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ABSTRACT OF THE DISSERTATION

Axiom Selection by Maximization: V = Ultimate L vs Forcing Axioms

By

Jeffrey Robert Schatz

Doctor of Philosophy in Philosophy

University of California, Irvine, 2019

Distinguished Professor Penelope Maddy, Chair

This dissertation explores the justification of strong theories of sets extending Zeremelo-Fraenkel

set theory with choice and large cardinal axioms. In particular, there are two noted program provid-

ing axioms extending this theory: the inner model program and the forcing axiom program. While

these programs historically developed to serve different mathematical goals and ends, proponents

of each have attempted to justify their preferred axiom candidate on the basis of its supposed max-

imization potential. Since the maxim of ‘maximize’ proves central to the justification of ZFC+LCs

itself, and shows up centrally in the current debate over how to best extend this theory, any attempt

to resolve this debate will need to investigate the relationship between maximization notions and

the candidates for a strong theory of sets. This dissertation takes up just this project.

The first chapter of this dissertation describes the history of axiom selection in set theory, focusing

on developments since 1980 which have led to the two standard axiom candidates for extending

ZFC+LCs: V = Ult(L) and Martin’s Maximum. The second chapter explains the justification

of the methodological maxim of ‘maximize’ as an informal principle, and presents two formal

explications of the notion: one due to John Steel, the other to Penelope Maddy. The third chap-

ter directly examines whether either approach to axioms can be truly said to maximize over the

other. It is shown that the axiom candidates are equivalent in Steel’s sense of ‘maximize’, while in

Maddy’s sense of ‘maximize’, Martin’s Maximum is found to maximize over V =Ult(L). Given
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the strong justification of Maddy’s explication in terms of the goals of set theory as a foundational

discipline, it is argued that this result raises a serious justificatory challenge for advocates of the

inner model program. The fourth chapter considers future directions of research, focusing on pos-

sible responses to the justificatory challenge, and highlighting issues that must be overcome before

a full justificatory story of forcing axioms can be developed.
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Chapter 1

A Fork in the Road: Two Contemporary

Candidates for A Strong Theory of Sets

In this chapter, we will survey both the historical development of the use of axioms in set theory

and the main instances of dispute regarding which axioms should be accepted. We then will lay out

the current such dispute facing the set theoretic community, regarding the axioms developed by the

inner model and forcing axiom programs. The main goal in doing so will be to lay out an accessible

presentation of the mathematical content that will be used throughout this dissertation; excluding

footnotes, nothing more than a grasp of introductory metalogic should be required. We then will

turn to the key question of this dissertation: given the conflict between these well-developed and

well-defended axiom programs, how can the set theoretic community justifiably decide between

them? This question will then be dealt with in the remaining three chapters of the dissertation.
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1.1 The Axiomatization of Set Theory and The Question of Ax-

iom Selection

While it may be surprising, given its contemporary status as a foundational discipline in math-

ematics, the mathematical study of sets originally arose as a method for proving general results

in diverse areas of mathematics.1 Cantor initially developed the notion of a set in order to prove

theorems about trigonometric series; while this treatment at first only required the bare notion of a

collection of mathematical objects, Cantor soon found it productive to consider various operations

on these collections, thus turning sets into genuinely mathematical objects of study in their own

right. As soon as Cantor began directly studying the properties of sets of natural numbers, certain

crucial questions naturally arose, including, especially, the question of how many such sets there

were. In 1873, Cantor proved that there were strictly more sets of natural numbers than there were

natural numbers themselves,2 leading to the surprising revelation that there could be distinct sizes

of infinite collections! On the other hand, Cantor was able to show that there was a one-to-one

correspondence between sets of natural numbers and the real numbers of calculus, and so these

two infinite collections were of the same size; as a result, set theorists have to this day used sets of

natural numbers as stand-ins for the real numbers. To codify the ordering on these infinite sizes,

Cantor introduced the cardinal numbers, each corresponding to a different size of collection: par-

ticularly important for our interests will be the first three such numbers, ℵ0–the smallest infinite

number, and the size of the natural numbers–and the next two smallest infinite numbers, ℵ1 and

ℵ2.3 Two sets then share a cardinal number just in case they are of the same infinite size. Much

as with the natural numbers, it proved fruitful to introduce notions of addition, multiplication, and

exponentitation on these numbers, with the discovery of the properties governing these operations

1Maddy (1997) is used as a guide for much of this section. Please see this (especially pp. 15-20 and 63-82) or
Maddy (1988a) and Maddy (1988b) for more details and analysis.

2See Cantor (1874) for this work. For a detailed analysis of Cantor’s early work in set theory, see Dauben (1990)
Ch. 2 and Ch. 4.

3See Cantor (1895) for the first structured development of this theory, and see Dauben (1990) Ch. 7 and 8 for
analysis.
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on the cardinal numbers occupying much of the work of the early set theorists.

Given Cantor’s theorem that there were more sets of natural numbers than there were natural num-

bers, it was known that the size of the collection of real numbers must be greater than ℵ0; nonethe-

less, it was not immediately clear whether this set would be the next infinite size, or whether there

would be some infinite collections larger than the natural numbers and yet smaller than the re-

als. Cantor famously conjectured that the former would prove true, and the set of real numbers

would have size ℵ1. This conjecture became widely known as the continuum hypothesis (hence-

forth CH), with the continuum referring to the collection of real numbers.4 Cantor would go on

to expend much effort in trying to prove CH to be true, with little success or lasting progress to-

wards resolving this question,5 though Cantor’s attempts led to the development of many of the

central tools and techniques of early set theory. Additionally, the question of whether CH was true

attracted great attention throughout the mathematical community, leading to it being named the

very first of Hilbert’s problems for the mathematical community in the 20th century. Many sup-

posed proofs and refutations were proposed around the turn of the century, with each attempt being

quickly refuted; despite these myriad failures, enthusiasm remained undaunted, and the question

of CH remained central in pure mathematics.

This flurry of activity came to a point in 1904, through the resolution of another of Cantor’s central

concerns: the status of the well-ordering principle. The well-ordering principle states that any set

can be linearly ordered in such a way that any (non-empty) subset has a unique smallest member.

While the natural numbers ordered in the usual way provide a paradigmatic example of such an

ordering, for many important collections, no such ordering was known; even for the real numbers

no such ordering could be supplied. Nonetheless, Cantor considered the principle to be a basic

concept underlying mathematical reasoning that could not sensibly be rejected. In fact, a restricted

version of the well-ordering principle was a prerequisite of Cantor’s attempts to prove CH: in order

4See Cantor (1878) for the original statement of this conjecture. See Dauben (1990) Ch. 6 for the origins of this
conjecture. See Hallett (1986) Section 2.3 for an alternative analysis of the origins of this conjecture.

5See Dauben (1990) Ch. 12 for a moving account of the struggles his inability to prove the continuum hypothesis
caused for Cantor’s mental health.
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to have the specific cardinality ℵ1, there would need to be a bijection between the continuum and

some ordinal, that is the continuum would need to be well-orderable. While Cantor treated the

principle as properly basic to set theoretic activity, others sought to prove it, thus securing its place

in mathematical reasoning. Despite the lack of a successful proof, many prominent mathematicians

including Hilbert and his colleagues expected such a result to be soon forthcoming.

Thus, it shocked the mathematical community when, at the third international congress of mathe-

matics, König announced that he had proven the falsity of the well-ordering principle by showing

that the continuum could not be well-ordered! Beyond being a meaningful and important result in

its own right, this proof also would have implied that the continuum had no cardinality, and so CH

would have to be false! This announcement attracted the attention of a wide range of practicing

mathematicians, leading to the conference canceling the concurrent sessions so that all in atten-

dance could hear the proofs of these results; one of the members of the congress who heard this

talk was Hilbert’s student, Zermelo. Zermelo had expected the well-ordering principle to be true,

and spent the night after the talk digging into the proposed disproof of the theorem; the very next

day, he was able to announce to the congress that König had misapplied Bernstein’s theorem in

his result, and therefore had not successfully refuted the principle.6 Once this mistake was real-

ized, König withdrew his announcement, but noted that he would seek fill in this gap and disprove

the principle another way. With this, Zermelo turned his attention to proving the well-ordering

principle once and for all.

Later that year, Zermelo made his own announcement to the set theoretic community: he had

successfully proven the well-ordering theorem to be true in full generality.7 While some, including

Cantor and Hilbert, accepted the proof as valid, there proved to be much doubt over its veracity

throughout Europe.8 The sources of these concerns were fairly wide-ranging, but mainly took

two distinct forms. Firstly, a number of German and British mathematicians expressed concern

6See Moore (1982) Ch. 2.1 for an account of König’s mistake and the immediate response to it.
7See Zermelo (1904).
8See Moore (1982) Ch. 2.2 for an account of this original proof.
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with the basic proof methods that Zermelo made use of, fearing that these methods could lead to

paradox, and thus that Zermelo’s result could not be trusted.9 Given the myriad paradoxes that had

been discovered by Russell, Hilbert, and Zermelo himself, such concerns were far from baseless,

and thus Zermelo faced the challenge of showing that his methods were safe. The second basic

type of concern relied on a new basic principle that Zermelo had formulated and relied on in his

result: the claim that for any collection of (non-empty) sets, there would be some function that

would choose a unique member of each set. This principle would come to be known as the axiom

of choice (henceforth, AC); given that there may be situations were such a function could not be

directly defined, however, a number of primarily French mathematicians worried that AC was a

dubious assumption at best, and a direct perversion of the fundamentals of mathematical rigor

at worst.10 Thus, Zermelo was forced to defend his proof and his assumptions, thereby coming

directly into contact with a major development in mathematical practice in the late 19th and early

20th centuries: the rise of pure mathematics, and the concurrent concerns it raised for the value of

mathematical rigor.

The traditional conception of mathematics throughout much of the ancient and early modern world

had been intimately tied to physical applications.11 Galileo famously captured this view of math’s

nature with his famous claim that math was simply the language of nature. With this in mind,

the properness of mathematical concepts or methods would be shown through their successful

application to the physical world, with these applications functioning as the certification of any

new bit of mathematics. Over the course of the late 18th and 19th centuries, however, mathematical

practice became increasingly unmoored from needing direct applications to the world: particularly

prominent examples of unapplied developments in math include the development and study of

alternative, non-Euclidean geometries, the use of increasingly general concepts in algebra, and the

separation of the notions of continuity and limit underlying classical analysis (the traditional name

9See Moore (1982) Ch. 2.5 and 2.7 for examples of such responses.
10See Moore (1982) Ch. 2.3 and 2.4.
11See Maddy (2011) Ch. 1, especially pp. 3-27 for an in depth explanation of the historical shift from this ancient

conception of mathematics to the state of pure mathematics today; the material in this paragraph and the following
paragraph is largely based on this account.

5



for the study of calculus). While this work in this new conception of pure mathematics led to many

interesting results and a significant amount of excited activity, it also led to new issues: without

the physical world underlying the trustworthiness of our mathematical projects, how could we be

sure that these activities were proper, and would not lead into outright absurdity and contradiction?

Russell’s discovery of a paradox in Frege’s logical system revealed that such concerns were not

mere speculation, and so the many domains of pure mathematics needed to find a new way to

guarantee rigor.

A traditional account of rigor separate from physical application can be found back in the ancient

world, as exemplified in the geometrical texts of Euclid and the use of axiomatic method. Here,

certain basic definitions and axioms are laid out at the beginning of the work and left unproven,

with the later results derived from these first principles through various accepted methods. In

this way, all of Euclid’s results were in theory precisely as trustworthy as the initial axioms and the

methods of derivation utilized. As has been noted by historians, Euclid in fact fails to live up to this

standard, going beyond his accepted principles and importing geometric and mechanical intuitions

in certain key proofs, but nonetheless an ideal of rigor was established that reigned high in the

minds of many scientists and mathematicians in the 19th century as pure mathematics developed

and split off from a reliance on applications.12

One particularly prominent example of the renewed interest in the use of the axiomatic method

was Hilbert’s axiomatization of geometry.13 Much like the ancient developers of the axiomatic

method, Hilbert began by setting forth a collection of basic concepts and definitions, and then

introduced axioms governing the relationships between these concepts. In a novel contemporary

use of this method, Hilbert then used this axiomatization to prove the consistency of his variant

of Euclidean geometry relative to the consistency of the real numbers and classical analysis: that

12See Burgess (2015) pp. 33-38 for an account of the successes and failures of this standard of rigor in Euclid, and
its reception in later mathematical thought.

13See Hilbert (1903). This approach to geometry is often seen as providing a worked-out example of the goal of
Hilbert’s program in axiomatics: see Detlefsen (1986) for a standard account of this program and its challenges, and
see Zach (2007) especially sections 2.1 and 2.2 for a recent analysis of the role of Hilbert’s early relative consistency
proofs in his later progam.
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is, by interpreting the basic terms of geometry as objects in analysis in a way that made all of

the geometric axioms true, Hilbert showed that Euclidean geometry’s results would be no less

trustworthy than those of the calculus. Hilbert and many of his contemporaries then turned their

attention to proving the consistency of classical analysis outright and absolutely, which would

conclusively establish the rigor and trustworthiness of geometry beyond any doubt.

In such an environment, with the axiomatic method increasingly used to provide a vouchsafe for

methods in pure mathematics that could not be supplied by any physical application, Zermelo

naturally looked to use this method to defend his proof of the well-ordering theorem from the

many objections it faced. Zermelo laid out a system of explicit axioms that explained the extent of

the domain of sets; with a few notable exceptions, these axioms took the form of existence claims,

either stating that a particular set theoretic object existed–for example, the axiom of infinity asserts

the existence of ω, the set of natural numbers–or that the universe of sets was closed under some

particular operation–for example, the axiom of pairing asserts that for any two sets, there exists a

set with those as its only members. Amongst these axioms, Zermelo explicitly stated AC, taking

the form of just another existence claim.14

In order to defend AC and the other axioms, Zermelo asserted that they were utilized throughout

mathematical activity, and inseparable to the practice of mathematics at the time. He even went so

far as to provide an explicit list of the many uses the axiom and its equivalents had been put in a

wide range of mathematical consequences. In fact, it later became clear that many of theses critics

had implicitly relied on AC in their own research!15 Curiously, this defense did not take the form

of claims that the axioms were immediately obvious, or beyond rational doubt, but instead that

mathematics could not make do without them. In this way, Zermelo’s attitude towards the axioms

resembled that of Russell, for whom an axiom was less obvious than its consequences, and believed

only because it was capable of implying the more readily apparent truths of mathematics; nonethe-

less, these axioms performed an important role, as they were more logically basic, and therefore

14See Zermelo (1908b) section 1 for his statement of the full list of axioms.
15See Moore (1982)
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enabled a proper organization of mathematical knowledge.16 Using Gödel’s later terminology, an

axiom can justified through intrinsic or extrinsic arguments.17 By the former, an axiom is claimed

to follow from the basic concepts of set theory, and so its truth can be seen by anyone with a suf-

ficient understanding of sethood and set membership. By the latter, on the other hand, an axiom

is justified on the basis of its consequences, and so its truth can only be discovered by articulating

the fruitfulness and desirability of these consequences for specific mathematical purposes. In these

terms, Zermelo boldly sought to justify choice on the basis of extrinsic justifications, leaving any

recourse to the basic concepts of set theory to the side.

Zermelo was then able to use this new axiomatization to provide an explicit alternate proof of

the well-ordering principle.18 Though Zermelo’s arguments for his axioms, and especially for AC,

were not able to convince all mathematicians of the propriety of the methods in his proof, this work

attracted much attention from practicing set theorists. As more mathematicians began to work in

his axiom system, and in particular to make use of AC in various areas of set theory and analysis,

more and more traditional results were found to depend on uses of various forms of AC, thus

validating Zermelo’s claims that mathematics was highly dependent on its acceptance.19 While

his system of axioms was slightly amended by Fraenkel and Skolem in the 1920’s, it quickly came

to form the standard account of the set theoretic universe: the Zermelo-Fraenkel set theory with

choice (henceforth ZFC)20:

1. Extensionality: If X and Y have the same elements, then X = Y .

2. Pairing: For any sets a and b there is a set {a,b} that contains exactly a and b.

3. Separation Schema: If P is a property (with parameter p), then for any X and p there exists
16See Russell (1973) for his outline of this “regressive method” for finding and utilizing axioms. See Irvine (1989)

for a traditional analysis of the role of this method in Russell’s broader epistemic program.
17See Gödel (1947).
18See Zermelo (1908a).
19See Moore (1982) for a through accounting of the various dependencies of mathematical theorems on AC. Many

of these results in fact only require dependent choice, or even countable choice; nonetheless, this proved sufficient for
Zermelo’s purposes, as the critics of AC would not even accept these weaker principles.

20This fairly standard presentation of the axioms is taken from Jech (2003), p. 3.

8



a set Y = {u ∈ X |P(u, p)} that contains all those u ∈ X that have property P.

4. Union: For any X there exists a set Y =
⋃

X , the union of all elements of X .

5. Power Set: For any X there exists a set Y = P (X), the set of all subsets of X .

6. Infinity: There exists an infinite set.

7. Replacement Schema: If a class F is a function, then for any X there exists a set Y = F(X) =

{F(x)|x ∈ X}.

8. Foundation: Every non-empty set has a ∈-minimal element.

9. Choice: Every family of nonempty sets has a choice function.

In spite of the increased and fruitful use of ZFC in set theoretic research, significant doubts re-

mained regarding the acceptance of AC and the associated proof of the well-ordering principle.

While some schools rejected the axiom outright on broadly philosophical grounds, as it directly

implied the existence of non-definable objects such as a well-ordering of the reals, other concerns

were based in questions of rigor: was AC even consistent with the other axioms? The famed in-

completeness theorems of Kurt Gödel had shown that there was no hope of proving the consistency

of the axiom system ZFC outright, so the best that could be hoped for was a proof of the relative

consistency of the axiom system with choice relative to some less-dubitable collection of axioms.

In 1938, Gödel himself found just such a result: if ZF (ZFC without the axiom of choice) was

consistent, then so is ZFC, so the addition of choice doesn’t add any risk to the theory!21

While this result was quite significant in its own right, more important for our present purposes are

the methods Gödel used in his proof. Just as Hilbert had years before found an interpretation of

the axioms of geometry working in the background theory of classical analysis, Gödel defined an

interpretation of the axioms of ZFC from the background theory ZF. To understand the idea behind

21See Gödel (1940).
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this interpretation, note that we can think of the set theoretic universe as generated in an iterative

hierarchy: we first start with the emptyset, and then take all subsets of the emptyset, and then

continue on in this process of taking all possible subsets at each level indefinitely.22 The structure

resulting from this completed process is known as V . Gödel considered a structure generated by

a similar process, but instead of taking absolutely any possible subset at each level, only taking

the first-order definable subsets. This restricted hierarchy increases in size more slowly than the

iterative hierarchy, and Gödel was able to show as a direct result of this slow, methodological

construction that the generated structure would be a model of the axioms of ZF, as well as the

axiom of choice: this resulting model became known as Gödel’s L, or the constructible universe.23

Since this interpretation was seemingly generating by considering only some sets at each level, it

came to be known as an inner model interpretation of ZFC.

In addition to being a model of AC, Gödel was able to prove that the constructible universe would

also be a model of CH. Thus, Gödel’s result served to show that if ZF is consistent, then so is

ZFC+CH: in other words, CH can not possibly be disproven from the axioms of ZFC unless those

assumptions are themselves inconsistent! While it remained open at this time that ZFC could prove

the truth of CH outright, as Cantor had initially hoped, Gödel expressed some skepticism towards

this possibility, and no such proof seemed readily forthcoming. Thus, Gödel’s proof of the relative

consistency of ZFC+CH with respect to ZFC constituted only half a solution to the question of

CH: it remained unknown whether CH followed from the axioms of ZFC throughout the 1940’s

and 1950’s.

Then, in the early 1960’s, Paul Cohen set out to settle the question of CH completely once and for

22See Zermelo (2010a) and Zermelo (2010b) for the original presentation of this view of the set theoretic universe.
Martin (1970) served as an important presentation of this conception, leading to its more wide-spread adoption in set
theory and philosophy. See also Boolos (1971) and Parsons (1977). For an interesting contemporary treatment of the
iterative hierarchy with concepts from modal and plural logics, see Linnebo (2013).

23Note that the notion of a definable class modeling the axioms of ZFC can in fact be expressed directly in the
language of ZFC. In particular, all that it means to say that L models the axioms of ZFC is that the restriction to L
of each axiom–or instance of an axiom schema in the case of separation and replacement–is proved by ZF, where we
restrict a sentence to L by relativizing all of its quantifiers to L. As an example, we could express that L models pairing
through the claim that ZF ` ∀x,y ∈ L(∃z ∈ L[z = {x,y}]).
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all. Suspecting that the many failures to prove ZFC were best explained by its independence from

these axioms, Cohen considered alternative methods for developing interpretations withing ZFC. In

1963, Cohen introduced an intricate technique for developing such interpretations: forcing. Using

this new method, Cohen was able to develop an interpretation of ZFC+¬CH from the background

theory ZFC.24 Parallel to Gödel’s earlier result, this interpretation showed that CH could not be

proven working with the theory ZFC unless those axioms were inconsistent. In set theoretic terms,

Gödel and Cohen’s results jointly showed that CH was independent of standard axioms of ZFC.

Thus, any attempt to settle the question of CH from the standard theory of sets was inevitably

doomed to failure, as the theory simple wasn’t strong enough to take a stand on the important

hypothesis.

So, what was this new forcing method?25 In effect, forcing simulates adding new objects to a

model to generate a larger model of ZFC. One particularly intuitive way of thinking about the

method relies on countable transitive models (henceforth, ctms)26. Through the forcing method,

we could add a particularly well-chosen generic object to this tiny model in such a way that we

preserve all of the axioms of ZFC; we thereby generate a new, larger ctm that contains some

particular object. By our choice of the particular generic object, we can guarantee that particular

claims are true in the extended model. While thinking about the method in terms of ctms might be

illuminating, it proves unnecessary: working in ZF, we can simulate what it would be like to add

such a generic object to create a new, outer model of ZFC. In doing so, instead of dealing directly

with a generic object, we study various partial constuctions of such an object that actually exist;

the collection of all such partial constructions is known as a forcing poset. The central fact about

forcing, discovered by Cohen, is that any theory true in an outer model corresponding to a forcing

poset has no greater consistency strength than the initial theory: thus, if we can force a theory T ′

24See Cohen (1963) and Cohen (1964) for the original presentation of these results. See Cohen (1966) for a slightly
more developed exposition of these results. See Moore (1988) for an in-depth historical account of the Cohen’s work
up to the discovery of the forcing method.

25See Kunen (1980) for the standard treatment of this material. See Weaver (2014) for a more recent, significantly
more accessible presentation.

26A countable transitive model is a model which is of the smallest infinite size (ℵ0) and which is well-behaved in
the sense that any members of a set within the model must also be members of the model.
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to hold through a poset in T , we know that T ′ is no riskier than the theory T . In this way, forcing

provides a highly general method of proving relative consistency results.

Given the results of Gödel and Cohen, any attempt to settle the central question regarding the size

of the collection of real numbers would have to rely on the acceptance of new axioms. While some

set theorists gave up on any attempts to decide CH following these discoveries, many more turned

their attention to finding new axioms capable of determining the size of the continuum concretely.

One potential source of such axioms that was well-studied throughout the middle of the century

were the so-called large cardinal axioms.27 Recall that we can think of the iterative hierarchy as

generated by a repeated process of taking every possible subset in consecutive stages. But how

many such stages are there? By itself, ZFC proves the existence of many stages, in particular any

stages that can be reached through iterations of taking powersets of previous stages and using the

axiom of replacement. Further stages are possible, but their existence can not be guaranteed by the

axioms of ZFC. The first cardinal beyond the guarenteed stages is called an inaccessible, since it

cannot be reached by ZFC’s usual methods. If there is an inaccessible cardinal–the smallest of the

large cardinals–then that stage in fact forms a model of ZFC. By Gödel’s famed incompleteness

theorems, if ZFC is consistent, then it cannot prove that there is a model of ZFC; thus the existence

of an inaccessible cardinal must go beyond this theory, provided it is consistent. As a result, to

assert that such stages existed, new axioms would need to be added to ZFC. From this initial basis,

stronger and stronger large cardinal axioms were developed. Each of these large cardinal notions

implied the consistency of ZFC, none could be proven to exist from that theory, and additional

axioms were required to ensure their existence.

One of the most interesting facts that came out of this initial study into the large cardinal axioms

was that there was a linear ordering on the relative power of these notions; that is, for any two large

27See Gödel (1947) section 3 for an early account of the large cardinal axioms (there called “strong axioms of
infinity”). See Maddy (1988a) sections 3 and 4 and Maddy (1988b) section 6 for a thorough account of the justifcatory
arguments proposed for various large cardinal notions. See Jensen (1995) for a “birds-eye view” account of large
cardinals and their role in set theory. See Kanamori and Magidor (1978) for a detailed historical account of the
development of large cardinal axioms.
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cardinal notions, the consistency of one of the large cardinal axioms would imply consistency of the

other. As a result, there was a clear hierarchy of the inherent riskiness of the large cardinal axioms.

Remarkably, it was found that every known natural theory extending ZFC can both interpret and

be interpreted by–in other words, is equiconsistent with–ZFC together with some large cardinal:

as a result, the riskiness of any theory under consideration could be measured through the large

cardinal hierarchy.28 In this way, the large cardinals served as a measuring stick for the consistency

strength of mathematical theories, serving a central role in attempting to assess the risk of new

axioms and new theories.29 Given the central importance of avoiding undue risk of paradox in pure

mathematics, the large cardinals therefore served an indispensible role for practicing set theorists.

This fact was widely seen as providing very strong extrinsic evidence for the acceptance of the large

cardinal axioms, leading to ZFC+LCs (where LCs stands for whatever particular large cardinal

axiom sufficed for present purposes) in effect becoming the standard theory of sets.

While some–including Gödel himself–had initially hoped that these large cardinal axioms might

settle the question of CH, the full generality of Cohen’s method soon squashed this hope, as forcing

was able to show the independence of CH from ZFC+LC for any known large cardinal axiom.30

Thus, a wholly new source of axiom candidates would be required to settle the question of CH.

Two distinct programs arose for finding such axioms, each corresponding to one of the two main

methods for generating models of ZFC and proving relative consistency results. The first, the inner

model program, was inspired by Gödel’s constructible universe. Noting many positive features of

the constructible universe, the axioms proposed by this program asserted that Gödel’s L–or some

structure similar to it–in fact encompasses all of V . The second, the forcing axiom prgoram, was

instead inspired by Cohen’s method of forcing. Forcing axioms assert that for well-behaved classes

of forcing posets, a generic set already exists in V: as a result, any sentences that can be forced to

be true through forcing with that class of posets is already true. We shall consider the origin and

28See Steel (2014) section 2 for an account an analysis of this phenomena.
29See Maddy (2016) on the foundational role of Risk Assessment for more on this use of the large cardinal hierar-

chy.
30See Lévy and Solovay (1967).
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development of each of these programs in more detail in turn.

1.2 The Inner Model Program

Though it was initially introduced as a tool for proving a relative consistency result, Gödel’s L soon

became an object of serious study in its own right. In addition to being a model of CH and AC, the

constructible sets were found to have a wide variety of interesting combinatorial properties. As a

direct result of these features, Gödel’s interpretation provided a very desirable place for set theorists

to work, in the sense that many proofs and classification results became remarkably more tractable

when it was assumed that all of the sets under consideration were constructible. In this way, the

constructible sets provided a fruitful arena to conduct a wide-range of combinatorial studies, with

many powerful results readily forthcoming.

Given the desirable features of working in L, in his 1938 paper Gödel formulated and briefly

considered the axiom candidate V=L, which simply states that every set is constructible. Given

Gödel’s relative consistency proof, it was known that ZFC+V=L was no more risky than ZFC

itself. Additionally, Gödel saw that V=L was an axiom candidate with significant power, which

was capable of settling all of the important open questions of set theory at the time: in its defense,

he noted that “[V = L] seems to give a natural completion of the axioms of set theory, in so far as

it determines the vague notion of an arbitrary infinite set in a determinate way,”.31 Nonetheless,

Gödel’s consideration of V=L as a serious candidate for extending ZFC was fairly short-lived. In

the 1940’s, Gödel came to believe that CH was false, and that instead 2ℵ0 = ℵ2,32 though his

arguments for this claim failed to convince the mathematical community beyond a few isolated set

theorists.

Thus, despite Gödel’s concerns, V=L continued to be considered as an axiom candidate through-

31Gödel (1940) p. 179.
32Gödel (1947).
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out the 1950’s, though doubts remained as to its viability. After all, V=L implied that V was an

extremely simple and well-behaved structure, well beyond what most practicing set theorists ex-

pected. In 1961, Scott discovered a much more conclusive reason for rejecting V=L than Gödel’s

prior argument: the existence of a particular sort of large cardinal, a measurable cardinal, implied

the falsity of V=L.33 Thus, the orderliness of the theory ZFC+V=L was in direct tension with

another axiom candidate, which was soon found to entail significant mathematically beneficial

consequences itself. Thus, a clear tension had been found between the desirable features of L

and the extrinsic justification of measurable cardinals, which began to be widely recognized as the

large cardinal concept was further studied.

This tension was further developed by Silver in 1967, who showed that the existence of a measur-

able cardinal did not just imply that L did not capture the entirety of the set theoretic universe: it in

fact would be wildly and repeatedly wrong, with L not even able to distinguish any two uncount-

able cardinal numbers.34 Additionally, under the assumption of a measurable cardinal, there would

be a particular set of natural numbers–named 0]–which encodes the many ways Silver had found

the set theoretic universe goes wrong, and as a result could not exist amongst the constructible

sets.35 This revealed that L is inadequate well before the upper reaches of the iterative hierarchy

where a measurable cardinal could be found. Instead, it went wrong at the earliest possible stages,

with the forming of sets of natural numbers. This proved to be a serious challenge for defenders of

V=L as an axiom candidate, and much of the set theoretic community came to reject the axiom in

favor of the study of large cardinals. Nonetheless, this did not mean that the benefits of working in

L were completely lost, as L remained as a particular structure within V that could be studied and

worked in.

Just what were these desirable features that made working in the constructible universe so produc-

tive? Roughly, they can be seen as falling into six main categories:

33Scott (1961). See also Jech (2003) Theorem 17.1.
34Silver (1971). See also Jech (2003) Theorem 18.1.
350] was originally introduced in Solovay (1967), with its theory further developed in Silver (1971). See also Jech

(2003) pp. 318–328.
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1. CH and GCH: As mentioned above, Gödel found that CH is true when evaluated in the

constructible universe. In addition, he was able to show that an important strengthening of

the principle would also be true: the generalized continuum hypothesis (henceforth, GCH),

which says that for any cardinal κ whatsoever, 2κ would be the very next cardinal number. In

effect, GCH settles all questions of cardinal arithmetic left open by ZFC, and does so in the

simplest possible way. This makes working with the operations on infinite numbers much

less technically demanding.

2. Definable Well-Ordering of the Reals: While AC implies that there will be some well-

ordering on the set of real numbers, it by itself tells nothing about how complicated that

ordering will be. Due to the slow and methodical constructive process of the L hierarchy,

however, Gödel found that there is a remarkably simple–in fact projectively definable–well-

ordering on all of the constructible reals. Since many interesting objects of study in descrip-

tive set theory can be defined from a well-ordering of the reals, this implies that there is a

wide variety of fairly simple so-called pathological sets of real numbers within L.36

3. Absoluteness: While typically the (proper class) collection of objects satisfying some prop-

erty can vary significantly depending on one’s background assumptions, the constructible

sets show no such relativity: that is, L is the same definable class regardless of what back-

ground theory it is studied in, provided the theory includes at least the axioms of ZFC. Due

to this fact, Gödel’s definition of the constructible universe can be seen as a robust and

substantial mathematical class, and not merely an artificial reflection of one’s background

theory.

4. Anti-Uniformity Principles: In 1972, as part of a broad study of the structure L, Jensen was

able to isolate a few combinatorial principles that play essential roles in the proof that L was

a model of CH.37 Primary amongst these principles is Jensen’s ♦, which then inspired the

36For example, this implies that there is a projectively definable set of reals which is not Lesbegue measurable, and,
similarly, that there is a projectively definable set of reals without the Baire property.

37See Jensen (1972), section 5. See also Kunen (2011) pp. 225-233 and Jech (2003) pp. 441-444.

16



discovery of � and the �κ’s. While the precise nature and meaning of these terms need not

concern us here, they were found to directly imply many of L’s important properties. As a

result, they are often treated as easily studied proxies for the other typical properties of L.

5. Covering: In 1975, Jensen’s studies culminated in his proof of the covering lemma for L: if

0] does not exist, then any set of ordinals is contained within a constructible set of ordinals

of the same size.38 This leads to an important dichotomy, where either a particular large

cardinal axiom39 is true or the constructible universe can approximate V extremely well,

even if V=L is false. Jensen noted that if the latter horn of the dichotomy is true, then there

is minimal cost to accepting the axiom V=L, and so set theorists might as well accept the

benefits of that theory.

6. Fine-Structure: Underlying all of Jensen’s work on the constructible universe was his dis-

covery and elaboration of an alternative hierarchy generating the structure L: the so-called J

hierarchy. While most stages of Gödel’s hierarchy would fail to be models of almost all of

the axioms of ZFC, the J hierarchy instead made each stage a well-behaved model of most of

this theory. As a result, this hierarchy enabled a detailed analysis of which sets get into the

structure, known as the fine structure of L.40 Through the fine structure, Jensen was able to

get extraordinary insight into the properties of the constructible universe, enabling far greater

success in discovering truths about L than had been previously thought possible.

While all six of these features can be seen as contributing to the desirability of the axiom V=L,

Jensen and his colleagues were primarily focused on the last two. In his understanding of L, the

important work was done by the covering lemma and the presence of fine structure. Since the

fine structure of L could be seen as underlying–though not literally implying–the other properties,

however, the rest primarily served to indicate the presence of these more important features. It will
38Devlin and Jensen (1975). See also Jech (2003) Theorem 18.30 and Mitchell (2010b).
39Though 0] is a set of natural numbers, and so not literally a cardinal, it is seen as a large cardinal axiom since it

represents an important stage in the hierarchy of consistency strengths.
40See Jensen (1972) for the original development of the fine structure of L. See Schindler and Zeman (2010) and

Zeman (2002) for standard contemporary accounts of fine structure.
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therefore be helpful to have clear language for these properties going forward. We will say that

any inner model with a covering theorem–stating that there is a dichotomy between the existence

of a large cardinal and having the inner model approximate V reasonably well–is a core model.

The existence of a fine structure approach for L was seen as imbuing it with a strong sense of

canonicity, where an inner model is canonical if there is no arbitrary information (especially in

the sense of real numbers) that is artificially introduced to the model.41 As fine structure directly

implies canonicity, and there are no known ways of generating a canonical model without utilizing

fine structure, we will treat the two concepts as interchangeable: fine structure will be assumed to

be the precise mathematical property responsible for the informal idea of canonicity. Note that fine

structure tends to directly enable a proof of a covering theorem, and so a canonical inner model will

tend to be a core inner model (though not necessarily the other way around). Given the significant

benefits of working in such models, but hoping to reconcile this with the strong extrinsic support

for large cardinal axioms, Jensen was thus naturally lead to consider whether there could be a

canonical, core inner model with sufficient large cardinal strength for set theoretic purposes.

Given that it was measurable cardinals that were found to be incompatible with L by Scott, the

first step in finding a satisfactory canonical inner model was to find an inner model capable of

containing a measurable.42 The first attempt to find such a model was to take the constructive

process generating L and simply code in all the information required to construct a measure. This

is precisely the idea motivating Kunen’s model L[U ], where U is a measure on some cardinal κ43:

L[U ] is constructed exactly like L , but with a predicate U added to the language of set theory

which is evaluated as the measure itself–so U(X) is evaluated as true if and only if X is a set

41For these notions of canonicity and coreness, see Sargsyan (2011), especially slides 7-28, and the introduction of
Sargsyan (2013). While these ideas have floated around the inner model program since the time of Jensen, Sargsyan
is unique in explicitly presenting definitions of the concepts.

42See Steel (2010) for a thorough and revealing presentation of the history of canonical inner models from L to
inner models of Woodin cardinals.

43A measure is a set of subsets of κ that forms a κ-complete non-trivial ultrafiler; for our purposes, all that is needed
is that a measure is the standard object witnessing the property of being a measurable cardinal. Note that L will contain
all of the ordinals, and therefore κ is itself a constructible set. It is the measure itself that is non-constructible. An
inner model will contain a measurable cardinal only if it contains both the ordinal and the measure on it.
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in the measure.44 This constructive process then exactly resembles that of L until it reaches the

κth stage, at which point a portion of the measure U–restricted to only the subsets of κ contained

within L–can be added to the structure, providing a measure on L[U ]∩P (κ): that is, a measure

on κ within L[U ]. With this measure added to the class, L[U ] continues constructing definable sets

in the usual way. Since it ensures that a measure will be added at a particular stage, the model

L[U ] will contain a measurable cardinal–in fact, it is the minimal model of ZFC containing that

particular measurable. Since it is defined through explicitly hard-coding a relevant witness to a

large cardinal property–in this case, a measure–into the constructive process, we will refer to L[U ]

as an example of a from above approach.

Does L[U ] provide a canonical, or even a core, inner model of a measurable cardinal? While it was

seen to have many of the nice properties of L–in particularly, Kunen was able to show that L[U ]

is a model of GCH, has a projectively definable well-ordering of the rules, is absolute relative to

the choice of U , and modeled the standard anti-uniformity principles–these were seen Jensen and

his contemporaries as having little value if not combined with the central coreness and canonicity

properties. Regarding the former, Silver discovered that there could be a set of natural numbers

coding up substantial information about the structure L[U ], much as 0] encodes information about

L: due to this similarity, the set was named 0†. Working with 0†, Dodd and Jensen were able to

jointly prove a somewhat restricted covering theorem for L[U ]: either 0† exists, L[U ] covers V ,

or a forcing extension of L[U ] covers V 45. In this way, L[U ] could be thought of as a core model

of a measurable. With respect to canonicity, however, L[U ] is woefully inadequate. Due to its

from above definition, and its inclusion of the wholly arbitrary information regarding how to form

the measure U at the κth stage, there simply is no hope for a fine structured approach to L[U ].

Additionally, the increased large cardinal strength of L[U ] over L itself was extremely limited,

as the model could not even contain a second measurable cardinal, let alone the full scope of

measurable cardinals justified through extrinsic considerations. As a result, Jensen found there to

44Kunen (1970). See also Jech (2003) ch. 19 for a contemporary account of the theory of L[U ].
45Dodd and Jensen (1982a). See also Jech (2003) Theorem 35.16.
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be little interest in axiom candidates generated from L[U ], instead seeking to find a true canonical

inner model of measurable cardinals.

In order to find such a model, Dodd and Jensen began to iteratively apply the model-theoretic

technique of taking ultrapowers to the model L[U ]. By taking the intersection of a transfinite

sequence of these ultrapowers, Dodd and Jensen in 1981 discovered the core model K, also known

as the core model up to a measurable.46 Remarkably, however, there also was a fine-structured

method for generating this model, by constructing a series of partial approximations–known as

mice–of the completed model, where the definition of this process does not require any use be made

of any large cardinals. Since this construction refrains from hard-coding any such information into

its generation, we will refer to such approaches as from below. Since there was a fine-structured

approach to K, it is in fact a canonical inner model. Jensen was able to use this fine structure to

prove a covering theorem–showing K to be a core model–as well as slightly weakened versions

of the other desirable properties of L: GCH is true of K, there is a projectively definable well-

ordering of its reals (though this ordering is slightly more complicated than the one on L), it is

generically absolute (meaning K cannot be altered by any known forcing methods), and many

of the anti-uniformity properties are true of it (though ♦ and � only hold in restricted contexts).47

Furthermore, K could contain more large cardinals than L, with 0] being an element of K, provided

that V6=L. Nonetheless, K fell short of Jensen’s original goal, as it could not contain even a single

measurable cardinal.

The discovery of K soon proved to be an instrumental breakthrough in the development of the

inner model program for revealing the method of mice iteration. This method gave a wholly new

way of generating inner models with fine structure, and was immediately seen to be applicable

more widely then Jensen’s original J hierarchy. By further generalizing the notion of mice, in 1984

Mitchell was able to define the core model for sequences of measures Km, which was shown to

46Dodd and Jensen (1981). See also Jech (2003) pp. 659–664.
47Dodd and Jensen (1982b).
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be able to contain many measurable cardinals.48 As it was generated through the mice iteration

method, Km has fine structure and so is in our terms a canonical inner model of measurable cardi-

nals. Much like K itself, Mitchell was able to use this fine structure to prove weakened versions

of the desirable properties of L. Unlike the case of K, however, Mitchell found that there was no

corresponding covering theorem of the standard form. Instead, the covering theorem for Km took a

weaker form, namely that either Km was correct about the cardinal arithmetic of singular cardinals,

or it fundamentally misunderstood the properties of uncountable cardinals. This more restricted

dichotomy, which is implied by the standard covering theorem for L, is often known as weak cov-

ering. Since weak covering suffices for many of the uses to which the original covering theorems

had been put, Km is considered to be a core model of multiple measurable cardinals, though it must

be noted that this is a non-trivial dilution of the original conception of coreness. It is worth noting,

however, that the use to which Jensen had initially put strong covering in defending the axiom

V=L–namely, showing that nothing much is lost by “living in” the inner model–is not obviously

provided by weak covering alone, so one might naturally wonder whether the intuitive justification

for preferring core models is lost in the shift to weak covering properties. We will therefore call

this weak coreness, and conclude that Km is a canonical, weakly core inner model of a measurable.

While Km had finally achieved Jensen’s goal of finding a canonical model of a measurable, it was

soon seen that Km did not suffice for all the extrinsically justified large cardinals, and so a larger

inner model was required. Thus began a recurring pattern for canonical and weakly core models of

large cardinals. First, from above approaches would lead to the development of a weakly core inner

model of a new, stronger large cardinal axiom. Then, through much difficult and painstaking work,

a from below approach would lead to a canonical inner model of that axiom. At each step in the

process, as the strength of the large cardinals under consideration increased–from an inner model

up to a measurable, to one up to a strong cardinal,49 to progressively more Woodin cardinals50–a

48Mitchell (1984). See also Jech (2003) pp. 664–665 and Mitchell (2010a).
49See Dodd (1982) Ch. 23 for the introduction of the “from above” inner model of a strong cardinal. See Koepke

(1989) for the definition of the core model up to a strong cardinal.
50See Martin and Steel (1994) and Mitchell and Steel (1994).
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further generalization of the mouse method would be required–from mice to extenders to iteration

trees of extenders–and the beneficial properties of L would be successively weakened at each step.

As the challenges to getting inner models of more and more Woodin cardinals multiplied, and as

the positive features of the resulting inner models suffered from increasingly diminishing returns,

some in the inner model program–including Jensen himself–began to speculate that there was little

hope to finding a satisfactory canonical inner model with sufficient large cardinal strength for all

of the purposes of the set theoretic community.

The next important step for the inner model program seemed to be that of supercompact cardi-

nals, a large cardinal notion with consistency strength just above that of Woodin cardinals. Soon

after their discovery by Reinhardt and Solovay in 1978, supercompacts quickly proved extremely

important for a number of different set theoretic activities.51 For example, the existence of a super-

compact cardinal implies projective determinacy, giving a strong and natural completed theory of

the properties of well-behaved sets of real numbers.52 Additionally, the existence of a supercom-

pact implies determinacy for all sets in the inner model of ZF known as L(R), and therefore the

existence of a complete and well-behaved structure theory for L(R).53 The study of this structure

theory has in recent years became a remarkable source of progress for important results in descrip-

tive set theory. Additionally, supercompacts are useful objects for various forcing constructions,

enabling relative consistency proofs of a wide variety of strong hypothesis in set theory; while

many of these results were later altered to only require the assumption of infinitely many Woodins

with a measurable cardinal on top, supercompacts continue to be used to discover new consistency

results. Given their centrality for such a wide scope of contemporary research, it was natural to

hope for a canonical inner model of a supercompact as an important next step in the inner model

program.

51Though the theory of supercompacts was developed throughout the 1960’s, it only appeared in print in Solovay
et al. (1978). See Kanamori (2003) section 22 for an account of the history and basic mathematics of supercompact
cardinals.

52See Woodin (1988) and Martin and Steel (1989).
53See Welch (2015) and Koellner and Woodin (2010) for the mathematics behind this result. See Maddy (2011) pp.

47–51 and Koellner (2014) for analysis of the importance of determinacy in L(R) for the philosophy of set theory.
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Unfortunately, there seemed to be a number of serious obstacles to finding such a canonical inner

model of a supercompact cardinal. In particular, a number of the beneficial properties of L simply

could not possible hold true in the presence of a supercompact. First of all, as a direct implication

of projective determinacy, the existence of a supercompact cardinal meant that there could no

projectively definable well-ordering of the reals whatsoever, no matter how high the complexity.

Similarly, the ♦ and� anti-uniformity principles had been shown to fail given a supercompact, and

even the weaker �κ principles would fail class many times: in particular, �κ would fail whenever

κ was above some supercompact cardinal.54 As a result, it was generally expected that finding

any inner model of a single supercompact would require wholly new methods–if it even proved

possible!–and would then begin a new difficult process of expanding to inner models of more and

more supercompacts.

It was therefore extraordinarily surprising when W. Hugh Woodin discovered that, once the inner

model program had achieved the level of a single supercompact cardinal, there were would be no

need for a further development of inner models. To understand this result, we first need introduce

the notion of a weak extender model: a weak extender model for a supercompact cardinal δ not

only agrees with V that δ is supercompact, but requires it is exactly the same collection of measures

which witness the supercompactness of δ in both V and the weak extender model.55 Since being

a weak extender model consists in containing a collection of measures, with no necessary iterative

process to generate the objects, a weak extender model is an example of the “from above approach”

to inner models. Woodin discovered that any weak extender model of a supercomapct would in

fact already be an inner model of any known large cardinal notion whatsoever, provided those

large cardinals existed in V . In other words, once the inner model program solved the problem of

developing a weakly core model of a supercompact cardinal, there would be no need for any further

inner models to be developed. If this weakly core model could then inspire a canonical inner model

54Solovay (1974).
55See Woodin (2017) and especially section 3.1 of this dissertation for more on the current state-of-the-art of the

theory of weak extender models and Ult(L). Here, we give a brief, technically undemanding presentation of this
material.
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of a supercompact, then the inner model program would have found a genuine stopping point, with

no further development of inner models required. With this stunning result, the attention of many

practicing set theorists–including Woodin himself–turned to the prospect of developing just such

an inner model of a supercompact cardinal. Such an inner model–if it exists!–came to be known

as the ultimate version of L (henceforth Ult(L)).

As might well be expected given the history of inner models of weaker large cardinal assumptions,

the first step was to find a from above approach to an inner model of a supercompact. Woodin began

by developing an extremely rich and intricate theory of weak extender models of a supercompact

cardinal, showing that these models would have a number of highly tractable features; since Ult(L)

would eventually need to take the form of some type of weak extender model, these features would

also hold true of the eventual candidate for Ult(L). In searching for such a model, Woodin turned

his attention to an important notion in set theoretic research: ordinal definability. A set is ordinal

definable if it is definable with all of the ordinals permitted as parameters; it is then hereditarily

ordinal definable if it is itself ordinal definable, and each of its members is ordinal definable, and

each of the members of each of its members is ordinal definable, all the way down. Woodin

then proved that under certain conditions, the collection of all hereditarily ordinal definable sets

(henceforth HOD) would in fact be a weak extender model of a supercompact.56 As HOD is in a

certain sense the largest definable inner model, this seemed to Woodin to be an intuitive and natural

completion of the inner model program: starting with the smallest possible class sized inner model,

L, the need to permit study of large cardinals eventually pushed set theorists towards the largest

such model, HOD.

But in what ways is HOD an L-like inner model, assuming that it is in fact a weak extender model

for a supercomapct? Let us consider each of the six L-like properties in turn. For the first of these,

it is unclear–even under the assumption that HOD is a weak extender model–that HOD must be a

56In particular, this result requires the existence of an extendible cardinal and of a non-ω strongly measurable regular
cardinal in HOD. Under the assumption of the HOD hypothesis, only the former assumption is required. Again, see
Section 3.1 for more details.
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model of CH, let alone a model of the stronger GCH, and so HOD falls somewhat short of being

fully L-like on this count. Additionally, as mentioned above, the existence of a definable well-

ordering of the reals and the truth of many anti-uniformity properties must fail in the presence

of a supercompact, so the second and fourth L-like properties fail categorically to hold for HOD.

Additionally, HOD lacks even the generic absoluteness properties of the earlier canonical inner

models, with its make-up being wildly dependent on one’s particular background theory, and so

the third L-like property also completely fails to be true of HOD. Thus, each of the less important

L-like properties either fail outright for HOD or hold in only extremely restricted forms. But

what of the properties of coreness and canonicity that became the central goals of the inner model

program? To supply a weakly core inner model, there would need to be a weak covering theorem

provable for HOD: recent work on the so-called HOD dichotomy has shown that there is much

promise of such a result. As such, there seem to be good grounds for expecting HOD to supply a

weakly core model of a supercompact, though one lacking in many of the usual consequences of

core models.

With respect to the question of whether HOD can be considered a canonical inner model, unfortu-

nately there is much that is not yet known. Unlike L and the previous core models, HOD is entirely

defined from above, with no iterative procedure known for generating it in arbitrary circumstances.

Given that nothing resembling a fine structured approach for HOD is currently known, there sim-

ply is not a clear path to finding a canonical inner model of a supercompact. Additionally, given the

lack of typically L-like properties for HOD even under the assumption that it is a weak extender

model, it is unlikely that HOD itself could supply a canonical inner model of a supercompact car-

dinal. Instead, it is conjectured that there will be a canonical inner model contained closely within

HOD that is itself presented with a fine-structural approach: this would be Ult(L) itself.57 In this

way, HOD under strong large cardinal assumptions will represent a “from above” approach that

serves to lead the set-theoretic community to a more narrow “from below” definition of an inner

model, in much the same way that the discovery of L[U ] led to the discovery of K. Nonetheless,

57This is the Ult(L) conjecture. Again, see section 3.1 for more details.
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there are serious barriers to developing a fine structured approach to Ult(L), as Woodin has shown

that the method of iteration trees of extenders–used by Mitchell and Steel to develop the canonical

inner models of Woodin cardinals–cannot work in the context of a supercompact cardinal. One

must take care in how much significance is attributed to the current lack of a fine-structured ap-

proach, however: throughout the history of the inner model program, the previous methods for

developing fine structure for a particular level of large cardinals were found to fall short for the

next level, and a new method needed to be developed in each case, from the J hierarchy to mice

to current notions of extenders. For our current purposes, however, we must keep in mind that the

prospect of a canonical version of Ult(L) remains merely a promissary note, and a full evaluation

of the merits of this program will be conditional on the success or failure of this project.

Assuming for the moment, though, that this project develops in the most promising possible way,

we should note that even this would not in itself represent a conclusion to the inner model program:

given Jensen and his contemporaries had begun the development of canonical inner models in

hopes of finding an axiom candidate capable of reconciling the virtues of V=L with the extrinsic

need for large cardinal axioms, there would also need to be an axiom candidate arising from the

Ult(L) project. While one might expect that one could simply state V=Ult(L) directly, there no

obvious way of directly specifying this informal claim in the language of set theory.58 As a result,

a great deal of ingenuity will be required to find such an axiom candidate, if one is expressible

at all. Currently, there is an axiom proposed by Woodin and his colleagues. The proposed axiom

can be thought of as simply stating that there is a series of extender-like models of a new form

that closely approximate V .59 It is currently unknown whether this axiom candidate will suffice

for capturing the current “from above” approach to Ult(L), let alone the future projected “from

below” approach, and so remains open to significant potential future revision. Nonetheless, should

these efforts prove successful, the resulting axiom would supply the best known path for extending

58Recall that the axiom V=L is expressed through the claim that every set is constructible, which is itself expressible
in the language of ZFC as “every set is formed at some stage in the L hierarchy”. Lacking a similar “from below”
iterative procedure for Ult(L), the usual way of stating an inner model axiom is prevented, and no alternative method
has yet been conclusively found.

59This current best candidate is introduced and defined explicitly in section 3.1 below as “V =Ult(L).
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ZFC+LCs in a way to validate CH.

As a result, throughout this dissertation we will aim to give the inner model program as much

benefit of the doubt as possible. In particular, we will assume throughout that at the very least

some axiom is forthcoming, and we will accept Woodin’s various claims for what such an axiom

would imply. Using these assumptions about the eventual results of the Ult(L) program, we will

then seek to determine how this best-possible-case axiom compares to the alternatives. To see

these alternatives, we now turn to the development of a second program for finding new axioms

extending ZFC+LCs. While the inner model program developed out of considerations on Gödel’s

inner model method for proving the consistency of ZFC+CH, this program developed from con-

siderations of Cohen’s method for proving the consistency of ZFC+¬CH.

1.3 The Forcing Axiom Program

In Cohen’s original proof of the relative consistency of ¬CH for ZFC, he had utilized a particu-

lar forcing poset, corresponding to a particular kind of object to be constructed: a collection of

reals. As his methods in the proof came to be further studied, and the true strength and scope of

applicability of the method came to be seen, it was realized that this was just one among many pos-

sible types of objects that could be constructed through the forcing method. For example, Prikry

forcing was developed to allow the construction of cofinal sequences within a particular ordinal,60

which permitted Silver to show that the generalized continuum hypothesis–and the associated sin-

gular cardinal hypothesis–can first fail at a measurable cardinal.61 There thus developed a lively

research program in finding new methods of forcing and using them to prove more and more rela-

tive consistency results, thus making the possible consistent extensions of ZFC significantly more

60See Kanamori (2003) section 18 for a brief account of the Prikry forcing method, and the surprising ways it
enabled a fruitful extension of the theory of measurable cardinals: the below result is just one example of this.

61See Kanamori and Magidor (1978) section 25 for a detailed account of this result. Silver’s result was originally
presented in a draft entitled “G.C.H. and Large Cardinals”, which remained unpublished. Related results appear in the
much celebrated Silver (1975).
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clear.

One of these new methods of forcing was discovered by Solovay and Tennenbaum in 1971: the

method of iterated forcing, which in effect allows the simulation of an infinite series of forcings at

once. This method arose out of study of Suslin’s Hypothesis (henceforth SH), which posited that no

trees with a particular combinatorial collection of properties–so-called Suslin trees–exist.62 It had

already been shown through earlier applications of forcing that ¬SH was relatively consistent with

ZFC; one simply needed to use forcing to construct a Suslin tree. Attempts to force SH to be true,

though, faced a serious obstacle: while it was known that a single tree could be forced to be non-

Suslin, how could every possible tree be affected at once? Solovay and Tennenbaum first sought

to solve this problem by carrying out each of these forcings, one after the other. Unfortunately, in

addition to being an extremely tedious endeavor, it was unclear that such a method would work,

as it seemed quite possible that a later forcing in this chain would “undo” the effects of an earlier

forcing. By considering the entire chain of forcings as a single, massively complicated forcing

that made each possible tree fail to be Suslin at once, however, Solovay and Tennenbaum were

able to prove that none of the later forcings in the chain could make an earlier tree be Suslin; the

important property of the individual Suslin forcings that enabled this result was that they satisfied

many of the so-called κ-chain conditions. Thus, using this new method of iteration, they proved

that ¬SH was consistent with ZFC, showing the independence of SH and solving a long-standing

open question in combinatorial set theory.

Reflecting on the new methods used in this proof, Martin realized that a single principle, if as-

sumed, could do much of the work done through the iteration of forcings in Solovay and Ten-

nebaum’s result. This key principle was the assumption that for any forcing poset that satisfied the

countable chain condition–the weakest of the κ chain conditions–would have an already existing

completed generic object satisfying any choice of ℵ1 precise mathematical properties–henceforth,

we will refer to properties as dense sets, with this being their mathematical guise in the context

62Solovay and Tennenbaum (1971). See also Jech (2003) Theorem 15.23 and Theorem 16.16.
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of forcing.63 This principle, now known as MA(ℵ1), was found by Martin to be very strong, im-

plying directly, for example, that CH is false; by assuming this powerful principle, however, one

could avoid the need to engage in any of the difficult technical minutiae associated with the iterated

forcing method, and simply prove the relative consistency of SH outright. Furthermore, Solovay

and Tennebaum’s original proof already constituted a proof of the consistency of MA(ℵ1) relative

to ZFC, so there was no additional amount of risk in assuming the principle. In the interest of

separating out the useful technical applications of the principle from the strong consequences such

as ¬CH, Martin and Solovay began studying the consequences of a slightly modified principle:

namely, that any forcing poset that satisfied the countable chain condition would have an already

existing completed generic object satisfying any choice of κ dense sets, where κ is any cardinal

below 2ℵ0 . This principle had already been shown to be consistent relative to ZFC+¬CH, and was

immediately seen to be directly implied by ZFC+CH, and so was seen as a safe addition to most

base theories then under consideration.64 This new principle became known as Martin’s Axiom

(henceforth, MA).

Calling MA an axiom at this time was, however, a bit of a misnomer: even as they introduced

it, Martin and Solovay explicitly did not consider it a serious candidate for extending any theory

of sets, referring to it as an axiom only within quotation marks!65 Instead, it was used mainly as

a convenient technical device to simplify the proofs of a wide variety of results arising from the

method of iterated forcing. In practice, one would often first prove a result from the assumptions

of ZFC+MA–requiring no actual applications of the forcing method whatsoever–followed by a

more difficult and technically tedious proof of the result from the assumption of ZFC+¬MA. In

this way, one could prove an independence result for some set theoretic statement from ZFC by

first developing a proof for the simpler case, and then using this proof as a guide for the more

complicated forcing result required for the remaining case. Through this method of dividing a

63See Martin and Solovay (1970) for the classical presentation of this principle and its paradigmatic consequences.
See Jech (2003) Ch. 16 and Kunen (2011) sections III.3 and III.4 for more contemporary presentations.

64In fact, ZFC+¬MA was found to be consistent relative to ZFC+2ℵ0 = κ for any possible consistent choice of κ.
65Martin and Solovay (1970) p. 144: “We are then very much in need of an alternative to CH. The aim of this paper

is to consider one such alternative. We introduce an “axiom” A...”
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result into a forcing-free component and only then a more difficult subsequent result, MA served

primarily as an organizing principle for directing research into the independent questions of set

theory throughout the 1970’s. As this work progressed, it was noted that much of the power of MA

as a technical tool came from its ability to add some structure to the relatively open-ended theory

ZFC+¬CH;66 nonetheless, it remained a mere technical device throughout the decade instead of a

genuine axiom candidate.

Given the significant technical benefits of working from ZFC+MA, the question naturally arose

of whether there could be further, similar principles to permit even wider applications of the sim-

plifying proof strategy. The obvious place to look towards when searching for a generalization of

MA was the restriction to only considering forcing posets satisfying the countable chain condition

(henceforth, ccc). It was already known in 1971 that this requirement could not consistently be

dropped outright, but perhaps it could be replaced with a less-strict property. In effect, the way

the limitation to ccc posets avoided this contradiction was due to the iterability of the property: if

every forcing poset in an iterated chain is ccc, then so will be the iterated forcing considered in

itself. This iterability property implied, amongst other beneficial features, that ℵ1 would remain

untouched by the long chain of forcings, and thus that much of the basic structure of the small car-

dinals in the base model would be preserved in the forcing extension. Since this iterability property

is what directly enabled the simplifying of iterated forcing in the case of MA, much attention then

turned to the development of broader collections of forcing posets that could nonetheless be shown

to iterate suitably.

In 1982, Shelah was able to find just such a broader class of posets: drawing on work in the study of

the combinatorial properties of stationary sets of ordinals by Jech and Kueker, Shelah introduced

the class of proper forcing posets.67 Roughly speaking, a forcing poset is proper if its forcing

66This approach, of using MA as a work-around for the weakness of the theory ZFC +¬CH, is explicit even in
Martin and Solovay’s original work on the axiom. See Martin and Solovay (1970) p. 143: “if we reject CH we admit
ourselves to be in a state of ignorance about a great many questions which CH resolves. While CH is a powerful
assumption, its negation is in many ways quite weak”.

67The original presentation of the theory of proper forcing is in Shelah (1982), with a more mature presentation
found in Shelah (1998). See Kunen (2011) section V.7 and Abraham (2010) for contemporary presentations.
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extensions must preserve stationary collections of countable subsets of ordinals: that is, the forcing

must keep big collections of subsets of ordinals big. By requiring such a preservation condition,

Shelah was able to enforce that the structure of the small cardinals in the forcing extension would

reasonably resemble that of the ground model. As a direct result of this fact, Shelah was able to

prove a iteration theorem for proper forcings in direct parallel to the one that Martin and Solovay

had developed for ccc forcings.68 Furthermore, it was shown that every ccc forcing was already a

proper forcing, and so Shelah’s property was a generalization of the ccc property. While Shelah

briefly considers a generalization of MA to all proper posets, the idea of such an axiom is quickly

put aside in Shelah’s own work; instead, his focus in primarily on using the new iteration theorem

to prove a bevy of new results in infinitary combinatorics.

It is only later, in 1984, that the prospect of such an extension of the axiom MA is seriously

considered by Baumgartner.69 Recall that MA asserts the existence of generics for collections

of dense sets of any size below that of the continuum. In contrast, Baumgartner noted that the

only non-trivial and consistent extension of MA to proper forcing posets was when one considered

collections of exactly ℵ1 many precise dense sets that would be required to hold for the generic.

With this in mind, Baumgartner introduced the axiom PFA: for any proper poset and any collection

of ℵ1 many dense sets, there exists a generic set on the poset hitting each of the dense sets.

Baumgartner then proceeded to study its consequences, hoping to evaluate the feasibility of using

PFA as a technical device in a similar manner to the original MA.

Baumgartner’s first discovery was that PFA had a massive extent of consequences, well beyond

those following from MA, or even MA(ℵ1). While it was well expected that PFA would have

meaningful applications beyond MA–after all, the former was a direct extension of the latter to

a wider span of cases–the sheer breadth of these applications took the set theoretic community

by surprise. Baumgartner soon discovered the underlying reason for PFA’s surprising amount of

power: while MA was consistent relative to ZFC, and therefore contained no hidden large cardinal

68See Abraham (2010) Section 2 for the now standard presentation of this result.
69Baumgartner (1984).
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strength, PFA could only be shown the be consistent relative to a supercompact cardinal! While

the precise amount of large cardinal strength implied by PFA was then–as it remains today70–

unknown, it was widely conjectured that PFA would in fact end up implying the consistency of a

supercompact. Thus, PFA represented a far riskier and more substantial potential assumption than

its inspiration, MA.

Most of the consequences of PFA elaborated by Baumgartner related to rather obscure questions in

combinatorial set theory or the application of fairly intricate iterations of complex forcings, so little

attention was immediately turned to PFA as an axiom candidate. This lack of serious consideration

remained true until the very end of the decade, when Todorčević began studying the open coloring

axiom (henceforth, OCA).71 The OCA was originally developed as a natural extension of notions

of colorings from graph theory to continuum sized graphs, stating that any such graph either has

a particular sort of coloring or a uncountable clique. Todorčević was able to make use of this

axiom to derive a number of important consequences for the structure of the infinite cardinals–in

particular, the relative orderliness of regular uncountable cardinals. In addition, Todorčević found

that OCA implied that CH failed in a particular way: under OCA, 2ℵ0 = ℵ2, and so the continuum

is as small as it could possibly be without CH being true. Such a size for the continuum was not

widely seen as very plausible at this time; if CH was false, it was often said, it would be wildly

false, allowing for a wide scope of interesting behavior of the many uncountable cardinals below

the size of the continuum. A major stopping-block for the large continuum program, however,

was the lack of a clear axiom that would imply a large continuum in a non-artificial way. In

1989, however, Todorčević proved that PFA implied OCA, and therefore implied ¬CH; with this

discovery, a naturally arising axiom candidate for ¬CH had been discovered. Since this axiom

provided for a “small” continuum, with Todorčević’s proof the focus of research on ¬CH began to

70It has been shown that the consistency strength of PFA is somewhere between a supercompact and the existence
of an inner model of a single Woodin cardinal, but the precise strength has not been calibrated. While there is much
speculation as to how this will turn out, in general it is expected to be on the higher end of this spectrum, at least
implying the consistency of infinitely many Woodins with a measurable above.

71See Todorčević (1989) for the original presentation and development of his OCA principle. Note that this principle
is distinct from Abraham and Shelah’s earlier OCA principle: the exact relationship between these two principles is
still somewhat of an open question. Throughout this dissertation, we use OCA to refer to Todorčević’s version of OCA.
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shift away from the supposed large values for the continuum.

The importance of this event is quite hard to overstate: while the inner model program had provided

axiom candidates implying the truth of CH, it is only with the discovery of PFA’s consequences for

the size of the continuum that proponents of ¬CH had a parallel axiom to defend. It is only at this

point that forcing axioms start to become considered as serious axiom candidates, and not mere

technical conveniences to be used as part of a proof strategy for deriving independence results.

Todorčević then continued to develop throughout the 1990’s a full picture of the consequences

of ZFC+PFA, often using OCA as a useful intermediate principle in proofs.72 In many cases,

including that of ¬CH itself, the consequences of PFA are seen to be precisely the opposite of those

associated with the inner model program. Of particular relevance for our concerns, Todorčević

head earlier proved that PFA implies ¬�κ for all uncountable κ, as well as the negations of each

of the other anti-uniformity properties associated with L.73 Despite these developments, work with

PFA proves quite difficult, and progress in developing a complete picture of the resulting theory

remains slow-going.

As Todorčević’s research program progressed, a concurrent development in the study of forcing

axioms occurs through Shelah’s study of iteration theorems that would have a marked effect on

the consideration of forcing axioms as genuine axiom candidates. Due to the great difficulties

of working with forcing posets that could not be iterated without collapsing ℵ1, Shelah sought

to extend his iteration theorem from proper forcing posets to even wider classes of forcings; by

isolating the safely iterable classes of forcing posets, Shelah sought to focus attention on the types

of forcing that would prove more tractable. In 1988, working towards this goal, Foreman, Magidor,

and Shelah isolated the notion of a stationary-set preserving (henceforth, ssp) notion of forcing:

roughly, a forcing poset is ssp if every large subset of ℵ1 in the ground model must remain large

in any forcing extension through the poset.74 Since every proper forcing poset must be ssp, the

72See Todorcevic (2014) for Todorčević’s own course notes summarizing the key developments during this period.
73Todorčević (1984)
74Foreman et al. (1988). See Jech (2003) Ch. 37 for a contemporary presentation of the main results from this work.
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trio noted that this represented a further generalization of the class of ccc posets. By replacing

the concept of a proper forcing in the statement of PFA with that of a ssp forcing, a new axiom

candidate was discovered; since Foreman, Magidor, and Shelah proved that no further extension

of the class of forcings under consideration could be consistent–in particular, even extending the

class of ssp forcings by a single additional forcing poset would generate a contradiction–this axiom

became known as Martin’s Maximum (henceforth, MM). With the formulation of MM, a strict

upper limit to the program of developing generalizations of MA had been found.

In the 1988 paper first introducing the axiom, Foreman, Magidor, and Shelah also go on to develop

a rich portrait of the consequences of MM. Since MM directly implies PFA, it was immediately

known that it implied all of Baumgartner’s consequences for applications of forcing and infinity

combinatorics; additionally, Foreman, Magidor, and Shelah were able to show that MM implies

2ℵ0 = ℵ2, using different methods from those used in Todorčević’s earlier proof. Beyond the

features of PFA, the trio proved that MM had even stronger consequences for the structure of

regular cardinals than PFA, and that a bevy of reflection properties would be true of large cardinals

under the assumption of MM. In this way, the consequences of MM were found to go beyond

those of PFA, but to a much less significant extent than had been seen for PFA and MA; this fact

was soon explained by the relative consistency proof of MM from the existence of a supercompact

cardinal, showing that MM did not contain much–if any–large cardinal strength beyond that of

PFA. The closeness of these two axioms was further elaborated by Todorčević in the early 1990’s,

as he was able to successfully weaken the assumption in many of Foreman, Magidor, and Shelah’s

proofs from MM to just PFA. As a result, Todorčević’s studies into the potential justifications of

PFA as an axiom candidate and the further study of the consequences of MM began to coalesce

into a single unified research program of the applications of forcing axioms.75

Besides these three standard forcing axioms, a number of ways for developing additional so-called

75Of the initial group of mathematicians working on strong forcing axioms, it is not entirely clear who became
proponents of their adoption as extensions of ZFC+LCs. While Todorčević and Magidor explicitly argue for their
justification, the remaining three–Baumgartner, Foreman, and Shelah–stay focused on their applications as technical
tools to simplify proofs of independence results, primarily through applications of the associated iteration theorem.
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forcing axioms have been developed. These efforts broadly fall into three main types. First, a wide

variety of set theorists have considered weakenings of PFA and MM, such as the bounded versions

of these axioms; the goal in studying these axioms is to more precisely calibrate the strength of

assumption required to prove each of the canonical consequences of the standard forcing axioms.76

As a result, this program amounts to more of a technical analyses of the standard forcing axioms,

and not a genuine alternative. Secondly, there are the direct extensions of the standard forcing

axioms, such as MM+ or MM++, which increase the strength of either PFA or MM by adding ad-

ditional requirements for the generic objects that the standard forcing axioms guarantee will exist;

as straight-forward strengthenings of the standard forcing axioms, any account of their justification

will rely on a prior account of the justification of PFA and MM.77 Finally, there is the axiom (?)

proposed by Woodin before his work in the inner model program; though this axiom is sometimes

called a forcing axiom, its statement and history is wholly separate from the research tradition de-

scribed above, and relies on a separate justificatory story.78 Additionally, it is not yet clear whether

(?) is implied by or even equivalent to some suitably defined strengthening of MM.79 In the ab-

sence of clarity on these mathematical questions, and noting the strong differences between the

arguments for (?) and for traditional forcing axioms, for the purposes of this dissertation we will

consider (?) to be a separate entity from the broader family of standard forcing axioms. For these

reasons, this dissertation will focus primarily on the three standard forcing axioms: MA, PFA, and

MM. Unless explicitly noted otherwise, the term ‘forcing axiom’ will henceforth refer to just these

three axiom candidates.
76The study of these weakened versions of forcing axioms begins in earnest with Goldstern and Shelah (1995). See

also Moore (2005) and Caicedo and Veličković (2006) for important recent examples of this field of research.
77These strengthenings are originally introduced in Foreman et al. (1988). See Viale (2016) for a standard example

of the use of these stronger axioms in the study of forcing axioms. It is worth noting that these stronger axioms are
in fact quite close to the original counterparts: for example, the standard forcing construction used in Foreman et al.
(1988) to prove the consistency of MM in fact generates a model of MM++. It is not yet entirely clear to what extent
these alternative axioms are genuinely more powerful than MM.

78See Woodin (2010a) for the standard presentation of this material.
79See the axiom MM++? introduced in Schindler (2017) for a recent attempt to find a strengthening of MM capable

of encapsulating (?). See Magidor (2012) Conjecture 6.8 and surrounding discussion for reasons for believing (?)
may already be implied by a MM++.
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1.4 How to Settle This Dispute?

Out of these two distinct research programs have developed two starkly contrasting approaches for

extending the theory ZFC+LCs. On the one hand, implying the truth of CH, there is the inner model

program, which arose out of a purposeful search for an axiom capable of reconciling the ability of

V = L to serve as a compete answer to the traditional questions of set theory with the mathematical

desirability of the large cardinal axioms. On the other hand, implying the falsity of CH, there is

the forcing axiom program, which was initially developed as a mere technical convenience for the

use of certain forcing methods, and to organize proof efforts for a wide variety of results, only

comparatively lately being considered as a candidate extension of ZFC+LCs. Since the two axiom

programs differ in their resolution of the question of CH, they cannot be jointly accepted. Thus,

the methodological question immediately arises: how can the set theoretic community properly

decide between them? Stated more generally: on what basis can one axiom candidate be justifiably

preferred over another?

One place one might look for help in settling this dispute would be the methodological notion of

maximize. Roughly put, the maxim of ‘maximize’ urges that, since a fundamental mathematical

goal of set theory is to serve as a suitable foundation for classical and contemporary mathematics,

one should prefer axioms which lead to as wide-ranging and well-populated of domain of sets as

possible. The notion of ‘maximize’ has motivated past cases of successful axiom selection by the

mathematical community, as argued by Maddy in her Naturalism in Mathematics regarding the

choice between V = L and the existence of measurable cardinals, and so we might naturally hope

that it would also serve to adjudicate the current dispute between axiom candidates. Furthermore,

the informal notion of ‘maximize’ has already played a significant role in the dispute between

forcing axioms and the inner model program: ironically, advocates of both approaches seek to

defend their preferred axiom candidates through maximization considerations.80 Given this track

80For the former, see Magidor’s EFI talk, especially Magidor (2012) pp. 15-16. For the latter, see Koellner (2017)
section 3.3 and the forthcoming paper on this material by Koellner and Woodin. Interestingly, in his PhD thesis,
Koellner advocates for Woodin’s (?) axiom on maximization grounds (see Koellner (2003), p. 94); with the elaboration
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record of past success, as well as its importance to key figures in the current debate, we will seek

to apply the notion of ‘maximize’ to illuminate, and potentially help settle, the current dispute

between forcing axioms and the inner model program.

In order to sort out the use of maximization considerations by advocates of incompatible method-

ological programs, however, we will first need to become more clear regarding what ‘maximize’

entails, and how to apply it in concrete circumstances. For this reason, in the next chapter we

will consider the motivations for ‘maximize’–both intrinsic and extrinsic–, as well as considering

how to best formally explicate the informal notion. By so doing, we will aim to develop a pre-

cise methodological tool capable of being put to work in comparing particular axiom candidates.

Then, in the third chapter, we will return to the two axioms programs, seeking to apply our formal

explication to the current dispute directly.

of the Ult(L) project, however, Koellner came to believe that these arguments were in fact fundamentally misguided.
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Chapter 2

Axiom Selection and the Maxim of

‘Maximize’

In this chapter, we will introduce and examine one particular methodological maxim particularly

relevant to past cases of axiom selection: maximize. Among the goals of set theory as a math-

ematical discipline Maddy identifies MAXIMIZE and UNIFY. Given these two important goals,

one should seek axiom systems that avoid any unnecessary restrictions on what kinds of objects

can exist.1 One very informal gloss on this idea is that if a useful mathematical object can ex-

ist, we should prefer axiom systems that imply its existence. Unfortunately, this gloss fails to be

applicable in practice, as we frequently face trade-offs between what sets can exist in different

axiom systems: for example, is it maximizing to have an axiom system with many different non-

isomorphic types of unbounded, dense, complete orderings (and so where Suslin’s hypothesis is

false) or one with as many bijections between such orderings as possible (and so where Suslin’s

hypothesis is true). To settle concrete cases of axiom selection with ‘maximize’, we will find it

necessary to shift to a more formal approach; the key question of this chapter will be which formal

explication is best able to capture the motivations behind the informal maxim of ‘maximize’.

1See Maddy (1997) pp. 208–212.
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To begin, we introduce the informal motivation for maximization as serving the distinct mathe-

matical goals of set theory, relying heavily on Maddy’s Naturalism in Mathematics.2 With this

background in place, we will then introduce her formal explication of maximization from that

same work, comparing it to another formal account of maximization first presented by Steel in

2004 and later further elaborated in Steel’s “Gödel’s Program”.3 I will consider how well each

formal explication ties into the methodological motivations behind “maximize”, noting a few ways

that Maddy’s definition seems to more directly capture these motivations. Finally, I will consider

a note a hitherto unnoticed feature of Maddy’s formal notion when applied to strong theories ex-

tending ZFC which will make it somewhat easier to later apply this tool to the theories introduced

in section 1.

2.1 ‘Maximize’ as a Methodological Maxim

As detailed in the previous chapter, one essential element of set-theoretic practice since the dis-

covery of the independence of CH has been axiom selection: finding candidates for new axioms

to extend ZFC and determining ways to justify these candidates, thereby deciding between them.

Given that historic and contemporary set theorists have given serious effort to justifying preferred

axiom candidates, any successful methodology of set theory would need to come to terms with and

evaluate the efficacy of these efforts. This is an especially salient question for current philosoph-

ical attempts to study set theory given the presence of two well-developed but mutually exclusive

programs for developing new axioms: the inner model program and the forcing axioms program.

So the questions arises: how do set theorists attempt to adjudicate between axiom candidates, and

how should they do so?

In her Naturalism in Mathematics, Maddy begins by considering one of the goals of set theory

2Maddy (1997)
3See Steel (2004) for an early presentation of this approach to ‘maximize’. See Steel (2014) for a later development

of this material, esp. pp. 165.
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as a mathematical discipline, namely providing a foundation for classical mathematics. She notes

that achieving this goal requires following two fundamental maxims: maximize and unify.4 ‘Max-

imize’ ensures that the domain of mathematical objects is as generous possible: “if set theory is

to play the hoped-for foundational role, then set theory should not impose any limitations of its

own: the set theoretic arena in which mathematics is to be modeled should be as generous as pos-

sible; the set theoretic axioms from which mathematical theorems are to be proved should be as

powerful and fruitful as possible. Thus, the goal of founding mathematics without encumbering

it generates the methodological admonition to MAXIMIZE”.5 In addition, UNIFY ensures that

there is a single comprehensive theory of sets, enabling all the objects and methods of classical

mathematics to be studied together.6 Combining these two maxims, we find that the aim is to find

a theory which provides “a single arena where all the various structures in all the various branches

[of math] can co-exist side-by-side, where their interrelations can be studied” and a standard for

“what counts as proof”.7 In playing these roles, set theory aims to provide a domain of objects

that includes everything that could fall under serious mathematical study, and avoids curtailing any

area of study in pure mathematics. For example, Maddy argues that the axiom of a measurable

cardinal implies the existence of 0], a well-motivated object of mathematical inquiry, while V = L

blocks the existence of this set, and so curtails interesting mathematical work.8 For this reason,

maximize counts against the acceptance of V=L.

It is worthwhile to be clear on the precise nature of the justification of ‘maximize’ from these

foundational goals. The foundational goals are justified by Maddy on firmly extrinsic grounds,

4Maddy (1997), p. 208
5Maddy (1997) pp. 210–211.
6While unify is an important methodological principle in its own right, this dissertation will focus primarily on

maximize. For this reason, we will mostly set unify to the side, and instead focus on the effects of maximize on the
current debate in axiom selection.

7Maddy (2016) p. 16, 15. As Maddy notes, it is not obvious that maximize and unify can both be satisfied: for
example, it might turn out that “ZFC can be extended in a number of incompatible ways... and that no mathematically
defensible considerations allow us to choose between them” (Maddy (1997) pp. 211–212). In such a case, we might
instead turn to a multiverse approach to set theory. For the purposes of this work, we will focus on possible ways we
might reconcile maximize and unify, and therefore will not consider multiverse approaches; see Maddy and Meadows
(Frth) for more on how multiverse approaches fit into this view of set theory.

8See footnote 8 below.
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through their ability to enable fruitful mathematical research by providing a single mathematical

domain where one can study and compare the multitude of mathematical objects under considera-

tion by the varied disciplines of contemporary mathematics. Considering these goals, Maddy notes

that a notion of ‘maximize’ provides the most effective means of achieving the foundational goal:

but this is simply a case of means/ends reasoning as found throughout scientific inquiry. ‘Maxi-

mize’ is thereby able to attain the extrinsic justification of the foundational goals, representing the

methodological means for attaining them in practice.

In Naturalism in Mathematics, Maddy puts this methodological principle to work in considering

the case of V=L and the existence of measurable cardinals, aiming to assess the rationality of the

arguments leading set theorists to reject V=L as an axiom candidate on the basis of the mathemat-

ical goals of set theory.9 As a rough (and very simplified) outline of this argument, Maddy notes

that ’maximize’ encourages that an axiom candidate leading to the existence of some interesting

mathematical objects should be preferred over an alternative candidate, provided that the former

doesn’t require giving up interesting mathematical content of the latter. The existence of a mea-

surable cardinal implies the existence of non-constructible sets, and in particular the large cardinal

0], which conflicts with the axiom V=L. In fact, Maddy shows that V=L cannot even contain any

object with the same isomorphism type as 0]. Since this would curtail the use of the large car-

dinal hierarchy as a measure of consistency strength, as well as blocking the fruitful study of the

higher large cardinal axioms, Maddy concludes that maximize counts against the acceptance of

V=L. Finally, she notes there the axiom of a measurable cardinal does not require forgoing any

of the mathematical benefits of working in ZFC+V=L, as L itself provides an interpretation of

the theory that even a V=L proponent would have to accept as fair. Thus, Maddy concludes that

’maximize’–properly understood–is able to justify the set theoretic community’s rejection of V=L.

Throughout this chapter and the next we will focus solely on the maxim of ‘maximize’ as a tool for

9See Maddy (1997) pp. 212-15 for an abbreviated outline of this argument; see Maddy (1997) pp. 216-32 for
the argument in full technical detail. We will introduce much of Maddy’s formal tools used in this argument in the
subsequent section of this chapter.
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settling disputes in axiom selection. This is not to ignore that there are potentially other maxims

that might be put to work in settling the current dispute between the inner model and forcing

axiom programs. Nonetheless, ‘maximize’ is both rationally supported by the aims of set theory

and justifies previous historically successful instances of extending ZFC. Thus, it is the obvious

first method to be used in future instances of incompatible but desirable axioms. As a result, for

the remainder of this chapter we will simply explore the best approach to ‘maximize’ in general,

and in the next we will seek to apply it directly to the current axiom candidates; we will postpone

any discussion of alternative methods of adjudicating this dispute to the final chapter of this work.

Applied to the axiom candidates from the previous chapter, the maxim of ‘maximize’ tells us

we should ask whether strong forcing axioms or the presumed axiom candidate for V = Ult(L)

provide for the existence of objects or proof methods that can’t exist under the alternative axiom.

Given Maddy’s case for the measurable cardinal axiom over the inner model axiom V = L, and the

fact that this case can be extended for any inner model axiom below the level of a supercompact

cardinal, one might initially expect maximize to immediately support forcing axioms on the same

grounds. Note, however, that these previous arguments rely on the existence of a particular type

of object, namely a sharp that cannot be contained in the relevant inner model. The possible

existence of such a sharp-like-notion is referred to as a anti-inner model theorem. By Woodin’s

result regarding inner models for supercompacts, however, there is no anti-inner model theorem at

this level, and therefore there cannot be the equivalent of a sharp for Ult(L). Thus, any case against

Ult(L) on the grounds of the ‘maximize’ maxim will have to be distinct from these previous cases

of axiom selection; the question of which axiom is to be preferred on these grounds is therefore

genuinely open at the outset.
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2.2 Two Notions of Maximize

In looking to use a formal explication of ‘maximize’ in the current axiom selection debate,10 we

note that there are already two well-developed formal accounts in the extant literature.11 On the

one hand, we have Steel’s version of maximization, which claims that a maximizing theory is

one which is able to interpret any more restrictive theories, so that no content of the restrictive

theories are lost.12 On the other hand, we have Maddy’s original explication of ‘maximize’, which

claims that this is merely a necessary, but not sufficient, condition for maximizing; beyond failing

to lose any content, a maximizing theory must offer some genuinely new mathematical content. In

particular, Maddy’s account also requires that there is some object in the maximizing theory that

10Some will find the task of finding a formal explication for such a central methodological notion to a hopeless
task, fearing that any such precise counterpart will be doomed to supporting obviously unacceptable theories (false
positives) and will miss other cases where a theory does intuitively maximize over another (false negatives). Maddy
directly considers such problematic “dud” theories which meet the formal criteria for maximizing over a desirable
theory can be artificially generated for a wide family of desirable theories (Maddy (1997), pp. 229–31). In order to
deal with these issues, we will follow Maddy’s lead and informally restrict the scope of the notions of ‘maximize’
under consideration to theories which are genuine contenders for a strong theory of sets, considering only “natural
theories”. Note that both formal accounts we will consider below require this move, so any concerns with the notion
of “natural theories” apply to all parties in the debate over the correct formal understanding of ‘maximize’. For this
reason, we will put this issue to the side, accepting the standard restriction of theories under considerations: for our
purposes, we simply note that both ZFC+LCs+V=Ult(L) ZFC+LCs+MM are natural theories. Lacking a more firm
criteria for “naturalness”, we will use the informal guideline proposed by Steel: a natural theory should be a theory that
is seriously proposed and considered by practicing set-theorists for its mathematical merits. See Steel (2014) Sections
2 and 3 for his treatment of “naturalness”.

11Beyond the two accounts that we will consider in this chapter, there are also more overtly syntactic approaches
to maximize. A particular syntactic approach will outline a particular class of sentences that are seen as particularly
important for set theoretic purposes, and evaluate the maximizing potential by the extent to which they can make
sentences in that class true. For example, Woodin’s defense of the axiom (?) argues that it is maximizing because it
makes every Π2 sentence in the language L = {∈, INS,A}–for a non-stationary ideal INS and A∈ P (R)∩L(R)–applied
to the structure H(ω2) true, provided that sentence can be made true through forcing methods (see Woodin (2010a),
especially ch. 5, for an in-depth articulation of this material). Nonetheless, a fully general account of such a syntactic
version of ‘maximize’ has not been developed, and so it is unclear how to apply such account to the current or future
axiom selection debates. Additionally, it is unclear that such an account would tie into the justifications for ‘maximize’
discussed above, as the ability of a theory to ensure a wide variety of interesting set theoretic objects does not seem
to be directly furthered by focusing on making sentences in some intricately-defined syntactic class true; thus, there
would seemingly need to be a separate defense of any syntactic version of maximize. For these reasons, we will not
give further consideration to such syntactic accounts in this dissertation.

12We will refer to this account as Steel Maximization, as it’s basis is presented and defended in Steel (2004), and
then further developed in Steel (2014). Similar accounts seem to be suggested less clearly in other places in the
literature, however: of particular relevance, a similar approach to maximization seems to play a role in Koellner’s
“envelope perspective” defense of CH against Todorčević’s compactness style objections: see Koellner (2017). As
the clearest account of such a consistency strength style approach to maximization, however, we will focus on Steel’s
particular account throughout the next two chapters. As these alternative accounts appear to be fairly similar to Steel’s
version, however, we can use that account as a proxy for all such approaches to ‘maximize’.
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cannot be properly represented in any of the more restrictive theories.

The central idea behind Steel’s approach is that many different, even incompatible theories are

all of genuine mathematical interest, and can be fruitfully studied for various mathematical pur-

poses. Perhaps the clearest example of this is with the trade-off between the axiom of choice and

determinacy axiom; since Zermelo, choice has been recognized as essential for a broad swathe of

work in core mathematics, and so plainly necessary for any good foundational theory,13 and yet

there have been many mathematical benefits of studying the consequences of determinacy axioms

in restricted inner models of V .14 Given the utility of studying rejected theories, a maximizing

theory should avoid curtailing any of this well-motivated math, and so must provide domains for

the theories which are more restrictive but still worthy of sustained development. In more plain

terms, this means that a maximizing theory should prove the existence of some interpretation of a

more restrictive theory. In this case, we do not face a genuine trade-off between the two theories,

as the maximizing theory permits the exploration of the other within this interpretation, and so

nothing is lost in shifting to the maximizing theory. Given that one theory proves the existence of

an interpretation of another just in case it is of (weakly) greater consistency strength, we will refer

to Steel’s approach to ‘maximize’ as a consistency strength approach.15

As Steel explains it, the central guideline underlying axiom selection is “to maximize interpretive

power, to provide a language and theory in which all mathematics, of today, and of the future so

far as we can anticipate it today, can be developed”.16 Motivating the restriction of interpretations

under consideration is the idea that it is not enough to interpret a more-restrictive theory in some

roundabout way; instead, the interpretation and the candidate for V must “agree” on the meanings

of the relevant set theoretic vocabularly, so that the interpretation can “preserve their meaning”.17

13See Moore (1982) and Section 1.1 above.
14See Maddy (1988b) Section 5.
15Note that this is not to imply that all there is to this approach is a guideline to choose the theory with the greatest

consistency strength. As will be seen, Steel’s restriction to “meaning-preserving interpretations” goes beyond this
minimal requirement.

16Steel (2014) p. 165.
17Steel (2014) p. 165.
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While it is not entirely clear what makes an interpretation “meaning preserving”–and in particular

how such interpretations might tie into a broader theory of meaning–Steel suggests as a rough

sketch that it is those models which are “inner models of generic extensions of models satisfying

some large cardinal hypothesis”: on these grounds, we will define the S-fair interpretations as those

which can be generated through iterations of the processes of taking definable inner models and

generating forcing extensions.18 We will call this methodological approach Steel-Maximization

(S-Max for short).

On this basis, we define a theory T ′ weakly S-maximizing over a theory T 19 as follows:

T ES T ′ iff there is some ϕ(x) st i). for all σ ∈ T T ′ ` σϕ,

and ii). T ′ proves that ϕ is S-fair.20

We will define a theory T ′ strongly S-maximizing over a theory T just in case T ′ weakly S-

maximizes over T , but T does not weakly S-maximize over T ′.

Maddy’s approach as articulated in Naturalism in Mathematics can be understood as rationally

starting from such a consistency type approach, with the existence of a “fair” interpretation being

a necessary but not sufficient condition for a theory to be maximal. For Maddy, an interpretation

is “fair” just in case it is a definable inner model of the base theory;21 in contrast to the S-fair

interpretations, we will use the term M-fair interpretations to describe this class. Beyond merely

18Steel (2014) p. 165.
19Given that the actual theories we wish to apply the notion of ‘maximize’ to are all extensions of ZFC, throughout

our formal account of maximize, any theories T and T ′ will be assumed to be extensions of ZFC. Unless explicitly
specified, assume any reference to general theories T and T ′ include at least these axioms.

20For the our purposes we will leave the notions of an “forcing extension model” included in the conception of
an S-fair interpretation vague; Steel does not attempt to formally specify this notion. It suffices to note that any set-
forcing poset which provably exists in T ′ and which is capable of forcing a theory T will count as providing an S-fair
interpretation of T within T ′.

21See Maddy (1997) pp. 220–221. Note that Maddy understands “inner model” in a slightly nonstandard way. In
particular, an inner model includes both class sized transitive models of ZFC and the various Vκ’s for κ an inaccessible
cardinal. Throughout our discussion of maximization, “inner model” will instead be understood in the more typical
way, including only class sized transitive models. We will suppress the inclusion of set sized models as “inner models”
since nothing hangs on this difference in the context of considering the case of the inner model program and forcing
axioms, and the suppression will enable a more direct comparison of the two formal approaches to ‘maximize’.
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having such an interpretation, however, Maddy’s version of maximize demands that there also is a

genuine mathematical benefit to accepting the maximizing theory. That is, there must be something

of mathematical interest that is supplied by the maximizing theory that cannot be found within the

original theory. In particular, there should be a pair (X ,R) such that no object in the interpretation

of the restrictive theory can have any pair (Y,S) that is isomorphic to (X ,R).22 Given that not

all isomorphism types are equally of mathematical interest, we also intend that this isomorphism

type be mathematically relevant: this is to exclude such objects as odd Gödel codings that have no

appeal to practicing mathematicians, and so their existence does not present a genuine advantage

for a theory. Unfortunately, there is no clear way to formalize the notion of “genuine mathematical

interest”, and given that a suitable foundation should aim to provide all the necessary objects

for the future development of mathematics, it is desirable to refrain from hewing too closely to

current understandings of mathematics. As a result, we will not officially include the demand that

the isormophism type (X ,R) be particularly useful. Given the focus on the existence of useful

isomorphism types in the maximizing theory, we will refer to Maddy’s approach to ‘maximize’ as

a isomorphism type approach. We will call this approach to maximization Maddy-Maximization

(M-Max for short).

In direct comparison to the definition of S-Max, we define a theory T ′ weakly M-maximizing over

a theory T as follows:

T EM T ′ iff there is some ϕ(x) st i). for all σ ∈ T T ′ ` σϕ,

ii). T ′ proves that ϕ is an M-fair interpretation,

iii). T ′ ` ∃x∃R⊆ x2∀y∀S⊆ y2(ϕ(y)∧ϕ(S)→ (x,R) 6∼= (y,S)).

As before, we will define a theory T ′ strongly M-maximizing over a theory T just in case T ′ weakly

M-maximizes over T , but T does not weakly M-maximize over T ′.

Note that there are two crucial differences between S-Max and M-Max: first, the former permits
22See Maddy (1997) pp. 221–222.
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the wider scope of S-fair interpretations instead of only M-fair interpretations,23 and secondly the

latter adds an additional requirement of a new isomorphism type in the maximizing model. How

then do S-Max and M-Max compare? Note that S-Max solely requires that T ′ be able to provide

a S-fair interpretation of T , with no further requirements. Given that M-Max requires a M-fair

interpretation–and all M-fair interpretations are already S-fair–as well as the additional criteria of

providing a unique isomorphism type, it is immediately clear that M-Max is a more fine grained

notion of maximization: that is, T EM T ′→ T ES T ′. The natural question then becomes whether

they are in fact equivalent notions of maximization, or, in other words, whether the additional re-

quirement of M-Max ever in fact serves to separate two theories which are equivalent in terms of

S-Max. A bit of reflection reveals that these are in fact distinct notions of maximization; while

ZFC+V = L and ZFC+V 6= L each have a S-fair interpretation of the other24 and are therefore

S-equivalent, ZFC +V = L cannot prove that there is a M-fair interpretation of ZFC +V 6= L,

and so ZFC +V 6= L strictly M-maximizes over ZFC +V = L. This case however is fairly in-

significant: ZFC+V 6= L has never been considered a serious candidate for our best theory of sets.

Nonetheless, because of this toy example, we find that M-Max is in fact a strictly more fine grained

notion of maximization than S-Max: given that they are extensionally distinct, the question arises

of which notion better captures the informal notion of maximize that they attempt to explicate. In

other words, which formalization should we use as our formal notion of maximize?

Before considering this question directly, it is worth noting that both formal notions justify the

set theoretic community’s rejection of V=L in favor of large cardinal axioms, and each does so

in much the same way. With regards to the question of T = ZFC +V = L versus T ′ = ZFC +

∃κMeas(κ), Maddy shows that the latter can provide a M-fair interpretation of the former (namely

L itself), while the former cannot provide even a S-fair interpretation of the latter under pain of

inconsistency; given that the consistency strength of T is strictly less than that of T ′, this cannot

23We here focus on the latter condition, and why it seems to lead to M-Max being a better justified explication
of the informal ‘maximize’ maxim. We will return to the effects of this first difference–between S-Fair and M-Fair
interpretations–in Section 4.2 below.

24ZFC +V 6= L can interpret ZFC +V = L in the inner model L; ZFC +V = L can interpret ZFC +V 6= L in a
plethora of simple forcing extensions.
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even be an artifact of the consideration of only M-fair interpretations, as no series of inner or outer

model interpretations within T can result in an interpretation of a measurable cardinal unless ZFC

itself is inconsistent. Furthermore, Maddy is able to show that there is an isomorphism type in

T ′ that cannot be replicated within T (namely the large cardinal 0]).25 As Maddy notes, this case

can be extended to other cases of large cardinal versus inner model axioms: for example, a similar

argument shows that ZFC+∃κ,λ(Meas(κ)∧Meas(λ)∧κ 6= λ) maximizes over ZFC+V = L[µ]

where µ is the measure on a measurable cardinal, in both the S and M senses. Similarly, ZFC+

∃κ(SC(κ)) both (strongly) S- and M-maximizes over ZF +AD.26 Thus, any way of distinguishing

the two formal explications of maximize will need to occur beyond the level of this earlier axiom

dispute.

With this in mind, let us return to the question of how well-motivated the two explications are by the

foundational goals that underlie the methodological merits of ‘maximize’ in the first place. After

all, it is not enough that a formal explication of ‘maximize’ gets the “right” answer in past cases of

axiom selection: it needs to be that the formalization decides these cases on the basis of the “right

reasons”. On these grounds, we find an important difference between S- and M-maximization.

Recall that, beyond the relatively weak restriction to S-fair interpretations, S-Max amounts to

a simply admonition to “choose the theory with greater consistency strength”, regardless of the

content of the two theories.27 But consider what this admonition amounts to: given that higher

consistency strength directly accords with a greater risk of inconsistency, S-Max amounts to the

suggestion that the riskier theory should be chosen no matter what. Such a principle pushes for

the mathematical community to maximize the risk of inconsistency regardless of whether there is

any corresponding benefit gained by incurring the greater risk; that is, there is no off-setting cost-

benefit analysis to be performed between the theories. On the other hand, M-Max requires that

a riskier theory also provide some value to offset this risk: namely, some new isomorphism type

25See Maddy (1997) Part III, Chapter 6 for this argument in full detail.
26This result follows immediately from the result that, given ω many Woodins with a measurable on top, L(R) is

provably a model of AD. See Woodin (1988) and Martin and Steel (1989).
27As before, this is under the implicit assumption that both theories extend ZFC and are natural theories.
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that could not be studied in the less-risky theory. Combined with the informal guideline to focus

on the isomorphism types that are genuinely mathematically interesting, M-Max amounts to a

methodological imposition to choose the riskier theory when and only when there is mathematical

benefits to be gained by doing so. Given the centrality of cost-benefit analysis to mathematical

practice, and to set theoretic activity and axiom selection in particular, this seems to be a more

sustainable approach to increasing the consistency strength of our best theories of sets:28 only

incur risk when there is a corresponding mathematical benefit.

In addition, there is one more reason to very slightly favor M-Max over S-Max as our formal expli-

cation of ‘maximize’: the more fine-grainedness of the former. While there has been a remarkable

degree of orderliness in the consistency strength ordering of most seriously proposed theories of

sets, this appears to no longer be something that can be assumed for future theories. In particu-

lar, we noted in the first chapter that for any large cardinal notion above that of a supercompact,

it appears that there will be equiconsistent theories at that consistency strength, with one endors-

ing inner model axioms and the other endorsing forcing axioms.29 The key to this result is the

development of more sophisticated methods of constructing inner and outer models; as the sub-

ject progresses further, it stands likely that even more powerful methods will be devised, and will

generate more and more distinct theories at each level of the large cardinal hierarchy. Given the

possibility of an increasingly intricate array of distinct theories at any given consistency strength

level, it may prove that the greater power to distinguish theories provided by M-Max is necessary

for putting the notion of ‘maximize’ to work in real debates of axiom selection. This weak reason

for preferring M-Max, however, is at this point entirely preliminary: the only pairs of theories

that M-Max is capable of distinguishing that S-Max cannot are not both serious candidates for

acceptance by the set theoretic community, and so represent only toy examples, such as that of

ZFC+V 6= L. If this were to persist for current and future debates, it would turn out that the fine

grained view provided by M-Max is of no actual mathematical benefit. At this point, we merely

28See Maddy (1997) for more on the important role of cost/benefit analyses in the methodology of set theory.
29This is given the various conjectures of the proponents of Ult(L). See Section 3.1 below for more on these

assumptions.
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note that this greater ability to distinguish theories may potentially provide a strong reason to pre-

fer M-Max, if there are genuine axiom selection debates that can only be settled with this more

fine-grained perspective.

Thus, while there are some preliminary reasons to find M-Max to be better in keeping with the

philosophical motivations underlying the maxim of ‘maximize’ than S-Max, it is not clear that

there is much to be gained in real debates of axiom selection by adopting the more fine-grained

notion of M-Max. In the next chapter we will therefore seek to apply both formal explications to

the current dispute between the inner model program and forcing axioms, seeing whether either or

both is capable of distinguishing the axiom candidates. Before we attempt to put the formalizations

to work, however, in the remainder of this chapter we will note a important lemma regarding appli-

cations of M-Max to theories T,T ′ that extend ZFC. In particular, we will see that the assumption

that both theories include ZF–guaranteeing the absoluteness of key set-theoretic concepts–and of

AC–enabling the coding of sets with collections of ordinals–greatly simplifies the search for par-

ticular isomorphism types witnessing M-Max. We will explain this lemma, and its effects on our

use of M-Max, in the following section, while its proof can be found in Appendix A.

2.3 Re-characterizing M-Max for Extensions of ZFC

Note that a theory T ′ M-Maximizing over a theory T consists of two distinct conditions: in partic-

ular, conditions i) and ii) above together require that T ′ proves the existence of an M-Fair interpre-

tation of T , while condition iii) requires that T ′ prove that there is some particular isomorphism

type that exists but cannot be captured by the interpretation of T . It is natural to wonder whether

the isomorphism type condition, which is usually the difficult condition to verify in practice, might

be simplified to a more tractable form. In particular, we ask whether the existence of a non-trivial

M-Fair interpretation30 suffices for the satisfaction of the isomorphism type condition?

30Here we just mean an M-Fair interpretation ϕ(x) where T ′ ` ∃X¬ϕ(X).
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We should note that, in complete generality, the answer to this question is a clear negative. To

see this, consider the theory ZFC−+AFA, where ZFC− is ZFC without the axiom of foundation,

and AFA is Aczel’s anti-foundation axiom.31 Since ZFC− suffices to prove that the class of well-

founded sets WF is a model of the full theory ZF , we find that ZFC−+AFA proves that there

is an M-Fair interpretation of ZFC. One might naturally expect that ZFC−+AFA would witness

many new isomorphism types, as it permits a development of an entirely new domain of non-

well-founded sets; nonetheless, Maddy notes that any isomorphism type in ZFC−+AFA will in

fact already be witnessed within the class WF .32 In fact, it is precisely examples like these that

motivate the necessity of Maddy’s formulation of the isomorphism type condition in the first place.

Note, however, that in this example one of the theories–ZFC−+AFA–is fairly weak, in the sense of

not including all of the standard axiomatization ZFC. In fact, this relative weakness is what makes

the full isomorphism type condition necessary: if both T ′ and T are extensions of the full theory

ZFC, then the existence of a non-trivial M-Fair interpretation of T within T ′ suffices to establish

that there is an isomorphism type that fails to be witnessed in the interpretation of T .33 That is, for

theories extending ZFC, any set outside of a proper inner model interpretation provides a novel

isomorphism type.34 As a result of this fact, we find that we can state an equivalent formulation of

the conditions of M-Max for strong theories of sets extending ZFC:35

31An accessible pointgraph is a directed graph with a distinguished vertex such that for any vertex in the graph,
there is a path from the distinguished element to it. We say that an accessible pointgraph A with vertexes V decorates
a set X if there is some map f : X 7→ V st ∀y,z ∈ X , y ∈ z iff there is some path between f (y) and f (z) in A. The
axiom AFA says that every accessible pointgraph decorates some set. This immediately suffices to imply the failure
of the axiom of Foundation: to see this, note that a graph with a single point and self-directed edge is an accessible
pointgraph; thus, any model of ZF−+AFA must include some x st x ∈ x. See Aczel (1988) for a development of this
theory.

32See Maddy (1997) pp. 216–217, especially footnote 5, for this argument.
33See Lemma A.1.1 in Appendix A for the proof of this claim.
34This is just a bit too loose of a way of stating the result; a bit more precisely, any set outside of the proper inner

model interpretation is coded by a collection of sets of ordinals, and the isomorphism type of the union of this singleton
of this set of ordinals with its transitive closure cannot exist in the interpretation. See the proof below.

35See Theorem A.1.2 in Appendix A for the proof of this claim.
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Re-Characterization Theorem:

Let T,T ′ ⊇ ZFC. Then T EM T ′ iff there is some ϕ(x) st

i). for all σ ∈ T T ′ ` σϕ,

ii). T ′ proves that ϕ is an M-fair interpretation,

iii). T ′ ` ∃X(¬ϕ(X)).

Thus, when considering theories extending ZFC+LCs we only need to be concerned with show-

ing the existence of non-trivial M-Fair interpretations: the existence of a particular isomorphism

type escaping the interpretation automatically follows from the existence of any set outside of the

interpretation. For our present purposes, this will make it somewhat easier to apply M-Max to our

theories, as there has already been much work on studying the existence of various interpretations

between theories of forcing axioms and that of Ult(L). Now, with this formal machinery in place,

as well as that of S-Max, the question arises of whether these formal tools can have any bearing on

the debate between V=Ult(L) and forcing axioms. In the next chapter, we will tackle this question

directly.
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Chapter 3

Applying ‘Maximize’ to Contemporary

Axiom Candidates

In this chapter, we will use the two formal approaches to ‘maximize’ introduced in the previous

chapter–S-Max and M-Max–to examine whether either of the contemporary strong theories of

sets presented in the first chapter–a theory capturing V = Ult(L) and the theory given by forcing

axioms–can be said to maximize over each other. But first, in order to permit the necessary level of

precision for applying these tools, we must make some assumptions regarding the eventual shape

of an acceptable theory of V = Ult(L): we will consider these in the first section. Then, in the

following two sections, we will separately appraise the central question of maximization between

these theories using S-Max and M-Max. Finally, we conclude by reflecting on what this study

reveals about the current dilemma in contemporary axiom selection.
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3.1 Towards a Theory for Ultimate L

In this section we will outline how adherents of the inner model program, in particular the Harvard

school,1 have sought to find a theory capturing V = Ult(L).2 It is worth noting at the outset that

there is some ambiguity in how Ult(L) is used in the literature: it is sometimes used more broadly

to mean the core or canonical inner model of a supercompact cardinal, but is sometimes used

more strictly to refer to the unique structure satisfying some axiom candidate, especially Woodin’s

current candidate for V =Ult(L). Throughout this section, we will use Ult(L) in the looser sense,

referring just to a uniquely specifiable (in some particular sense) weak extender model for the

supercompactness of an extendible cardinal. While this ambiguity might be somewhat unsettling,

by the end of this section, with some charitable assumptions made on behalf of the advocates of

Ult(L), a more sturdy understanding of the meaning of Ult(L) will be possible.

As mentioned in the first chapter, the minimal requirement for a candidate for Ult(L) is that of a

weak extender model for the supercompactness of an extendible cardinal δ, for some cardinal δ.3

A weak extender model, within some larger V , not only agrees with V on the supercompactness of

δ, but does so for precisely the same reason: that is, the proper class of measures witnessing the

supercompactness of δ in the weak extender is just the restriction of the proper class of measures

witnessing this property in V . In this sense, a weak extender model is an inner model that provides a

fair interpretation for the existence of a supercompact cardinal within V . Note that a weak-extender

1By the Harvard school we mean the group of mathematicians and philosophers working on the Ult(L) program at
Harvard from roughly 2010 through the present. In particular, this group includes Hugh Woodin, Peter Koellner, and
Gabriel Goldberg.

2It is also worth noting that this section will of necessity require a direct accounting of the technical details of the
Ult(L) project. As a result, the mathematical prerequisites of this section are somewhat higher than the remainder of
the chapter. With that said, the section can be skipped without losing the narrative of the chapter: however, if this
track is taken, then the justification for the assumption that there is a fair interpretation of ZFC+LCs+V =Ult(L) in
ZFC+LCs for LCs of at least an extendible cardinal will have to be granted without direct argument.

3The current standard source for much of the material from this section is Woodin (2017), especially sections 3
and 7. While this provides a comprehensive account of much of the theory of weak extender models and of the axiom
candidate for V = Ult(L), the former appears to be in the process of being superseded by an alternative approach:
it seems that much of the proofs in section 3 can instead be proven in a somewhat simpler way directly from the δ-
covering, -approximation, and -genericity properties. This alternative approach is mentioned briefly in Woodin (2019).
Since the main resulting theorems themselves are unchanged, and this alternative approach has not been fully worked
out in print, for this section we will follow Woodin (2017).
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model need not provide any of the insight into supercompact cardinals typically associated with

core or canonical inner models: in this way, the notion of a weak extender model is, in itself, a

very loose “from above” notion of an inner model.

While providing a good inner model of a supercompact cardinal is an interesting feature of weak

extender models, well worth studying in its own right, this proved to be just the first of a large

number of surprising properties. The initial key discovery regarding weak extender models for

the supercompactness of an extendible cardinal is that such a model must also provide a similarly

fair interpretation of all known large cardinal assumptions above that of a supercompact: that is,

any embedding witnessing a known large-cardinal property in V will also witness that property in

the weak extender (through its restriction to that model).4 Thus, unlike previous inner models of

large cardinals, any inner model that closely agrees with V on the nature of a single supercompact

cardinal will not face an anti-inner model theorem ruling out the existence of some even larger

large cardinal notion. While a weak extender model for a supercompact cardinal need not be a

core or canonical inner model, Woodin pointed out that any core or canonical inner model con-

taining a supercompact would seemingly be required to be at least a weak extender model for a

supercompact: in this way, the theory of weak extender models represents a minimal requirement

for any future theory of a fine-structured inner model at the level of a supercompact. Given the

4One might naturally wonder how to evaluate the limitation to “known large cardinal assumptions” in Woodin’s
common statement of this result: how seriously should we take the possibility of a future large cardinal assumption
that escapes this result? Such a large cardinal would necessarily fail to have a presentation in the form of the existence
of an elementary embedding from V into some inner model M. Given the assumption of AC, there is only a single
serious candidate for such a large cardinal axiom, namely the so-called HOD analogues of choiceless large cardinals.
If these choiceless large cardinals prove to be consistent with ZF , then, there will be large cardinals that are unable
to be captured in a weak extender model, and so there will in fact be an anti-inner model theorem for weak extender
models. Such a theorem would, however, be only the tip of the iceberg regarding problems for the Ult(L) program:
this would imply that there is no weak extender model contained within HOD (Woodin (2017) p. 24), and that all of
the friendly assumptions made on the behalf of proponents of Ult(L) are false.

Thus, it seems that either there are no consistent candidates for large cardinal assumptions that cannot be captured in
a weak extender model, or that the Ult(L) program is thoroughly shattered. Much work remains to be done examining
the plausibility of the choiceless cardinals: in particular, their consistency implies the consistency of a proper class of
ω-strongly measurable cardinals in HOD, while it is currently unknown if even small finite numbers of these cardinals
can consistenly exist in HOD (See Woodin (2017) p. 25, remark 3.43 for the current state-of-the-art on ω-strongly
measurable cardinals in HOD.) For our purposes, we will set aside the possibility of choiceless large cardinals in order
to present the Ult(L) program in its intended context; if these cardinal prove consistent in the end, then it is quite likely
that this would prove the end of the Ult(L) approach to the inner model program as we know it.
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surprising discovery, this implied that there would be no limits on the large cardinal strength of a

fine-structured inner model of a supercompact, if such a model were discovered.5

In this way, a weak extender model for the supercompactness of an extendible cardinal δ must

be close to V in the sense of agreeing with V on all known large cardinal notions. There are a

wide variety of other ways in which such an inner model must be “close to V ”, however. First

of all, the weak extender will agree with V on all singular cardinals, and the identity of their

successors, above δ; as a result of this fact, the weak extender will agree with V on cardinal

arithmetic involving singular cardinals above δ more broadly.6 Secondly, a weak extender model

will have strong covering properties in relation to V .7 In fact, given the assumption of a proper

class of supercompact cardinals in V , Woodin has reportedly shown that any inner model with such

covering properties must be a weak-extender model for the supercompactness of some δ: that is,

only weak extender models can be similarly close to V .8 Finally, any elementary embedding from

a weak extender model into itself is either trivial or pathological, in the sense of having a small

critical point relative to δ.9 In each of these ways, we find that a weak extender model–if such a

model exists–is uniquely similar to V in a wide variety of mathematically useful ways.

Given the important and useful properties of weak extender models, then, a natural question arises

of whether any such model must exist, given the assumption of sufficient large cardinal strength.

At present, this question remains open. Nonetheless, work on the choiceless large cardinals has led

to a somewhat plausible assumption (the “HOD hypothesis”) capable of resolving this question:

5An important distinction must be made here: while such a hypothetical fine-structured approach to a supercompact
would capture larger large cardinal assumptions, it would not necessarily provide a fine-structured, “from below”
approach to these cardinals. In this way, the proposed Ult(L) structure might provide only a coarse understanding of
large cardinals above a supercompact, leaving the task of developing notions of strategic extender models capable of
providing a fine-structured understanding of these very large cardinal notions. Whether this possibility holds or not
cannot be known until the fine-structure of weak extender models is more fully developed; but it is worth noting that
in this way a proof of the assumptions outlined in this section may not be a complete end to the inner model program.

6See Woodin (2017) p. 10, Them 3.10.
7In particular, the model will have γ-covering for all regular γ > δ, where a model M has γ covering if for all X ⊆M

where |X |< γ, there is some Y ∈M st X ⊆ Y and |Y |< γ.
8This theorem was presented in a series of seminar talks given by Peter Koellner at UCI in the Spring of 2019. A

published version of this material is forthcoming.
9See Woodin (2017) p. 14, Thm 3.19.
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that there is a regular cardinal λ above an extendible cardinal which is not ω-strongly measur-

able in HOD. For present purposes, we need not be too concerned with the detailed machinery

surrounding this assumption, but may instead focus on a particular implication. If the HOD hy-

pothesis is true and an extendible cardinal κ exists, then there is a weak extender model for the

supercompactness of κ: equivalently, HOD itself is such a model.10 Importantly for our purposes,

this means that the HOD hypothesis implies that there is a definable inner model that provably

must be a weak extender model for the supercompactness of an extendible cardinal. Furthermore,

if V 6= HOD, then there is a definable proper inner model that must be a weak extender model.

Note, however, two key problems preventing HOD under these assumptions from truly repre-

senting the hoped-for ultimate approach to L: first, there is no clear axiom or theory behind the

informal conception of Ult(L) as a definable weak extender model, and, secondly, this approach

fails to properly characterize Ult(L) as a canonical inner model. Thus, HOD alone does not suf-

fice for providing a theory of Ult(L) robust enough for the analysis of maximization notions later

in this chapter–even assuming HOD is a weak extender model. Towards this end, we must look

more directly to the notion of canonicity of an inner model itself. Unfortunately, it does not seem

that much can likely be known about the properties of a canonical inner model of a supercompact

cardinal until the precise nature of the extender-like models capable of generating a model of a

supercompact cardinal is discovered.

Nonetheless, some progress had made been into these questions by reflecting on and abstracting

properties from past canonical inner models. Central to past successes of the inner model program

is the comparison lemma. The comparison lemma was inspired as an extension of Kunen’s compar-

ison lemma, which states that for any two iterable structures of a particular form, there eventually

is a pair of their iterates with one an initial segment of the other.11 Since it is then said that the

structure with an iterate initial segment is no stronger than the other to which it is compared, this

10See Koellner (2017) p. 3222–3223 and the surrounding material for a list of several key equivalencies to the HOD
hypothesis, and a discussion of their importance.

11More precisely: if M0 = 〈Lξ[U ],∈,U〉 and N0 = 〈Lη[U ′],∈,U ′〉 are iterable structures, then there is some α and
some filter F st Mα ≡ 〈Lξ′ [F ],∈,F〉 and Nα ≡ 〈Lη′ [F ],∈,F〉. See Steel (2010) p. 1611 or Jech (2003) pp. 348–352.
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lemma shows that the strength of any two iterable structures of the proper form can be compared.

The comparison lemma proper similarly states that any two mice12 with sufficient iterability con-

ditions permit a comparison through their eventual iterates, though the necessary conditions are

much more involved due to the heightened complexity of mice and iteration strategies compared

to Kunen’s iterated ultrapowers.13

While each version of a comparison lemma for a particular type of canonical inner model makes

reference to the precise machinery of that iterable structure, Woodin noted that every known canon-

ical inner model had a corresponding comparison lemma; furthermore, reflecting on the nature of

these lemmas, Woodin was able to abstract the essential content of these lemmas as the weak com-

parison lemma, which allowed the notion of comparibility to be stated without involving particular

fine-structural concepts.14 Weak comparison follows from each form of a comparison lemma, and

so Woodin notes that any acceptable fine-structure for a canonical inner model of a supercompact

cardinal should also be expected to imply weak comparison. As a result, weak comparison can be

used as a proxy for the future fine-structure that will result from further development of the Ult(L)

program.15 Thus, weak comparison–together with a few necessary supporting assumptions needed

to permit this principle to do much real mathematical work–presents an initial option for a theory

of a canonical inner model of a supercompact.

Noting the difficulty of working with weak comparison and the supporting assumptions, however,

12A mouse is a particular type of well-behaved transitive, iterable structure which plays a key role in core model
theory: in particular, the core model up to a measurable cardinal K is equivalent to L relatized to the collection of all
mice. For present purposes, we simply note that mice represent the“from below” building blocks of the core model K.
See Jech (2003) pp. 660–661.

13The details of this lemma are quite involved and go beyond the purposes of this section. See Steel (2010) section
3.2, especially Thm 3.11, for a precise statement of this theorem.

14Woodin’s weak comparison axiom states that for any two finitely generated transitive models of ZFC M0 and M1
that are Σ2-embeddable in V with RM0 =RM 1, there must be a transitive N with embeddings i0 : M0 7→N, i1 : M1 7→N
with i0 close to M0 and i1 close to M1. See Woodin (2017) section 6.5 or Goldberg (Frth) for more on the weak
comparison principle.

15More precisely, the combination of ZFC with the existence of a supercompact, V = HOD, and the weak compar-
ison principle can be studied as a proxy for a theory of a canonical model of a supercompact cardinal. It is an open
question whether this theory is consistent, which is unlikely to be resolved until the theory of fine-structure for Ult(L)
is further developed: Woodin notes that this is a “natural test question for the existence of a generalization of L at
the level of supercompact cardinals based on anything like the current methodology for the construction of such inner
models” (Woodin (2017) p. 88).
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in his dissertation Goldberg takes the process of abstracting from the particular details of the fine-

structured versions of the comparison lemma one step further. Seeking a simpler principle more

easily used in mathematical proofs, Golberg isolated the Ultrapower Axiom (henceforth, UA): the

claim that every pair of ultrapower embeddings admits a comparison.16 Given the supplemental

assumptions used for working with weak comparison, Goldberg was able to show that weak com-

parison implies UA, and thereby the fact that UA holds in all previously discovered canonical inner

models.17 Thus, due to the centraility of the comparison lemmas (“the central feature of modern

inner model theory” (Goldberg (2018) p. 3)), Goldberg notes that ZFC with the existence of a

supercompact and UA serves as a falsifiable test case for the eventual fine structured model of a

supercompact: “if one could rule out the Ultrapower Axiom from a supercompact cardinal, one

would in fact rule out any sort of inner model theory from supercompact cardinals” (Goldberg

(2018) p. 3). Furthermore, in stark contrast to weak covering, UA has proven extremely fruit-

ful to work with, enabling a large body of theorems to be developed from this assumption.18 Of

particular relevance for our present purposes, Goldberg was able to use UA to prove a number of

the properties typically associated with coreness and canonicity, including that GCH must hold

eventually.19 Thus, ZFC + ∃κSC(κ) +UA provides our first serious candidate for a theory ap-

proximating the eventual theory of Ult(L):20 though ZFC+∃κSC(κ)+UA will likely not be the

eventual theory used in the Ult(L) program, it provides a stable subtheory of the eventual resulting

theory that can be used in analysis as this true theory continues to be developed.

16For transitive models of ZFC P,Q and a cofinal elementary embedding j : P 7→ Q is an ultrapower embedding if
there is some a ∈ Q that generates Q from functions in P, meaning Q = { j( f )(a)| f ∈ P}. Note that any embedding
generated from an ultafilter in the usual way can be shown to be an ultrapower embedding in this sense. For ultrapower
embeddings j0 : V 7→ M0, j1 : V 7→ M1, a comparison of ( j0, j1) is a model N and a pair of embeddings (i0, i1) st
i0 : M0 7→ N and i1 : M1 7→ N are themselves ultrapower embeddings, and i0 ◦ j0 = i1 ◦ j1. See Goldberg (Frth) or
Goldberg (2018) Section 2.3 for more details.

17A proof of this result is forthcoming in Goldberg (Frth); an early summary of the main results of the dissertation,
including this proof, was shared with the author in the Fall of 2018.

18See Goldberg’s dissertation Goldberg (Frth) for the vast majority of this literature.
19That is, for any λ st λ > κ for some supercompact κ, 2λ = λ+. See Goldberg (2018) section 6.2 for more on this

result.
20The assumption of a supercompact is necessary here: as UA is implied by previous versions of covering lemmas,

its is true in each of the canonical inner models below a supercompact. Only with the additional assumption of a
supercompact, ruling out these earlier models of UA, can Goldberg’s axiom be seen as capturing the informal Ult(L)
idea.
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We have therefore found our first candidate for a theory of Ult(L) articulated with sufficient pre-

cision to be capable of being utilized in our analysis of formal maximization notions. With this

goal in mind, the question naturally arises of the extent to which interpretations of this theory are

known or suspected to exist. Given Goldberg’s above comments on the necessity of the consistency

of UA and the existence of a supercompact cardinal for any hope of an extension of the inner model

program to this level of the large cardinal hierarchy, it seems fair to conclude that any satisfactory

canonical inner model of a supercompact cardinal must validate the UA axiom. Additionally, a

canonical inner model must be uniquely identifiable–hence the reference to canonicity–usually by

making reference to the fine-structural notions used to build the model from below. With these

two facts in mind, there seems to be a clear conjecture underlying Golberg’s work with UA: that

there must eventually be some definable inner model of ZFC+UA+∃κSC(κ). Let us refer to this

implicit claim as the UA conjecture.

Note, though, that UA only aims to capture an abstract and somewhat removed picture of the con-

sequences of canonicity, without dealing with the details of what an extender-based approach to an

inner model of a supercompact might entail. Another approach to finding a theory capturing the

Ult(L) notion instead tries to engage with this problem more directly. Much of the difficulty of

articulating a fine-structural approach for this level comes from the seeming inability of standard,

(nonstrategic) extender models21 of reaching the level of a strongly compact cardinal: Woodin

has shown that the least cardinal that is κ+ω strongly-compact must fail to be κ+ω supercompact

in a nonstrategic extender model, while Goldberg showed that UA+GCH implies just the oppo-

site for the the least κ+ω strongly-compact cardinal. Gven that UA+GCH is seen as indicating

the presence of fine structure, these results show that nonstrategic extenders are not the correct

21Here we mean any notion of extender models which uses a construction process defining the next model only
from a single parameter (the previous model). This is in contrast to strategic extender models, which use a process
defining the next strategic extender model from two parameters (the previous model and an iteration strategy which in
effect codes the correct way to carry out this process while preserving iterability). Note that partial extender models,
first developed by Baldwin and Mitchell and used by Mitchell and Steel to develop inner model theory to the level of
Woodin cardinals in the 1990’s, are of the former sort. See Steel (2010) footnote 3, Mitchell and Steel (1994), and
Woodin (2017) section 5.1 for more on partial extender models; see footnote 25 below for more on strategic extenders.
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notion of fine structure at the level of a strongly compact cardinal.22 Thus, there is a seeming

incompatibility between fine-structure as underwritten by UA and fine-structure as generated from

non-strategic extender models once as the level of a supercompact cardinal is approached. To ex-

plain this incompatibility, Woodin and Goldberg note the difficulties in proving the iterability23 of

non-strategic extender models past the finite levels of supercompactness, and suggest that this is

due to a failure of iterability at this point.24 Thus, a new notion of an extender-like model was

needed which would be capable of preserving iterability to the level of a supercompact.

To this end, Woodin turned to the notion of strategic extender models, which supplement a series

of extender-models with iteration strategies in effect coding the proper way to proceed in these

constructions without violating iterability.25 Crucially, the use of iteration strategies on particular

infinitary games in these definitions allows Woodin to apply the fruits of the successful theory

of AD+ in L(A,R) for amenable sets A under the assumption of a supercompact cardinal to the

work of developing the theory of strategic extender models at this level.26 While the state of this

project is very much in flux as Woodin continues to work out the details of strategic extender

models at higher infinitary levels, for our purposes we need only note that Woodin conjectures

that applications of the theory of AD+ in this way will permit a proof of the iterability of strategic

extender models past the finite levels of a supercompact.27 Let us refer to the conjecture that

22See Goldberg (2018) for a brief discussion of this result and the challenges it poses for nonstrategic extender
models reaching very large cardinals. While Goldberg’s result requires the additional assumption of GCH, there is
some hope that the assumptions behind this and other related results will eventually be weakened to just UA.

23A model permitting iterated ultrapowers is said to be iterable if each of its iterates is itself well-founded. See Steel
(2010) section 3 for an approachable discussion of iterability, and see Schimmerling (2010) and Neeman (2010) for
proofs of iterability for earlier notions of fine-structure.

24See Woodin (2017) Remark 7.1 and surrounding material for more on this failure of iterability.
25The bulk of Woodin (2017) is concerned with laying out the role and theory of strategic extender models: Sections

4, 5, and 6 lay out the complications that prevent nonstrategic extender models from capturing a supercompact cardinal,
and section 7 develops the initial theory of strategic extenders. Note that until the construction process reaches the
finite levels of a supercompact, beyond the level of a single Woodin cardinal, the addition of iteration strategies has no
effect on the defined models, and so the nonstrategic and strategic hierarchies are identical; this is due to the unique
branch theorem, which states that there is only one unique way of carrying this process out (See Woodin (2017) Thm
6.35). After the fist Woodin cardinal, these hierarchies diverge. It is currently conjectured that at some point iterability
fails for the non-strategic hierarchy, while iterability continues for the strategic hierarchy up to and including the level
of a full supercompact cardinal. See Woodin (2017) section 7 for more on these conjectures.

26See Woodin (2017) pp. 90-92 for a brief outline of this work.
27See Woodin (2017) pp. 89-90 for a clear presentation of the recent state of the project of proving iterability. Note

in particular the claim that “the only credible possibility that remains is that iterability is proved by induction and not
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iterability will eventually be proved for the full strategic extender hierarchy as Woodin’s Iteration

Conjecture (henceforth, WIC).

Given the WIC, the eventual model constructed through the strategic extender hierarchy would

provide a fully fine-structural, from below approach to a unique weak extender model of a super-

compact cardinal, thereby fulfilling the promise of the informal Ult(L) notion. But what would the

theory of this canonical structure be? While one might naturally expect any answer to this question

to depend on the precise details of the proof of iteration, and thereby be inaccessible for the time

being, in another surprising development Woodin found that the connections between strategic ex-

tender models and the theory of AD+ might already provide the answer: under the assumption of a

proper class of Woodin cardinals, good approximations to the eventually generated structure exist

and can be defined without any reference to fine-structural notions.28 These determinacy based ap-

proximations to Ult(L) form a hierarchy, and it has already been shown that the initial members of

the hierarchy are also members of the strategic extender hierarchy. Furthermore, it is expected that

there will eventually be a proof that all of the determinacy based approximations must be strategic

extender models.29 Given this expectation, the completion of each hierarchy will be extensionally

equivalent, and so the structure (Ult(L) itself) could be theorized through reference to determinacy

notions instead of the more difficult fine-structural approach.30

It is precisely this possibility that motivated the current formulation of the axiom V = Ult(L)

on the basis of some general iteration hypothesis for V . Verifying that this is in fact what happens is the main task
ahead.” (Woodin (2017) p. 90).

28See Woodin (2017) p. 90, especially “in the context of a proper class of Woodin cardinals, there are natu-
rally defined approximations to Ultimate-L and the collection is rich enough to make a definition of the axiom,
V =Ultimate(L), possible without specifying the detailed level-by-level definition of Ultimate-L”.

29Woodin (2017) p. 90: “The conjecture is of course that all the approximations are strategic-extender models and
there is quite a bit of evidence for this conjecture... The key issue is whether the axiom V =Ultimate(L) formulated
in terms of these approximations must hold in some weak extender model for supercompactness assuming that there
is an extendible cardinal. Presumably any proof of this must yield as a corollary that these approximations are all
strategic-extender models”.

30While it might seem initially strange that a canonical inner model could be axiomatized through a claim about
close approximations to V , without reference to any fine-structural notions, it is worth noting that the same is true for
earlier examples of canonical inner models. As a particularly salient example, Woodin notes that there is a very similar
presentation of the axiom V = L as the claim that any true Σ2-sentence in V is true in an inner model of a particular
form. Thus, it should not be too surprising that such an axiom could be found for Ult(L). See Woodin (2017) Lemma
7.2.
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by Woodin. This axiom states two distinct claims: first, that there is a proper class of Woodin

cardinals, and, second, that for any true Σ2 sentence ϕ there is a universally Baire set of reals A

such that HOD in L(A,R) models ϕ.31 It is hoped that any model of this axiom would be so well-

approximated by the determinacy based approximations to Ult(L) that it would have to simply be

the completion of the hierarchy of these approximations; furthermore, given the assumption that

this determinacy hierarchy is a cofinal proper subset of the strategic extender hierarchy, any model

of the axiom would also thereby have to be the completion of the strategic extender hierarchy.

While there is a flurry of current activity by the Harvard school in developing the consequences

of this axiom, some initial results have been quite promising. In particular, it has been shown that

V =Ult(L) implies CH32, and there is much hope that other restricted versions of paridigmatically

L-like properties will also be shown to follow from it.33 Thus, with the candidate axiom for V =

Ult(L), we have a second possible theory aiming to capture the informal Ult(L) idea: ZFC+V =

Ult(L).

We should note, however, that though there has been significant progress regarding Woodin’s cur-

rent preferred candidate axiom for V =Ult(L) in recent years, and while proponents of the Ult(L)

program have great confidence that this will be the eventual axiom capturing Ult(L), it may per-

haps be a bit wise to refrain from a complete endorsement of V = Ult(L) as the correct axiom.

31The inner models HODL(A,R) are the determinacy based approximations to Ult(L) described in the above para-
graph. So the candidate for V =Ult(L) in effect states that the theory of AD+ is sufficient to permit the development
of these inner models, and that for any sufficiently simple sentence ϕ there is an approximation of this form that comes
close to V , in the sense of agreeing regarding ϕ. While it has been shown for particular universally Baire sets of reals
A that HODL(A,R) is a strategic extender model, it is currently only conjectured that this is the case for any universally
Baire A. A proof of this conjecture would likely be closely tied to a proof of the WIC. See Woodin (2017) Definition
7.14 for the official definition and surrounding discussion.

32See Woodin (2017) Theorem 7.26 part a). It is currently unknown whether V = Ult(L) implies the full GCH,
though Goldberg’s proof of GCH above a strongly compact cardinal from UA is seen as providing some evidence that
this implication does in fact hold.

33As mentioned in chapter 1, the existence of a supercompact cardinal poses a serious limitation for the extent to
which the typical L-like properties can hold in Ult(L). In particular, there is no hope for a “simple” well-ordering
of the reals. For the other properties, however, these is some hope. Woodin has shown that V = Ult(L) implies that
V = HOD and that V has no proper set-generic grounds (Woodin (2017) Theorem 7.26 parts b) and c)). Together with
the HOD hypothesis, the former may lead to a (weak) covering theorem; the latter may underlie a notion of restricted
absoluteness, together with further developments in set theoretic geology. As there is much that remains to be proven
regarding these properties, however, we will leave the matter here, noting that it is an open question of how L-like the
structure characterized by the V =Ult(L) axiom is.
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This is especially true given the extremely fast pace at which developments in the Ult(L) pro-

gram have happened. In particular, there has been a bit of shift regarding the axiom candidate for

V =Ult(L) in the past, which past proposed axioms having been found to be too strong to capture

the informal Ult(L) notion: for example, while the various axiom candidates attempt to specify a

canonical example of a weak extender model of a supercompact, past proposed axioms have been

shown to be incompatible with weak extender models.34 At the time of writing it remains possible

that either the current candidate axiom prove to be too strong–by proving incompatible with the

notion of a weak extender model–or that it prove to be too weak–by failing to entail UA and thus

falling short of a fine-structural theory of Ult(L). For these reasons, we will be somewhat cautious

with equating the informal Ult(L) notion and models of this axiom. Nonetheless, given the strong

confidence on the part of its proponents, as well as the non-trivial theory of its consequences that

has already been developed, we will henceforth treat this axiom as the axiom of Ult(L), and refer

to it just as V =Ult(L).

As with the theory ZFC + ∃κSC(κ) +UA, the question similarly arises of whether a definable

interpretation of the theory ZFC +V = Ult(L) is known to exist. As with the earlier question,

much remains to be seen through the development of the Ult(L) program, but Woodin makes the

expectation quite explicit through the Ult(L) conjecture: ZFC+LCs proves that for any extendible

cardinal δ, there is an inner model N such that N is contained in HOD, N is definable from δ, and

N |=V =Ult(L).35 The truth of the Ult(L) conjecture would suffice to show the truth of the WIC,

34For examples of this, see Axiom 1 and Axiom 2 in Woodin (2017) pp. 92-93. Note that–though they appear
to have somewhat different forms–the current candidate for V = Ult(L) is equivalent to a straightforward restriction
of Axiom 2 to only Σ2-sentences. In the end, Axioms 1 and 2 in fact insist on too much “closeness” between the
determinacy inspired approximations and V . A similar incompatibility between the current candidate axiom and the
notion of a weak extender model for a supercompact has not been found, but a proof of the consistency of V =Ult(L)
holding in a weak extender likely will only be possible after a further development of the associated fine-structural
notions, if it is in fact true.

35There are many different formulations of the Ult(L) conjecture. For standard treatments, see Woodin (2010b) (in
its original form) or Woodin (2017). The most recent presentation in Woodin (2019) is based in the δ-approximation,
-covering, and -genericity properties, but can be shown to be equivalent to earlier formulations. See also Koell-
ner (2017) p. 3224 for a more explicitly arithmetical statement of the conjecture and ensuing discussion. Woodin
sometimes distinguishes between weak, standard, and strong versions of this conjecture, regarding the large cardinal
strength that must be assumed to prove the conjecture: the distinction between these versions of the conjectures need
not make a difference for present purposes. If in fact only the weak Ult(L) conjecture is true, the LCs assumption in
the theories in sections 3.1 and 3.2 will need to be supplemented with the precise large cardinal assumptions required
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and thus that there is a fine-structural approach to a model of V = Ult(L).36 It seems fair to say

that a proof of the Ult(L) conjecture would constitute a completion and a validation of the entire

Ult(L) program up to this point.

In summary, in this section we have found three approaches to attempting to capture the informal

notion of the Ultimate version of L: the notion of a weak extender model of a supercompact, the

theory ZFC+∃κSC(κ)+UA, and they theory ZFC+V = Ult(L). Additionally, each has a cor-

responding conjecture which implies the existence of an inner model representing that approach:

the HOD hypothesis, the UA conjecture, and the Ult(L) conjecture. Given these multiple options

to use in our analysis of the maximality relations between the Ult(L) program and forcing axioms,

a choice must be made of which to pursue. Fortunately, it turns out that not much results from

such a choice, due to the deep relationships between the approaches. In particular, both the UA

conjecture and the Ult(L) conjecture imply the HOD hypothesis, and can only be satisfied in a

weak extender model for a supercompact.37 Additionally, given the WIC, V = Ult(L) will entail

that Ult(L) is a fine-structural model of a supercompact in the traditional sense, and therefore that

UA+∃κSC(κ) holds.38 In fact, the ability of V =Ult(L) to imply UA+∃κSC(κ) serves as a sort

of verification that V =Ult(L) is in fact the correct axiom candidate. With this in mind, not much

hangs on whether V =Ult(L) or UA+∃κSC(κ) is used as our axiom of Ult(L): given the focus of

the Harvard school on V =Ult(L), we will use this as our axiom in the remainder of the chapter.

In conclusion, for our analysis of the maximality relations between the Ult(L) notion and forcing

axioms, we will use V = Ult(L) as our axiom. Likewise, we will assume the Ult(L) conjecture

to prove the Ult(L) conjecture.
36See Woodin (2017) p. 101: “Proving [the Ult(L) conjecture] would show in a decisive fashion the transcendence

of the strategic-extender hierarchy.”
37To see the implication, note that the HOD hypothesis is equivalent to the provable existence of any weak extender

model for a supercompact contained within HOD (Woodin (2017) Theorem 3.39).
38In fact, the connection between V = Ult(L) and UA+∃κSC(κ) might be even closer than this. Goldberg con-

jectures that UA+GA+∃κExtendible(κ) in fact implies V =Ult(L) (where GA is the claim that there are no proper
set-generic grounds of V ), thereby “recapturing” V =Ult(L) from a collection of its most central consequences (See
Goldberg (2017)). This is regarded as a highly speculative conjecture, with far more room for failure than the other
conjectures and hypotheses articulated in this section. The truth of it, however, would represent the best possible
situation for the Ult(L) program.
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(and therefore also the HOD hypothesis and the UA conjecture) on the behalf of adherants of

the Ult(L) program, putting this program in its strongest possible position as a compelling and

justified way of extending ZFC + LCs. We note, however, that not much would change if we

were to instead assume only the UA conjecture and use ZFC +UA+ ∃κSC(κ) as our theory of

Ult(L): in fact, all of the results in the following two sections similarly hold with UA+∃κSC(κ)

replacing every mention of V = Ult(L), and the UA conjecture replacing every mention of the

Ult(L) conjecture. In fact, all that is required for this analysis is that there is some axiom capturing

the Ult(L) notion and that there is provably some interpretation of this axiom in ZFC+LCs for

some large cardinal strength assumption. But the existence of an axiom and theorem of this sort

has been noted above as being a minimal prerequisite for a successful completion of the inner

model program: if the assumptions of the Ult(L) conjecture and the UA conjecture are eventually

shown to be provably false39, this would constitute the end of the Ult(L) program and of the inner

model project as we know it. Thus, we note that the following results hold not just for the current

axiom candidate V =Ult(L), but for any reasonable alteration this axiom undergoes as the Ult(L)

program continues to evolve and develop.

3.2 S-Max: Equivalence

With a clear and precise theory for Ult(L) in hand, we can now shift our focus to the main question

of this chapter: does either the theory of Ult(L) or the theory of forcing axioms maximize over the

other in terms of the formal notions of maximize introduced in chapter 2? Given the justification of

the ‘maximize’ maxim in terms of the mathematical goals of set theory, such a result would provide

some defeasible support for the maximizing theory as the better extension of the theory ZFC+LCs.

On the other hand, finding that the two theories were equivalent according to both formal notions

39Woodin stresses that the Ult(L) conjecture is in fact a simple arithmetical statement about the provability of a
finite collection of sentences from another finite collection of sentences. As a result, it cannot be independent of ZFC,
but instead must be either provably true or false. See Koellner (2017) pp. 3223–3224.
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would cast some doubt on the ability of ‘maximize’ to settle disputes in contemporary axiom

selection, pointing to the need for find and defending other, hitherto unidentified methodological

maxims. Since S-Max is a properly more coarse-grained notion of maximization, we will first

tackle the question for this formal explication in the current section; we will then turn to applying

M-Max to the question in the following section.

Before S-Max can be properly applied to this question, however, we must deal with a non-trivial

asymmetry between the theories ZFC +V = Ult(L) and ZFC +MM: namely, the significantly

higher large cardinal strength built into the former. As noted in section 3.1, V = Ult(L) explic-

itly includes the assumption that there is a proper class of Woodin cardinals, giving great large

cardinal strength to this axiom. Additionally, V = Ult(L) is expected to imply the iterability

of a full hierarchy of fine-structural models eventually culminating in an inner model of the su-

percompactness of an extendible cardinal: it follows that the assumption of the existence of an

extendible cardinal is also implicit in the V = Ult(L) axiom. Thus, it is not entirely correct to

think of both of these theories as possible extensions of ZFC+LCs, as only the former actually

contains the full force of contemporary large cardinal assumptions. Thus, to compare these can-

didate theories, we first must balance the strength of their large cardinal assumptions. So we will

henceforth consider the theories ZFC +V = Ult(L)(≡ ZFC + ∃κExt(κ)+PCW +V = Ult(L))

and ZFC+∃κExt(κ)+PCW +MM, where PCW denotes the claim that there is a proper class of

Woodin cardinals. For simplicity, we will denote these theories as ZFC+LCs+V = Ult(L) and

ZFC+LCs+MM, respectively.40

Recall that a theory T ′ weakly S-Maxes over a theory T if it proves that there is some S-Fair

interpretation ϕ, where both set-generic forcing extensions and definable inner models are explic-

itly included in the class of S-Fair interpretations. So, to show that ZFC + LCs+MM weakly

40As noted, the introduction of an explicit LCs assumption is redundant in the context of ZFC +V = Ult(L).
Nonetheless, we will continue to state the theory with the assumption made explicit as a visual reminder that the
theories are calibrated to have equivalent large cardinal strength. Additionally, we note that for any LC assumption
stronger than an extendible and a proper class of Woodin’s, the same results found in the following two sections will
still hold.
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S-Maxes over ZFC + LCs +V = Ult(L), it would suffice to prove in the former that a defin-

able inner model interpretation of the latter. But the Ult(L) conjecture states that ZFC + LCs

proves for any extendible cardinal δ, there is an inner model interpretation, definable from δ, of

ZFC + LCs+V = Ult(L). Letting δ be the smallest extendible cardinal, ZFC + LCs therefore

proves that there is an inner model interpretation of ZFC+LCs+V = Ult(L). As an extension

of ZFC + LCs, we thus find that ZFC + LCs+MM proves that there is an S-Fair interpretation

of ZFC + LCs+V = Ult(L) under the assumption that the Ult(L) conjecture is true: that is, it

is immediate from our Ult(L)-friendly assumptions that ZFC+LCs+MM weakly S-Maxes over

ZFC+LCs+V =Ult(L).

Next, we note that showing that ZFC+LCs+V = Ult(L) proves that there is a set-forcing poset

which forces ZFC+LCs+MM would suffice to show that the former also weakly S-Maxes over

the latter. But this is directly implied by the standard consistency proof of ZFC+MM: in partic-

ular, Foreman, Magidor, and Shelah showed in 1988 that ZFC +∃κSC(κ) proves that there is a

set-generic model of ZFC+MM.41 Since this forcing in known to preserve large cardinals above

that of the supercompact used to define the forcing poset, we find that this result also shows that

ZFC+LCs+V =Ult(L) proves that there is a set-forcing interpretation of ZFC+LCs+MM. We

thereby find fairly immediately that the extant theory of forcing axioms suffices to establish that

ZFC+LCs+V =Ult(L) weakly S-Maxes over ZFC+LCs+MM.

Putting these two previous facts together, we find that the theories of Ult(L) and of forcing axioms

are S-Max equivalent: S-Max simply is not fine-grained enough to distinguish between the maxi-

mizing potential of the two theories. As a result, if S-Max were indeed the proper formal explica-

tion of the informal maxim of ‘maximize’, then we would find that there is no maximization-based

reason to prefer either of our candidate theories over the other. But it was noted at the end of Chap-

ter 2 that there are intuitive reasons to be skeptical that S-Max successfully captures the entirety of

the justificatory force of the ‘maximize’ idea. Particularly salient in regards to this result is the lim-

41See Foreman et al. (1988) for the original proof of this result. See Jech (2003) Theorem 37.9 and surrounding
discussion for a contemporary presentation of this result.
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itation of S-Max to a simple admonishment to prefer theories with greater large cardinal strength.

Since the present debate on how to extend ZFC+LCs inherently requires both theories to have the

same large cardinal assumptions, it is not particularly surprising that S-Max is unable to do any

work in distinguishing the current theory candidates. It therefore seems prudent to refrain from

putting too much stock into this initial result. Instead, in the following section, we will investigate

whether the more fine-grained notion of M-Max is better able to separate the two theories in terms

of their maximizing potential.

3.3 M-Max: Possible Separation

Recall from Chapter 2 that M-Max differs from S-Max in two ways: first, it only permits M-Fair

interpretations, and, second, it adds a third isomorphism type requirement. By Theorem A.1.2, for

theories extending ZFC it turns out that this new isomorphism type condition is equivalent to the

inner model interpretation being provably proper. As a result, for the two theories under present

consideration, T ′M-Maxes over T if it proves that there is some non-trivial M-Fair interpretation ϕ.

Recalling that, in contrast to the class of S-Fair interpretations, M-Fair interpretations only include

definable inner models, the key difference in this analysis is that forcing extension interpretations

no longer suffice for weak maximization. With these facts in mind, we now turn to the question of

how to evaluate our two theories in terms of M-Max.

The first direction–regarding whether ZFC + LCs + MM weakly M-Maxes over ZFC + LCs +

V = Ult(L)–is extremely straight-forward, given what has already been established. In section

3.2, it was noted that under the assumption of the Ult(L) conjecture, there is a definable inner

model interpretation of ZFC + LCs+V = Ult(L). Since interpretations of this sort are M-Fair,

in addition to being S-Fair, we find that the very same interpretation which witnessed the weak

S-Maximzation of forcing axioms over Ult(L) also witnesses its (weak) M-Maximization as well.

We therefore note that ZFC+LCs+MM weakly M-Maxes over ZFC+LCs+V =Ult(L) without
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further comment.

The question of the other direction–regarding whether ZFC+LCs+V = Ult(L) also weakly M-

Maxes over ZFC + LCs+MM–is much more intricately involved. Unlike with the earlier case,

the interpretation witnessing the weak S-Maximization of ZFC+LCs+V = Ult(L) over forcing

axioms in section 3.2 was a set-forcing interpretation, and therefore fails to provide an M-Fair

interpretation. As a result, an additional method of defining interpretations of forcing axioms

would be required for the two current theories to be M-Equivalent. So we turn to the question of

whether there are any known inner model interpretations of forcing axioms, given sufficient large

cardinal strength.

One natural possibility to consider when searching for such an inner model interpretation comes

from the theory of the Pmax forcing extensions. Originally developed by Woodin42 in the early

1990’s as a further development of the forcing axiom program, it was discovered that forcing

with this poset on models of strong determinacy could provide natural interpretations of restricted

versions of forcing axioms, assuming the existence of a supercompact in V .43 Woodin was able to

show that under the assumption of a supercompact, the generic extension of L(R) by this forcing

poset exists as an inner model of V , and many of the standard consequences of forcing axioms

at the level of H(ω2) hold here.44 Furthermore, for certain well-behaved pointclasses of reals

Γ, the Pmax extension of L(Γ,R) can be seen to model restrictions of strong forcing axioms to

small cardinals, including MM(c).45 Additionally, these forcing extensions of inner models of

42Prior to the discovery of the machinery of Ult(L), Woodin’s work focused prominently on the development of
forcing axioms. Though he advocated for those axioms, and especially his axiom (?), his later proofs regarding weak
extender models for supercompactness lead him to later reject this earlier line of argument. See Woodin (2010a) Def-
inition 5.1 for the definition of (?) in terms of Pmax. Interestingly, these early arguments directly invoked maximality
considerations, noting that (?) implied that any Π2 over H(ω2) which can be made true with set-forcing is already true
in V . Though Woodin has rejected these arguments, other proponents of this line of reasoning persist: see Schindler
(2017) for the current state-of-the art regarding these arguments.

43The Pmax extension of L(R) was first introduced in Woodin (2010a) ch. 4-6. A substantial theory of this forcing
poset is developed and articulated throughout this textbook. In effect, forcing with Pmax is designed to directly “lift”
the structure theory of P (ω) under ADL(R) directly to H(ω2), preserving as much of these consequences as possible.
See Koellner (2017) pp. 3212–3215 for an accessible presentation of this material.

44See Woodin (2010a) Theorem 4.54 for the existence of the generic extension, and that is models ZFC. Most of
the rest of the chapter proves particular paradigmatic consequences of forcing axioms in this model.

45See Woodin (2010a) Section 9.2. Note that the results are slightly stronger than stated above: in fact,
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determinacy are generically absolute, and therefore represent informally “canonical” inner models

of restricted versions of forcing axioms.46 Given this rich and structured theory regarding inner

models of restricted versions of forcing axioms, one might naturally hope that a full definable inner

model of ZFC+LCs+MM could be found through further developments of this literature.

Alas, however, the prospects of a Pmax extension providing an M-Fair interpretation of the full the-

ory of ZFC+LCs+MM seem highly implausible, at best. There are three distinct complications

for this prospect. First, while the Pmax extension of L(R) itself provides a definable inner model,

the more intricate Pmax extensions of L(Γ,R) for pointclasses Γ are only definable in terms of a

parameter. The Pmax extension of L(R) only models a very limited selection of localized conse-

quences of forcing axioms–in particular, the structure theory of P(ω1) under MM–and not the full

axiom MM.47 On the other hand, the Pmax extensions of models of the form L(Γ,R) are unable

to provide M-Fair interpretations of forcing axioms, requiring the use of the parameter Γ in their

definition. Thus, any possible interpretation arising from the theory of Pmax extensions will seem-

ingly either be too weak or fail to provide a genuinely M-Fair interpretation.48 Secondly, even if

an interpretation only definable from a parameter were accepted, it currently seems unlikely that

ZFC+LCs+V =Ult(L) will prove that any Pmax extension of an inner model of determinacy will

model all of MM: the process of extending the strength of the forcing axioms true in these models

L(Γ,R)Pmax |= MM++(c). Work on extending these results is ongoing: see Larson (2014) (and footnote 49 below)
for a discussion of one such extension, to a restricted version of MM(c+).

46The term “canonicity” is frequently used in the literature regarding the Pmax extensions. Note that this is a wholly
separate usage of the term than is found in the literature regarding canonical inner models. To avoid confusion, we
will not refer to the Pmax extensions in this way throughout the remainder of the dissertation, instead directly stating
the properties seen as providing a degree of “canonicity”.

47It should be noted that these local consequences are particularly important to some advocates of forcing axioms.
In particular, Todorčević (2012) presents these consequences for the structure theory of P (ω1) as the most important
sources of justification for PFA and MM. In his envelope perspective argument, Koellner argues that since this structure
theory concerns only the cumulative hierarchy up to H(ω2), and so can be wholly captured in a proper inner model of
V , these consequences can be fruitfully studied and developed regardless of whether forcing axioms hold globally in
V or not. See Koellner (2017) section 3.3 for a concise and focused treatment of this argument in print. A full-length
treatment of the envelope perspective argument is also forthcoming. For present purpose, we note that regardless of
whether the envelope perspective successfully nullifies Todorčević’s particular argument for forcing axioms, it does not
attempt to provide a response to the arguments for forcing axioms on the grounds of ‘maximize’ under consideration
here.

48See section 4.2 for more on the restriction of M-Fair interpretations to those which are definable without parame-
ters.
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to even MM(c+) has proved painstaking, requiring myriad assumptions and restrictions to be added

to the axiom’s formulation.49 Given how artifical and strict the restrictions on MM must be to hold

even for the smallest infinite cardinals in a Pmax extension, it would be extremely surprising if such

an extension were proved to model the full, unrestricted MM.50 Lastly, even if a Pmax extension

of an inner model of determinacy modeling MM were to be found, this would still not suffice to

provide an interpretation of ZFC+LCs+MM: as Pmax is a homogenous forcing poset, the large

cardinal strength of these extensions is limited to that of the original inner model L(Γ,R), which

fall well below that of a proper class of Woodins and an extendible. As a result, even if there were

hiterto unprecedented developments in the theory of Pmax extensions of inner models of determi-

nacy, this would nonetheless fail to provide an interpretation of ZFC+LCs+MM. For these three

reasons, the method of Pmax extensions appears to be unable to provide an M-Fair interpretation of

ZFC+LCs+MM in ZFC+LCs+V =Ult(L).

But what about other possible avenues for finding an inner model interpretation of ZFC+LCs+

MM: might there be a method unrelated to the theory of Pmax forcing extensions that could reveal

the existence of such an inner model? Unfortunately, this remains an open question: there are no

known examples of inner model interpretations of MM, but there also is no general proof showing

that such an interpretation is impossible. We note, however, that any such interpretation would

have to be generated in a very novel fashion, as the usual methods of defining inner models cannot

be used for interpreting ZFC+LCs+MM: neither inner models of determinacy51, nor set-generic

grounds52, nor fine-structural inner models53 can interpret ZFC+LCs+MM within ZFC+LCs+

49The current strongest forcing axiom known to hold in a Pmax extension is MM(c+) restricted to posets which a)
do not reduce the cofinality of ω3 to ω1 and b) are stationary set preserving for posets which do not add ω1 sequences
of ordinals. See Larson (2014).

50Note that, unlike the case of MA, MM is not equivalent to any of its restrictions to particular infinite cardinals.
51As noted above, these models and their forcing extensions which provably are contained in V inherently lack the

necessary large cardinal strength
52Woodin has shown that V =Ult(L) implies that V is the minimum member of the generic-multiverse: see Woodin

(2017) Theorem 7.26 3). For present purposes, we note that this implies that there are no proper set generic grounds
of V .

53All known fine-structural inner models are models of CH, and so cannot satisfy strong forcing axioms: the same
is true for all known coarse-structural inner models. It is believed that any future fine-structural inner model will also
model CH, as well as a variety of combinatorial properties inconsistent with MM.
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V =Ult(L). As a result, it is not even clear where one might start to look for such an interpretation

of forcing axioms!

Given the inability of any of the established methods of defining inner model interpretations to

properly interpret ZFC+LCs+MM with an M-Fair interpretation, the prospects for the existence

of such an interpretation might seem dubious. We further argue that this possibility is extremely

unlikely. Towards this end, note that for all prior stages of the inner model program there has been

a clear pattern: a canonical inner model will be found, representing the “smallest” possible class-

sized inner model interpretation for a given large cardinal strength, and any other theories with

that consistency strength can be interpreted in it through outer model interpretations (or patently

unfair interpretations).54 If this pattern broke at the level of an inner model of a supercompact

cardinal, this would represent yet another fashion in which the typical features of the inner model

program are incompatible with the level of a supercompact cardinal. But, while earlier instances of

failures of paradigmatic properties of the inner model program at the level of a supercompact–such

as the lack of a projectively definable well-ordering of the reals–can be explained and understood

as the direct result of central consequences of the existence of a supercompact, the existence of

non-trivial class-sized inner model interpretations in Ult(L) would seem to be entirely unrelated to

the unique properties of supercompact cardinals. At the very least, this would represent one of the

most surprising and seemingly inexplicable asymmetries between inner model theory below and

above a supercompact cardinal.

Beyond merely being surprising, however, the existence of such an interpretation of forcing axioms

within Ult(L) would pose a serious challenge for the extent to which Ult(L) could be seen as L-like

in any meaningful way. If there were a definable inner model interpretation of ZFC+LCs+MM

then, given the Ult(L) conjecture, the definition of Ult(L) could be carried out in this proper

inner model; as a result, there would be a definable proper inner model of the Ultimate version

of L within the Ultimate version of L. Furthermore, this process could then be carried out in

54See Chapter 1 for more on the history of the inner model program.
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the interpretation of V = Ult(L), leading to an infinite descending chain of Ultimate versions of

L. This would be in stark contrast to the case of V = L, where there are no proper class-sized

inner model interpretations whatsoever, and even to the case of canonical inner models of large

cardinals below a supercompact, where any such proper class-sized inner model must lose large

cardinal strength. Without knowing the exact nature of the definable inner model interpretations of

ZFC+LCs+MM, it is unclear the extent to which these distinct inner models would necessarily

resemble each other. Advocates of V = Ult(L) explicitly hope that ZFC +V = Ult(L) would

suffice to settle all important undecidable questions modulo large cardinals55, so any instances of

disagreement over an independently motivated mathematical question would seriously diminish

the prospects of Ult(L) as a completion to the challenges of incompleteness. Without knowing

more about the eventual details of these inner models, however, at this point we can only note that

they may reveal a fundamental lack of even a minor degree of absoluteness.

Regardless of whether this possible descending infinite chain of Ultimate L’s would prevent Ult(L)

from having the necessary degree of absoluteness expected of an L-like inner model, we argue that

it reveals a more significant challenge for the justification of V =Ult(L): a deep lack of canonicity

for the Ult(L) structure. Recall that an inner model is considered canonical if there are no arbitrary

sets contained in it, and no arbitrary information introduced to it: Sargsyan eloquently explains the

canonicity of L as meaning “no random or artificial information is coded into the model. Every

set in L has a reason for being in it.” (Sargsyan (2011), slide 9). In stark contrast to this, if there

is a descending infinite chain of models of V = Ult(L), then any model of Ult(L) will contain

arbitrary sets that fall out of the next proper inner model of V = Ult(L). These sets will not be

required by the fine-structural notions–the strategic extender models–used to construct a particular

model of V =Ult(L). In this way, ZFC+LCs+V =Ult(L) would seem to clearly fail to identify

a principled and robust collection of sets, instead varying significantly depending on the precise

55See Goldberg (Frth): “Woodin has proposed the axiom V =UltimateL... which, supplemented by large cardinal
axioms, is expected to axiomatize the structure of the canonical inner model with a supercompact cardinal, if it exists.
Therefore, supplemented with large cardinal axioms, the axiom V = UltimateL should decide all questions of set
theory.”
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specifics of where it were constructed. In this way, the existence of a definable interpretation

of ZFC+LCs+MM within ZFC+LCs+V = Ult(L) would appear to pose a serious challenge

to treating the “Ultimate version of L” as a genuinely canonical inner model. In fact, given the

myriad ways that such an interpretation would seem to prevent a significant degree of L-likeness

for Ult(L), its existence would raise many questions regarding the justification of V = Ult(L)

through the historical goals and methods of the inner model program.

Beyond its effects on the Ult(L) program, the existence of an interpretation of ZFC+LCs+V =

Ult(L) within ZFC+LCs+V =Ult(L) would also raise questions about the usefulness of M-Max

as a methodological tool for evaluating extensions of ZFC+LCs. Recall from Chapter 2 that M-

Max can be thought of as formally explicating a concept of having all of the mathematical content

of a less-maximizing theory, and containing additional mathematical content that the other theory

misses. But if there is an interpretation of ZFC+LCs+MM in ZFC+LCs+V = Ult(L), then

we would find that some natural mathematical theories M-maximize over themselves: in terms of

the informal gloss on M-Max, this would seemingly mean that some good mathematical theories

“think” that they themselves miss out on genuine mathematical content! Such a state would be

bizzare to say the least, and may well require a a rethinking of how to apply ‘maximize’ to theories

extending ZFC+LCs. It is likely that further study of the specifics of these M-Fair interpretations

would grant insight into how inner model interpretations broke with established patterns at the

level of a supercompact cardinal, perhaps revealing how to better explicate ‘maximize’ for dealing

with theories at such high levels of consistency strength.

But this all remains deeply speculative, given the complete lack of an obvious way to interpret

ZFC+LCs+MM with an inner model interpretation. Since such an interpretation would require

novel and unprecedented methods to be developed and utilized, and since its existence would imply

a wide bevy of surprising results regarding Ult(L) which seem at odds with the significant theory

as a fine-structured inner model so-far developed by Woodin, Koellner, and Goldberg, we here

register strong skepticism towards the possibility that any such interpretation exists. For these
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reasons, we propose the following Conjecture:

Interpretation Non-Existence Conjecture (INEC): There is no M-Fair interpretation of

ZFC+LCs+MM within ZFC+LCs+V =Ult(L).

With this conjecture in place, we are now ready to evaluate the maximization conditions between

the theory of forcing axioms and of Ult(L) in terms of M-Max. Given the Ult(L) conjecture of

the Harvard school, we find that ZFC+LCs+MM weakly M-maximizes over ZFC+LCs+V =

Ult(L). Additionally, given our INEC, we find that ZFC+LCs+V = Ult(L) cannot weakly M-

maximize over ZFC+LCs+MM. We therefore find that the following implications hold:

If the Ult(L) conjecture holds, then ZFC+LCs+V =Ult(L)EM ZFC+LCs+MM

and

If the INEC holds, then ZFC+LCs+MM 6EM ZFC+LCs+V =Ult(L)

Combining these, we find:

Maximality result: If the Ult(L) conjecture and the INEC are both true, then

ZFC+LCs+V =Ult(L)/M ZFC+LCs+MM

In conclusion, we note that the Harvard school strongly endorses the truth of the Ult(L) conjecture,

and the currently available evidence seems to suggest that the INEC is true; and so, in the best

possible justificatory situation for the Ult(L) program, M-Max finds that forcing axioms are strictly

more maximizing than V =Ult(L).
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3.4 ‘Maximize’ and Contemporary Axiom Selection

In the previous two sections, we studied the maximization relationships between forcing axioms

and the Ult(L) program according to S-Max and M-Max. While S-Max found their maximization

potential to be equivalent, due to the identical large cardinal strength in the specifications of the

two theories, we showed that M-Max finds separation between the two theories, given our two

conjectures. In particular, we found that ZFC+LCs+MM strictly M-Maxes over ZFC+LCs+

V =Ult(L). In this final section of the chapter, we will evaluate the consequences of this result for

the justification of the Ult(L) program.

In Chapter 2, it was noted that the ‘maximize’ maxim was closely related to the mathematical goals

of set theory as a discipline, and so justified on the basis of means-ends analysis. Additionally, it

was noted that ‘maximize’ was shown by Maddy to underlie the justification of ZFC+LCs in the

first place, and so seemed to be a natural source of justification for any acceptable extension of this

theory. Finally, it was argued that M-Max is the best justified formal explication of the informal

‘maximize’ notion, and therefore best positioned to be used in future justificatory endeavors. As a

result, the likely strict maximization of another natural theory extending ZFC+LCs over ZFC+

LCs+V = Ult(L) seems to pose a clear de facto challenge to the justification of the latter as the

uniquely correct theory of the set-theoretic universe. But how should an advocate of V = Ult(L)

respond to this?

One response, given the dependence of our maximization result on two unproven conjectures,

would be to reject one or both of these assumptions, thereby nullifying the result. Unfortunately,

this does not seem to be a live option for an advocate of the Ult(L) program. A rejection of the

Ult(L) conjecture would likely dash the hopes of the Harvard school to prove the WIC, leaving

strategic extender models unable to provide a fine-structural presentation of a supercompact car-

dinal. Since Woodin notes that strategic extender models seem to be the only possible notion of
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fine-structure at this level,56 this would leave the inner model program without any clear path for-

ward. Additionally, we note that the analysis in section 3.3 could instead be carried out with UA

and the UA conjecture in place of V =Ult(L) and the Ult(L) conjecture: thus, this response would

in fact require an even stronger rejection of the UA conjecture. But the lack of an inner model of

UA with a supercompact cardinal has been described by the Harvard school as a potential falsifi-

cation of the prospects of the inner model program at levels above a supercompact: as a result, its

rejection would pose a much more signficant challenge for the justification of the Ult(L) program

than our maximization result! For these reasons, a rejection of the Ult(L) conjecture (and also the

UA conjecture) does not seem to be a live option for proponents of V =Ult(L).

Another response would be to instead reject the INEC, arguing instead that there will eventually

be a definable inner model interpretation of ZFC+LCs+MM within ZFC+LCs+V = Ult(L).

By itself, a rejection of the INEC would seem somewhat implausible: this type of response would

naturally also require some sort of account of what novel methods could possibly generate this M-

Fair interpretation. Additionally, as noted above, the existence of such an interpretation would raise

serious question regarding the extent to which Ult(L) would represent a canonical inner model of

a supercompact cardinal, thereby severing the supposedly close connection between V = Ult(L)

and previous axioms generated from the inner model program. Given the combination of the

implausibility of the falsity of INEC and the extent to which its falsity would raise new challenges

for the justification of V = Ult(L), rejecting the INEC also does not seem to be a live option for

supporters of the Ult(L) program.

Thus, any satisfactory response should instead accept the maximality result, but instead question

its significance for the current debate in axiom selection. In taking this tact, there are two distinct

options for a response. First, one could argue for the importance of ‘maximize’ as a methodolog-

ical principle in this dispute, but question whether M-Max provides the correct formal explication

of the informal principle. One such approach would be to argue that S-Max instead provides the

56See Woodin (2017) p. 89: “the hierarchy cannot consist of models constructed from just a sequence of partial
extenders. The only alternative at present is an inner model theory based on strategic premice.”
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correct explication of ‘maximize’, and therefore that Ult(L) and forcing axioms have equivalent

maximization strength. This does not seem like a very satisfactory response, however: as noted

in Chapter 2, S-Max amounts to a simple admonition to choose a theory with higher large car-

dinal strength, when possible. Though large cardinals are particularly important examples of set

theoretic objects, they by no means are the only objects of study in contemporary set theoretic

practice. Thus, explicating ‘maximize’ in a way that only considers a particular subcollection of

set theoretic objects seems arbitrary at best. Additionally, while in Chapter 2 it was only suggested

that the coarse-grained nature of S-Max may prevent it from being a useful methodological tool in

axiom selection debates, it is only with our maximization result that an actual example of this lim-

itation has been found. Since it is both less well-justified on the basis of the means/ends analysis

underlying ‘maximize’ and does not seem fit for the work of the current axiom selection debate,

we note that a restriction to S-Max instead of M-Max would be unwise. On the other hand, an

advocate of the Ult(L) program could argue that an alternative formalization of ‘maximize’ should

be preferred to both S-Max and M-Max; we will consider the prospects for such a response further

in Section 4.2.

Secondly, a proponent of the Ult(L) program could concede that other theories are better justified

on the grounds of the ‘maximize’ maxim, but argue that ZFC+LCs+V =Ult(L) is still the best

choice for extending ZFC+LCs on the basis of other methodological principles. Such a response

may well be in keeping with the traditional arguments for V = L, which focused on the ease of

working in such a well-behaved and regulated model of set theory. An argument of this form for

V =Ult(L) would seemingly focus closely on the extent to which Ult(L) can be shown to be L-like

in any of the ways described in Section 1.2, but without forcing an adherent to give up the use of

large cardinals as a tool for measuring and comparing the consistency strength of theories. Without

further development of the Ult(L) program, and especially without a proof of the WIC and Ult(L)

conjecture yet in place, it is difficult to see how to evaluate the force that such an argument might

have. Additionally, there has been relatively little work in the literature trying to identify what

general methodological principles might underlie these lines of reasoning. As such, the burden at
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this time is on the Ult(L) program to further articulate and defend such an argument.

Beyond arguments from L-likeness, there is one other argumentative route that can be taken for

arguing that V = Ult(L) is better justified than alternative theories in spite of the maximization

result: that Ult(L) is provably so “close” to V under any theory extending ZFC+LCs to make the

fruits of maximization negligible for set theoretic purposes. A particular instance of this “close-

ness” argument schema would then include a proof, for some particular explication of the notion

of an inner model being close to V , that the interpretation of V =Ult(L) must be close in that way,

and a methodological argument that the particular sense of closeness allows all the mathematical

fruits of the alternative theory to be achieved in the interpretation of V =Ult(L). For some notions

of closeness, a proof already exists: for example, the theory of weak extender models suffices

to establish that the interpretation provided by the Ult(L) conjecture–if it exists–will be close to

any V in the sense of agreeing on large cardinal notions. Other proofs of closeness properties are

promised by work on the HOD dichotomy and the HOD conjecture, which would show that the

interpretation of V = Ult(L) is close in the sense of being a class-generic ground of V under any

theory extending ZFC + LCs. But, while there has been much work on proving that particular

closeness properties hold between Ult(L) and alternative models of ZFC+LCs, there has so-far

been relatively little work on providing arguments for why such a notion of closeness might allow

Ult(L) to retain all of the important mathematical fruits of the alternative theory. While we note

that such “closeness” arguments seem potentially quite promising as a source of justification for

Ult(L), it is difficult to evaluate them further without some particular instances being put forward

and defended. Thus, as with the L-likeness arguments, the burden at this time is on the Ult(L)

program to explicitly provide such an argument.

In conclusion, in this chapter we used the two formal tools presented in Chapter 2 to evaluate the

justification of the two contemporary candidates for extending ZFC +LCs described in Chapter

1. In section 3.1, we provided an accessible presentation of the current Ult(L) program, even-

tually isolating a particular formal theory as a precise formulation of the program. In addition,
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we highlighted a few crucial assumptions underlying the program that must be granted for argu-

ment’s sake, especially the Ult(L) conjecture. Then, in section 3.2, we found that using the coarse

grained S-Max notion, the theories of forcing axioms and of Ult(L) were found to be equivalent,

with no maximization based reason to prefer one to the other. On the other hand, in section 3.3.

we used the fine-grained M-max notion to show that, given the truth of a plausible conjecture, the

theory of forcing axioms maximizes over that of Ult(L). Finally, in the current section we noted

some possible responses to this maximality result available to advocates of the Ult(L) program. In

the following, final chapter of this dissertation, we will identify and outline two future projects to

continue the study of axiom selection beyond ZFC+LCs.
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Chapter 4

Future Directions and Conclusion

In this final chapter of the dissertation, we outline two future projects that are intended to continue

the author’s work on questions of methodology related to the justification of strong theories of sets

extending ZFC +LCs. The first project, outlined in Section 4.1, arises from the question of the

extent to which the maximality result of Ch. 3 should be seen as directly justifying the theory of

ZFC+LCs+MM, instead of merely providing a justificatory challenge to the Ult(L) program. In

reflecting on this question, we suggest that a new, third alternative theory extending ZFC+LCs is

suggested; further study of this new theory will help to clarify the justificatory force of ‘maximize’

for forcing axioms, in addition to the theory representing a mathematically and philosophically

interesting object of study in its own right. The second project, outlined in Section 4.2, arises

from one of the main live responses for advocates of Ult(L) to the maximality result: namely,

offering an alternative formal account of ‘maximize’ that is both well-justified and does not find

ZFC+LCs+V =Ult(L) unduly restrictive. We propose two possible alterations to M-Max which

may potentially provide just such an account, and seem worthy of further study. We also raise

an important methodological question regarding ‘maximize’ that appears essential to any possible

justification of these alternative accounts. Finally, in Section 4.3, we offer a brief summary of the

dissertation, and conclude with a suggestion of how philosophy and mathematics may continue to
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be fruitfully intertwined in studies of contemporary axiom selection going forward.

4.1 Future Project 1: A Third Alternative to Extending ZFC+

LCs

In Section 3.4 above, we noted the justificatory challenge that the maximality result poses for the

justification of the Ult(L) program. But what of the effects of this result on the justification of

the forcing axioms program? At first glance, it would seem that the maximality result provides

strong primae facie support for ZFC + LCs+MM as an extension of ZFC + LCs: after all, the

‘maximize’ maxim implicitly underlying the case for ZFC + LCs also provides support for the

forcing axiom program over the only other live candidate for extending ZFC+LCs. Reflecting on

the argument for the maximality result, however, may well give some pause from regarding it as

directly providing support for forcing axioms. To see this, note that neither the actual axiom MM

nor any of its paradigmatic consequences play any direct role in establishing the maximality result.

Instead, the Ult(L) conjecture suffices to show that any extension of ZFC+LCs that contradicts

V =Ult(L) weakly M-maxes over ZFC+LCs+V =Ult(L); similarly, the nature of Ult(L) as a

canonical inner model appears to prevent ZFC+LCs+V =Ult(L) from proving the existence of

an M-Fair interpretation of any extension of ZFC+LCs that contradicts V =Ult(L).1 Combining

these two facts, it seems that the maximality result in fact reveals that ZFC+LCs+V 6= Ult(L)

strictly M-maxes over ZFC+LCs+V =Ult(L). Since the particular choice of an alternative theory

to that of Ult(L) seems to be irrelevant for its maximization over ZFC+LCs+V = Ult(L), one

might naturally feel some queasiness in regarding the maximality result as providing justification

for forcing axioms, and not just representing a justificatory challenge to the Ult(L) program.

So why should the maximality result be seen as providing justification specifically for the forc-

1Special thanks to Guillaume Massas for stressing this point in private conversation.
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ing axiom program? In the current context of the axiom selection debate, it seems that forcing

axioms are justified by ‘maximize’ in large measure because there is no other alternative candi-

date to ZFC + LCs+V = Ult(L) actually on-offer which similarly M-maxes over V = Ult(L);

while the same may well be true for ZFC+LCs+¬CH, this theory is not a natural candidate that

bears serious consideration as an extension of ZFC+LCs.2 As a result, our maximality result pro-

vides a non-trivial degree of justification for the forcing axiom program, and, at least until another

alternative theory with similar maximizing potential is actually put forward by the set-theoretic

community, this therefore provides the basis for an argument for accepting ZFC+LCs+MM as

the correct extension of ZFC+LCs. This support provided by this argument remains highly tenta-

tive, however, unless one were sufficiently confident that there would be no other alternative theory

ever put forward to extend ZFC+LCs in a different, third way.

So, is there any plausible option for a third candidate theory that might arise in the future? We

suggest that there is. To understand this possibility, note that it is somewhat of a historical oddity

that the current candidates for possible sizes of the continuum are either ℵ1 (making CH true) or

ℵ2 (making CH false, but in the smallest possible way). Historically, there were instead many

advocates for an extremely large continuum, well beyond ℵ2 or any of the first infinite cardinals.3

The main idea behind the large continuum approach seemed to be that the continuum should be as

wild and chaotic as possible, permitting a wide variety of different types of sets of reals to exist.

While explicit calls for a large continuum were somewhat superseded by the flurry of activity in

2In the terminology of Maddy (1997), what the result in Ch. 3 purports to show is that ZFC+LCs+V =Ult(L)
is a restrictive theory. Maddy notes that the maxim of ‘Maximize’ provides a clear admonition to avoid restrictive
theories, all other things being equal. It is for the precise reason that a theory T ′ maximizing over some theory T may
be restrictive relative to some other, unrelated theory T ? that Maddy refrains from suggesting that the M-Maximization
of a theory over another theory by itself provides support for accepting the maximizing theory, but instead only for
preferring it to its restrictive alternative. See Maddy (1997) pp. 84–85 and 231–232.

3See Cohen (1966) for a particularly salient version of this view: “A point of view which the author feels may
eventually come to be accepted is that CH is obviously false. The main reason that one accepts the Axiom of Infinity
is probably that we feel it absurd to think that the process of adding only one set at a time can exhaust the entire
universe... Now ℵ1 is the set of countable ordinals and this is merely a special and the simplest way of generating a
higher cardinal. The set C is, in contrast, generated by a totally new and more powerful principle, namely the Power
Set Axiom. It is unreasonable to expect that any description of a larger cardinal which attempts to build up that cardinal
from ideas deriving from the Replacement Axiom can ever reach C. Thus C is greater than ℵn, ℵω, ℵℵω

. This point
of view regards C as an incredibly rich set given to us by a bold new axiom, which can never be approached by any
piecemeal process of construction.”
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the 1980’s and 1990’s after the discovery of strong forcing axioms as natural axiom candidates for

a small continuum alternative to CH, support for a large value of the continuum quietly continued.4

Given the historical support for large continuum approaches to resolving the question of CH, as

well as the fact that never explicitly rejected by the set-theoretic community–instead becoming

somewhat dormant in the face of a clear alternative in the forcing axioms program–it seems that a

theory implying that the continuum is above ℵ2 is a natural possible third alternative.

Additionally, as a result of recent developments in set-theoretic practice, there is an obvious source

for axiom candidates capturing a large continuum approach: the study of cardinal characteristics

of the continuum (henceforth cc’s). To understand the notion of a cc, note that there are many

mathematical properties which ZFC proves are true of the continuum, but which cannot be true of

ω.5 For a wide variety of such properties, it has been shown to be consistent that they are first true

at any κ with ℵ0 < κ ≤ c. A cardinal characteristic is then the first cardinal number at which the

property is true, for some particular choice of such a property.6 Through study of the paradigmatic

properties of the continuum, a zoo of such notions has been discovered.7 While much of the early

work on these principles focusing on finding forcing constructions which showed the consistency

of various orderings on collections of cc’s,8 recent work has begun to focus more directly on the

effects of particular strict orderings of cc’s for resolving open questions of ZFC. Interestingly,

principles asserting strict inequalities between particular collections of cc’s are known to imply

¬CH; furthermore, if the collection is larger than three particular cc’s, then these principles imply

that the continuum is greater than ℵ2. In fact, Blass notes that there are only two sorts of natural

4See Jensen (1995) p. 401 for a recent, somewhat poetic statement of this point-of-view: “The Newtonian directs
his gaze to the real instead of to the natural numbers. He is less impressed by their clarity than by their boundless
multiplicity. The real numbers constitute a gigantic, unfathomable sea. For every principle that generates real numbers,
there must be a number not attainable by that principle”.

5For example, consider the property of there being an unbounded collection of functions on ω: ZFC proves that
any countable collection of functions f : ω 7→ ω is bounded almost everywhere by some function g : ω 7→ ω, but that
a continuum sized collection of such functions is (trivially) unbounded by any particular g.

6From the above example, we get the cardinal characteristic of the bounding number b, defined as the smallest κ

st there is a set F of functions f : ω 7→ ω st |F | = κ and there is no g : ω 7→ ω that bounds each member of F almost
everywhere.

7See Blass (2010) for a thorough account of the current state of this literature. See Blass (1996) for a more
accessible presentation of this material.

8See Kellner et al. (2019) for an example of the current state of the art of this work.
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set-theoretic principles that are known to imply the failure of CH: strong forcing axioms, and strict

cardinal characteristic inequalities.

Thus, there is a notable tradition in the history of responses to CH that is not represented in the

current candidate theories for extending ZFC+LCs, and there are possible axioms–the strict cardi-

nal characteristic inequalities–that are able to axiomatize a theory of this unrepresented approach.

We suggest, then, that theories including cc inequalities should be studied as a possible third al-

ternative to the inner model and forcing axiom programs. Let us specify this further. Letting char

be a particular collection of cc’s, we propose the axiom schema CCN(char) which states, for each

pair a,b in char, that a 6= b. One particularly interesting instance of this schema would then be

CCN(cich), where cich is a collection of ten cardinal characteristics which are particularly im-

portant for the study of cc’s.9 We note that ZFC+LCs+CCN(cich) ` c ≥ ℵ9, and so provides

a candidate theory of a large continuum (relative to ℵ2). It is hoped that this theory could serve

as an proxy for any future theory of a large continuum, allowing this third alternative to be better

studied and understood.

We conclude this section by suggesting three important projects regarding ZFC+LCs+CCN(cich)

that we hope to carry out in the future:

1. Study and develop the mathematical theory of ZFC+LCs+CCN(cich), to better understand

its features and consequences.

2. Evaluate the justification of ZFC+LCs+CCN(cich) in terms of ‘maximize’ and other po-

tential methodological maxims, becoming clearer on whether a large continuum approach

can provide an extrinsically motivated extension of ZFC+LCs.

3. Compare the maximization potential of ZFC+LCs+MM with that of ZFC+LCs+CCN(cich),

aiming to determine the extent to which either candidate is justified in its own right by ‘max-

9In particular, cich is the collection of the ten independent cc’s found in Chichon’s diagram. See Kellner et al.
(2019) for a description of these cc’s, and of their importance.
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imize’.

4.2 Future Project 2: Expanding the Notion of M-Fair Inter-

pretations

Recall that in Section 3.4 above, it was noted that the maximality result seems to pose a direct

challenge to the justification of ZFC+LCs+V = Ult(L). While a number of possible responses

to this challenge were noted, perhaps the best available option would be to challenge M-Max as

the proper formal explication of the informal maxim of ‘maximize’. Since S-Max was found to

be somewhat undermotivated as an account of ‘maximize’ in Ch. 2, it seems that any response of

this type would require a new formal approach to ‘maximize’, beyond those already found in the

extant literature. Where might such an alternative explication be found? Recall from Ch. 2 that

there were two distinct differences between S-Max and M-Max: first, the latter has an additional

isomorphism type condition, and, secondly, that the latter uses the more narrow notion of M-Fair

interpretations, instead of the broader notion of S-Fair interpretations. Given the importance of

the isomorphism type condition to the usefulness of M-Max as a methodological tool, it therefore

seems that the most likely source of a well-justified new explication of ‘maximize’ would be to

alter the scope of permissible fair interpretations in the definition of M-Max.

The first step in providing an alternative explication of ‘maximize’ in this way would be providing

the particular formal account of fair interpretations. We see two particularly interesting options for

extending the notion of M-Fair interpretations. First, one could use the notion of S-Fair interpre-

tations in place of M-Fair the definition of M-Max. Unfortunately, this would not be without its

technical challenges: it is unclear how to define the isomorphism type condition in the presence of

the broader class of S-Fair interpretations. It follows that any attempt to amend M-Max to permit

S-Fair interpretations would need to pay close attention to precisely how sets “existing” only in
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the extension should be treated, and how their isomorphism types could be studied in the ground

model. These deep questions have been central to the philosophical understanding of forcing since

its discovery by Cohen, and it would be wise not to expect any simple answers. In passing, we

simply note that there are likely conceptual challenges ahead in attempting to formulate a version

of M-Max that makes sense in the context of outer models.

Another, perhaps more intriguing option for altering the notion of M-Fair arises from reflection on

the Pmax extensions of models of the form L(Γ,R). As we noted in Section 3.3, these models are

interesting objects of current set-theoretic study, and have generated a rich theory with abundant

consequences for the understanding of forcing axioms, large cardinals, and determinacy.10 But

such models are only definable with a parameter: the set of reals Γ. Given their importance for

set-theoretic practice, one might naturally hope to include such models as “good” interpretations.

With this in mind, we might seek to expand the class of M-Fair interpretations to include formulas

ϕ(x,P) with a parameter. M-Max amended with this broader class of interpretations seems to be a

ripe topic of further study, as this addition would permit the inclusion of a wide scope of important

set-theoretic models.11 Of the two possible alterations to the notion of M-Fair interpretations, the

author notes that this latter seems more mathematically and philosophically compelling, and more

likely to lead to an interesting approach to ‘maximize’ in its own right.

The second step in providing an alternative explication of ‘maximize’, after particular formal expli-

cations were developed and provided, would be to evaluate the extent to which the formal notion

properly captures the justificatory motivations behind the informal maxim of ‘maximize’ in the

first place. While the exact nature of what this task would entail will likely depend heavily on the

specifics of the worked-out alternative accounts, we note one particularly important methodolog-

10These abundant consequences are the subject of Woodin (2010a).
11Of particular importance to applications of this alternative of M-Max would be models related to large cardinal

embeddings. Recall that a measurable cardinal κ implies that there is some measure U with particular properties; one
of the central discoveries in the history of large cardinals was that such a measure was equivalent to the existence of an
elementary embedding j : V 7→M for some inner model M. Using the parameter U , the model M would be definable.
Using definable methods within such a model M may well open up a fascinating range of inner model interpretations:
we are very interested to study the consequences such interperations would have for a formal notion of ‘maximize’.
Special thanks to Toby Meadows for discussing this possibility and stressing its importance in private conversation.
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ical question that these alternatives would likely raise. Maddy notes that inner model interpreta-

tions are particularly useful in set-theoretic practice as they allow the import and export of results

from the interpreted theories: for example, one would be able to freely apply any theorems from

the theory ZFC+V = L if one could explicitly assume that all sets under examination were con-

structible.12 Through such applications of the fruits of an interpreted theory, M-Fair interpretations

allow the (constrained) use of any mathematical useful results of a more restrictive theory. In fact,

this ability to retain the mathematical content of an interpreted theory in some form directly under-

lies the idea that a M-Maximizing theory need not lose any of the “good math” from the restrictive

theory. As a result, we would hope that any future version of M-Max also permit satisfactory im-

port/export conditions. But it is currently unclear the extent to which outer model interpretations

or inner models definable from parameters would permit any similar form of import/export of im-

portant results. As such, we note that a possible defense of either of the alternatives to M-Max

noted above would likely require a deeper analysis of the exact nature of import/export conditions

for definable inner models, as well as the extent to which similar conditions can hold for other sorts

of interpretations. In addition to leading to a better understanding of the desirability of alternatives

to M-Max, it is our hope that such a study of import/export in set theory might better reveal the

nature of the ‘maximize’ maxim more broadly.

We conclude this section by suggesting three important projects regarding alternative to the notion

of M-Max that we hope to carry out in the future:

1. Articulate an account of the isomorphism type condition that functions properly in the con-

text of S-Fair interpretations, permitting an intermediate formal approach to maximize prop-

erly between S-Max and M-Max.

2. Study the effects of permitting inner models definable only from parameters into the notion

of M-Fair interpretations, examining whether such an extension provides a possible response

to the maximality result for advocates of V =Ult(L).
12See Maddy (2016) especially pp. 15–17.
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3. Develop a precise account of nature of import/export between theories and their definable

inner model interpretations, allowing an examination of extent to which these benefits are

available for other sorts of interpretations.

4.3 Summary and Conclusion

We conclude this dissertation with a brief summary of its contents. In the first chapter, we laid

out the history of axiom selection in set theory, focusing considerably on developments since 1980

which have led to the two standard axiom candidates for extending Zermelo-Fraenkel set theory

with choice and large cardinals: V =Ult(L) and strong forcing axioms. Throughout this historical

presentation, we sought to examine the epistemological motivations for each program, tracing how

attempts to expand the programs to higher levels of consistency strength have required shifts and

loosenings of these motivations. In the second chapter, we turned to the methodological maxim

of ‘maximize’, presenting the justification of this principle as well as two formal explications of

the notion, one owing to John Steel, the other to Penelope Maddy. We concluded that, on the

basis of the methodological reasons for preferring ‘maximize’ in the first place, Maddy’s notion is

better justified, and therefore should be preferred in axiom selection debates. In the third chapter,

we put the material of the first two chapters together, asking whether either approach to axioms

can be truly said to maximize over the other, finding that forcing axioms strictly maximize over

V =Ult(L), given the assumption of an important conjecture of the Ult(L) program and a plausible

conjecture of our own. Finally, in this fourth chapter we presented two future directions for this

research: in particular, we examined the possibility for future axioms distinct from either forcing

axioms or the inner model program, and considered the prospects of finding an alternative formal

approach to ‘maximize’ by altering the notion of fair interpretations used in Maddy’s approach.

Lastly, it is the sincere hope of the author that this dissertation serves as an example of the possible

benefits of combining philosophical and mathematical inquiry in studying contemporary axiom
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selection. Throughout this work, we have aimed to connect genuinely epistemological analysis

with techniques from mathematical logic in order to contribute towards settling live questions

in the methodology of set theory. We believe that it is only by combining these methods from

across disciplines that a complete and satisfactory understanding of the proper methods of deciding

between axiom candidates is possible. In our future work, including the projects highlighted above,

we hope to continue combining tools from epistemology and from mathematics to generate results

of interest to both philosophers and working set theorists.
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Gödel, Kurt. The Consistency of the Continuum Hypothesis. Annals of Mathematics Studies, no.
3. Princeton University Press, Princeton, N. J., 1940.
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Appendix A

Proofs for Chapter 2

A.1 Simplifying the Isomorphism Condition in M-Max for The-

ories Extending ZFC

Lemma A.1.1. Let T,T ′ ⊇ ZFC. Assume that T ′ ` “ϕ is an M-fair interpretation of T ” and

∃X¬ϕ(X). Then T ′ ` ∃A∀y∀S⊆ y2(ϕ(y)∧ϕ(S)→ (A,∈) 6∼= (Y,S)).

Proof. We work in the theory T ′. Since ∃X st ¬ϕ(X), there must be some set of ordinals O such

that ¬ϕ(O); otherwise, the ϕ-sets would be an inner model of ZFC with the same sets of ordinals,

and so would be equivalent to V . Since ϕ is a class sized inner model, note that O cannot itself

be an ordinal. Let A = {O}∪ trcl(O); note that, since O is a set of ordinals, trcl(O) is itself some

ordinal, and that ∀α ∈ O(α ∈ trcl(O)).

Now, assume for purposes of reductio that there is some Y and S st ϕ(Y ), ϕ(S), and (A,∈)∼= (Y,S):

in particular, let g be the bijection witnessing (A,∈)∼= (Y,S). Working in ϕ, we now define a few

sets. Let Y− = {y ∈ Y |∃z ∈ Y (ySz)} and let Y+ = {y ∈ Y |¬∃z ∈ Y (ySz)}. Note that Y+ must be a

singleton, as ∃!c ∈ A¬∃d ∈ A(c ∈ d). For each y ∈ Y−, let y? = {z ∈ Y−|zSy}. Recursively define
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a function f : Y− 7→ Ord st for all y ∈ Y−, f (y) = α iff (y?,S)∼= (α,∈). Finally, let B = { f (y)|y ∈

Y−∧∃z ∈ Y+(ySz)}.

Since (A,∈) ∼= (Y,S), we have that f (Y−) = trcl(O). Since {x ∈ A|¬∃y ∈ O(x ∈ y)} = {O}, we

find that g({O}) = Y+. Additionally, note that since g− and f are both S-order preserving, for all

y ∈ Y− we find that f (y) = α iff g(α) = y. Thus, b ∈ B iff ∃y ∈ Y−( f (y) = b∧∃z ∈ Y+(ySz))

iff ∃y ∈ Y−( f (y) = b∧ g−(y) ∈ O) iff b ∈ O. As a result, we find that B = O, and so ϕ(O),

contradicting our assumption.→←. Thus, our reductio assumption must be false, and there cannot

be any Y,S st ϕ(Y ), ϕ(S), and (A,∈)∼= (Y,S). This completes our result.

Theorem A.1.2. Let T,T ′ ⊇ ZFC. Then T ≤M T ′ iff there is some ϕ(x) st

a). for all σ ∈ T T ′ ` σϕ,

b). T ′ proves that ϕ is an M-fair interpretation,

c). T ′ ` ∃X(¬ϕ(X)).

Proof. →: Let T ≤M T ′. It follows immediately from the definition of M-Max that there is some

ϕ(x) st a) and b) hold. Additionally, T ′ ` ∃x∃R⊆ x2∀y∀S⊆ y2(ϕ(y)∧ϕ(S)→ (x,R) 6∼= (y,S)); but

then T ′ ` (¬ϕ(x))∨¬ϕ(R), and so T ′ ` ∃X¬(ϕ(X)).

←: Assume that there is some ϕ(x) st a), b), and c) above hold. Then i) and ii) from the definition

of M-Max follow immediately, and it only remains to show that T ′ ` ∃x∃R⊆ x2∀y∀S⊆ y2(ϕ(y)∧

ϕ(S)→ (x,R) 6∼= (y,S)); but this follows immediately from the assumption of c) and Lemma A.1.1

above.
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