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Abstract

Breast cancer is the most common cancer and the second leading cause of death in U.S. women.

Due to early detection and advanced treatment, the breast cancer death rate has been declining

since 1990. However, disease recurrence is still the major obstacle in moving from therapy to truly

curative treatments. Recent evidence has indicated that breast cancer recurrence is often caused by

a subpopulation of breast cancer cells. This subset of cancer cells, usually referred to as breast

cancer stem cells (BCSCs), exhibits stem cell phenotypes. They can self-renew and

asymmetrically divide to more differentiated cancer cells. These cells are also highly resistant to

conventional therapeutic reagents. Therefore, identifying and characterizing these BCSC

subpopulations within the larger population of breast cancer cells is essential for developing new

strategies to treat breast cancer and prevent recurrence. In this review article, we discuss the

current proposed model for the origin of tumor heterogeneity, summarize the recent findings of

cell surface and cytoplasmic markers for BCSC identification, review the regulatory mechanisms

by which BCSCs maintain or non-cancer stem cells acquire BCSC characteristics, describe the

proposed strategies to eliminate BCSCs, and highlight the current limitations and challenges to

translate basic BCSC research to clinical application including establishment of clinical

biomarkers and therapeutic treatments specifically targeting BCSCs.

Introduction

A hybrid model for the origin of tumor heterogeneity

There are two concepts for explaining tumor heterogeneity: the CSC hypothesis and clonal

evolution model [1,2]. The CSC hypothesis proposes that CSCs share similar properties with

normal stem cells in terms of their unlimited capacity for self-renewal [1]. They can also

divide asymmetrically to generate differentiated cancer cells which contribute to the

heterogeneity of tumor. These CSCs can promote tumor progression, heterogeneity, drug

resistance, recurrence, and metastasis [3–9]. On the other hand, the clonal evolution model

hypothesizes that cancer originates from any cell type. These cells accumulate various
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mutations stepwise over time and through genetic instability acquire CSC characteristics

necessary to adapt to stress and the changes of microenvironment. Thus, it is the most

adaptive cells within the heterogeneous cancer cells that are responsible for tumor

progression and relapses [10]. Each model has supporting evidence; however, new evidence

indicates that a hybrid model combining these two hypotheses best describes tumor

heterogeneity.

Cancer initiation and progression often is a result of deregulated self-renewal pathways in

normal stem cells or due to carcinogenic mutations in other cell types [1]. In some cases,

genetic mutations can activate self-renewal pathways and preserve the epigenetic programs

that regulate asymmetric cell divisions thus producing cancer stem cells capable of

generating heterogeneous cancer cells. In other cases, mutations cause inhibition of

differentiation and allow cancer cells to maintain proliferative potential which avoids

hierarchical organization [11]. Thus, whether a cancer more closely follows the CSC

hypothesis or clonal evolution concept depends on the cell of origin (a.k.a. tumor-initiating

cell) as well as the specific genetic mutations acquired and their consequences. Whichever is

the dominant model, investigating the underlying mechanisms of BCSC characteristics will

allow us to further understand how breast cancer cells propagate and identify new

biomarkers and therapeutic targets.

Identification of heterogeneous BCSCs

Work in hematopoietic stem cells using cell surface markers has made it possible to identify

a differentiation hierarchy of cell lineage with defined functional characteristics [12]. In the

mammary gland, a similar stem/progenitor/differentiated cell hierarchy has been described

[13–16]. Using specific cell surface markers and fluorescence-activated cell sorting (FACS)

to isolate mammary stem cells from mice, the concept of a single mammary stem cell being

able to reconstitute the whole mammary gland was validated [15,16]. Subsequently,

mammary progenitor cells specific for myoepithelial/basal or luminal lineage have also been

characterized in mice [17–19].

To isolate and characterize BCSCs, surface markers in combination with cell sorting and

assays including soft agar colony formation, mammosphere formation, epithelial-

mesenchymal transition (EMT) marker expression, asymmetric cell division and mouse

xenotransplantation and tumorigenesis assays are used. The first and most commonly used

markers to enrich BCSCs are CD44 and CD24 [20]. Cells with a specific pattern of these

markers (CD44+, CD24−/low, epithelial specific antigen (ESA)+) but lacking expression of

specific lineage markers (Lin−) exhibited EMT phenotypes [21]. These cancer cells also had

higher tumorigenic potential than bulk tumor cells after transplantation in nonobese diabetic/

severe combined immunodeficient (NOD/SCID) mice [20,21]. In a low attachment in vitro

culture system, these cancer cells were able to form clonal nonadherent mammospheres

which were more tumorigenic than established breast cancer-derived cell lines including

MCF-7 and B3R [22].

After this discovery, many efforts have been put into additional marker identifications, both

on the cell surface and in the cytoplasm, to further isolate BCSCs [23–29]. For example,

protein C receptor (PROCR, a.k.a. CD201) was identified using gene expression profiling of
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primary breast cancers [24]. CD133 was identified for BCSCs isolated from cell lines

generated from Brca1−exon11/p53+/− mouse mammary tumors [25]. The cytoplasmic marker

aldehyde dehydrogenase (ALDH) was found in creased in a subpopulation of both normal

and cancerous human mammary epithelial cells that exhibited stem/progenitor cell

properties [23]. Some BCSCs also exhibited low proteasome activity [28]. These

observations indicated that BCSCs themselves may be heterogeneous with different BCSC

types present in different breast cancer subtypes. Our laboratory used a panel of known stem

cell markers and found that the expression of these markers varied greatly among breast

cancer cell lines and primary tumors [26]. An association between metastasis status and a

high prevalence of certain markers including CD44+/CD24−/low, ESA+, CD133+, C-X-C

chemokine receptor type 4 (CXCR4)+ and PROCR+ in primary tumor cells was also found.

We further identified a highly malignant BCSC subpopulation from MDA-MB-231 cells

with a PROCR+/ESA+ marker signature rather than the previously identified CD44+/

CD24−/low and ALDH+ pattern. This PROCR+/ESA+BCSC subpopulation was highly

enriched with cancer stem/progenitor cell populations. Our results suggested that similar to

leukemia, several stem/progenitor cell-like subpopulations can exist in breast cancer. In

agreement with our study, Pece and coworkers [29] utilized the quiescent nature of normal

mammary stem cells which can retain a lipophilic fluorescent dye PKH26 to further identify

additional marker combinations for BCSC isolation. They found that CD24high/ CD49high/

DNER (Δ-notch-like EGF repeat-containing transmembrane) high, CD24high/CD49high/

DLL1 (Δ-like-1)high, and CD49f+/DLLhigh/ DNERhigh can be used as markers and provided

additional evidence for the concept of BCSC heterogeneity. Whether these BCSC markers

are associated with stem cell functions and characteristics, or just serve as a tool for BCSC

identification needs to be further investigated.

Regulatory mechanisms to maintain or acquire BCSC characteristics

The stem/progenitor/differentiated cell hierarchy is not a unidirectional system. It has been

shown that normal mature epithelial cells can spontaneously revert to stem cells [30]

suggesting a complex multidirectional relationship between stem/progenitors and

differentiated cells. This plasticity also occurs in heterogeneous cancer cells. The seemingly

reverse transition from cancer cell without stem-like properties to CSC has recently been

described [21,31]. Thus, CSCs are not a fixed population. Depending on genetic and

epigenetic changes or microenvironment stimuli, cancer cells are able to shift between stem-

like and non-stem-like states [32] (Figure 1).

Genetic changes—Consistent with the invasive nature of CSCs, EMT is able to drive

cancer cells to acquire CSC characteristics. EMT is also important in maintaining CSC

subpopulations. For example, expression of SLUG/SNAI2, TWIST, CD146 and Kruppel-

like factor 4 (KLF4), which promote EMT and invasion, can drive cancer cells to express

the CD44+/CD24−BCSC markers and exhibit BCSC phenotypes [33–36]. Many oncogene

overexpression or tumor suppressor gene mutations also contribute to this aspect. For

instance, oncogene human epidermal growth factor receptor 2 (HER2) overexpression can

drive cancer cells to have higher ALDH activity and BCSC characteristics [37]. Loss of

tumor suppressor p53 was found to be correlated with an increase in the expression of EMT

genes and stemness markers in breast cancer cells [38].
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Epigenetic regulation—Besides genetic changes, epigenetic regulation also determines

BCSC properties. Polycomb repressor proteins have been shown to play an important role in

maintaining the self-renewal capability of stem cells [39–42]. Enhancer of zeste homolog 2

(EZH2), a key component of the polycomb repressor complex (PRC) 2 which mediates

histone H3 methylation at lysine 27 (H3K27), has been linked to aggressive progression of

breast and prostate cancers [43,44]. Recent evidence demonstrated that EZH2 epigenetically

down-regulated DNA damage repair protein Rad51 leading to activated extracellular signal-

regulated kinase (ERK)-β-catenin signaling which resulted in BCSC population expansion

[45]. In addition, epigenetic inactivation of the tumor suppressor breast cancer 1 (BRCA1)

gene due to CpG island hypermethylation in breast cancer was observed [46,47]. These

BRCA1 defective breast cancers contained expanded luminal progenitor cells [48]. These

findings demonstrated a BCSC regulatory mechanism linking genetic aberration, epigenetic

regulation and DNA repair defects.

Microenvironment regulation—In addition to genetic and epigenetic regulation of the

mammary stem/progenitor cells, autocrine signaling of these cells, paracrine signaling from

the surrounding differentiated cells and the microenvironment also contributes to the

regulation of self-renewal and differentiation [49–53]. For example, hypoxia of the tumor

microenvironment has been shown to enrich CSC subpopulations and induce CSC

phenotypes in many solid tumors. Anti-angiogenesis agents which cause intratumoral

hypoxia resulted in an increase in BCSC prevalence via activation of the Akt-β-catenin

pathway and promoted an invasive phenotype [54]. Hypoxia also caused expansion of CSC

subpopulation via up-regulation of embryonic stem cell-like transcription factors including

octamer-binding transcription factor 4 (OCT4), NANOG, sex determining region Y-box 2

(SOX2), KLF4 and Lin-28 [55]. In addition to hypoxia, inflammation also plays a role in

regulating CSCs. For example, tumor-associated macrophages promoted CSC phenotypes

including tumorigenesis and drug resistance through their downstream factors interleukin

(IL)-6 and milk-fat globule-epidermal growth factor-8 which activated the signal transducer

and activator of transcription 3 (STAT3) and Sonic Hedgehog pathways in CSCs [56].

Paracrine/autocrine signaling pathways between surrounding stromas/non-BCSCs and

BCSCs are also important in regulating BCSC phenotypes. BCSC secreted IL-6 was found

to convert breast cancer progenitor cells to a more BCSC-like phenotype through a positive

feedback loop among nuclear factor of kappa light polypeptide gene enhancer in B-cells

(NF-κB), Lin-28 and let-7 miRNA [57]. Recently, cancer associated fibroblasts (CAFs)

were found to secret chemokine (C-C motif) ligand 2 (CCL2) and stimulate the stem cell-

specific, sphere-forming phenotype and BCSC self-renewal through induction of NOTCH1

expression [58]. In addition, mesenchymal stem cells (MSCs) have been found in the tumor-

associated stroma in breast cancer. Breast cancer cells stimulated MSCs to secret chemokine

CCL5, which then acts in a paracrine fashion on the chemokine receptor CCR5 in cancer

cells to promote their metastatic potency [59]. Also, endothelial cells contribute to the BCSC

regulation by increasing the expression of metaphase cell-cycle genes in CD44+/

CD24−BCSCs. These endothelial cells promoted cancer cell proliferation by secreting

platelet-derived growth factor subunit B (PDGFB), which was stimulated by cancer cell-
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secreted vascular endothelial growth factor (VEGF), fibroblast growth factor 12 (FGF12),

pleiotrophin (PTN) and neurofibromin 1 (NF1) [60].

micro-RNA and gene regulation—Likewise, micro-RNAs (miRNAs) contributing to

the promotion or maintenance of stemness of cancer cells have also been found. In many

cases, miRNAs possessing tumor suppressor functions were down-regulated and those

exhibiting oncogenic functions up-regulated in BCSC subpopulations. This differential

miRNA expression contributed to maintenance of the BCSC population as well as stem cell

phenotypes. In mouse mammary stem/progenitor cells, both miR-205 and miR-22 were

highly expressed whereas miR-93 and let-7 were down-regulated [61]. Over-expression of

miR-205 increased the progenitor cell population [62]. Similarly, in human breast cancers,

tumor suppressor miRNA let-7 which inhibits self-renewal capacity and promotes

differentiation by repressing H-Ras and high mobility group AT-hook 2 (HMGA2)was

found to be downregulated in the CD44+/CD24−/low BCSCs [63]. Shimono and coworkers

found 37 miRNAs differentially expressed between BCSCs and non-BCSCs. Among these

miRNAs, miR-200c was found to inhibit BMI1 polycomb ring finger oncogene (BMI1), a

regulator of stem cell self-renewal, and led to inhibition of clonal expansion of breast cancer

cells in vitro, and strongly suppressed the tumor formation driven by BCSCs in vivo [64].

miR-200 has also been found to downregulate suppressor of zeste 12 homolog (Suz12), a

subunit of a polycomb repressor complex, which has important roles in BCSC formation and

maintenance [65]. However, the importance of other differentially expressed miRNAs in

BCSCs remains to be determined.

To identify a general mechanism of promoting BCSC phenotypes, we compared the miRNA

expression profile of PROCR+/ESA+BCSC subpopulation [26] with that of the CD44+/

CD24−/low BCSC subpopulations [64]. This strategy allowed us to elucidate molecular

mechanisms that are either shared among different BCSCs or unique to the highly

tumorigenic PROCR+/ESA+ subpopulation. We identified miR-495 as an oncogenic miRNA

upregulated in both the PROCR+/ESA+ and CD44+/CD24−/low BCSC sub-populations[66].

Using multiple cell lines expressing different stem cell markers, we found that, regardless of

cellular context, miR-495 could maintain or promote colony-forming ability, promote EMT

marker expression, downregulate E-cadherin and suppress DNA-damage-inducible

transcript 4 (DDIT4, a.k.a. REDD1)to confer hypoxia tolerance. These observations further

suggested that although heterogeneous BCSCs might have dissimilar ability in

tumorigenicity, migration and invasion, and maybe associated with different subtypes of

breast cancers, there may be shared regulatory pathways that maintain BCSC phenotypes.

Targeting breast cancer stem cells

Biopsies from patients treated with neoadjuvant chemotherapy showed enrichment of

BCSCs [63,67]. Similarly, enrichment of BCSCs was also found in tumors spontaneously

developed or engrafted in animals receiving chemotherapy or radiation treatment,

respectively [68,69]. The conversion of non-BCSCs to BCSCs was more prevalent after

endocrine therapy [27,70–72]. Thus, the inherent resistance of BCSCs to chemo- and

radiotherapy could be the major source of disease recurrence.
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Many efforts have been put into finding treatments to eliminate BCSCs. Two major

approaches have been used: 1, drug screening to identify chemicals selectively toxic to

BCSCs and 2, targeting specific regulatory factors involved in regulating BCSC phenotypes.

For example, Gupta and colleagues [73] utilized a chemical screen to identify drugs with

selective toxicity for BCSCs and found that salinomycin was able to reduce the prevalence

of CD44+/CD24− BCSCs compared to paclitaxel, a commonly used breast cancer

chemotherapeutic agent. More recently, a combinatorial therapy with conventional

chemotherapeutic agent and the anti-diabetic drug metformin has been shown to efficiently

eliminate drug-resistant CD44+/CD24− cancer stem/progenitor cells in breast cancers [74,

75].

Investigation of differential gene expression between CSCs and non-CSCs makes it possible

to find potential therapeutic targets. For example, gene expression profiling indicated that

CXCR1, a cytokine IL-8 receptor, was up-regulated in ALDH+ BCSCs. Moreover,

recombinant IL-8 treatment increased the BCSC subpopulation and promoted its invasion

ability [76]. Wicha’s group used either a CXCR1-specific blocking antibody or repertaxin, a

small-molecule CXCR1 inhibitor, to block CXCR1 and found that the ALDH+BCSC

subpopulation was selectively depleted and this was mediated by the FAK/AKT/FOXO3A

pathway [77]. Polyak’s group identified 15 genes required for cell growth or proliferation in

CD44+CD24−BCSCs in a large-scale loss-of-function screen. They found that inhibition of

several of these such as IL6, prostaglandin I2 synthase (PTGIS), hyaluronan synthase 1

(HAS1), CXCL3, and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3)

reduced STAT3 activation suggesting that the IL-6/JAK2/STAT3 pathway was

preferentially active in CD44+CD24−BCSCs. Indeed, inhibition of JAK2 was able to

decrease theCD44+CD24−BCSC number and block growth of xenografts [78]. More

recently, Hung’s group showed that BIKDD, a constitutively active mutant form of

proapoptotic gene, BIK, significantly reduced CD44+/ CD24− BCSCs through co-

antagonism of its binding partners B-cell CLL/lymphoma 2 (Bcl-2), Bcl-xL, and myeloid

cell leukemia sequence 1 (Mcl-1), suggesting a potential therapeutic strategy targeting

BCSCs [79].

Although these approaches are worthwhile to develop targeted therapies, there are some

limitations. As described above, BCSCs are heterogeneous and different BCSCs may be

associated with different subtypes of breast cancers. Most of the studies only focused on one

specific type of BCSCs, i.e., CD44+/CD24− subpopulation. Whether the potential

therapeutic targets possess the same efficacy among different types of BCSCs remains to be

determined. Thus, identification of the shared mechanism in different types of BCSCs,

especially the regulation in self-renewal and asymmetric division, is important for treatment

design. Moreover, whether therapies deplete BCSC by inducing cell death or promoting

differentiation can be important in determining the treatment efficacy. As discussed above,

BCSCs can arise from more differentiated cancer cells [30] to maintain the dynamic

equilibrium between BCSCs and non-BCSCs [80]. The plasticity and adaptability of

aggressive cancer cells with BCSC phenotypes, in combination with genomic instability,

may reduce the treatment efficacy. If the targeted therapies deplete BCSCs by causing

BCSC specific cell death, this may promote the transient-amplifying cancer cells to convert
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to BCSC-like cells. Thus, therapies which induce BCSC differentiation or target the

pathway regulating the plasticity may be more favorable.

While designing targeted therapies based on BCSC phenotypes and the regulatory pathways,

one should also take the tumor microenvironment into account. Our laboratory, along with

others, has shown that the cancer associated fibroblasts can promote tumorigenesis as well

as BCSC phenotypes via paracrine signaling [58,81,82]. Thus, a combination of treatment

skilling bulk cancer cells, targeting BCSCs and their surrounding microenvironment may be

the most efficient way to treat cancer.

Final Remark

In this exciting field, the number of cell surface markers for identifying BCSCs are growing

exponentially. The ultimate goal is to use the best reliable BCSC markers as biomarkers for

clinical use (Figure 1). However, whether the current BCSC markers can be used as

biomarkers remains to be determined. By definition, the best biomarker is a unique

molecular signature that can be unambiguously correlated to biological events in order to

validate novel drug targets, predict drug response, and eventually help therapeutic decision

making [83]. Thus, a BCSC biomarker will need to be reproducible and measurable in

clinical samples to detect the BCSC subpopulation which determines outcomes from cancer

or responses to treatment [84,85]. As discussed above, the current system to identify, isolate

and study relatively rare BCSCs from primary specimens remain difficult for clinical

practice. Unless a better system can be established to perform large cohort studies for

profiling the heterogeneous BCSCs and their corresponding breast cancer types, the

currently identified BCSC markers may not meet the need for establishment of clinically

relevant biomarkers. Thus, continuing effort in identifying functional markers involved in

regulating BCSC phenotypes and improving BCSC identification methodology is also

essential in moving our new knowledge of BCSCs from laboratory to clinical practice.

Specifically targeting BCSCs for therapeutic treatment relies on characterizing BCSCs and

their microenvironment. Continuing efforts in identifying heterogeneous BCSCs and their

genetic/epigenetic similarities and differences are needed. To achieve this, the limitations in

current methods and techniques for BCSC identification have to be conquered. One key

limitation is that there is yet no suitable system to maintain primary BCSCs in long term

culture for detailed mechanistic studies. Limited availability of primary specimens, in

addition to the low prevalence of BCSCs, makes many methods not easily applicable in

routine practice for large cohort studies. Most experiments must instead rely on a relatively

small number of immortalized human breast cancer cell lines. As new evidence has

indicated the importance of the BCSC niche in BCSC regulation, identification and

characterization, the stromal or endothelial cells surrounding BCSC may be useful for

improving long term culture for mechanistic studies.

Acknowledgments

This work was supported by Academia Sinica (Taiwan) and NIH grants to EL (CA137102) and WHL (CA94170).
WWHV was supported by an Academia Sinica Postdocotral Research Fellowship. WHL declares that he serves as a
member of Board of Directors of the biotech company, GeneTex. This arrangement has been reviewed and
approved by UCI conflict of interest committee.

Hwang-Verslues et al. Page 7

J Mol Biomark Diagn. Author manuscript; available in PMC 2014 June 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



References

1. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature.
2001; 414:105–111. [PubMed: 11689955]

2. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat
Rev Cancer. 2006; 6:924–935. [PubMed: 17109012]

3. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea--a paradigm shift. Cancer Res. 2006;
66:1883–1890. [PubMed: 16488983]

4. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, et al. Cancer stem cells--perspectives on
current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;
66:9339–9344. [PubMed: 16990346]

5. Campbell LL, Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell
Cycle. 2007; 6:2332–2338. [PubMed: 17786053]

6. Kakarala M, Wicha MS. Implications of the cancer stem-cell hypothesis for breast cancer
prevention and therapy. J Clin Oncol. 2008; 26:2813–2820. [PubMed: 18539959]

7. 5Hwang-Verslues WW, Chang KJ, Lee EY, Lee WH. Breast cancer stem cells and tumor suppressor
genes. J Formos Med Assoc. 2008; 107:751–766. [PubMed: 18926942]

8. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011; 17:313–319.
[PubMed: 21386835]

9. Visvader JE, Lindeman GJ. Stem cells and cancer - the promise and puzzles. Mol Oncol. 2010;
4:369–372. [PubMed: 20692213]

10. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976; 194:23–28. [PubMed:
959840]

11. Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells
versus clonal evolution. Cell. 2009; 138:822–829. [PubMed: 19737509]

12. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates
from a primitive hematopoietic cell. Nat Med. 1997; 3:730–737. [PubMed: 9212098]

13. Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PA, et al. Contiguous patches of normal human
mammary epithelium derived from a single stem cell: implications for breast carcinogenesis.
Cancer Res. 1996; 56:402–404. [PubMed: 8542598]

14. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a
single cell. Development. 1998; 125:1921–1930. [PubMed: 9550724]

15. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, et al. Generation of a functional
mammary gland from a single stem cell. Nature. 2006; 439:84–88. [PubMed: 16397499]

16. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, et al. Purification and unique properties of
mammary epithelial stem cells. Nature. 2006; 439:993–997. [PubMed: 16395311]

17. Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, et al. Dissociation of estrogen
receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol. 2007;
176:19–26. [PubMed: 17190790]

18. Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ. CD24 staining of mouse
mammary gland cells defines luminal epithelial, myoepithelial/ basal and non-epithelial cells.
Breast Cancer Res. 2006; 8:R7. [PubMed: 16417656]

19. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, et al. Gata-3 is an
essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell
Biol. 2007; 9:201–209. [PubMed: 17187062]

20. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification
of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003; 100:3983–3988. [PubMed:
12629218]

21. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, et al. The epithelial-mesenchymal transition
generates cells with properties of stem cells. Cell. 2008; 133:704–715. [PubMed: 18485877]

22. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, et al. Isolation and in vitro propagation of
tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005; 65:5506–
5511. [PubMed: 15994920]

Hwang-Verslues et al. Page 8

J Mol Biomark Diagn. Author manuscript; available in PMC 2014 June 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



23. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, et al. ALDH1 is a marker of
normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell
Stem Cell. 2007; 1:555–567. [PubMed: 18371393]

24. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, et al. Molecular
definition of breast tumor heterogeneity. Cancer Cell. 2007; 11:259–273. [PubMed: 17349583]

25. Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, et al. Brca1 breast tumors
contain distinct CD44+/CD24− and CD133+ cells with cancer stem cell characteristics. Breast
Cancer Res. 2008; 10:R10. [PubMed: 18241344]

26. Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, et al. Multiple lineages of human
breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One.
2009; 4:e8377. [PubMed: 20027313]

27. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, et al. Residual breast cancers after
conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci
U S A. 2009; 106:13820–13825. [PubMed: 19666588]

28. Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, et al. In vivo imaging, tracking, and
targeting of cancer stem cells. J Natl Cancer Inst. 2009; 101:350–359. [PubMed: 19244169]

29. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, et al. Biological and molecular
heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 2010; 140:62–
73. [PubMed: 20074520]

30. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, et al. Normal and neoplastic
nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A. 2011;
108:7950–7955. [PubMed: 21498687]

31. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, et al. Generation of breast cancer stem cells
through epithelial-mesenchymal transition. PLoS One. 2008; 3:e2888. [PubMed: 18682804]

32. Scheel C, Weinberg RA. Phenotypic plasticity and epithelial-mesenchymal transitions in cancer
and normal stem cells? Int J Cancer. 2011; 129:2310–2314. [PubMed: 21792896]

33. Bhat-Nakshatri P, Appaiah H, Ballas C, Pick-Franke P, Goulet R, et al. SLUG/SNAI2 and tumor
necrosis factor generate breast cells with CD44+/ CD24− phenotype. BMC Cancer. 2010; 10:411.
[PubMed: 20691079]

34. Zeng Q, Li W, Lu D, Wu Z, Duan H, et al. CD146, an epithelial-mesenchymal transition inducer,
is associated with triple-negative breast cancer. Proc Natl Acad Sci U S A. 2012; 109:1127–1132.
[PubMed: 22210108]

35. Yu F, Li J, Chen H, Fu J, Ray S, et al. Kruppel-like factor 4 (KLF4) is required for maintenance of
breast cancer stem cells and for cell migration and invasion. Oncogene. 2011; 30:2161–2172.
[PubMed: 21242971]

36. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, et al. Bmi1 is essential in Twist1-induced
epithelial-mesenchymal transition. Nat Cell Biol. 2010; 12:982–992. [PubMed: 20818389]

37. Korkaya H, Paulson A, Iovino F, Wicha MS. HER2 regulates the mammary stem/progenitor cell
population driving tumorigenesis and invasion. Oncogene. 2008; 27:6120–6130. [PubMed:
18591932]

38. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, et al. p53 regulates epithelial-mesenchymal
transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011; 13:317–323.
[PubMed: 21336307]

39. Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3.
Curr Opin Genet Dev. 2004; 14:155–164. [PubMed: 15196462]

40. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, et al. Ezh2 orchestrates gene expression for
the stepwise differentiation of tissue-specific stem cells. Cell. 2009; 136:1122–1135. [PubMed:
19303854]

41. Lessard J, Sauvageau G. Polycomb group genes as epigenetic regulators of normal and leukemic
hemopoiesis. Exp Hematol. 2003; 31:567–585. [PubMed: 12842702]

42. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat
Rev Cancer. 2006; 6:846–856. [PubMed: 17060944]

Hwang-Verslues et al. Page 9

J Mol Biomark Diagn. Author manuscript; available in PMC 2014 June 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



43. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, et al. EZH2 is a marker of aggressive breast cancer
and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A. 2003;
100:11606–11611. [PubMed: 14500907]

44. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, et al. The polycomb
group protein EZH2 is involved in progression of prostate cancer. Nature. 2002; 419:624–629.
[PubMed: 12374981]

45. Chang CJ, Yang JY, Xia W, Chen CT, Xie X, et al. EZH2 promotes expansion of breast tumor
initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell. 2011; 19:86–100.
[PubMed: 21215703]

46. Esteller M. Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation
of DNA repair genes. Eur J Cancer. 2000; 36:2294–2300. [PubMed: 11094302]

47. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, et al. Epigenetic
silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res. 2006;
8:R38. [PubMed: 16846527]

48. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, et al. Aberrant luminal progenitors as the candidate
target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;
15:907–913. [PubMed: 19648928]

49. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, et al. Control of mammary stem cell
function by steroid hormone signalling. Nature. 2010; 465:798–802. [PubMed: 20383121]

50. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, et al. Progesterone induces adult
mammary stem cell expansion. Nature. 2010; 465:803–807. [PubMed: 20445538]

51. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, et al. Paracrine and autocrine signals induce
and maintain mesenchymal and stem cell states in the breast. Cell. 2011; 145:926–940. [PubMed:
21663795]

52. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature. 2001; 414:98–104.
[PubMed: 11689954]

53. Forsberg EC, Prohaska SS, Katzman S, Heffner GC, Stuart JM, et al. Differential expression of
novel potential regulators in hematopoietic stem cells. PLoS Genet. 2005; 1:e28. [PubMed:
16151515]

54. Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, et al. Antiangiogenic agents
increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A.
2012; 109:2784–2789. [PubMed: 22308314]

55. Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, et al. HIF induces human embryonic stem
cell markers in cancer cells. Cancer Res. 2011; 71:4640–4652. [PubMed: 21712410]

56. Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, et al. Tumor-associated macrophages
regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl
Acad Sci USA. 2011; 108:12425–12430. [PubMed: 21746895]

57. Iliopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and
their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA.
2011; 108:1397–1402. [PubMed: 21220315]

58. Tsuyada A, Chow A, Wu J, Somlo G, Chu P, et al. CCL2 mediates cross-talk between cancer cells
and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012; 72:2768–2779.
[PubMed: 22472119]

59. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, et al. Mesenchymal stem cells within
tumour stroma promote breast cancer metastasis. Nature. 2007; 449:557–563. [PubMed:
17914389]

60. Buess M, Rajski M, Vogel-Durrer BM, Herrmann R, Rochlitz C. Tumor-endothelial interaction
links the CD44(+)/CD24(-) phenotype with poor prognosis in early-stage breast cancer. Neoplasia.
2009; 11:987–1002. [PubMed: 19794958]

61. Ibarra I, Erlich Y, Muthuswamy SK, Sachidanandam R, Hannon GJ. A role for microRNAs in
maintenance of mouse mammary epithelial progenitor cells. Genes Dev. 2007; 21:3238–3243.
[PubMed: 18079172]

62. Greene SB, Gunaratne PH, Hammond SM, Rosen JM. A putative role for microRNA-205 in
mammary epithelial cell progenitors. J Cell Sci. 2010; 123:606–618. [PubMed: 20103531]

Hwang-Verslues et al. Page 10

J Mol Biomark Diagn. Author manuscript; available in PMC 2014 June 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



63. Yu F, Yao H, Zhu P, Zhang X, Pan Q, et al. let-7 regulates self renewal and tumorigenicity of
breast cancer cells. Cell. 2007; 131:1109–1123. [PubMed: 18083101]

64. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, et al. Downregulation of miRNA-200c links
breast cancer stem cells with normal stem cells. Cell. 2009; 138:592–603. [PubMed: 19665978]

65. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, et al. Loss of miR-200
inhibition of Suz12 leads to polycomb-mediated repression required for the formation and
maintenance of cancer stem cells. Mol Cell. 2010; 39:761–772. [PubMed: 20832727]

66. Hwang-Verslues WW, Chang PH, Wei PC, Yang CY, Huang CK, et al. miR-495 is upregulated by
E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via
downregulation of E-cadherin and REDD1. Oncogene. 2011; 30:2463–2474. [PubMed: 21258409]

67. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, et al. Intrinsic resistance of tumorigenic
breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008; 100:672–679. [PubMed: 18445819]

68. Shafee N, Smith CR, Wei S, Kim Y, Mills GB, et al. Cancer stem cells contribute to cisplatin
resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res. 2008; 68:3243–3250.
[PubMed: 18451150]

69. Zielske SP, Spalding AC, Wicha MS, Lawrence TS. Ablation of breast cancer stem cells with
radiation. Transl Oncol. 2011; 4:227–233. [PubMed: 21804918]

70. O’Brien CS, Howell SJ, Farnie G, Clarke RB. Resistance to endocrine therapy: are breast cancer
stem cells the culprits? J Mammary Gland Biol Neoplasia. 2009; 14:45–54. [PubMed: 19252972]

71. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-
renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res.
2008; 10:R25. [PubMed: 18366788]

72. Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, et al. Tamoxifen resistance in MCF7 cells
promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J
Cancer. 2006; 118:290–301. [PubMed: 16080193]

73. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, et al. Identification of selective inhibitors of
cancer stem cells by high-throughput screening. Cell. 2009; 138:645–659. [PubMed: 19682730]

74. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells,
and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res.
2009; 69:7507–7511. [PubMed: 19752085]

75. Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA. The anti-
diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-
initiating breast cancer stem cells. Breast Cancer Res Treat. 2011; 126:355–364. [PubMed:
20458531]

76. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, et al. Breast cancer cell lines
contain functional cancer stem cells with metastatic capacity and a distinct molecular signature.
Cancer Res. 2009; 69:1302–1313. [PubMed: 19190339]

77. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, et al. CXCR1 blockade selectively targets
human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 2010; 120:485–497.
[PubMed: 20051626]

78. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, et al. The JAK2/STAT3 signaling
pathway is required for growth of CD44+CD24−stem cell-like breast cancer cells in human
tumors. J Clin Invest. 2011; 121:2723–2735. [PubMed: 21633165]

79. Lang JY, Hsu JL, Meric-Bernstam F, Chang CJ, Wang Q, et al. BikDD eliminates breast cancer
initiating cells and synergizes with lapatinib for breast cancer treatment. Cancer Cell. 2011;
20:341–356. [PubMed: 21907925]

80. Yang G, Quan Y, Wang W, Fu Q, Wu J, et al. Dynamic equilibrium between cancer stem cells and
non-stem cancer cells in human SW620 and MCF-7 cancer cell populations. Br J Cancer. 2012;
106:1512–1519. [PubMed: 22472879]

81. Tyan SW, Kuo WH, Huang CK, Pan CC, Shew JY, et al. Breast cancer cells induce cancer-
associated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS
One. 2011; 6:e15313. [PubMed: 21249190]

Hwang-Verslues et al. Page 11

J Mol Biomark Diagn. Author manuscript; available in PMC 2014 June 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



82. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, et al. Stromal fibroblasts
present in invasive human breast carcinomas promote tumor growth and angiogenesis through
elevated SDF-1/CXCL12 secretion. Cell. 2005; 121:335–348. [PubMed: 15882617]

83. Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat Rev Drug
Discov. 2003; 2:566–580. [PubMed: 12838269]

84. Bast RC, Ravdin P, Hayes DF, Bates S, Fritsche H, et al. 2000 update of recommendations for the
use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American
Society of Clinical Oncology. J Clin Oncol. 2001; 19:1865–1878. [PubMed: 11251019]

85. Hayes DF, Bast RC, Desch CE, Fritsche H, Kemeny NE, et al. Tumor marker utility grading
system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst. 1996;
88:1456–1466. [PubMed: 8841020]

Hwang-Verslues et al. Page 12

J Mol Biomark Diagn. Author manuscript; available in PMC 2014 June 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. A complex multidirectional relationship between differentiated cancer cells and
heterogeneous BCSCs
Depending on genetic and epigenetic changes, miRNA and gene regulation or

microenvironment stimuli, cancer cells are able to shift between stem-like and non-stemlike

states. This plasticity contributes to the heterogeneity of BCSCs. The regulatory mechanisms

underlying the shift from non-BCSCs to BCSCs also play important roles in maintaining the

BCSC pool and its characteristics. The currently used cell surface markers for BCSC

identification could be potentially useful clinical biomarkers.
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