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Abstract	
Although a universal code for the acoustic features of animal vocal communication calls may not exist, 
the thorough analysis of the distinctive acoustical features of vocalization categories is important not 
only to decipher the acoustical code for a specific species but also to understand the evolution of 
communication signals and the mechanisms used to produce and understand them. 

Here, we recorded more than 8,000 examples of almost all the vocalizations of the domesticated zebra 
finch, Taeniopygia guttata: vocalizations produced to establish contact, to form and maintain pair 
bonds, to sound an alarm, to communicate distress or to advertise hunger or aggressive intents. We 
characterized each vocalization type using complete representations that avoided any a priori 
assumptions on the acoustic code, as well as classical bioacoustics measures that could provide more 
intuitive interpretations. We then used these acoustical features to rigorously determine the potential 
information-bearing acoustical features for each vocalization type using both a novel regularized 
classifier and an unsupervised clustering algorithm. Vocalization categories are discriminated by the 
shape of their frequency spectrum and by their pitch saliency (noisy to tonal vocalizations) but not 
particularly by their fundamental frequency. Notably, the spectral shape of zebra finch vocalizations 
contains peaks or formants that vary systematically across categories and that would be generated by 
active control of both the vocal organ (source) and the upper vocal tract (filter).  
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Background	
 
 Many social animals have evolved complex vocal repertoires not only to facilitate cooperative 
behaviors, such as pair bonding or predator avoidance, but also in competitive interactions such as in 
the establishment of social ranks, mate guarding or territorial defense (Seyfarth and Cheney, 2003). For 
example, many songbirds use elaborate songs (Catchpole and Slater, 1995) as well as other short calls 
(Marler, 2004) as part of the courtship behavior and initial pair formation. This initial pair formation 
can lead to cooperative nest building, territory defense, reproduction, chick-rearing and the formation 
of a long-term partnership. The maintenance of such a stable pair bond requires close social contact 
that can be facilitated by vocal communication. For example, loud contact calls that carry individual 
information play a key role for songbird partners that attempt to reunite after having lost visual contact 
(Vignal et al., 2008). Similarly, vocal duets of songs (Farabaugh, 1982; Hall, 2004; Thorpe, 1972) or of 
calls (Elie et al., 2010) performed by partners can act as cooperative displays that signal commitment 
and reinforce the pair bond (Elie et al., 2010; Hall, 2004; Hall, 2009; Smith, 1994; Wickler and Seibt, 
1980). In the context of cooperation for predator avoidance, birds produce alarm calls that can be 
predator specific (Evans et al., 1993). Finally, in competitive interactions, such as in territorial defense, 
songbirds can use both songs (Searcy and Beecher, 2009) and specific calls (Ballentine et al., 2008) to 
advertise aggressive intentions. The social context in which each of these vocalizations is emitted (e.g. 
affiliative interaction, alarming situation, etc.) can be used to classify vocalizations into behaviorally 
meaningful categories that define the vocal repertoire. 
 To provide a large range of information to the receivers, categories of vocal communication 
signals in social species must be acoustically separable. Animals can exploit two sources of variability 
for the production of acoustic signals: the acoustic structure of each individual sound element and how 
these elements are combined into sequences (see Zuberbühler and Lemasson, 2014 for a review in 
primates). How animals exploit sound variability to code the different categories of meanings is still an 
open question. Here, we explore how the acoustic structure of each individual sound element encodes 
meanings in vocalizations. Although these identifying acoustical features (or signatures) of specific 
vocal categories have been examined extensively in the vocal repertoires of both mammals (e.g. Brand, 
1976; Deaux and Clarke, 2013; Kruuk, 1972; Salmi et al., 2013) and birds (e.g. Collias, 1987; 
Dragonetti et al., 2013; Ficken et al., 1978), a comprehensive and rigorous analysis of these 
distinguishing features in a given species has been difficult to achieve because of the limited number of 
acoustic features tested and/or because of the limited size or quality of the datasets. As a result, 
acoustical signatures for complete repertoires are often described qualitatively from a relatively small 
number of distinguishing features as experienced by human listeners or as observed visually on their 
spectrographic representation (but see Fuller, 2014; Stowell and Plumbley, 2014). A more quantitative 
analysis requires a very large dataset of calls for two reasons. First, animal vocalizations, as 
characterized by their sound pressure waveform, are inherently highly dimensional: they are 
represented by a large number of amplitude values in time that jointly can code an infinite number of 
unique combinations. Describing the sounds without a priori assumptions on the nature of the 
distinguishing features requires a representation that is also highly dimensional and preferably 
complete or invertible in the sense of being equivalent to the sound pressure waveform. In order to 
estimate the distribution of the sounds in this highly dimensional feature space, one would optimally 
need more samples than the number of parameters that describe each sound; and even if dimensionality 
reduction approaches are used, many samples are still required. Second, the dataset of vocalizations 
should include examples from the complete vocal repertoire of as many animals as possible. This 



 4 

sampling is needed in order to properly assess if vocalizations produced during different social 
interactions indeed form separable acoustical categories and, if so, to obtain reliable estimates of the 
within category variability. Such a data driven approach results in an unbiased identification of the 
distinguishing acoustical features among categories and in a rigorous estimation of the maximally 
achievable discriminability of vocalization types based solely on acoustics.   

 We embarked on such a data driven exploration of a complete vocal repertoire for the zebra 
finch, Taeniopygia guttata. We compared the results of this assumption free approach to a more 
classical approach that investigates the potential role of a small subset of chosen acoustical parameters 
for determining the information-bearing features in vocal repertoires. First, as ethologists who have 
studied the vocal behavior of this species in the field and in the laboratory (Elie et al., 2010; Elie et al., 
2011; Mouterde et al., 2014), we were interested in generating a detailed description of the complete 
vocal repertoire of this songbird both to contribute to our knowledge of its natural history and to 
contribute to the field of animal communication. More precisely, by using quantitative methods and 
encouraging comparative approaches, we wanted to gain insights into the evolution of vocal 
communication signals and assess the degree with which such acoustic codes share similarities across 
species. The idea of universal codes for vocal communication is hotly debated (Hauser, 2002; Seyfarth 
and Cheney, 2003), but common principles have been found at different levels. At the acoustical level, 
relationships between the coarse sound attributes and the meaning of vocal signals have been shown to 
hold in many species (Morton, 1977); for example, affiliative vocalizations are often soft and low 
frequency sounds, while loud and high-frequency sounds are often alarm vocalizations (Collias, 1987). 
At the production level, the source-filter mechanism describing the making and shaping of vocal 
communication calls is also present in many species (Taylor and Reby, 2010). By performing a 
quantitative analysis of the information-bearing features in the zebra finch vocal signals, we determined 
to what extent our data support these putative universal principles of animal communication. 
 Second, as neuroethologists, we wanted to determine precisely the acoustical features that 
distinguish vocalization categories in zebra finches in order to then investigate how these could be 
represented in their auditory system and from there what neural mechanism lead to vocal 
categorizations (Bennur et al., 2013; Elie and Theunissen, 2015).  
 Finally, the zebra finch provided a unique opportunity to obtain a very large data set of 
vocalizations of high audio quality that would be accurately labeled in terms of their behavioral context 
and the identity of the emitter. Indeed, the vocal repertoire of the zebra finch has been described in the 
field in the complete context of its natural history (Zann, 1996). Our own fieldwork had also given us 
insights on the range of vocal behaviors produced in the wild (Elie et al., 2010). Thus, as we describe in 
detail below, using this knowledge and experience, we recorded a very large number of vocalizations 
emitted in clearly distinct social contexts from different groups of domesticated zebra finches in the 
laboratory. To obtain the appropriate range of vocal behaviors, these zebra finches were housed in 
enriched cages that were designed to encourage both affiliative and agonistic social interactions. 
Additional behavioral conditions (such as those required to produce alarm calls) were established 
experimentally. We were then able to describe these sounds using large feature spaces and to apply 
machine learning techniques including a novel regularized discriminant analysis for the identification 
of the acoustic features encoding the behavioral meaning embedded in these vocal signals.  

Methods	
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Recording	the	Complete	Repertoire	of	Captive	Zebra	Finches.	

Number	of	birds,	age,	sex,	living	conditions. 

 We recorded calls and songs from 45 zebra finches: 18 chicks and 27 adults. Chicks were all 
recorded while they were 19 to 25 days old (note that only one chick was recorded on day 25 after 
hatch). Birds were considered as adults if they had molted into their mature sexual plumage, which is 
achieved around 60 days. For the 17 adults for which we had birth records, their age ranged between 2 
months (>60 days) and 7 years (17.6±5.1 months, only one female was less than 90 days old). Of the 
18 chicks, 7 were female, 9 were male and 2 of unknown sex (LblGre0000 and LblGre0001). Of the 27 
adults, 13 were female and 14 were male. All the birds were born in one of the captive zebra finch 
colonies housed at University of California (UC) Berkeley or UC San Francisco. In these colonies birds 
are bred in large cages containing 1 to 15 families and can see and vocally interact with the rest of the 
colony. Therefore, birds were raised in a rich social and acoustic environment. 

For recording purposes, adults were divided into groups of 4 to 6 individuals with even sex-ratio. Each 
group was housed in a cage (L = 56 cm, H = 36 cm, D = 41 cm) placed in a soundproof booth (L = 74 
cm, H = 60 cm, D= 61 cm; Med Associates Inc, VT, USA) whose inside walls were coated with 5 cm 
of soundproof foam (Soundcoat, Irvine, CA, USA) and which was isolated in a room from the rest of 
the colony. The cage was provided with 3 nest boxes. Food, drinking water, grit, lettuce, bath access 
and nest material were provided ad libitum and the light cycle was 12/12. Adults were housed and daily 
recorded while freely interacting in these housing conditions for up to 4 months. 

 Chicks were housed with their siblings and parents in the same family cage (L = 56 cm, H = 36 
cm, D = 41 cm) in one of the breeding colony rooms. Food, drinking water, grit and nest material were 
provided ad libitum and the light cycle was 12/12. Lettuce and bath access were provided once a week. 
Before each recording session, the cage was transferred into a sound proof booth (Acoustic Systems, 
MSR West, Louisville, CO, USA) and chicks were physically and acoustically isolated from their 
parents for 30 minutes to 1 hour to elicit their begging calls upon re-introduction into their parents’ 
cage.  
 

Recording	methods:	equipment,	distance,	methodology	(selection	by	ear,	etc)	

 All recordings were performed between 02/2011 and 06/2013 using a digital recorder (Zoom 
H4N Handy Recorder, Samson; recording parameters: stereo, 44100 Hz, gain 90 or 67) placed 20 cm 
above the top of the cage for adults’ recordings or 19 cm from the side of the cage for chicks’ 
recordings. The calls recorded with a gain of 67 (to prevent clipping during recording sessions) were 
adjusted once digitized to match those recorded with a gain of 90 and in this manner produce a set of 
audio files that included relative sound level information. Because the position of the birds from the 
recording device was limited to the size of the cage, the vocalizations in our recordings sampled a 
range of intensities corresponding to a range of distances from the microphone of 20 to 80 cm. The 
behaviors of the birds were monitored during the recording sessions (147 sessions of 60-90 min) by an 
expert observer (JEE) placed behind a blind, into the darkness of the room, for the adults’ recordings, 
or by observation through a peephole in the sound proof booth for chicks’ recordings. Note that chicks 
were placed back one by one in their parents’ cage to record their Begging and Long Tonal calls to 
ensure identification of the calling chick. Indeed, chicks tend to beg and call together at exactly the 
same time, so recording individual calls was only possible by separating siblings during recording 
sessions. During recording sessions of the adult groups, the observer was tracking birds’ behavior, 
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sampling vocalizations for which both the behavioral context and the identity of the emitter were 
clearly identified and taking notes of this information and the exact time of emission of the 
vocalizations for as many as possible. Then, annotated vocalizations were manually extracted offline 
from the sessions’ recordings and selected to be part of the vocalization library only if no overlap with 
noise (cage noise, wing flaps, etc.) or vocalizations from other individuals could be heard in the extract. 
Based on the distinctiveness of behavioral contexts and of acoustic structures, and on the grouping and 
nomenclature described by Zann in his fieldwork with wild zebra finches (Zann, 1996), vocalizations 
were classified into 11 categories: Begging calls, Long Tonal calls, Distance calls, Tet calls, Nest calls, 
Whine calls, Wsst calls, Distress calls, Thuk calls, Tuck calls and Songs. Vocalizations were either 
isolated as bouts for those emitted in bouts (Song, Begging calls, and occasionally Nest calls) or as 
individual vocalizations for all the others.  A single expert observer (first author JEE) was used to this 
human based classification, as it required extensive experience with the birds’ behavior. Dr. Elie 
obtained this experience observing zebra finch vocal and social behaviors both in the field and in the 
laboratory over a period of 6 years.  The classification yielded results that for the more descriptive 
acoustical measures also agrees with previous accounts (Zann, 1996) and is further validated here by 
using unsupervised clustering algorithms.  

Vocalization	Preprocessing	and	the	Generation	of	the	Vocalization	Data	Base	

 The audio recordings described above resulted in a vocalization library of 3405 vocalization 
bouts. To prepare the sounds for various acoustical analyses, the vocalization bouts were filtered, 
segmented into examples of single call or song syllables and time centered. First, all the sounds were 
band-pass filtered between 250 Hz and 12 kHz to remove any potential unscreened low and high 
frequency noise that would be outside of the hearing range of zebra finches (Amin et al., 2007) and 
could affect acoustical measurements such as those pertaining to the shape of the temporal amplitude 
envelope. Second, vocalization bouts were segmented into individual calls or song syllables.  For this 
purpose, we estimated the sequence of maxima and minima in the temporal amplitude envelope. The 
amplitude envelope was estimated by full rectification of the sound pressure waveforms followed by 
low-pass filtering below 20 Hz. The maxima above 10% of maximum overall amplitude and minima 
below this threshold were found. When successive maxima were found without interleaved minima, the 
maximum with largest amplitude was picked. Similarly, successive minima were eliminated by 
choosing the one with the smallest amplitude. This succession of minima and maxima were used to cut 
the vocalization bouts into individual calls or syllables. Vocalization segments shorter than 30 ms were 
ignored. Third and finally, we generated vocalization sound files that were all of the same length and 
time aligned. This standard representation was key for the subsequent analyses. The length of these 
vocalization segments was chosen to be 350 ms to accommodate the longest vocalizations with clear 
start and finish in our vocalization library (female distance calls). Vocalizations segments that were 
shorter than 350 ms were padded with zeros and sounds longer than 350 ms were truncated. The 
vocalizations were aligned by finding the mean time and centering this time value at 175 ms. The mean 
time is obtained by taking the amplitude envelope as a density function of time as described below. 

 This pre-processing yielded a vocalization database of 8136 calls and song syllables from 45 
birds. The number of vocalizations and birds recorded varied among categories as shown on Table 1. 

Acoustical	Feature	Spaces	
 To describe the acoustical properties that characterized each vocalization type we used four 
distinct acoustical feature spaces that were used in independent analyses. In each of these feature 
spaces, sounds were described by a number of parameters that were obtained from a series of non-
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linear operations on the sound pressure waveform. These acoustical parameters were used to describe 
the information-bearing features of the sounds. These acoustical feature spaces were chosen because, as 
compared to the raw sound pressure waveform, these representations were closer to perceptual 
attributes of the sound (e.g. fundamental frequency and pitch), were more intuitively understood (e.g. 
RMS and intensity) and/or could have provided the non-linear transformations required for vocalization 
categories to be segregated with linear decision boundaries. 
 First, we used an acoustical feature space that summarized spectral and temporal envelopes’ 
acoustical structure as well as fundamental frequency features since these are easily interpretable and 
have been widely used by bio-acousticians. Parameters in this acoustical feature space can also be 
directly associated with perceptual attributes (albeit human based). We called these parameters the 
Predefined Acoustical Features (PAFs).  

 Second, we used a complete and invertible spectrographic representation. This representation 
has multiple advantages. Being invertible, it does not make any a priori assumptions on the nature of 
the information-bearing acoustical features. It is also easily interpretable since results such as the 
discriminant functions obtained in linear discriminant analysis (LDA) or logistic regression can be 
displayed in spectrographic representation. Moreover, such results can then easily be compared to 
neural response functions obtained from single neurons that are frequently described in terms of 
spectro-temporal receptive fields (Theunissen and Elie, 2014), allowing a direct assessment of potential 
mechanisms for behaviorally relevant neural discrimination. The disadvantage of the spectrographic 
feature space is that it is high dimensional and that it requires additional techniques in statistical 
regularization (dimensionality reduction) as described below. 

 Third, we extracted the modulation power spectrum (MPS). The MPS is the joint temporal and 
spectral modulation amplitude spectrum obtained from a 2D Fourier Transform of the spectrogram 
(Singh and Theunissen, 2003). The MPS is used to further summarize the joint spectral and temporal 
structure observed in the spectrogram by averaging across features that occur with different delays or 
frequency shifts. The MPS could therefore be a powerful representation as it offers a shift invariant of 
the information present in spectrograms and is able to do so with fewer dimensions by focusing on 
appropriate regions of temporal and spectral modulations, mostly in the lower or intermediate 
frequencies (Singh and Theunissen, 2003; Woolley et al., 2005). Results in the MPS feature space can 
also be compared to those found in auditory neurons (Woolley et al., 2009). 
 Fourth, we extracted the Mel Frequency Cepstral Coefficients (MFCC). The MFCC 
representation is similar to the MPS since cepstral coefficients are obtained from the Fourier Transform 
of time slices in the spectrogram. The MFCC differs from the MPS in that it starts with a 
spectrographic representation obtained from a Mel Frequency filter bank, reflecting the logarithmic 
frequency sensitivity of the vertebrate auditory system at high frequencies. As opposed to the MPS, in 
MFCC the temporal information is also kept in the time domain (and not transferred to the temporal 
modulation domain). MFCCs are commonly and successfully used in speech processing and speech 
recognition algorithms as they succinctly describe essential information-bearing structures in speech 
such as formants and formant sweeps (Picone, 1993). MFCC have also been used successfully to study 
animal vocalizations (Cheng et al., 2010; Mielke and Zuberbühler, 2013). We added the MFCC 
representation here primarily to compare the classification performance of the new classifiers we 
propose to those of the classifier used in these previous studies. 
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	 Predefined	Acoustical	Features	(PAFs)	

 Our first sets of parameters described the shape of the frequency power spectrum (also called 
the spectral envelope here), the shape of the temporal amplitude envelope and features related to the 
fundamental frequency (Figure 1). The frequency power spectrum was estimated using the Welch’s 
averaged, modified periodogram with a Hanning window of 42 ms and an overlap of 99%. The 
temporal envelope was obtained by rectifying the sound pressure waveform and low-pass filtering 
below 20 Hz. Note that the temporal amplitude envelope is in units of pressure amplitude while the 
spectral envelope (or frequency power spectrum) is in units of pressure square (power). From these 
envelopes we obtained 15 acoustical parameters: 5 describing temporal features, 8 describing spectral 
features and two describing the intensity (or loudness) of the signal.  

 The shapes of the amplitude envelopes (spectral and temporal) were described by treating the 
envelopes as density functions: the envelopes were normalized so that the sums of all amplitude values 
(in frequency or time) equal 1. We quantified the shape of these normalized envelopes by estimating 
the moments of the corresponding density functions: their mean (i.e. the spectral centroid for the 
spectral envelope Mean S and temporal centroid for the temporal envelope Mean T), standard deviation 
(i.e. spectral bandwidth Std S and temporal duration Std T), skewness (i.e. measure of the asymmetry in 
the shape of the amplitude envelopes, Skew S and Skew T), kurtosis (i.e. the peakedness in the shape of 
the envelope, Kurt S and Kurt T) and entropy (Ent S and Ent T). The entropy captures the overall 
variability in the envelope; for a given standard deviation, higher entropy values are obtained for more 
uniform amplitude envelopes (e.g. noise-like broad band sounds and steady temporal envelopes) and 
lower entropy values for amplitude envelopes with high amplitudes concentrated at fewer spectral or 
temporal points (e.g. harmonic stacks or temporal envelope with very high modulations of amplitude).  

In addition, the first, second and third quartiles (Q1, Q2, Q3) were calculated for the spectral envelope: 
25% of the energy is found below Q1, 50% below Q2 (Q2 is the median frequency) and 75% below 
Q3. These additional parameters were calculated for the spectral envelopes as they exhibited much 
more structure than the temporal envelopes (see Figure 1). Nonetheless, the quartiles were highly 
correlated with each other and the spectral mean (see Supplementary Table 1).  The average spectral 
envelopes and temporal envelopes for each vocalization type were estimated by first averaging the 
envelopes of all the vocalizations of each bird within each vocalization type, and then averaging across 
birds (i.e. equal weight per bird). The average spectral envelopes showed characteristic broad peaks of 
energy for each vocalization type that we call formants, using the acoustical definition of “formant” 
and thus not implying resonances in the vocal tract. Note that in Figure 5A, spectral envelopes were 
first normalized before average calculations to equalize the weights of the envelope shapes between 
vocalizations and avoid any masking effect due to differences of loudness between vocalizations. 

 To capture the intensity of the signal we also calculated the RMS of the signal obtained directly 
from the sound pressure waveform (RMS) as well as the peak amplitude of the temporal envelope (Max 
A). 
 We extracted 7 parameters describing properties related to the time varying fundamental 
extracted for each vocalization. This time-varying fundamental was extracted using a custom algorithm 
that used a combination of approaches, first identifying portions of the vocalization that had high 
degree of spectral periodicity (or pitch saliency) and then extracting the fundamental at these time 
points. To estimate pitch saliency, an auto-correlation function was first calculated using a 33.3 ms 
Gaussian window with a standard deviation of 6.66 ms. This window was slidden along the sound 
pressure waveform in 1ms steps. The largest non-zero peak in the auto-correlation function 
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corresponding to a periodicity below 1500 Hz was found. The 1500 Hz threshold was chosen so as to 
avoid detection of harmonics and favor the detection of the fundamental that is known in zebra finches 
to mostly be below 1500Hz (Tchernichovski et al., 2001; Vignal et al., 2008; Zann, 1996). The pitch 
saliency was then defined as the ratio of the amplitude of that peak to the amplitude of the peak at zero 
delay (corresponding to the variance of the signal in that time window). The saliency was only defined 
for windows with a root mean square (RMS) amplitude above 10% of the maximum RMS found across 
all sliding windows spanning a given vocalization. The mean pitch saliency (called Sal in the figures) 
was estimated by averaging across time and is an estimate of the average “pitchiness” of the 
vocalization. 

 For all time points where the saliency was above 0.5, we extracted a fundamental frequency. An 
initial guess for the value of this fundamental frequency was obtained from the time delay of the non-
zero peak in the auto-correlation function. We then refined the value of that estimate by fitting the 
frequency power spectrum of the same windowed segment of the vocalization with the spectrum of an 
idealized harmonic stack. This non-linear fit not only provided small corrections in the guess of our 
fundamental frequency but also allowed us to quantify significant deviations in the observed power 
spectrum from this ideal harmonic stack. In particular we detected significant peaks in the spectrum 
(peaks above 50% of the maxima) that were not explained by peaks corresponding to the fundamental 
or its harmonics. These peaks were used as evidence of an inharmonic structure occurring in a sound 
segment that nonetheless had high periodicity. This inharmonic structure was often the result of the 
presence of two sound sources (double voice phenomenon), produced by the same bird, in the same 
single vocalization. On the fundamental panel of Figure 1, the detected time-varying pitch is shown as 
a black line and the extraneous peaks of energy as green segments. The second voice parameter (2nd V 
in Figures 1 & 8) is defined as the percent of the time when a fundamental is estimated and where a 
second voice is found. The peak 2 parameter (Pk 2 in Figures 1 & 8) is the average frequency of these 
second peaks. The other fundamental parameters describe the time varying fundamental: its mean over 
time (mean F0 in Figures 1 and 8), its maximum (Max F0 in Figures 1 and 8), its minimum (Min F0 in 
Figures 1 and 8), and its coefficient of variation (CV F0 in Figures 1and 8), which is a measure of 
frequency modulation. 
 Overall 22 acoustical parameters describing the temporal amplitude envelope, the frequency 
spectrum and the time varying fundamental were obtained. These PAFs were first used to qualitatively 
describe the defining acoustical features of each vocalization category and then used as inputs to 
classifiers to quantify the validity of these features to detect vocalization types.   

	 	Spectrogram	

 Our second feature space is the complete spectrographic representation of each vocalization 
(Figure 2). The spectrograms were obtained using Gaussian windows of spectral bandwidth of 
approximately 52 Hz (corresponding to the “standard deviation” parameter of the Gaussian). The 
corresponding temporal bandwidth is approximately 3 ms (or exactly: 1/(2π*52)). The spectrogram had 
231 frequency bands between 0 and 12 kHz and a sampling rate of 1017 Hz yielding 357 points in time 
for the 350 ms window used to frame each vocalization. The total number of parameters describing the 
sounds in this spectrographic representation was therefore 82,467. This spectrographic representation is 
invertible (Cohen, 1995; Singh and Theunissen, 2003) and over-complete. Thus, on the one hand, it has 
the potential to provide a full description of the sound – one with no a priori assumptions on the nature 
of the information-bearing features. On the other hand, these spectrograms could not be “averaged” to 
obtain a mean description of a vocalization type and, given the high-number of parameters, they could 
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not be used, without further data reduction methods, as inputs to classifiers. In this study, we show how 
one can combine spectrograms with principal component analysis (PCA) and regularization to use 
them in classifiers. We also show that logistic regression can also be used to obtain a “defining” 
spectrographic representation for each vocalization type. In this manner, we were able to circumvent 
this problem of dimensionality and use a data-driven approach to describe the defining acoustical 
features. 

	 Modulation	Power	Spectrum	

 Our third feature space is the Modulation Power Spectrum (MPS; Supplementary Figure 1). The 
MPS is the modulus square of the 2-D Fourier Transform of the log spectrogram. Spectrograms were 
calculated as described above. The MPS was then obtained as follows. First, the log spectrogram S(t,f) 
can be written as: 

S(t, f ) = log 1
2π

e− j2π fτs(t +τ )h(τ )dτ∫  

 
where s is the sound pressure waveform and h is the Gaussian window centered at t. The MPS is 
obtained from the Fourier expansion of S(t,f) written in discrete form as: 

S(t, f ) = A0 + Sj,k (ωt, j,ω f ,k )
j,k
∑   

where the Sj,k are the 2D Fourier terms 
Sj,k (ωt, j,ω f ,k ) = Aj,k cos(2πωt, jt + 2πω f ,k f +ϕ j,k )  . 

Here ωt,j describes the modulation frequency of the amplitude envelope along the temporal 
dimension and has units of Hz. The parameter ωf,k describes the modulation frequency of the amplitude 
envelope along the spectral dimension and has units of 1/Hz. In the modulation power spectrum, Aj,k is 
plotted as a function of ωt,j (shown on the x-axis) and ωf,k (shown on the y-axis), as done in Figure 
Supplementary Figure 1.  

The time-frequency scale of the spectrograms used in the MPS (here 3ms and 52 Hz) determines 
the temporal and spectral Nyquist limits of the modulation spectrum (~ 167 Hz and 9.6 cycles/kHz 
respectively). Because natural sounds obey power law relationships in their MPS (Singh and 
Theunissen, 2003), most of the relevant modulation energy is found at lower frequency modulations, 
for example, for zebra finch vocalizations, below 40 Hz and 4 cycles/kHz. Therefore, we chose not to 
represent higher frequency modulations, which greatly reduced the number of parameters. In addition, 
we also ignored the phase spectrum (ϕ j,k )  further reducing by half the number of parameters. Our 
chosen MPS feature space was ultimately based on 30 ωt,j slices (between -40 and 40 Hz) and 50 ωf,k 
slices (between 0 and 4 cycles/kHz) yielding 1500 parameters for our MPS feature space (vs. 82,467 
for the spectrogram). Nonetheless and as for the spectrographic representation, PCA was used as a 
further data reduction technique before using the MPS as input in classifiers.  

	 Mel	Frequency	Cepstral	Coefficients	

 Our fourth feature space was the Mel Frequency Cepstral Coefficients (MFCCs; Supplementary 
Figure 2). The MFCCs are calculated from a spectrogram obtained with a frequency filter bank with 
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varying bandwidths. We used N=25 frequency channels between 500 and 8000 Hz spanning the most 
sensitive region of the zebra finch hearing range (Amin et al., 2007). The Mel frequency filters are 
triangular in shape with center frequencies uniformly spaced on the Mel frequency scale with 50% 
overlap. In natural logarithmic units, the Mel frequency scale is given by (O'Shaughnessy, 1999): 

 fMel =1127× log(1+
fHz
700)  

The amplitude in these bands was estimated in a 25 ms sliding analysis window with a 10 ms frame 
shift. An example of such a Mel Spectrogram can be seen on Supplementary Figure 2. The cepstral 
coefficients were then obtained from the discrete cosine transform of the log amplitude of this Mel 
Spectrogram. Just as we did for the MPS, we truncated the cepstral coefficients at M=12 (out of 25 
possible) since higher cepstral coefficients (corresponding to higher spectral modulations) have 
significantly less power. Ultimately our MFCC representation had 12 cepstral coefficients for 33 time 
slices for a total of 396 parameters. PCA was also used to further reduce the number of parameters 
before using these parameters as inputs in classifiers. 

Statistical	Analyses	

 Statistically significant differences in mean values across vocalization categories for the 22 
PAFs were assessed using linear mixed-effects models. In this analysis, individual acoustical 
parameters (e.g. the fundamental frequency) were the predicted variable, the vocalization type was the 
only fixed effect (the predictor) and the bird identity was taken as the random effect. Furthermore, to 
prevent pseudo-replication effects, all the data for a given bird were averaged before performing the 
analyses for each vocalization type (Nakagawa and Hauber, 2011). In this manner, data from each bird 
were given equal weight. The effect size (as a main fixed effect of vocalization type) was reported as 
the adjusted R2 of the model, and the statistical significance was calculated from a likelihood ratio test, 
which in this case is equivalent to an F-test. As post-hoc tests and to assess the differences in acoustical 
parameters for each vocalization type, we performed a Wald test to assess whether the estimated 
coefficient (corresponding to the adjusted average value for a particular acoustical parameter) for each 
vocalization type was significantly different from the average value obtained across all vocalization 
types. We also report the 95% confidence intervals for each of the coefficients. The complete statistical 
results from these mixed-effect models are shown in the supplementary material (Supplementary Table 
1).  
 We also used mixed-effect models to assess the effect of sex on acoustical differences. In this 
model, the predicted variable was the acoustical parameter, the main fixed effects were the vocalization 
type, the sex and the interaction (Type*Sex) and the random effect was the bird identity. Statistical 
significance for the effect of Sex was then obtained from a likelihood ratio comparing the model that 
included Type, Sex and the interaction to the model that only included Type. When this test was 
significant, post-hoc tests were performed to determine which vocalization types were different 
between males and females. In the post-hoc test, data from each vocalization type were analyzed 
separately and a linear model was used to test the significance of the unique fixed factor Sex. This test 
was equivalent to a t-test used to assess the differences on the average values of that acoustical 
parameter obtained for each male and female bird. 
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Classifiers		

 To determine the combination of acoustical features that can discriminate between vocalization 
types and to quantify the degree of discrimination among these categories, we compared two 
multinomial supervised classifiers using as input the representations in our four feature spaces (Figures 
1, 2, Supplementary Figures 1 and 2). The two supervised classifiers are the Random Forest (RF) and 
the Fisher Linear Discriminant Analysis (FLDA). To use the nomenclature of supervised classifiers, the 
vocalization types will be referred to as classes in this next section. We also used an unsupervised 
classifier (clustering analysis): a mixture-of-Gaussians that can be used efficiently to fit multi-modal 
and multivariate probability density functions. 

	 Random	Forest	

 A random forest (RF) is a powerful supervised classifier that uses a set of classification trees in 
a bootstrap fashion to both prevent over-fitting and better explore potential partitions of the feature 
space (Breiman, 2001). RFs have been shown to often provide the best performance in classification 
tasks including in the field of bioacoustics (Armitage and Ober, 2010). In this study, we used RF to 
obtain estimates of an upper bound on classification performance. The measure of this upper bound 
was critical in order to validate the results obtained for the FLDA.  We used Random Forests of 200 
trees, with a minimum of 5 data points per leaf and a uniform prior for class probabilities to avoid any 
bias towards categories that would be better represented in the dataset.  

	 Fisher	Linear	Discriminant	Analysis	

 Our second classifier was the classical Fisher linear discriminant analysis (FLDA). The FLDA 
finds linear combination of acoustical features to maximally separate classes while taking into account 
the within-classes covariance matrix. These discriminant functions are the eigenvectors obtained from 
the ratio of the between-classes and within-classes covariance matrix. Discriminant functions are 
ordered by the decreasing value of the eigenvalue (i.e. the function where the ratio of the between and 
within variance is the greatest is first). Linear decision boundaries within the linear subspace spanned 
by all significant discriminant functions can then be used to classify sound into their respective classes. 
In our implementation, we assumed that the within-class covariance was the same for all classes. The 
great advantage of the FLDA over the RF is that it allows one to examine the form of the discriminant 
functions and thus easily interpret the acoustical factors that could be used for discrimination. The 
disadvantage of the FLDA is that the classes might not be linearly separable in a particular acoustical 
feature space.  

	 Logistic	Regression	

To further facilitate the interpretation of our results, we also performed a series of logistic 
regression analyses, one for each vocalization type. The goal of these analyses was to find the unique 
linear combination of acoustical features that would allow one to separate one vocalization type (or 
class) from all the others. The logistic regression was only performed on the acoustical feature space 
based on the full spectrograms. The inputs to the logistic regression were taken to be the coordinates of 
each vocalization in the subspace defined by the significant discriminant functions obtained in the 
FLDA. 
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	 Performance:	Cross-Validation	and	Regularization	

 Just as mixed-effects modeling is required in the statistical analyses described above to 
potentially correct for bird dependent effects, the same care must be taken when training and testing the 
multivariate classifiers (Mundry and Sommer, 2007). To do so, we used a cross-validation procedure 
that took into account the nested format of our data. More specifically, we used a training data set 
where, for each vocalization type, all the data from a particular bird were excluded, and different birds 
could be excluded for different vocalization types. The “excluded” data were then used as our 
validation dataset. In this manner, the classification was assessed for vocalizations from a given bird 
and class that were not included in the training, allowing us to directly assess the generalization of the 
classifier. Two hundred (200) different permutations of excluded birds per vocalization type were 
obtained to generate 200 training and validation data sets. These performance data were sufficient to 
generate stable confusion matrices shown on Figure 10. We also used these performance data to 
calculate confidence intervals on percent of correct classification using a maximum likelihood binomial 
fit.  

 The cross-validation was also used as part of a regularization procedure (see Figure 2). For 
acoustical feature spaces that included a large number of parameters (e.g. the spectrogram) both the 
FLDA and RF classifiers generated solutions that over fitted the data. To prevent over-fitting, we used 
principal component analysis (PCA) as a dimensionality reduction step and tested the performance of 
the classifiers as a function of the number of PCs as a regularization step. As shown on Figure 2, best 
performances were obtained with approximately 40 PCs when using the Spectrogram as a feature 
space. In order to use the same number of parameters for all our large feature spaces, 40 PCs were used 
for both the RF and the FLDA and for the feature space based on the Spectrogram, the MPS and the 
MFCCs. The percent of the variance in the data explained by these 40 PCs is shown on Figures 2, 
Supplementary Figures 1 and 2. Using PCA as a regularization step in FLDA is equivalent to assigning 
a Wishart prior on the within-group covariance matrix of features (assumed to be the same for each 
group). This technique is called Regularized LDA or RLDA (Murphy, 2012, p. 107). Here we use both 
the regularization obtained from the PCA (by systematically evaluating the goodness of fit obtained by 
varying the number of PCs) and the dimensionality reduction obtained in the FLDA (Murphy, 2012, p. 
271). We will call this technique the regularized FLDA or RFLDA. 

	 Clustering	analysis:	a	mixture-of-Gaussians	used	as	an	unsupervised	Classifier	

 An unsupervised classifier (also known as a clustering algorithm) was used to further determine 
whether the vocalization types defined behaviorally did indeed form separate clusters in acoustical 
feature spaces. Unsupervised classifiers decompose the generally multi-dimensional distribution of a 
dataset into a sum of distributions. In the case of a mixture-of-Gaussians, the component distributions 
are all multi-dimensional Gaussian distributions. If the weights of these Gaussian component 
distributions are approximately equal and when the component distributions are well separated (e.g. 
separated by one standard deviation), then the joint distribution is shown to be multi-modal, suggestive 
of the presence of different groups. Note that it is possible that a set of vocalization types (defined 
behaviorally) could form a unimodal distribution and still be separable using a supervised classifier as 
long as the different vocalization types are found predominantly at different ranges of this unimodal 
distribution. The mixture-of-Gaussians unsupervised classifier is thus stringent in that it will only 
generate “positive” answers for groups that are separable in the sense of being multi-modal. 

 In the mixture-of-Gaussians modeling, all the data points (the n vocalizations) are used as a 
sample of the probability density function that is modeled. Each Gaussian component is defined by its 
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weight (one value), its mean value in the feature space (in the k-dimensional space so a k element 
vector) and its covariance matrix (a symmetric k*k matrix). For a k dimensional feature space, each 
component Gaussian has therefore 1+k+(k*(k+1))/2 parameters. For a mixture-of-Gaussians of m 
components, the model will have m*(1+k+(k*(k+1))/2) parameters. These parameters are fitted by 
maximizing the likelihood using the Expectation-Maximization algorithm (EM). The EM algorithm 
finds a local minimum that depends on the initialization values. Thus, we ran multiple fits using 
different initialization values for each mixture model (i.e. for each value of m) and used the one that 
gave us the maximum likelihood. To compare the goodness of fit of Gaussian mixtures with different 
number of components (m), we used the Bayesian Information Criterion (BIC), which takes into 
account the negative log likelihood but penalizes for the number of parameters relative to the number 
of sample points (n). Since k is fixed the BIC penalizes for higher numbers of Gaussian components. 
The model with the smallest BIC is deemed to be the best. 
 In our analysis, we applied the mixture-of-Gaussians to specific call types (e.g. Tet calls) to 
determine whether they could actually be composed of multiple vocalization types or, in the contrary, 
to specific sets of two call types to determine whether they indeed formed separate clusters 
acoustically. For these analyses, we used the 22 PAFs, as described above and in Figure 1. The optimal 
number of Gaussian components was chosen by finding the best trade-off between having the smallest 
BIC and obtaining close to uniform relative weights of the Gaussian components. In the case where 
multiple call types were combined to be modeled by the Gaussian mixture, we could then calculate the 
proportion of each call type in the groups determined from the Gaussian mixture (as shown in Figures 9 
and Supplementary Figure 4). 

Software	

 All analyses were performed using custom code written in Matlab, using the following high-
level functions when appropriate. The MFCCs were calculated using the mfcc function provided by 
Kamil Wojcicki to match the algorithm in the Hidden Markov Toolkit for speech processing known as 
HTK (Young et al., 2006). The mixed-effect modeling was performed using the Matlab function fitlme. 
The RFLDA was estimated with a custom Matlab script that used the Matlab function manova1 to 
estimate the FLDA for different PCA subspaces. The random forest classifier was trained using the 
Matlab function TreeBagger. The logistic regression was performed using the Matlab function glmfit. 
The mixture-of-Gaussian modeling was performed using the Matlab function fitgmdist. 

Results	 		
In the following sections, we first describe qualitatively and quantitatively the different types of 
vocalizations produced by domesticated zebra finches. We then show how we applied multiple 
approaches in order to reveal the acoustic signature of each vocalization type. For this purpose, we 
isolated over 8000 calls and song syllables and used four independent representations for these 
vocalizations: various measures in the temporal and spectral domains that we call the Predefined 
Acoustical Features (PAF) as well as three representations in the joint spectro-temporal domain 
provided by the spectrogram, the modulation power spectrum and a time varying cepstrum (see 
methods, Figures 1-2, Supplementary Figures 1-2). We compare the results obtained from these 
different representations of the sounds (or feature spaces) and two distinct classification algorithms. All 
of our analyses emphasize the importance of the spectral shape and of the pitch saliency as the main 
acoustical parameters that code meaning in zebra finches’ vocalizations.  
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The	vocal	repertoire	of	the	domesticated	zebra	finch	

 On Figure 3, we show spectrograms of examples of each of the vocalization types that we 
recorded from our domesticated zebra finch colony. We classified these vocalizations by assessing the 
behavioral context in which they were emitted and by ear, having learned their acoustical signatures 
during previous experiments (Elie et al., 2011). Our classification also followed the grouping and 
nomenclature described by Zann (1996) in his fieldwork with wild zebra finches. Indeed, we found that 
domesticated zebra finches housed in groups and in living conditions that also promote nesting, 
foraging, defensive and alarming behaviors produced all vocalization types described by Zann with the 
potential exception of the Stack, a call mainly produced just before takeoff. A Stack call has also been 
described by Ter Maat et al (2014) in captive animals as a contact call used somewhat interchangeably 
with the soft and short contact call, called the Tet call. As we will discuss below, the call described by 
Ter Maat et al (2014) is most certainly included in our Tet category. Based on different behavioral 
contexts, we also made a distinction between the alarm call described by Zann (Thuk call) and another 
new alarm call that we named the Tuck call. Furthermore, because the two types of nest calls named by 
Zann Arks and Kackles constituted a continuum in our recordings (shown below), we decided to group 
all of them in the same vocalization type, Nest call. Note also that although we were able to record 
Copulation calls as described by Zann (1996), the quality and the quantity of recordings for this 
particular vocalization type were not sufficient to include it in our analysis (but see one example as 
Supplementary Sound File 5). Finally, we further grouped the vocalization types into calls produced 
only by juveniles (top row in Figure 3, blue hues), calls and song produced in affiliative contexts 
(second and fourth rows in Figure 3, purple/black hues) and non-affiliative calls (third row, orange 
hues). 

 In addition to qualitatively describing each vocalization type based on its characteristic 
spectrographic features, we quantified differences across vocalization types using the PAFs measures 
that described the temporal envelope, the spectral envelope and the fundamental frequency of the 
sounds (see Figure 1 and Methods). Those PAFs measures were aimed to fully describe the spectral, 
loudness, duration and pitch characteristics of the vocalizations. Results based on those measures are 
shown in Figures 4-7. Statistical analyses using linear mixed effect models showed that most of these 
PAF measures carried some information about vocalization types as shown in Figure 8. For each PAF, 
the correctly weighted mean value of each vocalization type with its 95% confidence intervals obtained 
from the mixed effect model is shown in an additional table (see Supplementary Table 2). This table 
also reports the P-values obtained for the comparisons of each category mean value to the mean over 
all categories (Wald Test). In the text below, when we state that a particular acoustical measure (such 
as the fundamental) is significantly different between two vocalization categories, we mean that the 
95% confidence intervals for the two categories do not overlap. Finally, from the average spectral 
envelope of each vocalization type shown in Fig. 5a, we obtained spectral peaks that we called 
formants using the acoustical definition of this word. The frequency of these formants is shown on 
Table 2.  

	Juvenile	Calls	

Begging	Calls	

 On the fourth day after birth, chicks start to emit Begging calls that are described as “soft 
cheeping sounds”, while gaping to elicit feeding behavior in their parents (Zann, 1996). The acoustic 
structure of this vocalization changes along development to become the loud and noisy broadband 
sounds emitted in long bouts by 15-days-old to 40-days-old chicks (see ontogeny descriptions of this 
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call in Zann, 1996 and Levrero et al., 2009). In the present study, we recorded the mature begging call 
of 19-days-old to 25-days-old fledglings (0 to 4 days after the chick got out of the nest; Figure 3). 
Begging calls were recorded while the chick was displaying the typical head twisted open beak posture 
of zebra finches. Begging calls were among the three vocalizations in the vocal repertoire that were the 
“noisiest” on average as quantified by our measure of pitch saliency (see Fig. 7B; Wald test, P <10-4). 
Note however that Begging calls exhibited a very large range of pitch saliencies and were far from 
lacking harmonic structure as it can be seen in the examples of Figures 3 and Supplementary Figure 3. 
In addition, Begging calls had the highest occurrence frequency of double-voices (29% vs 13% 
average, Wald Test P<10-4).  We detected the occurrence of two voices by the presence of harmonics in 
the spectrogram that were not multiples of the principal fundamental. The measure of frequency of 
double-voices was conducted on sections of the call that had harmonic structure (defined by a pitch 
saliency > 0.5). On Supplementary Figure 3, we show examples of calls with two voices, including a 
Begging call. Double voices were quite common in the two juvenile vocalizations and might in these 
cases reflect an immature control of the bird’s vocal organ. In other avian species, double voices can 
generate frequency beats (Robisson et al., 1993) or rapid switching of notes in songs (Allan and 
Suthers, 1994), both of which might be required to produce behaviorally effective signals and provide 
additional information about the identity of the caller. In zebra finches, the presence of double voices 
could be informative to distinguish among call categories and, in particular, to further distinguish 
juvenile calls from adult calls. Begging calls had also a very distinctive spectral envelope characterized 
by two high frequency formants (F3 and F4) between 4 and 8 kHz (visible on the spectrogram example 
of Figure 3 and see Figures 4 and 5a and Table 2). These high-frequency resonances were unique to 
this call type. As a result, the mean frequency of their spectral envelope, or spectral mean, was 
significantly higher than that of all vocalization types (Mean S = 5430 Hz vs. the overall mean of 2970 
Hz, Wald Test P<10-4; Figure 7C and Supplementary Table 2). Begging calls also had a relatively large 
frequency bandwidth (Figure 7D). In terms of temporal properties, Begging calls displayed an average 
duration (Figures 6B and 7E; Wald Test P=0.48) but with a very large spread (Figure 7E), and this 
range of durations was observed within birds since Begging call bouts are often composed of calls of 
varying lengths (see the spectrogram shown in Figure 3). Zann (1996) noted that Begging calls were 
among the loudest in the repertoire and could be heard as far as 100m. Our measurements support that 
observation as Begging calls were on average the second loudest vocalization after the Distance call, 
although we also observed a very large spread of intensities (Figures 6A and 7F). Because of all of 
these unique acoustical properties, Begging calls were very easily classified by discrimination 
algorithms, as we will show below (Figures 10 and 11B). 

Long	Tonal	Calls	

 The Long Tonal call is a contact call produced by chicks when they are about to fledge (from 15 
days post-hatch). Fledglings spontaneously emit this call when they lose visual contact with members 
of their family and in response to the Distance calls of their parents or the Long Tonal calls of their 
siblings (Zann, 1996). Here we report the analysis for Long Tonal calls of fledglings recorded 1 to 4 
days after they flew out of the nest (21-25 days-old chicks). The Long Tonal call is a precursor of the 
adult Distance call and starts to change slightly from 22 days after hatch (Zann, 1996). Therefore, the 
Long Tonal call shares many similarities with Distance calls. Long Tonal calls were highly harmonic as 
quantified by very high pitch saliency values (Fig 7B, Wald Test P<10-4), with a range of fundamental 
frequencies that was very similar to that of the adult Distance call (Fig 7A). The average fundamental 
was 625 Hz for females and 671 Hz for males and although this difference was not statistically 
significant (P=0.15; post-hoc mixed-effect model; see also the differences in range between males and 
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females), it showed a trend that was in accordance with the sex differences observed for the adult 
Distance call, as described below. The shape of the frequency spectrum and the location of the first two 
formants in Long Tonal calls were also very similar to that of Distance calls, with the juvenile call 
being shifted slightly towards higher frequencies and having a slightly larger bandwidth (Figures 4, 5A 
and 7D and Table 2). Long Tonal calls also had similar durations to Distance calls and were among the 
longest calls in the repertoire (measured as a temporal width, Std T: 43.8 ms vs. the overall mean of 
34.7 ms; Figures 6B and 7E, Wald Test P=0.0003). Finally, the loudness of Long Tonal calls was 
middle range compared to other vocalization types and in particular those calls were significantly softer 
than the adult Distance call (see Supplementary Table 2; Figures 6A and 7F). 

 Juveniles also produced Distress calls and Tet calls that shared the acoustical characteristics of 
adult calls described below. Examples of these calls are given as additional sound files (see 
Supplementary Sound File 6 for a juvenile Distress call and Supplementary Sound File 7 for a juvenile 
Tet call). However, we did not record sufficient juvenile Distress and Tet calls to quantify any 
differences, were they to exist. 

		 Affiliative	calls	

Tet	Calls	and	Distance	Calls	

 Adult zebra finches produce two contact calls: the shorter and softer Tet call for short-range 
communication and the louder and longer Distance call for long-range communication (Mouterde et 
al., 2014; Perez et al., 2015; Zann, 1996). The Tet call is the most frequent vocalization as it appears to 
be produced in an almost automatic and continuous fashion when zebra finches move around on 
perches or on the ground. These “background” Tet calls form an almost continuous hum and do not 
appear to produce a particular response in the nearby birds, although in the wild Elie et al. (Elie et al., 
2010) show that Tet calls could also be used for mate recognition in nesting birds. Increases and 
decreases in Tet call frequency might also be informative: a sudden decrease in Tet call frequency 
could signal an unusual event, and the intensity and frequency of Tet calls also increases before 
takeoffs (Zann, 1996). Note also that Tet calls are components along with Nest calls and Whine calls of 
the quiet duos that mates perform at nest sites (Elie et al., 2010). In a recent analysis of short-range 
contact calls produced by captive zebra finches, Ter Maat et al. (2014) distinguish Tet calls from Stack 
calls, where Tet is used to describe the slightly shorter and more frequency modulated set of contact 
calls and Stack is used to describe the calls that are presented as flat harmonic stacks in spectrographic 
representations. To investigate whether these two types of soft contact calls belong to a single 
acoustical category or to two distinct acoustical groups, we performed unsupervised clustering on all 
the soft contact calls we recorded and labeled as Tets. The unsupervised clustering was performed 
separately on male and female Tets because, as we will show below, Tets are also sexually dimorphic. 
Here the Tets were represented by the 10 first principal components (10 PCs) obtained from the 22 
PAF (see Methods and Figure 1). As shown on Supplementary Figure 4 (B and C), female and male Tet 
calls can be clustered into two groups, one with low values of coefficient of variation (CV) for the 
fundamental (corresponding to the description of the Stack by Ter Maat et al., 2014) and one with high 
CV values for the fundamental (corresponding to the description of the Tet by Ter Maat et al.). 
Because, in our observations, these two acoustically distinct call types were produced during the same 
behavioral context, we grouped them together and designate them as Tets from here on. 
 Distance calls are produced when zebra finches are out of immediate visual contact with the 
colony, their mate or the fledglings they care for. Distance calls can be produced both during flight and 
while perched. These loud contact calls carry individual information and elicit orienting responses and 
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vocal callbacks both in juveniles and adults, and promote reunions: they are used for sex, mate, parent 
or kin recognition (Mouterde et al., 2014; Mulard et al., 2010; Perez et al., 2015; Vicario et al., 2001; 
Vignal et al., 2004). In our recordings, the Distance calls, the Long Tonal calls and the Tet calls had the 
highest levels of pitch saliency (Figure 7B). The sharp harmonic structure of all these contact calls can 
be seen in the spectrogram examples shown in Figure 3. Of the three harmonic contact calls, Tet calls 
had the lowest fundamental frequency (Figure 7A; male and female Mean F0  Tet = 558 Hz, Distance 
= 680 Hz, Long Tonal = 655 Hz; see Supplementary Table 2). Tet, Distance and Long Tonal calls could 
also be distinguished by their spectral envelope and formant frequencies: both Distance and Long 
Tonal calls were characterized by the highest first and second formants (see Figure 5A and Table 2), 
while Tet calls had those formants at average frequencies. As a result the spectral mean of Tet calls was 
significantly lower than that of Distance and Long Tonal calls (Tet = 2280 Hz, Distance = 3580 Hz, 
Long Tonal = 3600 Hz; see Figure 7C and Supplementary Table 2). Tet calls also differed in their 
duration and loudness. Tet calls were very short calls while Distance and Long Tonal calls were among 
the longest (Tet Std T = 23.9 ms; Distance = 47.7 ms; Long Tonal = 43.8 ms; see Figures. 6B and 7E 
and Supplementary Table 2). Tet calls were also much softer than Distance calls (see Figures 4, 6A and 
7F, and Supplementary Table 2) as one might expect given their function. 

Nest	Calls	

 Potential nest sites and nests are the scenes for particular soft calls: the Nest calls and the Whine 
calls. Nest and Whine calls are emitted by paired birds around reproductive activities: when they are 
searching for a new nest, when they are building their nest and almost each time they relieve each other 
at the nest during the brooding period (Zann, 1996; Elie et al. 2010; Gill et al., 2015). These calls are 
emitted in sequence either by one single partner (especially by the male when leading the nest search; 
Zann, 1996) or by both birds that are then performing soft duets using these calls in combination with 
Tet calls (Elie et al. 2010). Zann divided Nest calls into Ark and Kackle calls. According to Zann, 
Kackles are shorter raspy sounding loud calls produced initially around potential nesting sites. Arks are 
longer and softer sounds with a harsh sound often coming in pairs as in “ark-ark”. Although in captivity 
we also recorded Nest calls that could be acoustically classified using Zann’s descriptions as Ark and 
Kackle calls (see examples on Figure 3), we found that our Nest calls were emitted in identical 
behavioral context and were best described by a unimodal distribution, as revealed by the unsupervised 
clustering algorithm (see Supplementary Figure 5). Thus, we decided not to separate them into sub-
categories. Nest calls were among the shortest vocalizations with durations similar to that of Tet calls 
and much shorter than Whine calls (Std T = 28 ms; see Figure 6B and 7E, Wald Test P=0.015). While 
their level of pitch saliency was far lower than that of Tet calls, it was similar to the mid-range pitch 
saliency of Whine calls (Figure 7B). The two formants of Nest calls were lower than the formants of 
Tet calls. Compared to the Whine calls, the first formants were identical while the second formant was 
relatively higher in the Nest calls. As a result, Nest calls had the second lowest spectral mean after 
Whine calls (Mean S = 2013Hz; see Figure 7C, Wald test P<10-4). Nest calls were also among the 
softer ones with a level of intensity between that of Whine calls and Tet calls (see Figures 4, 6A, 7F; 
Wald test P<10-4).  

Whine	Calls	

 As for Nest calls, Whine calls are produced during early phases of pair bonding and around 
nesting activities (Elie et al., 2010; Gill et al., 2015). Birds often emit this vocalization while adopting a 
particular posture in the nest: they lay and slightly twist their head in the direction of their mate while 
fanning their tail feathers. This vocalization is often followed or preceded by chattering beak sounds. 
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Whine calls are also produced during copulation but none of the Whine calls analyzed here were 
recorded during copulation (see Supplementary Sound File 5 for a Copulation Whine). In our 
recordings, Whine calls were harmonic sounds that had a middle level of pitch saliency (Figure 7B) but 
had the unique quality of having a slowly modulated pitch as shown in the example spectrogram on 
Figure 3. Similar to Nest calls, the spectral envelope of the Whine calls was heavily skewed towards the 
low frequencies (Figures 4 and 5A). With the lowest first and second formants (see Figure 5A and 
Table 2), they had the lowest spectral mean of the repertoire (Mean S = 1835 Hz; see Figure 7C, Wald 
test P<10-4). Whine calls were also the longest (Std T = 55 ms vs 35 ms average; see Figures 6B and 7E, 
Wald test P<10-4) and, with the Nest calls, the softest vocalizations in the repertoire (see Figures 4, 6A 
and 7F). It is its long duration, soft intensity, and varying pitch with low formant frequency that gives 
this call its whiny quality and hence its name. Whine calls were also one of the adult vocalization types 
with the highest presence of double voices (12.6% vs 9.6% for all adult calls). A Whine call with a 
double voice is shown on Supplementary Figure 3. 

Non-Affiliative	Calls	

Wsst	Calls	

 The Wsst call is an aggressive call often produced right before an attack on a conspecific by the 
perpetrator. Both male and female zebra finches produce aggressive calls when supplanting an 
individual that is perching close to their nest (30-20cm), especially when they are in the nest-building 
or brooding phase. This aggressive call was named the Wsst (Zann, 1996) to describe its short noisy 
sound quality that can also be described as a brief cat hiss (sound examples are provided along with 
Figure 3). As quantified by its pitch saliency (lowest – see Figure 7B, Wald test P<10-4) and bandwidth 
(largest – see Fig 7D, Wald test P<10-4), the Wsst call was the noisiest vocalization in our zebra finch 
recordings, a quality that it shared the most with the Begging call and the Distress call. Wsst calls also 
had a very characteristic frequency spectrum: they were dominated by a low frequency formant (690 
Hz) followed by a second formant that was also relatively low (1.8 kHz) but with a power spectrum 
that showed a long tail of significant energy at higher frequencies (see Figures 4 and 5A, Table 2, as 
well as the example spectrograms shown in Figure 3). From the examples shown in Figure 3, one can 
appreciate the similarities and differences between Begging calls and Wsst calls: both calls were clearly 
noisy and broadband but the Begging calls showed the characteristic high-frequency formants while the 
Wsst calls showed the characteristic low frequency formants. This difference was also quantified by the 
significantly large differences in spectral mean (Mean S = 2.6 kHz for Wsst vs. 5.4 kHz for Begging 
and vs. 3 kHz mean across all types, Wald test P = 0.0001, see Figure 7C and Supplementary Table 2). 
Wsst calls were also among the longest in duration in the repertoire (Std T = 52 ms vs. overall mean 
34.7 ms; Wald test P<10-4; see Figures 6 and 7E). Wsst calls had similar loudness as other non-
affiliative calls, at the middle of the loudness range between the louder Distance calls and the softer 
affiliative calls (Figure 7F, Wald test P=0.035). 

Distress	Calls		

 Zebra finches produce Distress calls when they are attacked by other conspecifics, usually 
while they are escaping or being brutalized by their aggressor. Distress calls are noisy calls and share 
many similarities with Wsst calls although to our ear they sounded more tonal. The pitch saliency of 
Distress calls was measured as slightly higher than that of Wsst calls but a confidence interval analysis 
shows that this difference is not significant (Figure 7B, Supplementary Table 2).  Similarly to the Wsst 
calls, the spectral envelope of Distress calls was characterized by low first and second formants and 
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broad bandwidth (Figures 4, 5A, 7D and Table 2). Interestingly, the Distress call was the only adult 
call category to show a third formant as in the Begging call of chicks (Table 2, Figure 5A). Compared 
to Wsst calls, Distress calls were significantly slightly shorter in duration, with a more peaked temporal 
envelope (Figures 6 and 7E; see Supplementary Table 2). The unsupervised clustering applied to Wsst 
and Distress calls suggested that the distribution of calls is best described by two Gaussians but we also 
found that the two call types are equally well represented in these two groups (Figure 9A). Thus, the 
Wsst and Distress calls showed a large amount of overlap and could constitute a single category with 
differences in pitch saliency and intensity/duration reflecting the degree of dominance in an aggressive 
conflict. Indeed, the performance of our classifiers revealed that Distress calls were often misclassified 
as Wsst calls (see below). 

Alarm	Calls	

Adult zebra finches produced two alarm calls: the Thuk call, produced by parents and directed at 
chicks, and the Tuck call, a more generic alarm call. On one hand, Thuk calls were produced only by 
parenting adults when a minor sign of danger occurred (including slight noise from the hiding 
experimenter) while their own chicks were actively begging for food. On the other hand, Tuck calls 
were produced by our adult birds in the presence of hawks calls or the experimenter’s hands in front or 
in the cage. The two alarm calls were the shortest vocalizations produced by zebra finches (Std T: 13.6 
ms for Thuk calls and 15.0 ms for Tuck calls; see Figures 6 and 7E, Wald test P<10-4 for both). The 
alarm calls had also a middle level of pitch saliency on a par with Whine calls (Figure 7A and example 
spectrograms in Figure 3, Wald test P=0.34 and P=0.55 for Thuk and Tuck respectively) and mid-levels 
of intensity on a par with other non-affiliative calls (Figure 7F). The biggest difference between Tuck 
calls and Thuk calls might have been in their spectral shape: Tucks had a higher second formant 
(Figures 5A. 11, Table 2), resulting in also slightly higher spectral bandwidth and spectral mean, both 
of which approached significance according to our conservative assessment using 95% confidence 
intervals (Figure 7C and 7D, see Supplementary Table 2). These spectral differences can also be 
observed in the examples shown on Figure 3. To further convince ourselves that these two calls were 
acoustically distinguishable, we also applied the unsupervised clustering algorithm to the Thuks and 
Tucks combined. As shown in Figure 9B, the PAF distribution for these alarm calls was best modeled 
with two well separated Gaussians of approximately equal weight. More importantly, one group had a 
much higher proportion of Tucks while Thuks dominated the second group. 

Song	

 Beside calls, male zebra finches also emit a more complex vocalization during courtship, pair 
bonding, and mating behavior: the Song. An example of a male Song is shown on the last row of Figure 
3. Male zebra finch Song has been extensively described and analyzed in previous work given the 
importance of the zebra finch model system for understanding the neural mechanisms underlying song 
production and learning (e.g. Tchernichovski et al., 2000; Tchernichovski et al., 2001; Williams, 2004). 
Songs are composed of introductory notes followed by multiple motifs each made of a stereotyped 
sequence of song elements or syllables. Song syllables vary in spectro-temporal structure and include 
harmonic stacks, down-sweeps, up-sweeps, high frequency tones, inverted u notes and noisy bursts. 
Given this variety of notes, it was not surprising on the one hand to see that Song exhibited 
intermediate average values and large ranges for all of the PAF shown in Figure 7. On the other hand, 
Song syllables appeared to share some acoustical features, such as typical spectral envelope shape and 
location of formants (Figures 4, 5A, Table 2). This is clearly seen on the example spectrogram of 
Figure 3. The formants of Song syllables were similar to those of the Distance and Long Tonal calls: a 
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first high formant at 1.2 kHz and a second high formant at 3.7 kHz (see Table 2 and Figure 5A). Thus, 
although Song syllables were varied and appeared to overlap with other vocalization types, they 
remained highly discriminable from calls in part because all notes shared the 3.7 kHz formant found in 
Distance calls but were otherwise shorter in duration and more modulated in time. 
 

Sex	acoustic	signature	

  Across all vocalization types there were few but significant gender differences in acoustical 
parameters (Figure 8B). Post-hoc tests, taking a single vocalization type at a time, showed that sexual 
dimorphism was only significant for the Tet and Distance calls (see Figures 7 and Supplementary 
Figure 6). The greatest sexual dimorphism was observed for the Distance call (Vicario et al., 2001): 
female Distance calls were longer (Female Std T = 53.9 ms, Male Std T = 44.2 ms , P=0.03; Figures 7E 
and Supplementary figure 6B), had lower pitch (Mean F0: Female = 595 Hz , Male = 727 Hz, P < 10-4; 
Figure 7A) and were composed of a single harmonic stack with a steadier and more salient pitch (CV 
F0: Female = 0.08, Male = 0.16, P=0.0012; mean Sal Female = 0.83, Male = 0.74, P=0.0065; Figure 
7B). Male Distance calls were often composed of two parts: a short sharp harmonic stack with a very 
high pitch followed by a more noisy frequency down-sweep (see Figure 3). Zann and others have 
referred to that structure as TN for Tonal followed by Noise (Zann, 1996). The noisy down-sweep 
decreased the average pitch saliency of the male call. It was also during this down-sweep that instances 
of second voices were found. Comparatively, the sex differences for Tet calls were subtler: female Tet 
calls were slightly longer (Std T Female = 25.5 ms and Std T Male = 22.2 ms, P=0.001; Figures 7E and 
Supplementary Figure 6B) and had spectral envelopes that were slightly shifted towards higher 
frequencies (Mean S Female = 2400Hz, Male = 2150Hz, P = 0.012; Figures 7C and Supplementary 
Figure 6A). To further test that Tet calls were sexually dimorphic, we also performed the unsupervised 
clustering algorithm to all Tet calls in our data set. As shown on Supplementary Figure 4A, the PAF 
distribution for Tet calls was well described by two well-separated Gaussians with approximately equal 
weight; one group containing a majority of female calls and the second group containing a majority of 
male calls. 

 

Summary	

 In summary, the zebra finch has a complex vocal repertoire of call types and song elements that 
are used in very specific behavioral contexts. On the one hand, all the vocalizations were broadband 
and showed a relatively restricted range of fundamental frequencies (at least relative to the human pitch 
scale) and, because of this, exhibited a characteristic zebra finch sound quality. On the other hand, the 
vocalization types were clearly distinct from each other both to trained ears and in our quantitative 
analyses. What are the acoustical parameters that are the most pertinent for the discrimination of 
vocalization types? We will revisit this question in a more systematic fashion below when we compare 
the discrimination performance using different feature spaces, but the PAF analysis was very revealing. 
As seen in Figure 8, parameters describing the spectral envelope (spectral mean, Mean S; and quartiles, 
Q1, Q2, Q3) varied the most across vocalization types. As described above, these differences were best 
understood in terms of distinctive formants (see also Figures 4,5 and Table 2). The second type of 
acoustical parameters that was the most distinctive across vocalization types was the set of parameters 
describing the pitch such as the pitch saliency (Sal) and pitch modulation (CV F0). Indeed, as shown on 
Fig 7A, the zebra finch repertoire is composed of vocalization types with high pitch saliency on one 
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extreme (Tet and Distance calls) and very noisy calls on the other extreme (Wsst and Distress calls). 
Two other PAFs were also vocalization type dependent, but to a much lesser extent than the spectral 
envelope and the pitch saliency: duration (Std T) and the fundamental (F0). Whereas parameters that 
were the most distinctive of vocalization types were mostly related to the spectral shape, parameters 
that were most distinctive between male and female calls were the actual fundamental frequency (Mean 
F0), its maximum value (Max F0), the frequency of the second voice (Pk2), and, to a lesser extent, the 
pitch saliency (Sal). This sex difference could be seen for the most tonal calls of the repertoire: the 
contact calls (Long Tonal, Tet and Distance calls). Male contact calls had slightly higher fundamental 
frequencies than female contact calls, although in post-hoc tests this distinction was only significant for 
the Distance call.  
 Although all vocalization types can be discriminated from each other as we quantify below, we 
also observed a few organizing principles that grouped multiple vocalization types into larger classes. 
This grouping effect was particularly evident for the pitch saliency and the spectral mean (Figures 7B 
and 7C). The three contact calls in the repertoire (Long Tonal, Distance, Tet calls) had very high and 
similar pitch saliency whereas the calls produced in high stress contexts (Wsst, Distress, Begging calls) 
had the lowest saliency. The spectral mean divided vocalization types into 4 natural groups: the 
Begging calls with very high frequencies were their own class; Song and the two distance contact calls 
(Long Tonal and Distance calls) constituted the second class; all the non-affiliative calls had 
intermediate values of spectral mean and formed the third class; finally all affiliative calls used in close 
distance communication groups together as the class of vocalization with the lowest spectral mean. 
This grouping by spectral means could also be seen in terms of formant frequencies as shown on Table 
2 and Figure 5. 

Quantifying	the	Classification	of	Vocalization	Types	based	on	Acoustical	Features	

 Above, we described some PAFs that are distinctive of all vocalization types: we showed that 
these carry information about vocalization types since high fractions of the variability found in some of 
these measures can be accounted for by the category (Figure 8). Next, we examined and quantified how 
well these acoustical features can be used to discriminate each vocalization type: we identified the best 
combination of parameters to perform such discriminations and we investigated to what extent 
categories were equally well discriminated. Moreover, although envelope and fundamental parameters 
are easily interpretable, they remain an ad hoc choice of acoustical features: since they are not 
invertible representations of the sound, they could miss acoustical information present for example in 
time varying spectro-temporal patterns such as frequency sweeps. We therefore also investigated more 
complete acoustical feature spaces: a complete and invertible spectrogram, the time-varying Mel 
frequency Cepstral Coefficients and the Modulation Power Spectrum (see Methods and Figures 2, 
Supplementary Figures 1 and 2). Finally, we used two classification algorithms: a regularized Fisher 
Linear Discriminant Analysis (RFLDA) and the Random Forest (RF) (see methods). 

Performances	of	classifiers	and	feature	spaces	

 On Figure 10, we show the confusion matrices obtained for the four feature spaces and two 
classifiers. For all four feature spaces, the performances of the RF and the RFLDA were very similar 
(Figure 11A), supporting the idea that vocalization types can be separated using linear combinations of 
these acoustical features. In terms of overall discrimination performance, the PAF space and the 
spectrogram feature space yielded similar levels of discrimination at around 60% of correct 
classification. As shown on Figure 11B, many vocalization types were classified well above this level. 
The notable exceptions were the Tuck call, which was confused with the other alarm call, the Thuk call, 
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and the Distress call that was miss-classified as the aggressive Wsst call. As described above, given 
both the shared behavioral context during which these calls are emitted and the shared acoustical 
features, these confusions were not surprising. If Thuk and Tuck calls on the one hand, and Distress and 
Wsst calls on the other hand are combined to form 2 categories in lieu of 4, then the average PCC (for 
the RF classifier on PAFs) increases from 64 % to 76 %.  

  MPS and MFCC feature spaces could also be used to discriminate among call categories but 
not as efficiently. On the one hand, both the MPS and the MFCC captured some of the information 
present in the spectral envelope such as the formants, thus their good performance was not surprising. 
On the other hand, some acoustical properties were absent from these feature spaces. For example, the 
MFCC representation would not capture the pitch saliency and the MPS would not represent particular 
temporal sequences (for example, it cannot distinguish an upsweep followed by a downsweep from an 
downsweep followed by an upsweep). These two feature spaces were useful to compare our results to 
those obtained in previous research as well as to identify how one might design an optimal feature 
space. Note that the MFCC could be better exploited for the extraction of birds’ formants if the 
coefficients were optimized for the bird’s vocal tract instead of using parameters optimized for human 
voice. Since both the spectrogram feature space and the PAF space yielded the highest performance 
and provided discriminant functions that were easily interpretable, we will limit below the description 
of those discriminant functions to those two feature spaces. 

Distinctive	acoustical	features	given	by	multi-dimensional	classifiers	

 Which acoustical features were revealed as relevant for this classification task, and how did the 
different vocalization types occupy that acoustical space? The top row of Figure 12 shows the first five 
discriminant functions (DF) obtained from the RFLDA performed on the spectrograms. The bottom 
two rows of Figure 12 depict how vocalization types were segregated in this discriminant space. The 
DF1 for the spectrogram did three things: it de-emphasized the very high formants (F3 above 4 kHz 
and F4 above 6.5 kHz) present in the Begging call, it emphasized the high frequency formant (F2 
between 3.2 and 3.8 kHz) present in the Distance call, Long Tonal call and Song syllables and it 
emphasized calls with high pitch saliency by picking out the fundamental and second harmonic of a 
stereotypical adult vocalization. The DF2 stressed the lower frequency formants (below 3kHz) present 
in non-contact calls (Wsst, Distress, Nest, Whine, Thuk and Tuck calls) and in the Tet, and de-
emphasized the high frequency band between 3 and 5 kHz, which corresponds to the tail of the second 
formants (F2) found in the Long Tonal call and in the Distance call in particular (Figure 4). DF3 de-
emphasized the very lower tail of the lower formants, and by doing so, separated the Wsst, Whine and 
Distress from other non-contact calls. DF4 and DF5 performed further analyses of the shapes of the 
spectral and temporal envelopes, extracting, for instance, measures of the duration of the vocalizations 
by differential weighting of temporal slices that were alternatively emphasized and de-emphasized. In 
summary, these DF operated principally on the coarse spectral shape but also detected pitch saliency 
and temporal structures such as duration. 

 Table 3 shows the coefficients of the eight most important variables used for the first four DF in 
the RFLDA applied to the PAF space. As one might expect from the results of the models involving 
individual acoustical features (see above and Figure 8) and from the RFLDA applied to the 
spectrogram feature space, spectral envelope attributes dominated the first two DF and were present in 
all four: particular combinations of spectral means (Mean S), spectral skew (Skew S) and quartiles (Q) 
were used to distinguish the characteristic spectral envelope of each call. The amplitude of the call (as 
Max A or RMS) also played a role in all functions. The pitch saliency (Sal) in the first two DF and the 
fundamental (Mean F0) in combination with its CV (CV F0) in the third and fourth DF played a more 
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minor role. The third DF also extracted temporal envelope parameters by emphasizing sounds with 
higher temporal modulations. 
By comparing the scatterplots of the centroids in Figure 12 (B and C) between the spectrogram feature 
space and the PAF space, one can see that the DFs 1 and 2 for both feature spaces performed a similar 
parsing of vocalization types (with an inverted sign in DF1). This congruence of the DF supports the 
conclusion that the information present in the coarse spectral envelope is highly robust to distinguish 
vocalization categories. Moreover, DF3, which was obtained from the PAF space and analyzed 
temporal modulations, performed a similar segregation as DF5 of the spectrogram feature space. Thus, 
both discriminant analyses uncovered similar discriminative structures in vocalization types.  

 

Distinctive	spectrographic	features	given	by	the	Logistic	Regression.	

 Finally, we examined the single spectrographic dimension that would best distinguish one 
vocalization type from all the others. For this purpose, we performed a logistic regression in the 
subspace spanned by the 9 DFs (all significant with P< 0.001) obtained in the RFLDA of the 
spectrographic space (see methods). These logistic weights are shown as spectrograms on Figure 5B. 
Again, one can see that these functions were mostly different from each other by emphasizing different 
coarse regions of frequency space. Using black lines, we marked for each vocalization type the 
formants that were extracted from the average spectral envelope as shown on Figure 5A. One can see 
that these logistic functions emphasized frequencies that included the formants of the vocalization type 
while de-emphasizing frequencies of formants in other vocalization types often resulting in “edges” at 
formant frequencies: a red or positive weight at the formant next to a blue or negative weight just off 
the formant frequency. This organization is clearly visible for the Whine, Nest, Tet and Distance calls 
where the first two formants F1 and F2 are progressively higher and more separated. These logistic 
weights also extracted informative temporal structure and duration. In particular, all the weights for the 
shorter vocalization types (Tuck, Thuk and Tet calls) were shorter in duration and flanked by inhibitory 
side bands.  
 In summary, we provided multiple lines of evidence that show that behaviorally classified 
vocalization types can be discriminated from their acoustical properties and that spectral envelope 
features play a central role in this distinction. These spectral envelope features can also be described in 
terms of characteristic formant frequencies.  Vocalization intensity, pitch saliency and duration provide 
further distinguishing features. 

Discussion	
 Domesticated zebra finches, which we raised socially and housed in enriched environments, as 
recommended by (McCowan et al., 2015; Olson et al., 2014), produced a range of vocalizations that 
could be classified based on their use in distinct behavioral contexts. These vocalizations were very 
similar to the ones that have been observed in wild zebra finches. By obtaining a very large database of 
high quality audio recordings of this complete vocal repertoire, we were able to determine the principal 
acoustical features that can be used to classify these vocalization types. For this purpose, we used both 
classical descriptions of sounds (the Predefined Acoustical Features, PAFs) and data driven approaches 
in combination with more modern statistical methods to extract the relevant acoustical features that 
could be used for this classification task. We found that zebra finch vocalizations used in different 
behavioral contexts are distinguishable primarily based on their spectral shape and secondarily based 
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on their pitch saliency, which distinguishes noisy calls at one end from tonal or harmonic sounds at the 
other end. As we will discuss below, these results have implications for understanding the evolution of 
complex vocal communication signals (Fitch, 2000) and for investigating physiological and neural 
mechanisms involved in their perception (Elie and Theunissen, 2015; Fitch and Kelley, 2000; Woolley 
et al., 2009) and production (Ohms et al., 2010; Riede et al., 2006; Riede et al., 2013; Wild and 
Kruetzfeldt, 2012). We will first summarize and discuss the results that relate to our immediate goals of 
describing the zebra finch vocal repertoire before discussing in more depth the implications of our 
results for more general theories in animal communication. 
 

Comparison	between	the	vocal	repertoire	of	domesticated	and	wild	zebra	finches	

 Besides the song, domesticated zebra finches have a rich vocal repertoire of communication 
calls that include aggressive calls, alarm calls, distress calls, contact calls, nest calls and begging calls. 
The repertoire of our domesticated zebra finches is similar to that of wild zebra finches as described by 
Zann ( 1996) with however 4 discrepancies: the absence of the Stack call, the heterogeneity (or duality) 
of Tet calls, the grouping of Ark and Kackle calls into a single Nest call category and the description of 
a new alarm call, the Tuck call. Zann describes the Stack call as “Louder, longer and higher pitched 
than Tets, but softer, shorter and lower pitched than Distance calls, Stacks are emitted at the moment of 
take-off.” The unsupervised clustering analysis we conducted on Tet and Distance calls categorized 
those calls into two and not three groups, excluding the possibility of a “missed” category between Tet 
and Distance calls. Thus, our dataset does not appear to contain the Stacks as described by Zann. 
Domesticated zebra finches might produce few of these Stack calls because a synchronized take-off is 
not part of their repertoire when housed in cages. More recently, Ter Maat et al. (2014) also designated 
some soft contact calls exchanged between domesticated zebra finches as Stack calls because they 
could be described as constant harmonic stacks in the spectrogram space (see also Gill et al., 2015). 
These stack-looking calls could be distinguished from Tet calls by being slightly longer and less 
modulated in pitch. The results from our unsupervised clustering analyses do support the idea that, 
based on their acoustical properties, soft contact calls, designated as Tet calls here, can be categorized 
into two call types: one with greater frequency modulation and one that can be described as a constant 
harmonic stack. This distinction was never described by Zann in wild zebra finches and could be a 
particularity of domesticated birds as it matches the observations of Ter Maat et al.. Because in our 
hands these two types of close distance contact calls were emitted in the same behavioral context, we 
decided to keep them in one group in our analysis (and labeled all of them as Tet calls). In the future, to 
avoid confusion with the take-off call described by Zann, we suggest dividing the soft contact calls into 
Tet-M and Tet-S for Tet-Modulated and Tet-Stacks.  

Regarding the soft and short calls emitted by adults around nest activities, we did not distinguish Arks 
and Kackles. Here, the unsupervised clustering analysis supported a unimodal distribution of sounds, 
and given that the calls were produced in the same context, we could not justify additional groups and 
maintained a single category, the Nest calls. We note, however, that this category is relatively large and 
that calls could be classified along a continuum going from more tonal Ark calls to more noisy Kackle 
calls. Finally, we divided alarm calls into Thuk and Tuck calls, a distinction that had not been made 
until now; Thuk calls are alarm calls emitted by brooding parents and Tuck calls are alarm calls emitted 
by any adult (see results). The unsupervised clustering analysis supported this novel distinction. 
Ultimately, we described a complex vocal repertoire of 8 adult call types shared among the two sexes, 
2 juvenile calls, and a song that is uniquely produced by males. In addition, the complete zebra finch 
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vocal repertoire probably includes a Stack call emitted at take-off and an unmodulated Tet call, the Tet-
S. Finally, Nest calls could be produced along a continuum of tonal to noisy sounds, which might also 
be produced in slightly different behavioral contexts.  

 

Quantifying	the	discrimination	

 Our classification procedures allowed us to quantify the discrimination of vocalization types 
based on acoustical features of single calls and, by generating confusion matrices, to determine the 
potential nature of systematic errors in such classifications. The performance of the classifiers is 
relatively high, at approximately 60% across all categories and reaching levels above 80% in cross-
validation data for Begging, Long Tonal and Wsst calls. The calls that are the most confused are: the 
Distress call, that is systematically confused with the Wsst call; the Tuck call, that is systematically 
confused with the Thuk call; and the song syllables. Results from our unsupervised clustering show that 
Distress and Wsst calls are mixed in acoustical space. This overlap might also make sense from a 
behavioral standpoint: Distress and Wsst calls are produced in the same context, during intraspecific 
conflicts where the aggressor and aggressed can change roles or express various levels of aggression 
and distress. If the acoustical changes are graded they might be poorly accounted by a categorization. 
Alternatively, Wsst and Distress calls might be acoustically distinguishable in the temporal sequence of 
syllables, which was not examined here. In our dataset, Distress calls were more often misclassified 
than Wsst calls; this asymmetry can be explained by the fact that our sample size for the Distress calls 
was much smaller than for the other call types. Given the design we chose for the cross-validation 
procedure of the classification algorithms (the validating dataset not only did not contain any of the 
sounds of the training set but also did not contain any vocalizer that had been chosen for the training 
set), categories with smaller sample size were penalized. Thuk and Tuck calls are the two alarm calls 
that, given their observed effect on receivers, we believe are directed to juveniles and adults 
respectively. Our unsupervised clustering analysis shows that these two call types are indeed well 
separated acoustically (and are not part of a unimodal distribution that we divided in two) but with 
some overlap. Song syllables are also often misclassified but not systematically. Instead song syllables 
can be confused with many different call types, which is to be expected given the variability of song 
syllables (Williams, 2004). Note also that our classification procedure was based on isolated calls and 
song syllables. Other acoustical structure such as the temporal sequence of calls and song syllables 
would provide additional vocalization specific cues: Distance calls are often produced in pairs; 
Begging calls are produced in bursts; Tet calls are emitted in long intermittent streams; Whine, Tet and 
Nest calls are produced in synchronized duets between mates (Elie et al., 2010) and Song is 
characterized by a very stereotyped and fast temporal sequence of specific song syllables. Including 
such temporal sequence information in our classifiers would have certainly increased the discrimination 
performance. Finally, the performance of classification that we obtained should be compared with that 
of zebra finches. Indeed, behavioral testing of zebra finches using conditioning procedures will assess 
the actual behavioral discriminability of these vocalization categories based solely on acoustical cues 
and reveal how zebra finches hierarchically structure their own repertoire.  

Acoustical	features	for	vocalization	type	discrimination	

 Our extensive database of vocalization examples allowed us to use a data driven approach, in 
addition to a more classical bioacousticians’ approach (using the PAFs), to determine, without making 
any a priori assumptions on the nature of the relevant acoustical features, the acoustical parameters that 
vary across vocalization types and could therefore be used for vocalization type classification. For this 
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purpose, we used an over-complete representation of the sounds, their spectrograms, and used data 
reduction techniques (PCA) combined with cross-validated classifiers to find the relevant acoustical 
features. Similar approaches that rely heavily on large data sets and machine learning techniques have 
been used recently to classify birds’ calls from different species (Stowell and Plumbley, 2014) and to 
cluster a primate species’ calls using unsupervised algorithms (Fuller, 2014). Such data driven 
approaches provide unique opportunities to examine the information-bearing features in 
communication sounds without making a priori assumptions on the nature of such features or on the 
number of categories. Besides, our approach using the full spectrogram can also be used with sounds 
degraded by other signals or propagation (Mouterde et al., 2014) as it will happen in normal 
communication events in wild species. 

Formants	produced	by	active	vocal	filtering		

To validate our approach and to facilitate the interpretation of our results, we used 3 sound 
representations, besides the spectrogram: the MFCC and the MPS as well as predefined but more 
classical sound features extracted from the spectral and temporal envelopes and the time-varying 
fundamental (the PAFs). The results for all these analyses led to the same conclusion: zebra finch 
vocalization types are primarily distinguishable based on the coarse shape of their spectral envelope 
and secondarily based on the saliency of their periodicity structure or pitch saliency. In contrast, the 
frequency of the fundamental (the pitch) varied very little across the entire repertoire (see results and 
Figures 7A and 8A). Moreover, examination of the average spectral shape of each vocalization type 
(Figure 5A) and of the spectro-temporal discriminant and logistic functions (Figures 12 & 5B), both 
point to characteristic spectral peaks for each vocalization type that can be used for the vocalization 
classification task. These formants can in part be attributed to resonances in the birds upper vocal tract: 
in a recent original study using X-ray cinematography, Riede et al. (Riede et al., 2013) show that 
singing and calling zebra finches vary their tracheal length, the size of their oropharyngeal–esophageal 
cavity (OEC) as well as the gape of their beak (Goller et al., 2004) to modulate the resonant peaks of 
their vocal tract. The OEC resonance results in a formant peak between 2 and 5 kHz while the trachea 
and the beak can produce other formants in the same frequency range. Our data suggest that indeed 
zebra finch vocalizations vary in the number and the positions of these formants. We did not directly 
associate resonances of a particular anatomical structure of the vocal tract to the formants we measured 
but, given the results in (Riede et al., 2013) obtained for Tets and Distance calls, we suspect that the 
formant frequencies labeled F2 (and F3 for Distress and Begging calls) are produced by changes in the 
OEC. This hypothesis could be tested using the experimental techniques of (Riede et al., 2013) while 
birds produce all the vocalizations in their repertoire.  

 Thus, songbirds join other birds (Fitch and Kelley, 2000), some mammals (Fitch, 1997; Reby et 
al., 2005; Riede and Zuberbuhler, 2003) and humans (Lieberma.Ph et al., 1969) in the use of varying 
spectral resonant peaks in their vocal tract to generate communication calls with distinct information. 
Moreover, although in most animals, the vocal tract filtering appears to be principally used in a static 
way (Fitch, 1994; Fitch, 2000; Fitch, 2000; Fitch, 2002; with notable exceptions such as the larynx 
descent in the red deer that is used for acoustic size exaggeration, Fitch and Reby, 2001) and is useful 
for identifying the caller and some of his anatomical or physiological attributes (Fitch, 1997; Taylor 
and Reby, 2010), birds and primates (Riede and Zuberbuhler, 2003) are also able to use active vocal 
filtering for generating vocalization types with different meanings. Active vocal filtering might 
therefore be a more ubiquitous feature in animal vocal communication than previously thought and 
differences in complexity between the human control of formants and those of birds might also not be 
so disparate. 
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The	role	of	the	syrinx	and	respiratory	system.	

 Zebra finches’ vocalization types are not only characterized by their spectral shape but also by 
their pitch saliency, duration and intensity. Vocalization types vary in their pitch saliency from the very 
noisy aggressive (Wsst call) and Distress calls to the very tonal contact calls (Distance calls, Tet calls 
and Long Tonal calls). The pitch is produced by the birds’ vocal organ, the syrinx (Fee, 2002; Goller 
and Larsen, 1997), and models suggest that noisy sounds could also be generated at the syrinx when 
high air-sac pressure drives the system into chaotic regimes (Elemans et al., 2009; Fee et al., 1998). 
Thus, control of the syrinx in conjunction with the respiratory system will be key for controlling the 
pitch (the fundamental), the pitch saliency, the duration and the amplitude of the sounds. Moreover, it 
is also known that the non-linear dynamics of the syrinx produce spectrally rich tonal sounds: the 
syrinx in isolation already generates harmonic sounds with particular spectral envelopes that are 
correlated with the fundamental frequency (Fee et al., 1998; Sitt et al., 2008; Williams et al., 1989). 
The acoustic formants we measured might therefore depend both on the mechanical properties of the 
syrinx and of the upper vocal tract. Thus, the generation of a variety of vocalizations in the zebra finch 
repertoire requires the coordinated control of the respiratory organs, the syrinx and the upper vocal 
tract, just as in human speech (Riede and Goller, 2010).  

 
The neural control of the syrinx in songbirds is relatively well explored in the context of song 

production in male birds (e.g. Amador et al., 2013; Hahnloser et al., 2002) but the neural control of the 
syrinx for other vocalization types is just beginning to be examined (Ter Maat et al., 2014) and the 
coordination of the respiratory system, the syrinx and the upper vocal tract to produce the sounds in the 
entire repertoire has not been studied. Given the wealth of research on the syrinx and its neural control 
and now our quantified description of the complete vocal repertoire of the zebra finch, we believe that 
the Zebra finch model is particularly appropriate for investigating the neural and motor control for the 
production of a complete and complex vocal repertoire. Such studies would not only provide insights 
on neural control of vocal gestures but also on the evolution of brains and vocal organs for the 
production of a complex vocal signaling system.  
  

Expected	consequences	for	the	behavioral	and	neural	discrimination	of	vocalization	types	

Our analysis opens the doors for behavioral and neurophysiological experiments on the 
perceptual side. The behavioral perception of sounds in zebra finches has been well studied but 
principally as it applies to song perception (e.g. Clayton, 1987; Clayton and Prove, 1989; Scharff et al., 
1998; Sturdy et al., 1999) and the question of individual recognition (e.g. Mouterde et al., 2014; Vignal 
et al., 2008). Zebra finches are also known to be exquisitely sensitive to the spectral structure of 
harmonic sounds (Lohr and Dooling, 1998). It has also already been demonstrated that zebra finches 
can learn to classify their song syllables and human speech vowels as open-ended acoustic categories 
(Kriengwatana et al., 2015; Sturdy et al., 1999). However, it remains to be seen whether zebra finches 
are able to perform categorical perceptions in conditioning experiments along the lines of the 
vocalization categories described here. Similarly conditioning experiments, where the specific cues that 
we have identified here as being important for vocalization categorization are systematically 
manipulated, need to be performed to directly assess their actual importance from the receivers’ 
perspective. The representation of natural sounds in the avian auditory forebrain has also been well 
studied. We and others have shown that the avian auditory cortex is particularly responsive to spectro-
temporal structure found in natural sounds (Hsu et al., 2004; Woolley et al., 2005). Moreover, spectro-
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temporal receptive fields (STRFs) estimated for auditory neurons in the avian auditory cortex exhibit a 
range of tuning that includes neurons with coarse spectral tuning that would be useful to extract 
formants (and timbre) and narrow spectral tuning with long integration times that are efficient at 
detecting pitch saliency (Kim and Doupe, 2011; Nagel and Doupe, 2008; Woolley et al., 2009). In a 
recent study, we have directly measured neural responses to the entire vocal repertoire and found that 
approximately 50% of auditory neurons have responses that carry information about vocalization type 
category and a fraction of these “semantic” neurons also showed selective and invariant response 
properties for vocalization categories (Elie and Theunissen, 2015). We are currently investigating the 
nature of the non-linear transformations between sound and neural responses that could explain these 
“categorical” neural responses. Given the results presented in this paper, we hypothesized that we will 
find neuron responses that extract formant information along the characteristic axis of specific 
vocalization types (e.g. in STRFs that resemble the logistic weights of Figure 5B) or that are sensitive 
to pitch saliency. Step-like response functions along such acoustical dimensions could then be used to 
categorize sounds into specific vocalization types.  

 

Evidence	for	Referential	coding	in	Zebra	Finches?	

 Multiple species of birds (Evans et al., 1993) and mammals (Seyfarth et al., 1980) have shown 
to produce different alarm calls depending on the type of predator. In addition, in birds, these alarm 
calls elicit different behaviors in chicks and adults (reviewed in Gill et al., 2013). For example, the 
white-crowned scrub-wren produces a buzz in response to ground predators and a trill in response to 
aerial predators. In response to the trill, nestlings will stop producing begging calls while adults will 
scan the environment and fly to cover. Here we have found that zebra finches produce two types of 
alarm calls that are distinguishable based both on their behavioral context and on their acoustical 
structure: the Thuk call and the Tuck call. Moreover, in captivity, the Thuk was observed to be directed 
at chicks that immediately stopped begging in response, while the Tuck was directed at the entire group 
and elicited adults to stay quiet and motionless and to scan the environment. As discussed in Gill et al. 
(2013), the study of alarm calls in birds could provide further insights on the degree to which animal 
produce communication calls that have a functional reference and thus that are not simply the result of 
an internal state. Here, zebra finches appear to change their alarm call depending on whether or not 
danger appear in co-occurrence with their chicks emitting begging calls. Further behavioral studies 
identifying all the exact contexts that can systematically elicit each type of alarm call and investigating 
whether playback yields differential responses in adult and chicks are needed to determine whether 
zebra finches also produce calls with functional references. 
 

A	universal	size	for	the	core	elements	constituting	a	vocal	repertoire?	 	
The size of the repertoire of the zebra finch is of similar order of magnitude to the sizes of the 

repertoires that have been described principally based on spectrographic examination in other species 
of birds; for example, adult black-capped chickadees produce 11 calls plus two in chicks (Ficken et al., 
1978), 24 call types have been described in the red jungle fowl (Collias, 1987), 11 call types in the 
Eurasian stone-curlew (Dragonetti et al., 2013). Interestingly, similar repertoire sizes are also described 
in mammals: for example, spotted hyenas have a repertoire of approximately 10 calls (Kruuk, 1972), 
dingos produce 9 vocalizations in classes that are similar to other canids (Deaux and Clarke, 2013), 
chipmunks produce 13 distinct calls including 4 types of alarm calls (Brand, 1976) and 17 call types are 
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found in Western and Mountain Gorillas (Salmi et al., 2013). Although these numbers are similar, it is 
clear that differences in morphology of the vocal and perceptual systems, as well as differences in 
social and ecological conditions across species, even closely related ones (Salmi et al., 2013), will 
result in distinct repertoires or distinct uses and functions of acoustically similar communication calls. 
Besides, this apparent lack of a universal code for communication in the animal kingdom has even been 
contrasted to our shared genetic code (Hauser et al., 2002). However, this idea of a lack of a universal 
code can be partially refuted and our results provide additional evidence for common principles. In 
terms of the similarity in the numbers of communication calls produced by social birds and mammals, 
it might be interesting to speculate on the presumably innate capacities to produce a repertoire limited 
to approximately 10 call types. It is certainly possible that the number of call types has evolved 
separately in each species to match approximately 10 prototypical behaviors found in all social animals 
centered around danger (alarm calls), fighting (distress and aggressive calls), group cohesion (contact 
calls) and mating (nest and contact calls and song), with varying numbers in each of these categories 
(e.g. number of alarm calls) depending on the species dependent ecology and behavior (Wilson, 2000). 
Or perhaps this approximately similar limit across species in the vocal repertoire is driven by common 
mechanisms of production or perception. For example, it is interesting to note that human languages 
use between 3 and 20 (and mostly below 10) vowel sounds that are distinguishable based on their 
formants and spectral shape (Ladefoged, 2012). This number is within the range of the 10 to 20 
vocalization categories that are found in avian repertoires and that, at least in zebra finches, differ 
mainly based on their spectral shape. If the use of formants to distinguish vocalization types tends to be 
a rule in animal communication system, then the size of the core elements constituting the repertoire 
could be constrained by common mechanisms of production or perception of different spectral shapes. 

 

A	Universal	code	 for	animal	communication?	Ecological	and	Motivational	explanations	 for	
the	structure-function	of	communication	calls.	

Are there any common principles shared across species that correlate specific acoustical traits to 
the meaning of the sound? At a coarse level the answer to this question is yes, and the link between 
sound and meaning can be understood for ecological reasons, such as efficient transmission or on the 
contrary the need to be inconspicuous to avoid predation (Morton, 1975), or as “rules” relating 
motivational states to sound structure (Morton, 1977; Owren and Rendall, 2001). As summarized by 
Collias (1987, p.510) when describing the vocal repertoire of the red jungle fowl: “Brief, soft repetitive 
notes of low frequency are attraction calls. Loud harsh sounds with high-frequencies are alarm cries. 
Harsh sounds emphasizing low frequencies are threat sounds. These rules hold for many other birds”. 
These rules work because these physical properties of sounds elicit approaching or avoiding behaviors 
respectively from the receiver of any species. However, as very well explained by Seyfarth et al. ( 
2010), a strict manipulative view of communication calls from the perspective of the receiver is 
certainly over simplistic since receivers can choose to respond differently to calls with similar 
acoustical features or to identical calls in different contexts and to respond similarly to calls with 
different features. For these reasons, Seyfarth et al. argue that animal communication is better analyzed 
with an information perspective and we fully agree with their point of view. However, we also found 
some evidence for general principles that can explain some of the physical characteristics of 
communication calls in terms of ecological constraints and the motivational perspective. In terms of 
ecological constraints, we noted that the Distance call of the zebra finch is the loudest allowing for long 
range propagation and in previous work we have also shown that its harmonic structure (high pitch 
saliency) as well as the modulation of the fundamental are important for transmitting the individual 
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signature over long distances (Mouterde et al., 2014). The alarm calls are also relatively loud but very 
short, making them harder to localize, which is critical in the presence of potential predators. In terms 
of the motivational approach, we also find support for the rules spelled out by Collias ( 1987): the most 
affiliative calls (Nest and Whine) are the softest in the repertoire and with the lowest spectral mean 
while the aggressive (Wsst call) and distress calls are the noisiest (low pitch saliency) and with the 
largest spectral bandwidth. It is however interesting to note that zebra finch Begging calls also share 
these physical attributes (and also have the highest spectral means), suggesting that they should be 
highly aversive while they clearly elicit approaching behaviors, at least in parents. These examples and 
apparent counter-example (the parents might also be motivated to stop the begging calls; e.g. Rendall et 
al., 2009) support the rules of the motivational theory but also illustrate that a strict manipulative view 
of the receivers response without taking into account the informative features in the communication 
will fail to explain the range of complex behaviors elicited by communication calls (“I hear begging 
calls: Are those the begging calls of my chicks? Have they already been fed?  Are they ready to be 
weaned?”). 

Conclusions	
 As stressed by Marler (2004), the study of birdcalls and bird communication offers unique 
opportunities for behavioral neurobiology. Our quantitative analyses of the complete vocal repertoire of 
the zebra finch allowed us to make significant findings on the information-bearing features for 
vocalization type discrimination: vocalizations are mostly categorized by the shape of the spectral 
envelope that can be explained in terms of formants produced both by the syrinx and the vocal tract of 
the bird. The dynamic vocal tract shaping is therefore not unique to humans or a few mammals. In 
addition, we have shown how our data provides support for general principles of animal 
communication including, on one hand, the ecological and motivational links between physical 
structure and meaning and, on the other hand, the importance of an “information” approach where 
behavioral response to specific calls are interpreted in terms of the new specific information they 
provide for the receiver (e.g. the behavioral response of noisy begging calls by parents and non-
parents) (Seyfarth et al., 2010). Finally, our quantitative description of complete vocal repertoire of the 
zebra finch will facilitate neuro-ethological research for understanding the neural basis of perception 
and production of communication calls. 
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Tables	
Vocalization Type Abbreviation # Sounds # Birds 

Wsst Ws 235 23 

Begging Be 1824 15 

Distance  DC 630 26 

Distress Di 51 11 

Long Tonal LT 217 13 

Nest Ne 1063 23 

Song So 2776 13 

Tet Te 613 24 

Thuk Th 290 13 

Tuck Tu 240 13 

Whine Wh 197 15 

 

Table1. Vocalization names and number of calls or syllables and birds recorded in our zebra 
finch Vocalization Database  
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	 F1	 F2	 F3	 F4	

Begging	 0.67	 1.69	 4.67	 6.53	

Long	Tonal	 1.67	 3.86	 	 	

Tuck	 1.22	 2.55	 	 	

Thuk	 1.36	 2	 	 	

Distress	 0.67	 1.38	 2.69	 	

Wsst	 0.69	 1.81	 	 	

Whine	 0.76	 1.65	 	 	

Nest	 0.76	 2.12	 	 	

Tet	 0.95	 2.38	 	 	

Distance	 1.43	 3.24	 	 	

Song	 1.19	 3.72	 	 	

 

Table 2. Frequency of spectral peaks (formants, in kHz) in the average spectral envelope of each 
vocalization type. The location of these peaks is shown as dotted lines on Figure 5a. 
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DF Cum Var Coeff 

1 55.5 2.859(Mean S) + 0.610(Skew S) - 0.594(Q2) - 0.585(Max A) 

+0.531(Q3) + -0.451(Q1) + -0.429(Sal) + 0.358(Std T) 

2 73.9 1.335(Mean S) -1.332(RMS) + 1.055(Skew S) - 0.869(Q3) 

-0.768(Ent T) + 0.644(Kurt S) + 0.616(Max A) -0.482(Sal) 

3 84.5 1.361(Ent T) + 0.712(RMS) + 0.692(Skew S) + 0.658(Q1) 

+0.654(Kurt T) -0.632(Max A) + 0.514(CV F0) + 0.495(Kurt S) 

4 92.2 -0.885(Q3) + 0.841(Max A) + 0.757(Mean F0) - 0.648(Skew S) 

-0.623(RMS) + 0.617(CV F0) + 0.432(Std S) + 0.419(Ent S) 

 

Table 3. Description of the first four discriminant functions (DF) obtained from RFLDA in the 
PAF space. Coeff: coefficients of the 8 most important acoustical factors for each discriminant 
function; CumVar: cumulative between group variance explained by the discriminant functions. Note 
that the colors of the variables reflect the classification between spectral (red), temporal (blue), pitch 
(green) and amplitude (black) parameters. 
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Figure 1. Extraction of the Predefined Acoustical Features (PAFs) and flow-chart showing the classification 
procedure using these parameters.  Five acoustical parameters were obtained from the temporal amplitude enve-
lope of the sound (middle top, in blue), two parameters characterized the amplitude of the signal (middle top, in 
black), eight acoustical parameters were derived from the spectral amplitude envelope (middle center, in red) and 
seven acoustical parameters described the time varying fundamental (bottom center, in green). The fundamental is 
shown as a black line on the spectrogram. The fundamental is only extracted when the pitch saliency is greater than 
0.5. These 22 acoustical parameters were then used to train two classifiers in vocalization category discrimination: a 
Random Forest and a Fisher Linear Discriminant Analysis. Performance was assessed by cross-validation. See Methods 
for more details on the calculation of the parameters and on the classification procedure.
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Figure 2. Flow-chart showing the regularized classification procedure using a complete and invertible spec-
trogram to represent the vocalizations.  Here we performed a classification of vocalization category using an 
over-complete feature space representation of the sounds: an invertible spectrogram (top panel, Feature Space 
column). The invertible spectrogram had 231 frequency bands between 0 and 12 kHz (~52 Hz bandwidth) and a 
sampling rate of 1017 Hz yielding 357 points in time for the 350 ms window used to frame each vocalization. The 
total number of parameters describing the sounds in this spectrographic representation was 82,467. To prevent 
overfitting, we reduced the number of parameters using a principal component analysis (PCA). The first 20 PCs are 
shown as little spectrograms in the bottom row of the Feature Space column. The optimal number of PC coeffi-
cients was found by training the two classifiers with a varying number of PC coefficients and estimating the perfor-
mance of the classifier using a cross-validation data set. The performance of the classifiers as a function of parame-
ters is shown on the line plot in the Regularization column. RF = Random Forest, RFLDA = Regularized Fisher Linear 
Discriminant Analysis, PCC = Probability of Correct Classification. The solid lines correspond to the performance 
averaged first for each vocalization type and then average across all types. The dashed lines correspond to the aver-
age overall performance (the average across types weighted by the number of vocalizations in each category). 
Performance for all these measures plateaued or decreased at approximately 40 PCs. 40 PCs explained 87% of the 
overall variance in the spectrograms of all vocalizations.  The classification results presented in detail in this paper 
were thus obtained by describing each sound with the coefficients of 40 PCs. See the Methods for more details on 
the spectrographic representation and on this regularized classification procedure.
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Figure 3. The zebra finch vocal repertoire.  Spectrograms of examples of each vocalization type 
found in domesticated zebra finches. The top row shows the two types of calls produced solely by 
chicks: a Begging call bout and a Long Tonal call. The Long Tonal call is the precursor of the adult 
Distance call and functions as a contact call. The second row shows the calls produced by adults during 
affiliative or neutral behaviors. The Whine and the Nest calls are not only produced during early phases 
of pair bonding and nest building but also any time mates are relaying each other at the nest. The Tet 



call is a contact call produced for short-range communication while the Distance call is a contact call 
produced for long-range communication. Both are sexually dimorphic. The third row shows the calls 
produced during agonistic interactions or threatening situations by adults.  The aggressive call, called 
the Wsst call, is made here of two syllables and is produced shortly before aggression of a conspecific. 
The Distress call made here of three syllables is produced by the victim during or just after the aggres-
sion. There are two alarm calls called the Thuk call, produced by parents and directed at chicks and 
mate, and the Tuck call, a more generic alarm call. Finally, an example of a Song, the more complex 
signal used by males in courtship, pair bonding and mating behavior is shown on the last row. The color 
code used in this figure categorizes the vocalization types into hyper classes: blue hues for chick calls, 
pink to deep purple hues for affiliative calls, red/orange hues for non-affiliative calls and grey/black for 
song. The same color code is used in all the figures. For the spectrogram colors, vocalizations in each 
group (rows) where normalized to peak amplitude and a 40dB color scale was used. The sounds corre-
sponding to these vocalizations can be found online as supplemental material (chick calls, Supplemen-
tary Sound File 1; affiliative calls, Supplementary Sound File 2; nonaffiliative calls, Supplementary 
Sound File 3; and song, Supplementary Sound File 4). The abbreviations used for each category in other 
figures are given in parenthesis.
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Figure 4. Average frequency power spectra.
The average frequency power spectra for each 
vocalization type were obtained by first averag-
ing the spectra of all vocalizations for each bird 
and each vocalization type, and then averaging 
across birds for each vocalization type.  100 dB 
corresponds to the peak amplitude recorded 
(found for Distance calls ~ 80 dB SPL at 20 cm). 
Abbreviations are defined in Figure 3.
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Figure 5. Formant peaks revealed by average frequency power spectra and Logistic Regression Functions 
(weights) for each vocalization type. The upper panel (A) shows the average power spectrum for each vocalization 
type in log frequency – dB scale. Compare to Figure 4, the average power spectra were calculated on normalized spec-
tra (peak = 100 dB), by first averaging the normalized spectra of all vocalizations within the same category for each 
bird and then average over birds for each vocalization type. These power spectra show two and sometimes three 
peaks at reliable frequencies that we call formants, using its acoustical definition. The vertical dotted lines show the 
location of these spectral envelope peaks. (B) For each vocalization type, we performed a separate logistic regression 
to assess how well a particular category could be distinguished from all the others and to determine the spectro-tem-
poral features that could best select one vocalization type over the others. The logistic regression was applied to the 
vocalizations in the spectrogram feature space and the weights of the regression are shown as spectrograms. On the 
right side of the spectrogram, short black lines indicate the formants found in the average power spectrum of each 
vocalization category as shown on A. Abbreviations are defined in Figure 3.
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Figure 6. Temporal Amplitude Envelopes. The average temporal amplitude envelope for each vocalization type is 
shown raw on the left panel (A) and normalized by peak amplitude on the right (B). Note that the y-scale is linear and 
not logarithmic as in the frequency power spectra of Figure 4. These average envelopes were obtained by first averag-
ing for each bird and vocalization type, and then across birds. Abbreviations are defined in Figure 3.
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Figure 7. Box and whisker plots for 6 out of the 22 PAFs vs vocalization type.  These parameters were 
chosen to illustrate the distinctive acoustical properties of vocalization categories. The bottom and the top of 
the solid rectangles correspond to the beginning and end of the 2nd and 3rd quartile and the whiskers show 
the entire range of values found in our data set. In all plots the vocalization types (shown in the x-axis) are 
ordered in increasing value of the corresponding acoustical feature to facilitate the interpretation of the 



results. Two acoustical properties related to the fundamental frequency are shown on the first row: the funda-
mental frequency F0 (A) and the saliency (B) defined as the proportion of sections of the vocalization with an 
auto-correlation peak amplitude at the periodicity period greater than 50% of the peak amplitude at zero. Two 
acoustical properties related to the spectral envelope are shown in the middle row: the spectral mean (C) and 
the spectral bandwidth (D). Finally, two additional properties, the duration (E) and the sound intensity (F) are 
shown in the third row. The *, **, *** indicate significant differences between male and female vocalizations for 
specific types in post-hoc tests with p < 0.05, <0.01 and < 0.001 correspondingly. Vocalization abbreviations 
are defined in Figure 3.
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Figure 8. Variance explained by the Vocalization Type and additionally by Sex for each of the 22 PAFs (A) The 
adjusted R2 is the fraction of the variance explained in a linear mixed-effects model with vocalization type as a 
predictor and bird identity as a random factor. (B) The difference in adjusted R2 is the difference in adjusted R2 
obtained from the model that includes vocalization type and sex (including interactions) and the adjusted R2 
obtained from the model that only includes vocalization type as a predictor. The color code is used to distinguish 
acoustical parameters that characterize the spectral envelope (red) from those that characterize the temporal enve-
lope (blue), those that characterize the pitch of the sound (green) and those that characterize the intensity of the 
sound (black). The * indicate the values that were significantly different from zero with p<0.05. Note that a different 
y-scale is used in the two graphs.
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Figure 9. Unsupervised Clustering: Are Thuk acoustically distinct from Tuck calls, and Distress from 
Wsst calls? A “mixture-of-Gaussians” model was fitted to the probability density distribution of the 10 first 
principal component coefficients derived for the 22 PAFs as defined on Figure 1 (see Methods). Each point in 
the raster plots on the left and middle column correspond to one vocalization. The points are color-coded 
according to call type but the mixture-of-Gaussians algorithm is blind to this information. The ellipses and 
center black dot show the covariance (at one standard deviation) and mean of the fit obtained from a mixture 
of two Gaussians model. The size of the center dot is proportional to the weight of the Gaussian. A. Distress and 
Wsst calls. We analyzed the shape of the distribution of Wsst and Distress calls as one group. Two Gaussians 
with similar weights (w1=0.4603, w2 = 0.5397) provided a good description of the distribution but the two call 
types were equally assigned to each of these two groups (z=1.57, p=0.12) suggesting that, at the level of a 
single call syllable, Distress and Wsst are acoustically similar. B. The second row shows the results of the same 
analysis for Thuk and Tuck calls. Here also two Gaussians with similar weights (w1=0.4591, w2 = 0.5409) fit the 
data well. The bar graph on the right panel shows the proportion (and raw number) of Thuk and Tuck that 
would be assigned to each of these two groups. The proportions are different in the two groups (z=9.92 
p<10-4).
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Figure 10. Confusion Matrices.
The figure shows all the confusion 
matrices obtained from the Random 
Forest (left column) and Regularized 
Fisher Linear Discriminant Analysis 
(right column) for the four feature 
spaces used here and described on 
Figures 1, 2, Supplementary Figures 1 
and 2. In a confusion matrix each row 
shows how exemplars from a particu-
lar vocalization category were classi-
fied into the categories shown in the 
columns. The color code is used to 
show the probability of that classifica-
tion: the conditional probability of 
classifying a vocalization as type x 
(column x) when it is actually type y 
(row y). The classification is performed 
on a cross-validation dataset as 
explained in the methods. The average 
percentage of correct classification, 
obtained by averaging the diagonal of 
each matrix, is shown on the top of 
each confusion matrix.  These numbers 
are used in the plot of Figure 11A. 
Abbreviations are defined in Figure 3.
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Figure 11.  Performance of the Random Forest (RF) and Regularized Fisher Linear Discriminant Analysis 
(RFLDA) for all vocalization types and for each feature space. A. Average performance of each classifier 
across all vocalization types. The error bars are confidence intervals obtained from a binomial fit of the classifi-
cation performance on cross-validated data. The dotted horizontal line is the chance level (1/11). B. Perfor-
mance of the RFLDA for each vocalization type. A gradient of darkness (from light to dark) is used to represent 
the four feature spaces: Predefined Acoustical Features (PAFs), Spectrogram (Spect), Modulation Power Spec-
trum (MPS) and Mel Frequency Cepstral Coefficients (MFCC). The vocalization types on the x-axis are sorted in 
ascending order according to the percent of correct classification obtained with the Spectrogram feature 
space. Abbreviations are defined in Figure 3.
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Figure 12. Discriminant Functions (A) and positions of vocalization types in Discriminant coor-
dinates (B and C). A. The first 5 discriminant functions (DF) obtained in the RFLDA applied to the 
spectrogram feature space. These discriminant functions are displayed in a spectrographic represen-
tation. Each vocalization was then represented in RFLDA coordinates by projecting its spectrogram 
onto these Discriminant functions (using a vector dot product). B and C. The average position of each 
vocalization type (centroid) is shown as a colored rectangle in coordinate-pair scatter plots. The DF 
have been scaled so that the within vocalization type variance along each discriminant dimension is 
equal to 1. In B the positions of the centroids obtained from the RFLDA applied on the spectrogram 
feature space are shown. In C the positions of the centroids obtained from the RFLDA applied on the 
Predefined Acoustical Features are shown. Vocalization abbreviations are defined in Figure 3.
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Supplementary Figure 1. Flow-chart showing the calculation of the modulation power spectrum (MPS) and 
the use of this acoustical representation in the classification procedure.  In this feature space each sound is 
characterized by its MPS. The MPS is the amplitude square of the 2D Fourier Transform (2D FT) of the log spectro-
gram. The spectrogram was estimated with the same time-frequency scale as in Figure 2. The modulation power 
spectrum was sampled every 2.85 Hz between -40Hz and 40 Hz for temporal modulations (x-axis) and every 0.0826 
cyc/kHz between 0 and 4 cyc/kHz for spectral modulations (y-axis) for a total of 1,500 parameters. As for the spec-
trographic representation, principal component analysis (PCA) was used to reduce the number of parameters to 40 
before classification. The 40 parameters captured 34% of the variance in the modulation power spectrum across all 
vocalizations in our data set. The classifiers were trained to estimate the vocalization category.
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Supplementary Figure 2. Flow-chart showing the calculation of the Mel frequency cepstral coefficients 
(MFCC) and the use of this acoustical representation in the classification procedure.  In this feature space each 
sound is characterized by a time sequence of cepstral coefficients. The cepstrum coefficients were obtained from 
the discrete cosine transform (DCT) of the log of the amplitude in one time slice of the spectrogram. For MFCC, the 
Mel spectrogram was obtained using 25 filterbank channels approximately logarithmically spaced (Mel spaced 
frequency bands) between 500 and 8000 Hz. The time windows were 25 ms long and spaced every 10 ms (15 ms 
overlap). Twelve cepstral indexes (ci) were extracted from each spectral envelope resulting in a 12 ci for 33 time 
points resulting in a total of 396 parameters. Similar to the spectrographic representation, principal component 
analysis (PCA) was used to reduce the number of parameters to 40 before classification. The 40 parameters captured 
96% of the variance in the MFCC modulation power spectrum across all vocalizations in our dataset. The classifiers 
were trained to estimate the vocalization category.
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Supplementary Figure 3. Spectrograms of three example calls exhibiting a double voice component. 
Double voices or two pitches were regularly found in zebra finch vocalizations. Here are shown examples of a 
Whine, Nest and Begging call where the double voice can clearly be observed on the spectrogram. The arrows 
show the fundamental or harmonic corresponding to the two voices.
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Supplementary Figure 4. Unsupervised Clustering of Tet calls: Sexual dimorphism and two types of 
calls. A “mixture-of-Gaussians” model was used to perform unsupervised clustering of groups of calls as 
described in the legend of Figure 9 and methods. A. Unsupervised clustering of all Tet calls produced by male 
and female birds resulted in a distribution well fitted by two Gaussians of approximately equal weight 
(w1=0.38, w2 = 0.62). Assignment to one of the two clusters resulted in significantly different proportions of 
male and female calls in each group (z=6.72, P<10-4) as illustrated on the bar plot on the right column. B and 
C. Unsupervised clustering of female (B) and male (C) Tet calls only. These distributions were also well fitted by 
two Gaussians of approximately equal weight (Female: w1=0.53, w2 = 0.47; Male: w1=0.31, w2 = 0.69). The 
color code on the scatter plots indicates vocalizers’ identity and show that individuals produce calls in each 
group although some produce mostly one “type”. Note that the mixture-of-Gaussians algorithm is blind to the 
vocalizer’s identity. We estimated mean values of each acoustical parameter for Tet calls assigned to each 
group and show the results for the CV of the fundamental (CV F0), the spectral mean (mean S), the duration (std 
T) and the intensity (RMS) with bar plots on the right panels. Error bars correspond to one sem. The most distin-
guishing acoustical feature is the CV of the fundamental  (Female: t(325)=-14.71 P <10-4; Male: t(284)=-11.93 P 
< 10-4) that for both sexes is much lower in one of the groups (group 1 for both). This group of calls with very 
low modulation of their fundamental has been described as Stacks (Ter Maat et al., 2014). Note that we re-esti-
mated principal components for male and female calls only and therefore the PC axes correspond to different 
combination of acoustical features in all three rows.
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Supplementary Figure 5. Unsupervised Clustering of Nest calls: 
a unimodal distribution. A “mixture-of-Gaussians” model was used 
to perform unsupervised clustering of Nest calls as described in the 
legend of Figure 9 and methods. Although the BIC values suggest 
that this distribution is better fitted with two Gaussians than one 
Gaussian, the weights of these two Gaussians is greatly biased 
towards one group (w1=0.16, w2 = 0.84) demonstrating that the 
distribution is clearly unimodal, albeit not perfectly Gaussian.
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Supplementary Figure 6.  Power Spectrum and Temporal Envelope for Tet and Distance calls.  Tet (light 
purple) and Distance calls (dark purple) are the two calls that show sexual differences (solid male, dotted female). 
The left panel (A) shows the non-normalized frequency spectra and the right panel (B) the normalized temporal 
amplitude envelope (right) for these two calls and for male and female birds. In the power spectrum, one can also 
appreciate the shifts in the formant frequencies between Tet and Distance calls.



	
F0	 Sal	 Pk	2	 2nd	V	

Max	
F0	

Min	
F0	

CV	
F0	

Mean	
S	 Std	S	

Skew	
S	

Kurt	
S	 Ent	S	 Q1	 Q2	 Q3	

Mean	
T	 Std	T	

Skew	
T	

Kurt	
T	 Ent	T	

F0	 1	 -0.02	 0.03	 0.37	 0.5	 0.32	 0.08	 0.28	 -0.06	 -0.41	 0.23	 -0.04	 0.3	 0.26	 0.22	 0.06	 0.05	 0.04	 0.05	 -0.1	

Sal	 -0.02	 1	 0.16	 -0.29	 -0.19	 0.24	 -0.47	 -0.24	 -0.5	 -0.02	 0.16	 -0.72	 -0.08	 -0.2	 -0.33	 0.03	 0.04	 0.01	 -0.13	 0.14	

Pk	2	 0.03	 0.16	 1	 -0.05	 -0.07	 0.11	 -0.13	 0.08	 -0.12	 -0.18	 0.15	 -0.17	 0.13	 0.08	 0.04	 0	 0	 0.05	 0.03	 -0.03	

2nd	V	 0.37	 -0.29	 -0.05	 1	 0.26	 -0.02	 0.2	 0.39	 0.08	 -0.29	 0.07	 0.19	 0.36	 0.36	 0.35	 0	 0	 -0.05	 -0.02	 -0.08	

Max	F0	 0.5	 -0.19	 -0.07	 0.26	 1	 -0.18	 0.72	 -0.04	 0.06	 -0.01	 0.1	 0.11	 -0.07	 -0.06	 -0.03	 0	 0.15	 0.01	 -0.04	 0.1	

Min	F0	 0.32	 0.24	 0.11	 -0.02	 -0.18	 1	 -0.54	 0.14	 -0.2	 -0.36	 0.24	 -0.27	 0.22	 0.14	 0.07	 0.07	 -0.16	 0.05	 0.09	 -0.22	

CV	F0	 0.08	 -0.47	 -0.13	 0.2	 0.72	 -0.54	 1	 -0.12	 0.25	 0.22	 -0.04	 0.32	 -0.21	 -0.13	 -0.05	 -0.03	 0.11	 -0.01	 -0.01	 0.11	

Mean	S	 0.28	 -0.24	 0.08	 0.39	 -0.04	 0.14	 -0.12	 1	 0.34	 -0.69	 0	 0.38	 0.92	 0.97	 0.93	 0.03	 0.08	 0	 0.08	 -0.16	

Std	S	 -0.06	 -0.5	 -0.12	 0.08	 0.06	 -0.2	 0.25	 0.34	 1	 -0.01	 -0.3	 0.7	 0	 0.31	 0.57	 -0.03	 0.06	 -0.02	 0.06	 0.01	

Skew	S	 -0.41	 -0.02	 -0.18	 -0.29	 -0.01	 -0.36	 0.22	 -0.69	 -0.01	 1	 -0.43	 -0.03	 -0.68	 -0.66	 -0.6	 -0.05	 0.03	 -0.05	 -0.06	 0.2	

Kurt	S	 0.23	 0.16	 0.15	 0.07	 0.1	 0.24	 -0.04	 0	 -0.3	 -0.43	 1	 -0.34	 0.1	 -0.01	 -0.08	 0.01	 -0.09	 0.02	 0.05	 -0.16	

Ent	S	 -0.04	 -0.72	 -0.17	 0.19	 0.11	 -0.27	 0.32	 0.38	 0.7	 -0.03	 -0.34	 1	 0.13	 0.34	 0.51	 -0.04	 0.11	 -0.05	 0.03	 0.03	

Q1	 0.3	 -0.08	 0.13	 0.36	 -0.07	 0.22	 -0.21	 0.92	 0	 -0.68	 0.1	 0.13	 1	 0.89	 0.75	 0.05	 0.07	 0.01	 0.07	 -0.16	

Q2	 0.26	 -0.2	 0.08	 0.36	 -0.06	 0.14	 -0.13	 0.97	 0.31	 -0.66	 -0.01	 0.34	 0.89	 1	 0.91	 0.03	 0.07	 0	 0.08	 -0.16	

Q3	 0.22	 -0.33	 0.04	 0.35	 -0.03	 0.07	 -0.05	 0.93	 0.57	 -0.6	 -0.08	 0.51	 0.75	 0.91	 1	 0.02	 0.07	 -0.01	 0.09	 -0.14	

Mean	T	 0.06	 0.03	 0	 0	 0	 0.07	 -0.03	 0.03	 -0.03	 -0.05	 0.01	 -0.04	 0.05	 0.03	 0.02	 1	 0.01	 -0.29	 0.02	 -0.04	

Std	T	 0.05	 0.04	 0	 0	 0.15	 -0.16	 0.11	 0.08	 0.06	 0.03	 -0.09	 0.11	 0.07	 0.07	 0.07	 0.01	 1	 -0.06	 -0.24	 0.72	

Skew	T	 0.04	 0.01	 0.05	 -0.05	 0.01	 0.05	 -0.01	 0	 -0.02	 -0.05	 0.02	 -0.05	 0.01	 0	 -0.01	 -0.29	 -0.06	 1	 0.2	 -0.13	

Kurt	T	 0.05	 -0.13	 0.03	 -0.02	 -0.04	 0.09	 -0.01	 0.08	 0.06	 -0.06	 0.05	 0.03	 0.07	 0.08	 0.09	 0.02	 -0.24	 0.2	 1	 -0.66	
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Supplemental	Table	1.	Correlation	Coefficient	between		20	Predefined	Acoustical	Features	(PAFs).	
The	red	cells	emphasize	bi-variate	correlations	that	are	above	0.5	or	below	-0.5.	The	correlation	table	is	symmetric	along	the	
diagonal.	The	table	does	not	include	RMS	and	max	Amp.		These	features	are	highly	correlated	between	themselves	and	
uncorrelated	with	these	20	features	that	capture	the	shape	of	the	temporal	and	spectral	envelopes	and	properties	of	the	
fundamental	frequency.	



Supplemental	Tables	2.	
	
Statistical	results	of	the	linear	mixed	effect	(lme)	models	with	vocalization	type	as	a	
fixed	effect	and	the	bird	is	as	a	random	effect.	The	first	line	shows	the	p-value	and	
adjusted	R2	as	well	as	the	overall	mean.		The	following	lines	have	the	predicted	
mean	values	for	each	call	type	obtained	from	the	coefficients	of	the	lme	model,	the	
95%	confidence	interval	and	the	probability	that	this	predicted	mean	value	is	
different	from	the	overall	mean	as	assessed	by	a	Wald	Test.		
	
Mean	Fundamental	Frequency	(Mean	F0).	Units	Hz.	
	p=4.8e-11	R2A=0.37	Overall	Mean	643.838	
	 Te	557.536	(529.217-595.270)	0.0000	
	 Tu	574.355	(539.364-627.609)	0.0076	
	 Th	585.686	(532.992-624.668)	0.0057	
	 Ne	611.115	(570.425-642.464)	0.0420	
	 Di	646.162	(637.019-737.076)	0.0900	
	 Wh	651.241	(601.424-683.844)	0.9541	
	 LT	654.763	(603.902-693.604)	0.8290	
	 Ws	675.612	(627.025-695.892)	0.3139	
	 DC	679.847	(633.276-698.071)	0.1852	
	 Be	685.130	(632.637-716.252)	0.1503	
	 So	760.770	(712.938-801.178)	0.0000	
	
Saliency.	
p=7.4e-43	R2A=0.70	Overall	Mean	0.615	
	 Ws	0.413	(0.390-0.460)	0.0000	
	 Di	0.468	(0.410-0.513)	0.0000	
	 Be	0.477	(0.436-0.520)	0.0000	
	 Ne	0.542	(0.508-0.581)	0.0002	
	 Th	0.632	(0.590-0.685)	0.3409	
	 So	0.633	(0.579-0.670)	0.6569	
	 Tu	0.635	(0.583-0.674)	0.5533	
	 Wh	0.658	(0.620-0.704)	0.0286	
	 LT	0.742	(0.700-0.791)	0.0000	
	 DC	0.773	(0.752-0.818)	0.0000	
	 Te	0.788	(0.757-0.824)	0.0000	
	
Second	Fundamental.	Units	Hz.	
p=0.0063	R2A=0.13	Overall	Mean	2259.703	
	 Ne	2013.471	(1872.919-2290.112)	0.0936	
	 Be	2080.040	(1865.952-2349.278)	0.2158	
	 So	2150.749	(1868.934-2381.843)	0.3026	
	 Ws	2196.648	(1807.137-2224.188)	0.0221	
	 Tu	2243.388	(1892.763-2405.781)	0.3966	
	 Wh	2266.034	(1956.976-2435.594)	0.6015	
	 Th	2313.228	(2214.028-2747.217)	0.1037	



	 DC	2323.431	(2171.449-2545.922)	0.2981	
	 Di	2361.862	(2061.890-2711.338)	0.4414	
	 Te	2365.280	(2205.286-2587.164)	0.1599	
	 LT	2542.597	(2310.249-2828.997)	0.0195	
	
2nd	Voice	occurrence.		Units	percent		
p=1.9e-11	R2A=0.30	Overall	Mean	12.635	
	 Te	3.005	(-0.675-6.568)	0.0000	
	 Th	8.683	(1.263-11.494)	0.0168	
	 Tu	9.139	(3.896-13.727)	0.1266	
	 Ne	9.554	(5.868-13.801)	0.1653	
	 DC	9.603	(5.470-12.568)	0.0459	
	 Ws	11.904	(7.498-15.063)	0.4807	
	 Di	12.641	(10.424-21.628)	0.2337	
	 Wh	12.671	(9.761-18.915)	0.4636	
	 LT	13.247	(9.645-19.488)	0.4395	
	 So	19.825	(13.258-23.089)	0.0274	
	 Be	28.709	(22.561-31.725)	0.0000	
	
Max	F0.	Units	Hz.	
p=2.7e-31	R2A=0.61	Overall	Mean	997.437	
	 Th	751.163	(676.712-836.110)	0.0000	
	 Te	784.654	(737.973-851.223)	0.0000	
	 Tu	810.990	(756.817-910.038)	0.0000	
	 LT	916.134	(789.388-943.264)	0.0009	
	 DC	916.851	(833.463-944.458)	0.0002	
	 Be	967.898	(903.967-1047.253)	0.5484	
	 Di	1118.775	(1073.333-1247.777)	0.0003	
	 Ne	1125.368	(1071.325-1195.259)	0.0000	
	 So	1153.113	(1074.574-1227.787)	0.0001	
	 Ws	1169.020	(1136.806-1255.047)	0.0000	
	 Wh	1257.840	(1171.912-1314.668)	0.0000	
	
Min	F0.	Units	Hz.	
p=4e-25	R2A=0.53	Overall	Mean	412.480	
	 Wh	324.541	(294.003-346.974)	0.0000	
	 Ws	348.550	(320.802-364.649)	0.0000	
	 Ne	355.480	(331.126-377.090)	0.0000	
	 LT	394.127	(378.907-435.964)	0.7275	
	 Di	398.755	(359.988-424.747)	0.2219	
	 Be	403.323	(372.169-425.296)	0.3084	
	 So	442.044	(419.618-476.479)	0.0145	
	 Te	449.259	(427.531-469.524)	0.0009	
	 Tu	455.440	(418.204-475.067)	0.0188	
	 DC	480.889	(465.362-506.516)	0.0000	
	 Th	484.872	(437.897-497.060)	0.0003	



	
CV	F0.	Unitless	(0	to	1)	
p=5.3e-45	R2A=0.71	Overall	Mean	0.230	
	 Th	0.105	(0.073-0.152)	0.0000	
	 Te	0.107	(0.080-0.136)	0.0000	
	 DC	0.132	(0.097-0.152)	0.0000	
	 Tu	0.133	(0.104-0.181)	0.0000	
	 LT	0.147	(0.087-0.163)	0.0000	
	 Be	0.233	(0.208-0.279)	0.4696	
	 So	0.249	(0.209-0.285)	0.3799	
	 Di	0.324	(0.268-0.355)	0.0003	
	 Ne	0.336	(0.318-0.380)	0.0000	
	 Wh	0.370	(0.324-0.395)	0.0000	
	 Ws	0.397	(0.383-0.442)	0.0000	
	
Spectral	Mean.	Units	Hz.	
p=6.6e-53	R2A=0.80	Overall	Mean	2971.180	
	 Wh	1835.356	(1565.880-2056.439)	0.0000	
	 Ne	2013.352	(1744.977-2171.167)	0.0000	
	 Te	2280.881	(2065.321-2454.901)	0.0000	
	 Di	2517.078	(2453.903-3052.934)	0.1531	
	 Th	2548.220	(2460.114-3007.637)	0.0889	
	 Ws	2666.920	(2362.195-2768.889)	0.0001	
	 Tu	2762.768	(2599.361-3125.741)	0.4164	
	 So	3443.299	(3074.686-3601.037)	0.0066	
	 DC	3582.560	(3375.423-3757.280)	0.0000	
	 LT	3597.701	(3414.933-3944.251)	0.0000	
	 Be	5434.842	(5048.868-5541.805)	0.0000	
	
Spectral	Std.	Units	Hz.	
p=5.5e-32	R2A=0.65	Overall	Mean	1384.375	
	 DC	1006.800	(866.027-1104.634)	0.0000	
	 Th	1034.848	(972.133-1307.284)	0.0045	
	 Te	1107.477	(998.263-1241.387)	0.0000	
	 Wh	1219.573	(1036.494-1338.372)	0.0109	
	 Tu	1317.035	(1299.776-1622.602)	0.3489	
	 LT	1350.504	(1081.426-1411.450)	0.1008	
	 So	1351.565	(1148.478-1471.286)	0.3636	
	 Ne	1386.902	(1237.081-1501.772)	0.8238	
	 Di	1496.060	(1371.728-1737.046)	0.0679	
	 Be	1894.897	(1848.964-2156.784)	0.0000	
	 Ws	2062.460	(1911.287-2164.577)	0.0000	
	
Spectral	skewness.	Unit	less.	
p=9e-38	R2A=0.65	Overall	Mean	1.342	
	 Be	-0.107	(-0.408-0.322)	0.0000	



	 DC	0.115	(-0.095-0.470)	0.0000	
	 So	0.232	(0.103-0.887)	0.0000	
	 LT	0.636	(0.258-1.042)	0.0006	
	 Th	1.131	(0.638-1.454)	0.1535	
	 Te	1.559	(1.278-1.855)	0.1264	
	 Tu	1.596	(1.143-1.927)	0.3327	
	 Ws	1.763	(1.552-2.154)	0.0010	
	 Di	1.890	(1.046-1.940)	0.5063	
	 Ne	2.662	(2.430-3.062)	0.0000	
	 Wh	3.284	(3.047-3.777)	0.0000	
	
Spectral	Kurtosis.	Unitless.	
p=3.8e-16	R2A=0.37	Overall	Mean	10.108	
	 Be	3.210	(0.012-6.255)	0.0000	
	 LT	5.421	(2.958-9.664)	0.0267	
	 DC	6.977	(4.989-9.825)	0.0288	
	 Ws	7.001	(4.882-10.037)	0.0441	
	 Th	7.163	(3.283-10.263)	0.0609	
	 Tu	9.244	(5.488-12.194)	0.4566	
	 Te	9.658	(7.083-12.019)	0.6566	
	 So	12.643	(7.504-14.210)	0.6598	
	 Di	12.996	(6.275-13.921)	0.9959	
	 Ne	15.038	(13.260-18.667)	0.0000	
	 Wh	21.839	(20.094-26.337)	0.0000	
	
Spectral	Entropy.	Unitless	(0-1)		
p=1.2e-24	R2A=0.52	Overall	Mean	0.715	
	 Te	0.624	(0.599-0.647)	0.0000	
	 DC	0.667	(0.636-0.683)	0.0000	
	 Wh	0.669	(0.641-0.702)	0.0056	
	 Th	0.680	(0.664-0.732)	0.3209	
	 LT	0.684	(0.649-0.714)	0.0429	
	 Tu	0.704	(0.692-0.757)	0.5442	
	 So	0.721	(0.684-0.749)	0.9186	
	 Di	0.733	(0.721-0.795)	0.0240	
	 Ne	0.744	(0.710-0.763)	0.1016	
	 Ws	0.811	(0.777-0.827)	0.0000	
	 Be	0.827	(0.796-0.857)	0.0000	
	
Spectral	Q1.	Units	Hz.	
p=2.1e-50	R2A=0.77	Overall	Mean	2111.610	
	 Ne	1172.097	(926.677-1353.683)	0.0000	
	 Wh	1199.835	(932.866-1425.129)	0.0000	
	 Ws	1319.383	(1047.945-1455.245)	0.0000	
	 Di	1563.249	(1399.591-2001.581)	0.0077	
	 Te	1581.298	(1342.665-1732.721)	0.0000	



	 Th	1881.280	(1682.160-2232.051)	0.2689	
	 Tu	1969.829	(1698.550-2227.040)	0.2678	
	 So	2559.898	(2218.647-2747.118)	0.0062	
	 LT	2726.974	(2654.597-3184.582)	0.0000	
	 DC	3070.847	(2854.728-3236.977)	0.0000	
	 Be	4183.020	(3699.035-4192.502)	0.0000	
	
Spectral	Q2.	Units	Hz.	
p=1e-59	R2A=0.81	Overall	Mean	2820.740	
	 Wh	1549.112	(1250.919-1785.010)	0.0000	
	 Ne	1711.289	(1410.392-1872.928)	0.0000	
	 Ws	2079.762	(1757.132-2198.143)	0.0000	
	 Te	2153.502	(1917.867-2340.103)	0.0000	
	 Di	2313.299	(2285.800-2939.925)	0.2113	
	 Th	2430.240	(2350.905-2948.037)	0.2591	
	 Tu	2562.993	(2315.736-2889.441)	0.1352	
	 So	3390.489	(2968.105-3541.811)	0.0032	
	 LT	3517.379	(3299.648-3873.354)	0.0000	
	 DC	3632.933	(3411.099-3824.804)	0.0000	
	 Be	5687.144	(5339.376-5873.467)	0.0000	
	
Spectral	Q3.	Units	Hz.	
p=1.9e-43	R2A=0.73	Overall	Mean	3713.479	
	 Wh	2168.635	(1753.746-2530.631)	0.0000	
	 Ne	2479.162	(2078.996-2753.475)	0.0000	
	 Te	2769.654	(2450.510-3066.857)	0.0000	
	 Th	3089.008	(2958.437-3825.863)	0.1455	
	 Tu	3338.249	(3162.225-3996.038)	0.5256	
	 Di	3340.429	(3240.842-4190.130)	0.9933	
	 Ws	3762.297	(3301.216-3944.718)	0.5794	
	 DC	4167.138	(3828.588-4432.663)	0.0071	
	 So	4244.787	(3672.238-4506.011)	0.0771	
	 LT	4411.721	(3990.198-4827.640)	0.0013	
	 Be	7077.184	(6693.666-7473.482)	0.0000	
	
Mean	Time.	Units	ms.	
p=0.75	R2A=-0.02	Overall	Mean	174.989	
	 Di	174.618	(173.593-176.195)	0.8857	
	 Wh	174.740	(173.340-175.464)	0.2772	
	 Ne	174.858	(173.846-175.686)	0.6333	
	 Be	174.971	(173.935-176.060)	0.9866	
	 LT	175.007	(173.881-176.163)	0.9545	
	 Ws	175.038	(173.162-174.917)	0.0341	
	 DC	175.065	(174.246-175.892)	0.8474	
	 Te	175.089	(174.250-175.930)	0.8116	
	 Tu	175.095	(173.918-176.200)	0.9026	



	 Th	175.146	(173.933-176.308)	0.8266	
	 So	175.247	(174.452-176.734)	0.2970	
Time	Std	(Duration).	Units	ms.	
p=7.6e-35	R2A=0.62	Overall	Mean	34.690	
	 Th	13.641	(8.714-19.940)	0.0000	
	 Tu	15.014	(9.875-20.660)	0.0000	
	 Te	23.933	(20.015-27.953)	0.0000	
	 Ne	28.063	(24.923-33.618)	0.0149	
	 So	28.911	(28.675-39.460)	0.8201	
	 Be	35.361	(31.450-41.490)	0.4850	
	 Di	37.963	(33.648-45.944)	0.1030	
	 LT	43.838	(39.500-50.285)	0.0003	
	 DC	47.675	(43.599-51.376)	0.0000	
	 Ws	51.830	(48.314-56.604)	0.0000	
	 Wh	55.358	(50.771-60.811)	0.0000	
	
Time	Skewness.	Unitless	
p=0.057	R2A=0.04	Overall	Mean	0.014	
	 Ws	-0.069	(-0.119-0.034)	0.1493	
	 Tu	-0.049	(-0.137-0.062)	0.3053	
	 DC	-0.032	(-0.109-0.034)	0.1597	
	 Te	-0.025	(-0.089-0.058)	0.4275	
	 Th	-0.015	(-0.177-0.031)	0.0996	
	 Be	-0.005	(-0.062-0.123)	0.7258	
	 Wh	0.003	(-0.115-0.070)	0.4358	
	 Di	0.028	(-0.234--0.007)	0.0208	
	 Ne	0.049	(-0.071-0.090)	0.9146	
	 So	0.099	(-0.012-0.187)	0.1441	
	 LT	0.169	(0.023-0.222)	0.0333	
	
Time	Kurtosis.	Unitless.	
p=4.2e-24	R2A=0.54	Overall	Mean	2.598	
	 DC	2.131	(1.963-2.222)	0.0000	
	 LT	2.219	(1.960-2.318)	0.0000	
	 Te	2.242	(2.099-2.363)	0.0000	
	 Wh	2.248	(2.056-2.387)	0.0000	
	 Ws	2.369	(2.281-2.556)	0.0111	
	 Tu	2.678	(2.440-2.794)	0.8306	
	 So	2.887	(2.650-3.005)	0.0115	
	 Th	2.902	(2.656-3.025)	0.0101	
	 Be	2.944	(2.846-3.180)	0.0000	
	 Ne	2.963	(2.681-2.970)	0.0021	
	 Di	2.993	(2.688-3.091)	0.0048	
	
Time	Entropy.	Unitless	(0-1)	
p=3.8e-42	R2A=0.69	Overall	Mean	0.910	



	 Th	0.859	(0.854-0.874)	0.0000	
	 Tu	0.875	(0.870-0.889)	0.0000	
	 So	0.892	(0.888-0.906)	0.0089	
	 Be	0.893	(0.886-0.903)	0.0009	
	 Ne	0.897	(0.893-0.909)	0.0271	
	 Di	0.906	(0.897-0.918)	0.7195	
	 Te	0.913	(0.906-0.920)	0.2890	
	 LT	0.933	(0.925-0.944)	0.0000	
	 DC	0.943	(0.937-0.951)	0.0000	
	 Ws	0.945	(0.939-0.953)	0.0000	
	 Wh	0.949	(0.942-0.960)	0.0000	
	
Root	Mean	Square.		Arbitrary	Units	of	amplitude.	
p=8.3e-35	R2A=0.62	Overall	Mean	0.024	
	 Wh	0.005	(-0.003-0.013)	0.0000	
	 Ne	0.007	(-0.000-0.013)	0.0000	
	 Te	0.013	(0.007-0.019)	0.0004	
	 LT	0.018	(0.017-0.033)	0.8448	
	 Tu	0.020	(0.011-0.027)	0.2292	
	 Ws	0.020	(0.011-0.023)	0.0349	
	 Di	0.022	(0.016-0.035)	0.7645	
	 Th	0.022	(0.013-0.030)	0.5749	
	 So	0.028	(0.021-0.038)	0.1740	
	 Be	0.033	(0.021-0.036)	0.2164	
	 DC	0.075	(0.066-0.078)	0.0000	
	
Max	Amplitude.		Arbitrary	units	of	amplitude.	
p=2.6e-30	R2A=0.57	Overall	Mean	0.031	
	 Wh	0.007	(-0.003-0.017)	0.0000	
	 Ne	0.009	(-0.000-0.017)	0.0000	
	 Te	0.015	(0.006-0.022)	0.0001	
	 LT	0.022	(0.019-0.041)	0.8279	
	 Tu	0.024	(0.012-0.033)	0.1372	
	 Th	0.028	(0.016-0.038)	0.5176	
	 Ws	0.028	(0.016-0.032)	0.1069	
	 Di	0.032	(0.023-0.048)	0.4260	
	 So	0.040	(0.037-0.059)	0.0022	
	 Be	0.044	(0.027-0.048)	0.1886	
	 DC	0.091	(0.078-0.093)	0.0000	
	




