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Classical Path Approximation for the Boltzmann Density Matrix
WILLIAM u.‘MILLERf
‘Departmeht of Chemistry and Inorganic Materials

Research Division, Lawrence Radiation Laboratory,
University of California, Berkeley, California

ABSTRACT

'Using the classical-liﬁit approximation for the quantum mechanicai
time evolution operator ‘and the formal relation between time and recipro—
cal temperature (t = —ihB, B = 1/kT), a "better than—c1a551cal" approx-
mation is obtalned for the Boltzmann density matrix. The result'i;volveé
cla451cal trajectorles in a potential which is the negative of the actual
.potential; it is seep that this effectlvely allows for some degree of
tunneling._ This newvapproxiﬁation gi&es e#act quantum resuits injeny
region_ that the potential is qﬁadratic and qpite reasenable results for_.

any potential, even in the limit of zero temperature.



I. INTRODUCTION

The fo%mal relation between the time éiolution operator,
orjpropag;tof; exp[—iH(tz-tl)/h] of quantum mechanics and the
Boltzmann density operator exp[-BH] of statistical mechanics is
Qellfknown;{”H is the (fime-independent) Hamiltonian governing
the éyst¢m; (;é-t1).an increment in time, and B is related to
the absoluﬁg‘temperaturé B = (kT)-l. A common trick in statistical
mechanics is to computé fhe tiﬁe prépagator for the sysfem and
then'obtﬁin the density operatbf by invoking the forﬁa1 re1ation'
B = i(t24t1)/h. All equiiibrium pfoperties of the system are
obtainable from the density operator; its diégonal matrix elements
in a coqtdiﬁate represeﬁtation, for examplg, give the pérticle
‘density |

'pB(x) = <x|e_BH]x>,. : o (1)
theFiqtegral over which is the partition function v _
28) = f ax pg(x). B TS
.Whén "the system" under consideration involves only the
degrees pf:freé&om of heavy particles (i.e., atoms and molecules,
' as opposed to electrons), a classical—limit,approximation2 to

. the propagator is often quite accurate; this has been found to

be true for several examples dealing with atomic and molecular

collision dynamics3. In this approximation matrix elements of
the propagator are given byz’4 , ‘
_ A 2 3 1/2
-iH(t,-t.)/h 9 ¢ (x,,x.)
<x,|e 2 1 x> = s 21 /anh
2 1 8x28x1 '

expl[1¢(x,,x ) /h], (3)



where ¢(x,,x;) is the classical action integral
C9(x,y,x,) = de Smx(t)” - V(x(t)), (4)
) A : -
computed along the path x(t) determined by the classical

1
)jas boundary conditions. [For simplicity of presentation‘

equations of motion with the initial and final positions, X
and x2
Eqs. (3) and (4) are written as though there were just one
degree of freedom; this need not be the case.]

‘This paper expiores the result one obtains for the density

matrix,

Pplxyexy) = <x2"5-8“"‘1)' Y
by_makingwfhe classical approximation to the propagator in
time, as above, and then making the transcriptidn to imaginary
time

f(tz-tl) = -ihB. . . (6)

Surﬁfisingly, one does Egg obtain the usual classical approxi-
mafion, wﬁich (for the diagonal elements) is | |
cL 2m T _Bv(x)
pg (%) = (—3 /zms) e . (7)
. h
’Thislgt first seems contradictory, for a classical-limit
approximation should give the classical 1limit! The drigin
of the‘diéérepancy lies in Eq. (6); i.e., in the classical
1imip, h * 0, one considers (tz-tl) to be a macroscopié“
quantity'(of order ho) when dealing with the propagatof;'but
‘ :

considers B to be macroscopic when dealing with the density

operatof. The classical limit in statistical mechanics -

-0 - - .
(B 4 ), therefore, automatically implies. short imaginary



fimes (Qf:order h); the classical 1imit in dynamics (real

. time), hOWéQér, does not have a short time limit built into

it. By méking the classical approximation to the propagétor

one ddes’nbé'incorporate a 'small 3, or high'cemperatureblimit {
in ;hg reéﬁlfing approximgtion for the density matrix; its )
validity'is'limifed only by the ability of classical méchanics

to déécribe_fhe particle dynamics énd is thus expected to be
accurate $£IIOWer ﬁemperétureé than the uéual classical
approximafién.v In the iimit of high témperature (small B)‘
one does fe§§ver Eq; (7).

Sectidn II'gives.explicit expressions for'the deﬁsityv
‘matrix fo: the case of a single particle in'a:oﬁe diﬁedéional
potentiéi'wéll; several limiting cases afe'cdnsidered in Sec.

III.: It is observed that the classical path approximation'
gives théﬁé#act.quéntum result for the case of a”harmdﬁic
potentiai,fand that reasonable results aré obtained even in
thé limiﬁ of zero temperature for any potent%al from which
V"(x) #'O_at the potential minimum. Section IV bresents the
numericé1 resﬁ1ts of several examples chosen to test the

expréssions.defived.
II. EXPLICIT FORMULAS FOR A ONE DIMENSIONAL POTENTIAL WELL &

Thg beginning point is the classical limit of the‘propa—
gator as given in Eqs. (3) and (4); the classical equation of
motion which determines the classical trajecfory is

Comx"(e) = - V'(x(t)), (8)

which hasvthé solution



<

- - d ..2. E \ 2
Lty = x { =[E-V(0 1] (9)
| *1
where E 1s an implicit function of xl, x2, and tz-tl.

1f one switches to imaginary time t= -iT, then Eq. (8)

becomes
mx" (1) = +V'(x(1)), ' - (10)
and with:té—t1= - ihB, the implicit solution is
o X2
s . a1 ,
,ZB(ﬁZ/Zm)i s]i dx [E+4+V(x)] 2. (11)

The "clasSicél path" in imaginary time, therefore, is of

the same form as that for a path in real time with the potential

V(x) replaced by -V(x). 1If V(x) is a potential well, in which

classical trajectories are oscillatory, then -V(x) is a potential

barrier and the trajectory in imaginary time reflects from the
barrier.
The classical path approximation for the density matrix

is thus given by

2 - 3
9" ¢(x,,x,) 12
:<x2|e'BH|xl> = [— 5 2 1 /2wh
X,0X
271
exp[—d)(xz;xl)/ﬁ]’ (12)
where ; , hB '
'i¢(x2,xl) =j£ dt —;—mx'(T)2 + V(x(1)); (13)
using the“élassical equgtion for x(1), the "phase" ¢ is . found
to be - X, |
1
'¢(x2,xl) = -hBE +/ dx{2m[E+V(x)]}?2, (14)
. xl '

where E is determined implicitly in terms of x_, and B

x2,
by Eq. (11). Using Eqs. (11) and (14), one can differentiate

implicitlyﬁand show that the normalization function is given by



o, . i | L

9 ¢(x2,x1)] o1 3 o

[' dx,0%; = (Zm) ?[E+V(X1)],[E+V(x2)iv
x /'dx [E+V(x)]-§, . _ o (15)

Eqs. (12), (14);‘and (15), together with the defining relation
in Eq. (11), are the‘complete"expressions. It should be noted
thét thése rééulthCan_alsé'bé dériVed‘by applying a steepest
.descent épp:oximatidn direcély to evaluation of the path

integral representation of‘the density matrixl;‘ Identical

exbressidns‘are obtained, so this approach will not be'presented. 

Since”¢ne'is most often concerned with_the_diégonél eleﬁents_

(L.e., thé particle density), we now specialize to this
gituation. _In"this'case'(xl=x25x) one seéks a clgssical'
_tréjectbfy dn the potential -V(x) which originates at x and
returns'tégx‘in the préscriﬁed finite time interval hg. It is
cléér that.;ﬁis'muétibeAa-trajector} which'expefiences a .

‘classical'turning point;'since -V(x) is a potential barrier,

one and only one such trajectory exists. The 1dtegxal'fr6m

x; to xz:in Eq.ffll)‘betomes tkice the integral frbm]xovto'x;
‘a2 a |2 ' ' -1 oo : : :
B(h"/2m)~ = dx' [V(x")+E] 2, : - (16)

, ° , .

,:where_xo 1§ the ¢lassiqali;urning.point: '-V(xd) ; E; Eig._l

._showéva sketch of.thé situation; thé imblicit relation ié ési
gollowéz for given'Qalpeé.of x and Bvone must”chOOSe'E to be
;hat value_for whichithe time réquifed to.go from X t:o xo and
back to x_is-precisely hB. Since this transit time can be

”madé as sma;l asbdeéitedvby choosing E ;ﬁ tﬁe regioh:of El-in

_Fig.vlv(i,e;, close to ~V(x)),6r aé large as desired b?ﬂtakihg‘._

 £ iﬁv;heiﬁicinity qf;Ez in’Figgrl'(i.e.;vclésevto zero)%'it,ig



‘

reciprocal square root appearing in an integrand by pafts

clear that there is one value of E which satisfies Eq.v(l6)

‘for any B8 between 0 and «.

It is éctually more convenient to replacé E by —V(xo) and
regard x as the implicitly defined function of the independent

variables Xrand B:

e

B /2mT = [ oax' [V(x') - V(x)]TZ, (17)
)

The "phase" function of Eq. (14) becomes, with X, =X, =X and
E = -V(x_),

‘ X ) '

r* )
({)B(x) = hBV(xo)+2/ dx'{Zm[V(x')-V(xo)]}E. (18)
o

The normalization function of Eq. (15) actually requires slightly
more qare; for the singularity of the integrand at a classical
turning point is not integrable. Thus one needs to re-do the

implicit_differentiation of ¢(x2,xl), always integrating a

before differentiating it. The result one obtains is formally
the same as integrating Eq. (15) by parts and discarding the
infinite surface terms, and is
2. -1
37 (x,y,%,)
szaxl

= DB(X)

=X _=X

1 72

.= 2(2/m)2{[V(X) - V(x ) 12/vi(x) + [V(x) - V(x))]

_ X
: o : .
X[dx' Vi(x') V' (x) T3 uxt) - V(xo)]'5 (19)
o
The particle density is then given by
ps(x) = [ZﬂhDB(x)] 2 exp[-¢8(x)/h]; (20)

Eqgs. (17)4(20) are the final expressions for the particle

density. L



In concluding this'sectién it 1s interesting to.note.ghe
physical meaning pf thé_"trajectory_in imaginary time from x
to xb and Baék".. Fig. lbvindicates the situation with thg‘
‘actual potential V(x) rather than -V(x). A trajectory in
imaginéry'time means.a path through a classically forbidden
iregion, so thaf one 1is actually ailowing for tunneling from
'fhévclaSSically fofbiddgn position x to the turning»pointiﬁo
and back. If the "time" h8 is short (high temperature), then
the distance"over which tunnelihg takes place is short; for
long "times"b(low temperature) the particle is alloﬁéd td

tunnel large distances.
III. APPROXIMATE EXPRESSIONS

- As a first limiting case, suppose th#t x ig in a regidn'
where the potential is roughly linear. From.Fié. 1 it is clear
" that this will always be the case for sufficiently small B;
it may not be necéssary to require that B be small, howevér},
Expanding V(x')vand V(xo) in Eqs. (17)-(1§).linear1y about x,.

one readily finds that Eq. (20) for the pa:ticlevdehéity‘bécomes
pg (x) =($‘/nve)z exp{-8v(x)-0282v" (x)%/24m1};  (21)

for B sﬁffitiently;small the usual classical result [Eq. (7)]
is recovered. |
- Eq. (21) may be viewed as the usual classical expréssion

‘with the "effective potential" .

V(x) - hzszv'(x)2/24m;
this effective potential, which is clearly attractive, should

not be éonfused'with that which appears in the "first quantum’



correction" which is discussed in ref. 15; this latter correc-
tion term appears in an integral expression for the partition

function,_But the integrand in this case ié not the particle

density.
A more accurate, but still closed-form approximation‘is
obtained by expanding the potential quadratically about x in

Egs. (17)—(19). In this case Eq. (20) gives
. o )

" 3 1
B(x) = (2%/4ﬂ8)2 [u/sinh(u)]?
h o

with o - | | f
ul= hB[V"(X)/ﬁ]%; (22b)
as u -+ 0, Eq. (21) is recovered. The "effective potential

in this case is also attractive

- v, 2 [ 2tanh[3] | |
V(X) + \J (x) [ an 2 - 1]’ . '

2V" (x) u
and the pre-exponential factor is also modified from the
ordinary.pléssical expression. [Note that Eq. (22) applies
equally we11 if V"'(x) < 0, the hyperbolic functions of imaginary
argument becomlng circular functions in the usual manner.]
Not only does Eq. (22) give the result of Egs. (17)-(20)

in.ény region in which V(x) can be approximated as a quadratlc,

'it‘also gives the exact quantum result in such regions. " This
is true because of the fact that the classical approx1métion
_toithé:propagator i; exact if the potential is quadraticG.

Eq. (22)'i§ exact, for example, for the harmonic osclllator
Since most physically meaningful poLenLialq can be wcll

represented by a quadratic over fairly wide regions, Eq. (22)



ié’etpected to be aceurate'for-mostzreesonable'potentials.

An important feature is that Eq. (22) is just as epplicable

at low temperatures (large B) as at high temperatures. In the
limit of large 8, Eq; (22) gives
R S A .
pgx) = (Fo) exe ,{-ehw_/z - BV - V' (0227 (0]

‘ ) S o
- fvéT—T/hw} e - (23)

where

- ' 1
W= w(x) = [v"(x)/m]E

If the minimum of V(x) is at x=0 then for x near 0 one has

mw 1

pB(x) = (ﬁwo)exp[ Bhw /2 - nw X /h], : (24)

with :
. 3
W, o= [V"(0)/m] -.
Thié'result_is of the eXact quantum'form
e ? e
pg(x) = o (x) |2 e7PFo,
where ¢°(x)fandvE§ are the lowest eigenfunction and eigenvalue

of a harmonic oscillator of frequency wo;'

1
o me 4 2
: o - -mw_x"/2h
?o(*) (hﬂ ) e °
E_Q :hmo .
Since most potentials are harmonic near their minima, one sees
'that Eq, (22) gives valid results even in this low temperature

limit‘for_which the ordlnary classical expression is completely

useless.



_approximations become accurate at high temperature. It is

11
IV. NUMERICAL EXAMPLES

It h;s:already been obse?ved that thé éxact classical
path expreésion [Eqs. (17)-(20) 1] éna the approximation to it
obtained_byvexpaﬁding the ﬂotential.asia quadratic about x
[Eq. (22)] both give theVeiact quantum mechénical result if
thevpotehtial-iS'a polynomial ofvorder two or less. As a more
stringent‘test the bure quartic potential,

V(x) = axb,

has been considered and the partition function computed via

Eq. (2).

Fig. 2 shows the partition function versus the dimension-
| 15
less temperature t = kT(2m/h2a2) for the two approximations,
compared fo'the ordinary classical result and the exact quantum

values; only the low temperature region is shown, for all the

3

seen that both the exact classical path approximation, and
the quadratic approximation to it are significantly more
accurate than the ordinary classical results. For this example

the quadratlc path approximation [Eq. (22)] is actually some-
Wl

what more accurate than the exact classical path [Egs. (17)-(20)1;

although this comparison may be different for other examples,
it probabiy indicates that the quadratic approximation to
the pathv[aﬁd thus Eq. (22)] is as accurate a description as
is war;anted by the overall procedure.

In coﬁclusion, it is hoped that it will be possible to
make use of these'mofe'éccha;e semiclassical procedures in
more complicated systems in which classical trajectory methods

are cdmmonly employed.
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‘the ordinary classical approximation, Eq. (7). The arrow
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FIGURE CAPTIONS

(a) A sketch of the negative potential -V(x). For given

vvalues‘éf x and B there is one value of E between -V(x)

and 0 which satisfies Eq. (16). . T - 0
(b) -A.skgtch of the actual'botential V(x){ it is seen that
the'pértipent trajectory from x to X, and back is through

a classically forbidden region.

The-pérfition function for the quartic potential V(x) = ax

1

)
. 2
L2 1.3
versus. the dimensionless temperature t = kT(Zm/hzaz).:

solid line - éxact quantum values; dashed line - Eq. (2)

‘with the particle density given by the quadratic approxima-

tion, Eq. (22); dash-dot line - Eq. (2) with the particle

density.given by the exact classical path, Egs. (17)-(20);

‘dotted line - Eq. (2) with the particle density given by

at t =-1.060 is thevposition of the lowest eigenvalue of

fthis ﬁdtehtial.
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