UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Hidden-Object Indexing: Claims at Two Temporal Levels

Permalink
https://escholarship.org/uc/item/98m5c4gy

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 19(0)

Author
Altmann, Erik M.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/98m5c4gv
https://escholarship.org
http://www.cdlib.org/

Hidden-Object Indexing: Claims at Two Temporal Levels

Erik M. Altmann
Krasnow Institute for Advanced Study
George Mason University
Fairfax, VA 22030
altmann@gmu.edu

This abstract is concerned with the memory phenomena
underlying directed access to hidden external information.
Such access depends on knowing what information exists in
the environment. That is, it depends on having a memory
for hidden objects that functions as an index in which to
look them up when they are relevant to the task at hand,

Examples of hidden-object indexing come from a study in
which we observed a programmer working in a real-world
task environment (Altmann, 1996; Altmann, Larkin & John,
1995). The programmer interacted with an interpreted
program. She issued multiple queries and run commands to
the interpreter, thereby generating a large buffer of output.
Only a fraction of this buffer could fit on the screen at once,
but hidden portions could be scrolled back into view.
Occasionally the programmer scrolled back to some hidden
object. These scrolling events, as well as the original
appearance of each scrolled-to object, were captured in a log
of process data that included verbal and keystroke protocols
and all screen changes.

Altmann (1996) describes five of these scrolling events in
detail. In two of them, the object was hidden for less than
30 seconds, and during that time remained closely relevant
to the programmer’s current goal. For example, in one case
the programmer wanted to compare two program fragments,
with one fragment hidden. The programmer probably kept
the hidden fragment active in working memory (WM) as a
basis for comparing to the visible fragment.

In the three remaining scrolling events, the scrolled-to
object was hidden for up to several minutes, during which
the programmer performed other tasks. This implicates
long-term memory (LTM), because the object is unlikely to
have remained active in WM the entire time it was hidden.
Apparently some trace was stored in LTM when the object
was first attended, and was retrieved later as a basis for
deciding to scroll back to the object. The protocol data
show no evidence that the trace was stored prospectively out
of anticipation for future recall demands; the encoding
seems to have been largely incidental.

We implemented a computational model spanning all five
scrolling events and intervening behavior (Altmann, 1996).
For each event the model encodes the object of interest
when it first appears on the screen. Later, the model scrolls
to that object based in part on the trace encoded earlier. The
model is constrained on two fronts: the underlying
architecture (Soar; Newell, 1990) imposes theoretical
constraints on learning and memory, and the behavioral data
impose different functional requirements on the memory for
an object, depending on whether the object was hidden
recently or not.

In the short term, the model must be able to maintain an
active record of an object’s existence while that object is
hidden. This is implemented as follows. If an object
encoded in WM disappears from the screen, the model tags
the corresponding WM code as recently-hidden. The
[object, recently-hidden] pair persists briefly in WM after
the object becomes hidden, for an interval spanning at least
the current goal. During this interval the model remains
aware of the hidden object. The recently-hidden tag is
cheap to compute, because the visual process that monitors
the screen exploits high-level spatial knowledge that
prevents having to monitor every object. (The model must
have this spatial knowledge anyway, to account for an
independent dimension of the programmer’s behavior.)
Thus the theoretical claim is that people maintain an active
index of recently-hidden objects, and that this maintenance
is cheap enough to be automatic.

In the long term, the model must store some record of an
object in LTM, and be able to activate this record later
should the object become relevant. The model encodes
episodic traces in LTM, as a side effect of attention. Each
such trace represents the event of attending to an object.
The trace is associative, in that it requires a cue for retrieval.
The required cue is an image of the attended object
appearing in WM. When the object is hidden, this image
must be generated from memory. Thus the model must
generate images (from LTM) in order to retrieve episodic
traces (also from LTM). This is too costly to be plausible
for short-term indexing, because it involves multiple
successive retrievals from LTM. However, encoding is
cheap enough to be automatic, as a result of Soar’s learning
mechanism. Thus the claim is that people automatically
acquire pointers to objects as a side effect of attention, and
activate these pointers when necessary using a deliberate,
knowledge-based process of cue generation.

References

Altmann, EM. (1996). Episodic Memory for External
Informarion. Doctoral dissertation, School of Computer
Science, Carnegie Mellon University, Pittsburgh.

Altmann, E.M., Larkin, J.H. & John, B.E. (1995). Display
navigation by an expert programmer: A preliminary
model of memory. CHI 95 Conference Proceedings.
New York: ACM Press.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge: Harvard University Press.

853

	cogsci_1997_853

