence that expectations do not impact
early sensory signals but instead affect later cognitive processes by
shifting decision criteria (Bang and Rahnev, 2017). This study
manipulated expectations by using pre-cues, post-cues and a re-
verse correlation method to examine the effects of expectation on
a perceptual decision process. Their results demonstrate that
both pre- and post-cueing expectations about the stimuli affected
decision criteria but not early sensory processing. In line with this
finding, Mulder et al., 2012 manipulated the prior probability of
a specific direction of motion and used fMRI to examine the
effect of expectation on decision-making. Although expecta-
tion improved performance, modeling of the behavioral data
combined with fMRI data suggest that this effect was likely due
to a shift in the starting point of sensory accumulation pro-
cesses rather than a change in the drift rate (i.e., rate of sensory
evidence accumulation). Given the lack of temporal resolu-
tion in fMRI, the present EEG data provide complementary
and more direct evidence that manipulations of expectation
do not affect early sensory processing during decision-
making.

Although expectation did not impact the amplitude of the
VN or the slope or peak-amplitude of the CPP, expectation did
lead to a decrease in CPP amplitude after the peak amplitude.
In addition, expectation influenced the pattern of alpha/theta
oscillatory signals previously used to index task effort and
cognitive control. Parietal alpha power showed a sustained
decrease on trials in which targets were presented on unex-
pected features or when unexpected motor responses were
required. This is consistent with the notion that violations of
expectation require more and prolonged task engagement
(Zimmer et al., 2010; Talsma et al., 2012; Wessel and Aron,
2017). Further, we found an increase in frontal theta ampli-
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tude when the target appeared on unexpected features and
when an unexpected motor response was required. This pat-
tern is consistent with the hypothesis that unexpected stimuli
require greater executive control during later stages of
decision-making and response planning and execution (Ca-
vanagh et al., 2012; Cavanagh and Frank, 2014). For instance,
frontal theta, which is thought to be generated from medial
frontal cortex, has been implicated in novelty detection and
the resolution of response conflict that can cause motor slow-
ing (Botvinick etal., 2001, 2004; Wessel et al., 2012; Cohen and
Donner, 2013; Zavala et al., 2014; Voytek et al., 2015; Wessel
and Aron, 2017). In sum, our findings suggest that expecta-
tions about low-level sensory features, even when the expec-
tations do not provide information about the behavioral
relevance of sensory stimuli, primarily impact later decision-
and response-related processing. These findings are in line
with earlier reports that unexpected stimuli and motor re-
sponses lead to global cognitive interruption and motor sup-
pression (Alvarez et al., 2007; Eckstein, 2011; Wessel et al.,
2016; Wessel and Aron, 2013, 2017). This suggests that viola-
tions of expectation about sensory features influence global
networks that modulate late-stage processes including choice
evaluation, conflict resolution, and/or motor execution. In the
context of the present design, this interpretation is consistent
with the fact that participants do not know whether stimuli
being presented are “expected” or “unexpected” until they
have already integrated sufficient evidence (i.e., the temporal
sensory accumulation has reached the associated decision
threshold). This situation mirrors real world decision-making
in the sense that the importance of learned regularities in the
environment, independent of additional information about
their behavioral relevance, is not known until a target of visual
search is detected. That said, beyond the broad distinctions
between relatively early sensory processing and later decision-
related processing, the present EEG measures do not reveal the
specific neural mechanisms that are impacted by violations of
expectation. In addition, the optimal means of using prior
expectations during decision-making likely depend on the
structure of the task as well as overall difficulty levels (Mulder
et al,, 2012). Finally, given the well documented effects of
selective attention to relevant features on early visual process-
ing, simultaneously and orthogonally manipulating both at-
tention and prior expectations during the same task is a critical
future direction.
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Chapter 2:

Differential temporal dynamics of top-down control

on probabilistic perceptual decision making
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2.1 Introduction

To maximize the efficiency of sensory processing, our visual system relies on
foreknowledge to prioritize the processing of relevant or expected features. For example,
knowledge of statistical regularities in the environment can lead to faster recognition of objects
when they are encountered in an expected context (e.g., a bird in a backyard) than when they
are encountered in unlikely context (e.g., a bird in a washing machine; Biederman, Glass and
Stacy, 1973; Biederman, Mezzanotte and Rabinowitz, 1982; Geisler, 2008; Summerfield and de
Lange, 2014; Rungratsameetaweemana et al., 2018). In addition, knowledge about the current
task goals can also support faster and more accurate processing of relevant over irrelevant
items a mechanism referred to as selective attention (Carrasco, 2011;
Rungratsameetaweemana and Serences, 2019; Summerfield et al., 2008). Importantly, these
two types of “top down” modulatory factors are potentially dissociable, as the probability that a
stimulus will be encountered in a specific context is not necessarily linked to its behavioral
relevance (Firestone and Scholl, 2015, 2014; Lupyan, 2017, 2015; Newen and Vetter, 2017,
Summerfield and de Lange, 2014; Summerfield and Egner, 2009; Summerfield and Tsetsos,
2015).

Over the last several decades, numerous studies have demonstrated that attention
improves the efficiency of perceptual processing by modulating the gain of neural populations
with respect to current task demands (Carrasco, 2011; Desimone and Duncan, 1995; Reynolds
and Chelazzi, 2004; Serences and Kastner, 2014). Expectation, in contrast, has only recently
been explicitly investigated as a potentially separable mechanism that might also bias early
sensory processing (Summerfield and de Lange, 2014; Summerfield and Egner, 2009). Initial
reports regarding the influence of expectation on sensory processing suggest that expected
stimuli evoke a more precise feature-selective pattern of responses in primary visual cortex,
leading to more efficient processing (Kok et al. 2012; Kok et al. 2013; Wyart et al. 2012;
Summerfield & de Lange 2014; Cheadle et al. 2015).

Expectation and attention can be dissociated by adopting a Bayesian account of
perceptual inference that takes into account the precision of existing beliefs (i.e. prior) as well as
the precision of the sensory information (i.e. the likelihood function). Specifically, expectation
about stimulus regularities should modulate the precision of priors while attention based on
behavioral relevance of the stimulus should modulate the precision of the likelihood function.
Based on the Bayesian framework, attention and expectation should also have the strongest

influence on perception when sensory evidence is weak and prior knowledge about both
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stimulus identity and relevance is needed to supplement sensory information (Chalk et al., 2010;
de Lange et al., 2018; Sterzer et al., 2008; Summerfield and de Lange, 2014). Thus, while both
expectation and attention clearly impact overall behavioral performance, it is possible that these
two factors differentially influence information processing and decision making at different

processing stages and at different time scales.

To investigate these questions, the strength of prior knowledge (expectation) and the
behavioral relevance of competing stimuli (attention) have to be independently manipulated.
Several recent studies have at least partially achieved this goal by inducing expectation without
using an explicit probability cue that carried information about the behavioral relevance of the
target. These reports showed that expectations did not impact early sensory processing but
instead modulated later cognitive operations including response criteria as well as the selection
and execution of motor responses (Bang and Rahnev, 2017; Rungratsameetaweemana et al.,
2018). However, these studies did not manipulate attention and little is known about the
temporal dynamics of attention and expectation, interactions between these factors, or about
their interaction with the strength of sensory evidence to influence different stages of sensory

processing and decision making.

The present study examined these questions be devising a continuous orientation
discrimination task where expectation, attention, and stimulus strength were manipulated
orthogonally. Each trial started with an attention cue to indicate whether participants had to
monitor one (focused attention) or two patches (divided attention) of flickering bars to detect a
target coherent orientation. Expectation was implicitly manipulated on a block-by-block basis
such that the targets on each block were predominantly presented at one orientation. Stimulus
strength was manipulated through the coherence level of the flickering bares that defined the
target coherent orientation. Participants reported the coherent orientation using a flight simulator
joystick which enabled a continuous measure of responses over time. Electroencephalography
(EEG) was concurrently recorded while participants performed the task. With this experimental
design, we were able to 1) isolate the impact of stimulus strength, attention, and expectation on
behavior; 2) examine the temporal dynamics of these factors behaviorally through response
trajectories and response error across time as well as neurally through EEG markers of early
sensory processing and steady-state visually evoked potentials (SSVEP) which track

processing of feature-specific information during decision making.
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2.2 Methods
2.2.1 Participants

Thirteen healthy volunteers (seven males; all participants right-handed; mean age =
20.5, SD = 2.3) participated in the experiment. All were neurologically intact and had normal or
corrected-to-normal color vision. Participants provided written informed consent and were
compensated $10 per hour for participation. Ethical approval was granted by the Institutional
Review Board at the University of California, San Diego. Each participant underwent 4
behavioral sessions (sessions were approximately 1.5 hours each, with 5376 trials collected in
total).

2.2.2 Stimuli

For each of four test sessions, participants completed a block of practice trials (n = 120
trials), a block of calibration trials (n = 120 trials), and 20 test blocks (n = 120 trials each block).
For the practice trials and the main task, stimuli consisted of 200 red bars and 200 blue bars
displayed in an annulus (outer diameter, 22°; inner diameter, 2.4°) that surrounded an attention
of either red, blue, or green on a dark gray background of 42.68+2.20 cd/m? (Fig. 2.1). Red and
blue bars within the annulus were flickered either at 30 Hz or 40 Hz for the duration of the trial
such that on a trial where the red bars were flickered at 30 Hz, the blue bars would be flickered
at 40 Hz and vice versa. Each bar was randomly re-plotted on each 83 ms frame. During
coherent motion, 32% (low coherence) or 54% (high coherence) of either the red or blue bars
were randomly selected on each frame to be displaced in one of 5 possible orientation (15-159°
with 36° increments), while the remaining bars were assigned one of 4 other motion directions.
Participants were instructed to report the coherent orientation of these flickering bars via a USB

compatible 360° flight simulator joystick.

For the calibration block, stimuli consisted of 400 black bars displayed in an annulus like
the practice trials but without an attention cue. On each trial, 100% of the bars (i.e., 100%
coherence) were formed a coherent orientation in one of the five possible orientations (15-159°
with 36° increments). Participants reported the motion direction of coherent orientation using the

flight simulator joystick.

Stimuli were presented on a PC running Windows XP using MATLAB (MathWorks,
Natick, MA) and the Psychophysics Toolbox (version 3.0.8; (Brainard, 1997; Pelli, 1985)).
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Participants were seated 60 cm from the CRT monitor running at 100 Hz with a gray
background of 42.68+2.20 cd/m?.

2.2.3 Procedures

Participants performed an orientation variant of a random-dot motion task (RDMs;
Williams & Sekular, 1984; Britten et al., 1993; Churchland, Kiani, & Shadlen, 2008; Forstmann
et al., 2010), such that stimulus strength (coherence levels), selective attention, and expectation
about target coherent orientations could be manipulated. Participants completed 4 test
sessions: each of which consisted of practice trials, calibration trials, and test trials. For 6 locks
of test trials, each trial began with a display consisting of a fixation point surrounded by an
annulus of flickering randomly oriented red and blue bars. After 400-800 ms, the fixation point
was replaced by an attention cue, either red, blue, or green. A red or blue cue informed
participants of the color of a forthcoming target coherent orientation such that participants could
monitor either the red or blue bars (focused attention). A green cue did not provide information
about the color of the target coherent orientation and thus participants had to monitor both red
and blue bars for a coherent orientation (divided attention). After 600-1000 ms, the red and blue
flickering bars were presented for 800 ms, such that a proportion of either red or blue bars
formed a coherent orientation at one of the 5 possible orientations. The remaining bars were
randomly assigned to the other 4 directions. Note that the attention cue was always valid such
that on focused attention trials, the coherent orientation was represented by red bars on half the
trials (red attention cue) and by blue bars (blue attention cue) on half the trials. The target
display was followed by a 500-ms of a display of a fixation point surrounded by randomly
oriented red and blue bars. Each trial ended with a blank intertrial-interval (ITI) that lasted for
666.7-1000 ms. Participants indicated the target coherent orientation by moving the flight
simulator joystick its maximal distance in a direction matching the coherent orientation. After
making a response, participants turned the joystick to the center in preparation for the next trial.
Responses were considered valid when they occurred in the interval between target onset and
ITI offset. Together, this study design allowed us to simultaneously investigate the effects of

feature expectation and selective attention on information processing during decision-making.

To familiarize participants with the task and the joystick, practice trials were given at the
beginning of each session. There were a total of 120 trials from all coherence levels (high/low
coherence level), attention conditions (focused/divided), orientations (15-159° with 36°
increments), and target color conditions (red/blue). After training, participants performed a block

of calibration trials. The purpose of the calibration trials was to estimate how each participant
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represented each orientation. These estimates were used to compute performance accuracy on
the test trials. Participants reported coherent orientations consisting of 100% coherent bars
using the flight simulator joystick. In each session, participants completed one block of 120 trials

(24 of each of the 5 possible orientations).
2.2.4 Behavioral Analysis

On each trial, we first identified the final coordinate of the joystick at maximum distance
from starting point and used that coordinate to compute the final angle response on each trial
(i.e., final response). We then computed an absolute error between this final response and the
presented coherent orientation (i.e., final response error) on each trial. Any trials with missed

responses and responses that were too early were discarded from further analysis.

We then examined the impact of coherence level (low/high), attention (focused/divided),
and expectation (expected /unexpected) on response trajectories and response errors across
time. Response trajectory is a measure of a temporal integration of sensory information from the
onset of target presentation leading up to a decision choice. Response trajectory was computed
as a cumulative distance the joystick was moved from the center across time (Fig. 2.2, left
panel). A response trajectory with a steeper slope represents a faster, more efficient processing
of sensory information. In order to examine performance accuracy, we computed response
errors by calculating the difference between the presented coherent orientation and the joystick
response angle at each time point. This analysis was performed on the behavioral data aligned
to the onset of target coherent orientation (Fig. 2.2, middle panel) as well as on the data aligned
to the peak of response trajectories (Fig. 2.2, right panel).

2.2.5 EEG Recording and Analysis

EEG data were recorded using a 64+8 channel BioSemi Active Two system at a
sampling rate of 1024 Hz. Two reference electrodes were placed at the mastoids. We monitored
vertical eye movements and blinks via two pairs of electrodes placed above and below the eyes.
Horizontal eye movements were monitored via another pair of electrodes placed near the outer
canthi of the eyes The EEG data were referenced online to the BioSemi CMS-DRL reference,
and all offsets from the reference were maintained <20 uV. The data were preprocessed with a
combination of EEGlab 11.03.1b (Delorme and Makeig, 2004) and custom MATLAB scripts.

After data collection, the continuous EEG data were re-referenced off-line to the mean of

the left and right mastoid electrodes and applied 0.25 Hz high-pass and 58 Hz low-pass
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Butterworth filters (third order). An additional 10 Hz low-pass filter was applied before plotting
the data, but all reported statistics were performed on the 58 Hz low-pass filtered data (Luck,
2005; for similar methods, see Hickey, Chelazzi and Theeuwes, 2010; Itthipuripat and
Serences, 2015). The data were then visualized from each trial and discarded epochs
contaminated by residual eye blinks and vertical eye movements (= £80-150 uV deviation from
0, with thresholds chosen for each participant), horizontal eye movements (= +75-100 pV
deviation from 0, with thresholds chosen for each participant), excessive muscle activity, or
drifts. This procedure resulted in the rejection of 13.5% of trials on average (+ 1.32% SEM
across participants; ranged from 3.2% to 22.1% of trials). Data from two participants were
excluded from further analysis due to the rejection rate of more than 30% of trials. Finally, the

data were temporally aligned to the onset of a target.

Next, artifact-free EEG epochs were sorted into different experimental conditions based
on coherence level of target orientation (high or low), on attention directed to target stimuli
(focused or divided), on the flicker frequency of target stimuli (30 Hz or 40 Hz), and on the
status of each coherent orientation in the context of a given block (expected or unexpected).
Due to the uneven number of expected and unexpected trials, we first performed resampling
with replacement on data in each experimental bin (e.g., focused attention and divided
attention) such that the size of each bin after resampling was equal to the that of the smallest
experimental bin (i.e., unexpected condition). To compute event-related potentials (ERPS), the
target-aligned EEG data were averaged for each experimental condition. The ERPs were
baseline-corrected from 200 before the onset of an attention cue to the onset of an attention

cue.

To compute steady-state visually evoked potentials (SSVEPS), the non-baseline-
corrected EEG data from each experimental bin for each participant were used to compute
Fourier coefficients at frequencies of 30 and 40 Hz (the two stimulus frequencies). The resulting
30 and 40 Hz SSVEPs were then baseline-corrected across a time window extending 200 ms
before their respective time-domain SD (i.e., 30-Hz SSVEP data were baseline-corrected from
262.5 to 62.5 ms before cue onset and 40-Hz SSVEP data were baseline-corrected from 245.9
to 46.9 ms before cue onset). The SSVEPs were then extracted from the central occipital (Oz)
electrode where the SSVEP signal peaked across both center frequencies of 30 Hz and 40 Hz.
Finally, amplitude of 30 and 40Hz SSVEPs was normalized by its respective maximal amplitude
to account for differences across frequency level.
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Next, we examined the impact of target coherence, attention directed to target stimuli,
and the expectation status of target coherent orientation on the SSVEPs and on four ERP
components recording from the centro-parietal (CPz), parietal (Pz), parieto-occipital (POz), and

occipital (Oz) electrodes.
2.2.6 Statistical Procedures
2.2.6.1 Behavioral Analysis

All reported confidence intervals (Cls) were computed by resampling the data with
replacement (i.e., bootstrapping) for 1,000 iterations for each bootstrapping procedure. Note
that this method constrains the resolution of our p-values to a lower limit of p < 0.001. We
generated permuted null distributions of response trajectories and response errors for each

participant, and condition, and for each time point.

For tests comparing a bootstrapped distribution against zero, p values were computed
by conducting two one-tailed tests against 0 (e.g., mean(difference in response trajectories < 0)

and mean(difference in response trajectories > 0) and doubling the smaller p value.
2.2.6.2 EEG Analysis

We examined the impact of coherence level, attention, and expectation on four ERP
components: the occipital component recorded from the Oz electrode, the parieto-occipital
component recorded from the POz electrode, the parietal component recorded from the Pz
electrode, and the centro-parietal component recorded from the CPz electrode. To evaluate the
influence of our manipulations on the amplitude of the ERp components, we used 1) three-way
repeated-measures ANOVAs with within-subject factors for target coherence (2 levels: low and
high coherence), attention (2 levels: focused and divided attention), and expectation status of
the target coherent orientation (2 levels: expected and unexpected orientation); and 2) paired t-
tests within-manipulation comparisons. These ANOVAs and paired t-tests were performed on
the mean ERP amplitudes across consecutive 50 ms windows from 200 ms before to 1000 ms
after target onset. Corrections for multiple comparisons were implemented using the false
discovery rate (FDR) method (Benjamini and Hochberg, 1995) based on data from all four

electrodes of interest.

The same ANOVA analyses and t-tests were then performed on the normalized SSVEP
amplitude recorded from the Oz electrode. This electrode was chosen as it displayed maximum
response amplitude at 30 Hz and 40 Hz. ANOVAs were performed on the target-aligned SSVEP
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response across consecutive 50 ms from 1) 500 ms before to target onset to target onset; 2)
target onset to 500 ms after target; and 3) 500 ms to 1000 ms after target onset. Corrections for

multiple comparison were computed separately for each of these three windows.
2.3 Results

The main goal of the present study was to orthogonally manipulate and examine the
effects of stimulus strength, changes in the distribution of selective attention, and expectation
about stimulus regularities on perceptual decision making. We used trajectories of behavioral
responses and response errors as behavioral markers of sensory and post-sensory decision-
related processes, respectively. Further, we used ERPs from the centro-parietal to occipital
electrodes and SSVEPs as neural markers of sensory encoding and early processing of
sensory information during perceptual decision making. If prior expectation improves decision
making by enhancing the efficiency of early sensory processing, we expect to see increased
ERP and SSVEP responses over visual cortex. However, if expectation improves decision
making by primarily modulating decisional and response-related processes, we expect to see
little impact of expectation on ERP and SSVEP responses. With our experimental setup, we
were able to directly test this hypothesis as well as to future investigate and compare the
temporal dynamics of expectation with those of stimulus strength and attention both behaviorally

and neurally.
2.3.1 Behavioral results

High target coherence and focused attention enhanced early sensory processing as indexed by
trajectories of behavioral responses. The response trajectory indicated the distance the joystick
had moved from the center at each time point (0 to 1300 ms after the onset of coherent
orientation). Notably, this measure represents a temporal integration of sensory information
about the coherent orientation as participants accumulate evidence that eventually leads to a
decision choice. The coherence level of the target orientation displays (high/low) affected
response trajectories from 675 to 1200 ms after the onset of coherent orientation (high > low
coherence; all resampled p < 0.05; Fig. 2.2a). Similar to high target coherence, focused
attention also enhanced the amplitude of response trajectories but its effect emerged much
earlier in time (266.7 to 966.7 ms after the onset of coherent orientation; all resampled p < 0.05;
Fig. 2.2b). Response trajectories were not modulated by manipulations of expectation (Fig.
2.2c). Fig 2.2d summarizes the effects of target coherence, attention and expectation. Fig. 2.2e
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shows the p values for each condition and at each time point (500 ms before the onset of

coherent orientation to 1300 ms after the onset; all resampled p < 0.05).

Expectation modulates biases baseline responses error. Response errors were computed as
the absolute difference at each time point between the participant’s response orientation and
the calibrated orientation for that participant (see Methods). The amplitude of the response
errors at each time point indexes the accuracy of the orientation judgment of participants, which
primarily reflects response-related operations. The coherence level of the target orientation
affected performance accuracy such that high orientation coherence decreased responses
errors from 541.4 to 1300 ms after the onset of coherent orientation and from 225 ms before
peaked response to 250 ms after peaked response (resampled p < 0.05; fig. 2.2f). Similarly,
focused attention also led to lower response errors from 691.7 to 716.7 ms after target onset
(resampled p < 0.05; fid. 2g). In contrast, expectation enhanced baseline performance accuracy
such that response errors were lower when the target coherent orientation was expected. This
effect was observed from 500 ms before target onset to 833.3 ms after target onset (resampled
p < 0.05; fig. 2.2h). Additionally, response errors were lower on expected trials from 500 ms to
133.3 ms before the peaked responses (resampled p < 0.05; fig. 2.2h). Fig 2.2i summarizes the
effects of target coherence, attention and expectation. Fig. 2.2j shows the p values for each
condition and at each time point (left panel: 500 ms before the onset of coherent orientation to
1300 ms after the onset; right panel: 500 ms before to 250 ms after the peaked response; all

resampled p < 0.05).
2.3.2 EEGresults

Expectation does not modulate the efficiency of early sensory processing. We used ERPs
recorded from the centro-parietal (Cpz), parietal (Pz), parieto-occipital (POz), and occipital (Oz)
electrode to index the magnitude of early sensory processing during a perceptual decision
making task. We analyzed the effects of target coherence, attention, and expectation on the
amplitude of target-aligned ERPs in sliding 50 ms windows and corrected for multiple
comparison using FDR method based on target-aligned data from CPz, Pz, POz, and Oz
electrodes (see Methods). Manipulations of target coherence and attention directed to target
coherent orientation influenced ERPs across all four electrodes at different time scales.
Focused attention induced early changes in the ERP responses across all channels (CPz:
target onset to 500 ms after target onset; tu2) = 3.24-5.01; p = 0.0003-0.0071; Cz: target onset
to 450 ms after target onset; tuz) = 3.17-4.67; p = 0.0005-0.0081; POz: target onset to 100 ms
and 150 to 250 ms after target onset; tu2) = 4.04; p = 0.0016; Oz: target onset to 50 ms after
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target onset; ta2 = 3.70; p = 0.0031, FDR-corrected threshold = 0.0106; Fig. 2.3b). The effect of
orientation coherence occurred later in time (CPz: 450 to 1000 ms; tu2) = 3.34-4.54; p = 0.0007-
0.0058; Cz: 500 to 850 ms and 900 to 1000 ms; t12) = 3.01-4.59; p = 0.0006-0.0109; POz: 950
to 1000 ms; taz) = 3.19-3.29; p = 0.0065-0.0077; Oz: 400 to 450 ms after target onset; taz =
3.03; p = 0.0105, FDR-corrected threshold = 0.0123; Fig. 2.3a). ERP responses were not

affected by manipulations of expectation.

We assessed SSVEPs from three different time windows: i) from 500 ms before target onset to
target onset; ii) from target onset to 500 ms after target onset; and iii) fron 500 ms to 1000 ms
after target onset. High orientation coherence increased SSVEP amplitude from 200 ms to 250
ms after target onset (t12) = 3.85; p = 0.0023; FDR-corrected threshold = 0.0023; Fig. 2.4a).
Manipulations of attention also affected SSVEP responses such that focused attention
enhanced SSVEP amplitude from 250 ms to 50 ms before the onset of coherent orientation (t2)
= 3.40-4.44; p = 0.0008-0.0053; FDR-corrected threshold = 0.0053; Fig. 2.4b). In contrast,
expectation had no effects on SSVEP responses. Notably, this pattern of results was similar to
what was observed in ERPs with the early modulation of focused attention that was followed by
the effects of orientation coherence. In addition, the lack of expectation effects was consistent
on both the ERP and SSVEP responses.

2.4 Discussion

In past studies, expectation was manipulated in a way that likely induced a shift in
attention, making it difficult to attribute any observed effects on early sensory processing to
expectation per se or to some combination of expectation and attention. For example, a recent
study used fMRI and a task where expectation about a target orientation (45° or a 135°) was
manipulated by an explicit cue presented at the beginning of each trial (Kok et al., 2012). This
cue provided information about what target feature to expect on each trial, but simultaneously
provided information about which target feature was relevant to performing the behavioral task.
Similar arguments can be made regarding other studies that examined the influence of
expectation on decision making (Kok et al. 2013; Kok et al. 2016; Kok et al. 2017; St. John-
saaltink et al. 2015; Lange et al. 2013; Jiang et al. 2013; Cheadle et al. 2015; Summerfield &
Egner 2016). A few studies have taken a further step to examine how expectations about
stimulus regularities interact with attention to modulate information processing, it is difficult to
interpret their findings due to a possible conflation of these two top-down signals as a result of
the use of explicit probabilistic cues (Jiang et al., 2013; Wyart et al., 2012). Therefore, the
selective role that expectations play in early sensory processing, and also how expectations
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interact with attention to modulate the overall flow of information through the visual system

remains unclear.

The present study investigated these questions by devising a continuous orientation
discrimination task where expectation about coherent orientation was manipulated such that
one (expected) orientation was presented as a target more frequently than other (unexpected)
orientations. Stimulus strength and the degree of attention being afforded to the relevant
stimulus were also orthogonally controlled for. As a result, the impact of expectation could
directly be compared to the effects of stimulus strength and to the effects of selective attention.
Specifically, we directly tested whether expectation about stimulus probabilities improved
decision making by enhancing the efficiency of early sensory processing. Behaviorally, we
showed that expectation did not impact response trajectories—a behavioral measure that
primarily reflects sensory processing and temporal integration of sensory information leading up
to a decision choice. In contrast, response trajectories were modulated by stimulus strength and
attention such that high orientation coherence and focused attention increased the amplitude of
response trajectories. Specifically, the effect of attention occurred earlier in time compared to
the effect of orientation coherence. These temporal dynamics were also observed in our ERP
and SSVEP results suggesting early processing of sensory information in our decision-making
task is sequentially modulated by selective attention and stimulus strength leading up to a
decision choice. Once a decision choice has been triggered, the response-related operations to
execute a motor response is modulated by prior expectation such that the response associated

with a more probable choice is preferred and thus will take less time to execute.

Taken together, our behavioral results reveal that prior expectation improves perceptual
decision making as by shifting baseline response errors and thus increasing performance
accuracy without impacting early processing of sensory information. This evidence for a
selective role of expectation on decisional and response-related processes was consistent with
the lack of expectation effects on the neural markers for sensory processing of information
throughout the visual cortex.
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Figures

focused
attention

divided
attention

Fixation Attention cue Target Nontarget
(400 - 800 ms) (600 - 1000 ms) (800 ms) (500 ms)

Figure 2.1: Experimental paradigm and analysis overview. A trial began with a fixation point
(400 to 800 ms) and was followed by an attention cue (600 to 1000 ms) to indicate the color of
the bars that would represent coherent orientation (target). A red (blue) attention cue indicated
that coherent orientation would be represented with red (blue) bars (focused attention
condition). A green attention cue indicated that coherent orientation would be represented with
either red or blue dots, i.e., the participant had to discern which color of bars was in coherent
orientation (divided attention). Coherent orientation was presented for 800 ms during which the
participant could start beginning to make a response by moving the joystick from the starting
point in the directions that match the perceived coherent orientation.
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Figure 2.2: Response trajectories and response errors. Target-aligned response trajectories
(left) and target-aligned response errors (middle) were plotted from the onset of coherent
orientation (0 ms) to 1000 ms after onset. Response-aligned response errors (right) were plotted
from 500 ms before target onset to 1250 ms after target onset. Response trajectories and
response errors were plotted a, as a function of orientation coherence (high/low), b, as a
function of attention (focused/divided), and c, as a function of expectation
(expected/unexpected). d, Differences in response trajectories and response errors for each
manipulation condition were plotted together with the associated p values (e). The amplitude of
response trajectories was higher on trials with high orientation coherence versus trials with low
coherence from 675 to 1200 ms after the onset of coherent orientation (resampled p < 0.05; a).
Focused attention led to a greater amplitude of response trajectories in comparison to divided
attention from 266.7 to 966.7 ms after target onset (resampled p < 0.05; b). Response
trajectories were not modulated by manipulations of expectation (c). Response errors were
lower when coherent orientation was presented at a high coherence than at a low level from
541.4 to 1300 ms after target onset and from -225 ms before peaked response to 250 ms after
peaked response (resampled p < 0.05; f). Response errors were lower when attention was
focused than when attention was divided from 691.7 to 716.7 ms after target onset (resampled p
< 0.05; g). Expectation reduced baseline response errors (i.e., prior to and at the onset of
coherent orientation), and this effect lasted from 500 ms before target onset to 833.3 ms after
target onset (resampled p < 0.05; h). Additionally, response errors were lower on expected trials
from 500 ms to 133.3 ms before the peaked responses (resampled p < 0.05; h). For e, the
legend is the same as in (d). Error bars for each of the three measures indicate 95% Cls
computed by resampling the data distribution.
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Figure 2.3: Event-related potentials (ERPs) as a function of orientation coherence, attention,
and expectation. Amplitude of ERPs was computed from all trials of each manipulation condition
recorded from centro-parietal (CPz), central (Cz), parieto-occipital (POz), and occipital (Oz)
electrode. ERPs are plotted from 200 ms before target onset to 1000 ms after target onset a, as
a function of orientation coherence (high/low), b, as a function of attention (focused/divided),
and c, as a function of expectation (expected/unexpected). Focused attention induced early
changes in the ERP responses across all channels (CPz: target onset to 500 ms after target
onset; Cz: target onset to 450 ms after target onset; POz: target onset to 100 ms and 150 to 250
ms after target onset; Oz: target onset to 50 ms after target onset), whereas the effect of
orientation coherence occurred later in time (CPz: 450 to 1000 ms; Cz: 500 to 850 ms and 900
to 1000 ms; POz: 950 to 1000 ms; Oz: 400 to 450 ms after target onset). ERP responses were
not affected by expectation.
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Figure 2.4: Steady state visually evoked potentials (SSVEPS) as a function of orientation
coherence, attention, and expectation. Normalized amplitude of SSVEPs was computed from all
trials of each manipulation condition recorded from Oz electrode. SSVEPSs are plotted in three
windows: (left), 500 ms before target onset to target onset; (middle), target onset to 500 ms after
target onset; and (right), 500 ms to 1000 ms after target onset. SSVEPs are plotted a, as a
function of orientation coherence (high/low), b, as a function of attention (focused/divided), and
¢, as a function of expectation (expected/unexpected). Focused attention led to higher SSVEP
amplitude from 250 ms to 50 ms before the onset of coherent orientation. High orientation
coherence increased SSVEP amplitude from 200 ms to 250 ms after target onset. Expectation

had no effects on SSVEP responses.
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Prior knowledge about the probabilistic structure of visual envi-
ronments is necessary to resolve ambiguous information about
objects in the world. Expectations based on stimulus regularities
exert a powerful influence on human perception and decision
making by improving the efficiency of information processing.
Another type of prior knowledge, termed top-down attention, can
also improve perceptual performance by facilitating the selective
processing of relevant over irrelevant information. While much is
known about attention, the mechanisms that support expecta-
tions about statistical regularities are not well-understood. The
hippocampus has been implicated as a key structure involved in or
perhaps necessary for the learning of statistical regularities,
consistent with its role in various kinds of learning and memory.
Here, we tested this hypothesis using a motion discrimination task
in which we manipulated the most likely direction of motion, the
degree of attention afforded to the relevant stimulus, and the
amount of available sensory evidence. We tested memory-
impaired patients with bilateral damage to the hippocampus and
compared their performance with controls. Despite a modest slow-
ing in response initiation across all task conditions, patients
performed similar to controls. Like controls, patients exhibited a
tendency to respond faster and more accurately when the motion
direction was more probable, the stimulus was better attended,
and more sensory evidence was available. Together, these find-
ings demonstrate a robust, hippocampus-independent capacity for
learning statistical regularities in the sensory environment in order
to improve information processing.

expectation | memory | hippocampus

Visual input provides inherently ambiguous information about
objects in the world (1). Prior knowledge about the proba-
bilistic structure of the world plays a critical role in resolving this
ambiguity (2). Thus, expectations about statistical regularities can
improve the efficiency of decision making (3-16). For example, we
learn from past experience that certain objects are more likely to
be seen in particular contexts. Thus, when presented with an im-
age of a gym, people are better at recognizing and processing in-
formation about a treadmill than a piano (17, 18).

A second factor that is based on prior knowledge, termed top-
down attention, can also improve perceptual performance by fa-
cilitating the processing of information that is immediately rele-
vant in the context of current behavioral goals (19-21). Attention
sharpens the quality of relevant information by increasing the
responsiveness of neurons in early visual cortex to task-relevant
signals (22-24). Thus, when looking for your car in a parking lot,
knowledge about its color, shape, and size can improve search by
selectively facilitating the processing of potentially relevant target
features. Critically, these 2 types of prior knowledge (expectation
and top-down attention) are different, because expectations about
what stimuli will be encountered in a given context can be entirely

independent of what stimuli are attended based on behavioral
relevance.

While much is known about attention, the process by which
expectation about statistical regularities is acquired and used to
guide behavior is not well-understood. The hippocampus has
been implicated as a key structure involved in or perhaps
necessary for the learning of statistical regularities (25, 26). In
one study, controls were faster on a visual search task when
search displays were repeated than when they were novel, but
amnesic patients did not exhibit this advantage (25). There is
some ambiguity about what damage was responsible for this
impairment, because MRI scans were available for only 2 of
the 4 patients tested and these indicated damage extending
well beyond the hippocampus. In a subsequent study (27), pa-
tients with hippocampal damage confirmed by MRI performed
similar to controls, that is patients, like controls, searched re-
peated displays faster than novel displays. An impairment was
observed only in a patient with damage extending beyond the
hippocampus to include the parahippocampal gyrus and lateral
temporal cortex.

In another study (26), a patient with large lesions of the medial
temporal lobe viewed a long sequence of stimuli that contained a
repeating pattern of 12 items. Unlike controls, the patient failed
to learn the pattern. However, knowledge was assessed by asking
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participants to explicitly report or recognize the repeating pattern.
These measures are unlikely to be representative of the patient’s
knowledge, as memory-impaired patients can exhibit knowledge
about the regularities in sequences indirectly through perfor-
mance, despite an inability to verbally report declarative knowl-
edge about the sequence (28). In the same way, patients can
successfully acquire skills or habits even when they are unable to
express knowledge about the task itself (29-31). Notably, in a
serial reaction time task, hippocampal patients and controls
learned a 12-item sequence of 4 button presses guided by visual
cues (28). Reaction time improved as participants practiced the
sequence and came to anticipate the order in which the cues
appeared. Critically, both groups markedly slowed their reaction
times when the sequence was unexpectedly changed, thereby
demonstrating that they had learned the sequence. Nevertheless,
the patients were unable to verbally report the sequence or to
recognize it. These considerations point out the utility of indi-
rect, performance-based measures to assess knowledge about
statistical regularities and raise doubts about the importance of
the hippocampus in acquiring such information.

The present study examined the contribution of the hippo-
campus to the learning of statistical regularities more directly by
devising a motion discrimination task in which expectation was
manipulated by presenting one (expected) motion direction more
frequently than other (unexpected) directions. Four memory-
impaired patients with bilateral damage to the hippocampus, as
well as controls, reported the direction of motion by moving a
joystick from the starting point to an end point along a trajectory
from 0 to 360° (Fig. 1). We also included 2 additional conditions:
(i) a manipulation of the amount of sensory information (high
versus low motion coherence) available in each stimulus display,
and (i) a manipulation of top-down attention (focused versus
divided). Manipulating the amount of sensory information allowed
us to parametrically assess interactions between the strength of
sensory signals with top-down attention and expectation. Notably,
sensory and attentional processes are thought to be independent
of hippocampal function on the basis of findings from patients
such as H.M. and E.P. (25-28). Accordingly, the manipulations of
sensory information and attention serve as control or baseline
conditions against which to evaluate the ability of patients to form
and use expectations about statistical regularities.

Results

Response Trajectories. The response trajectory indicated how far
the joystick had moved from the center at each time point (0 to
1,500 ms). The coherence level of the motion displays (high/low
coherence) affected controls and patients similarly (Fig. 24). For
controls, the trajectory amplitudes were different from 567 to
1,408 ms after stimulus onset (high > low coherence). For patients,
the trajectory amplitudes were different from 633 to 1,225 ms after
stimulus onset (high > low coherence) (all resampled P < 0.05).

Manipulations of attention (focused/divided) also affected con-
trols and patients similarly (Fig. 2B). For controls, the trajectory
amplitudes were different from 550 to 1,392 ms after stimulus
onset (focused > divided). For patients, the trajectory ampli-
tudes were different from 600 to 1,492 ms after stimulus onset
(focused > divided) (all resampled P < 0.05).

Expectation (expected/unexpected) also affected controls and
patients similarly (Fig. 2C). For controls, the trajectory ampli-
tudes were different from 508 to 892 ms after stimulus onset
(expected > unexpected) and also from 1,400 to 1,500 ms after
stimulus onset (unexpected > expected). This effect is not visu-
ally remarkable in Fig. 2C, but is clear in Fig. 2D. For patients,
the trajectory amplitudes were different from 567 to 1,017 ms
after stimulus onset (expected > unexpected) and also from
1,258 to 1,500 ms after stimulus onset (unexpected > expected).
Fig. 2D summarizes the effects of coherence level, attention, and
expectation. Fig. 2F shows the P values for each condition and
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Fig. 1. Sample trial. A trial began with an attention cue (1,000 to 1,500 ms)
to indicate the color of the dots that would represent coherent motion. A
white (black) attention cue indicated that coherent motion would be rep-
resented with white (black) dots. A blue attention cue indicated that co-
herent motion would be represented with either white or black dots, that is,
the participant had to discern which color of dots was in coherent motion.
(A) At 300 ms after stimulus onset (motion direction 112° in this case, as
indicated by the arrow), the participant has not yet begun a response, and
the black dot represents the stationary joystick. The response trajectory,
which is the distance that the joystick has moved from the center, remains
close to 0, and the response error is approximately at chance (90°). (B) At 700
ms after stimulus onset, the participant has accumulated some information
about the direction of coherent motion and begun a response, trying to
match the movement of the joystick to the direction of motion. The re-
sponse error shows the difference between the direction of the participant’s
response and the target motion direction at each time point. (C) At 1,000 ms
after stimulus onset, the participant has moved the joystick its maximal
distance. The response trajectory reaches its maximum at this time, and the
response error is now dose to 0.

at each time point (0 to 1,500 ms) (all resampled P < 0.05).
There were no interactions between coherence levels, attention,
and expectation on response trajectories for either controls or
patients.

Patients performed similar to controls across all 3 manipula-
tions of coherence level, attention, and expectation. Each patient
performed within the 95% confidence intervals of the control
group in all conditions (S7 Appendix). Note that the onset of these
effects was delayed in patients compared with controls (coherence
level: 567 ms [controls] vs. 633 ms after stimulus onset [patients];
attention: 550 ms [controls] vs. 600 ms [patients]; expectation: 508
ms [controls] vs. 567 ms [patients]; all resampled P < 0.05). As this
effect was similar across manipulations of bottom-up sensory in-
formation and top-down factors like attention and expectation,
this slowing likely reflects a modest impairment in the ability of
patients to exploit available perceptual information in the service
of decision-making tasks (27, 28, 32).

Response Errors. Response errors were computed as the absolute
difference at each time point between the participant’s response
angle and the calibrated angle for that participant. The magni-
tude of the response errors, before and after the onset of the
joystick movement, indexed the accuracy of the direction judgment
of participants.

The coherence level of the presented motion directions (high/
low coherence) affected controls and patients similarly (Fig. 34).
For controls, the magnitude of the response errors was different
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Fig. 2. Response trajectories. Response trajectories for controls and patients
with hippocampal lesions were plotted from the onset of coherent motion
(0 ms) to 1,500 ms after onset. (A-C) Response trajectories were plotted (A) as
a function of coherence level (highflow), (B} asa function of attention (focused/
divided), and (C) as a function of expectation (expected/unexpected). (D and E)
Differences in response trajectories for each manipulation condition were
plotted together with the associated P values. From 567 to 1,408 ms in
controls, and from 633 to 1,225 ms in patients (4), the joystick had moved
farther when coherent motion was presented at a high coherence than at a
low level (resampled P < 0.05). From 550 to 1,392 ms in controls, and from
600 to 1,492 ms in patients (B), the joystick had moved farther when at-
tention was focused than when attention was divided (resampled P < 0.05).
From to 508 to 892 ms in controls, and from 567 to 1,017 ms in patients (C),
the joystick had moved farther when coherent motion was presented in the
expected direction than in the unexpected direction (resampled P < 0.05).
In addition, from 1,400 to 1,500 ms in controls, and from 1,258 to 1,500 ms
in patients (C), the joystick had moved farther when coherent motion
was presented in the unexpected direction than in the expected direction
(resampled P < 0.05). For E, the legend is the same asin D. Error bars for each of
the 3 measures indicate 95% Cls computed by resampling the data distribution.

from 642 to 1,100 ms after stimulus onset (high < low coher-
ence). For patients, the magnitude of the response errors was
different from 733 to 1,050 ms after stimulus onset (high < low
coherence) (all resampled P < 0.05).

Attention (focused/divided) also affected controls and patients
similarly (Fig. 3B). For controls, the magnitude of the response
errors was different from 567 to 1,133 ms after stimulus onset
(focused < divided). For patients, the magnitude of the response
errors was different from 775 to 817 ms after stimulus onset
(focused < divided) (all resampled P < 0.05).
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Expectation (expected/unexpected) also affected controls and
patients similarly (Fig. 3C). For controls, the magnitude of the re-
sponse errors was different from 0 to 708 ms after stimulus onset
(expected < unexpected). For patients, the magnitude of the re-
sponse errors was different from 0 to 1,067 ms after stimulus onset
(expected < unexpected) (all resampled P < 0.05). Fig. 3D sum-
marizes the effects of coherence level, attention, and expectation.
Fig. 3E shows the P values for each condition and at each time point
(0 to 1,500 ms). There were no interactions between coherence
levels, attention, and expectation on response errors for either
controls or patients. Each patient performed within the 95% con-
fidence intervals of the control group in all conditions (S Appendix).

Discussion

‘We examined the contribution of the hippocampus to the ability
to learn statistical regularities by devising a motion discrimina-
tion task where expectation about motion direction was manip-
ulated such that one (expected) direction was presented more
frequently than other (unexpected) directions. We also asked if
patients with lesions to the hippocampus would benefit as much
as controls from the effects of focused versus divided attention
and from the effects of strong versus weak sensory evidence.
Despite a modest slowing in response initiation across all task
conditions, patients performed similar to controls. Both controls
and patients exhibited a similar benefit of expectation on re-
sponse accuracy and speed beginning immediately after stimulus
onset (Figs. 2C and 3C), both groups responded more quickly
and more accurately when attending to 1 color of dots versus
2 colors (Figs. 2B and 3B), and both groups responded more
quickly and more accurately when the sensory evidence was
strong (high coherence) than when it was weak (low coherence)
(Figs. 24 and 34). Together, these findings indicate that the ability
to learn statistical regularities, selectively attend to behaviorally
relevant stimuli, and perform better when given stronger sensory
evidence is intact after bilateral hippocampal lesions.

The present study used a continuous decision task, such that
performance could be assessed at all time points from stimulus
onset to response offset. Participants reported the direction of
motion by moving a flight simulator joystick along a path (0 to
360°) to match the perceived direction of moving dots. Knowl-
edge about the statistical regularities of motion direction was
indirectly assessed by measuring how far the joystick had moved
and how accurate the response was at each time point. These
indirect, performance-based measures were used because hip-
pocampal patients have been shown to acquire skills and habits
even when they do not have explicit knowledge about the task
itself (28), and even when they are unaware that they have been
tested before (29-31).

Expectation about statistical regularities improves information
processing and behavior in a variety of perceptual tasks (2, 14—
16, 33-35). Past work suggested that the hippocampus might be
critical in the learning of statistical regularities (25, 36) in light of
its importance for many forms of learning and memory. In our
study, however, patients successfully learned about statistical
regularities, and they were able to exploit expectations as well as
controls. Our results are in line with an earlier study that tested
hippocampal patients in a serial reaction time task. In that study,
participants learned a sequence of button presses guided by vi-
sual cues (28). Reaction time for both controls and patients
improved as they practiced the sequence and successfully learned
the order in which the lights would appear. Like controls, pa-
tients slowed their reaction times when the sequence of lights
unexpectedly changed. Despite this evidence for implicit knowl-
edge about the learned sequence, the patients were unable to
verbally report the sequence or to recognize it among 4 choices. A
similar finding was reported in an earlier study of statistical
learning in which a patient with large medial temporal lobe
lesions attempted to learn a repeating pattern of 12 items (26).
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Fig. 3. Response errors. Response errors for controls and patients with

hippocampal lesions were plotted from the onset of coherent motion (0 ms)
to 1,500 ms after onset. (A-C) Response errors were plotted (A) as a function
of coherence level (high/low), (B) as a function of attention (focused/divided),
and (C) as a function of expectation (expected/unexpected). (D and E) Differ-
ences in response trajectories for each manipulation condition were plotted
together with the associated P values. From 642 to 1,100 ms in controls, and
from 733 to 1,050 ms in patients (A), response errors were lowerwhen coherent
motion was presented at a high coherence than at a low level (resampled P <
0.05). From 567 to 1,133 ms in controls, and from 775 to 817 ms in patients (B),
response emors were lower when attention was focused than when attention
was divided (resampled P < 0.05). (C) Expectation reduced baseline response
errors (i.e., atthe onset of coherent motion; 0 ms), and this effect lasted until
708 and 1,067 ms after stimulus onset in controls and patients, respectively
(resampled P < 0.05). For E, the legend is the same asin D. Error bars for each of
the 3 measures indicate 95% Cls computed by resampling the data distribution.

As in Reber and Squire (28), this patient also failed to exhibit
knowledge of the sequence when asked for an explicit report of the
repeating sequence or when asked to recognize it. However, the
patient was not tested using indirect, performance-based measures
that might have revealed implicit knowledge about the sequence.

One way in which our task differed from previous tasks is in
the nature of the information needed to be learned and used to
support performance. To benefit from statistical learning in our
task, participants had to form knowledge about the direction
of motion that had the highest probability of being presented
in each test block. It is possible that the statistical learning of
other kinds of information (such as spatial locations) might yield
different results.

With the current task, we cannot determine if the effects of
expectation on response error reflect response bias or changes in
perceptual sensitivity or both. However, recent work has dem-
onstrated that response bias (ie., expectation about motor re-
sponses) affects information processing in the same manner as
expectation about stimulus features such as stimulus color and
orientation (34, 35). In addition, there is an effect of response
error at 0 ms (i.e., stimulus onset), consistent with an important
role for response bias. Thus, we argue that the effects on re-
sponse errors are primarily driven by changes in response bias
that occurred due to learned expectations about the motor re-
sponses associated with each of the expected coherent motion
directions.

In the present study, patients also benefited as much as con-
trols from manipulations of attention and the amount of avail-
able sensory evidence. These findings are consistent with a
sizeable literature showing that patients with hippocampal le-
sions perform well on tests of intelligence and perceptual func-
tion (37-41). That said, previous work has not specifically
examined the importance of the hippocampus for the top-down
deployments of selective attention. Thus, the intact performance
reported here, though not surprising, demonstrates directly that
the hippocampus is not necessary to exploit attentional cues in
order to determine behavioral relevance.

In summary, we evaluated statistical learning, attention, and
processing of sensory evidence in memory-impaired patients with
circumscribed hippocampal lesions. Patients and controls per-
formed similarly in all respects. Thus, patients exhibited a normal
tendency to perform faster and more accurately when the stimu-
lus was probable, behaviorally relevant, and provided stronger
sensory evidence. These findings demonstrate a robust capacity
for acquiring expectations about statistical regularities in the sensory
environment that can operate independent of the hippocampus.

Methods

Participants. Four memory-impaired patients participated with bilateral le-
sions thought to be limited to the hippocampus (CA fields, dentate gyrus, and
subicular complex) (Table 1). Patients D.A. and G.W. became amnesic in 2011
and 2001, respectively, following a drug overdose and associated respiratory
failure. K.E. became amnesic in 2004 after an episode of ischemia associated
with kidney failure and toxic shock syndrome. LJ. (the only female) became
amnesic during a 6-mo period in 1988 with no known precipitating event.
Her memory impairment has been stable since that time.

For the 4 patients, the average score per passage for delayed recall (30 min)
of 2 short prose passages was 1.0 segment (25 segments per passage). The
average score for delayed recall (10 min) of a complex diagram was 5.4
(maximum score 36). Paired-associate learning of 10 unrelated noun-noun
pairs summed across each of 3 successive trials was 3.8 pairs (30 pairs total)
(Table 2). On these same tests, 11 controls scored 20.2 for the prose passages,
18.3 for the diagram, and 24.1 for paired-assodate learning (42).

Estimates of medial temporal lobe (MTL) damage were based on guan-
titative analysis of magnetic resonance (MR) images from 19 age-matched,
healthy males for K.E. and G.W., 11 age-matched, healthy females for pa-
tient LJ. (43), and B young healthy males for D.A,; patients D.A, K.E, LJ,
and G.W. have an average bilateral reduction in hippocampal volume of 35,
49, 46, and 48 %, respectively (all values are at least 2.9 SDs from the control
mean). On the basis of 2 patients (LM. and W.H.) with similar bilateral
volume loss in the hippocampus for whom detailed postmortem neuro-
histological information was obtained (44), the degree of volume loss in
these four patients may reflect nearly complete loss of hippocampal neu-
rons. That is, patients LM. and W.H. had a nearly complete loss of hippo-
campal neurons, despite exhibiting considerable sparing of hippocampal
volume as measured by MRI. Apparently, neuronal death need not lead to
disappearance of all hippocampal tissue, perhaps because the tissue can be
supported to some extent by glia and white matter.

The volume of the parahippocampal gyrus (temporopolar, perirhinal,
entorhinal, and parahippocampal cortices) is reduced by -5, 11, —17, and
10%, respectively (all values within 2 SDis of the control mean). Minus values
indicate volumes that were larger for a patient than for controls. These
values are based on published guidelines for identifying the boundaries of
the parahippocampal gyrus (45, 46). Eight coronal magnetic resonance

54



Table 1.

Characteristics of memory-impaired patients

WMS-R
Patient  Age,y  Education,y  WAIS-IIl IQ  Attention  Verbal Visual General Delay
D.A. 34 12 95 104 90 91 90 56
K.E. 76 13.5 108 114 64 84 72 55
L.J. 81 12 101 105 83 60 69 <50
G.W. 58 12 108 105 65 86 70 <50

WAIS-III, Wechsler Adult Intelligence Scale lll; WMS-R, Wechsler Memory Scale Revised. The WMS-R does not
provide numerical scores for individuals who score <50. The 1Q score for D.A. is from the WAIS-IV.

images from each patient, together with detailed descriptions of the MTL
lesions, can be found elsewhere (47).

Ten healthy controls (3 female) also participated (mean age 64.9+ 135 y;
mean education 143 + 1.8 y). All procedures were approved by the In-
stitutional Review Board at the University of California, San Diego, and both
patients and controls gave written informed consent prior to participation.

Stimuli. In each of 2 ~1-h test sessions, participants completed a block of
calibration trials (n = 60 trials), a block of practice trials (n = 104 trials), and 5
test blocks (n = 104 trials for each block).

For the calibration trials, stimuli consisted of 400 black dots (diameter
0.18°) displayed in an annulus (outer diameter 22°; inner diameter 2.4°) on a
dark gray background {luminous intensity 42.68 + 2.20 cd/m’; Fig. 1). Black
dots within the annulus were flickered at 33 Hz for the duration of the trial,
and each dot was randomly replotted on each frame. On each trial, 100%
of the dots (i.e, 100% coherence) were coherently moved in one of the 5
possible motion directions (46 to 334° with 72° increments). Dot stimuli
moved at a speed of 100 pixels per ms. Participants were instructed to report
the motion direction of these moving dots via a USB-compatible flight
simulator joystick. The purpose of the calibration trials was to estimate how
each participant represented each motion direction. These estimates were
used to compute performance accuracy on the test trials.

For the practice and test trials, stimuli consisted of 200 black dots and 200
white dots (diameter 0.18°) displayed in an annulus, as in the calibration
trials, but surrounding an attention cue of either black, white, or blue. Black
and white dots within the annulus were flickered at 33 Hz for the duration
of the trial, and each dot was randomly replotted on each frame. During
coherent motion, either 50% (low coherence) or 70% (high coherence) of
the black (or white) dots was randomly selected on each frame to be dis-
placed in one of 5 possible motion directions (46 to 334° with 72° incre-
ments), while the remaining dots were assigned one of 5 other motion
directions. Dot stimuli moved at a speed of 100 pixels per ms. Participants
were instructed to report the motion direction of the moving dots via a USB-
compatible 360° flight simulator joystick.

Stimuli were presented on a PC with Windows XP using MATLAB
(MathWorks) and the Psychophysics Toolbox [version 3.0.8 (48, 49)]. Partici-
pants were seated 60 cm from the CRT monitor running at 100 Hz with a
gray background of 42.68 + 2.20 cd/m”.

Procedure. Participants performed a version of the random dot motion task
(50-52), such that the amount of sensory evidence (coherence levels), se-
lective attention, and expectation about target direction could be manipu-
lated. Participants completed 2 test sessions, each of which consisted of
calibration trials, practice trials, and 5 blocks of test trials as described above.
Each test trial began with a display consisting of an attention cue, either
black, white, or blue. A black or white cue informed participants to monitor
either the black or white dots (focused attention), and the blue cue in-
formed participants to monitor both black and white dots (divided atten-
tion) to determine which color of dots displayed coherent motion. After
1,000 to 1,500 ms, black and white moving dots were presented for 2,000
ms, such that a proportion, either 50% (low coherence) or 70% (high co-
herence) of either black or white dots, formed coherent motion in one of
the 5 possible directions. The remaining dots were randomly assigned to the
other 4 directions. Note that the attention cue was always valid such that on
focused-attention trials the coherent motion was represented by black dots
on half the trials and by white dots on half the trials. For each test block of
104 trials, half of the test trials were focused-attention trials and the other
half were divided-attention trials, yielding a total of 520 trials for focused-
and divided-attention conditions for each particdpant in each of the 2 test
sessions. Presentation of the moving dots was followed by a 500- to 800-ms
blank intertrial interval (ITI). For each test block, expectation about motion

direction was manipulated such that one (expected) direction (out of 5
possible directions) was presented on 69.2% of trials (72 trials per block),
whereas the other (unexpected) directions were presented egually on the
remaining 30.8% of trials (32 trials per block). The expected motion direc-
tion differed from one test block to another such that each of the 5 possible
motion directions was assigned as the expected direction in just one block
per session. Participants indicated the target motion direction by moving the
flight simulator joystick its maximal distance in a direction matching the
coherent motion. After making a response, participants returned the joy-
stick to the center in preparation for the next trial. Responses were con-
sidered valid when they occurred in the interval between stimulus onset and
Tl offset. In summary, each participant was given 1,040 trials. All 3 factors of
interest (attention, expectation, and coherence levels) were manipulated
orthogonally such that each participant was given a total of 520 focused-
attention trials (260 of which were low-coherence trials and the other 260
high-coherence trials), 520 divided-attention trials (260 of which were low-
coherence trials and the other 260 high-coherence trials), 720 expected tri-
als, and 320 unexpected trials.

To familiarize participants with the task and the joystick, practice trials
were given at the beginning of each session. There were a total of 104
practice trials from all attention conditions (focused/divided), coherence
levels (high/low coherence level), motion directions (46 to 334° in 72° in-
crements), and target color conditions (black/white). After practice, partici-
pants performed a block of calibration trials. Participants reported coherent
motion consisting of 100% coherent dots using the flight simulator joystick.
In each session, participants completed one block of 60 calibration trials (12
of each of the 5 possible motion directions).

Data Analysis. We first estimated how each participant responded to each of
the 5 motion directions (46 to 334° in 72° increments) by computing circular
medians of the participant’s responses to each motion direction on the
calibration trials (mean responses across controls and patients were 41.3,
127.5, 169.1, 250.6, and 303.5° for the motion directions of 46, 117, 189, 261,
and 333", respectively). These calibrated angles were later used as participant-
specific baselines to compute performance accuracy on the test trials for each
participant.

For each test trial in the main task, we first computed at each time point
how far the joystick had moved from the center (response trajectory). We
next identified the coordinate of the joystick at its maximum distance from
the starting point and used that value to compute the angle in degrees from
the starting point to the end point. We then computed the difference be-
tween the response angle at each time point and the calibrated response at
each time point (response error). Response errors could be recorded even
before the joystick began moving toward the end point, based on the direction
inwhich the joystick was oriented. Test trials where responses were either made
after the response deadline or where the response ermors at the joystick's
maximal distance were more than 150° were excuded from further analysis.

We also examined the effect of coherence level (lowrhigh), attention
(focused/divided), and expectation (expectediunexpected) on response trajectories

Table 2. Neuropsychological scores for memory-impaired patients

Paired-associate

Patient  Prose recall, segments  Diagram recall learning, pairs
D.A. 3 9 13
K.E. 0.5 4.5 2
L.J. 0 5 0
G.W. 0.5 3 0
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and response errors across time. Finally, we asked whether each patient's
performance conformed to control performance by comparing response
trajectories and response errors of each patient with the control averages.

Statistical Procedures. Due to the small number of participants (10 controls
and 4 patients), a bootstrapping procedure was performed to assess signif-
icant differences between conditions and to establish 95% confidence in-
tervals. Specifically, each of the bootstrapping iterations was performed by
resampling with replacement at the level of individual trials and computing
means for each comparison of interest. All reported confidence intervals (Cls)
were computed based on 1,000 bootstrapping iterations for each compari-
son. Note that this method constrains the resolution of P values to a lower
limit of P < 0.001. We generated permuted null distributions of response
trajectories and response emors for each particdpant, each condition, and
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Fig. S1. Response Trajectories of Individual Patients

Response trajectories of each patient were plotted together with the control averages. The 95%

confidence intervals (CIs) for each patient (in blue) and the CIs of the control group averages (in

grey) were plotted as a function of (A) coherence level (high minus low coherence). (B) attention

(focused minus divided), and (C) expectation (expected minus unexpected trials). First, we

computed the difference in response trajectories between high and low coherence condition

separately for controls and patients. This effect of coherence was delayed in patients compared to

controls (i.e.. 66 ms). and this delay was then used to shift the patient data here to aid visual

inspection. Each patient performed within or outside (in the direction of larger effects) the 95%

confidence intervals of the control group in all conditions (compare to Fig. 2D).
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Fig. S2. Response Errors of Individual Patients

Response errors of each patient were plotted together with the control averages. The 95%
confidence intervals (CIs) for each patient (in blue) and the CIs of the control group averages (in
grev) were plotted as a function of (A) coherence level (high minus low coherence). (B) attention
(focused minus divided). and (C) expectation (expected minus unexpected trials). Each patient
performed within or outside (in the direction of larger effects) the 95% confidence intervals of the

control group in all conditions (compare to Fig. 3D).
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