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Abstract Previous studies had shown that the integration of genome wide expression profiles,

in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the

underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in

99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource

population for cardiovascular and metabolic traits. We report numerous novel transcripts

supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic

mapping of transcript levels in HMDP, reveals both local and trans expression Quantitative Trait

Loci (eQTLs) demonstrating 2 trans eQTL ’hotspots’ associated with expression of hundreds of

genes. We also report thousands of alternative splicing events regulated by genetic variants.

Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly

significant associations. Our data provide a rich resource for understanding the many physiologic

functions mediated by the hypothalamus and their genetic regulation.

DOI: 10.7554/eLife.15614.001

Introduction
The regulation of body weight and appetite are complex processes, in which hypothalamic nuclei

play a pivotal role. Genome wide association studies have shown that DNA sequence variants signifi-

cantly contribute to variation in metabolic traits both in humans and mice. However, in most cases

the connection between genetic variant and final phenotype remains unknown (Suhre et al., 2011;

Teslovich et al., 2010; Lappalainen et al., 2013). In an effort to better understand how genetic vari-

ation results in phenotypic differences, many projects in the last decade have focused on genome
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wide characterization of sequence variants regulating gene expression in different tissues and organ-

isms (Lappalainen et al., 2013; Majewski and Pastinen, 2011; Grundberg et al., 2011, , 2012).

These studies showed that up to 80% of genetic variants associated with complex traits likely act

through the regulation of gene expression rather than changing protein sequence and function.

Such genes, termed expression quantitative trait loci (eQTLs), offer useful insights into the mechanis-

tic links between genotype and phenotype, providing the eQTLs are characterized with sufficient

power and resolution in phenotypically relevant tissues and states (Pickrell et al., 2010; Min et al.,

2012; Gaulton et al., 2015).

Mouse is the primary model organism for many cardiovascular traits, including atherosclerosis,

metabolic syndrome, obesity, the neural control of metabolism, and diabetes (Lusis, 2000;

Billon et al., 2010; Allayee et al., 2003). Dozens of loci contribute genetically to metabolic traits

have been identified in mouse models (Parks et al., 2013; Lusis, 2012). Indeed, we and others have

extensively characterized eQTLs in metabolically relevant tissues of mice, suggesting potential new

genes related to obesity (van Nas et al., 2010; Keane et al., 2011; Huang et al., 2009;

Aylor et al., 2011). Integration of transcriptomic data from liver and adipose with genetic mapping

and phenotypes led to mechanistic insights into the complexity of metabolic phenotypes. Yet, hypo-

thalamus, which is not a readily accessible tissue, lacks such high resolution expression data. In fact,

only one previous study examined eQTLs in mouse hypothalamus, using mice from 39 inbred strains

fed chow diet, using microarray data and 5000 SNPs (McClurg et al., 2007). The lack of extensive

transcriptome data, which allows mapping of eQTLs and the linking of traits and transcripts, is a

major impediment in integrating the hypothalamus with a systems biology of metabolism. In this

study, we used RNA-Seq to characterize the hypothalamic transcriptome in 99 inbred strains of mice

eLife digest Metabolism is a term that describes all the chemical reactions that are involved in

keeping a living organism alive. Diseases related to metabolism – such as obesity, heart disease and

diabetes – are a major health problem in the Western world. The causes of these diseases are

complex and include both environmental factors, such as diet and exercise, and genetics. Indeed,

many genetic variants that contribute to obesity have been uncovered in both humans and mice.

However, it is only dimly understood how these genetic variants affect the underlying networks of

interacting genes that cause metabolic disorders.

Measuring gene activity or expression, and tracing how genetic instructions are carried from DNA

into RNA and proteins, can reliably identify groups of genes that correlate with metabolic traits in

specific organs. This strategy was successfully used in previous studies to reveal new information

about abnormalities linked to obesity in specific tissues such as the liver and fat tissues. It was also

shown that this approach might suggest new molecules that could be targeted to treat metabolic

disorders.

A brain region called the hypothalamus is key to the control of metabolism, including feeding

behavior and obesity. Hasin-Brumshtein et al. set out to explore gene expression in the

hypothalamus of 99 different strains of mice, in the hope that the data will help identify new

connections between gene expression and metabolism.

This approach showed that thousands of new and known genes are expressed in the mouse

hypothalamus, some of which coded for proteins, and some of which did not. Hasin-Brumshtein

et al. uncovered two genetic variants that controlled the expression of hundreds of other genes.

Further analysis then revealed thousands of genetic variants that regulated the expression of, and

type of RNA (so-called "spliceforms") produced from neighboring genes. Also, the expression of

many individual genes showed significant similarities with about 150 metabolic measurements that

had been evaluated previously in the mice.

This new dataset is a unique resource that can be coupled with different approaches to test

existing ideas and develop new ones about the role of particular genes or genetic mechanisms in

obesity. Future studies will likely focus on new genes that show strong associations with attributes

that are relevant to metabolic disorders, such as insulin levels, weight and fat mass.

DOI: 10.7554/eLife.15614.002
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from the Hybrid Mouse Diversity Panel (HMDP, [Bennett et al., 2010; Ghazalpour et al., 2012]) fed

a high fat, high sugar diet (Parks et al., 2013). The advantage of the HMDP is that these strains

have all been densely genotyped and carefully phenotyped for about 150 metabolic traits, allowing

high resolution genetic mapping of QTLs and eQTLs. We identified thousands of novel isoforms and

hundreds of new genes that were not previously annotated, and that may represent variants or tran-

scripts specific to the hypothalamus. The HMDP also allowed us to map QTLs with high resolution

and power, identifying both local and trans acting variants. The RNA sequencing data permitted

examination of a much broader spectrum of transcriptional features and facilitated analysis not only

at the gene level, but also of genetic variants affecting specific isoforms, coding sequences or tran-

scription start sites.

Results
In this study, we explored the transcriptional landscape of mouse hypothalamus using RNAseq from

282 mice, representing 99 inbred and recombinant inbred strains from the HMDP. We first focused

on quantifying gene expression in a transcript specific manner, the discovery of novel expressed

regions and isoforms, and the contribution of genetic factors to expression variance. We also sought

qualitative support for translation of new isoforms and genes. We then examined and quantified

RNA modifications, such as alternative splicing events and editing in our data and used the data to

map genetic variants affecting these events. Finally, we used the extensive phenotyping available for

the HMDP, to look for associations between the expression of genes and transcripts, and physiologic

phenotypes. All of the expression data and transcriptome assembly are publicly available from

the Gene Expression Omnibus database, accession number GSE79551.

Hypothalamic gene expression and proteomic data reveal multiple new
isoforms and novel genes
Similar to other large-scale RNAseq studies (Mutz et al., 2013) we identified thousands of novel

transcripts, with the vast majority of them only expressed at low levels in a small subset of samples

(Table 1). Nevertheless, in the robust set of transcripts that are expressed at appreciable levels

(FPKM >1 in 50+ samples and FPKM>0 in 100+ samples), we still identified 21,234 novel isoforms

and 485 transcripts originating from 407 novel expressed genes (Supplementary file 1).

Table 1. Transcriptome assembly and filtering.

None Filter #1* Filter #2† NR‡

Loci (genes) 40472 37591 14079 14079

Transcripts 383420 357066 51024 50347

known (=) coding 99658 20721

known (=) non coding 8584

novel isoform (j) 259570 21234

novel locus (u) 11753 485

other status 12439

TSS 100073 94417 32537 20013

CDS 46242 46242 18687 7643

Total features 570207 535316 116327 92082

*Filter #1: Expression values of <1e–6 were rounded to zero, and novel transcripts with all zero values were

removed both from expression table and from merged file. Also, all transcripts with class code not "=", "j" or "u"

were removed.
†Filter #2: Implementation of detection and expression thresholds (detected in more than 100 samples and

expressed (fpkm>1) in more than 50) on each feature separately.
‡Filter_NR: Non redundant features count (those that do not have 1_2_1 correlation to a gene).

DOI: 10.7554/eLife.15614.003
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Interestingly, the number of novel isoforms in our study is comparable to the number of previously

annotated transcripts passing the same filtering criteria (n = 29,305, Table 1).

There are several possible interpretations to as why the 407 genes could be missing from the

genomic annotation. First, the 407 novel genes expressed in our data potentially constitute tran-

scripts that are unique to the hypothalamus. Second, the GENCODE M2 annotation used in this

study was the most recent available when we started to analyze the data. Since then, however, the

annotation has been augmented based on more recently published datasets and improved predic-

tion pipelines. Thus, while the 407 genes are novel relative to the M2 version, they may have been

added later. To explore that possibility, we compared our assembly to the latest version of annota-

tion released by GENCODE – M10 (released January 2016, http://www.gencodegenes.org/) and

find that 193 out of 407 loci are still novel. Some of the genes may also represent genomic DNA

contamination. However, we consider this possibility less likely since we used stringent filtering crite-

ria based on the number of samples that the genes were expressed in.

In terms of genomic properties, such as putative open reading frame length, transcript length

or splicing complexity, the novel genes seem to resemble known non-coding genes, suggesting

that the majority of the novel genes likely belong to this class. On the other hand, the properties

of novel isoforms are consistent with known coding transcripts (Figure 1). To explore the transla-

tional potential of newly identified isoforms and genes, we compared our RNA-Seq data to prote-

omic data generated from additional hypothalamus samples from the HMDP. Specifically, we

translated all known and newly identified transcripts in 6 potential open reading frames, and com-

pared this dataset to the hypothalamic peptide sequences. As expected, >95% of the identified

peptides (Supplementary file 1) matched at least one known transcript with the vast majority of

Figure 1. Genomic properties of novel genes are similar to known non coding genes. Novel genes and isoforms

are defined by Cufflinks class code ’u’ and ’j’ respectively. Distributions of transcript length (A), and maximal

hypothetical peptide length (B) of novel genes (yellow), new isoforms (purple), known non coding transcripts

(dashed line) and known coding transcripts (solid line). Transcriptional complexity (number of transcripts per locus,

(C) and splicing complexity (number of exons per transcript, (D) of novel genes, novel isoforms, known coding and

know non coding transcripts.

DOI: 10.7554/eLife.15614.004
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these (>99%) corresponding to known protein coding transcripts, suggesting high accuracy of the

peptide data. In addition, 430 peptides matched either novel isoforms (n = 401), or novel genes

(n = 29) exclusively (Table 2). Since the genomic properties of the novel genes hint that the major-

ity of them are likely non coding, we do not find their low representation in peptide data surpris-

ing. Moreover, manual in-depth characterization of the 29 peptides matching novel genes, with

UCSC and NCBI database revealed that almost all of them represent processed pseudogenes,

rather than proteins with novel functions. This finding both supports the previously published

reports of wide spread transcription of pseudogenes, and their translation (Kim et al., 2014;

Tay et al., 2015), while strengthening the suggestion that the majority of novel genes identified in

this work are not protein coding.

We further examined whether multi-mapping reads are a substantial contributor to the measured

expression of the novel identified genes. For that purpose, we re-quantified 3 samples from C57BL/

6J strain, using uniquely mapping reads only (mapping quality = 255), and compared the quantifica-

tion of the novel genes between the two approaches. Not surprisingly, the proportion of uniquely

mapped reads contributing to the expression of the genes matched very well between the 3 sam-

ples, suggesting that it is an intrinsic gene property and not unique to the individual samples. Impor-

tantly, while the low uniqueness of mapping reads may indicate false results, we also noted that

among the 29 peptides matching to the novel genes exclusively and uniquely, 18 match genes that

do not pass our threshold. In fact, many of gene families share sequence motifs and are homo-

logues, and as such some of the reads would be multi-mapping between them. Thus we chose not

to remove these genes from the annotation.

Genetic regulation of gene expression
We examined expression QTLs in terms of type of the affected features and identified SNPs affect-

ing expression of all transcripts at a locus (eQTL), specific transcript isoforms (isoQTLs), transcription

start sites (tssQTLs) or open reading frame (cdsQTLs) (Hasin-Brumshtein et al., 2016). Since the link-

age disequilibrium (LD) is extensive in the mouse genome, we distinguish between three types of

QTLs: local (within 2 Mb of the gene), distant (on the same chromosome as the gene, distance

>2 Mb) and trans (SNP and gene reside on different chromosomes). The number of identified inter-

actions, and genes affected by such regulation depends on the statistical cutoff of p-value for the

interaction one chooses. We examined a set of thresholds ranging from very liberal to stringent. The

liberal threshold was previously established by permutation from microarray expression data in the

HMDP, i.e. p<1.4E–3 for local variants and p<6E–6 for distant and trans. The most stringent thresh-

old used a Bonferroni corrected threshold (i.e 0.01 divided by the number of tests, p<1E-12). As

expected, different thresholds resulted in different numbers of QTLs, with local and distant QTLs

being more robust to threshold stringency than trans QTLs. However, 85–95% of the genes regu-

lated by distant variants, were also regulated by local variants, suggesting that most of the distant

QTLs reflect local signals emulated at a distance as a result of wide-ranging LD, rather than indepen-

dent regulatory elements. In contrast, 70% of the trans interactions involved genes lacking local

Table 2. Summary of peptide support for transcripts.

Peptide matching* All Uniquely mapped

Known transcripts 9913 1016

Protein_coding 9839 1002

ncRNAs 74 14

Novel isoforms 401 94

Novel genes 29 24

Total number 10343 1134

*Peptides are counted towards supporting novel isoforms only if they do not match any known transcript, and

towards supporting novel genes if they do not match either known or novel isoform transcripts. All peptides

matching known transcripts were also assigned the most likely transcript. Non coding status was assigned only to

peptides that do not match any coding transcripts (for full details please see Materials and methods).

DOI: 10.7554/eLife.15614.005
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signal over the entire set of thresholds. Since distant regulation was mostly redundant to local, and

it would be very difficult to determine whether that signal is a result of independent regulation ver-

sus extended LD, we chose to focus our analysis on trans and local interactions only, defining trans

as trans-chromosomal interactions. If we look at regulation types over a wide range of thresholds,

the local signal predominates at the more stringent thresholds reflecting the larger typical effect size

in this group (Figure 2A). We identified local and trans QTLs for all expressed feature types, with

the most common being eQTLs and isoQTLs (Figure 2B). Notably, while we used kinship matrix spe-

cific for our strains, still several genes in our dataset show extensive trans regulation (horizontal lines

in Figure 2B) suggesting a residual influence of population structure on our mapping results. We

also note that regulation of gene expression often occurs at the gene level, than at transcript specific

levels (Figure 2C).

Classical genome-wide eQTL studies used association analysis of total gene expression levels to

map local eQTL, assuming that variation linked to proximal genetic variant indicates cis regulation.

Recently, several studies have exploited the single base resolution of RNA-Seq to examine this

assumption. RNA-Seq permits the identification allele expression (ASE), a hallmark of functional cis

acting regulation, in heterozygotes, such as humans or in mouse F1s. Notably, these studies gener-

ally show poor concordance between ASE ratios and previously identified local eQTLs, which had

Figure 2. Genetic regulation of expression in the mouse hypothalamus. (A) Number of genes affected by trans

(blue), local (yellow) or both (striped) variants as a function of statistical threshold. (B) Gene level expression

quantitative trait loci (eQTL, top) but not transcript specific (isoQTL, bottom) show trans eQTL hotspots. Density

shows the number of interactions at lower statistical thresholds (1e–6), red shows interactions passing 1E-12

threshold. Yellow indicates cis acting variants. (C). Genetic regulation occurs on every level, but gene level

regulation is more prevalent than transcript specific cases. Supplementary figure shows correlations between allele

expression in F1 and local eQTLs identified in HMDP hypothalamus.

DOI: 10.7554/eLife.15614.006

The following figure supplement is available for figure 2:

Figure supplement 1. Allele specific expression in whole brain correlation to local eQTL.

DOI: 10.7554/eLife.15614.007
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been attributed mostly to different technical aspects of RNAseq and ASE analysis (Hasin-

Brumshtein et al., 2014; Lappalainen et al., 2013; Grundberg et al., 2012). To examine the con-

cordance between local eQTLs obtained from ASE and genome-wide association, we performed

RNA-Seq on brain tissue from 20 mice representing two F1 crosses between three of the classical

inbred strains used to construct the HMDP. The parental strains were C57Bl/6 (B), A/J (A) and C3H

(H), and the F1 offspring were BxA and HxB. We compared the effect size of ~2600 local eQTLs, to

the average ASE effect in both crosses. While local eQTLs were significantly positively correlated

with ASE (p<2E-16) correlation estimates were modest (R2 = 0.2), and lower than between the ASEs

in the two sets of F1 mice (R2 = 0.4, Figure 2—figure supplement 1).

RNA-Seq shows extensive alternative splicing in the hypothalamus,
with complex regulation pattern
Using a previously established pipeline for analysis of alternative splicing events, SUPPA (see

Materials and methods), we identified 7564 alternative splicing events affecting 3599 genes

(Table 3). An alternative first exon was most common, accounting for the majority of alternative

splicing events with several genes exhibiting multiple alternative first exons (Figure 3A). For other

types of events, each most often affected one gene, with some of the genes exhibiting a combina-

tion of alternative splicing events. The extent of alternative splicing in each sample was quantified as

a percent spliced in (PSI) of every event (Figure 3B). This quantification can be regarded as a quanti-

tative trait; however, the distribution of PSI for every type of event suggests an excess of 0 or 1 val-

ues (never or always spliced in, respectively Figure 3E). This observation is consistent with

alternative splicing being often bimodal rather than a normally distributed continuous measure (e.g.

present or absent splice site), however, it also shows that quantitative regulation plays a significant

role in ratio of isoforms that arise from the inclusion or exclusion of a splicing event.

Contrary to gene expression, all forms of alternative splicing were predominantly regulated by

local variants (Figure 3C,D). This is not unexpected, since variation in alternative splicing is most

likely to arise from particular sequence variants in the RNA itself. Across all examined categories of

alternative splicing, 50–60% of the events were significantly associated with local variants, the stron-

gest signal often residing within 1 Mb of the event (Figure 3F). We observe that for many of the

genetically regulated splicing events the data show an excess of 0 or 1 PSI values that correlate with

the genetic variant (e.g Figure 3G), rather than a shift in a continuous quantitative distribution. This

observation suggests that many of the genetically regulated events in alternative splicing sequence

play a deterministic role.

Trans eQTL hotspots
Trans eQTLs are not uniformly distributed across the genome, clustering into potential hotspots of

genome wide regulation. Such hotspots have been observed in several datasets (Orozco et al.,

2015; Orozco et al., 2012; Tian et al., 2015), and they are thought to represent cases where a cis

acting variant affects a regulatory gene, e.g. transcription factor, subsequently affecting expression

Table 3. Alternative splicing events.

All events Cis QTL events

Alternative 3’ splice site (A3) 316 (266) 155 (134)

Alternative 5’ splice site (A5) 365 (304) 220 (189)

Alternative first exon (AF) 5288 (1874) 2776 (1278)

Alternative last exon (AL) 507 (320) 283 (208)

Mutually exclusive exons (MX) 44 (36) 29 (27)

Retained Intron (RI) 645 (476) 356 (285)

Skipped exon (SE) 399 (323) 221 (189)

Total 7564 (3599) 4040 (2310)

Table 2: Number in parenthesis indicates number of distinct genes affected by the events.

DOI: 10.7554/eLife.15614.009
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of multiple targets. To identify trans hotspots we divided the genome into bins of 100 kb, and

counted the number of distinct genes which exhibit a trans interaction associated with any of the

SNPs in the bin (Figure 4A). Importantly, the bins do not necessarily contain the same number of

SNPs, and are an order of magnitude shorter than the typical LD blocks in the inbred mouse

genome. Just counting the number of SNPs in a bin that are associated in trans would be con-

founded by SNP density. However, since LD essentially recapitulates the same interactions over and

over again, counting the number of genes per bin, rather than the number of SNPs, is not signifi-

cantly affected by LD.

There are clearly two very strong trans acting hotspots on chromosome 1 and 15, which are

observable for eQTLs, but not for isoQTLs, tssQTLs or cdsQTLs. Each of the two hotspots span 5–6

Mb and include >500 SNPs regulating >400 genes in trans (Figure 4B, Supplementary file 2). Func-

tional enrichment analysis of gene targets of these hotspots suggests that the hotspot on chr1 regu-

lates multiple genes involved in nucleotide binding, while genes regulated by chr15 locus are clearly

associated with ion transport in synapse activity (Figure 4C, Supplementary file 2). Moreover,

Figure 3. Alternative splicing in the mouse hypothalamus. Alternative splicing events were classified (see Materials

and methods) into 7 types: alternative 3’ splice (A3, blue), alternative 5’ splice (A5, purple), alternative first exon

(AF, orange), alternative last exon (AL, brown), mutually exclusive exons (MX, black), retained intron (RI, green),

and skipped exon (SE, dark red). All events were quantified in each sample for percent spliced in (PSI). (A) Number

of alternative splicing events of each type (solid color), and number of genes affected by these events (light color).

(B) Example of partial exon skipping in Colq gene. DBA shows the complete inclusion of the exon (therefore

PSI = 1), while in C57BL/6 there is partial exon skipping (PSI = 0.78). (C) Number of alternative splicing events with

and without local QTL signal (solid and light color respectively). (D) Alternative splice QTLs are mapping to the

same chromosome, for all types of events, indicating that most of genetic regulation is by local (and likely cis

acting) variants. (F) Distance between most significant SNP for each event and gene start. The largest effect is

typically within 1 Mb of the gene. (G) An example of mapping of mutually exclusive exon event in Nnat gene

mapping to SNP rs32019082. (E) Distribution of all PSI values of each event type in all samples.

DOI: 10.7554/eLife.15614.008
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consistent with the hypothesis that trans regulation is mediated by local effects, the trans acting

SNPs in these hotspots, are also associated with expression of several local genes (Figure 4B,C,

Supplementary file 2).

To identify potential mediators of trans regulation, we examined the trans eQTL hotspot on chr15

in more detail. In this region a cluster of SNPs, which share high linkage disequilibrium, is associated

with the expression of the majority of the genes mapping to this locus in trans (Figure 4B). We

focused on the SNP with most trans associations (rs31703733), and found that while the hotspot

itself contains dozens of genes, rs31703733 constitutes a local eQTL for only 10 of them (Figure 4B).

Moreover, the expression levels of genes regulated in trans by the hotspot as well as 6 genes that

were local eQTLs were closely correlated (Figure 4C), forming a coexpression module. Further, this

module was significantly associated with triglycerides and cholesterol measurements in the mice.

Interestingly, the two strongest local eQTL genes for this hotspot, Endou (an endonuclease) and

Rapgef3 (also known as EPAC, cAMP activated guanine exchange factor involved in Ras signaling)

were significantly associated with cholesterol and triglyceride measures in this study as well.

Genetic association does not necessarily imply that the associated allele is causative for the

change in expression. In fact, the majority of the eQTL SNPs fall into regions with poor or no annota-

tion, making it unlikely to be the actual causative variant. However, surprisingly, peak SNPs in the

chr15 hotspot (SNPs rs31703733 and rs31780670) are located within a H3K4me1 histone methylation

mark associated with enhancers, and which was detected in all neuronal tissues probed by ENCODE

in adult mice (cortex, cerebellum, olfactory bulb), but not in other metabolic tissues such as liver,

heart, intestine or lung (UCSC genome browser). Based on this preliminary and indirect evidence

one may hypothesize that rs31703733 and rs31780670 potentially affect the enhancer activity and

the expression of nearby genes. However, to reach any functional conclusion based on our data

would require experimental validation in model systems.

Figure 4. eQTL mapping suggests trans eQTL hotspots in the hypothalamus regulate expression of hundreds of

genes. (A) Mouse genome was broken into 100 kb bins. The plot presents genome wide counts of genes which

expression is associated with SNPs in that region, in trans. (B) Zoom of trans eQTL locus on chromosome 15. Peak

SNP (associated with most genes in trans, rs31703733) is shown in red, color of other SNPs indicates r2 to

rs31703733. Lower track shows the 10 genes which expression is associated with rs31703733 locally. C,D,E pertain

to the 10 genes associated locally with rs31703733 and therefore potentially mediate the trans effects. (C)

Summary table about each gene. (D) Heatmap showing correlation of expression between genes associated with

rs31703733 locally, and genes associated with rs31703733 in trans. Color indicates Pearson correlation coefficient.

(E) Example correlation between potential regulator (RApgef3) and trait (HDL levels).

DOI: 10.7554/eLife.15614.010
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Long non-coding RNAs in the mouse hypothalamus
Long non coding RNA (lncRNAs) are a generally poorly characterized class of RNA molecules, with

sometimes unclear classification (St Laurent et al., 2015). Commonly used criteria for identification

of lncRNAs are a transcript >200 bp long without an obvious potential open reading frame. In con-

trast to the relative paucity of data regarding the functionality of most lncRNAs, several specific

lncRNAs (e.g. Xist, HOTAIR or H19) had been studied extensively and shown to play an essential

role in cellular function (Quek et al., 2015). Recent large RNA-Seq studies and integrative projects

such as ENCODE suggest that lncRNAs likely constitute up to 60% of the transcribed RNAs

(Djebali et al., 2012). Moreover, in recent years an increasing number of functional studies have

shown that lncRNAs play an important role in the regulation of transcription and translation, as well

as in cell differentiation, signaling and other processes (Sun et al., 2013; Guttman et al., 2011;

Ramos et al., 2015). Further, lncRNAs are enriched for genetic association signals in genome wide

association studies (Iyer et al., 2015; Kumar et al., 2013).

GENCODE M2 annotation classifies 4540 lncRNA transcripts into at least 5 biotypes, based on

their overlap with protein coding genes (http://www.gencodegenes.org/mouse_releases/2.html).

The two most common biotypes - long intergenic non coding RNAs (lincRNAs) and antisense RNAs,

account for 97% of all the annotated lncRNAs. Since our data were generated without retaining

strand specificity, we focused on lincRNAs only. LincRNAs have been shown to be highly tissue spe-

cific (Cabili et al., 2011), and therefore it is not surprising that although there are 2417 annotated

lincRNA transcripts, we found only 381 expressed in the mouse hypothalamus at our filtering criteria.

The 381 transcripts represent 237 known and 144 novel isoforms of 181 lincRNA genes, with both

novel and known isoforms showing similar expression levels (Figure 5A,B). We also used length and

open reading frame criteria to examine the novel loci. Notably, the RNA length criteria of >200 bp is

a commonly accepted parameter, while the length of minimal potential open reading frame varies

between 30–100 aa in different studies. Based on these criteria we can identify up to 129 potentially

novel lincRNAs expressed in the mouse hypothalamus, with 49 of them being spliced. Since lincR-

NAs have been shown to be often highly tissue specific, we consider the novel lincRNAs to be good

candidates for hypothalamus specific transcripts.

We used gene expression levels to explore the correlation of 310 lincRNAs (181 known and 129

novel genes) with metabolic traits in HMDP. Up to 35% of lincRNA transcripts significantly (p<1e–3)

correlated to at least one phenotype in the HMDP, with a few lincRNAs associated with a multitude

of related phenotypes (Figure 5C,D). The statistical threshold was determined by permutations in

Figure 5. Expression of long non coding RNAs in the hypothalamus is phenotypically relevant. (A) Expression of

heatmap known non coding RNAs and novel isoforms of these genes n the HMDP. Six lncRNAs (top cluster,

Meg3, Gm26924, Snhg4, Miat, 6330403K07Rik, and Malat1) are highly expressed in almost all samples. (B) Novel

isoforms of lncRNAs are expressed at a similar level of known ones. (C) Long non coding RNAs are associated with

multiple phenotypes in the HMDP. (D) An example of association between a non coding RNA C330006A16Rik and

average food intake.

DOI: 10.7554/eLife.15614.011
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previous studies of gene expression in HMDP, is less stringent than a Bonferroni correction, and

reflects interdependencies among phenotypes. Expression of >30% of lincRNAs is associated with a

significant local eQTL, suggesting that a considerable number of lincRNAs in the hypothalamus are

playing an important role in translation of genetic regulatory variance into physiologic phenotypes.

Notably, six lincRNAs – Meg3, Gm26924, Snhg4, Miat, 6330403K07Rik, and Malat1– were highly

expressed in most strains (Figure 5A upper cluster). Meg3 is a known imprinted tumor suppressor

gene (Zhang et al., 2010) and was recently implicated in hepatic insulin resistance (Zhu et al.,

2016). Miat and Malat1 are both part of nuclear bodies. Knockout models of Malat1 are all viable

and normal (Zhang et al., 2012; Eißmann et al., 2012; Nakagawa et al., 2012), however their

response to metabolic challenges, such as high fat diet, had not been assessed. Myocardial infarc-

tion associated transcript (Miat) was initially linked to myocardial infarction through a genetic associ-

ation study(Ishii et al., 2006). Subsequently, Miat was shown to regulate development of neuronal

progenitors, involved in schizophrenia pathogenesis and fear response(Aprea et al., 2013;

Liao et al., 2016). Although all of the six highly expressed lincRNAs are not novel, none of them

were previously reported to be expressed in the hypothalamus, or to play an established role in

the metabolic or reproductive system.

Previous investigations have documented several examples of lincRNAs that code for short trans-

lated open reading frames (Anderson et al., 2015). In addition, recent work has shown that lincR-

NAs can be associated with ribosomes, and their occupancy is similar to that of protein coding

transcripts (Ingolia et al., 2014; Ruiz-Orera et al., 2014). We detected 6 peptides which mapped

uniquely to 3 different lincRNAs (Gm26825, Gm16295, and Gm26593), suggesting that translation of

lincRNAs occurs rarely, and that their association with ribosomes is more likely to be in the context

of translational regulation of other protein coding transcripts.

RNA editing in the mouse hypothalamus
RNAseq provides the opportunity to look at RNA sequence modifications in a quantitative manner.

In this study, we examined RNA editing patterns of all possible substitution types over the genome.

A recent study showed that genetic variation affects C to U editing in the intestine, both in site spe-

cific and genome wide manners in the mouse Diversity Outbred cross (Gu et al., 2015). We hypoth-

esized that genetic variation may contribute to the extent of RNA editing either in a site specific

(e.g. by altering editing sites in cis) or genome wide manner (e.g. by altering the expression or speci-

ficity of editing enzymes).

Altogether we detected 8462 potential editing sites in 3319 genes. As expected, the majority of

edits (>70%) were A-to-G modifications, and the total number of detected sites in each strain varied

between several hundred to over a thousand (Figure 6A). A comparison of our findings to previously

reported editing sites in two databases - DARNED and RADAR - suggests that 75% of these are

novel. We then used the proportion of edited reads per site, or per substitution type, across strains

as a quantitative trait for mapping genetic variants that contribute to editing. We did not detect any

significant genetic association for genome-wide levels of editing, which is consistent with both lack

of genetic variation in ADAR in our panel and its very stable expression level across samples (49 ±

0.27 FPKM).

Most editing sites were detected only in a small number of strains, which precluded meaningful

mapping. For the site specific mapping we therefore focused on 90 sites that were detected in

>70% of the strains (Figure 6C). We detected editing QTLs for 3 specific sites. For example, one of

the editing sites in Ociad1 (on chr5 at 73312444) had a strong association (p<1e–8) with genetic vari-

ation residing on the same chromosome (Figure 6D). Altogether our data suggest that RNA editing

occurs at low level in thousands of genes, however the impact of genetic variation on the editing

level in mouse brain is limited.

Association of hypothalamic expression and phenotypes
There are 150 phenotypes available for the HMDP, reflecting many clinically relevant traits as well as

various metabolic measures (Parks et al., 2013). We used several approaches to examine the poten-

tial role of hypothalamic expression in the various phenotypes. We began by identifying the top 500

transcripts that were significantly correlated with each of the phenotypes (correlation p values

ranged from 4e–3 to <2e–16, Supplementary file 3). We then analyzed each of these expression
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sets for enrichment of potential pathways and functional annotation, using DAVID (Huang et al.,

2009a, 2009b). Surprisingly, only a few of those expression sets showed moderate to strong enrich-

ment (Figure 7B). For example, fat mass accumulation between 4 and 8 weeks, was distinctly associ-

ated with pathways related to oxidative phosphorylation and energy metabolism, while genes

associated with food intake were enriched for ribosome related pathways. Clustering of phenotypes

based on the proportion of shared genes associated with each trait (Figure 7A), clearly showed that

related phenotypes also shared expression dependencies. For example, up to 70% of the genes

most correlated with ’esterified cholesterol’, were also correlated with ’total cholesterol’, and more

than 30% were shared with ’HDL’. Together these data validate the notion that related phenotypes

share underlying molecular mechanisms, yet these shared genetic correlations may not necessarily

correspond to specific readily identifiable pathways.

We then analyzed whether the novel genes and isoforms we uncovered potentially contribute to

phenotypic diversity. We found 232 novel transcripts associated with at least one phenotype

(Supplementary file 3). For example TCONS_00279690, was strongly associated with several meta-

bolic traits, such as total mass in response to a high fat, high carbohydrate dietary challenge, initial

mouse insulin levels, as well as weight and fat mass (Supplementary file 3). Similar to known iso-

forms, expression of ~30% of the novel isoforms was significantly correlated with phenotypes. Corre-

lation coefficients and p values were also similar between known and novel isoforms, suggesting

that novel isoforms are as likely to contribute to mouse diversity as previously identified transcripts.

Figure 6. RNA editing is prevalent at the mouse hypothalamus at low levels. (A) A total of 8462 editing sites were identified in the HMDP, with A to G

accounting for >70% of the modifications. (B) Number of sites identified in each strain (color coding as in A). (C) Editing level at 90 sites, that were

detected in at least 70% of the samples, were mapped. Heatmap shows variation in editing in these sites among the strains. (D) An example of an

edited site in Ociad1 gene, and its genome wide mapping result.

DOI: 10.7554/eLife.15614.012
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Expression of cell population markers in the hypothalamus
The hypothalamus is a heterogeneous brain region containing multiple nuclei that affect different

aspects of metabolism and endocrine physiology. One of the drawbacks of our approach, dictated

by practical considerations, is that we performed RNA-Seq on the entire hypothalamus rather than

particular cell populations or nuclei. This approach likely results in dilution of signals from any one

population of cells. Nevertheless, the sensitivity of RNA-seq allows examination of expression of par-

ticular cellular markers that are specific to certain cell types. To assess which cell populations are

well represented in our data, we examined the expression, genetic regulation and association with

phenotypes of some of the known markers of hypothalamic cell populations (Table 4). Our data

show high expression of well-known hypothalamic neuronal markers, such as Agouti-related protein

(Agrp), pro-opiomelanocortin (Pomc), hypocretin (orexin, Hcrt) and steroidogenic factor-1 (SF1). In

addition, we detect high expression of oligodendrocyte markers and microglia, but only modest

expression of epithelial markers.

Interestingly, we identified genetic variation affecting the expression of some key functional mole-

cules for metabolic regulation and response to high fat diet. For example, myeloid differentiation

primary response 88 factor (Myd88), is a Toll-like receptor (TLR) adaptor molecule. This protein

mediates fatty acid induced inflammation and leads to leptin and insulin resistance in the central ner-

vous system. Mice with CNS specific deletion of Myd88, are protected from high fat diet induced

weight gain, and development of leptin resistance induced by acute central application of palmitate

(Kleinridders et al., 2009). Our data show that there is a strong eQTL (p value 1.9e–17, Table 4)

modulating expression of Myd88. In addition, we detect genetic variations that affect expression of

key molecules such as leptin receptor (LepR) and Pomc. Together, these data suggest that the

genetic background of inbred mice is an important factor in functional studies, and that the results

of molecular perturbations of hypothalamic metabolic pathways can be modulated by genetics.

In addition to exploring the links between genetic variation and expression traits, we also looked

into the association of transcript levels with phenotypes. We confirmed known relationships – for

example the expression of orexigenic neuropeptide Y (NPY) was associated with total body mass

(pvalue = 2.4e–6). Interestingly, one of the strongest correlations we observed were between

Figure 7. Groups of genes are associated with multiple related phenotypes in HMDP, although not necessarily enriched for GO ontology or specific

pathways. (A) Fraction of co-shared genes among the 500 genes most associated with a phenotype. (B) Enrichment analysis of the top 500 genes

associated with each of the 150 phenotypes results in a small number of significant associations.

DOI: 10.7554/eLife.15614.013
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fractalkine receptor Cx3cr1 and fat mass response (p = 9.62E–10). Fractalkine (Cx3cl1) is a chemo-

kine, that was recently implicated in diet induced obesity, insulin regulation and promotion of hypo-

thalamic inflammatory response to fatty acids (Shah et al., 2015). However, different models of

Cx3cr1 knockout mice resulted in variable results on diet induced obesity. The correlation we found

is consistent with previous reports that identify a central role for fractalkine receptor Cx3cr1 as a reg-

ulator of diet induced obesity and hypothlamic inflammation (Lee et al., 2013, Morari et al., 2014).

Our results also indicate that the expression of Cx3cr1 is affected by genetic background, and sug-

gest that one possible explanation for the heterogeneity in Cx3cr1 knockout results is the different

genetic backgrounds used in those studies.

Discussion
In this work we present a comprehensive picture of the transcriptome of the mouse hypothalamus

and its genetic variation and regulation. We identify thousands of new isoforms, and >400 new

Table 4. Expression of hypothalamic markers.

Gene Marker for Mean expression local eQTL

AgRP ARC neurons 119.040 ND

NPY ARC neurons 18.162 ND

Foxo1 ARC neurons 4.736 ND

POMC ARC neurons 271.954 2.618E-04

Hcrt (orexin) LHA neurons 128.898 2.053E-05

Sf1 VMHvl neurons 65.333 ND

Nkx2-1 VMHvl neurons 6.067 1.100E-05

Tac-1 VMHvl neurons 36.373 1.624E-09

BDNF VMHvl neurons 4.464 ND

Esr1 Multiple 2.658 ND

LEPR Multiple 1.644 2.041E-04

INSR Multiple 9.496 ND

CX3CR1 Microglia 9.790 1.400E-05

AIF-1 Microglia 98.598 ND

CD68 Microglia 4.162 ND

Itgam Microglia 3.599 ND

MyD88 Microglia 2.369 1.942E-17

Aqp4 Astrocytes 30.041 ND

Slc1a3 Astrocytes 120.203 ND

Aldh1l1 Astrocytes 16.787 ND

Gfap Astrocytes 72.502 2.140E-06

VEGF-A Tanycytes 39.559 ND

CX3CL1 Neurons 99.411 9.836E-09

Mog Oligodendrocytes 34.569 1.807E-04

Mbp Oligodendrocytes 1266.574 ND

Plp1 Oligodendrocytes 569.620 ND

Car4 Endothelial 10.694 ND

Esam Endothelial 11.623 3.184E-04

Flt1 Endothelial 9.538 ND

Cldn5 Endothelial 15.594 ND

DOI: 10.7554/eLife.15614.014
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genes, and show independent support for these being translated into protein, which further vali-

dates our data. Notably, transcription of pseudogenes had been noticed previously, and likely plays

a role in gene regulation. Recent shotgun proteomic studies of the human proteome strongly sug-

gest that a sizable fraction of pseudogenes and lncRNAs is translated (Ji et al., 2015; Kim et al.,

2014). The peptide data from our study supports low level translation of processed pseudogenes

and is in line with these results.

The hypothalamus is a highly heterogeneous tissue with multiple nuclei and cell types acting in

concert. A recent RNA-seq study of fed and food-deprived mice showed that cell type specific tran-

scripts in hypothalamic Agrp and Pomc neurons exhibited specific co-expression networks associ-

ated with feeding (Henry et al., 2015). In contrast, due to the practical constrains of the study, our

data were collected on the entire hypothalamus, and as such would be less sensitive to cell type spe-

cific signals. Nevertheless, expression of cell-specific markers and functional molecules showed that

our approach recapitulates known correlations between genes and metabolic phenotypes, and iden-

tifies new ones. In addition, our data capture the various non neuronal cell types, such as microglia

or astrocytes, which are often overlooked in the mostly neuron focused studies of the hypothalamus.

These cells are important mediators of hypothalamic inflammation and other processes induced by a

high fat diet. Regulation of gene expression in this population impacts every aspect of metabolism.

While cell type specific transcriptomics is valuable for understanding cellular processes in hypotha-

lamic neurons, our data provide a robust framework recapitulating transcriptional processes affect-

ing multiple cell populations. Our approach is thus complementary to the cell type-specific

transcriptomic efforts.

In this study, we showed extensive genetic regulation of transcription and alternative splicing in

the hypothalamus and identified two loci which influence transcription of hundreds of genes in trans.

In addition, our data indicate that a considerable proportion of the new isoforms and transcripts are

significantly correlated to physiological phenotypes. While human studies generally lack the power

to address trans regulation on a genome-wide scale, the HMDP provides a powerful resource for

such analysis. Indeed, we identified two very strong trans acting hotspots that seem to harbor major

regulators of gene expression in hypothalamus. We suggest that the trans effects of genetic varia-

tion in these regions are likely mediated by local interactions, which is consistent with previously

observed cases (Small et al., 2011; Heinig et al., 2010). Enrichment analyses clearly suggest that

each trans eQTLs hotspot regulates a set of functionally enriched genes (e.g. the hotspot on chro-

mosome 15 is strongly associated with ion transport in synaptic areas) suggesting a new link

between genetic variants in these loci and specific cellular function. We further showed that the

genes associated with these hotspots correlate to physiological phenotypes, such as HDL and tri-

glyceride levels providing insight into the mechanism behind correlation of these genotypes with

complex traits. The connection between the associated genes and traits does not imply direct cau-

sality. For example, ion transport is regulated by circadian rhythm (Ko et al., 2009), which in turn is

associated with many other aspects of metabolism (Tsuneki et al., 2016).

Notably, although several examples of trans eQTL hotspots were published and analyzed

(Small et al., 2011, Heinig et al., 2010; Tian et al., 2016), authenticity of such hotspots remains

somewhat controversial, and trans eQTL hotspots may arise due to uncontrolled batch effects

(Breitling et al., 2008; Kang et al., 2008; Joo et al., 2014), which are difficult to distinguish from

real interactions. To minimize technical batch effects arising from sequencing, we used a round robin

approach where each sample was sequenced as part of several pools (see details in Materials and

methods). Batch effects may also arise from random environmental exposures, rather than technical

sample preparation. In such case, it is unlikely that those effects would be tissue specific or affect

only gene level analysis. We found no indication of these trans eQTL hotspots in the adipose or liver

data from the same cohort of mice (Parks et al., 2013), nor were the hotspots detected for isoQTL.

Thus, while we cannot exclude the possibility that trans eQTL hotspots described in this study may

had arisen from unaccounted environmental or technical effects, we believe that this is unlikely, but

further molecular studies are required to validate our results.

RNA-Seq allowed us to quantify transcripts at different levels of analysis- from the total expres-

sion of all isoforms in a locus, to transcript specific estimates and their combinations. Our analysis

showed that regulation of the total number of transcripts from a gene is far more common than iso-

form specific regulation. Nevertheless, we were able to identify specific interactions at every level of

detail we explored, namely eQTLs, isoQTLs, tssQTLs and cdsQTLs. In addition, we identified and
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quantified >7000 alternative splicing events affecting >3500 genes in the hypothalamus, and showed

that these events are mostly affected by extensive local genetic regulation. In many cases of alterna-

tive splicing QTLs, the associated variant resulted in an excess of either 0 or 1 splice PSI values, sug-

gesting that variants affecting splicing act as strong determinants rather than weak contributors to a

complex trait.

RNA editing is a result of post transcriptional deamination processes whereby an adenosine is

converted to inosine (A-to-I), or cytosine to uracil (C-to-U). Both types of RNA editing are mediated

by specific enzymes members of the ADAR family facilitate the A-to-I editing which is most com-

monly observed in neuronal tissues, while Apobec1 mediates the C-to-U editing, and is primarily

expressed in the intestine and liver. Editing is a tissue specific process which usually results in modifi-

cation of only fraction of the transcripts, and therefore can be regarded as a quantitative trait. Previ-

ous studies showed that polymorphisms either in the editing enzymes or in the sequence proximal

to editing site affect the extent of editing. Specifically, Gu et al recently reported a sequence variant

in Apobec1 which affects in trans multiple C-to-U editing sites in the mouse liver (Gu et al., 2015).

As expected from previous studies, A-to-I was by far the most common RNA editing event in our

study. Further, our data show that RNA editing occurs at low levels in thousands of sites, but is

highly variable. Less than <1% of the sites were consistently detected in the adult mouse brain

across >75% HMDP strains. Consistent with the lack of coding genetic variation in the ADAR

enzymes in our mouse panel, and with their invariable expression levels, we did not observe any

trans editing QTL that would affect editing levels of multiple sites. However, we found a few local

associations that seem to affect editing of specific sites. For example a strong local editing QTL

(p<e–7) was observed for one of the editing sites in the Ociad1 gene (also known as Asrij). This edit-

ing QTL is likely due to a sequence variant in or near the Ociad1 gene. Notably, Ociad1 is expressed

in stem cells, where it regulates pleuropotency via the JAK/STAT pathway (Sinha et al., 2013). Edit-

ing of Ociad1 or its expression in neuronal tissue was not reported before.

Another significant aspect of our data relates to long non-coding RNAs. LincRNAs have been

shown to play an important role in various cellar functions. Recent genome annotations include thou-

sands of known lincRNAs, yet most of them remain functionally uncharacterized, and only a few stud-

ies have examined the genetic control of their expression in detail. Moreover, lincRNAs are often

expressed in a tissue specific manner, and therefore are not readily identifiable from general expres-

sion datasets. In this study, we detected expression of 381 known and novel lincRNA isoforms, and

also identified 129 novel, potentially hypothalamus- specific lincRNAs. Our data indicate that lincR-

NAs are subject to similar variation in expression, and exhibit similar overall genetic control as the

coding genes. Specific lincRNAs have been implicated in a variety of phenotypes (Guttman et al.,

2011; Huarte et al., 2010; Kumar et al., 2013), and our data indicate strong correlations between

some of the hypothalamic lincRNAs and metabolic phenotypes, such as body weight.

The hypothalamus is a very heterogeneous tissue, and one of the major drawbacks of our analysis

is that we used whole hypothalamus, rather than dissecting specific nuclei. This limitation stems from

practical considerations – meaningful expression QTL analysis requires sacrifice of hundreds of mice,

while the dissection of specific hypothalamic nuclei is delicate and time consuming and thus was not

feasible within the constraints of this study. Still, this shortcoming is likely to limit our power to

detect meaningful associations, rather than introducing spurious ones. Moreover, since our study

mostly focuses on genetic regulation of transcription, which was shown to be largely shared among

tissues and cell types, we believe that the data presented in this work are not substantially con-

founded by heterogeneity.

To summarize, our data fill a substantial gap and will be useful to the research community. The

hypothalamus is composed of multiple nuclei, which are distinct in morphology and function, and

many laboratories focus on disentangling the complex interactions that ultimately affect metabolism

and behavior. However, genome wide transcriptome analysis of this tissue has not been published,

and genetic regulation of transcription as well as tissue specific transcripts remains largely obscure.

We believe that our study is complimentary to physiological studies and will facilitate research into

the crosstalk between the brain and other metabolic tissues. All of the expression data described in

this paper are publicly available from NCBI archives GEO (GSE79551) and SRA (project number

PRJNA314533).
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Materials and methods

Samples, library preparation and sequencing
Altogether we sequenced 285 samples, from 99 strains of the HMDP. A total of 87 strains had 3

samples per strain, 11 strains had 2 samples per strain, and 2 strains had 1 sample per strain (a

detailed list is in Supplementary file 1). RNA was extracted using Qiazol followed by miRNAeasy kit

from Qiagen (RRID:SCR_008539). Unstranded mRNA libraries were prepared by the UCLA Neurosci-

ence Genomics Core with Illumina standard kits (TruSeq v3) according to standard protocols. All

samples were barcoded, and sequenced with ~18 samples per lane, with HiSeq2000 using 50 bp

paired-end sequencing protocol. A round robin design was implemented such that biological repli-

cates were sequenced on different lanes, and each sample was part of more than one sequencing

pool. Samples were demultiplexed by sequencing facility, forward and reverse read fastq files were

supplied for each sample.

Data quality control (QC) and mapping
Read QC was done using FastQC (RRID:SCR_005539) in batch mode. The samples had excellent

quality, with all bases exceeding median quality score of 28, and >98% of the sequences with a

mean quality score >28. The average number of reads per sample was 26.3 M. All reads were

passed to mapping as is, without trimming or filtering. Samples were mapped to the mm10 genome

using STAR aligner version 2.3.1 (https://github.com/alexdobin/STAR/releases/tag/STAR_2.3.1z9).

The mm10 sequence was downloaded from http://cufflinks.cbcb.umd.edu/igenomes.html (UCSC

annotation files). Reference sequences were built using known splice junctions (–sjdbGTFfile option)

from known genes annotation file. Mapping was performed allowing up to 3 mismatches per read (–

outFilterMismatchNmax 3), removing non canonical un-annotated junctions (–outFilterIntronMotifs

RemoveNoncanonicalUnannotated) and allowing up to 10 multiple mappings per read (–outFilter-

MultimapNmax 10). Alignment files from all samples of the same strain were merged into one align-

ment file per strain using the ’merge’ function of the samtools package. On average 94.1% of the

reads mapped, and of the mapped reads 96.4% mapped uniquely. STAR also detected on average

2.8 M splices per sample, with 98% of them previously annotated. Detailed mapping counts for each

sample are in Supplementary file 1.

Transcript assembly and quantification
Our pipeline is summarized in Figure 8. For the purpose of transcript assembly, sample specific

alignment files were pooled into unified BAM alignment files by strain which were then sorted and

indexed using samtools. Transcript assembly was done on each strain specific alignment file with

Cufflinks v2.2.0., with mouse genome version mm10, and gtf file of known transcripts as a reference

guide (-g option, reference file downloaded from UCSC genome browser), together with bias and

Figure 8. RNA-Seq analysis framework. General workflow used for analysis of RNA-Seq data in this study. Initial

demultiplexed samples (fastq files) were aligned to the mouse genome with STAR, merged in one file per strain,

and transcripts assembeled with cufflings. The resulting assembly files (one from each strain) were merged with

GENECODE M2 annotation into unified assembly. The abundance of each transcript in the unified assembly was

estimated in sample specific alignment files.

DOI: 10.7554/eLife.15614.015
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multimap option corrections (-b and –u respectively). This step resulted in 99 strain specific transcript

assemblies. We then used Cuffmerge to compare those assemblies to GENCODE M2 annotation

(http://www.gencodegenes.org/), and to consolidate them into one unified assembly file represent-

ing all transcripts from GENCODE M2 and from the strain specific assemblies (merged.gtf). To

obtain FPKM expression values, we run Cuffquant and Cuffnorm v2.2.1 with default parameters,

using the sample specific alignment files and unified assembly (merged.gtf) file.

Filtering of the expressed features for subsequent analyses
Cufflinks assembly and abundance estimation results in assessment of gene expression at multiple

levels of genomic resolution - transcripts, transcription start sites, coding sequence and loci (genes).

We implemented 3 filtering steps:

First, we removed transcripts that are likely to be an assembly or sequencing artifacts, based on

following criteria:

Comparison to GENECODE M2 indicated that this is not a known transcript (class code ’=’), new

isoform of a known gene (class code ’j’) or novel intergenic transcript (class code ’u’).

b. Novel isoforms and intergenic transcripts which expression was <1e-6 FPKM in all samples.

Loci and transcription start sites associated exclusively with transcripts removed in steps 1 and 2.

This filtering step removed 7% of the transcripts, with the other 93% (535,316 features) treated as

potentially true.

II. While we consider that all these features may potentially represent true splicing and transcrip-

tion events, only features that show sufficient variation and expressed at appreciable level are useful

in eQTL analysis. Further, many of the potentially new features were expressed either at very low lev-

els or in a small number of samples. Therefore, at the second filtering step we implemented detec-

tion and expression thresholds (FPKM>0 in >=100 samples, and FPKM>1 in >=50 samples) to focus

on ~100,000 expressed features that are more likely to produce meaningful mapping results in the

HMDP panel.

Third, expression values (FPKM) of transcription start sites, coding sequences and genes are a

sum of expression values of transcripts associated with these features. Consequently, if a locus, tran-

scription start site or coding sequence is associated with only one transcript, the expression informa-

tion of that feature is identical and thus redundant to the respective transcript. Therefore, such

features were removed from eQTL mapping.

Altogether, this filtering reduced the number of explored features to ~ 93,000.

Allele-specific expression and cis eQTL
All features that passed the described above filtering criteria, were analyzed for eQTLs using expres-

sion estimates in 282 individual mice representing 100 strains, 193,400 SNPs and the fastLMM algo-

rithm using an appropriate kinship matrix that accounts for the HMDP population structure. Cis

acting eQTLs were identified by allele expression (ASE) as described previously (Hasin-

Brumshtein et al., 2014). Briefly, allele-specific counts at each exonic SNP, filtered for quality con-

trol criteria, were summed in a genespecific manner. The resulting counts were normalized and ana-

lyzed for differential expression between the alleles using the DEseq package.

Identification of RNA editing sites
To identify RNA editing sites, we re-aligned the reads to the mouse genome (mm10) and transcrip-

tome using the single nucleotide variant-sensitive aligner RASER (Ahn and Xiao, 2015) with the

parameters –m 0.06 and –b 0.03. We then detected likely mismatch positions considering the read

sequence quality score at that position and its position within in a read. We further required poten-

tial editing sites to be covered by >=5 total and >=3 edited reads and excluded positions that over-

lap SNPs or are located in homopolymers, simple repeats, and within 4nts of splice junctions

(Lee et al., 2013).

LC-MS proteomics
Proteomic data were collected on 110 samples representing the 99 strains used in this study, plus 10

C57Bl/6 samples. All samples were independent biological replicates of the strains used in this study

fed on the high fat, high sugar diet, and not the same hypothalami used for RNA extraction.
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Sample preparation
The preparation of 110 mouse hypothalamus samples for LC-MS/MS analysis was performed accord-

ing to the protocol described before (Ghazalpour et al., 2011). Briefly, the samples were split

evenly across two 96-well plates, and homogenized using TissueLyser (QIAGEN, Hilden, Germany) in

(8 M urea, 50 mM NH4HCO3 pH 7.8 and 10 mM DTT) at 20 Hz for 2 min with two repetitions. Upon

denaturation for 1 hr at 37˚C the extracted protein concentrations were measured using coomassie

assay and readjusted using aforementioned denaturation buffer to 1.5 mg/ml. Equal aliquots of 150

mg were taken further into cysteine alkylation and trypsin digestion steps. After purification of pepti-

des by solid phase extraction using C18 columns the average recovered peptide amount was 68 mg.

The resulting peptide solutions were normalized to 0.5 mg/mL for LC-MS/MS analysis

Instrumental analysis
Samples were analyzed on an Orbitrap Velos mass spectrometer (Thermo Fisher, Waltham, MA) that

was interfaced with a 75 mm i.d.�65 cm long LC column packed with 3 mm Jupiter C18 particles

(Phenomenex) and a 5 mL injection loop. The mobile phase solvents consisted of (A) 0.2% acetic acid

and 0.05% TFA in water and (B) 0.1% TFA in 90% acetonitrile. An exponential gradient was used for

the separation, which started with 100% A and gradually increased to 60% B over 100 min.

Data analysis
The acquired MS/MS spectra datasets were preprocessed with DeconMSn [18304935] and DtaRefi-

nery [20019053] software followed by spectra interpretation using MSGFplus [25358478] software by

matching against custom protein fasta file build based on RNA-Seq data. The fasta file included

sequences of known genes, newly discovered isoforms and novel genes. The MSGFplus MS/MS

search settings were as follows: tryptic peptides only, 10 ppm parent ion mass tolerance, static cys-

teine carbamylation and maximum charge state 4+. The resulting mzIdentML files were analyzed

using MSnID Bioconductor package [http://www.bioconductor.org/packages/release/bioc/html/

MSnID.html] to confidently isolate identifications of know genes, isoforms and novel genes. The prior

probabilities that the know genes, isoforms and novel genes are real and exist in the protein form

are substantially different. Therefore the corresponding identifications were considered separately

employing a process effectively emulating the proposed earlier cascade search [26084232]. Briefly,

in the first pass we considered peptide identifications matching only to the protein sequences of the

known genes (highest prior probability). The filtering criteria on peptide-to-spectrum matching

(Spectrum E-Value <9.4e-11 and parent ion mass measurement tolerance <2.4 ppm) were optimized

to achieve maximum peptide identifications whilst not exceeding 1% FDR based on reverse

sequence identifications. Next, the spectra that match confidently identified 9910 peptide sequen-

ces of the known genes were removed from further consideration. In the next round we applied fil-

tering criteria (Spectrum E-Value <2.5e–13 and parent ion mass measurement tolerance <10 ppm)

that allowed to confidently identify 236 unique peptide sequences matching to isoforms. After fur-

ther removing peptides matching to isoforms and applying 1% FDR optimized criteria (Spectrum

E-Value <2.3e–9 and parent ion mass measurement tolerance <0.2 ppm) we identified 20 peptide

sequences matching novel genes.
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Furlotte NA, Eskin E, Nellåker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG,
Oliver PL, et al. 2011. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:
289–294. doi: 10.1038/nature10413

Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S,
Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B,

Hasin-Brumshtein et al. eLife 2016;5:e15614. DOI: 10.7554/eLife.15614 22 of 24

Tools and resources Genomics and Evolutionary Biology Neuroscience

http://dx.doi.org/10.1038/ng.3437
http://dx.doi.org/10.1371/journal.pgen.1001393
http://dx.doi.org/10.1007/s00335-012-9411-5
http://dx.doi.org/10.1371/journal.pgen.1001279
http://dx.doi.org/10.1038/ng.2394
http://dx.doi.org/10.1038/ng.2394
http://dx.doi.org/10.1534/genetics.115.179481
http://dx.doi.org/10.1038/nature10398
http://dx.doi.org/10.1186/1471-2164-15-471
http://dx.doi.org/10.5061/dryad.vm525
http://dx.doi.org/10.1038/nature09386
http://dx.doi.org/10.1038/nature09386
http://dx.doi.org/10.7554/eLife.09800
http://dx.doi.org/10.1093/nar/gkn923
http://dx.doi.org/10.1038/nprot.2008.211
http://dx.doi.org/10.1101/gr.088120.108
http://dx.doi.org/10.1016/j.cell.2010.06.040
http://dx.doi.org/10.1016/j.celrep.2014.07.045
http://dx.doi.org/10.1007/s10038-006-0070-9
http://dx.doi.org/10.1038/ng.3192
http://dx.doi.org/10.1038/ng.3192
http://dx.doi.org/10.7554/eLife.08890
http://dx.doi.org/10.1186/gb-2014-15-4-r61
http://dx.doi.org/10.1534/genetics.108.094201
http://dx.doi.org/10.1038/nature10413
http://dx.doi.org/10.7554/eLife.15614


Renuse S, Selvan LD, et al. 2014. A draft map of the human proteome. Nature 509:575–581. doi: 10.1038/
nature13302

Kleinridders A, Schenten D, Könner AC, Belgardt BF, Mauer J, Okamura T, Wunderlich FT, Medzhitov R, Brüning
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