
UCSF
UC San Francisco Previously Published Works

Title

Sampling strategies to capture single-cell heterogeneity

Permalink

https://escholarship.org/uc/item/9857d75s

Journal

Nature Methods, 14(10)

ISSN

1548-7091

Authors

Rajaram, Satwik
Heinrich, Louise E
Gordan, John D
et al.

Publication Date

2017-10-01

DOI

10.1038/nmeth.4427
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9857d75s
https://escholarship.org/uc/item/9857d75s#author
https://escholarship.org
http://www.cdlib.org/


Sampling to capture single-cell heterogeneity

Satwik Rajaram1, Louise E. Heinrich1, John D. Gordan2,3, Jayant Avva4, Kathy M. 
Bonness4, Agnieszka K. Witkiewicz5, James S. Malter6, Chloe E. Atreya2,3, Robert S. 
Warren3,7, Lani F. Wu1,3,8, and Steven J. Altschuler1,3,8

1Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, 
California, USA

2Department of Medicine, University of California, San Francisco, San Francisco, California, USA

3Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San 
Francisco, California, USA

4Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, 
Texas, USA

5Department of Pathology, University of Arizona, Tuscon, Arizona, USA

6Department of Pathology, University of Texas Southwestern Medical Center, Texas, USA

7Department of Surgery, University of California, San Francisco, San Francisco, California, USA

Abstract

Advances in single-cell technologies have highlighted the prevalence and biological significance 

of cellular heterogeneity. A critical question is how to design experiments that faithfully capture 

the true range of heterogeneity from samples of cellular populations. Here, we develop a data-

driven approach, illustrated in the context of image data, that estimates sampling depth required 

for prospective investigations of single-cell heterogeneity from an existing collection of samples.

Cellular populations can exhibit widespread heterogeneity in morphology, signaling state 

and genotype. This heterogeneity can play a crucial role in normal tissue function as well as 

in disease progression and drug resistance1, 2. Advances in experimental and analytical 

technologies now allow individual cells to be probed and characterized3. A critical question 

is how to design experiments that faithfully capture the true range of heterogeneity from 

samples of cellular populations.
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As studies of heterogeneity assess increasingly larger number of conditions, a practical 

consideration is to use sampling approaches that require fewer cells to represent each 

condition (Fig. 1a). For example, Tissue Microarrays (TMAs)4 are frequently used to 

overcome scarcity and non-renewability of patient tissue. By extracting small amounts of 

tissue (referred to as a “core”; Fig. 1b) from multiple tissue specimens and placing them on 

the same slide, TMAs have helped standardize tissue analysis, reduce cost and substantially 

improved efficiency and throughput5. Similarly, high-throughput, multi-well based screens 

capture each experimental condition with a small number of replicate wells. What 

determines the number of samples required within or across conditions to capture 

heterogeneity in single-cell studies (Fig. 1a)?

One might expect that the answer to this question depends on the degree of heterogeneity 

within a population (for example the central limit theorem would suggest that the number of 

samples required depends only on the standard deviation of the phenotypic distribution). 

However, individual samples may not reflect the heterogeneity of the whole population. In 

practice, the number of samples required may be dominated by non-homogeneity of the 

sampling. Experimentally, cells are not sampled independently, but rather in sub-sampled 

batches (e.g. cores or wells); cells within one batch may be strongly correlated and therefore 

not represent independent samplings of the population as a whole. For example, a single 

TMA core draws cells from the same region of the tissue. If tissue phenotypes vary on 

spatial scales larger than a core, then these sampled cells will be more phenotypically similar

—and reveal far less about properties of the overall tissue—than a comparable number of 

cells sampled in a spatially random fashion (Fig. 1c, random vs. 1 core). Similarly, in cell 

culture, cells within a well may be more similar to one another than across replicate wells6 

or areas within the same well may behave differently due to local cellular density 

variations7. Thus, the number of samples required to capture population heterogeneity 

depends on the phenotypic variation observed across samples drawn from the same 

experimental condition.

The question of how many samples to take has been studied in various contexts, including 

the number of TMA cores8, 9, the number of needle biopsies10 and so on. In many of these 

contexts, a consensus on appropriate sampling has emerged (e.g. three 0.6mm diameter 

TMA cores11). Crucially, these studies focus on recovering population-averaged properties, 

such as the mean or number of biomarker “positive” cells12–14 (although sometimes ability 

to recapture whole-population based correlations with biological/functional readouts is 

used8, 9). However, agreement in such bulk metrics does not ensure similar probability 

distributions of phenotypes (Fig. 1b bottom), and thus these approaches provide little 

guidance towards studying heterogeneity. Here, we develop an approach to determine the 

number of samples required to ensure that the probability distributions of cellular 

phenotypes in a sample (Fig. 1c, blue-yellow curves) matches that of the whole population 

(Fig. 1c, green curve). This allow us to not only ensure that similar phenotypes are present in 

similar proportions as the whole population (that is, phenotypic heterogeneity has been 

properly sampled) but also guarantees agreement in commonly used population quantifiers 

(including those of central tendency, variability) since these are derived from the probability 

distribution.
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Our approach uses three steps to identify the number of samples needed to capture 

population heterogeneity (Fig. 1d). First, we designed a measure, referred to as a KS’ score, 

to quantify similarity between the phenotype distributions of samples to the whole. The KS’ 

score is designed to behave like the standard Kolmogorov-Smirnov (KS) test statistic15 for 

comparing phenotypic distributions, but has improved sensitivity (Online Methods, 

Supplementary Fig. 1, Supplementary Software) for detecting enrichment of extreme 

phenotype values. While we use the KS’ for our demonstrations, the basic approach outlined 

here is compatible with other measures of distribution similarity, such as KS, Anderson-

Darling or Chi-Square test statistics. Second, we developed theoretical bounds to relate KS’ 

scores to familiar population-averaged metrics, such as the median or percentage of positive 

cells (Online Methods; diagonal line in Fig. 1d, top). Third, we developed a framework to 

estimate how many samples are required in future experiments to represent the phenotypic 

heterogeneity of the whole population (Fig. 1d, bottom).

In more detail, we start with a “representative” whole population of cells and a phenotype of 

interest. We then randomly “draw” a specified number of samples (e.g. TMA cores, wells, 

etc.) and compute the KS’ score to quantify the similarity of the phenotypic distribution of 

the pooled cellular population to that of the whole. To capture the inherent stochasticity of 

sampling, we repeat this process a large number of times (N=1000) to generate a distribution 

of KS’ scores for a given number of samples (Fig. 1d, top). As expected, if we repeat this 

procedure for increasingly larger number of samples, the distribution of KS’ scores will tend 

towards zero. This procedure provides a strategy to assign a confidence level (Fig. 1d, 

bottom, triangle “2”) that the whole and pooled distributions from a given number of 

samples will be close (in the sense of the KS’ score or a population-averaged score; Fig.1d, 

triangles “1” and “3”). Together, our approach provides a general and quantitative starting 

point for assessing the tradeoff between extracting more samples and obtaining better 

estimates of whole population heterogeneity.

We applied our approach to explore how sampling strategies could be designed for studies of 

heterogeneity in microscopy. The ability to capture simultaneously spatial context, 

morphology and biomarker expression of a whole population makes microscopy an ideal 

platform for studying heterogeneity. As with any assay, observed heterogeneity depends on 

the choice of assay readouts as well as non-biological (“technical”) variability introduced by 

the assay itself. Accordingly, here we sought to provide guidance on how sampling is 

affected by image generation, biomarkers, and cellular features.

First, we investigated the impact of the image generation processes—known to have strong 

quantitative effects on microscopy based measurements16, 17—in the context of designing 

TMAs to profile tissue heterogeneity. Here, the whole population was defined as the cells 

present in the imaged whole-tissue section and sampling was performed by computationally 

extracting cells within randomly placed TMA-sized core regions (~0.6mm; Online 

Methods). We applied our approach to a panel of 38 patient liver cancer specimens, of which 

25 had two serial sections stained for the same antibody (YAP). Crucially, YAP staining was 

performed 5 months apart, and images were acquired using different microscopes. Despite 

these differences in the image generation process (Supplementary Fig. 2) we found broad 

agreement (Fig. 2a) in the number of TMA cores needed to capture the heterogeneity in 
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YAP nuclear intensity (on the subset of 25 cases that had two consecutive sections stained 

for YAP). We found that these trends were robust for a wide range of KS’ threshold and 

confidence values (Supplementary Fig. 3). (We expect these trends to hold for other 

measures of distribution similarity, such as KS, though KS’ is particularly sensitive to 

identifying poorly represented tails in the distribution; Supplementary Fig. 4.) Thus, our 

approach allowed us to assert, in the context of this data set, that the number of samples 

determined by our method is largely a property of the specimen itself and is robust to 

changes in the image generation process.

Second, we investigated the impact of different biomarker choices on TMA design. We 

began by assessing the numbers of cores required to capture heterogeneity within a single 

patient specimen. By applying our analysis to biomarkers co-stained on the same tissue 

section, we found that YAP consistently requires more TMA cores than DAPI (Fig. 2b), 

LKB1 or β-catenin (Supplementary Fig. 5), perhaps reflecting intrinsic differences in the 

regulation of these markers. However, our results also revealed significant diversity across 

the patient cohort for the same biomarker: two cores seem adequate for some patients, while 

others required as many as 10. To understand the feasibility of using a single TMA design to 

study the heterogeneity of a large patient cohort, we examined how varying the number of 

cores affects the proportion of patients whose heterogeneity is well captured. Although all 

biomarkers require ~10 cores to capture the heterogeneity of every patient (Fig. 2c), the 

tradeoff between adding more cores vs. more patients being well represented is biomarker 

dependent. For example, TMA’s designed to sample phenotypic heterogeneity of LKB1 or 

β-catenin might poorly sample heterogeneity of YAP. Thus, our sampling strategies can be 

used to inform experimental design and biomarker selection of larger-scale studies of 

heterogeneity, as well as to compare heterogeneity within defined experimental conditions 

(e.g. patient-patient differences within one presumed clinical diagnosis).

Finally, we investigated the impact of cellular image feature choice in the context of 

designing high-throughput cell culture based experiments for profiling heterogeneity. In 

particular, how many replicate wells should be performed per condition to sample 

heterogeneity? We made use of A549 cells containing three, genetically encoded live-cell 

fluorescent markers to mark the nucleus, cytosol and a DNA-repair gene XRCC518. We 

analyzed seven 384-well imaging plates, each containing 28 replicate “control” wells. For 

each cell, we extracted 215 single cell features belonging to one of three feature classes 

(intensity, texture, and morphology; Supplementary Fig. 6). Cellular measurements were 

pooled across the 28 replicate control wells to define 215 whole-population feature 

distributions. We then used our approach to estimate how many replicate wells are required 

to recover the whole population distribution (Fig. 2d). The heterogeneity of some features, 

such as those relating to morphology, can be recovered with just one or two wells. In 

contrast, intensity features tend to be far more affected by well-to-well variation and require 

more wells to be sampled. Intensity features themselves are a highly diverse set: features 

quantifying biomarker intensities near background levels are particularly hard to sample 

(e.g. cytoplasmic levels of a biomarker that is largely localized to the nucleus) and thus 

require large numbers of wells. Nevertheless, these analyses predict that three replicate wells 

are sufficient to capture heterogeneity for many, but not all features. Thus, feature selection 
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as well as biomarker selection plays a role in determining the number of samples (i.e. 

replicate wells or TMA cores) required for studies of heterogeneity.

Here, we provide a general approach for estimating how many samples are required to 

represent distributions of heterogeneous phenotypes, a question typically considered only in 

the context of population-averaged quantifiers. From a conceptual perspective, we highlight 

the importance of within-sample correlations in answering this question. These correlations 

can be complex and experiment or specimen specific, making its quantitative effects difficult 

to predict from first principles. We established a data-driven framework that quantifies 

mismatch in heterogeneity between sample and whole population, relates this mismatch to 

effects on familiar population average quantifiers, and allows the researcher to balance the 

tradeoff between number of samples and desired confidence for small heterogeneity 

mismatch.

Our approach makes use of representative single-cell data that capture the full range of 

phenotypic heterogeneity to estimate sampling depth of prospective studies. In many cases, 

such data may be readily available, though in other cases gathering such data may require 

upfront effort due to specimen size19 or rarity. Of course, it is not possible to determine via 
any analytical technique whether a set of specimens is truly representative. However, it is 

possible to ask whether fewer specimens would provide similar results; here, analysis of our 

data sets suggests that a smaller collection would have provided similar confidence estimates 

for numbers of samples taken (Supplementary Fig. 7). In practice, sample size may also be 

reduced by using assay-specific procedures to minimize non-biological effects (e.g. image 

correction) or by generating samples more efficiently (e.g. using stereology20 or H&E 

information). Beyond the contexts of immunofluorescence microscopy, highlighted in our 

case studies, our methodology also applies to other imaging modalities (e.g. IHC images, 

quantified by percent positive counts; Supplementary Fig. 8), to alternate sampling 

frameworks (e.g. choosing an appropriate placement of cores or designing “heterogeneity-

TMAs”19 for samples too large to fit on a slide), as well as to other single-cell assay 

technologies. Taken together, our methodology provides a rational approach to the design of 

experiments targeting phenotypic heterogeneity.

ONLINE METHODS

Sample preparation, staining and imaging

1) Adenocarcinoma Tissue (Fig. 1)—Formalin-fixed paraffin-embedded (FFPE) 

human non-small cell lung cancer (papillary adenocarcinoma) tissue blocks were purchased 

from ILSBio, re-embedded and sliced in 5μm sections by the Molecular Pathology Core 

Facility at UTSW. Sudan Black B blocking was used to reduce auto-fluorescence. TTF1 

staining was performed using polyclonal rabbit antibodies (Cat.# sc-13040, dilution 1:100 

Santa Cruz Biotech). Digital images of stained tissue sections were obtained using a 

ScanScope Digital slide scanner at 20× (Aperio ePathology, Leica Biosystems).

2) Liver Cancer Tissue (Fig. 2a–c)—A collection of fresh frozen hepatocellular 

carcinoma (HCC, n=38) samples was used in the present study. HCC specimens were 

collected at the University of California, San Francisco (San Francisco, CA). Institutional 
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Review Board approval was obtained and informed consent was obtained from all subjects. 

See Gordan et al., manuscript in preparation, for further details of this sample set. 

Immunofluorescence staining and imaging was performed at the Gladstone Institutes 

Histology and Light Microscopy core using fluorescently-labeled primary antibodies (all 

from Cell Signaling, Danvers, MA) to CTNNB1 (Mouse mAb L54E2, conjugated to Alexa 

Fluor® 555, 1:200, Cat#5612) YAP (Rabbit mAb D8H1X, conjugated to Alexa Fluor® 488, 

1:200, Cat#14729) and LKB1 (Rabbit mAb, 1:250, Cat#13031, followed by goat anti-rabbit 

conjugated to Alexa Fluor® 633, 1:200). Staining and imaging for DAPI/YAP/LKB1 was 

first performed on 38 samples, and 5 months later serial sections for 25 of these samples 

were stained/imaged for DAPI/YAP/CTNNB1. Stitched images of entire sections were 

acquired at 20× (0.32μm per pixel) on automated slide scanners (BZ-X700; Keyence, Osaka, 

Japan; Aperio VERSA Digital Pathology Scanner, Leica Biosystems, and Axio Scan.Z1, 

Carl Zeiss Microscopy).

3) Lung Cancer Cell Lines (Fig. 2d)—We made use of a previously constructed18 

adenocarcinoma cell line (A549) that was triply labeled for live cell reporters marking the 

nucleus, cytoplasm and XRCC5 (a nuclear-localized protein that functions in double-strand 

break repair). The A549 cells were cultured in RPMI1640 media containing 50 units/ml 

penicillin, and 50 μg/ml streptomycin (all from Life Technology, Inc.), and 10% FBS 

(Gemini BIO-PRODUCTS #100–106, Lot# A07F00G) at 37 °C, 5% CO2 and 100% 

humidity. Cells were grown in 10-cm culture plates for 72h, detached by trypsin, counted by 

TC10 automated cell counter (Bio-Rad Laboratories, Inc.) and seeded onto glass 384-well 

plates (ThermoFisher Scientific #164588) at a density of 1500 cells/well in 50uL media by 

the Matrix WellMate Liquid Dispenser (ThermoFisher Scientific). After 24 h at 37 °C, drugs 

were added using the Beckman Coulter BioMek FX liquid handler (Beckman Coulter, Inc.), 

and the plates were covered by BreathEasy sealing membranes (Sigma-Adrich, Inc.) and 

incubated at 37 °C for 48h. For the present analysis, only 28 replicate control wells in a plate 

that did not receive any drugs were used. Images were acquired using an IN Cell Analyzer 

2000 epifluorescence microscope (GE) equipped with laser Autofocus and a Nikon 10×/0.45 

Plan Apo objective lens. We used 1s exposure times and TexasRed, CFP and YFP emission 

filters, with 2×2 binning. All image acquisition was controlled by IN Cell Analyzer software 

(GE). One image was acquired per well. Images with obvious anomalies (e.g., out of focus, 

abnormal fluorescent patterns caused by dust, scratches on the plate) were discarded after 

manual inspection.

4) Immunohistochemistry (IHC) sample preparation and staining (Sup Fig. 8)
—A FFPE human breast cancer specimen was obtained from UT Southwestern Shared 

Tissue resource. Ki67 immunostaining was performed using primary monoclonal rabbit anti- 

Ki67 antibody (Cat.#790-4286, clone 30-9, dilution 1:100, Ventana Medical Systems) on an 

automated BenchMark stainer (Ventana Medical Systems). Digital images of Ki67 stained 

tissue sections were obtained using a ScanScope Digital slide scanner at 20× (Aperio 

ePathology, Leica Biosystems)
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Identification of regions of interest in tissue

We developed an image analysis approach to identify and exclude cells at the edge of the 

tissue (as these potentially display edge staining artifacts). Additionally, for the liver cancer 

data, staining artifacts and out of focus regions were automatically identified based on the 

lack of local intensity variations in these regions. For the adenocarcinoma (Fig. 1) and breast 

cancer (Supplementary Fig. 8) datasets analysis was performed on the non-edge tumor 

regions (pathologist-identified green curves in respective figures). For the liver cancer data 

(Fig. 2a–c), analysis was performed on the full tissue image excluding regions at the edge or 

displaying imaging artifacts.

Calculation of biomarker expression distributions

1) Tissue—The starting point is a tissue image with nuclear specific biomarker (DAPI 

levels for IF and deconvoluted haematoxylin intensity in IHC). A multilevel Otsu 

thresholding was applied to the nuclear image to identify nuclear pixels. A Laplacian of 

Gaussian filter, combined with an extended minima transform was applied to the nuclear 

biomarker image to identify well separated nuclei centers. These centers served as seeds for 

a watershed transform that was used to partition the nuclear pixels into distinct, spatially dis-

connected, nuclear regions. Regions too large to be nuclei were successively divided, while 

those too small to reasonably be nuclei were dropped. Nuclei in regions identified as 

exhibiting artifactual staining or outside the region of interest (as identified above) were 

dropped. For each nucleus, the intensity of co-stained biomarkers (i.e. biomarkers stained on 

the same sections as the nuclear marker) was quantified by the mean intensity of the 

biomarker over pixels belonging to that nucleus. Given a region of interest (e.g. whole tumor 

or pooled cores), the nuclear distribution of a biomarker was calculated by pooling the 

nuclear intensities across all nuclei whose centroids fell within that region.

2) Cell Culture—Image background subtraction was performed using ImageJ’s Rolling 

Ball Background Subtraction algorithm21. Cells in an image were automatically identified 

using our in-house watershed based algorithm22 which identifies nuclear regions based on a 

nuclear marker and subsequently uses these nuclei as seeds for the identification of cell 

boundaries based on a cytoplasmic marker. For each cell, 215 different image features were 

calculated based on the intensities of the three biomarkers (H2B/cytoplasmic/XRCC5) in the 

pixels belonging to the cell. These features include: a) intensity features that are summaries 

of the intensities of the biomarkers in different cellular compartments (nucleus/cytoplasm/

whole cell), b) texture features (Haralick/Zernike) that capture local biomarker intensity 

variations, or c) features that describe cellular morphology. See Supplementary Fig. 6 for a 

more detailed summary. Among the biomarkers, H2B and XRCC5 are expected to be 

localized within the nucleus, and any intensity features that included the cytoplasmic 

intensities of these biomarkers were classified as low contrast. The whole population 

distribution for a feature was calculated by pooling feature values for cells belonging to all 

28 replicate wells in a plate, while sample distributions were generated by pooling (cells 

from) a subset of wells together.
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Virtual sampling of cores in tissue

For each virtual sampling, N non-overlapping cores were placed randomly on the image 

such that 1) the entire core (circle of 0.6 mm diameter, between 600 and 1000 pixels in the 

20× images analyzed here) was within the tissue and 2) the core was centered within the 

“good” tissue area (which was identified as described above). 3) More than 70% of the core 

area was covered by cells of interest. Cells whose centroids were within 0.6mm of the core 

center were considered as belonging to the core. Biomarker intensities of cells from all cores 

were pooled together to construct the core intensity distribution for each virtual sampling.

KS’: a new measure to compare phenotypic heterogeneity

A widely used measure to compare distributions is the Kolmogorov-Smirnov (KS) 

statistic15, which measures the maximum difference between two CDFs (Supplementary 

Fig. 1A bottom, double-sided arrows). More precisely, if C(I) and W(I) are the CDFs for the 

core and whole tissue, the corresponding KS score is given by . The 

KS statistic has several virtues, including that its value is insensitive to the nature of the 

distributions (i.e. normal, Poisson and so on), yet it can still detect changes to both the 

location and shape of the distributions.

However, a disadvantage of the KS statistic is that it tends to be less sensitive to changes 

near the tails of distributions23. This can be undesirable in contexts where subpopulations of 

the most- or least-stained cells have important biological meaning. The reason for the loss of 

sensitivity is that the KS statistic measures the largest difference between CDFs regardless 

of where this difference occurs. Yet, a large difference in CDFs is far rarer at the tails 

(differences between sampled and whole CDFs tend to zero at the tails; Supplementary Fig. 

1C, top), and should be considered more significant than when the same difference occurs 

away from the tails. For our purposes, it is desirable to use a test that is more sensitive to 

changes across the whole range of intensities, including the tails.

We chose to modify the KS statistic to increase sensitivity at the intensity tails by 

normalizing differences of CDFs by the magnitude of expected deviations when sampling 

from the whole-tissue distribution W. Observed deviations near the tail would then become 

more apparent when divided by a small expected deviation, working in the same way as a z-

score. Towards this end, we started with an explicit formula computed by Anderson and 

Darling (Supplementary Fig. 1C, bottom), , which computes 

the expected standard deviation, at each intensity value I, between the CDFs of the whole 

distribution W. Our desired normalized CDF difference between a core C(I) and whole 

tissue W(I) is then given by . Our modified KS statistic, which we 

refer to as the KS’ statistic, is then simply: . Thus, the 

KS’ allows us to compare the distributions of cores to that of whole tissue with particular 

sensitivity to extreme phenotypes. We note that the KS’ was designed as a measure of 

distribution similarity rather than a test statistic in the current work.
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A particular strength of the KS’ is its ability to theoretical bound difference in various 

statistical quantifiers of the distribution. For example, if I50 is the median of the whole-

specimen distribution (i.e. W(I50) = 0.5) then we have the relationship:

Since  is the fraction of the sample population less than the whole-specimen median, 

it would be equal to 0.5 if the whole and sample medians matched. Thus, if the KS’ between 

the whole and its sample distributions is 0.1, the whole median must lie between the 40th 

and 60th percentile of the sample. (We note that in cases where C(I) is discontinuous exactly 

at I50, e.g. integrates one or more events at I50, then we interpret the right hand side of the 

inequality to be the smallest absolute difference of the range of values for the jump to 0.5.) 

Similar bounds can be established for the whole vs. sample mean, percentage positive cells, 

etc.

Determining the number of samples for a single whole specimen

The heterogeneity observed in a sample can be influenced by inhomogeneity introduced by 

sampling (i.e. the fact that not all cells within the whole have the same probability of 

belonging to the same sample). We assume here that a computational means has been 

established to simulate experimental sampling: in our case this was through construction of 

virtual cores of the same size as a true TMA core for tissue or selecting cells by well in cell 

culture.

1. Extract and pool the data for a given number N of samples, construct its 

distribution and calculate the corresponding KS’ score by comparing the sample 

distribution to the whole.

2. To model the inherent stochasticity of sampling, repeat 1) multiple times (we 

used 1000 repeats for our results) to construct a distribution (quantified by its 

CDF) of KS’ scores for N samples.

3. Repeat steps 1 & 2 while varying N over the experimentally reasonable range of 

samples. This will give us CDFs for the KS’ for different values of N (this is 

essentially Fig. 1d bottom, with the KS’ scores shifting to the left as more 

samples are extracted).

4. Determine the maximum value of KS’ for sampling to be considered “good”. 

This can be calibrated using the inequalities relating the KS’ to bounds on the 

median, mean, percentage positive, etc. For example, a KS’<0.1 means the 

median of the whole population will lie between the 40th and 60th percentile of 

the sample.

5. Determine the desired confidence level that sampling needs to be “good” (e.g. at 

least 80% of the times we generate samples we want the KS’<0.1).

6. By comparing the CDFs generated in Step 3, find the minimum value of N that 

the CDF at the KS’ tolerance exceeds the desired confidence level.
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This procedure selects the minimum number of samples required to provide a desired level 

of confidence that the difference between sample and whole distributions is within a 

specified KS’ tolerance.

Design of experimental sampling using a pilot panel

The scenario we envisioned is to design a large experiment profiling heterogeneity based on 

whole-specimen data observed within a pilot set of specimens. In the paper (Fig. 2c), we 

illustrate the design of a TMA (potentially consisting of hundreds of patient tissue 

specimens) based on a pilot set of ~30 whole tissue liver cancer specimens. As with any 

statistical estimator, we treat the pilot set as representative of data for the large-scale 

experiment. The first step is to calculate the specimen’s KS’ CDF curves for each of the NPS 

pilot specimens across varying numbers of samples (as outlined above). For a pilot specimen 

i, let Ci(K,n) denote the probability of n pooled samples yielding a distribution that differs 

from the whole by KS’ score less than K. Then, as we average across specimen, the expected 

fraction of specimen for which of n pooled samples give a distribution that differs from the 

whole by KS’ score less than K is given by:

This process may be repeated for different biomarkers etc as demonstrated in Fig. 2c.

CODE AVAILABILITY

The MATLAB code used to generate the main figures is provided as supporting code. An R 

implementation of the KS’ is also included. The latest version of the code will be available 

at https://github.com/AltschulerWu-Lab/SamplingForHeterogeneity

DATA AVAILABILITY

The raw data used to generate Figure 1 is available at XXXX with DOI###. The raw data 

that support the findings of Fig. 2 are available from the corresponding author upon 

reasonable request. The processed source data used to generate the main figures is provided 

along with the manuscript as supporting information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sampling strategy to represent single-cell heterogeneity
A) Overview of approach to determine how many samples (cores/replicates/draws) per 

condition are required for studies of heterogeneity. Top right: distributions of cellular 

phenotypes from different numbers of samples; bottom right: heterogeneity captured with 

different sample numbers. B) Samples that recover population averages may not capture 

heterogeneity. Papillary adenocarcinoma tumor (outlined in green) shows extensive 

heterogeneity in the staining of TTF1, but individual cores (circles) may not capture the full 

range of phenotypes. Bottom: distribution of TTF1 nuclear intensity (A.U.: arbitrary units, 

x-axis is on log scale) in the whole tissue and the cores. Cores and whole tissue have similar 

mean intensities (triangles below x-axis), yet differ greatly in their phenotypic distributions. 

C) Capturing whole-tissue heterogeneity depends on the number of cells sampled and the 

nature of the sampling. Plots: histograms of TTF1 distribution generated by repeated 

samplings of cells; colors based on agreement in distribution (blue or yellow show low or 

high (resp.) KS’ similarity) with whole tumor distribution (green curve). A single virtual 

core (~1000 cells on average) is unreliable, but spatially random draws with the same 

numbers of cells (bottom plot) captures heterogeneity as reliably as combining 10 virtual 

cores. D) Method for determining sample numbers needed to capture whole sample 

heterogeneity within a specified distribution tolerance (triangle “1”) at a desired level of 

confidence (triangle “2”). Upper scatter plot: comparison of whole tissue and samples 

generated as in B (point colors) based on their difference in distributions (x-axis: KS’ 
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statistic) vs. medians (y-axis: deviation from the 50th percentile of the whole median). 

Differences in distributions places bounds on familiar quantities, such as differences in 

medians (triangle “1”; Methods). Bottom plot: confidence curves for achieving a desired 

KS’ tolerance as a function of sampling depth (number of cores) or type (core vs. random). 

This process allows rational user selection of the smallest number of samples (intersection of 

dotted lines) that capture whole specimen heterogeneity given desired tolerance and 

confidence levels. Given an existing library of specimens, confidence curves can be analyzed 

to estimate sampling depths of prospectively obtained samples for each choice of biomarker 

(e.g. Fig. 2C).
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Figure 2. The effect of experimental and analysis parameters on capturing heterogeneity
A–B) Evaluation of the number of 0.6mm diameter cores needed for a panel of liver cancer 

specimens to capture the heterogeneity of individual whole-tissue images (with KS’ 

tolerance of 0.2 at 80% confidence) across different staining/imaging parameters and 

biomarkers. Point location: number of cores needed for the same specimen across different 

biomarker images; point size: number of specimens requiring the same numbers of cores. A) 
Comparison of serial sections stained for YAP and imaged 5 months apart using different 

microscopes (n = 25). Deviation from the diagonal represents the effect of imaging/staining 

variability. B) Comparison of the number of cores required by the most spatially 

heterogeneous (YAP) and homogenous (DAPI) biomarkers on the same section (n = 25). C) 
Tradeoffs between numbers of cores and sampling accuracy. Confidence curves (Online 

Methods; Fig. 1D bottom) were combined across the patient cohort to predict the proportion 

of patients whose heterogeneity will be captured (at a KS’ tolerance of 0.2) for different 

biomarkers and numbers of sampled cores (Imaging set I/II: YAP, n = 25/38; LKB1, n = 

25/-; β-catenin, n = -/38; DAPI, n = 25/38). Dotted vertical line: 3 cores, the commonly 

accepted standard. D) Evaluation of the number of replicate wells needed in a high-content 

cell culture assay to capture heterogeneity of different cellular features. In each of 7 replicate 
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384-well plates, 215 single-cell image features (covering three imaged biomarkers) were 

extracted from 28 replicate wells. Features were divided (hand-curated) into feature types 

(color bar), including a sub-class of low contrast intensity features (Online Methods). For 

each feature, we calculated the number of wells required to ensure the distribution was close 

(KS’ < 0.05, 95% confidence) to the distribution from the full set of 28 wells. Error bars 

represent standard deviation across the 7 replicate plates, over which this analysis was 

independently repeated. Dashed horizontal line: 2 replicate wells, a common choice for 

high-throughput screens. The 8 rightmost features, denoted by *, all require >20 wells (the 

largest value tested) in at least one replicate plate.
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