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Classical Path Approximation fo.r the Boltzmann Density Matrix 

WILLIAM H. MILLER 

Department of Chemistry and Inorganic Materials 
-Ráseárch DiVjSjOU, Lawrence Radiation Laboratory, 

1 	 University of. California, Berkeley, California 

ABSTRACT 

Using the classical-limit approximation for the quantum mechanical 

time evolution operator and the formal relation between time and recipro-

cal temperature(t = - ih, 	= l/kT), a "better-than-classical" approx- 

mation is obtained for the Boltzmann density matrix. The result involves 

classical trajectories in a potential which is the negative of.the actual 

potential it is seen that this effectively allows for some degree of 

tunneling. This new approximation gives exact quantum results in any 

region, that the potential is quadratic and quite reasonable results for 

any potential, even in the limit of zero temperature. 
'1 
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I. INTRODUCTION 

The formal relation between the time evolution operator, 

or propagator, exp[-iH(t2-t1)/h]  of quantum mechanics and the 

Boltzmann density operator exp[-H]  of statistical mechanics is 

well-known'; H is the (time-independent) Hamiltonian governing 

the system, (t 2 -t 1 ) an increment in time, and 	is related to 

the absolute temperature 	= (kT). A common trick in statistical 

mechanics is to compute the time propagator for the system and 

then obtain the density operator by invoking the formal relation 

= i(t 2-t 1 )/h. All equilibrium properties of the system are 

obtainable from the density operator; its diagonal matrix elements 

in a coordinate representation, for example, give the particle 

density 

p(x) = 	 (1) 

the integral over which is the partition function 

Z() =fdx p(x). 	 (2) 

When "the system" under consideration involves only the 

degrees of freedom of heavy particles (i.e. , atoms and molecules, 

as -opposed to electrons), a classical-limit ;approxiniation 2  to 

the propagator is often quite accurate; this has been found to 

be true for several examples dealing with atomic and molecular 

collision dynamics 3 . In this approximation matrix elements of 

the propagator are given by 2 ' 4  

	

2 	 71/2 
-iH(t -t )/h 	 x ,x ) 

<x le 	
2 	1 	

Jx > 	
2 	

1 /2irh 2 	 1 	 x2 x 1  

	

exp[ic(x 2 ,x 1 )/h], 	 (3) 
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where 	x 2 ,x 1 ) is the classical action integral 

f t 2  

	

x2,xl 
	
dt 4m(t)2 - V(x(t)) (4) 

i  

computed along the path x(t) determined by the classical 

equations of motion with the initial and final positions, x 1  

and x 2 as boundary conditions. 	[For simplicity of presentation 

Eqs. (3) and (4) are written as though there were just one 

degree of freedom; this need not be the case.] 

This paper explores the result one obtains for the density 

mat rix, 

p8(x2,x1) 	<x2Jelx1>, 	 (5) 

by makingthe classical approximation to the propagator.in 

time, as above, and then making the transcription to imaginary 

time 

= -ih. 	 (6) 

Surprisingly, one does not obtain the usual classical approxi-

mation, which (for the diagonal elements) is 

p8 	(x) 	(.-! /4718) 	 (7) 

This at first seems contradictory, for a classical-limit 

approximation should give the classical limit! The origin 

of the discrepancy lies in Eq. (6); i.e., in the classical 

limit, Ii - 0, one considers (t 2 -t 1 ) to be a macroscopic 

quantity (of order h ° ) when dealing with the propagator, but 

considers 8 to be macroscopic when dealing with the density 

operator. The classical limit in statistical mechanics 

(8 	O) 	
therefore, automatically implies short imaginary 
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times (of order ); the classical limit in dynamics (real 

time) , hOwever, does not have a short time limit built into 

it. By making the classical approximation to the propagator 

one does not incorporate a 'small 3, or high temperature limit 

in the resulting approximation for the density matrix; its 

validity is 'limited only by the ability of classical mechanics 

to describe the particle dynamics and is thus expected to be 

accurate at lower temperatures than the usual classical 

approximation. In the limit of high temperature (small ) 

one does recover Eq. (7). 

Section II gives explicit expressions for the density 

matrix for the case of a single particle in a one dimensional 

potential well; several limiting cases are considered in Sec. 

III. It is observed that the classical path approximation 

gives the exact quantum result for the case of a 'harmonic 

potential, and that reasonable results are obtained even in 

the limit of zero temperature for any potential from which 

V"(x) 0 0 at the potential minimum. Section IV presents the 

numerical results of several examples chosen to test the 

expressions derived. 

II. EXPLICIT FORMULAS FOR A ONE DIMENSIONAL POTENTIAL WELL 

The beginning point is the classical limit of the propa-

gator as given in Eqs. (3) and (4); the classical equation of 

motion which determines the classical trajectory is 

mx"(t) = - V'(x(t)), 	 (8) 

which has the solution 
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= 	I z[E-V(x) 	2, 	 (9) 

where E is an implicit functio.n of x 1 , x 2 , and t 2 -t 1 . 

If one switches to imaginary time t -IT, then Eq. (8) 

becomes 	 - 

mx"(T) = +V'(x(t)), 	 (10) 

and with t 2 -t 1= - iht3, the implicit solution is 
X2 

2(h2/2m)I =f dx [E+V(x)J. 	 (11) 
l  

The "classical path" in imaginary time, therefore, is of 

the same form as that for a path in real time with the potential 

V(x) replaced by -V(x). If V(x) is a potential well, in which 

classical trajectories are oscillatory, then -V(x) is a potential 

barrier and the trajectory in imaginary time reflects from the 

barrier. 

The classical path approximation for the density matrix 

is thus given by 

-'H 	I 	a 2 q(x 2 ,x 1 ) 
<x le 	Ix > = I- 	 /2rrh 1. 	3x2 x 1  

exp[-(x 2 ,x 1 )/h), 	 (12) 

where 

(x2,x1) =f d 	mx'(T) 2  + V(x(T)); 	 (13) 

using the classical equation for x(T), the "phase" 4 is found 

tobe 	 ,x2 

l 

I 	 1 
= -hE 	dx{2m[E+V(x)]} 2 , 	 ( 14) 

J 

where E is determined implicitly in terms of x 1 , x 2 , and 

by Eq. (11). 	Using Eqs. (11) and (14), one can differentiate 

implicitly and show that the normalization function is given by 
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2 [ 	
(x,x1) 	

=  a 	x 	 (2)[E+V(x1)]![E+vx21 
[ 	

21 j 

	

fX [E+V(x)] 1 	 (15) 

Eqs.(12), (14), and (15), together with the defining relation 

in Eq. (1.1)., are the complete expressions; It should be noted 

that these results can also be derived by applying a steepest 

descent approximation directly to evaluation of the path 

integral representation of the density matrix 1 . Identical 

expressions are obtained, so this approach will not be presented. 

Since one is most often concerned with the diagonal elements 

(i.e., the particle density), we now specialize to this 

situation. In this case (x 1 x2 x) one seeks  a classical 

trajectory on the potential -V(x) which originates at x and 

returns to ,x in the prescribed finite, time interval b. It is 

clear that this must be a trajectory which experiences a 

classical turning point; since -V(x) is a potential barrier, 

one and only one such trajectory exists. The integral from 

x 1  to x 2  in Eq (11) becomes twice the integral from x0  to x, 

1- 

 

	

fX

X

2 
(h /2m) =dx' [V(x')+E], 	. (16) 

 0 

• where x is the classical turning point: -V(x) = E. Fig. 1 

shows a sketch of the situation; the implicit relation is as 

follows: for given values of x and 0 one must choose E to be 

that value for which the time required to go from x to x and 

back to x is'precisely ft3. Since this transit time can be 

made as small as desired by choosing E in the region of E 1  in 

Fig 1 (i e , close to -V(x)), or as large as desired by taking 

E in, the vicinity of E 2  in Fig. 1 (i.e., close to zero), it .  is . 
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clear that there is one value of E which satisfies Eq. (16) 

for any 0 between 0 and Co. 

It is actually more convenient to replace E by -V(x) and 

I 	regard x as the implicitly defined function of the independent 
0. 

variables xand 0: 

	

= fdx' [V(x') - V(x)]. 	 (17) 

The "phase" function of Eq. (14) becomes, with x 1 x 2 x and 

E -. -V(x), 

(x) = hV(x)+2fdx'{2in[V(xt)_V(x)]}. 	 (18) 

The normalization function of Eq. (15) actually requires slightly 

more care., for the singularity of the integrand at a classical 

turning point is not integrable. Thus one needs to re-do the 

implicit differentiation of 	x 2 ,x 1 ), always integrating a 

reciprocal square root appearing in an integrand by parts 

before differentiating it. The result one obtains is formally 

the same as integrating Eq. (15) by parts and discarding the 

infinite surface terms, and is 
-1 

a 2 (x 2 ,x 1 ) 
- 	 E ax ax 2 1 	xx 	

D(x) 
 

I 
2(2/m)2 [V(x) - V(x)] 2 /V'(x) + [V(x) - V(x)] 

	

XIdx' V"(x') V'(x') 2 [V(x') - V(x)] 	 (19) 

The particle density is then given by 

p(x) = [2iihD(x)] 2 exp[ - (x)/h]; 	 (20) 

Eqs. (17)-(20) are the final expressions for the particle 

density. 
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In concluding this section it is interesting to note the 

physical meaning of the "trajectory in imaginary time from x 

to x and back t '. Fig. lb indicates the situation with the 
0 

actual potential V(x) rather than -V(x). A trajectory in 

imaginary time means a path through a classically forbidden 

region, so that one is actually allowing for tunnelinp,  from 

the classically forbidden position x to the turning point x0  

and back. If the "time" hB is short •(high temperature), then 

the distance over which tunneling takes place is short; for 

long "times" (low temperature) the particle is allowed to 

tunneL large distances. 

III. APPROXIMATE EXPRESSIONS 

As a first limiting case, suppose that x is in a region 

where the potential is roughly linear. From FIg. lit is clear 

that th.is.will always be the case for sufficiently small B; 

it may not be necessary to require that B be small, however. 

Expanding .V(x') and V(x 	in Eqs. (17.)-(19) linearly about x, 

one readily finds that Eq. (20) for the particle density becomes 

p (x) =(/4m8 2 exp{-B[V(x)-h2B2V'(x)2/24m]}; 	(21) 
Bh 2 /  

for B sufficiently small the usual classical result [Eq. (7)] 

is recovered. 

Eq. (21) may be viewed as the usual classical expression 

with the "effective potential" 	
I 

V(x) - h2B2V'(x)2/24m; 

this effective potential, which Is clearly attractive, should 

not be confused with that which appears in the "first quantum 



correction" which is discissed in ref. 	this latter correc- 

tion term appears in an integral expression for the partition 

function, but the integrand in this case is not the particle 

density. 

A more accurate, but still closed-form approximation is 

obtained by expanding the potential quadratically about x in 

Eqs. (17)-(19). Inthis case Eq. (20) gives 

'2 	
1 

p 0 (x) = f — /4ir1 	[u/sinh(u)] 
/ 

U 
vt(x)L 	2tanh(—) 

exp _[V(x) + 2V"(x) ( 
	

2 - 	, 	 (22a) 

with 

u 	t[V"(x)/mJ; 	 (22b) 

as u -- 0, Eq. (21) is recovered. The "effective potential" 

in this case is also attractive 

2 

V(x) + 2V" (x) 

[ 2tanh[ U]  

2 

and the pre-exponential factor is also modified from the 

ordinary.classical expression. 	[Note that Eq. (22) applies 

equally well if V"(x) < 0, the hyperbolic functions of imaginary 
S 

argument becoming circular functions in the usual manner.1 

4 

	

	 Not only does Eq. (22) give the result of Eqs. (17)-(20) 

In any region in which V(x) can be approximated as a quadratic, 

it also gives the exact quantum result in such regions. This 

Is true because of the fact that the classical approximation 

to the propagator is exact if the potential is quadratic 6 . 

Eq. (22) isexact, for example, for the harmonic oscillator. 

Since most physically meaningful potentials can be well 

represented by a quadratic over fairly wide regions, Eq. (22) 
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is expected to be acéurate for most reasonable potentials. 

An important feature is that Eq (22) is Just as applicable 

at low temperatures (large 8) as at high temperatures. In the 

limit of large 8, Eq. (22) gives 
.1 

p8(x) 
= () 2 

exp 
I_8hw12 

- 8[V(x) - V'(x) 2 /2V"(x)1
hit  

- 	 /hwj 	 (23) 

where 
I 

w = w(x) = (V"(x)/m] 2  

If the minimum of V(x) is at x0, then for. x near 0 one has 

mw 
p(x) = 	 - mwx2 /h], 	 (24) 

with 

[V"(0)/m). 

This result is of the exact quantum form 

2 -8E 
p 8 (x) = I4(x)I 	e 	o, 

where 4 0 (x) and E are the lowest elgenfunction and eigenvalue 

of a harmonic oscillator of frequency w a 

A 
imw 	4 	 2 
i 	oi 	-mwx/2i 

	

e 	o 

E =hw. 
0 	0 

Since most potentials are harmonic near their minima, one sees 

that Eq (22) gives valid results even in this low temperature 

limit for which the ordinary classical expression is completely 

useless 
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IV. NUMERICAL EXAMILES 

It has 	already been observed that 	the exact 	
classical 

path 	expression 	[Eqs. 	(17)-(20)] 	and 	
the approximation 	to 	it 

obtained by expanding the potential 	as 	a quadratic 	about 	
x 

[Eq. 	(22)] both 	give 	the exact quantum mechanical 
	result 	if 

the potential 	is 	a polynomial of order two or less. 	
As 	a more 

stringent 	test 	the pure quartic potential, 

4 
V(x) 	= ax 

has been considered and the partition 	function computed via 

Eq. 	(2). 

Fig. 	2 shows 	the partition function versus 	
the 	dimens ion- 

less 	temperature 	t = kT(2m/h 2 a 2 ) 	for 	the 	two approximations, 

compared to the ordinary classical 	result and the exact quantum 

values; 	only 	the low temperature region is 	shown, 	
for all 	the 

approximations become accurate at high temperature. 	It is 

seen that both 	the exact classical path 	approximation, 
	and 

the quadratic approximatiOn to it are significantly more 

accurate 	than the ordinary 	classical 	results. 	For this 
	example 

the quadratic path 	approximation 	[Eq. 	(22)] 	is 	actually 
	some- 

it) 
what more 	accurate 	than 	the exact 	classical path 	

[Eqs. 	(17)-(20)1; 
4 

although this 	comparisonmay be different 	for other examples, 

it probably 	indicates 	that 	the quadratic approximation 
	to 

the path 	[and 	thus 	Eq. 	(22)] 	is 	as 	accurate a 	
description as 

is warranted by 	the overall procedure. 

In conclusion, 	it 	is 	hoped 	that 	it will be possible 	
to 

make use of these more accurate semiclassical procedures in 

more complicated systems in which classical trajectOrY methods 

are commonly employed. 
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FIGURE CAPTIONS 

(a) A sketch of the negative potential -V(x). For given 

values of x and a there is one value of E between -V(x) 

andO which satisfies Eq. (16). 	 . 

(b) A sketch of theactualpotential V(x) ; it is seen that 

the pertinent trajectory from x to x and back is through 

a classically forbidden region. 

The partition function for the quartic potential V(x) = ax 4  

versus the dimensionless temperature t = kT(2m/h 2 a 2 ).: 

solid lIne - exact quantum values; dashed line - Eq. (2) 

with the particle density given by the quadratic approxima-

tion, Eq. (22); dash-dot line - Eq. (2) with the particle 

density given by the exact classical path, Eqs. (17)-(20); 

dotted line - Eq. (2) with the particle density given by 

the ordinary classical approximation, Eq. (7). The arrow,  

at t =1.060 is the position of the lowest elgenvalue of 

• thisotential. 

I 
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