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Abstract: The valorization and dissolution of lignin using ionic liquids (ILs) is critical for developing
sustainable biorefineries and a circular bioeconomy. This review aims to critically assess the current
state of computational and machine learning methods for understanding and optimizing IL-based
lignin dissolution and valorization processes reported since 2022. The paper examines various
computational approaches, from quantum chemistry to machine learning, highlighting their strengths,
limitations, and recent advances in predicting and optimizing lignin-IL interactions. Key themes
include the challenges in accurately modeling lignin’s complex structure, the development of efficient
screening methodologies for ionic liquids to enhance lignin dissolution and valorization processes,
and the integration of machine learning with quantum calculations. These computational advances
will drive progress in IL-based lignin valorization by providing deeper molecular-level insights and
facilitating the rapid screening of novel IL-lignin systems.

Keywords: Density Functional Theory (DFT); biomass processing; lignocellulosic biorefineries;
lignin depolymerization; reactive force fields (ReaxFF); solvent screening; quantum chemistry; multi-
scale modeling

1. Introduction

The need for sustainable alternatives to fossil-based resources has driven significant
interest in lignocellulosic biomass as a renewable feedstock for biofuels and chemicals.
Lignin, which constitutes 15–35% [1] of this feedstock, offers significant potential as a
source for high-value products such as biofuels [2], materials [3], and pharmaceuticals [4].
Unlocking this potential is critical to the economic viability of the biobased economy [5].

The valorization of lignin presents several unique challenges. It resists solubiliza-
tion and depolymerization and is chemically complex [2]. Furthermore, the structure
and composition of lignin vary significantly depending on its biomass source and extrac-
tion method, resulting in different types of technical lignins (e.g., Kraft, lignosulfonate,
Organosolv, Soda) with distinct properties. These different types of technical lignins often
have different associated purities, molecular weights, and functional groups [6–9]. This
variability complicates efforts to develop universally applicable conversion technologies.
Most current biorefineries often combust the lignin rather than turn it into high-value
products [10–13].
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Ionic liquids (ILs) are promising solvents for lignin dissolution and processing, offering
a potential solution to the challenges associated with lignin depolymerization. ILs are
effective biomass solvents because of their thermostability, ability to dissolve a wide range
of substances, tunable nature, and low vapor pressure [14–16]. Their tunability is due
to the large number of possible cation–anion combinations. However, it is costly, labor-
intensive, and time-consuming to conduct experimental screenings of ILs due to the wide
range of cation and anion combinations. Computational screening, on the other hand, has
proven to be a viable option for multi-scale screening of “notable” solvents in biomass
processing [17–20]

The vast improvement in computational resources provides an opportunity for com-
putational studies to play a large role in identifying amenable ILs. However, significant
challenges remain in applying computational methods to IL-based lignin valorization.
These include accurately representing lignin’s structural heterogeneity, balancing computa-
tional cost with predictive accuracy, and translating molecular-scale insights to process-level
optimization. Additionally, the scarcity of standardized, high-quality experimental data
for training and validating computational models poses a barrier to developing robust
predictive tools.

This review aims to critically assess the current state of computational methods for
understanding and optimizing the IL-based lignin dissolution and valorization processes
reported since 2022. We examine the strengths and limitations of various approaches, from
quantum chemistry to machine learning. The scope of this review excludes experimental
methods, industrial-scale applications, and non-IL-based solvent systems. By highlighting
recent advances and identifying key knowledge gaps, we seek to provide a roadmap
for future research that will support the design of IL-based systems that allow for lignin
dissolution and valorization, ultimately contributing to the development of sustainable
biorefinery processes and a circular bioeconomy.

2. Screening of Ionic Liquids (ILs) Based on Modeling

Conducting experimental tests on all the potential cation–anion combinations in ILs
is difficult due to their multitude. To effectively handle this level of complexity in ILs,
computational screening methods are required. Because lignin is heterogeneous and has
different bonding patterns, it is difficult to say how it will solvate. When simplified lignin
models are used in simulations, they might not accurately represent how real lignin made
from biomass behaves, which lowers the accuracy of the screening data. Despite advances
in IL screening for lignin solvation, there are no general rules to predict which ILs are most
effective in deconstructing biomass. The absence of such guidelines leads to trial-and-error
approaches and slows down the discovery of optimal solvents. Accurately predicting the
critical thermodynamic properties (such as activity coefficients, excess enthalpy, and solubil-
ity parameters) for IL-lignin systems is challenging, as these depend on specific interactions
that vary widely among ILs and model lignin structures. Robust theoretical techniques
are required for efficient screening of the extensive range of ILs for lignin dissolution.
Recent improvements have facilitated the implementation of several predictive method-
ologies for simulating the thermodynamic parameters of IL-containing systems. Earlier
prominent techniques encompass the Perturbed Chain Statistical Associating Fluid Theory
(PC-SAFT) [21], which was used to calculate the thermodynamic properties of different
homologous series of ILs based on the bis(trifluormethylsulfonyl)imide anion ([NTf2]−);
group contribution approaches [22] were explored for estimating critical properties, normal
boiling temperatures, and acentric factors for IL; Quantitative Structure–Property Relation-
ships (QSPRs) [23] were used to estimate the infinite dilution activity coefficients for organic
solutes in IL; Monte Carlo (MC) molecular simulations [24] explored the understanding
the gas solubility in IL; Molecular Dynamics (MD) simulations [25] were performed to
understand the pure and mixed gas absorption in the ionic liquids; and the Conductor-like
Screening Model for Real Solvents (COSMO-RS) [26,27] model was applied for screening
of solvents for multiple applications such as asphaltene dispersion, gas absorption, and
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extraction of biologically active compounds [28–30]. It follows that the COSMO-RS model
is one of the most effective predictive approaches for screening ILs for various applications
due to its ability to quickly process vast IL datasets. Experimental investigations might be
conducted with much less time, money, and effort if ILs could be screened using predictive
techniques that only needed a small number of input parameters.

While emerging methods like COSMO-RS and machine learning (ML) have shown
promise, scaling these models to screen thousands of ILs with diverse lignin models requires
significant computational resources and optimization to ensure practical, cost-effective
screening [31,32]. Translating predictions into real-world applications is often hindered by
the complexity of IL synthesis, cost, and the need for reliable experimental data to find the
best solvents. COSMO-RS has previously been successfully used to predict thermodynamic
properties such as solubility in IL systems, activity coefficients (γ), and excess enthalpy (HE).
Several research articles emphasize the ability of these parameters to screen ILs for lignin
solvation [17,33,34]. The basic schematic diagram for in silico screening of ILs for lignin
solvation is shown in Figure 1. Various researchers used basic lignin model compounds,
such as p-coumaryl alcohol, sinapyl alcohol, and coniferyl alcohol, to represent the lignin
structure. The main links between the structural units of lignin are β-O-4 (β-aryl ether),
β-β (resinol), and β-5 (phenylcoumaran) [35]. As a result, researchers developed various
lignin models, which consist of three basic units (H, G, and S) with some basic linkages,
to investigate the impact of lignin structure on dissolving behavior. However, the current
understanding of ILs and lignin models remains relatively basic, posing a challenge in
formulating comprehensive guidelines for identifying the best solvents for lignin.
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Mohan et al. conducted an extensive screening of 5670 ILs, generated from 63 cations
and 90 anions, to assess their effectiveness in lignin dissolution [17]. The lignin structure
was built by joining all the major lignin linkages (β-O-4, β-β, 4-O-5, α-O-4, and β-5) present
in the native lignin, and the screening results were validated using the experimental data.
They identified that anions like acetate, methyl carbonate, glycinate, alaninate, and lysinate
were particularly efficient in breaking down lignin, especially when paired with cations
such as tetraalkylammonium ([TAA]+), tetraalkylphosphonium ([TAP]+), and pyridinium.
Specifically, ILs containing [TAA]+ and [TAP]+ showed great promise as solvents due
to their low viscosity, favorable Hansen solubility parameter alignment, and enhanced
hydrogen-bonding basicity. Yu et al. further studied 3886 ILs using COSMO-RS. They
used the 19 model structures of lignin (monomers, dimers, and trimers) for predictions and
validated them through experimental solubility tests [30]. The monomeric, dimeric, and
trimer structures of lignin fail to correctly represent the lignin molecule due to the absence
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of several different linkages found in lignin. Additionally, Kamlet–Taft parameters were
used to clarify the mechanisms involved in lignin dissolution, highlighting the importance
of IL screening in optimizing lignin processing. In a further extension of this work, Mohan
and coworkers explored the molecular mechanisms behind the effectiveness of cholinium
lysinate ([Ch][Lys]) IL in lignin processing [36]. Using MD simulations alongside COSMO-
RS, they determined that [Ch][Lys] serves as a promising solvent for lignin dissolution.
This preference is attributed to multiple factors, including increased molecular interactions,
extensive hydrogen bonding, a higher dissociation constant, and reduced viscosity. These
characteristics collectively enhance the efficiency of [Ch][Lys] in the dissolution of lignin.

2.1. Limitations of Solvent Screening for Lignin
2.1.1. Complexity of Lignin Structure

Most computational screening models simplify lignin’s structure to make simulations
feasible, but this can lead to inaccurate predictions. It is challenging to make a plausible
model of how lignin interacts with ILs because it is a very heterogeneous polymer with
many different functional groups and bonding patterns. Simplifying lignin into small
model compounds (such as guaiacol or syringol) does not capture the full complexity of the
polymer [31]. Lignin is a complex and diverse biopolymer that poses substantial obstacles
for characterization, depolymerization, and applications. Elaborating on the discourse re-
garding the “complex parameters” of lignin necessitates examining the following elements
that enhance its intricacy:

Structural Heterogeneity

The structural elucidation of lignin has revealed that 50% of lignin’s constituents con-
tain aromatic rings. Lignin consists of three principal monolignol units: p-coumaryl alcohol,
coniferyl alcohol, and sinapyl alcohol. These units constitute a stochastic network of ether
(C-O) and carbon–carbon (C-C) bonds. The irregular polymerization results in significant
structural diversity, complicating the prediction of lignin’s reactivity in processes or its
solubility in solvents. The composition of these monomers differs throughout plant species
and even within various tissues of the same plant, contributing to its complexity [37].

Branching and Cross-Linking

Lignin, in contrast to linear polymers, exhibits extensive branching characterized by
several inter-unit connections, including β-O-4 (alkyl aryl ether), β-5 (phenylcoumaran),
5-5 (biphenyl), and β-β (pinoresinol), among others. Likewise, the most abundant linkage
in both softwood and hardwood lignin is the β-O-4 linkage. These linkages provide a
three-dimensional matrix that inhibits depolymerization, leaving lignin more recalcitrant
than other biopolymers such as cellulose and hemicellulose.

Bond Variability

Lignin comprises robust C-C bonds and more reactive C-O bonds, necessitating
targeted cleavage strategies. The existence of many functional groups (hydroxyl, methoxy,
carbonyl, etc.) hinders selective bond cleavage. The reaction of various bonds is contingent
upon variables such as the solvent, catalyst, and temperature, complicating the regulation
of the breakdown of lignin and resulting in erratic product distributions.

Polydispersity

Lignin has a strong polydisperse molecular weight distribution, indicating a broad
spectrum of molecular weights and structural changes within any specific sample. The
polydispersity influences both the physical qualities and chemical reactivity, as varying
molecular weights react differently to processing conditions [38].
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Functional Group Diversity

Lignin possesses an abundance of functional groups (hydroxyl, methoxy, phenolic,
and carbonyl), with their distribution exhibiting variability. This variation affects lignin’s re-
activity, solubility, and interactions with other substances (e.g., catalysts, solvents). Further-
more, phenolic hydroxyl groups are crucial for antioxidant action, yet they can complicate
depolymerization due to their resistance to certain chemical transformations.

Lignin–Cell Wall Interactions

Lignin is not found in isolation; it is closely associated with other cell wall constituents,
especially cellulose and hemicellulose. These interactions create a rigid framework that
hinders the extraction and separation of lignin. The matrix inherently resists enzymatic and
chemical destruction, necessitating extreme conditions or innovative solvents for effective
fractionation of lignocellulosic biomass [39].

Source Variability

The composition and structure of lignin vary considerably based on the plant source
(e.g., hardwood, softwood, grasses). Softwood lignin is predominantly composed of
guaiacyl (G) units, whereas hardwood lignin comprises both guaiacyl (G) and syringyl (S)
units. These variations modify lignin’s reactivity and require distinct methodologies for its
conversion or valorization.

Future research should focus on improving computational power or algorithms to
allow simulations of larger, more complex lignin structures without compromising accuracy.

2.1.2. Solubility vs. Selectivity

While some ILs are excellent at dissolving lignin, their selectivity toward different
lignin fractions and derivatives remains a challenge. Current screening methods often
prioritize solubility over selectivity, potentially resulting in inefficient lignin fractionation
or subpar product quality. Future research should focus on ILs that are both highly soluble
and selective for specific lignin components [40].

2.1.3. Computational Screening and Predictive Models

While computational tools such as COSMO-RS and MD simulations can predict IL-
lignin interactions, their accuracy remains limited. There is a need for improved algorithms
and more comprehensive datasets that account for the variability in lignin structure and IL
chemistry. Future efforts should aim at integrating machine learning models with quantum
calculation data from first-principle calculation to enhance screening efficiency. Fixing
these issues will significantly advance future research in creating ILs for lignin valorization.
This will result in biorefinery processes that work better and last longer. In the context
of IL screening for lignin, computational screening and predictive models are becoming
vital tools. However, to improve their accuracy and efficiency, we must address several
challenges. One of the primary challenges in developing accurate predictive models for
IL-lignin interactions is the scarcity of high-quality “standardized” experimental data. Most
computational models, including machine learning (ML) approaches, require extensive
datasets to predict IL performance. Because there are not any standardized experimental
data for how lignin dissolves or depolymerizes in different ILs, it is challenging to make
reliable models. Future work should focus on generating large, consistent datasets that
capture both the structural variability of lignin and the wide range of IL chemistry.

2.1.4. Accuracy of Force Fields and Interaction Parameters

MD simulations and other computer methods utilize pre-established force fields to
illustrate the interactions between lignin and ILs. The complexity of IL chemistry and
lignin variability often limits the accuracy of these force fields, which is critical. Current
force fields might not capture subtle interactions such as hydrogen bonding or π-π stacking
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accurately. We need better machine-learned force fields that are made for ILs interacting
with biopolymers like lignin in order to make MD simulations more accurate.

2.1.5. Computational Cost

High-level computational methods, like ab initio MD (AIMD) or quantum mechanical
(QM) calculations, can give us a lot of information about how IL and lignin interact, but
they are time- and computer-intensive. Large-scale screening, which involves evaluating
hundreds or thousands of ILs, makes these methods impractical. To enhance the overall
efficiency of the screening process, it could be beneficial to strike a balance between the
costs associated with each step’s calculations and how accurate they are. We could achieve
this by developing hybrid methods that blend faster or less detailed models with occasional
high-precision calculations.

2.1.6. Uncertainty in Thermodynamic Predictions

We often use tools like COSMO-RS to guess the thermodynamic features of IL-lignin
systems, like their activity coefficients, how well they dissolve, and their Gibbs free energy.
However, these methods often have limitations for complex mixtures or systems with
strong intermolecular interactions and averaging predictions might not accurately capture
the specific behavior of the system [41]. Furthermore, predicting the impact of solvent
impurities can be challenging. Temperature variations and the impact of IL recycling on
lignin solubility continue to pose challenges. These uncertainties can lead to suboptimal
IL selection during screening. Future efforts should focus on refining these thermody-
namic models and incorporating uncertainty quantification to improve their predictive
capabilities.

In light of the aforementioned limitations, a conclusion table elaborating on the con-
straints of the solvent screening for lignin is presented in Table 1.

Table 1. Conclusion table elaborating on the constraints of the solvent screening for lignin.

Factor Limitation Impact on Lignin Screening

Lignin Structural Variability High structural diversity of lignin not
fully represented

Inconsistent solvent performance across
different lignin structural types

Lack of Universal Solvent No single solvent effectively dissolves all
lignin types due to their structural diversity

Screening results vary depending on the
source of lignin

Process Optimization Complexity
Optimizing conditions like temperature and
pressure is resource-intensive and may not

yield consistent results

Makes difficult for the benchmarking of
results with available data

Computational Expense High computational cost for large-scale
solvent screening with real lignin

Constrains the number of solvents and
conditions evaluated

Cosolvents System Neglect co-solvent system or presence
of water

Incomplete or limited understanding of
lignin dissolution in real-world scenarios

Predictive Models Over reliance on specific models without
experimental validation

Potential inaccuracies in predicting
lignin solubility

3. Ionic Liquids for Lignin Valorization

The process of breaking down lignin through the use of ILs is a developing area of
study aimed at transforming this intricate biopolymer, which is plentiful in plant biomass,
into useful low-molecular-weight substances [42]. The application of ILs in lignin depoly-
merization has become increasingly popular because of their distinctive characteristics,
such as adjustable acidity and basicity, excellent thermal stability, and re-usability to some
extent, which makes them perfect for promoting chemical reactions [43].

A lot of research using Density Functional Theory (DFT) and MD simulations has
provided crucial insights into the reaction mechanisms, energy barriers, and dynamics of
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interactions for complex reactions [44–48]. Recent investigations have explored the use of
ILs as solvents and catalysts for the depolymerization of lignin and model compounds,
utilizing DFT and MD simulations to reveal the mechanisms by which these substances dis-
solve and decompose lignin into valuable compounds. This theoretical framework allows
for the optimization of conditions to enhance the yield and selectivity of targeted phenolic
monomers throughout the depolymerization process. Disputes in the discipline frequently
center on the effectiveness and ecological consequences of employing ILs in contrast to
conventional techniques like reductive and oxidative depolymerization. Although some
researchers advocate for the selectivity and reaction control benefits of ILs, others express
apprehensions about their overall sustainability for their use in large-scale applications [49].

Furthermore, as discussed in the previous section, the complex nature of lignin’s com-
position and structure requires continuous research to thoroughly understand how various
ILs affect the depolymerization results and to enhance computational models for precise
predictions. With the ongoing evolution of computational techniques, the combination of
DFT and MD simulations is anticipated to significantly improve the comprehension and
optimization of lignin depolymerization, leading to more sustainable methods for biomass
valorization [50].

The comprehension of lignin depolymerization in the presence of ILs has consistently
been a captivating area of research; however, insights into the process via QM methods
have been limited when compared with experimental investigations. Nevertheless, there
have been limited theoretical investigations aimed at enhancing comprehension of the
process. This builds on several earlier investigations aimed at elucidating the cleavage
mechanism of traditional C-O bonds in lignin when exposed to different combinations of
ILs [45,46,51]. The earlier research focused on elucidating the catalytic mechanism for the
depolymerization of lignin model compounds in the presence of ILs. This was achieved by
examining the thermodynamics of the process, investigating the activation energy barriers,
and analyzing the bonding parameters within the lignin-IL complex system. Building
on a similar methodology, a recent investigation conducted by Liu et al. examined the
electrocatalytic depolymerization of lignin into valuable chemicals, presenting a promising
avenue for sustainable biorefineries [52]. The study utilizes dispersion-corrected DFT
calculations to elucidate the electrocatalytic reduction mechanism associated with the
depolymerization of lignin model dimers and oxidized lignin. The computational study
was completely focused on understanding the depolymerization of β-O-4-based model
compounds. The calculations clarify the role of the trimetallic ILs-PdNiBi catalytic system
in promoting the generation of a crucial radical intermediate and the release of products.
The anticipated energies of the reaction pathways validated the function of ILs with metals
in achieving total substrate conversion and elevated yields of phenols and acetophenones
by reducing the activation energy barriers, thereby aiding in C-O bond cleavage. The
development of C-O bond cleavage can enhance lignin valorization and utilization by
facilitating the selective breakdown of lignin into valuable chemicals while preserving
the functional groups necessary for material applications. For example, demethylation,
a specific form of C-O bond cleavage, involves breaking the bond between the methyl
group and oxygen in methoxy (-OCH3) substituents on aromatic rings. The process results
in increased phenolic content and the reactivity of lignin fragments serving as valuable
precursors for materials, phenolic resins, polyurethanes, etc. [53].

With recent advancements in the conversion of lignin into materials, DFT calculations
have been critical in elucidating the electron transport process and material’s electronic
structure. Chen et al. recently published a study in which they used lignosulfonate as a
carbon source from biomass to make ultrahigh-energy density supercapacitor electrodes.
Calculations were performed to gain a deeper insight into the process of electron transport.
Simulations grounded in DFT also contributed to a deeper understanding of the electronic
and ionic characteristics, as well as the adsorption energies of the fabricated supercapacitor
electrodes. This kind of research concerning material synthesis involving lignin and ILs is
experimentally accessible, yet it remains limited from a theoretical standpoint, owing to the
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challenges posed by lignin’s complicated structure that requires resolution [54]. DFT-based
optimization of lignin modifications and studying structure–property relationships can be
achieved and would be of great help in the future. By revealing lignin’s complex molecular
behavior, these multidisciplinary approaches help speed the development of lignin-based
materials and sustainable technologies.

The integration of QM calculations with ML techniques has proven to be a signif-
icant advantage in this domain, accelerating the prediction and validation of reaction
mechanisms while minimizing computational effort and associated expenses. A recent
investigation by Ding et al. effectively utilized machine learning alongside QM calculations
to predict the bond cleavage efficiency of a set of approximately 103 possible ILs on the
β-O-4 bond of guaiacyl glycerol-β-guaiacyl ether (GGE), achieving a strong correlation
between the predicted bond dissociation energy and the experimental yield of guaiacol,
emphasizing the reliability of the ML model [55]. The study pinpointed imidazolium-based
cations paired with tyrosine anions as ideal candidates for future applications in the precise
cleavage of lignin. This approach showcases an innovative method that bypasses the
necessity for intricate activation barrier energy calculations while greatly minimizing the
time required for evaluating potential ILs. DFT calculations have been helpful to gener-
ate a lot of useful molecular descriptors that can be used by the ML models. In another
study performed, DFT-generated datasets were used as the input parameters for training
ML models to understand the photocatalytic cleavage of C-C bonds in lignin-derived
structures [56]. The extent of datasets for training ML models is restricted by the high
computational cost of DFT. The generalization of ML models to a variety of systems may
be impeded by the scarcity of data. Furthermore, while ML can expedite predictions, it
frequently compromises accuracy in comparison to DFT. Nevertheless, these studies were
limited to model monomeric/dimeric molecules and there is an urgent need to expand
these calculations to various model polymeric lignin structures to gain further insights. The
primary challenge in combining these methods is the delicate balance between the reliabil-
ity of results and computational efficiency, especially when dealing with a combination of
ILs and lignin systems.

On the contrary, methods such as MD simulations have emerged as a key tool in
deciphering the intricate process of lignin depolymerization. These simulations offer a
deeper understanding of the structural dynamics and interactions with solvents. In a study
by Hackenstrass et al., the authors conducted classical MD simulations to uncover intricate
details about the structural dynamics of lignin dimers, illustrating how different linkages
influence lignin conformation and its interaction with water [44]. The structures used for
predictions were based on dimers composed of common linkages found in lignin, including
4-O-5, 5-5, α-O-4, β-1, β-5, β-β, and β-O-4. This information is essential for predicting the
solubility and reactivity of lignin in polar solvents. The study reveals that the β-O-4 linkage
exhibits unique characteristics regarding its conformational flexibility and water interaction,
which are essential for its solubility and depolymerization processes. Similar predictions
can be noted in the presence of ionic solvents. In a recent study, the behavior of lignin
with multiple chains was investigated within the 1-ethyl-3-methylimidazolium acetate
and water system. The analysis of simulation trajectories revealed that lignin formed an
aggregated complex in pure water, preserving its hydrophobic regions. Lignin chains
were observed to disentangle and extend their conformation at varying concentrations
of ILs in the system. The authors investigated the interaction patterns of multiple lignin
chains with guaiacyl decamer in the presence of ILs, which can offer insights into the
dissolution phenomenon of lignin at the atomic level [18]. Additionally, reactive force field
(ReaxFF) simulations have emerged as an essential asset to the community. The ability
to realistically replicate the dynamics, reactivity, and effects of solvents on the solute is
a further advantage of using ReaxFF-based simulations [57]. As a result of the ease of
simulating small chemical structures, ReaxFF-based simulations have been conducted on
lignin-derived structures. Since it is difficult to replicate the complex and heterogeneous
nature of lignin, model compounds are frequently used by researchers. A model compound
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of lignin serves as a simplified representation of a particular structural unit, allowing
for a focused investigation of the specific bonds or functional groups present in natural
lignin. Nonetheless, a few studies have investigated the use of this method for the thermo-
oxidation of lignin or lignin-based products. ReaxFF simulations were employed in a study
to investigate thermal decomposition in an oxygen environment for models that represented
the most prevalent linkages found in softwood. This revealed the reaction pathways of
dominant reaction products [58]. A ReaxFF-based simulations were used to investigate the
oxidative stabilization of softwood lignin for carbon fiber production. It focuses on lignin
fragments derived from coniferyl alcohol units, revealing that the 5-5 linkage exhibits the
highest reactivity towards cyclization and dehydrogenation, which is crucial for forming
the rigid connections necessary for stabilization [59]. The structures used in this study
consist of five to six coniferyl alcohol units connected through different linkages (namely
4-O-5, 5-5, α-O-4, β-1, β-5, β-β, and β-O-4). Two structures were preferred, including 9
lignin fragments containing 5 monolignols, 9 lignin fragments containing 6 monolignols,
and 396 oxygen molecules. The cost-effectiveness associated with ReaxFF in comparison
to conventional MD simulations facilitated the utilization of large structures. In a recent
study, Ahmad et al. presented a technique for identifying products and their pathways in
thermo-oxidation reactions through ReaxFF simulations, aiming to elucidate the dynamics
and reactivity of the thermo-oxidation of two model structures of modified lignin [60].
Nonetheless, employing ReaxFF simulations to comprehend the utilization and valorization
of lignin with ILs requires significant advancement, particularly in the development of
accurate force fields for extensive lignin structures and ILs.

Recently, a new theoretical strategy named “Advanced real-time molecular sensing
strategy” was introduced, which is claimed to be capable of capturing the dynamic nature
of lignin reactions, including delignification and de/repolymerization. The work integrated
the combination of DFT, AIMD, and kinetic Monte Carlo (kMC) simulations, constituting
a comprehensive framework for assessing various lignin properties. This approach was
capable of providing real-time molecular level information about dissolved lignin chains
during delignification, including molecular weight distributions and the S/G ratio under
diverse reaction conditions. However, this study was not conducted with ILs, but it can
surely be a usable synergistic integration of theoretical approaches with experimental
data for the understanding of the lignin systems in presence of ILs and their potential
for sustainable biorefineries in the future [61]. A comprehensive grasp of this subject can
aid in the formulation of a cost-effective process for lignin dissolution using ILs and even
depolymerization, ultimately facilitating an improved biorefinery operation.

3.1. Challenges

Despite the advances made using DFT and MD simulations, several challenges remain.
One significant challenge is the computational cost associated with simulating large lignin
structures. While DFT is excellent for small systems, its computational expense becomes
prohibitive for larger systems, necessitating the use of simplified lignin models, which may
not fully capture the complexity of real lignin.

One significant challenge lies in the accuracy of the models used to represent lignin’s
complex structure. Different approaches, such as using repeating building blocks or a
stochastic approach to vary linkages and monomers, aim to create representative lignin
models. However, these models often come with inherent uncertainties, especially regard-
ing the linkage distributions, which can have a margin of error of up to 5% [62]. Such
discrepancies can lead to variations in the predicted behavior of lignin during depoly-
merization processes. Furthermore, the MD simulations are influenced by the time step
chosen, with common practices employing smaller time steps. However, lower Metropolis
temperatures or increased Monte Carlo (MC) events might improve simulated statistics but
also increase computational complexity.

Additionally, accurately modeling ILs is challenging due to the wide range of inter-
actions, such as hydrogen bonding, van der Waals forces, and electrostatic interactions,
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present in these systems. High-level quantum chemical methods are often required to model
these interactions accurately, making simulations computationally intensive. Moreover,
the dynamic behavior of ILs, especially when mimicking the real experimental conditions,
adds another layer of complexity to the simulations. Reactive simulation techniques can
be useful to understand the dynamic structures of lignin and ILs, as well as being capable
of tracking the reaction in the presence of solvents and catalysts. Polarizable force fields
were introduced in conjunction with reactive force field simulations to address the simula-
tion concerns related to ILs, and they may be more accurate in capturing local electronic
effects than non-polarizable force fields. Their limited DFT use to date is certainly due to
increasing computing cost or difficulty in implementation, despite their capacity to mimic
more delicate electronic characteristics [63,64]. The major advantage of the method of
ReaxFF is its ability to show how chemical reactions occur with no preassigned connectivity,
which is useful for a number of dynamic studies in the chemistry and materials science
fields. However, the method has limitations, especially when applied on larger structures.
These are the advanced processes of parameterization, lower precision in relation to QM
calculations, and difficulties in interpreting the simulation results of complex systems. Also,
it should be noted that while ReaxFF allows carrying out simulations that are many times
larger than QM calculations allow, there are also limitations in practical terms for the size of
the model and for the duration that can be simulated [57]. Table 2 presents a comprehensive
overview of the simulation parameters discussed in this section of the paper, which covers
the types of lignin structures, ILs, and simulation methodologies that are pertinent to the
valorization of lignin.

Table 2. Details about the lignin structure, ILs, and simulation methods discussed related to the
valorization of lignin using ILs or solvents.

Types of Lignin or Lignin-Derived Structures Ionic Liquids Simulation Methods Reference

Phenyl p-hydroxycinnamate [Bmim][FeCl4] DFT calculations [45]

Guaiacyl glycerol-β-guaiacyl ether [C3SO3Hmim][HSO4] DFT calculations
MD Simulations [51]

Phenethoxybenzene
2-Phenoxyacetophenone

[Pyr13][NTf2]
[Pyr14][OTf]

[N1113][NTf2]
Periodic DFT calculations [52]

Guaiacyl glycerol-β-guaiacyl ether Combination of 29 cations and
33 anions, around 1000 possible ILs

DFT calculations;
ML Technique [55]

3.2. Future Perspectives

Numerous prospective avenues may aid in addressing these challenges and enhancing
the theoretical comprehension of lignin depolymerization through the use of ILs.

3.2.1. Integration of ML

By training models on existing data from DFT and MD simulations, researchers could
forecast the properties of new ILs and the structural properties of lignin without relying on
resource-intensive quantum chemical calculations. This method has the potential to greatly
accelerate the identification of novel ILs for the depolymerization of lignin.

3.2.2. Advanced Multi-Scale Modeling

The combination of DFT and MD within a unified multi-scale framework would enable
researchers to effectively capture both the electronic and dynamic behaviors involved in
the depolymerization of lignin in ILs. This method may offer a comprehensive perspective
on the depolymerization process and contribute to the formation of more effective ILs. The
development of accurate reactive force fields for lignin and ILs can also be a solution to this
field, as they can capture the reactive dynamics of the system at a lower computational cost
in comparison to classical MD simulations. Another method to be worked on intensively is
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DFT-based transition state calculations for complex molecules such as lignin, which are
time-intensive, challenging, and susceptible to convergence issues. In order to resolve this
matter, the implementation of multi-level hybrid methods that integrate semi-empirical
approaches with DFT has the potential to expedite these calculations, thereby enhancing
accuracy and efficiency.

3.2.3. Selective Catalysis

Formulating tailored ILs that focus on particular lignin linkages (e.g., C-O, and C-C)
while reducing unwanted side reactions will be essential for enhancing lignin depolymer-
ization. The computational data analyzed through DFT and MD simulations are quite
limited and have primarily been applied to a specific group of ILs, which restricts the
overall understanding and should be expanded.

4. ML Methods for Lignin Processes

ML techniques are increasingly being applied to optimize and predict the outcomes in
lignin valorization processes using ILs, as also highlighted in the previous sections. This
emerging approach offers significant potential to accelerate research and development
by reducing the need for time-consuming and costly experimental work across various
scales—from molecular interactions to process development.

The synthetic flexibility of ILs lends itself to large datasets. As a result, they provide
ample opportunity for ML methods. As a result, a growing amount of research has
been published on the use of ML for ILs [65]. The use of ML for ILs in general has been
comprehensively reviewed before [66]. Furthermore, the use of ILs with ML for applications
such as CO2 capture [67] and thermo-chemical properties [68] has also been reviewed. But
in this section of the review, we focus specifically on ML applications for lignin extraction
and valorization.

At the molecular level, ML is proving valuable for predicting the fundamental prop-
erties crucial for IL-based lignin processing. More sophisticated approaches using graph-
based genetic algorithms and graph neural networks have been developed for solvent
design in lignin-first biorefineries. This framework designed numerous solvents with
high potential for lignin solubilization, demonstrating solubilities between 20 and 60 wt%
across different lignin types, including Kraft lignin from softwood, organosolv lignin from
hardwood, and herbaceous lignin from corn cob by mild acidolysis [19]. Complementing
this, other researchers have developed predictive toolsets that combine Hansen solubility
parameters, COSMO-RS predictions, and ML models to identify effective lignocellulosic
pretreatment solvents. These approaches not only predict solvent effectiveness but also pro-
vide insights into the dissolution mechanism through quantum chemical calculations [32].
Furthermore, recent work has utilized explainable ML models based on Kamlet–Taft and
polarity parameters to predict and optimize lignocellulose pretreatment efficiency, offering
both high predictive accuracy and the interpretability of solvent properties crucial for lignin
processing [69].

Moving to catalyst design, ML is also being applied to optimize both chemical and
biological catalysts for lignin processing. While not specifically focused on ILs, work on
using ML to engineer cytochrome P450 enzymes for the optimal bioconversion of lignin
fragments demonstrates the potential of this approach [70]. Similar techniques could be
adapted to design catalytic ILs or to optimize IL-enzyme systems for lignin valorization. In
the realm of chemical catalysis, ML models have been developed to predict the catalytic
activity of ILs for cleaving the β-O-4 bond in lignin. The best model achieved an R2 value
over 0.93, allowing rapid screening of potential IL catalysts [55]. This work highlights
how ML can accelerate the discovery and optimization of IL-based catalytic systems for
lignin depolymerization.

Considering larger scales, ML is being applied to optimize reaction conditions and
predict process outcomes. Random forest regression has been used to predict bio-oil
yield and char yield from IL-catalyzed lignin depolymerization, achieving R2 scores of
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0.91 and 0.94, respectively [71]. These types of predictive models can help researchers
identify promising reaction conditions without extensive experimental trials. The power
of ML in uncovering non-obvious relationships in lignin processing has been further
demonstrated. Using algorithms like XGBoost to model lignin hydrogenolysis revealed
that parameters such as the lignin-to-solvent ratio and catalyst pore size had large impacts
on outcomes [72]. This type of insight can guide more targeted experimental design and
process optimization. At the process development level, Bayesian optimization has been
applied to simultaneously optimize multiple lignin properties in an IL-based biorefinery
process. This allowed efficient navigation of the multi-dimensional process parameter
space and identification of optimal conditions, significantly accelerating the development
and scale-up of IL-based lignin valorization processes [73].

An important consideration in applying ML to lignin valorization is the selection
and engineering of appropriate descriptors or input features. While many studies use
readily available parameters like IL cation/anion identities and reaction conditions, more
sophisticated approaches are emerging. Various molecular representation techniques for
ILs have been reviewed, highlighting the potential of natural language processing methods
that can learn directly from SMILES strings or other text-based molecular notations [66].
Building on this, Transformer Convolutional Neural Networks operating on SMILES
inputs have been found to outperform traditional descriptor-based models for predicting
IL melting points [74]. This suggests that advanced text-based ML models could offer
improved predictive power for IL properties relevant to lignin processing. The use of
explainable ML models is particularly noteworthy. Models have been developed to predict
lignocellulose pretreatment efficiency based on Kamlet–Taft and polarity parameters [69].
Such approaches not only achieve high predictive accuracy but also provide insights into
the relative importance of different solvent properties. This type of interpretable ML model
is crucial for gaining scientific insights and building trust in ML predictions for lignin
valorization processes.

Beyond reaction optimization, ML is also being applied to analytical techniques
relevant to lignin research. ML models have been used to predict the lignin content in
poplar wood using Raman spectroscopy data [75]. This showcases how ML can enhance
rapid characterization methods, potentially enabling real-time monitoring and control of
lignin processing for downstream processing.

Despite these advances, challenges remain in applying ML to IL-based lignin val-
orization. The available datasets are often small and fragmented, and the complex, hetero-
geneous nature of lignin poses difficulties for developing universally applicable models.
Proper validation is crucial, as the random splitting of limited IL datasets can lead to overly
optimistic performance estimates [74].

Looking forward, integrating ML with high-throughput experimentation could enable
rapid closed-loop optimization of IL-lignin systems. Incorporating mechanistic knowledge
into ML architectures may improve accuracy and interpretability. There is also significant
potential in applying ML to analyze spectroscopic and analytical data from IL-lignin reac-
tions, potentially yielding new chemical insights. ML methods have already demonstrated
clear value in accelerating research on IL-based lignin valorization across multiple scales,
from molecular design to process optimization (Table 3). As datasets grow and algorithms
improve, ML is likely to play an increasingly central role in this field.

Table 3. ML applications in IL-based lignin valorization.

Key Findings/Outcomes ML Methods Reference

Predicted solvent properties XGBoost, RF, GPR, SVR, KNR [69]

Predicted IL catalytic activity ANN, SVR, LR, RF, GBDT [55]

Predicted bio-oil yield and char yield from IL-catalyzed
depolymerization RF [71]
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Table 3. Cont.

Key Findings/Outcomes ML Methods Reference

Optimized hydrogenolysis outcomes using lignin-to-solvent ratio
and catalyst pore size LightGBM, XGBoost, and CatBoost [72]

Optimized multiple lignin properties in IL-based biorefinery process Bayesian optimization [73]

Predicted IL melting points using SMILES inputs Transformer Convolutional Neural
Networks [74]

Predicted lignin content in poplar wood SVR, RF, LightGBM, CatBoost, XGBoost [75]

Abbreviations: Extreme gradient boosting (XGBoost), Random forest (RF), Gaussian process regression (GPR),
Support vector regression (SVR), Linear regression (LR), K-neighbor regression (KNR), Artificial neural network
(ANN), Gradient boosting decision tree (GBDT).

5. Conclusions

Given the need to valorize lignin for a sustainable biorefinery, this review highlights
the expanding influence of computational methods and machine learning approaches in
lignin processing using ILs. The substantial progress in computational resources, including
the integration of ML techniques, has significantly reduced the timeline of optimizing
deconstruction through data-driven methods to gaining atomic- and molecular-level in-
sights into complex lignin-IL interactions. This review additionally identifies the major
research gaps and potential future directions to tackle unknown challenges in lignin val-
orization using ILs. For instance, the need for the (a) extensive experimental validation
of simulated/predicted data, (b) introduction of complexity in lignin structure, (c) stan-
dardization of simulated data and open access data-sharing, and (d) integration of ML
with high-throughput experimentation. Ongoing advancement and expansion of com-
putational methods to enhance lignin dissolution and valorization, particularly through
next-generation predictive paradigms, are crucial for establishing the fundamental science
needed to develop and optimize effective lignin conversion processes. In summary, realiz-
ing the full potential of lignin as a renewable feedstock will require continued collaboration
between data scientists, chemists, and chemical engineers to develop ML tools tailored for
the unique challenges of IL-lignin systems.
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