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Abstract

Self-assembly of proteins into filaments, such as actin and tubulin filaments, underlies essential 

cellular processes in all three domains of life. The early emergence of filaments in evolutionary 

history suggests that filament genesis might be a robust process. Here we describe the fortuitous 

construction of GFP fusion proteins that self-assemble as fluorescent polar filaments in 

Escherichia coli. Filament formation is achieved by appending as few as 12 residues. Crystal 

structures reveal that the protomers each donate an appendage to fill a groove between two 

following protomers along the filament. This exchange of appendages resembles runaway domain 
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swapping but is distinguished by higher efficiency because monomers cannot competitively bind 

their own appendages. Ample evidence of this “runaway domain coupling” mechanism in nature 

suggests it could facilitate the evolutionary pathway from globular protein to polar filament, 

requiring a minimal extension of protein sequence and no significant refolding.

Introduction

The self-association of proteins to form filaments is the basis for the formation of essential 

cytoskeletal elements such as actin and tubulin in all three domains of life. Cytoskeletal 

elements participate in a variety of critical cellular processes including DNA segregation, 

cell division, morphogenesis, cell motility, maintenance of cell shape, and the transport of 

cellular cargoes. The identification of diverse families of actin and tubulin homologs in 

prokaryotes over the last 20 years1 has led to the suggestion that these are ancient proteins 

that predate the split between bacteria, archaea and eukarya2,3,4. Furthermore, the recent 

discovery that certain metabolic enzymes can polymerize as filaments has provoked the 

suggestion that an original rudimentary cytoskeleton may have evolved in an ancestral cell 

through the repurposing of enzyme polymerization5,6,7,8.

The early emergence of filaments in biological history raises the question of what structural 

mechanisms are capable of establishing filament-competent interfaces, and how facile is 

their evolution. One mechanism requiring few specific structural features other than a 

globular fold is runaway 3-dimensional domain swapping. By this mechanism, the 

intermolecular interface between successive protomers in the filament recapitulates an 

intramolecular interface that exists within the isolated monomer9,10. Thus, a domain of the 

protein, usually residing at either the N- or C-terminus and connected to the remainder of the 

protein by a flexible linker (the so-called hinge-loop), exchanges its intramolecular contacts 

for otherwise identical intermolecular contacts, an exchange that usually occurs only under 

non-native conditions. Runaway domain swapping occurs in a unidirectional fashion, with 

each subunit donating a domain to the next, leading to the formation of an open-ended 

protofilament. Examples include fibrils of a designed 3-α-helix bundle11, filaments of α1-

antitrypsin12, and ribbons of “cab”-type carbonic anhydrase13. Runaway domain swapping 

has also been evidenced in some amyloid fibrils10,14,15,16,17. (Note, we consider fibrils and 

filaments to be equivalent in the assembly hierarchy – a level more complex than 

protofilaments – and we use the term most closely associated with the particular system 

discussed.)

A simpler, more obvious mechanism for filament formation is the stacking of domains in an 

end-to-end fashion. Other than runaway domain swapping and end-to-end stacking, no other 

naturally occurring mechanisms for filament formation have been formally categorized 

despite the recent rapid increase in the number of filament structures determined.

Here we describe a nested set of GFP fusion proteins with a shared ability to self-assemble 

as fluorescent filaments in bacterial cells. Remarkably, these filaments typically span the 

entire length of the cell. The smallest of these fusion proteins bears just 12 non-native amino 

acids at the C-terminus of GFP. Structure determination by x-ray crystallography revealed 

that these appended residues form an α-helix that extends away from the GFP domain (a β-
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barrel) through a hinge loop and docks into a groove formed by the following two β-barrels 

in the protofilament. We call this filament-forming mechanism “runaway domain coupling” 

because the protomer-protomer interfaces involve complementation between distinct donor 

and acceptor domains. It is distinct from end-to-end domain stacking where the protomer-

protomer interfaces reside entirely within a single domain type. It is also distinct from 

runaway domain swapping, because the helix-in-groove complementation cannot be 

reproduced in the monomer. The fact that runaway domain coupling arose fortuitously 

suggests that the genesis of coupled interfaces is facile, an inference supported by our 

discovery of their occurrence in numerous natural filaments. We propose that the chances for 

such randomly generated surfaces to align in a productive interface are enhanced by a 

flexible hinge loop that connects the two domains of each protomer. Our findings illustrate a 

pathway whereby a non-polymerizing protein might evolve the ability to self-assemble as 

protofilaments and filaments.

Results

GFP-RNase A fusion proteins form fluorescent rods in bacterial cells.

Previous work from the Eisenberg group17,18 demonstrated that RNase A variants containing 

short amyloidogenic peptide insertions in the C-terminal hinge loop could form amyloid-like 

fibrils in vitro. We sought to investigate whether or not these RNase A variants could also 

access the fibrillar form when produced in E. coli cells. To do this, we constructed a plasmid 

vector that directed the inducible synthesis of RNase A (with or without an inserted 

amyloidogenic peptide sequence; see Methods) fused to a monomeric variant of GFP (Fig. 

1a ). Cells containing these plasmids were examined by fluorescence microscopy at various 

times after the induction of fusion protein synthesis. Whereas most cells contained diffuse 

fluorescence, we observed fluorescent rod structures in a small minority (1 to 2%) of cells. 

Such rod-containing cells typically contained a single rod (Fig. 1b, left). These structures 

were observed regardless of whether or not the RNase A moiety contained the 

amyloidogenic peptide insertion (Fig. 1b, left and data not shown). Furthermore, we found 

that refrigeration dramatically stimulated formation of the rod-like structures. When we 

grew cells overnight after the induction of fusion protein synthesis and then incubated the 

cell cultures for 2 hours at 4oC, we detected fluorescent rod structures in essentially all of 

the cells (Fig. 1b, right).

To define the sequence requirements for intracellular rod formation, we constructed a series 

of truncations from the C-terminus of RNase A (Fig. 1a). We found that as few as eight N-

terminal residues of RNase A (separated from the C-terminus of GFP by a three-residue 

linker) sufficed to permit rod formation. When cell cultures containing this construct were 

induced overnight and incubated for 2 hours at 4oC, essentially all of the cells contained 

fluorescent rods (Fig. 1d). In most cases, the rods extended the entire length of the cell.

Rod formation does not depend on the fortuitous presence of an HP segment.

We considered the possibility that the propensities of the constructed GFP fusion proteins to 

form fluorescent rod structures was due to the fortuitous presence of an amino acid segment 

with high amyloid fiber-forming propensity (termed an HP segment) either spanning the 
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fusion junction or contained wholly within the appended sequence. We discovered an HP 

segment comprising the 3-residue linker and the first 3 residues of RNase A (AMAKET) 

that was shared by our rod-forming constructs (Fig. 1a and Fig S1)19.

Results from mutagenesis experiments were inconsistent with the hypothesis that rod 

formation was due to the amyloid-forming propensity of the HP segment located at the N-

terminal end of the appended peptide sequence. Using a fusion protein containing RNase A 

residues 1–14 as our reference construct, we compared the rod-forming behaviors of the 

reference fusion [GFP-AMA-RNase(1–14)] and several variants bearing replacements of the 

linker methionine residue (residue 240 in the fusion sequence) with A, E, K, L or Q (Fig. 1c, 

Fig. S1). Whereas the reference construct gave rise to rods in essentially all of the cells after 

overnight induction of fusion protein synthesis (Fig. 1c), the variant encoding AQAKET, 

which has a higher predicted amyloid-forming propensity than AMAKET, gave rise to no 

rod-containing cells even after induced overnight cultures were refrigerated for an additional 

24 hours (Fig. 1 c). Among the remaining variants, only that encoding ALAKET gave rise to 

rods (which formed efficiently only after refrigeration) (Fig. 1c), suggesting that a 

hydrophobic residue was required at the second linker position (see below). Overall, our 

analysis of this set of single amino acid substitution variants suggests that rod formation is 

not due to the amyloid-forming propensity of the appended peptide. Conclusive evidence 

that the rods lack amyloid architecture follows from diffraction analysis and crystal structure 

determination presented below.

Crystal structures of GFP fused to eight RNase A residues.

To elucidate the intermolecular interactions that guide assembly of GFP into intracellular 

fluorescent rods, we crystallized a fusion protein containing RNase A residues 1–8 [GFP-

AMA-RNase(1–8)] (Fig. 1d), the shortest fusion protein that efficiently formed rods. To 

facilitate purification of the fusion we appended a C-terminal His6 tag [GFP-AMA-

RNase(1–8)-His6] after determining that the tag did not alter the ability of the fusion protein 

to form fluorescent rods (Fig. 1e).

We discovered crystals in dozens of conditions, all of which shared the same needle 

morphology, recapitulating the rods observed in cells (Fig. S2a). The needles were typically 

over 100 μm long, but seldom greater than 5 μm thick. Among the different conditions, we 

discovered four different crystal forms (P21212 form1, P212121 form 2, C2, and P21) (Fig. 

S2b), collected diffraction data, and solved their structures (Table 1).

Remarkably, the structures obtained from the four crystal forms revealed essentially 

identical protofilament architectures, suggesting this architecture is likely to persist under 

many other conditions, including those within the cell. In each crystal form, the 

protofilament is assembled with 21 screw symmetry, meaning that each protomer is related 

to its closest neighbor protomer by a 180° rotation around the protofilament axis and 

translation along the axis by half the pitch length (i.e. rise per turn along the protofilament 

axis) (Fig 2a and c). In each crystal form, this pitch length is approximately 51.4 Å, (less 

than 1 Å variation) and corresponds to one of the unit cell dimensions (a=51.2 Å in P212121 

form 1, a=51.1 Å in P212121 form 2, b=51.3 Å in C2, and b=51.8 Å in P21) (Fig. 3b). There 

is no significant structural variation in protofilament architecture among crystal forms (Fig. 
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2b). Indeed, the root mean square deviation is less than 0.8 Å between protofilament 

segments from different crystals (composed of three consecutive GFP-AMA-RNase(1–8)-

His6 protomers totaling 5667 atoms). Thus, the robust nature of this protofilament assembly 

is evidenced by the high degree of similarity in protofilament structures (Fig. 2b) despite 

clear differences in packing between protofilaments (Fig. 3b).

A closer view of the protofilament reveals that one structural feature in particular stabilizes 

protofilament assembly--a new, fusion-created, C-terminal helix which fastens together 

neighboring pairs of protomers by binding in a groove between them (Fig. 2a, c, and d). This 

new C-terminal helix comprises seventeen residues which span a sequence derived from 

three different origins: six residues from the natural GFP C-terminus (233-MDELYK-238), a 

three-residue linker (239-AMA-241), and eight residues from RNase (242-

KETAAAKF-249) (Fig. 2d). The six residues contributed by GFP are normally disordered in 

crystal structures of natural-length GFP. The propensity of this segment to form a helix was 

evidently enhanced by its fusion with the RNase residues 1–8, which also form a helix in 

native RNase.

The new, fusion-created helix extends up to 40 Å away from its attachment to the barrel’s 

last strand, enabling the helix to reach a binding groove that is formed by the following two 

protomers in the protofilament. This 40 Å reach is thus directed by the relative positions of 

three successive protomers in the protofilament; the helix originates from protomer i, and the 

groove is formed between protomers i+1 and i+2. The ability of the helix to reach this 

groove is facilitated by the extended conformation adopted by GFP residues 228-

GITHG-232, which connect the helix to strand 11, the last strand in the GFP barrel (Fig. 2d).

Protomer i+1 forms one wall of the groove (Fig. 2e, brown surface). This wall comprises the 

surfaces of strands 3, 10, and 11 near the waist of the barrel, and the helix docks tangentially 

across these. The helix-in-groove interface is snug and defined almost entirely by side-chain-

to-side-chain contacts. A stripe of hydrophobic side-chains (M233, L236, Y237, M240, and 

T244) lines the length of the α-helix and these embed between side-chains on the surface of 

the barrel (T43, K45, A206, S208, V219, and L221). Loss of this hydrophobic interface 

upon substituting M240 with polar, charged, or small residues, such as Q, E, K, or A, would 

likely explain our observation that these substitutions interfere with efficient rod formation 

(Fig. 1c) (Fig. S3). This interface between helix i and protomer i+1 buries a total of 727 Å2 

on the two surfaces (Fig. S4).

Protomer i+2 forms the opposite wall of the groove. This wall comprises the end of strand 5 

and residues at one cap of the barrel (Fig. 2e, blue surface). Specifically, residues L7, P89, 

and F114 create a small hydrophobic pocket into which docks the side chain of A245 of the 

helix of protomer i. This contact is flanked on both sides by salt bridges (protomer i+2 

residues E90 and D117 with helix i residues K242 and K248, respectively). This interface 

between protomer i+2 and helix i buries a total of 426 Å2 on the two surfaces (Fig. S4). 

Overall, the shape complementarity between the helix and groove (0.78) indicates that the fit 

is even tighter than typically observed among antibody-antigen complexes20.
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Direct contact between the sides of neighboring GFP barrels strengthens and rigidifies the 

contiguous helix-in-groove interaction (Fig. 2f). The interface is approximately flat. Side-

chains from strands 1, 2, 5, and 6 of protomer i+1 nestle with side-chains from strands 3, 10 

and 11 of protomer i+2. The interactions are primarily polar rather than non-polar. The area 

buried by the two surfaces of this interface is 901 Å2 (Fig. S4). This patch of direct contact 

between barrels appears to be adventitious; it does not correspond in any way to the natural 

dimer interface of wild-type GFP21.

The combined surface area buried by protomers i, i+1, and i+2 appears large enough to 

maintain protofilament architecture in solution, free of the crystal lattice. Coordination of 

neighboring protomers by the C-terminal helix buries a total of 1153 Å2. Direct contact 

between protomers buries an additional 901 Å2 of surface area. Either interface by itself 

would likely be insufficient to support protofilament assembly. But, together, these total to 

2054 Å2, which exceeds the 1712 Å2 threshold value that discriminates between biological 

and artificial dimers22. The division of the protomer-protomer interface over three surfaces 

implies cooperativity in protofilament assembly.

Single amino acid substitution disrupts rod formation.

As a further test of whether or not the intermolecular interface observed in the crystals is 

relevant to rod formation in the cell, we mutated a solvent exposed residue on the GFP barrel 

that was predicted to contribute significantly to the interface formed by the binding of the C-

terminal alpha helix of the neighboring protomer. Specifically, we introduced a charged 

residue (E) in place of V219, which should disfavor the docking of M233, L236, and M240 

in the C-terminal alpha helix (Fig. S3). We then induced the synthesis of GFP-AMA-

RNase(1–8)-His6 with or without the V219E substitution in the GFP moiety. Whereas the 

unmutated fusion protein formed rod structures in essentially all of the cells after overnight 

induction followed by incubation for 2 hours at 4oC, the mutant fusion protein failed to form 

rods even after overnight cultures were refrigerated for several days, and instead gave rise to 

diffuse fluorescence (Fig. 1f and Fig. S5). These findings provide strong support for the 

hypothesis that the intermolecular interface observed in the four crystal forms is also the 

basis for fluorescent rod formation in bacterial cells.

The pattern of protofilament bundling in intracellular rods resembles that observed in the 
C2 crystal form.

We performed in cellulo diffraction experiments to evaluate the pattern of protofilament 

bundling in fluorescent rods produced in E. coli. X-ray diffraction patterns from E. coli 
producing GFP-AMA-RNase A(1–8)-His6 revealed six reflections with Bragg spacings 

between 55 Å and 25 Å (Fig. 3c). Remarkably, these spacings observed from intracellular 

filaments coincide with those of the crystal structure of purified GFP-AMA-RNase(1–8)-

His6 in space group C2 (Fig. 3e). Moreover, the relative intensities of the six observed 

reflections correlate between the observed and calculated patterns, as well as the geometric 

disposition with respect to the meridional and equatorial directions (Fig. 3f). Structurally, we 

find that the Bragg planes for these six reflections coincide well with the spacings between 

protomers in the crystal (Fig. S6a-g). The sum of these six Fourier terms produces a low-

resolution image of the protofilament in close agreement with the crystal structure (Fig. 
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S6h). These correlations, like matching fingerprints, indicate that the protofilaments bundle 

together in the fluorescent rods in the same pattern as observed in the C2 crystal 

(Supplementary note 1).

Poor correlation is observed between the in cellulo diffraction and the remaining three 

crystal forms (P21, P212121 form 1 and P212121 form 2; Fig. 3d). This poor correlation is 

not an indication of dissimilarity among the protofilament structures. Recall that all four 

crystal forms are composed of the same protofilament structure (Fig. 2b and 3a). Rather, the 

differences among the simulated diffraction patterns arise from alternative packing 

interactions between structurally identical protofilaments (Fig. 3b). Apparently, the cellular 

milieu favors the same packing of protofilaments as the C2 crystal form.

The symmetry of the protofilaments themselves likely makes them prone to crystal-like 

bundling, because it corresponds to one of the most prevalent symmetry elements in 

crystallography—a two-fold screw axis. Fibers of hemoglobin E6V are also rigidified by 

crystal-like bundling23, and also feature a two-fold screw protofilament symmetry24. 

Conversely, many functional protofilaments, such as actin and tubulin, have resisted 

crystallization because their symmetry is imprecise or does not coincide with common 

crystallographic symmetry elements.

Discussion

We found that appending as few as twelve residues to the C-terminus of GFP enabled the 

fortuitous assembly of GFP filaments both in vivo and in vitro. These filaments were 

detectable as fluorescent rods that spanned the length of bacterial cells harboring the fusion 

construct. The purified fusion protein readily formed needle-like crystals and structure 

determination revealed the basis for filament formation. Specifically a fusion-created C-

terminal α-helix extends away from the barrel to which it is attached and nestles into a 

groove that is formed by the barrels of two successive protomers along the protofilament 

axis.

This helix-in-groove linkage between protomers resembles runaway domain swapping10, a 

mechanism proposed for the assembly of disease-related fibrils. By this mechanism, each 

protomer swaps a part of its structure into an identical protomer along the protofilament 

(Fig. 4e). The swapped part is termed the “swapping domain” and may be as small as a 

single α-helix or β-strand; the receiving part is termed the “complementary domain”. The 

swapping event begins when a folded or “closed” monomer (Fig. 4c) opens up to expose its 

own swapping domain to another protomer (Fig. 4d). The flexibility required to open the 

monomer and execute the swap is afforded by a hinge loop that links the two domains. In 

GFP-RNase(1–8) protofilaments, the C-terminal helix acts as the swapping domain, the GFP 

barrel acts as the complementary domain, and intervening residues 229–232 form the hinge 

loop.

Other properties of the GFP-RNase filaments, such as facile nucleation and mechanical 

rigidity, seem incongruous with runaway domain swapping. Indeed, GFP-RNase(1–8) 

filaments assemble spontaneously in vivo within hours, unlike runaway domain swapped 
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filaments which may take years to assemble in vivo, or require high concentrations, harsh 

conditions, proteolytic cleavage, or multiple days to nucleate in vitro14, 25 Furthermore, 

GFP-RNase filaments are mechanically strong and rigid. In some instances, the rods connect 

two deeply constricted cells, implying that septum formation was incapable of severing a 

preexisting filament (Fig. 1g). In other instances, the ends of growing GFP-RNase rods 

appear to impose bulges at the cell poles (Fig. 1h). These distortions of the cell shape are 

reminiscent of those observed in red blood cells upon aggregation of hemoglobin bearing a 

single glutamate-to-valine substitution, E6V, associated with sickle cell anemia. This 

mutation causes hemoglobin tetramers to assemble into rigid fibrils that distort the normally 

disk-shaped cell to a sickle shape26. In contrast, runaway domain-swapped filaments are 

connected by flexible hinge loops which typically confer the appearance of “beads-on-a-

string.”27. These incongruities prompted us to examine the GFP-RNase protofilament 

structure for attributes that differ from runaway domain swapping and facilitate nucleation 

and mechanical rigidity.

Consideration of the monomeric state illuminates the defining attribute that distinguishes 

GFP-RNase filament formation from runaway domain swapping and explains why GFP-

RNase filaments grow more robustly than runaway domain swapped filaments; that is, the 

GFP-RNase monomer cannot competitively bind its own helical appendage. A defining 

feature of runaway domain swapping is the high affinity for binding the swapping domain, 

whether nested within its own protomer (monomeric state) or swapped into a neighboring 

protomer (filamentous state). The equally deep energetic stability of both the monomeric 

and filamentous states impedes filament nucleation and growth in two ways: (1) it imposes a 

large kinetic barrier to the conversion from monomer to filament because the intramolecular 

domain-domain interface in the monomer must be disrupted to form the equivalent 

intermolecular domain-domain interface in the filament28, and (2) it renders the monomeric 

state an energetically viable competitor of filament nucleation and growth since the two 

states contain equally stabilizing domain-domain interfaces.

In violation of a defining principle of runaway domain swapping, the helix-in-groove 

interface that stabilizes GFP-RNase protofilaments is unattainable within individual 

monomers. Indeed, the C-terminal helix of GFP-RNase (donor domain) cannot bind its 

complementary site within the same monomer (acceptor domain) because the acceptor site is 

out of reach; the hinge loop is too short (Fig. 4g). Self-complementation is further precluded 

by that fact that the acceptor site itself is not a single surface, but assembled from two 

protomers (i+1 and i+2), which respectively contribute residues from opposite faces of the 

barrel (Fig. 2d and Fig. 4j).

The unattainability of a self-complementary donor-acceptor interface within GFP-RNase 

monomers explains why this protein forms filaments more readily than proteins that undergo 

runaway domain swapping. Without a means of self-complementation, protomers in the 

monomeric state cannot attain the same low energy state as do the protomers in the filament, 

thereby tilting the energy landscape in favor of filament growth (Fig. 4f-h). The absence of 

stable self-complementation also has the advantage of eliminating the kinetic barrier to 

filament formation—with no donor-acceptor interface in the monomer there is no barrier 

imposed by its disruption as there would be in runaway domain swapped filaments.
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We discovered that many natural filaments display donor-acceptor linkages analogous to 

those observed in the GFP-RNase filaments (Table S1). For example, in filaments of 

nucleocapsid protein from phlebovirus, each protomer donates a helix to an acceptor domain 

in the neighboring protomer29. Similarly in pilus rods of fimA protein, each protomer 

donates an N-terminal strand to its neighboring protomer30. Moreover, GFP-RNase, 

nucleocapsid protein, and fimA are all incapable of self-complementation. The mechanism 

of pilus rod formation has been named “donor-strand exchange”, but a more general name is 

needed to encompass those filaments assembled by donation of elements other than strands. 

We refrain from using the previously coined term “obligate domain swapping” 31,32, because 

we have shown the mechanism is not a true domain swap. Instead, we coin the term 

“runaway domain coupling” to describe all filaments like GFP-RNase in which protomers 

interface through distinct donor and acceptor domains--interfaces which are unattainable in 

individual monomers.

Runaway domain coupling describes many protofilament assemblies, but it does not explain 

why some, like GFP-RNase, are mechanically rigid. Indeed, a flexible linker is characteristic 

of this mechanism. Rigidity, on the other hand, is a defining characteristic of domain 

stacking, in which copies of a single rigid domain stack together in uninterrupted succession 

(Fig. 4a). In GFP-RNase protofilaments, protomers stack through patches on the rigid barrel 

domains, thus rigidifying the otherwise flexible domain coupled linkages (Fig 2f). This 

combination of domain coupling and stacking is also evident in naturally occurring RecA 

nucleoprotein filaments; even in the absence of nucleic acid, RecA forms filaments with a 

persistence length of about 100 nm (Table S1)(Fig. 4i)33. In contrast, the runaway domain 

coupled filaments of phlebovirus nucleocapsid protein have no supplementary connection 

through domain stacking (Fig. 4h). Accordingly, the filaments give the appearance of a 

random walk in electron micrographs29. Hence, domain stacking imparts rigidity to a 

protofilaments, acting alone or in combination with other mechanisms.

Bridging is yet another mechanism of filament formation that contributes to the mechanical 

rigidity of GFP-RNase protofilaments. Bridging interfaces join nonconsecutive protomers in 

the protofilament, creating a mutually supportive closed network that includes the 

intervening “bridged” protomer(s) (Fig 4b). In GFP-RNase protofilaments, a bridging 

interface exists between protomers i and i+2, as part of the helix-in-groove interaction (Fig 

4k). This interface in turn, bolsters contacts between these protomers and the intervening 

protomer i+1. Bridging is also observed in tropomyosin, which forms a coiled coil bridge 

across protomers in actin filaments34, thereby reinforcing stacking between actin domains 

and increasing the persistence length by two-fold (Table S1)35. Bridging also helps assemble 

soluble E6V hemolgobin tetramers into cell-deforming rods24 and tubulin protofilaments 

into microtubules. Cooperativity is implied by bridging because assembly of two protomers 

enhances binding of a third protomer.

Genesis of protofilaments by either runaway domain coupling or domain stacking appears 

relatively difficult to achieve through a single, de novo interface alone. The interface would 

have to be sufficiently large22 and snug for the protofilament to have a significant lifetime, 

presumably requiring many iterations of genetic selection. Circular permutation may offer a 

shortcut by exploiting a preexisting intramolecular interface. For example, circular 
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permutation may shift an N-terminal element to the C-terminus. From its new location, the 

element may not reach its own complementary site near the N-terminus, but it might easily 

reach the complementary site of another protomer—a perfect setup for runaway domain 

coupling (Fig. S7). Circular permutation occurs with sufficient frequency in nature to be a 

plausible step in protofilament genesis; according to one study, as many as 47% of all 

domains examined have a circularly permuted homolog36. Simpler still, runaway domain 

coupled protofilaments might also arise from insertion of a stop codon in a multi-domain 

oligomeric protein, as engineered in the T7 primase-helicase gene37. Evidently, the removal 

of some structural elements disrupted cyclic oligomerization in favor of a runaway 

polymerization.

Surprisingly, protofilaments might be generated faster when protomer-protomer interfaces 

are divided over multiple surfaces, as observed in GFP-RNase protofilaments (Fig 4k), 

rather than collected in a single surface. Contrary to the elevated level of complexity inferred 

by the presence of three distinct interfaces in GFP-RNase protofilaments (runaway domain 

coupling, stacking, and bridging), this combination allows each of the interfaces to be 

relatively smaller, and therefore relatively easier to achieve. In fact, we found that a majority 

of crystal structures of monomeric proteins demonstrate intermolecular interfaces as large as 

the individual interfaces observed in GFP-RNase protofilaments (Supplementary Note 2).

Flexible linkage between domains, such as occurs in runaway domain coupling, seems 

advantageous for consolidating these smaller interfaces into a network stable enough to 

support filament genesis. Consider an early stage of protofilament evolution in which 

domains can stack, but the stacking interface is too small to be stable. Suppose that this 

stacking domain is linked to an accessory domain with the potential to evolve a second, 

stabilizing interface in parallel with the first. If the linker between domains is rigid, only a 

small portion of the accessory domain may be in proximity of establishing a new interface 

without disturbing the first. However, if the linker is flexible, as is the case with domain 

coupling, additional residues may be brought in proximity, improving chances of 

encountering a snug interface. Indeed, one third of all the naturally occurring filament 

structures we surveyed involve combinations of runaway domain coupling with stacking 

(Table S1). Notably, runaway domain coupling, stacking, and bridging were revealed 

recently in CTP synthase38, a representative of a class of metabolic enzymes that evolved 

filamentation as a survival response to certain cellular conditions5,6,8,39,40.

The advantage of flexibility for consolidating stacking interfaces comes with an entropic 

penalty--the immobilization of the interdomain loop. This penalty partially diminishes the 

stability of the protofilament, perhaps explaining the temperature sensitivity of filament 

formation by some of the GFP-RNase constructs (Fig. 1b, c) and the sensitivity of CTP 

synthase filamentation to cellular conditions. These two filaments also score lower values of 

interface area and solvation free energy than the majority of naturally occurring filaments 

(Table S1, Fig. S8), suggesting another reason for their sensitivity.

A strategy of combining runaway domain coupling with stacking may offer new advantages 

for filament design. Notably, flexible linkers were not included in the few examples where 

globular or helical proteins were successfully engineered to form filaments11, 41,42,43,44,45,46. 
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In all these cases, alignment between protomers was designed computationally, thereby 

eliminating the need for flexibility to attain alignment. However, the success of most of 

these designs depended on the presence of a naturally evolved dimerization interface. We 

propose that a design strategy of combining runaway domain coupling with stacking could 

open up filamentation to the majority of monomeric proteins, employing interfaces as small 

as the average crystal packing interface.

Online Methods

Plasmids, Strains, and Cell Growth.

GFP fusions were produced from pBR322-derived plasmids under the control of the 

arabinose-inducible promoter pBAD. Specifically, the constructs depicted in Fig. 1 (top to 

bottom) were produced from plasmids pLM163, pLM168, pLM180, pLM179, pLM177, 

pLM178, pLM176, pLM187, pLM192, and pLM198. Plasmid pLM136 encodes the full-

length RNaseA fusion with the amyloidogenic peptide GGVVIA (derived from Aβ) inserted 

between RNaseA residues 113 and 11418. Constructs with only eight RNaseA residues 

included an additional aspartate (D) residue with or without a C-terminal hexa-histidine tag. 

Overnight cultures of E. coli BW2778549,50 transformed with the appropriate GFP-fusion 

construct were diluted to an OD600 of 0.02 in 50 mL LB supplemented with carbenicillin 

(100 μg/mL), grown for 30 min at 30 °C, and induced with L-arabinose (0.2% wt/vol). For 

experiments in which early stationary phase cultures were examined, cells were harvested 

after 4 h induction at 30 ºC. Otherwise, cultures were induced overnight (~20 h) at 30 ºC. 

Where indicated, both early stationary phase and overnight cultures were refrigerated at 4 ºC 

for 2 h or ≥24 h in order to enhance formation of GFP rods.

Fluorescence Microscopy.

Cells were imaged after overnight induction of fusion protein synthesis either without any 

subsequent incubation or following incubation for the time specified at 4oC. Cells were 

harvested at 3,000 × g, resuspended in PBS, and spotted onto agarose pads (1% wt/vol in 

PBS; Seakem LE Agarose, Lonza) for visualization with a UplanFLN 100× phase contrast 

objective on an Olympus BX61 microscope as described elsewhere51. Images were captured 

with a CoolSnapHQ camera (Photometrics) and the Metamorph software package, version 

6.1 (Universal Imaging). Exposures were typically 50–100 ms. Images were cropped and 

adjusted using Metamorph or ImageJ52.

Bacterial Extract Preparation and Western Blotting.

Cultures (50 mL) were grown as described above, and the cell densities were recorded 

(OD600). The cultures were centrifuged 10 min at 3,000 × g at 4 ºC, and the pellets were 

resuspended in BugBuster Protein Extraction Reagent (EMD Millipore) to normalize for cell 

density (800μL of lysis buffer for an OD600 of 0.8.). rLysozme (EMD Millipore) was added 

to 3,000 units/mL and Omnicleave endonuclease (Epicentre) was added to 200 units/mL; the 

mixture was incubated, rocking, at room temperature (RT) for 30 min. For SDS-PAGE and 

Western blot analysis, samples were diluted 1:25 in standard SDS-PAGE loading buffer and 

equal volumes were loaded. Blots prepared in duplicate were probed with either an anti-His 

mouse monoclonal antibody (Genscript A00612), to detect His6-tagged GFP-fusion protein, 

McPartland et al. Page 11

Nat Struct Mol Biol. Author manuscript; available in PMC 2019 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or with an antibody specific for the RpoA (α) subunit of E. coli RNA polymerase 

(Neoclone, clone 4RA2), which served as a loading control. Blots were detected using an 

ECLplus Western Blotting Detection System (GE Heathcare).

Purification of GFP-RNase(1–8) for crystallization.

E. coli strain BW27785 was transformed with pLM192 (pBAD-gfp-AMA-KETAAAKFD-
his6) to produce the GFP fusion, GFP-AMA-KETAAAKFD-His6, for crystallization. We 

term this fusion protein GFP-RNase(1–8). A culture of LB supplemented with100 μg/mL 

carbenicillin was inoculated with a single transformed colony and grown at 30 ºC overnight. 

This overnight culture was back diluted to an OD600 of 0.03 in 1 L of fresh LB medium 

supplemented with 100 μg/mL carbenicillin and grown at 30 ºC 220 rpm until the culture 

reached mid-log phase (OD600 0.5). L-arabinose was added to a final concentration of 0.2%, 

and the culture was grown at 30 ºC at 220 rpm for an additional 5 h. Cells were harvested 

from a 500 mL aliquot of this culture by centrifugation and stored at −80 ºC until used. On 

the day of purification, the cell pellet was thawed on ice, washed once in cold, sterile PBS, 

and lysed in 8.5 mL BugBuster supplemented with Santa Cruz Complete™ Protease 

Inhibitor Cocktail Tablet (1 tablet per 50 mL lysis buffer), 5 μL rLysozyme, and 5 μL 

Omnicleave. The lysate was centrifuged for 20 min at 12,600 rpm to remove cell debris, and 

the supernatant fraction was incubated with 3 mL pre-washed Ni-NTA resin (Qiagen) at 4 ºC 

for 1 h with rocking. After this incubation step, the resin/supernatant mixture was added to a 

gravity column and drained. The column was washed three times with a buffer containing 50 

mM Hepes pH 7.9, 300 mM NaCl, 5 mM BME, and increasing concentrations of imidazole 

(0, 20 mM, and 60 mM, respectively). Bound protein was eluted in 8 mL elution buffer (50 

mM Hepes pH 7.9, 300 mM NaCl, 5 mM BME, 200 mM imidazole), and 1 mL aliquots 

were frozen on dry ice. Purification protocol was adapted from Ormö et al.48

Crystallization of GFP-RNase(1–8).

The protein was concentrated to approximately 40 mg/mL in a centrifugal concentrator. The 

buffer was exchanged three times with 20 mM HEPES pH 7.5 and 10 mM NaCl. Crystals 

were grown by the hanging-drop vapor diffusion method. The drops were set up using a 

Mosquito robot, dispensing drops composed of 200 nL of protein and 200 nL reservoir. The 

reservoir volume was 100 μL. Crystals typically grew within a few hours. Crystals in space 

group P21 and P212121 were cryoprotected by the addition of glycerol to a concentration of 

35%.

Crystallization of GFP-RNase(1–8) in space group P212121 form 1.—The 

reservoir contained 20% ethanol and 30% (v/v) 2-methyl-2,4-pentanediol (Qiagen MPD 

Suite condition 90 [H6]). The crystal grew at 20°C.

Crystallization of GFP-RNase(1–8) in space group P212121 form 2.—The 

reservoir contained 0.1 M sodium acetate, pH 5.0 and 65% (v/v) 2-methyl-2,4-pentanediol 

(Qiagen MPD Suite condition 68 [F8]). The crystal grew at 4°C.
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Crystallization of GFP-RNase(1–8) in space group C2.—The reservoir contained 

0.1 M sodium citrate, 0.1 M HEPES pH 7.5, and 10% (v/v) 2-methyl-2,4-pentanediol 

(Qiagen MPD Suite condition 73 [G1]). The crystal grew at 4°C.

Crystallization of GFP-RNase(1–8) in space group P21.—The reservoir contained 

0.2 M KCl, 0.005M MgCl2, 0.05 M sodium cacodylate pH 6.5, and 10% (w/v) 1,6-

hexanediol (Qiagen Nucleix Suite condition 21 [B9]). The crystal grew at 4°C.

Data collection and processing.

Diffraction data from GFP-RNase(1–8) crystals in space group P212121 (form 1), C2, and 

P21 were collected at the Advanced Photon Source beamline 24-ID-C using a Dectris Pilatus 

6M-F pixel detector. The data set from crystal form 2 of space group P212121 was collected 

at the beamline 24-ID-E using an ADSC Quantum 315 CCD detector. Each data set was 

collected from a single crystal at a temperature of 100 K. A cryoprotectant mixture of 35% 

glycerol and 65% reservoir was used for crystal form P21. The remaining crystal forms 

required no additional cryoprotectant. The following X-ray wavelengths were used for 

crystal forms P212121 (form 1), P212121 (form 2), C2, and P21, respectively: 0.9795 Å, 

0.9791 Å, 0.9795 Å, and 1.4760 Å. Data was processed using the XDS package53 for all 

crystals. In addition, autoPROC54 was used for processing data sets in P212121 (form 1), and 

C2; aimless55 was used for scaling in P212121 (form 1). Data collection statistics are 

reported in supplemental Table S1.

Structure determination and refinement.

The first crystal form we obtained of GFP-RNase(1–8), P212121 form 1, was isomorphous 

with a previously determined GFP structure, PDB ID code 4P1Q56. We used these 

coordinates as a starting model in the refinement of the GFP-RNase(1–8) Buster57. 

Difference density maps revealed the position of the N-terminal fusion, and these atoms 

were built using the graphics program Coot58. The remaining structures were determined by 

molecular replacement using the program Phaser59. The search model for molecular 

replacement in space group C2 was the refined structure from space group P212121 form 1. 

The search model for molecular replacement in space groups P21 and P212121 form 2 was 

the refined structure from space group C2. All models were built and refined using the same 

software as described above for P212121 form 1. Structures were illustrated using the 

program Pymol60.

Fiber diffraction simulation.

Crystal diffraction intensities were cylindrically averaged around the filament axis to 

simulate the radial disorder of a filament using a custom-written Fortran code.

Identification and analysis of potential protofilament-forming interfaces in the Protein Data 
Bank.

To identify how many globular, monomeric proteins are poised to form protofilaments, we 

began by screening 130,446 PDB entry headers to identify monomers. We defined 

“monomers” as entries that contained only a single protein chain, were determined by 
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crystallography, had resolution better than 3.0 Å, and had no biological assembly operators 

other than the identity matrix. We also excluded redundant entries defined as having the 

same MOLECULE record and unit cell lengths identical to ± 3Å and unit cell angles 

identical to ±5°. We found 12,933 entries that passed these criteria for monomers.

To determine how many of these monomers were poised to form screw-related 

protofilaments, we performed the following steps. First, we applied crystallographic 

operations to bring the molecule as close as possible to the origin, generating a reference 

molecule. Then, we applied crystallographic screw operations to the reference molecules, 

allowing for up to 3 unit cell translations in any combination along positive and negative a, 

b, and c. Screw operators were accepted as potential protofilament generators only if the 

reference molecule and the operated molecule were close enough to touch. We defined 

touching distance as any distance less than twice the distance of the furthest atom of the 

reference molecule from its center of mass. These criteria produced 73,968 screw-related 

pairs. Surface areas buried by these interfaces were calculated using the CCP4 program, 

areaimol55. Of these, 26,375 screw-related pairs meet the criterion of a quasi-stable interface 

as defined by equaling or surpassing the 901 Å2 of buried surface area (450 Å2 per surface) 

observed between barrel domains of our GFP fusion protein protofilament. That is, 9119 

PDB entries, or 74% of the monomer entries. Including a constraint that one of the termini 

be located within 12 Å of the intermolecular interface (a threshold defined by our GFP 

fusion protein) leaves 53% of monomeric PDB entries meeting these combined criteria. That 

is, over half the monomer entries in the PDB (6816 entries) are poised for filament 

formation.

Simulation of helix-forming propensity for randomly generated 13-mers.

We used a random number generator and probability weighted amino acid frequencies in 

vertebrates to calculate one million peptide sequences. We scored the sequences for helix 

propensity using Chou & Fasman rules61. Using two different seeds for the random number 

generator, we found 127,952 and 128,171 sequences passed the criteria for helix. That is 

approximately 13%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Fluorescence images of E. coli cells containing GFP-RNase A fusion proteins.
(a) Fusion constructs. RNaseA and truncated segments were fused to the C-terminus of GFP 

via a 3-residue linker (white box). (b) After overnight induction of GFP-AMA-RNaseA 

fusion protein, cells were imaged before (left) or after incubation for 2 h at 4oC (right). (c) 

Variations in the linker of GFP-AMA-RNaseA(1–14) cause variation in rod-forming 

propensities, as observed after overnight induction before (AMA, ALA [left]) or after 

incubation for 24 h at 4oC (AQA, ALA [right], AEA, AKA, AAA). The graph indicates the 

energy of the highest propensity amyloid-forming hexapeptide predicted by ZipperDB19for 

each of the six variants. Most notably, the AQA variant predicted to have the strongest 

amyloid propensity produced no rods, suggesting that the rods are not amyloid-like. (d) 

Eight appended RNase A residues suffice for rod formation. (e) Appending hexa-histidine 

tag does not interfere with rod formation. Constructs in panels d and e were imaged after 

overnight induction and incubation for 2 h at 4oC. (f) V219E, a mutation within the GFP 

moiety, disrupts filament formation. Cells were imaged after overnight induction and 
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incubation for 120 h at 4oC. For all panels, fluorescence images show representative fields, 

with illustrative portions enlarged (insets). (g) Fluorescence and phase contrast images of 

dividing cells connected by continuous rod structures. Cell-spanning rods are indicated by 

white arrowheads. A similar phenomenon was observed in E. coli cells overexpressing an 

actin homolog.47 (h) Cells exhibiting rod-induced bulges at their poles. Bulges are indicated 

by yellow arrowheads. Cells in panels g and h contain GFP-RNaseA(1–14) fusion protein, 

and were imaged after induction for 4 h and incubation for 24 h at 4oC. Scale bars represent 

5 μm.
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Fig. 2. Structure of the GFP-RNase(1–8) protofilament determined by x-ray crystallography.
(a and c) Two orientations of the protofilament related by a 45o rotation around the vertical 

axis. The protofilament is represented as a schematic on the left (large cylinders represent 

the GFP β-barrel) and cartoon ribbons on the right. The protofilament axis (with 2-fold 

screw symmetry) is marked by the vertical black line. (b) Superposition of GFP 

protofilaments from four crystal forms, each shaded according to the color key. The three 

center protomers (blue, brown and green) were superposed as unified trimers, rather than 

monomers. The four protofilaments superimpose nearly identically, indicating the 

protofilament architecture is highly conserved and robust. (d, e, f) Molecular interfaces 

responsible for robust assembly. (d) A close-up view of the fortuitously formed C-terminal 

helix of protomer i (cartoon ribbon) fitting in a groove between i+1 and i+2, represented as 

solvent accessible surfaces. The sequence of the C-terminal fusion and its origins are 

diagrammed. Arrows connect the individual sequence components to the structure. (e) 

Details of the helix-groove interface contacts. (f) Barrel-to-barrel stacking contacts between 

protomers i+1 and i+2 that facilitate fibril formation. The barrel-barrel interface has been 

observed as a crystal packing interaction previously (for example, see PDB ID 1EMA48).
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Fig. 3. Protofilament architecture and bundling in vivo.
(a) Four independent crystal structures of the GFP-RNase fusion reveal essentially identical 

protofilament assemblies (b) Remarkably, this consensus protofilament structure (one is 

highlighted in green, blue, brown) is unperturbed despite differences in its alignment with 

neighboring protofilaments (parallel in C2, and P21, and antiparallel in P212121 forms 1 and 

2) and different spacings between neighboring protofilaments. Only one of the unit cell 

dimensions is constant among the four crystal forms, and this corresponds to the filament 

pitch (brown scale bar). Crystallographic 21 symmetry axes are denoted by black symbols 

and half-arrows. (c) An X-ray diffraction pattern from dried E. coli cells carrying GFP-

RNase(1–8) filaments reveals six low resolution reflections (labeled 55 to 25 Å). (d) 

Diffraction radial profiles calculated for each crystal form (orange traces) are overlaid with 

the observed radial profile of E. coli cells (blue dashed traces). Remarkably, one of the 

calculated patterns (space group C2) matches the observed pattern, implying that 

protofilament bundling in vivo resembles the packing observed in the C2 crystal. Correlation 
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coefficient between observed and simulated diffraction profiles are noted in the lower right 

corner of each subpanel. (e) Calculated fiber diffraction pattern of the C2 crystal structure. 

(f) Overlay of observed and calculated (space group C2) diffraction patterns. Bands of dark 

green color highlight the coincidence of the most intense reflections. Similarity is evident in 

the Bragg spacings, relative intensities of the reflections, and orientation of the reflections 

with respect to the fibril axis (fibril axis is vertical). Labels indicate Miller indices and Bragg 

spacings.
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Figure 4. Four basic protofilament-forming mechanisms and their observed combinations.
(a) In domain stacked filaments, protomers stack together through rigid domains, with no 

intervening hinges to confer flexibility. (b) Bridging interfaces join nonconsecutive 

protomers, creating a mutually supportive closed network that includes the intervening 

“bridged” protomer(s) (c-e) Runaway domains swapped filaments are characterized by the 

exchange of domains between neighboring protomers. Hinge loops, which link the domains, 

confer flexibility to the filament. Nucleation usually requires lengthy or harsh conditions 

because the closed, self-complemented state (c) is far more stable than the open state (d) in 

which the swapping element (in this case indicated by a bumpy rectangle) is exposed and the 

complementing surface (indicated by a cavity) is available for swapping. (f-h) Protofilament 

assembly through runaway domain coupling features a similar exchange of domains 

between protomers, but is more easily achieved because the donor domain is permanently 

open (g), geometrically restricted from self-complementing (for example, by a hinge loop 

that is too short). Thus no closed monomer exists (f) to compete for protofilament assembly. 

(i-k)Combinations of stacking, bridging, and coupling elements are commonly observed. 

For example, stacking, bridging and coupling elements are consolidated in the GFP fusion 

(j-k). In this case, the complementation site is divided over two surfaces (j). That is, two (or 

more) protomers cooperate to complement the swapping domain (k), rather than just one 

(h). Cooperativity implies a larger entropic barrier to nucleation because the nucleus is 

composed of more protomers, but this limit may be offset by the absence of closed monomer 

to compete for protofilament assembly. Conceivably, stacking, bridging, and swapping could 

also coexist if the complementation site resided entirely within protomer i+2.
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Table 1.

Crystallographic data collection and refinement statistics

GFP-RNase(1–8)-
His6
(PDB 5HGE)

GFP-RNase(1–8)-
His6
(PDB 6AS9)

GFP-RNase(1–8)-
His6
(PDB 5HBD)

GFP-RNase(1-
8)-His6
(PDB 5HW9)

Data collection

Space group P212121 form 1 P212121 form 2 C2 P21

Cell dimensions

 a, b, c (Å) 51.2, 62.9, 69.3 51.1, 54.5, 85.5 112.7, 51.3, 55.1 45.7, 51.8, 54.8

 α, β, γ (°) 90.0,90.0,90.0 90.0,90.0,90.0 90.0,99.6,90.0 90.0, 96.0, 90.0

Resolution (Å) 46.0–1.86(1.96–

1.86)
a

46.0–1.75(1.80–
1.75)

46.0–1.65(1.75–
1.65)

46.0–3.0(3.08–
3.00)

Rmerge 0.106 (0.556) 0.117 (0.585) 0.094 (0.534) 0.189 (0.750)

I/σ(I) 9.4 (2.3) 14.1 (3.8) 13.7 (2.3) 5.8 (1.2)

CC1/2 0.997(0.836) 0.996 (0.630) 0.998(0.765) 0.975 (0.554)

Completeness (%) 96.7 (98.2) 99.4 (98.5) 91.2 (63.8) 95.1 (84.4)

Redundancy 3.7 (3.7) 7.1(7.0) 6.0 (2.9) 3.2 (2.1)

Refinement

Resolution (Å) 46.0–1.86 46.0–1.75 46.0–1.65 46.0–3.00

No. reflections 18,492 24,416 30,817 4,963

Rwork / Rfree 0.169/0.211 0.156/0.156 0.174/0.206 0.186/0.232

No. atoms

 Protein 1937 1952 1925 1932

 Ligands

  2-Methyl-2,4-pentanediol 8 16 0 0

  Acetate 0 8 0 0

 Water 172 237 312 6

B factors

 Protein 24.4 14.5 19.1 50.0

 Ligands

  2-Methyl-2,4-pentanediol 46.7 36.7

  Acetate 24.3

 Water 30.6 25.9 30.9 39.2

R.m.s. deviations

 Bond lengths (Å) 0.010 0.010 0.013 0.010

 Bond angles (°) 1.1 1.1 1.7 1.2

a
Values in parentheses are for highest-resolution shell.
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