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Abstract

Superconducting flux qubits for high-connectivity quantum annealing

without lossy dielectrics

by

Christopher M. Quintana

Quantum annealing can potentially be used to find better solutions to hard optimiza-

tion problems faster than purely classical hardware. To take full advantage of quantum

effects such as tunneling, a physical annealer should be comprised of qubits with a suffi-

cient degree of quantum coherence. In addition, to encode useful problems, an annealer

should provide a dense physical connectivity graph between qubits. Towards these goals,

we develop superconducting “fluxmon” flux qubits suitable for high-connectivity quan-

tum annealing without the use of performance-degrading lossy dielectrics. We carry out

in-depth studies of noise and dissipation, and of qubit-qubit coupling in the strongly non-

linear regime. We perform the first frequency-resolved measurements extracting both the

quantum and classical parts of the 1/f flux noise intrinsic to superconducting devices,

and observe the classical-to-quantum crossover of the noise. We also identify atomic

hydrogen as a magnetic dissipation source. We then implement tunable inter-qubit cou-

pling compatible with high connectivity, and provide direct spectroscopic measurements

of ultra-strong coupling between qubits. Finally, we use our system to explore quantum

annealing faster than the system thermalization time, a previously unaccessed regime.
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alence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.2.2 Known sources of dissipation and high-frequency noise . . . . . . 209

4.2.2.1 Damping from flux bias lines . . . . . . . . . . . . . . . 209
4.2.2.2 Damping from readout circuit (Purcell effect) . . . . . . 212
4.2.2.3 Distributed CPW loss in the fluxmon qubit . . . . . . . 215
4.2.2.4 Dielectric loss . . . . . . . . . . . . . . . . . . . . . . . . 220
4.2.2.5 Induced transitions from room temperature noise . . . . 231

4.2.3 Measurement of dissipation in the fluxmon qubit . . . . . . . . . . 234
4.2.3.1 Geometry dependence of T1 . . . . . . . . . . . . . . . . 235
4.2.3.2 Interpretation of dissipation as high-frequency flux noise:

classical-quantum crossover . . . . . . . . . . . . . . . . 239
4.2.3.3 Temperature dependence of the 1/f noise: paramagnetism 245
4.2.3.4 Defects in the spectrum . . . . . . . . . . . . . . . . . . 249

4.2.4 Adsorbed hydrogen as a dissipation source: silicon vs. sapphire . 254
4.3 Macroscopic resonant quantum tunneling . . . . . . . . . . . . . . . . . . 260
4.4 Further details on coherence and experimental checks . . . . . . . . . . . 266

4.4.0.1 Consistent definition of S+
Φ (f) at low and high frequencies 266

4.4.0.2 Flux noise at high and low frequencies changes similarly
between samples . . . . . . . . . . . . . . . . . . . . . . 269

4.4.0.3 Checking for distortion of extracted S±Φxt (f) from nonlin-
ear crosstalk . . . . . . . . . . . . . . . . . . . . . . . . 270

4.4.0.4 Checking for dissipation from non-equilibrium quasipar-
ticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

x



4.4.0.5 Low and high frequency noise cutoffs for Macroscopic
Resonant Tunneling Rates . . . . . . . . . . . . . . . . . 276

4.4.0.6 1/fα scaling near the crossover and high-frequency cutoff 278
4.4.0.7 Implications of high frequency cutoff for spin diffusion . 282

5 Tunable coupling for quantum annealing: theory and design 285
5.1 Inductive coupling from a linear circuits perspective . . . . . . . . . . . . 287

5.1.1 Direct coupling through a mutual inductance . . . . . . . . . . . . 287
5.1.2 Josephson coupler circuit as a tunable mutual inductance . . . . . 292

5.1.2.1 Coupler-induced nonlinear flux bias on qubit . . . . . . . 300
5.1.2.2 Coupler-induced inductance shift in qubit . . . . . . . . 303
5.1.2.3 Qubit damping from coupler flux bias line . . . . . . . . 309

5.2 Coupling in the nonlinear regime . . . . . . . . . . . . . . . . . . . . . . 311
5.2.1 Non-perturbative nonlinear analysis of coupler circuit . . . . . . . 312
5.2.2 Simple finite difference picture of nonlinearity . . . . . . . . . . . 316

5.3 Accounting for coupler capacitance degree of freedom . . . . . . . . . . . 319
5.3.1 Quantum correction to the Born-Oppenheimer approximation . . 320
5.3.2 Qubit-coupler hybridization: “dispersive shift” correction . . . . . 325

6 Interacting fluxmons: achieving ultra-strong tunable coupling 329
6.1 Physical design and implementation of coupled qubits . . . . . . . . . . . 330
6.2 Calibration of coupled fluxmon device . . . . . . . . . . . . . . . . . . . . 333

6.2.1 Measurement of coupler → qubit flux crosstalk . . . . . . . . . . . 334
6.2.2 Measurement of intra-coupler geometric crosstalk . . . . . . . . . 340
6.2.3 Extraction of coupler parameters . . . . . . . . . . . . . . . . . . 344

6.3 Measurement of ultra-strong tunable coupling . . . . . . . . . . . . . . . 348
6.3.1 Spectroscopy versus tilt bias . . . . . . . . . . . . . . . . . . . . . 349
6.3.2 Spectroscopy at zero tilt: J from level splitting . . . . . . . . . . 351
6.3.3 Sequential annealing: coupling in the double-well regime . . . . . 356

6.4 Qubit coherence vs. coupler bias . . . . . . . . . . . . . . . . . . . . . . . 358
6.5 Demonstration of fast two-qubit annealing . . . . . . . . . . . . . . . . . 362
6.6 Scaling up: Flip-chip architecture and future directions . . . . . . . . . . 375

7 Conclusion 381

Bibliography 383

xi



Chapter 1

Introduction

In this chapter, we give context to our work by describing quantum annealing and how

it might be useful for computational optimization. We provide a basic overview of the

current state of the complex, continually evolving (and sometimes controversial) field of

quantum annealing with superconducting quantum bits (qubits). We also consider how

one might improve the performance of existing quantum annealers.

1.1 Quantum-enhanced optimization

Many important computational tasks in the modern world boil down to optimization

problems. These problems include resource allocation, vehicle routing, job scheduling,

engineering design, and machine learning, among many other economically and scien-

tifically significant tasks. A large class of these problems takes the form of discrete

optimization, for which one needs to examine a finite but combinatorially large set of

1



potential solutions. One famous and easy to understand example is the traveling sales-

man problem: given a collection of N interconnected cities, what is the shortest possible

tour that visits each city exactly once? For this and many other industrially relevant

problems, the set of possible solutions is so enormous that exhaustive search is practi-

cally impossible,1 and furthermore no efficient solution algorithm to find the true global

minimum is known. In computer science, ‘efficient’ usually means requiring resources

that are polynomial in the problem size, and in practice means that it should be a very

low-power polynomial.

Fortunately, a solution to an optimization problem doesn’t have to be the absolute

best possible solution in order to be practically useful. Instead, approximate algorithms

and heuristic techniques are often used to find a ‘good enough’ solution with a reasonable

amount of computational time and resources. In certain cases, one can take advantage of

structure in the problem to make it easier to find solutions. Sometimes, it is possible to

come up with heuristic algorithms specific to the problem at hand to obtain approximate

solutions in an acceptable amount of time. In such cases, the quality of solution can be

quantified by an approximation ratio, which is the ratio of the actual cost function of

the found state to the lowest possible cost function. For example, there exists an O(N3)

algorithm to obtain an approximate answer to the travelling salesman problem within a

factor of 1.5 of the optimal solution length [1], and there are other heuristics that can

typically reach solutions that are to within ∼ 1% of optimal for a million cities.

1Amazingly, a quick factorial calculation shows that, assuming it takes a computer one nanosecond
to evaluate and compare the distance of a given tour, and assuming no parallelization, for just 27 cities
it would take as long as the apparent age of the universe to try all possible tours.
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When little is known about the structure of the problem at hand, or it is not possible to

take advantage of any known structure, generic metaheuristic algorithms are often used.

A universal issue that such techniques need to address is the propensity to get stuck in

local optima that are far from the global optimum, as is common in algorithms using

gradient descent or analogous techniques. A commonly used metaheuristic that addresses

this issue and enables good sampling of a large search space is known as simulated

annealing (SA), first proposed by Kirkpatrick et al. [2]. This probabilistic technique is

inspired by the physical process of annealing in metallurgy and glassblowing, whereby a

system is heated up and then allowed to slowly cool down. This process helps the system

settle into an overall lower energy state, reducing the number of defects and improving

material properties. SA mimics this process by introducing an artificial temperature that

induces transitions analogous to thermal transitions, allowing the system to escape from

local minima and converge to a more global optimum. More concretely, SA works as

follows. An arbitrary initial state is chosen and a temperature is assigned to the system.

Then, a new state of the system is proposed (usually, this means flipping one or more of

the bits representing the possible solutions), and the energy difference ∆E (i.e., difference

in cost function) between the proposed and current state is computed. If ∆E < 0,

the new state is accepted. If ∆E > 0, the state is accepted with finite probability

according to the Boltzmann factor exp[−∆E/kT ]. This update rule is an example of

what is known as a Metropolis algorithm [3], a general Monte Carlo method for sampling

probability distributions that are hard to sample directly. As this stochastic cycle is

3
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Figure 1.1: Illustration of escape from a local minimum via thermal vs. quantum annealing.
Figure adapted from Ref. [4].

repeated, the temperature is gradually lowered to zero, and the whole process is repeated

if needed, until one converges on a low energy solution. The lowering of the temperature

should be done slowly enough to avoid “quenching” the system into a high energy local

minimum, analogous to how quenching a real glass can lead to metastable configurations

and internal stresses that degrade its reliability. Simulated annealing naturally provides

a useful tradeoff between exploration of the entire space and concentration on potentially

promising regions.

Quantum annealing (QA) as a metaheuristic was inspired by SA, and is in some

sense an extension of SA. In QA, one replaces (or supplements) thermal fluctuations with

“quantum fluctuations” and attempts to use quantum tunneling as an additional pathway

4



to find good solutions [5, 6, 7]. In a quantum system, moving across an energy landscape

is not restricted to hopping over energy barriers, but classically forbidden pathways that

“tunnel through” barriers are possible as well. If one were to encode the cost function

in the Hamiltonian of a quantum system, one might be able to more efficiently find

solutions by introducing a transverse field (i.e., a term that does not commute with

the classical potential energy part of the problem Hamiltonian) that drives quantum

tunneling transitions. Mathematically, the rate of quantum tunneling through an energy

barrier can be compared to the rate of thermal hopping at temperature T as illustrated

in Fig. 1.1. In general, in contrast to the thermal hopping rate

ΓT ∝ exp [−∆E/kT ] , (1.1)

which only depends on the height ∆E of the barrier (at a given temperature), the

quantum tunneling rate through an energy barrier also depends on the width L of the

barrier,

ΓQ ∝ exp[−L
√

∆E/Γ], (1.2)

where Γ is the strength of the tunneling field.2 Therefore, one expects quantum tunneling

to be more effective in cases where there are tall, narrow energy barriers. On the other

hand, quantum tunneling will be ineffective compared to thermal hopping when there

are very broad barriers.

Quantum annealing is usually implemented with tunable two-level quantum systems

(qubits) with an Ising Hamiltonian having local fields for each ‘spin’ (qubit) and pairwise

2To understand this formula, think of the action under the barrier in the WKB approximation, with
Γ acting as an inverse measure of the mass in the kinetic energy term.
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two-body interactions between the spins. It turns out that such Hamiltonians natu-

rally represent quadratic unconstrained binary optimization problems (QUBOs), a very

powerful class of problems that can encode a large, generic class of discrete optimiza-

tion problems.3 QUBOs are problems with a cost function that is quadratic in the bits

xi ∈ {0, 1},

E(x1, ..., xn) =
n∑

i<j=1

Jijxixj +
n∑
i=1

hixi, (1.3)

where the goal is to find the optimal configuration of bits,

~x∗ = argmin{E(x1, ..., xn)} (1.4)

for the problem defined by a chosen set of Jij’s and hi’s. We can see the direct corre-

spondence with an Ising Hamiltonian for quantum spins,

HP = HIsing =
∑
i,j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i , (1.5)

where σz is the standard 2× 2 Pauli Z matrix. Namely, finding the ground state of the

Ising Hamiltonian (1.5), which is diagonal in the z basis, would solve the QUBO problem

(1.3). Similarly, finding low-lying states of the Ising Hamiltonian will yield approximate

solutions to the corresponding QUBO problem. It is known that solving the Ising spin

glass problem HIsing on arbitrary connectivity graphs is in general NP-hard, meaning it is

at least as hard as exponential problems like the travelling salesman problem. However,

the hope is not that quantum annealing will necessarily turn an exponential scaling into

a polynomial scaling in N , but more realistically that it might change the coefficients

3General discrete variables can be encoded with integers and therefore bits, and higher-order poly-
nomials can be encoded with quadratic terms plus ancilla bits with constraints, leading to an extra
polynomial overhead.
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within the exponent, leading to polynomial but still practically significant speedups.

The “annealing” part of QA is typically implemented by initializing the system of

spins in the ground state of a “driver” Hamiltonian, HD, which is easy to prepare.

Usually one chooses

HD =
N∑
i=1

σxi , (1.6)

for which the ground state is a uniform superposition over all the possible Ising states

(σz eigenstates) and is easy to prepare in practice. This simply corresponds to each

spin aligning with its own transverse field, i.e., a field in the X direction. The driver

Hamiltonian is then dialed down while the problem Hamiltonian is dialed up, i.e., the

time-dependent Hamiltonian over the course of the anneal is chosen according to the

annealing schedules A(t) and B(t)

H(t) = A(t)HD +B(t)HP , t ∈ [0, tf ] (1.7)

whereA(t) decreases monotonically andB(t) increases monotonically, such thatA(0)/B(0)�

1 and A(tf )/B(tf ) � 1. Decreasing the quantum fluctuations A(t) over time is analo-

gous to how thermal fluctuations are decreased over time in classical SA by lowering the

temperature over time. This procedure is similar to the well-known adiabatic quantum

computing algorithm introduced by Farhi et al. [8]. Adiabatic quantum computing is

a simpler, noiseless closed-system version of quantum annealing that can be understood

through the adiabatic theorem: if we prepare the system in the known ground state of an

“easy” Hamiltonian and slowly change the Hamiltonian to take the form of the problem

Hamiltonian HP , the adiabatic theorem tells us that the system should remain in its
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ground state throughout the computation as long as the adiabaticity condition [9, 4]

|〈ψ0(t)|Ḣ(t)|ψ1(t)〉| � |E1(t)− E0(t)|2

~
(1.8)

is satisfied throughout the process, where |ψ0(t)〉 and |ψ1(t)〉 are the ground and first

excited states of the quantum system with eigenenergies E0(t) and E1(t). Essentially, for

a uniform sweep rate (which is the best one can do a priori without further knowledge

of the structure of the Hamiltonian) this means that the total evolution time must be

longer than the inverse square of the minimum energy gap in order to avoid Landau-Zener

transitions out of the ground state,

Tadiabatic ∝
1

(minimum gap)2
. (1.9)

Unfortunately, for generic problems (especially for “hard” problems of interest), the min-

imum gap will become exponentially small as the number of bits grows [10].4 Therefore,

to use quantum annealing to find approximate solutions in polynomial time, the system

will in general need to leave its ground state at some point. Furthermore, as we will see, a

real quantum annealer will operate at a finite temperature with a substantial amount of

environmental noise, leading to further transitions out of the ground state and requiring

an open systems approach to describe it. Therefore, the adiabatic picture of quantum

annealing is not particularly useful for real-world quantum annealers.

In general, large optimization problems will have both tall, narrow energy barriers and

wide energy barriers. Statistically, if one starts in a random state, it will have an energy

4Intuitively, one can convince oneself of this fact by noting that the maximum possible energy above
the ground state energy grows linearly or quadratically with the number of bits (depending on the range
of spin-spin couplings), whereas the total number of possible energy levels in between them increases
exponentially.
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Figure 1.2: Schematic illustration of quantum parallel tempering, a potential “hybrid” way to
take advantage of both thermal and quantum transitions. Figure adapted from Ref. [11].

significantly above the ground state energy, and finding a lower energy state would be

easy for quantum tunneling because such a state would on average be separated by only

a few spin flips, corresponding to a narrow barrier. However, once the energy of a state is

low enough, the next lowest state will in general be many spin flips away, corresponding to

a very wide barrier for which thermal annealing would be more effective. In other words,

one might expect quantum tunneling to be useful for quickly finding low-lying states, but

not necessarily the true ground state. For these reasons, it would be desirable to have

a metaheuristic that combines he ‘best of both worlds’ of thermal hopping transitions

(1.1) and quantum tunneling transitions (1.2). A particularly promising proposal of such

a ‘hybrid’ method is what has recently been dubbed “quantum parallel tempering” by

Neven et al. [11], with related ideas explored in the context of data clustering in Ref. [12].

This proposal is motivated by the technique of parallel tempering, which is an improved,

9



more state-of-the-art version of SA.5 In classical parallel tempering, one has many copies

of the problem at hand, each undergoing its own Metropolis update dynamics at its

own fixed temperature after being randomly initialized. Periodically, configurations are

exchanged between neighboring replicas according to a similar Metropolis rule. This way,

if a cold replica is stuck in a bad state, it can be heated up while another replica is cooled,

and conversely good states will diffuse towards the colder replicas. The idea of quantum

parallel tempering is to supplement this approach with a second replica dimension besides

temperature, namely quantum tunneling strength. Now, configurations from cold replicas

can be fed into the quantum device, which is initialized into the state output from the

classical algorithm. Then, the transverse field is dialed up from zero and then back down

after a variable amount of time, allowing groups of spins to tunnel through tall, narrow

barriers behind which they may have previously been stuck. This process, illustrated

in Fig. 1.2, may be a very efficient way to reach new basins of attraction that would

not have otherwise been explored by the classical part of the algorithm. If quantum-

enhanced optimization heuristics such as this one are able to find improved solutions to

hard problems by even just a few percent, from an economic perspective the consequences

could be very significant [14], especially when the effects are compounded over time.

5A variant of parallel tempering [13] was the winning algorithm of the unweighted random MAX-SAT
portion of last year’s international SAT competition. SAT (Boolean satisfiability problem) is a (if not
the) canonical NP-hard problem in computer science. In particular, all problems in NP can be mapped
to it in polynomial time, a result known as the Cook-Levin theorem.
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1.2 Quantum annealing with superconducting qubits

Superconducting qubits [15] are suitable candidates for implementing quantum anneal-

ing. These solid-state electrical circuits, based on superconductors and Josephson tunnel

junctions, are particularly promising because they can be fabricated using the scalable

techniques of integrated circuits, have parameters that can be engineered, and can be

readily tuned and controlled in situ during experiments. D-Wave Systems Inc., a Cana-

dian private company, has in fact been building and selling programmable quantum

annealers over the past six years. The D-Wave processors are comprised of niobium-

based superconducting flux qubits operating at millikelvin temperatures [16, 17, 18], with

the current-generation D-Wave 2000QTM processor6 having 2000 qubits with a limited

“Chimera” connectivity graph, illustrated in Fig. 1.3. These large-scale analog quantum

machines are very impressive engineering feats that have required sophisticated systems

engineering to construct.

As will be described in more detail in Chapter 2, a flux qubit is a type of super-

conducting qubit based on loops of superconducting current interrupted by Josephson

tunnel junctions, and (in certain limits of operation) the two states |↑〉 and |↓〉 of the

artificial Ising spin correspond to current circulating either clockwise or counterclockwise

through these loops.7 In a flux qubit, the superconducting phase difference across the

qubit’s Josephson junction(s) (which is related to the flux threading the qubit loop) acts

6https://www.dwavesys.com/d-wave-two-system
7In the next chapter we will describe in detail exactly how one can implement qubits suitable for

quantum annealing using the building blocks of capacitors, inductors, and Josephson junctions (nonlin-
ear kinetic inductors), by using the techniques of circuit quantization and the quantum nature of the
macroscopic superconducting phase.
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Figure 1.3: Graphical representation of a 3× 3 patch of unit cells within the D-Wave Chimera
unit tile topology. Dots represent qubits and lines represent inter-qubit couplings. Each unit
cell contains eight qubits forming the complete bipartite graph K4,4, with sparse connections
to neighboring unit cells such that each qubit is connected to at most 6 other qubits.

as a quantum mechanical degree of freedom residing in a double-well potential energy

landscape, with |↑〉 and |↓〉 corresponding to the phase being localized in the left or right

wells.8 In this two-level flux basis, the flux qubit Hamiltonian takes the form

H = −1

2
(∆σx + εσz). (1.10)

Qualitatively, the height of the barrier in the double-well potential tunes the annealing

driver Hamiltonian HD through the tunneling term ∆, and is controlled by the flux

through a secondary DC SQUID loop of the qubit. As we will see later, this energy

barrier physically arises from the Josephson tunneling energy. The local field coefficients

hi of σzi in the problem Hamiltonian (1.5) are controlled by flux threading the main

qubit loop, inducing an energy offset ε between the left and right wells of the double-

well potential, arising from the magnetic field energy stored in the qubit’s inductive

8One typically assumes that the intra-well energy level spacing is large so that levels beyond the
lowest two are negligible.
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loop. Sign- and magnitude-tunable σzσz couplings Jij between these artificial spins are

provided by flux-tunable superconducting rf-SQUID transformers which act as effective

mutual inductances, coupling flux from the loop of one flux qubit to the loop of another.

It is known that superconducting qubits, and in particular D-Wave’s qubits, undergo

substantial unwanted coupling with their environments, with single-qubit relaxation and

dephasing times orders of magnitude shorter than the annealing times in D-Wave pro-

cessors. Environmental coupling makes real quantum annealers challenging to model

and has in the past led to some debate over their degree of “quantumness”. Coupling

to the environment has at least two significant effects on quantum tunneling within an

otherwise closed quantum system. Dephasing between energy levels due to low-frequency

noise causes tunneling to no longer be described by coherent swapping between the ini-

tial and final states, but rather by an incoherent rate equation with a quadratically

reduced tunneling rate. Namely, the tunneling occurs on a timescale of order ∆2/W

rather than ∆, where ∆ is the associated tunnel splitting and W is a measure of the

rate of dephasing between energy levels. Dissipation also suppresses quantum tunneling

rates, as it tends to localize the system’s wavefunction in local minima. Furthermore,

if the dissipation is strong enough, the environment induces an effective energy barrier

for tunneling, exponentially suppressing the tunneling rate. The severity of these effects

becomes greater for multiqubit tunneling transitions, growing as the number of qubits

that need to simultaneously tunnel [19]. D-Wave’s qubits have strong low-frequency flux

noise and high-frequency dielectric dissipation, but despite this, there is clear evidence
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that the device does harness quantum-mechanical effects, particularly incoherent quan-

tum tunneling, which occurs in both single- and multi-qubit devices [20, 17, 19]. For

example, reasonable phenomenological models of low-frequency environmental noise can

be used to model the measured tunneling rates, which for quantum tunneling is generally

observed to become independent of temperature below a certain temperature [21, 22].

Several empirical results have recently been uncovered concerning how quantum tun-

neling might be relevant as a computational resource in a real quantum annealer with

noise. Using the D-Wave machine, Boixo et al. [19] clearly show that multiqubit quantum

tunneling can play a computational role in a crafted, proof-of-concept class of “weak-

strong cluster” problems with tall, narrow energy barriers through which multiple qubits

must simultaneously tunnel. This multiqubit tunneling dominates over thermal hopping,

leading to better solutions at lower physical device temperatures. Denchev et al. [23]

extended the weak-strong cluster study, showing that finite-range quantum tunneling

can be used to obtain a computational speedup over simulated annealing in larger sets

of problems that contain networks of weak-strong clusters coupled to each other in a

glassy (random) manner. In particular, for a fixed annealing time of 20µs (the fastest

time that was available on the D-Wave device), a scaling speedup9 relative to SA was

observed, with the D-Wave device finding the ground state with 99 % probability ∼ 108

9It could be argued that this is not a genuine limited quantum speedup, defined as “a speedup obtained
when compared specifically with classical algorithms that correspond to the quantum algorithm in the
sense that they implement the same algorithmic approach, but on classical hardware” [24]. This is
because the annealing time was not optimized for each problem size, since the D-Wave hardware had a
minimum allowed annealing time. Very recently, a class of problems was found for which the D-Wave
annealing time could be optimized for each problem size, and a genuine limited quantum speedup was
observed (although only a very modest one) [25]. However, there were still other classical algorithms
that do much better than QA for this class of problems.
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times faster for problems with ∼ 1000 qubits compared to when SA is run on a single

core. However, path-integral quantum Monte Carlo (QMC) techniques [26] were able to

solve the problem with the same scaling in problem size as D-Wave, yet D-Wave was still

able to gain a prefactor of ∼ 108 in speed. Even though this is not a scaling speedup, it is

still a very substantial effect – it took a significant fraction of Google’s server fleet to run

the classical algorithms in this study, costing around $1M to generate Fig. 4 in Ref. [23]

[27]. However, it must be stressed that this result by no means demonstrates an unqual-

ified quantum speedup – there exist specialized classical cluster-finding algorithms, such

as Selby’s algorithm [28], which are able to solve most problems on D-Wave’s Chimera

graph faster than any of the above methods, including D-Wave, by taking advantage of

tree-structured subgraphs. The hope however is that such cluster-finding algorithms will

become ineffective in future quantum annealers with a denser, more highly connected

graph, making techniques like QMC the real long-term classical competitor. There is

also hope that a quantum annealer with less unwanted environmental coupling may take

advantage of not just incoherent but also coherent tunneling, and may be able to yield

a scaling speedup relative to QMC. Furthermore, there exist topological obstructions to

QMC such that the scaling is no longer the same as incoherent tunneling when there are

multiple topologically inequivalent paths for tunneling [29] (although, this is only true

for closed boundary condition QMC, not open-boundary condition QMC [26]. Also, it

remains to be seen how generic such obstructions are).

A crucial open question is how one might build improved quantum annealers that
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have a chance of providing a genuine computational speedup. Given the above, there are

several ways one might be able to do so. To improve device performance and take full

advantage of quantum effects like coherent tunneling, superposition, and entanglement,

a key task is to reduce the amount of noise and dissipation in flux qubits. D-Wave’s

qubits rely on conventional multilayer fabrication with amorphous dielectrics, which along

with their limited control scheme enabled them to quickly scale up to ∼ 1000 qubits;

however, it is well-known from studies with superconducting resonators and gate-based

superconducting qubits that these amorphous dielectrics add a significant amount of

background dissipation to quantum circuits, in addition to introducing individual strongly

coupled two-level charge defects, especially in the GHz frequency regime. It therefore

quite possible that building a quantum annealer without lossy dielectrics could lead

to significantly different qualitative behavior. In fact, the D-Wave device is typically

modeled by assuming that it is fully thermalized with its environment up to some ‘freeze-

out’ point in the middle of the anneal where the coupling matrix elements become small

[30, 19], but this thermalization stage would become irrelevant with longer thermalization

times and/or faster annealing. This brings us to a second aspect in which existing

annealers could be improved. It is often observed that the optimal annealing time on the

D-Wave device is the fastest annealing time available (around 10µs due to engineering

constraints). The ability to anneal significantly faster would therefore allow improved

performance, especially if one were able to anneal faster than the system thermalization

time.
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Besides improving noise and dissipation, it is necessary to increase the density of

the connectivity graph beyond that of existing quantum annealers, so that classical algo-

rithms like Selby’s can no longer make “cheap cuts” and will therefore become ineffective.

Of course, a fully connected graph would be theoretically ideal, but given the limited fi-

nite size of flux qubits and inter-qubit couplers, one must make compromises and come up

with a good connectivity graph given a limited number of qubits that can connect to any

given qubit. It is not known what the optimal graph is given the physical constraints of

the qubits and couplers, but some figures of merit are likely small diameter (i.e., it takes

as few hops as possible to get from one side of the graph to the other), large treewidth

(meaning it is hard to transform the graph into a tree structure that classical algorithms

like Selby’s could take advantage of), and large conductance (meaning the graph is ‘well-

knit’ so it is not easy to cut the graph without incurring penalties, analogous to there

being many bridges between two cities. High conductance graphs also give more freedom

in how to embed problems that don’t natively fit on the graph, and are more robust

to faulty device elements such as broken couplers). Finally, it may also be desirable

to have sparse long-range connections in the graph, to mimic the lateral connectivity

structure of the neocortex, which may be the only quasi-2D arrangement of elements

that has a non-zero spin-glass transition, meaning that hard problems can natively live

in it [27]. However, at present it is unclear how to make such long-range connections

between flux qubits while maintaining appreciable coupling strength. Finally, improving

control errors in specifying hi and Jij over the course of the anneal is also required to
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Figure 1.4: Possible small-scale and scalable architectures for the fluxmon qubit. Here, the schematic
indicates the physical layout (unlike in Fig. 1.3), so the lines represent qubits and their intersections
represent couplings. (a) Fully connected architecture for small-scale demonstrations. (b) Proposed
tangled fabric of fluxmons by for medium-scale applications (couplers not shown) [31].

improve the performance of existing annealers. A large part of this must be achieved

via control hardware improvements, but improvement can also be gained through better

device modeling.

In this work, we develop a variant of the flux qubit, called the “fluxmon”, that is

suitable for high-connectivity quantum annealing without lossy dielectrics. In particular,

we show that a scalable multi-layer architecture without lossy dielectrics is possible by

building flux qubits with superconducting air-gap crossovers within one chip and super-

conducting bump bonds between chips. We accordingly observe substantially reduced

microwave dissipation relative to D-Wave’s qubits. We also demonstrate strong tunable

coupling between qubits, and introduce more sophisticated yet scalable modeling for

inter-qubit coupling that goes beyond linear theory. Furthermore, the fluxmon design

is compatible with high connectivity graphs, and we expect that one fluxmon can in
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principle couple to up to 10 to 20 others simultaneously while maintaining large coupling

strengths. With the fluxmon, we can hope to demonstrate small-scale fully connected

graphs such as the one shown in Fig. 1.4(a), and larger scale weaving networks shown in

Fig. 1.4(b) that will likely be improvements over the existing Chimera architecture.

An outline of this thesis is as follows. In Chapter 2, we briefly review the basics

of superconducting quantum circuits and Josephson junctions, and describe the theory

behind the fluxmon circuit and how it can be used as a flux qubit. We provide analyses

of circuit models with varying degrees of sophistication that can be used to model real

devices to high accuracy. In Chapter 3, we show how the fluxmon is physically imple-

mented, and describe in detail how it can be measured and manipulated. In particular,

we will show that we can implement fast initialization of the |L〉 and |R〉 states, meaning

our hardware is capable of implementing ‘annealing in reverse’ as required for quantum

parallel tempering. We also show how our high-bandwidth experimental setup along with

lower-dissipation qubits allow the demonstration of single-qubit annealing faster than the

system thermalization time, a previously unaccessed regime. In Chapter 4, we perform

an in-depth study of noise and dissipation in the fluxmon, and in particular implement

the first measurement that extracts both the “classical” and “quantum” parts of the 1/f

flux noise intrinsic to superconducting qubits. In particular, we are able to observe for

the first time the classical-quantum crossover of flux noise, restricting the possible micro-

scopic physical mechanisms that could be responsible for it. Remarkably, we also observe

atomic hydrogen as a source of magnetic dissipation at 1.42 GHz. We show that indepen-
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dent measurements of noise and dissipation can roughly predicted incoherent quantum

tunneling rates between flux qubit wells. In Chapter 5, we describe the theory behind

tunable couplers for fluxmon qubits, and in particular provide a scalable, nonlinear Born-

Oppenheimer analysis of the circuit necessary when the coupling is very strong, allowing

us to model our qubits to a higher degree of accuracy than the linear models typically

used to model the D-Wave device. We also discuss the important tradeoff between the

ability to couple strongly to many qubits and the ability to have low sensitivity to noise.

Finally, in Chapter 6, we implement ultrastrong tunable coupling between two fluxmon

qubits in a way that in principle extends to coupling to many other qubits at once.

We perform the first direct spectroscopic measurements of tunable ultrastrong coupling

between superconducting qubits, and demonstrate two-qubit annealing faster than the

system thermalization time.

20



Chapter 2

The fluxmon qubit: design, theory

and modeling

In this chapter, we review the essential physics of superconducting circuits and introduce a

qubit circuit called the “fluxmon,” a tunable gap flux qubit designed for high-connectivity

quantum annealing without lossy dielectrics. We will show how this qubit circuit can

in principle be used for quantum annealing. We will see that there are various levels at

which one can model the fluxmon qubit, and the complexity of the model will depend on

how accurately one wishes to model the experimental device at hand. For example, given

that the fluxmon is implemented with a long segment of superconducting transmission

line, we quantify the accuracy of a continuous transmission line model versus a more

efficiently computable and scalable lumped-element model.
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Figure 2.1: a) Josephson junction. Gray represents superconducting metal, and the black strip
represents a tunnel junction. (b) DC SQUID comprised of two Josephson junctions in parallel.

2.1 Superconducting phase and the Josephson effect

Before we delve into the details of the fluxmon qubit and how it can be used for quantum

annealing, we need to understand the basics of superconducting circuits, and in particular

how Josephson junctions and DC SQUIDs work. We will see how a Josephson junction

acts as a nonlinear inductor, giving rise to the nonlinearity necessary for an otherwise

harmonic superconducting circuit system to form a viable qubit. We will then see how

a DC SQUID can effectively act as a single Josephson junction whose critical current

can be changed via an applied magnetic flux, giving the tunability needed for quantum

annealing with flux qubits.

2.1.1 Josephson junctions

The Josephson junction is arguably the most important building block of superconducting

qubits. As illustrated in Fig. 2.1, Josephson junctions are formed when a superconductor

is interrupted by a layer of insulator (in our case, ∼ 1 nm of AlOx) that is thin enough to
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allow appreciable tunneling of superconducting electrons. The microscopics of Josephson

junctions have been studied in many other works, so we take as our starting point the

well-known BCS theory, put forward by Bardeen, Cooper and Schrieffer in 1957 [32], and

the Josephson tunneling effects, predicted by Brian Josephson in 1962 [33, 34]. In the

standard BCS theory of superconductivity, within the superconductor, Cooper pairs of

electrons (with mass 2me, charge 2e, and net spin zero) condense into an overlapping

common ground state1 that can be described by a macroscopic wavefunction

Ψ(r) =
√
ncp(r)eiϕ(r), (2.1)

where ncp = |Ψ(r)|2 is the density of Cooper pairs and is usually taken to be constant

within a uniform superconductor. This fact is important because it means we can ignore

all the internal degrees of freedom of the superconductor and just consider one degree of

freedom: the macroscopic phase ϕ. The current and voltage across a Josephson junction

are then related to the phase difference across it via the famous Josephson relations

[33, 34],

I = Ic sinϕ, (2.2)

V =
Φ0

2π

dϕ

dt
, (2.3)

1This ground state is separated from electron-like and hole-like quasiparticle excitations by an energy
gap ∆ (corresponding to Tc ∼ 1.1 K in our thin film Al), meaning it will take an energy of 2∆ to break
a Cooper pair. At millikelvin temperatures and low applied voltages we can assume that all tunneling
across the junction is superdconducting, described by the Josephson relations given here. Later on we
will consider the dissipative effects of a small nonequilibrium occupation of quasiparticles that may be
present in real superconducting qubit systems.
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where Ic is the critical current of the junction (the maximum non-dissipative current that

can flow through the junction, determined by the geometry and materials of the junction

and inversely proportional to the normal-state tunnel resistance) and ϕ = ϕ2−ϕ1 is the

phase difference across the junction.2 An important consequence of the Josephson effects

can be seen by differentiating the first Josephson equation with respect to time and then

substituting into the second one, giving

V =
Φ0

2π

1

Ic cosϕ

dI

dt
≡ LJ

dI

dt
, (2.4)

where LJ is called the Josehpson inductance.3 Note that the Josephson inductance is

nonlinear and can even be negative, a crucial fact relevant to the operation of flux qubits

and inter-qubit couplers. In the small-phase limit the junction will behave like a linear

inductor with L = LJ0 = Φ0

2πIc
.

To obtain a quantum model for superconducting qubits, we would like to have a

Hamiltonian describing the energy associated with a Josephson junction, and therefore

the time evolution of systems involving Josephson junctions. Ignoring the capacitance

across the Josephson junction for now, we can find the energy stored in the junction by

integrating the usual expression,

U =

∫ t

0

I(t′)V (t′) dt′ =

∫ t

0

Ic sinϕ
Φ0

2π

∂ϕ

∂t′
dt′ =

Φ0

2π
Ic

∫ ϕ(t)

ϕ(0)

sinϕdϕ

→ −EJ cosϕ, (2.5)

2We have assumed the junction/weak link has zero spatial thickness. If not, then we must technically

use a gauge-invariant phase difference instead, ϕ = ϕ2 − ϕ1 − 2π
Φ0

∫ 2

1
A(r) · dl.

3Also note that LJ is the differential inductance dΦ/dI, not the “secant” inductance Φ/I.
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where we ignored an inconsequential offset term in the last step and we have defined the

characteristic Josephson energy

EJ =
Φ0

2π
Ic. (2.6)

So, viewing ϕ as a position-like coordinate, we see that a Josephson junction adds a

nonlinear cosine potential energy term to the system Hamiltonian.4 This derivation has

been classical, but we can promote the phase variable to an operator to obtain a quantum

Hamiltonian for the Josephson junction,

ĤJJ = −EJ cos ϕ̂. (2.7)

Note that the cosine term can also be written as cos ϕ̂ = [exp(+iϕ̂)+exp(−iϕ̂)]/2 where

the operators exp(±iϕ̂) can be interpreted as charge number displacement operators

which couple states differing by one Cooper pair across the junction. This can be seen

explicitly by writing the Josephson term in the charge basis,5

EJ cos ϕ̂ =
∑
n∈Z

EJ
2

(|n+ 1〉 〈n|+ |n〉 〈n+ 1|) , (2.8)

where |n〉 are the discrete eigenstates of the charge operator with n Cooper pairs on

an electrode. This gives a more intuitive interpretation of the tunneling of Cooper pairs

across the insulating barrier. However, we will almost always find it more convenient to

work in the continuous flux basis.

The justification for treating ϕ as a quantized variable lies in the BCS theory. Exper-

4We have ignored the intrinsic capacitance across the junction, which adds a kinetic term to the
Hamiltonian. For our purposes this is usually negligible, but we will see how to deal with such terms in
section 2.2.3.

5We haven’t defined the charge basis yet, but we will derive it from canonical commutation relations
in section 2.2.1. For now, believe that the charge operator corresponds to the canonical momentum to
the flux/phase, q̂ = −i ddϕ .
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imental confirmation of the quantum nature of the macroscopic phase difference was first

demonstrated in the 1980s through quantum tunneling experiments [21, 35, 22], which

observed the tunneling rate out of a potential well to be independent of temperature

below a certain temperature, in accordance with quantum theory, and more directly in

1985 by Martinis et al., where quantized energy levels were observed in agreement with

theory that quantized ϕ → ϕ̂ [36]. Since then, there has been remarkable success of

the quantized superconducting phase in predicting a wide variety of superconducting

quantum experiments.

2.1.2 The DC SQUID as a tunable Josephson Junction

The fluxmon utilizes two Josephson junctions in a parallel arrangement known as a DC

SQUID. The name “DC SQUID” comes from the fact that, historically, this circuit op-

erates based on the DC Josephson effect, taking advantage of the resulting interference

effects that occur through two parallel paths each containing a Josephson junction. For

reasons that will soon be apparent, DC SQUIDs are often used as very sensitive magne-

tometers. A particularly interesting application of DC SQUIDs is magnetoencephalogra-

phy, where arrays of SQUIDs inside a helmet-shaped vacuum flask are used to infer neural

activity via currents in the brain, making use of both the high sensitivity and temporal

resolution of the SQUID [37]. In this section we show how a DC SQUID behaves as a

single Josephson junction with a critical current that is tunable by an applied magnetic

flux.
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The DC SQUID operates based on a phenomenon in superconductors known as flux-

oid quantization, which is usually just called “flux quantization” (the technical distinction

between these two names will be explained shortly). Flux quantization arises from the re-

quirement that the macroscopic superconducting phase ϕ must be single-valued (modulo

2π) around any closed path within a superconductor. This imposes a constraint between

the phases across any junctions within a superconducting loop and the magnetic flux

threading the area defined by that loop. This constraint is enforced by the supercon-

ducting current within the loop. By the DC Josephson equation and Kirchoff’s rule, the

current flowing across the DC SQUID is given by ISQ = Ij1 + Ij2 = Ic1 sinϕ1 + Ic2 sinϕ2.

We will now show how flux quantization imposes a constraint between ϕ1, ϕ2, and ap-

plied magnetic flux, reducing the DC SQUID to a circuit element with a single effective

phase.

More concretely, consider the DC SQUID circuit in Fig. 2.1(b) with two Josephson

junctions in parallel. Using the macrosopic wavefunction (2.1), the supercurrent density

at any point within the superconductor is given by

Js = Re[q〈Ψ|v|Ψ〉] =
ncpq

m
(~∇ϕ(r)− qA), (2.9)

where we have used the usual quantum mechanical velocity operator

v =
1

m
(p− qA), (2.10)

with m = 2me and q = −2e the mass and charge of a Cooper pair, and A is the magnetic

vector potential. Rearranging terms we have that

∇ϕ(r) =
m

ncpq~
Js +

q

~
A. (2.11)
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Next, consider integrating ∇ϕ(r) around the loop of the DC SQUID, taking the integra-

tion path denoted by the dashed blue line in Fig. 2.1(b). Taking the integral one labeled

segment at a time, we have

ϕb − ϕa = −ϕ1 +
q

~

∫ b

a

A · dl (2.12)

ϕd − ϕc = ϕ2 +
q

~

∫ d

c

A · dl (2.13)

ϕc − ϕb =
m

ncpq~

∫ c

b

Js · dl +
q

~

∫ c

b

A · dl (2.14)

ϕa − ϕd =
m

ncpq~

∫ a

d

Js · dl +
q

~

∫ a

d

A · dl, (2.15)

where ϕ1 and ϕ2 are the gauge-invariant phase differences across junctions 1 and 2,

both defined with an orientation looking towards the top of the circuit. The change in

macroscopic phase around a closed loop must be zero modulo 2π, so we must therefore

have

2πn =

∮
∇ϕ(r) · dl = ϕ2 − ϕ1 +

m

ncpq~

∮
Js · dl +

q

~

∮
A · dl, (2.16)

with n an integer. We recognize the line integral of A around the loop as the to-

tal magnetic flux threading the DC SQUID loop (Stokes’ theorem), and also recognize

|q|/~ = Φ0/(2π), where

Φ0 =
h

2e
≈ 2.068× 10−15 Wb (2.17)

is the magnetic flux quantum. Rearranging (2.16) then yields

ϕ1 − ϕ2 = 2πn+
2π

Φ0

Φ +
2π

Φ0

m

ncpq2

∮
Js · dl. (2.18)
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Here, Φ is the sum of any external magnetic flux applied through the loop and the

magnetic flux generated by any geometric magnetic inductance within the SQUID loop.

Let us consider a few special cases of Eq. (2.18). We first consider a loop without

Josephson junctions (i.e., ϕ1 = ϕ2 = 0). Defining the fluxoid as originally introduced by

London as [34]

Φ′ = Φ +
m

ncpq2

∮
Js · dl, (2.19)

we see that Eq. (2.18) reduces to what is known as fluxoid quantization around a

superconducting loop: the fluxoid associated with any superconducting loop is quantized

in units of Φ0. Next, further assume that the thickness of the loop metal is sufficiently

larger than the penetration depth so that the current density vanishes inside of the

superconductor along the path of integration. In this case, the fluxoid is simply equal to

the magnetic flux threading the loop, Φ′ = Φ. In such a loop, we have the phenomenon

of flux quantization proper: the magnetic flux through the loop is quantized in units of

Φ0. Note that physically, Φ0 is comparable to the amount of flux threaded by the Earth’s

magnetic field through a ∼ 50µm2 loop, one of many reasons that magnetic shielding is

crucial in SQUID devices, whose loop sizes are typically of this order.

Usually, in superconducting circuits the thickness of the metal is comparable to or

larger than the London penetration depth λ, so that the term m
ncpq2

∮
Js · dl is nonzero

but small. In this case the magnetic flux is actually quantized in units of roughly Φ0(1 +

2λ2/(rd))−1 (for an idealized cylindrical geometry [38]), where d is the width of the loop’s

metal and r is the radius of the loop. For typical qubit SQUID dimensions we expect
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this correction to be . 1%, but as we will see shortly, we can incorporate this correction

into an effective inline kinetic inductance within the DC SQUID (which is in fact the

physical origin of this term). Kinetic inductance is associated with the inertia (i.e.,

kinetic energy) of the Cooper pairs that carry the superconducting current. In normal

(ohmic) metals, it is usually negligible at low frequencies because the kinetic energy of

charge carriers is dissipated on the timescale of scattering (think imaginary part of the

Drude model conductivity). In superconductors however, the kinetic inductance can be

quite important. Classically, the concept of kinetic inductance can be understood by

comparing the expression for the energy stored in an inductor by a current (1
2
LI2) with

the kinetic energy associated with a current (
∑

1
2
mqiv

2
qi

) – both are proportional to the

current squared. So, even though the kinetic energy is not stored in the magnetic field of

any geometric inductance, it can still be treated like an inductance. The kinetic energy

associated with a superconducting Cooper pair current is given by the volume integral

Ek =

∫
V

1

2
ncpmv

2 dV ≈ 1

2

l

A

m

ncpq2
I2
s , (2.20)

where l and A are the length and cross-sectional area of the superconducting wire and

Is is the superconducting current through the wire. From Eq. (2.20) we can identify the

kinetic inductance6

Lk =
l

A

m

ncpq2
. (2.21)

Looking back at the definition of the fluxoid (2.19), we then see that the extra term

added to the total magnetic flux is simply the flux associated with the kinetic inductance

6In our simple derivation we have ignored variation of the cross-sectional area over the wire and also
the exact current distribution of the cross-sectional area, but this does not matter for the result.
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of (2.21), Φk = LkI. This makes the fluxoid easier to interpret, as later on we will see

how to deal with inline inductances within the DC SQUID loop. An important fact to

keep in mind is that although the flux Φ itself might not always be quantized in units of

exactly one Φ0, the response of the DC SQUID is still exactly Φ0-periodic in any applied

external magnetic flux. This is a crucial property that will be used later on for calibrating

mutual inductances between various qubit loops and their bias lines.

Now let us add back the two Josephson junctions to the DC SQUID loop, as was

drawn in Fig. 2.1, but for simplicity ignore any inline geometric or kinetic inductances

due to the superconducting wires themselves. For simplicity fix the quantized flux at

n = 0 (this assumption is not necessary though). In this case the flux is simply equal to

the applied magnetic flux, Φ = Φext. The flux quantization condition (2.18) then reduces

to

ϕ1 − ϕ2 =
2π

Φ0

Φext. (2.22)

Defining the new variables

ϕ ≡ ϕ1 + ϕ2

2
,

δ ≡ ϕ1 − ϕ2, (2.23)

flux quantization dictates that δ = (2π/Φ0)Φext. Using this constraint, we can rewrite
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the DC SQUID Hamiltonian in a more useful form using trigonometric identities:

HSQUID = −EJ1 cosϕ1 − EJ2 cosϕ2

= −EJ1 cos

(
ϕ+

δ

2

)
− EJ2 cos

(
ϕ− δ

2

)
= −EJ1

(
cosϕ cos

δ

2
− sinϕ sin

δ

2

)
− EJ2

(
cosϕ cos

δ

2
+ sinϕ sin

δ

2

)
= −Esum

J

(
cos

(
π

Φext

Φ0

)
cosϕ− χ sin

(
π

Φext

Φ0

)
sinϕ

)
, (2.24)

where

Esum
J ≡ EJ1 + EJ2 (2.25)

and

χ ≡ EJ1 − EJ2

EJ1 + EJ2

(2.26)

is a measure of junction asymmetry, which is ideally small (in the submicron AlOx

junctions used in this work, a few percent or less with standard fabrication techniques).

In the SQUID Hamiltonian (2.24), we interpret ϕ as the operator for the SQUID degree

of freedom, while δ is treated as a classical number. This is because by flux quantization,

δ is constrained to equal the external bias flux, which behaves as a classical variable.

Later when we consider inline inductance and capacitance within the DC SQUID loop

we will have to treat δ as an operator as well to have an accurate description of the

system, although if the inline inductances are small enough this can be ignored because

the extra degrees of freedom are very fast and can be thought of as always remaining in
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their classical ground states.7

If we ignore junction asymmetry, we thus see that an ideal DC SQUID will behave

as a single effective Josephson junction (with ϕ acting as the phase across the junction)

with a flux-tunable Josephson energy

Eeff
J = Esum

J cos

(
π

Φext

Φ0

)
. (2.27)

Often in the literature this is written as Esum
J

∣∣∣cos
(
πΦext

Φ0

)∣∣∣, but as we will see in the

context of the fluxmon qubit, there is a crucial observable difference between the positive

and negative signs for this term (this is in contrast to other DC SQUID-based qubits like

the split transmon, where the DC SQUID is itself not part of a DC loop).

2.2 Fluxmon circuit model and circuit quantization

The fluxmon circuit is schematically illustrated in Fig. 2.2. It consists of a segment

of superconducting transmission line (typically CPW or close to CPW) that is shorted

on one end (x = 0) and terminated with a DC SQUID (acting as a tunable Josephson

junction) on the other (x = `). The aim of this section is to show how such a circuit

can serve as a tunable gap flux qubit that is able to encode the Hamiltonian necessary

for quantum annealing. There are various levels of approximations at which one can

describe the fluxmon circuit. For now, we will ignore any geometric inductances within

the loop forming the DC SQUID. This is justified if they are small enough such that the

7We’ll discuss this idea further in the context of the Born-Oppenheimer approximation in a later
section.
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resulting modes within the DC SQUID have a characteristic frequency much higher than

the operating frequencies of the qubit. Later on we will add finite DC SQUID inline

inductances in order to quantify their effects. For now let us also assume that the two

junctions of the DC SQUID are identical. We will later add in the important effect of

undesired junction asymmetry. As shown in 2.1.1, we can then treat the DC SQUID

simply as a single Josephson junction whose Josephson energy is tunable by the external

flux bias ΦSQ threaded through it, according to EJ(ΦSQ) = Emax
J cos (πΦSQ/Φ0), where

Φ0 = h/2e is the magnetic flux quantum.

The inductance of the main body of the fluxmon is distributed throughout a rather

long length of a few millimeters in order to accommodate simultaneous coupling to many

other qubits at once, a desirable feature for quantum annealing that will be discussed in

chapters 5 and 6. This idea has also been used by the company D-Wave with microstrip-

based flux qubits [16]. We chose a coplanar waveguide geometry for the fluxmon body

largely due to its compatibility with low dielectric dissipation, as demonstrated in CPW

resonators [39] and in the Xmon transmon qubit, whose capacitor geometry is quite close

to that of a CPW [40]. One can model a CPW line (or any transmission line) as having a

uniform distributed series inductance per unit length L and a uniform distributed parallel

capacitance per unit length C, both of which are independent of frequency.8 If the CPW

8The physical justification for such a model can be found by looking at the electric and magnetic field
distributions in an arbitrary uniform TEM transmission line geometry and equating the time-averaged
electric and magnetic energy per unit length with the corresponding circuit quantities [41], meaning the
two models are dynamically equivalent. Note however that a real CPW supports “quasi-TEM” waves,
and the assumption of a constant wave velocity ignores any frequency dispersion that can occur with
a CPW geometry on a finite dielectric substrate. At the operating frequencies we will consider though
(f � 1 THz), such effects are negligible [42].
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a)
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d)

Figure 2.2: Fluxmon circuit. As is standard, Josephson junction circuit elements are drawn
with an “×” symbol.
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segment of the fluxmon is short enough (i.e., if the relevant operating frequencies are

low enough), one would expect that it behaves as a lumped element inductance and

capacitance. This intuition turns out to be correct, as can be shown using standard

transmission line theory.9 The input admittance looking into the shorted transmission

line through a port located at the position of the DC SQUID is given by [41]

Yin(ω) =
1

iZ0 tan (ω`/v)
(2.28)

≈ −i
√
C
L

(
1

ω`
√
LC
− ω`

√
LC

3

)
(2.29)

=
1

iωL`
+ iω

C`
3
, (2.30)

where Z0 =
√
L/C is the characteristic impedance of the line and v = 1/

√
LC is the

frequency-independent speed of wave propagation, and where in the second line we have

taken the low-frequency limit f � fλ/4 = v/(4`), which is ≈ 20 GHz in typical designs.

We can immediately recognize Eq. (2.30) as the admittance of a lumped element parallel

LC circuit, with effective inductance L` and capacitance C`/3. Physically, the reduction

in C from C` to C`/3 comes from the fact that one end of the CPW is shorted, meaning

that there must be a voltage profile that shrinks to zero at x = 0, so the full capacitance

per unit length does not contribute equally over the entire length of the CPW.

The accuracy of the low-frequency expression (2.30) relative to the full transmission

9From the telegraph equations, which describe forward and backwards propagating waves along a
transmission line, one can derive that the input impedance (defined as net voltage over current) seen

looking into a finite transmission line of characteristic impedance Z0 =
√
L
C and terminated with a load

impedance ZL at x = ` from the input is Z0
ZL+iZ0 tan k`
Z0+iZL tan k` , with k = 2π/λ for a lossless line [41].
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Figure 2.3: Exact vs. approximate (parallel LC) expressions for transmission line segment
impedance vs. frequency, for ` = 1750µm. Near the λ/4 resonance, the λ/4 resonance formula
from Pozar [41] works very well. Below 1

2fλ/4 ≈ 10 GHz, the fractional error in the low frequency

formula (2.30) is less than one part in one hundred, and below 1
4fλ/4 ≈ 5 GHz it is less than

one part in one thousand.

line admittance (2.28) is shown in Fig. 2.3. Below 1
2
fλ/4 ≈ 10 GHz, the fractional error

in the low frequency formula (2.30) is less than one part in one hundred, and below

1
4
fλ/4 ≈ 5 GHz it is less than one part in one thousand. In section 2.2.2 we discuss the

consequences of this deviation, as well as the consequences of using a 1D model that

ignores higher modes of the transmission line segment. The reader may skip the analysis

in section 2.2.2 unless they are interested in predicting the fluxmon spectrum to high

accuracy, but note that such an analysis is crucial to understanding the upper limit on

how long we can make the fluxmon’s CPW while also having a valid lumped LC model

at the frequencies we care about. As a notational note, we will denote the true harmonic

quarter-wave resonance frequency by fλ/4, and the harmonic resonance according to the

low-frequency model by fLC ≡ 1
2π

1√
(L`)(C`/3)

. These two values differ by only a factor of

2
√

3
π
≈ 1.10. Although fLC doesn’t correspond to any physically real resonance of the
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Figure 2.4: 1D fluxmon circuit model consisting of a lumped element inductor, capacitor, and
DC SQUID acting as a tunable Josephson junction. The flux node for the one-dimensional
Hamiltonian is at the top of circuit, while the bottom node of the circuit is taken to be a
reference ground.

system, it is still a useful quantity for parameterizing the overall energy scale within the

low-frequency 1D fluxmon model, the primary circuit model we will use for the fluxmon.

2.2.1 1D circuit model

With the CPW approximated as a lumped parallel LC circuit as in Fig. 2.2d and ignoring

any inline geometric inductances within the DC SQUID, the fluxmon has one degree of

freedom (taken to be the node at the top of the circuit) and the Hamiltonian takes a

one-dimensional form. Such a 1D model is particularly easy to work with and desirable

to use whenever it is applicable. We will now study this model in depth and show how

such a circuit can be used as a tunable gap flux qubit.

2.2.1.1 1D Hamiltonian and control knobs

To control the qubit formed by this circuit, as illustrated in Fig. 2.4 we add an external

flux bias Φt to the main loop to effectively bias the phase across the DC SQUID. We

38



also add an external flux bias ΦSQ to the DC SQUID loop to control the effective critical

current of the SQUID. The subscript of Φt stands for “tilt”, the reason for which will be

explained shortly in the context of the conventional flux qubit double-well potential.10

Let us first consider the ideal case of symmetric junctions with identical critical cur-

rents Ic1 = Ic2 (i.e., χ = 0). The 1D fluxmon Hamiltonian is then

Ĥ1D =
(Φ̂− Φt)

2

2L
+
Q̂2

2C
− Emax

J cos

(
π

ΦSQ

Φ0

)
cos

(
2π

Φ̂

Φ0

)
(2.31)

where Emax
J = EJ1 + EJ2 = Φ0

2π
Ic1 + Φ0

2π
Ic2 and Φ̂ and Q̂ are the canonically conjugate11

flux and charge operators across the compound junction satisfying [Φ̂, Q̂] = i~. This

commutation relation can be deduced using canonical quantization of LC circuits, with

flux and charge being directly analogous to position and momentum. The first term in

(2.31) represents the potential flux energy stored in the inductor. The second term is the

kinetic charge energy within the capacitor. The third term is the Josephson potential

energy arising from the flux across the effective Josephson junction formed by the DC

SQUID. It is convenient to re-write the Hamiltonian (2.31) in terms of the dimensionless

phase and charge operators ϕ̂ = 2π
Φ0

Φ̂ (understood to have units of radians) and q̂ = 1
2e
Q̂,

with [ϕ̂, q̂] = i,

Ĥ1D = EL
(ϕ̂− ϕt)2

2
+ 8EC

q̂2

2
+ βEL cos (ϕ̂) , (2.32)

10Note that in the actual physical implementation of the circuit, the flux bias Φt through the main
CPW inductor is a gradiometric flux bias, with the flux having opposite sign on either side of the CPW
center trace when looking into the plane of the CPW. This is because the corresponding current flow
needs to be the CPW mode of the transmission line (current flowing down the center trace in one
direction and flowing back symmetrically on either side of the ground plane, as illustrated in Fig. 3.1).

11The fact that charge and flux are canonical coordinates in electrical oscillators follows through a
direct analogy of the equations of motion for flux and charge to position and momentum in a harmonic
oscillator formed by a mass on a spring.
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where we have also defined the useful parameters

EL =
1

L

(
Φ0

2π

)2

, (2.33)

EC =
e2

2C
, (2.34)

β = −2π

Φ0

IcL = −L/LJ = −EJ/EL. (2.35)

From now on we will usually drop the hat symbols from the flux and charge operators,

but it will be clear from context that they are operators.

To gain a bit more intuition, we can rewrite the 1D Hamiltonian yet again, this time

in a dimensionless form,

H1D

EL
=

(ϕ− ϕt)2

2
+ β cosϕ+

(
ZLC
RK/8π

)2
q2

2
, (2.36)

where

ZLC =

√
L

C
(2.37)

is the fluxmon’s characteristic impedance and

RK =
h

e2
≈ 25.8 kΩ (2.38)

is the resistance quantum. The dimensionless form (2.36) provides an intuitive interpre-

tation of the characteristic impedance ZLC : since it sets the scale of the charge term in the

Hamiltonian, and the charge acts as the non-commuting momentum to the flux (phase),

ZLC must set the quantum uncertainty in the phase wavefunction; i.e., it sets the width

of the wavefunction in the flux basis. In fact, as will be shown shortly, in the harmonic
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a) b)

Figure 2.5: (a) Plot of β(ΦSQ) = βmax cos (πΦSQ/Φ0) vs. ΦSQ, ranging from −βmax to βmax. At
zero physical applied flux biases in the system, the potential “barrier” is negative, leading to
the convention of negative β at ΦSQ = 0. (b) Plot of the dimensionless potential energy U(ϕ)
vs. ϕ for different values of β. β = 0 corresponds to the harmonic limit, and β > 1 corresponds
to a double-well potential.

limit there is a direct proportionality between the width of the Gaussian ground state

wavefunction and ZLC/RK . Besides leading to generically quantum behavior, as we will

see later on this finite width has important implications for coupling strength between

qubits, and when considered in the context of the Born-Oppenheimer approximation for

inter-qubit couplers gives quantum corrections to the otherwise classical ground state

energy of the couplers.

The meaning of the important parameter β = βmax cos (πΦSQ/Φ0) becomes clear12

when we plot the dimensionless potential energy part of the Hamiltonian, U(ϕ)/EL =

1
2
(ϕ − ϕt)2 − β cosϕ. As shown in Fig. 2.5(b), β is a measure of the barrier height in

12Note that in this work, the sign convention for β is such that β is negative when there is zero physical
applied flux bias in the system, (ΦSQ,Φt) = (0, 0), which is reflected in Fig. 2.5(a). The reason for this
convention is so that when Φt = 0, positive β means “positive barrier” in the potential energy landscape,
as can be intuitively understood in Fig. 2.5(b). In the literature there is often an alternative definition
of tilt flux Φt → Φt − Φ0/2 as in a conventional flux qubit, but we will not use it here.
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Figure 2.6: Plot of numerically computed fluxmon wavefunctions in the 1D model for various
values of β, illustrating four qualitative regimes (harmonic, pure quartic, double-well with
substantial tunneling, and double-well with suppressed tunneling). The blue, red, and green
curves correspond to the wavefunctions of the ground, first excited, and second excited energy
eigenstates. The dashed lines are the corresponding eigenenergies, and the black curve is the
rescaled potential.

the double-well potential. When β > 1, we have a double-well potential. When β < 1,

we have a single-well anharmonic potential. When β = 0 (ΦSQ = Φ0/2), the Josephson

term vanishes and the 1D fluxmon becomes a harmonic oscillator. Note that β can also

be negative, yielding an anharmonic potential with an anharmonicity that has opposite

sign from that when 0 < β < 1. The eigenenergies and wavefunctions for the first three

energy eigenstates are illustrated for different values of β in Fig. 2.6.

The 1D Hamiltonian can be easily diagonalized to high accuracy by discretizing it over

the interval [ϕt−2π, ϕt+2π] and numerically diagonalizing the resulting matrix. Explic-
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itly, this means considering discrete flux points ϕi with i = 1, 2, ..., N . The corresponding

dimensionless potential energy matrix is then the diagonal matrix whose entries are given

by Unm/EL = δn,m

[
(ϕi−ϕt)2

2
+ β cosϕi

]
. The matrix for the kinetic energy is found by

using the relation q̂ = −i d
dϕ

(this follows from the commutation relation [ϕ̂, q̂] = i).

Since the difference quotient for the second derivative of a function f with respect to ϕ is

[f(ϕ+δϕ)−2f(ϕ)+f(ϕ−δϕ)]/(δϕ)2, the discrete matrix for the kinetic energy becomes

Tnm/EL = 1
2

8EC
EL

1
(δϕ)2 (2δn,m − δn,n±1). Putting these together, the discrete matrix for the

1D fluxmon Hamiltonian over the discretized flux ϕi is

H1D,disc.
nm

EL
= δn,m

[
(ϕi − ϕt)2

2
+ β cosϕi

]
+

1

2

8EC
EL

1

(δϕ)2
(2δn,m − δn,n±1). (2.39)

To obtain an accuracy of 2 MHz (significantly less than the observed qubit linewidth)

in f10 ≡ (E1 −E0)/h and a fractional accuracy of < 5× 10−5 for the off-diagonal matrix

elements ϕ10 ≡ 〈0|ϕ̂|1〉 within the regime of interest, N = 400 points suffices and is still

sufficiently fast. Using N = 200 is appreciably faster but will lead to errors up to 10

MHz in f10 in the regime of interest. We note that the discretization technique works

efficiently when the Hamiltonian in one-dimensional but, as we will see later on, this

technique becomes quickly intractable for circuits with more degrees of freedom, and so

other techniques will be used to diagonalize more complex circuits.

Fig. 2.7(a) shows the numerically obtained f10 vs. the flux biases ΦSQ and Φt within

the 1D model for typical qubit parameters of fLC = 20 GHz and ZLC = 75 Ω. Note

that the spectrum is Φ0-periodic in tilt bias Φt and 2Φ0-periodic in the DC SQUID flux
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bias ΦSQ (this is because the DC SQUID term is set by the interference between two

junctions that respond to the SQUID flux with opposite signs). To help understand the

different regions of the spectrum, in Fig. 2.7(b) we have indicated the regions of the

2D bias space where the potential in monostable vs. bistable, along with vertical lines

indicating where |β| = 1. The red/blue regions are where the potential is classically

bistable/monostable respectively. More precisely, bistable points are the biases for which

the equation U ′(ϕ) = ϕ − ϕt − β sinϕ = 0 has three solutions [two local minima and

one local maximum for U(ϕ))]. We note that the bistable regime can be reached from

the origin either by applying ∼ Φ0/2 to the tilt bias, or instead by applying ∼ Φ0 to the

SQUID bias. The former is how a conventional flux qubit obtains a double-well potential,

and can be thought of as moving the parabolic part of the potential relative to the cosine

part. The latter instead corresponds to moving the cosine part relative to the parabolic

part to achieve the same result. This is often useful in practice, allowing us to restrict the

available flux range of the tilt bias line to protect the qubit from noise and dissipation.

In Fig. 2.8(a) we plot the numerically computed spectra f10 and f21 vs. β for a

symmetric potential (i.e., zero tilt, Φt = 0). Note that at β = 0, the anharmonicity

η ≡ f21−f10 vanishes since the fluxmon potential becomes perfectly harmonic there, and

as claimed earlier the anharmonicity at zero tilt therefore changes sign when β crosses

through zero. When β is sufficiently larger than 1, f10 at zero tilt quickly approaches

zero, in fact exponentially so. This can be understood through the WKB approximation

for the inter-well tunneling in the double-well regime as discussed later on. We note
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Figure 2.7: (a) Fluxmon f10 = (E1 − E0)/h vs. SQUID and tilt flux biases according to the
1D Hamiltonian, for a typical fluxmon with fLC = 20 GHz, ZLC = 75 Ω, and βmax = 2.4. (b)
Regions of classical monostability (blue) and bistability (red). Dashed vertical lines indicate
where |β(ΦSQ)| = 1.

that the value of β at which the gap starts to decrease exponentially depends on the

impedance. Increasing the impedance increases the value of β at which the gap starts to

shrink exponentially. This is shown in the logarithmic plot of ∆ = hf10(ϕt = 0) vs. β in

Fig. 2.8(b). This makes intuitive sense given that this parameter determines the width

of the wavefunction. A higher impedance also gives a broader crossover region between

the harmonic (single-well) and tunneling (double-well) regimes.

In Fig. 2.8(c) we plot the numerically computed dimensionless flux and charge matrix

elements ϕ10 ≡ |〈0|ϕ̂|1〉| and q10 ≡ |〈0|q̂|1〉| at zero tilt. As will be discussed in subsequent

chapters, these quantities determine how strongly the fluxmon couples to its environment

through the flux or charge degree of freedom. By the same physics, these quantities also

determine how strongly the fluxmon will couple to other quantum circuits through a

mutual inductance or capacitance.
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Figure 2.8: (a) Plot of fluxmon spectral frequencies f10 and f21 vs. β at zero tilt for typical
design parameters fLC ≈ 20 GHz and ZLC ≈ 100 Ω. (b) Logarithmic plot of the flux qubit
gap ∆/h (i.e., f10 at zero tilt) vs. beta for two different values of impedance ZLC . (c) Plot of
the dimensionless flux and charge matrix elements at zero tilt obtained via numerical diagonal-
ization of the 1D circuit model, along with the prediction using the analytical harmonic limit
predictions (2.43) and (2.44), which break down for large qubit nonlinearity β (small ∆).
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2.2.1.2 Harmonic regime β � 1

Some intuition can be gained about the fluxmon spectrum and matrix elements in the

harmonic regime |β| � 1. Consider a symmetric potential with ϕt = 0. In this regime we

can ignore all quartic and higher order terms in the potential. In this case the potential

takes the quadratic form U(ϕ) ≈ EL(1 − β)ϕ
2

2
, yielding a β-tunable curvature with

characteristic frequency of oscillation ω = ωLC
√

1− β, where ωLC = 2πfLC is the LC

oscillation frequency in the harmonic limit β = 0.

We can compare the numerically computed matrix elements from the previous section

to the result obtained by treating the fluxmon as a harmonic oscillator with the same

natural frequency ω = 2πf10 and mass (i.e., capacitance C). The harmonic formula for

the flux and charge matrix elements can be found by identifying13

Φ̂ = Φzpf(â
† + â),

Q̂ = iQzpf(â
† − â), (2.40)

where

Φzpf =

√
~

2ωC
=

√
~Z
2
, (2.41)

Qzpf =

√
~ωC

2
=

√
~

2Z
. (2.42)

13This correspondence follows from direct comparison of the harmonic part of the Hamiltonian (2.31)

to the well-studied Hamiltonian for a harmonic oscillator HH.O. = p̂2

2m + 1
2mω

2x̂2, where as is standard
the ladder operators are â± = 1√

2~mω (∓ip̂+mωx̂) [43].
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Using the standard algebra of creation and annihilation operators we have the following

useful matrix elements,

∣∣ϕharmonic
10

∣∣ =
2π

Φ0

√
~

2ωC
=

2π

Φ0

Φzpf , (2.43)

∣∣qharmonic
10

∣∣ =
1

2e

√
~ωC

2
=

1

2e
Qzpf . (2.44)

These harmonic formulas are (perhaps surprisingly) quite accurate down to f10 ∼ 1 GHz

(β ∼ 1.15) for a typical impedance of ∼ 100 Ω. For typical fluxmon parameters there is

only a 6 percent error at f10 = 2 GHz, where the potential is very anharmonic [β = 1.1,

(f21−f10)/f10 = 1.6]. We will find this approximate harmonic behavior useful in Chapter

4 where we can use it to help us interpret dissipation from environmental flux noise above

∼ 1 GHz in terms of a phenomenological power law model.

We can also compute the width of the ground state wavefunction in the harmonic

limit β = 0, a useful quantity to know. Since the wavefunction is a Gaussian, the width

is simple to compute: for a harmonic LC oscillator with frequency ω10 and capacitance

C, we have

〈0|ϕ2|0〉 = |〈0|ϕ|1〉|2 = 4π
Z

RK

, (2.45)

which when written in this dimensionless form is very easy to remember. Note the

equality of the width of the wavefunction and the flux matrix element ϕ10 in the harmonic

limit. For a typical fluxmon impedance ZLC of 100 Ω, we see that the width of the

wavefunction is much less than 2π. This is consistent with the general property in
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superconducting qubits that when EC � EJ , EL the wavefunction is better described

in terms of their flux because there is a low quantum uncertainty in the phase whereas

there is a large uncertainty in the charge [44].

2.2.1.3 Two-level flux qubit approximation

It is often convenient to express the fluxmon Hamiltonian in the language of a conven-

tional flux qubit Hamiltonian [45, 46]. Within the two-level approximation, a conven-

tional flux qubit is usually described by the tunnel coupling ∆ between wells and the

energy detuning ε between the minima of the two wells. The energy detuning is usually

taken to be linear in applied tilt flux, with the constant of proportionality being the

expected persistent current Ip in each of the wells. To arrive at such a Hamiltonian from

the 1D fluxmon Hamiltonian, we first make a two-level approximation by projecting the

Hamiltonian H(β,Φt) (where β(ΦSQ) and Φt are parameters) into the two lowest energy

levels {|g(β, 0)〉 , |e(β, 0)〉} of H(β, 0), the full Hamiltonian at zero tilt, and treat the

applied tilt flux as a perturbation to first order,

H(β,Φt)
∣∣∣
{|g(β)〉,|e(β)〉}

≈ H(β, 0) + Φt
∂H(β, 0)

∂Φt

∣∣∣∣
{|g(β)〉,|e(β)〉}

(2.46)

= H(β, 0) + Φt
Φ

L
. (2.47)

We can interpret the term Φ
L

as the persistent current operator, which is multiplied by Φt

to give the correct units of energy. The projection onto this two-level subspace should be

a good approximation as long as the linear term in Φt is small compared to the transition
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to the second excited state of the full Hamiltonian. The zero-tilt eigenstates |g(β, 0)〉 and

|e(β, 0)〉 are states of even and odd parity. They are also the even and odd superpositions

of the left and right well states, which have their fluxes localized in the left and right well

of the double-well potential,

|g(β, 0)〉 =
1√
2

(|L〉+ |R〉),

|e(β, 0)〉 =
1√
2

(|L〉 − |R〉), (2.48)

where |L〉 and |R〉 are illustrated in Fig. 2.9(a). In this work we will refer to the

basis {|g(β)〉 , |e(β)〉} (also written as {|0(β)〉 , |1(β)〉}) as the parity basis, and the basis

{|L〉 , |R〉} as the flux basis. Denoting the energy gap between |g〉 and |e〉 at zero tilt by

∆, then in terms of Pauli matrices the two-level flux qubit Hamiltonian (2.47) becomes

H ≈ −1

2
(∆σx + εσz), (2.49)

where

ε = 2IpΦt (2.50)

is linearly proportional to the applied tilt flux with constant of proportionality equal to

the persistent current

Ip =
1

L
|〈R|Φ|R〉|

=
1

L
|〈g(β, 0)|Φ|e(β, 0)〉|. (2.51)
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Physically, ∆ corresponds to the tunnel coupling between left and right flux states that

lifts the ground state degeneracy between the otherwise degenerate states associated with

the left and right wells. But the Hamiltonian (2.49) still can still be (approximately) used

even when the potential in monostable. Mathematically we have

∆/h = min
ϕt

f10, (2.52)

or colloquially just “the gap” or “f10 at zero tilt.” In the previous section we saw

an approximate expression for ∆ in the harmonic limit (i.e., for a slightly anharmonic

oscillator), and in the next section we will see how to obtain an expression for it in

the double-well limit of small ∆ using the WKB approximation. The name “persistent

current” for Ip comes from the fact that, as shown explicitly in the next section, it is

equal to the expected current flowing through the qubit when the qubit is localized in

one of the wells of a double-well potential. Even though this interpretation does not hold

in the single-well regime, the quantity Ip = 1
L
|〈g(β, 0)|Φ|e(β, 0)〉| is still often called the

persistent current, and in particular does not vanish in the limit β → 0.

An illustration of the meaning of ε, ∆ and the states |L〉 and |R〉 is shown in Fig.

2.9(a), and the corresponding energy level diagram in 2.9(b). Under the two-level ap-

proximation (2.49), we have

f10 =
1

h

√
∆2 + ε2, (2.53)

meaning a hyperbolic relation between the system’s energy gap and applied tilt flux.

In Fig. 2.10(a) we plot f10 vs. tilt bias for different values of ∆, comparing a full

numerical diagonalization of (2.32) to the two-level flux qubit approximation (2.49), with
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Figure 2.9: (a) Illustration of the meaning of ε, ∆, and |L/R〉 in the double-well regime of a
flux qubit. ∆ is the tunnel splitting that lifts the degeneracy at zero tilt, and ε is the tilt bias
giving an energy detuning between the well minima. (b) Energy levels in two-level flux qubit
approximation according to (2.49). Blue and red are the energies of the |0〉 and |1〉 energy
eigenstates.

a) b)

Figure 2.10: (a) Comparison of f10 vs. tilt bias between using numerical diagonalization of
the 1D Hamiltonian vs. using the two-level flux qubit approximation of (2.49), using the same
standard circuit parameters as in Fig. 2.7. Solid lines correspond to numerical diagonalization
and dashed lines are equation (2.53). (b) Plot of f10 and f21 vs. tilt bias for the same value of
∆/h = 1 GHz.
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Ip computed numerically as 1
L
|〈0|Φ|1〉| at zero tilt, and ∆/h computed numerically as

f10 at zero tilt. Note that the discrepancy between these curves doesn’t necessarily

imply that a two-level approximation itself is bad, but rather that using the zero-tilt

basis with a tilted potential instead of the lowest two energy eigenstates of the tilted

potential is bad. In fact, as shown in Fig. 2.10(b), even though the two-level flux qubit

approximation predicts f10 accurately, there are certain tilt biases where f21 = f10, which

would be important if one were trying to isolate the |0〉 → |1〉 transition. We see that the

approximation is better for larger beta (equivalently, smaller ∆/h = minϕt f10) because it

makes more sense to define two wells with a well-defined energy detuning between them.

2.2.1.4 Double-well limit β > 1

The conventional flux qubit picture is a qubit with a double-well potential, where the

two qubit states are defined by the supercurrent flowing clockwise or counter-clockwise

through a superconducting loop (or equivalently, the macrosopic flux pointing up or

down) [45, 46]. This led to the original name “persistent current qubit” [47, 48].

An approximate expression for the persistent current can be found by noting that in

the double-well limit, the wavefunction should be localized at the potential minima of

the left and right wells. If we ignore the width of the |L〉 and |R〉 wavefunctions and

treat them as delta functions, we would have Ip = 1
L

Φ0

2π
ϕm, where ϕm is the value of

ϕ that minimizes the potential, i.e., where ∂V/∂ϕ = 0, leading to the transcendental

equation ϕm = β sinϕm (here we have assumed zero tilt bias consistent). One can obtain

an expression for ϕ2
m to second order in (β − 1)/β by expanding the sine to fifth order,
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obtaining ϕ2
m ≈ 6[(β − 1)/β] + (9/5)[(β − 1)/β]2. Multiplying ϕm by 1

L
Φ0

2π
then gives an

accurate expression for Ip in the double-well regime. This expression is accurate to ∼ 1%

at β = 2, but in general for better accuracy it should be computed numerically.

In the symmetric double-well limit (β > 1, ϕt = 0), the tunnel coupling ∆ (f10 at zero

tilt) can be approximately computed using the WKB approximation [43] by calculating

the action S under the barrier. In this semi-classical approximation,14 valid when the

potential barrier is sufficiently wide and high, the wavefunction penetrating under the

barrier decays as e−S(ϕ)/~, and the associated tunneling rate should roughly equal the

“attempt frequency” to escape one well times the probability to be found “under the

barrier”. More explicitly, as derived in various textbooks on quantum mechanics [49], we

expect to have a tunnel splitting of

∆ ≈ ~ωm
π

exp

[
−1

~

∫ xb

xa

|p(x)| dx
]
, (2.54)

where ωm is the frequency of oscillation at the bottom of one of the wells, p(x) =√
2m[E − V (x)] is the momentum (which is in this case imaginary), and the limits of

integration are the classical turning points on either side of the potential barrier. In

our system, we must replace x by Φ and m by C, so that p(x) will then have units

of charge and the integral units of action. This integral is not analytically solvable

and doesn’t necessarily provide much insight when numerically integrated. However,

14“Semi-classical” refers to de Broglie wavelength much shorter than the characteristic dimensions of
the system, and formally means the logarithm of the wavefunction can be expanded to a low power in
~. This terminology is also applied to penetration under a barrier even though this is a purely quantum
effect. Here the de Broglie “wavelength” is the length scale of exponential decay under the barrier.
Conversely, it applies to bound states with high quantum number whose energies are much higher than
the minimum of a potential well, for which the de Broglie wavelength is interpreted as usual.
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we can gain an accurate and somewhat insightful WKB formula for ∆ as follows: If

β is not much greater than 1, we will have ωm ≈
√

2ωLC
√
β − 1. To lowest order,

the potential barrier height from the potential minimum to the potential maximum is

Em = 3
2
EL(β − 1)2/β, and the characteristic width of the barrier between the minima is

roughly Φm = Φ0

2π
ϕm ≈ Φ0

2π

√
6(β − 1)/β. The classical turning points are higher in energy

than the potential minima by an amount equal to the zero point energy of the oscillator

associated with the wells, 1
2
~ωm. If we approximate the integrated action under the

barrier as
√

2C
(
Em − 1

2
~ωm

)
Φm, then plugging these approximations into (2.54) yields

∆(β) ≈ a

√
2

π
~ωLC

√
β − 1 exp

−b
√√√√9

4

EL
EC

(β − 1)3

β2
− 3

√
EL
EC

(β − 1)3

β2

 (2.55)

where a and b are dimensionless fit parameters to compensate for our approximate math,

with best-fit a = 4.6 and b = 1.4. A comparison of the WKB result (2.55) with numerical

diagonalization is shown in Fig. 2.11.

Some intuition can be gained from (2.55) by noting that the dominant term in the

exponential is roughly equal to Em/~ωt ≈ 3
4
√

2

√
EL
EC

(β − 1)3/2/β (to lowest order), where

ωt ≈ ωm/
√

2 is the oscillation frequency of the inverted potential barrier. We can there-

fore interpret the argument of the exponential as the number of bound states that would

be contained in the inverted potential well, nwell, giving the rule of thumb that the

tunneling rate is equal to the well’s oscillation frequency times exp[−nwell]. This is no

accident, as the WKB approximation is intimately tied together with the semi-classical

Bohr-Sommerfeld quantization rule, which states that for eigenstates with high enough
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Figure 2.11: Comparison of WKB result (2.55) with numerical diagonalization.

quantum number in a potential well, we should have
∮
p(x) dx = 2

∫ xb
xa
p(x) dx = 2πn~,

where the integral is taken over a full period of classical motion [49]. Intuitively, this

states that the particle’s wavefunction vanishes at the classical turning points and must

have an integer number of nodes so that its phase constructively interferes over one full

period of oscillation. For such wavefunctions, the quantum number n is the number

of nodes in the wavefunction, so that the de Broglie wavelength is small for large n.

Considering the maximum possible energy of a bound state within the inverted potential

barrier, this condition implies that nwell ≈ 2
2π~

∫ xb
xa

√
2m[Uinverted(x)− Emin] dx. Since this

Bohr-Sommerfeld integral is almost equal to the integral in the WKB result (2.54) for

an inverted potential barrier, the aforementioned rule of thumb naturally follows.
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2.2.1.5 Incorporating junction asymmetry

So far we have assumed perfect symmetry between the two Josephson junctions within the

DC SQUID, i.e., identical critical currents Ic1 = Ic2. In reality, with available fabrication

techniques, for the small (sub-micron) junctions desirable for qubits, there will be of order

1%− 5% variation in critical current between nominally identical junctions (but work is

in progress to improve this number). With junction asymmetry, we must account for the

energy in each Josephson junction separately and the 1D Hamiltonian (2.32) generalizes

to

Hasym.
1D = 8EC

q2

2
+ EL

(ϕ− ϕt)2

2
− EJ1 cos(ϕ+ ϕSQ/2)− EJ2 cos(ϕ− ϕSQ/2). (2.56)

With some algebra, it can be shown that the contribution of the DC SQUID to the

Hamiltonian [i.e., Eq. (2.24)], can be rewritten as

HSQ = −EJΣ cos

(
π

ΦSQ

Φ0

)√
1 + χ2 tan2

(
π

ΦSQ

Φ0

)
cos(ϕ− ϕ0), (2.57)

where ϕ0 = arctan(χ tan[πΦSQ/Φ0]). We see that there are two effects of junction

asymmetry. The first is to renormalize Emax
J = EJΣ and also give it a slightly different

functional form vs. ΦSQ, but this is a rather small effect for the fluxmon qubit. In

particular, Eq. (2.57) implies that the effective EJ cannot be tuned exactly to zero (this

is known from flux-tunable transmon qubits, since it prevents the ability to tune the

transmon f10 to arbitrary low values [44, 50]). For the fluxmon, this means that the

qubit can never exactly reach the harmonic limit β = 0, although it can get quite close.

In practice this is not an issue since annealing applications don’t require the ability to
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obtain this limit. The second effect is of much greater consequence in the fluxmon, which

is that flux applied to the DC SQUID loop gets translated into an effective shift in tilt

flux,

∆Φt =
Φ0

2π
tan−1(χ tan[πΦSQ/Φ0]). (2.58)

This effect can be quite large even for small junction asymmetries, and is important for

the calibration of the ‘zero tilt’ bias vs. ∆ in real devices, as will be discussed in the next

chapter. Note that the potential energy is conveniently still one-dimensional even with

asymmetric junctions, due to flux quantization.

2.2.2 Modeling the fluxmon at high frequencies: full transmis-

sion line analysis

As mentioned earlier in this chapter in the context of Eq. (2.28), at frequencies that

are not sufficiently low, the impedance of the CPW deviates from that given by the low

frequency lumped parallel LC model. A long fluxmon is desirable from the standpoint

of qubit connectivity for quantum annealing, but this is at odds with the desired simple

lumped element model (among other design considerations) since fLC decreases with

CPW length. This could cause the 1D model to break down for two reasons. Firstly, as

already mentioned, the expression for impedance vs. frequency may deviate from that of

the low frequency LC model (2.30). Secondly, even if the operating frequencies are low

enough so that (2.30) is an accurate expression for Y (ω) at the qubit frequency, the 1D

LC model still ignores the possibility of SQUID-mediated coupling to higher modes of
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the transmission line segment. Because the ability to predict and model qubit properties

over a wide operating regime is crucial for annealing, it is important to quantify these

results in order to determine the acceptable range of fluxmon design parameters that

supports a scalable circuit analysis. In particular, we must be able to bound the errors in

the qubit spectrum and matrix elements incurred by using a lumped element as opposed

to full transmission line model. We will also see whether or not it is possible to use a

lumped element model but with a slightly modified L and C to reduce these errors to

acceptable levels.

To solve the quantum transmission line model, we will use a strategy similar to that

used to model a common implementation of Josephson parametric amplifiers [51, 52, 53],

which is an identical circuit apart from the CPW being open instead of shorted at x = 0.

We need to go beyond these previous treatments by computing the system’s spectrum

via a full quantum Hamiltonian and also introduce a DC flux bias for the CPW. The

idea will be to break down the transmission line into a ladder of infinitesimally small

inductors and capacitors, as shown in Fig. 2.2c, and then later take the continuum limit.

Afterwards we will break the Hamiltonian up into a linear plus a nonlinear part, allowing

us to define a mode decomposition for the system with which to express the Hamiltonian

as a sum of infinitely many nonlinearly coupled harmonic oscillators, a form which can

be numerically diagonalized.

We first need to obtain the classical Lagrangian of our circuit. We begin by breaking

the CPW segment of length ` into N LC circuits of length ∆x = `/N , as illustrated

59



in Fig. 2.2(c). As is standard, at each node n at position xn = n∆x (i.e., between

the nth inductor and capacitor), we define the flux variable Φn(t) =
∫ t
−∞ V (xn, t

′)dt′.

By definition, the voltage at the nth capacitor node will then be V (xn, t) = Φ̇n(t). By

Faraday’s law the current through the nth inductor satisfies dI
dt

= − 1
L∆x

(Φ̇n(t)− Φ̇n−1(t)),

which when integrated with respect to time yields the current across the nth inductor as

1
L∆x

(Φn−1(t)−Φn(t)). Now using the electric and magnetic energy stored in the capacitors

and inductors we can write down the discretized classical Lagrangian for the bulk of the

CPW segment,

Ldisc.
CPW =

(
Φ0

2π

)2 N∑
n=1

[
1

2
C∆xϕ̇2

n(t)− 1

2L∆x
(ϕn(t)− ϕn−1(t))2

]
, (2.59)

where we have defined the dimensionless phase variables ϕn related to flux through the

relation ϕn = 2π
Φ0

Φn as usual and Φ0 is the flux quantum.

Next we must consider the end of the CPW containing the SQUID at x = `, which

we treat as a lumped element (this reasonably assumes that the SQUID’s physical ex-

tent is much smaller than the wavelength associated with CPW wave propagation at the

frequencies under consideration). The contribution from the SQUID contains the Joseph-

son potential energy −EJ(ΦSQ) cosϕs, where EJ = 2EJ1,2 cos(πΦSQ/Φ0) is the effective

Josephson energy of the DC SQUID (for now the junctions are still assumed identical) and

ϕs = (ϕs,1 +ϕs,2)/2 is the effective Josephson phase across the DC SQUID. If we account

for the capacitance of the junctions (but still ignore the DC SQUID inline inductances),

there is also a kinetic term of the form
(

Φ0

2π

)2 1
2
CJ ϕ̇

2
s, where CJ = 2Cj1,2 is the total
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capacitance within the DC SQUID.15 Finally, there is also one remaining CPW inductor

between node N and the SQUID, contributing the term −
(

Φ0

2π

)2 1
2L∆x

(ϕs(t)− ϕN(t))2.

Finally, since the CPW plus SQUID forms a single closed inductive loop, we can allow

for an external flux bias through this loop, such that by flux quantization we have for

the flux across the effective junction

ϕs → ϕJ = ϕs + ϕx. (2.60)

Putting all the terms together, we obtain the full discretized Lagrangian,

Ldisc.
full =

(
Φ0

2π

)2 N∑
n=1

[
1

2
C∆xϕ̇2

n(t)− 1

2L∆x
(ϕn(t)− ϕn−1(t))2

]

−
(

Φ0

2π

)2
1

2L∆x
(ϕs(t)− ϕN(t))2 +

(
Φ0

2π

)2
1

2
CJ ϕ̇

2
s + EJ(ΦSQ) cos(ϕs + ϕx),

(2.61)

Taking the continuum limit, the full system Lagrangian is then

Lfull =

(
Φ0

2π

)2 ∫ `

0

dx

[
1

2
Cϕ̇2 − 1

2L
ϕ′2
]

+

(
Φ0

2π

)2
1

2
CJ ϕ̇

2
s +EJ(ΦSQ) cos(ϕs +ϕx). (2.62)

In the continuum limit, the phase field in the bulk CPW segment will obey the wave

equation, as is usual for lossless transmission lines [41]. To see this formally from the

15More precisely, we actually have the sum
(

Φ0

2π

)2∑
i=1,2

1
2

(
CJ
2

)2
ϕ̇2
s,i. To equate this with(

Φ0

2π

)2 CJ
2 ϕ̇

2
s =

(
Φ0

2π

)2 CJ
2 (ϕ̇s,1 + ϕ̇s,2)2/4, we use the fact that under a static DC SQUID flux bias ΦSQ,

through flux quantization we have the constraint ϕ̇s,1 − ϕ̇s,2 = 0, allowing us to make the substitution
ϕ̇2
s = (ϕ̇2

s,1 + ϕ̇2
s,2)/2.
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Lagrangian, we can write down the classical bulk Hamiltonian

Hdisc
CPW =

∑
n

ϕ̇n
∂LCPW

∂ϕ̇n
− LCPW

=

(
Φ0

2π

)2∑
n

[
1

2
C∆xϕ̇2

n(t) +
1

2L∆x
(ϕn(t) + ϕn−1(t))2

]
. (2.63)

Introducing the dimensionless charge on the nth capacitor, qn = ∂L
∂ϕ̇n

= C∆xϕ̇n(t), as the

conjugate momentum of the phase, Hamilton’s equations of motion q̇n = − dH
dϕn

then give

C∆xϕ̈n = ϕn+1−2ϕn+ϕn+1

L∆x
. Dividing both sides by C∆x and recognizing the right hand

side as a difference quotient for the second spatial derivative, we obtain in the continuum

limit of large N (i.e., ∆x→ dx)

∂2ϕ(x, t)

∂t2
= v2∂

2ϕ(x, t)

∂x2
, (2.64)

where v = 1/
√
LC is the speed of wave propagation as we stated earlier without proof

in Eq. (2.28). For later reference we also write down the classical Hamiltonian in the

continuum limit from (2.62),

Hfull =

(
Φ0

2π

)2 ∫ `

0

dx

[
1

2
Cϕ̇2 +

1

2L
ϕ′2
]

+

(
Φ0

2π

)2
1

2
CJ ϕ̇

2
s−EJ(ΦSQ) cos(ϕs+ϕx). (2.65)

Before we proceed to quantizing the system, we need to perform a mode decomposition

of the possible solutions to this wave equation that obey the boundary conditions at x = 0

and x = `. By definition, these modes must be harmonic, and so will not contain any

of the nonlinearities of the DC SQUID. We therefore include the linear part of the DC
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SQUID’s response in the boundary condition at x = `. Unfortunately, as we’ll see, this

approach only works for β < 1, because the mode frequencies become imaginary when

the net inductance of the system becomes negative. Presumably there is a more clever

approach that works for β > 1.

2.2.2.1 Diagonalization of transmission line model using mode decomposi-

tion (for β < 1)

Here we will attempt to diagonalize the full transmission line model Hamiltonian (2.65)

using a mode decomposition. There will be considerable algebra involved, but it will be

worth it at the end because we will arrive at a semi-intuitive picture of a frequency-

dependent inductance and capacitance for the CPW that wouldn’t be obvious from

standard transmission line theory. The boundary condition at x = 0 dictates that the

voltage (∝ ϕ̇) must vanish there. This means that the eigenfunctions of our harmonic

basis must take the form (in phasor notation) ϕ(x, t) ∝ eiωnt sin (knx), with ωn = vkn

as dictated by the wave equation. Keeping the quadratic part of the cosine term in

the discrete Lagrangian (2.61), the Euler-Lagrange equation for the DC SQUID phase,

d
dt

[
∂L
∂ϕ̇s

]
− ∂L

∂ϕs
= 0, becomes

(
Φ0

2π

)2
Csϕ̈s + EJ(ΦSQ)ϕs +

(
Φ0

2π

)2 ϕs−ϕN
L∆x

= 0. Recognizing

the last term as the difference quotient for the spatial derivative of ϕ(x, t) at x = ` and

identifying

ϕ(`, t) = ϕs(t) (2.66)
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Figure 2.12: (a) Visual solution of boundary condition function (2.68) at β = 0.9 for two
different values of CJ for a fLC = 20 GHz fluxmon. (b) Mode frequencies vs. β for a fLC = 20
GHz fluxmon. Note that the first mode frequency vanishes as β → 1 from below.

in the continuum limit, we arrive at the classical boundary condition(
Φ0

2π

)2

CJ ϕ̈(`, t) + EJ(ΦSQ)ϕ(`, t) +

(
Φ0

2π

)2
1

L
ϕ′(`, t) = 0. (2.67)

Inserting the ansatz eigenfunction then yields a transcendental equation for ωn = vkn,

which we divide through by
(

Φ0

2π

)2 kn
L to make it dimensionless:

−LCJvωn sin (ωn`/v) +
v

ωn

(
2π

Φ0

)2

LEJ(ΦSQ) sin (ωn`/v) + cos (ωn`/v) = 0. (2.68)

We can check the limiting case of infinite Josephson inductance (EJ → 0, corresponding

to an open boundary) and zero junction capacitance, which yields cos(kn`) = 0, defining

the harmonics of a quarter-wave resonator, as would be expected. The presence of the

linear part of the Josephson inductance however causes the spacing between mode fre-

quencies to become nonuniform. Fig. 2.12(a) visually shows the solution to this equation

for a fLC = 20 GHz qubit for CJ = 0 and for CJ = 10 fF.
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Now that the modes and their frequencies are defined, we decompose the phase field

in the basis comprised of them,

ϕ(x, t) =
2π

Φ0

√
2

C`
∑
n

qn(t) sin knx, (2.69)

where qn(t) are the time-dependent mode amplitudes that will later be quantized. Be-

cause the spatial eigenfunctions sin(knx) are not necessarily orthogonal, what follows

involves a bit of algebra, some steps of which we omit for brevity. First, we substitute

the decomposition (2.69) into the full system Lagrangian (2.62) and use the boundary

condition (2.68) to write the following overlap integrals as

∫ `

0

dx sin knx sin kmx =
`

2
Mnδnm − LCJv2 sin kn` sin km`, (2.70a)∫ `

0

dx knkm cos knx cos kmx =
`

2
k2
nMnδnm − L

(
2π

Φ0

)2

EJ(ΦSQ) sin kn` sin km`, (2.70b)

where

Mn ≡ 1 +
1

`

[
1

k2
n

(
2π

Φ0

)2

LEJ(ΦSQ) + LCJv2

]
sin2(kn`). (2.71)

The reason for introducing the variables Mn will become clear soon. Next, we divide

the boundary contribution of the DC SQUID Lagrangian into a linear plus a nonlinear

part Ls = Llin.
s + Lnonlin.

s ,

Llin.
s =

(
Φ0

2π

)2
1

2
CJ ϕ̇

2
s − EJ(ΦSQ)

ϕ2
s

2
, (2.72a)

Lnonlin.
s = EJ(ΦSQ)

[
cosϕs +

ϕ2
s

2

]
, (2.72b)
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so that the system Lagrangian becomes

Lfull = LCPW + Llin.
s + Lnonlin.

s

=

(
Φ0

2π

)2 C
2

∫ `

0

dx

(
2π

Φ0

)2
2

C`

[∑
n,m

q̇nq̇m sin knx sin kmx

]

−
(

Φ0

2π

)2 C
2

∫ `

0

dx

(
2π

Φ0

)2
2

C`
v2

[∑
n,m

qnqmknkm cos knx cos kmx

]

+
L
`

∑
n,m

[
−CJv2 sin kn` sin km` q̇nq̇m + v2

(
2π

Φ0

)2

EJ(ΦSQ) sin kn` sin km` qnqm

]

+
CJ
C`
∑
n,m

sin kn` sin km` q̇nq̇m − EJ(ΦSQ)

(
2π

Φ0

)2
1

C`
∑
n,m

sin kn` sin km` qnqm + Lnonlin.
s

=
1

2

∑
n

[
Mnq̇

2
n − ω2

nMnq
2
n

]
+ EJ(ΦSQ)

[
cosϕs +

ϕ2
s

2

]
. (2.73)

The cancellation of off-diagonal terms between the bulk and SQUID contributions was

no accident – it is a consequence of including the linear part of the SQUID response in

the boundary condition defining our harmonic mode basis.

We now have a discrete mode decomposition of the otherwise continuous classical

Hamiltonian,

H =
1

2

∑
n

[
Mnq̇

2
n + ω2

nMnq
2
n

]
− EJ(ΦSQ)

[
cosϕs +

ϕ2
s

2

]
, (2.74)

with ϕs given by Eq. (2.69) with x = `. The system can therefore be viewed as a

collection of harmonic oscillators that are coupled by the nonlinear part of the SQUID’s

potential. We can interpret Mn as the dimensionless masses of these oscillators. Noting

that qn and Mnq̇n ≡ pn are canonically conjugate coordinates, and defining the creation
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and annihilation operators through the standard relations

q̂n =

√
~

2Mnωn
(â†n + ân), (2.75a)

p̂n = i

√
~Mnωn

2
(â†n − ân), (2.75b)

we can canonically quantize the system into a set of nonlinearly coupled quantum har-

monic oscillators:

Ĥ =
∑
n

~ωn
(
â†nân +

1

2

)
+ V

(
2π

Φ0

√
2

C`
∑
n

√
~

2Mnωn

(
â†n + ân

)
sin kn`+ ϕx

)
, (2.76)

with

V (ϕ) ≡ EJ(ΦSQ)

[
cosϕ+

1

2
ϕ2

]
. (2.77)

This is the final result for the fluxmon Hamiltonian within the full transmission line

model.

Before diagonalizing the Hamiltonian (2.76), we can try and gain some intuition

behind these modes. Firstly, we can define an effective inductance and capacitance for

each mode by equating the harmonic contribution to the 1D lumped element Hamiltonian

1
2Ln

Φ2
s + 1

2Cn
Q2
s, leading to

Ln =
2

C`
sin2(kn`)

ω2
nMn

, Cn =
C`
2

Mn

sin2(kn`)
. (2.78)

It will be illustrative to isolate the CPW’s contribution to Ln and Cn, so we subtract

out the known linear inductance and capacitance of the SQUID to define

LCPW
n = (1/Ln − 1/LJ)−1 , CCPW

n = Cn − CJ . (2.79)
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Figure 2.13: a) Effective CPW inductance and capacitance LCPW
1 and CCPW

1 for the first mode,
vs. β. In the low-frequency limit these tend to the low-frequency lumped values in Eq. (2.30).
At the harmonic limit β = 0, they agree with the standard λ/4 resonator values from [41].
b) f10 at zero tilt versus β ≡ computed for three different models: 1D lumped element model
(low-frequency formula) (blue), a hybrid 1D lumped element model (green) where L and C are

given by L
CPW(β)
1 and C

CPW(β)
1 instead of the low-frequency formulas L` and C`/3, and the full

transmission line model (red).

The parameters LCPW
n and CCPW

n in a sense constitute the closest approximation of

the transmission line to a lumped parallel LC circuit as a function of frequency. In

Fig. 2.13a, we plot the effective CPW inductance and capacitance of the first mode vs.

β(ΦSQ), for a standard fluxmon with fLC = 20 GHz and βmax ≈ 2. In the limit of small

frequencies β → 1 (remember, we can’t go above β = 1 with this method), the effective

CPW inductance and capacitance approach the low-frequency “fluxmon” limit given in

Eq. (2.30), LCPW
1 → L`, CCPW

1 → C`/3, as shown in the figure. In the harmonic limit

β = 0 (ΦSQ = 0.5) we should expect the system to behave as a λ/4 resonator, which

according to standard transmission line theory [41] will be a lumped LC oscillator with

L = (8/π2)L` and C = C`/2. This agrees with the expression for LCPW
1 and CCPW

1 at

β = 0, as can be seen in the figure.
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Fig. 2.13b shows f10 vs. β(ΦSQ) at zero tilt from numerical diagonalization of the full

transmission line model Hamiltonian (2.76). The numerical diagonalization is performed

by writing the Hamiltonian in the basis of harmonic oscillator states for each mode,

keeping 50 or so levels for the lowest mode and a few levels for higher modes, which

do not contribute as much (if β is not too close to 1, one can of course afford to use

substantially less than 50 levels for the first mode). For negative β, the low-frequency

fluxmon model is significantly off. At β = 0 the transmission line model correctly predicts

f10 = fλ/4. As f10 gets lower, the low-frequency 1D fluxmon model becomes better and

better. It is not clear what the exact discrepancy is in the region we care about since we

can’t go above β = 1 with the treatment described above.

We also plot the result of diagonalizing a modified 1D fluxmon using L = LCPW
1 (β)

and C = CCPW
1 (β), the result of which is quite close to the full transmission line model

for all values of β in the plot. This simply means that it is a very good approximation to

only consider the first mode of the coupled mode system, and that for a given β we can

treat the CPW as a lumped parallel LC circuit with an L and C given by L = LCPW
1 (β)

and C = CCPW
1 (β).

A better transmission line model that works for β > 1 is work under progress. How-

ever, at low frequencies where we operate the fluxmon, the lumped element model for

the CPW is a good enough approximation, although it tells us that we need to be careful

about reducing fLC too much below 20 GHz. From now on we assume the lumped-

element model for the CPW, and consider other important modifications to the 1D
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fluxmon model.

2.2.3 Incorporating inductance and capacitance within the DC

SQUID

A more refined model for the fluxmon is one that takes into account the inline inductance

and capacitance present in any physical implementation of a DC SQUID. For example,

for typical designs the skinny wires comprising the DC SQUID are of length ∼ 10µm

and will contribute of order 10 pH of inductance, and the Josephson junctions will have a

capacitance across them of order 1 - 10 fF. We need to quantify how the modified circuit

changes the fluxmon spectrum and matrix elements. We outline two methods to do so,

based on work done jointly with Dvir Kafri. One takes into account the inline induc-

tances and capacitances exactly, making the Hamiltonian three-dimensional. The other,

more practical approach will be to transform the 3D Hamitonian into an approximate

1D Hamiltonian by absorbing the junction capacitance into the main capacitance and

treating the inline inductances as a modification of the cosϕ term. This is also a more

practical approach because it is much more efficient to compute, and furthermore adds

only half as many extra fit parameters to the model when it is used to fit experimental

data compared to the 3D model. Either of these two approaches allows us to model

the fluxmon spectrum to within 10 MHz of accuracy throughout the regime of opera-

tion, which happens to roughly be the experimental uncertainty in the spectrum. Thus,

assuming these models can also precisely predict other relevant quantities (such as the
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Figure 2.14: 3D fluxmon circuit model including inline inductances and capacitances within the
DC SQUID. It is customary to draw a box around a Josephson junction circuit element (i.e.,
� instead of just ×) to indicate the inclusion of parallel junction capacitance. Three nodes are
labeled 1, 2, and 3, with the bottom of the circuit being ground.

persistent current matrix element, discussed below), they should be sufficient for use in

quantum annealing.

2.2.3.1 Full 3D Model

We account for the DC SQUID inline inductances and capacitances using the circuit

model shown in Fig. 2.14. There are three degrees of freedom in this circuit. Note

that we are free to include all inline linear inductances within the DC SQUID as drawn

above the junctions, even if there is inductance on either side of the junctions. Because

the current conservation equations are symmetric under interchange of the inductors and

the junctions, it doesn’t matter if the inductance is drawn above or below the junction.

Furthermore, if there is inductance on both sides, we can choose to lump them together

on one side of the junction. This is because the current flowing through the branch

above the junction must be equal to the current flowing below the junction, and so feels

a net inline lumped inductance equal to the sum of the inductances above and below the
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junction.

Before writing down the 3D circuit Hamiltonian, we must define our node fluxes and

flux biases. Let the three degrees of freedom be the fluxes Φ1,Φ2,Φ3 at the nodes labeled

1, 2, 3 respectively. Our convention for currents in all branches is that all currents flow

towards ground. We then define two external flux biases for the two loops going through

L3 and either of the two branches of the DC SQUID as Φ1x and Φ2x. Explicitly, we have

Φ1x = Flux through loop [3
L3−→ ground

J1−→ 1
L1−→ 3], (2.80)

Φ2x = Flux through loop [3
L3−→ ground

J2−→ 2
L2−→ 3] (2.81)

These external loop fluxes are related to what we usually think of as the SQUID and tilt

flux biases according to

Φt =
Φ1x + Φ2x

2
, ΦSQ = Φ1x − Φ2x. (2.82)

Flux quantization requires that Φ1x = ΦL1 + Φ1 − Φ3 and Φ2x = ΦL2 + Φ2 − Φ3, from

which we obtain the fluxes through each of the linear inductors,

ΦL1 = Φ3 − Φ1 + Φt + ΦSQ/2, (2.83)

ΦL2 = Φ3 − Φ2 + Φt − ΦSQ/2, (2.84)

ΦL3 = Φ3. (2.85)

One can easily check that these flux quantization conditions reduce to the usual condition
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without inline capacitors by setting ΦL1 = ΦL2 = 0 and subtracting the second equation

from the first above.

By inspection we can immediately write down the system Lagrangian as

L3D =
1

2
C1Φ̇2

1 +
1

2
C2Φ̇2

2 +
1

2
C3Φ̇2

3

− 1

2L1

(Φ1 − Φ3 − Φt − ΦSQ/2)2 − 1

2L2

(Φ2 − Φ3 − Φt + ΦSQ/2)2 − Φ2
3

2L3

+
Φ0

2π
(Ic1 cos(2πΦ1/Φ0) + Ic2 cos(2πΦ2/Φ0)) . (2.86)

It can be easily checked that applying the Euler-Lagrange equations d
dt

∂L
∂Φ̇i
− ∂L

∂Φi
= 0

to this Lagrangian yields the correct circuit equations of motion (i.e., Kirchoff’s current

conservation equations). From (2.86) we can obtain the canonical momenta Qi = ∂L
∂Φ̇i

and write down the system Hamiltonian H =
∑

i Φ̇iQi − L,

H3D =
3∑
i=1

8ECi
q2
i

2
+ EL1

(ϕ1 − ϕ3 − Φt − ΦSQ/2)2

2
+ EL2

(ϕ2 − ϕ3 − Φt + ΦSQ/2)2

2
+ EL3

ϕ2
3

2

− EJ1 cos(ϕ1)− EJ2 cos(ϕ2), (2.87)

where we have defined the dimensionless flux variables as usual (e.g., ϕi = 2π
Φ0

Φi), along

with the capacitive, inductive, and Josephson energies as usual. We can write this in an

equivalent, more familiar form by shifting ϕ3 by the constant ϕt and ϕ1/ϕ2 by ±ϕSQ/2
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to obtain

H3D =
3∑
i=1

8ECi
q2
i

2
+ EL1

(ϕ1 − ϕ3)2

2
+ EL2

(ϕ2 − ϕ3)2

2
+ EL3

(ϕ3 − ϕt)2

2

− EJ1 cos(ϕ1 + ϕSQ/2)− EJ2 cos(ϕ2 − ϕSQ/2). (2.88)

Now that we have a Hamiltonian for the 3D fluxmon circuit, we can compare its

spectrum and matrix elements to those of the 1D model. Unlike the case with the

1D model, it is not practical to diagonalize (2.87) by discretizing the wavefunction in

three-dimensional flux space, because the resulting matrices would be much too large.

Instead, we can choose a basis in which to expand the wavefunction, and then keep the

first N basis levels, with N a small enough number to allow for relatively fast numerical

diagonalization while maintaining high precision and sufficient accuracy. A very common

technique is to expand in the basis of tensor products of the harmonic oscillator states for

each degree of freedom, as we did with the modes of the transmission line fluxmon model.

An efficient way to do this is to perform a change of basis into the normal modes of the

harmonic part of the Hamiltonian, and then diagonalize using the harmonic oscillator

states in this basis. Explicitly, we can write (2.87) as the sum of a linear plus nonlinear
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part,

H3D =
1

2


ϕ1

ϕ2

ϕ3

q1

q2

q3



T 
EL1 0 −EL1 0 0 0

0 EL2 −EL2 0 0 0
−EL1 −EL2 EL1 + EL2 + EL3 0 0 0

0 0 0 8EC1 0 0
0 0 0 0 8EC2 0
0 0 0 0 0 8EC3




ϕ1

ϕ2

ϕ3

q1

q2

q3

+Hnonlin.
3D ,

(2.89)

and use the techniques of classical mechanics to transform to a normal mode basis in

which the quadratic form matrix in (2.89) is diagonal [54]. We then truncate this basis

to diagonalize the full Hamiltonian (2.87). The matrix elements needed to construct the

matrix for Hnonlin.
3D can be found analytically using the identities

cos

(∑
k

ckϕk + ϕt

)
= Re(eiϕteic1ϕ1 ⊗ eic2ϕ2 ⊗ eic3ϕ3) (2.90)

(valid because operators in different tensor product spaces commute) and the following

identity [55, 56] for harmonic oscillator basis states

〈j|eir(â+â†)|k〉 = (i)3j+k

√
j!

k!
e−

r2

2 rk−jL
(k−j)
j (r2), (2.91)

where Lαn(z) are the generalized Laguerre polynomials.

In Fig. 2.15 we plot f10 vs. DC SQUID bias at zero tilt for the 3D model as well

as for a naive “1D simple” model that ignores the presence of the inline inductors and

capacitors. As can be seen, there is a significant difference between the models (of order

1 GHz in f10 and 0.1 in ϕ10 = 〈0|ϕ̂|1〉) throughout much of the operating regime. This

simply means that the introduction of the inline inductances and capacitances has a non-

negligible effect for the physically realistic values of L1 = L2 = 20 pH and C1 = C2 = 5 fF.
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Figure 2.15: 3D vs. 1D simple model for L = L3 = 624 pH, C = C3 = 110 fF, L1 = L2 = 20 pH,
C1 = C2 = 5 fF and Ic1 = Ic2 = 0.64µA (βmax = 2.4). The numerical diagonalization used the
first 50 harmonic oscillator states for the lowest normal mode, and 5 states for each of the other
two normal modes.

One may ask whether or not one can model the 3D circuit by an effective 1D model

with modified L, C and βmax (∝ Imax
c ), in which case a full 3D model would not be

necessary for the fitting of experimental data. In Fig. 2.16a, we plot the result of finding

the values of L, C, and βmax that minimize the RMS error in f10 over a set of flux biases

(ΦSQ,Φt) covering a good portion of the fluxmon operating range (for simplicity we have

assumed zero junction asymmetry χ). As can be seen, the best possible 1D model still

has an RMS error of 155 MHz in f10, and an RMS error of 0.04 in the flux matrix element

ϕ10. The fitted values of L and C also do not have any apparent physical meaning. We

can go a step further by allowing for a flux offset in ΦSQ to be an extra fitting parameter.

Although there is no obvious physical intuition for including such a shift, this is not an

unreasonable thing to do because when we fit experimental spectrum data, we do not

know the exact applied flux and must often include an offset as a fit parameter anyway.

The result of this fit is shown in Fig. 2.16b. Here, the RMS error in f10 is much lower
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a)

b)

Naive 1D fit
3D generated

1D fit prediction
3D generated

Naive 1D fit
3D generated

1D  fit prediction
3D generated

RMS error 10 MHz RMS error 0.015

RMS error 155 MHz RMS error 0.04

Figure 2.16: a) Result of fitting numerically generated 3D fluxmon spectrum to a 1D simple
model, with fitting parameters L, C, and Imax

c . The 3D model parameters used to generate
the 3D spectrum are the same as in Fig. 2.15: L3 = 624 pH, C3 = 110 fF, L1 = L2 = 20 pH,
C1 = C2 = 5 fF and Ic1 = Ic2 = 0.64µA (βmax = 2.4) The fitted 1D simple values are L =509
pH, C =152 fF, and βmax = 2.24. b) The result of fitting the same 3D data to a 1D simple
model that includes a constant offset δΦSQ in SQUID flux bias as an additional fit parameter.
Fit values were L =602 pH, C =131 fF, βmax = 2.57, and δΦSQ = .019 Φ0.
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(10 MHz), but there is still a few percent RMS error in the predicted ϕ10, a parameter

crucial for predicting coupling strengths between qubits. The fitted value for L is also

closer to its original value than it was in the previous fit. If one is happy with a percent

error in these values, then such a fitting might be sufficient. However, if one wishes to fit

the fluxmon spectrum to better than 10 MHz without using a 3D model (which may be

too slow to use for fitting), or, importantly, to predict ϕ10 to within a percent, a more

refined 1D model is necessary.

2.2.3.2 Efficient 1D “no caps” model: Born-Oppenheimer approximation

From the above section, it is clear that in order to be able to predict the matrix element

ϕ10 to better than a few percent and f10 to better than 10 MHz, fitting the fluxmon’s

spectrum to the 1D simple model with a flux offset is not sufficient. However, using the

full 3D model to fit the data instead would be computationally inefficient. Fortunately,

there is a middle ground. There is a more physically realistic and more accurate 1D

model than the one obtained from fitting to the 1D simple model. The idea is to realize

that at low frequencies (much below the intra-SQUID resonances associated with the

inline capacitances), the inline capacitors C1 and C2 don’t play much of a dynamical

role. Because of this, one might consider lumping the inline capacitors into the CPW

capacitance, C3 → C3 + C1 + C2, but keep the inline inductances where they are, as

illustrated in Fig. 2.17. This would make the potential one-dimensional again. It might

not be immediately obvious that removing the inline capacitors but leaving the inductors

makes the potential one-dimensional. But this can easily be seen by the fact that each
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Figure 2.17: 1D “no caps” model absorbing the DC SQUID capacitances into the main capac-
itance and keeping the inline DC SQUID inductances.

node between the inline inductance and its junction contributes one current conservation

equation, while flux quantization within the DC SQUID loop adds a third constraint

equation. Therefore there are three linear constraint equations in four unknowns (or four

constraint equations in five unknowns if you include the CPW flux as well), leading to

one degree of freedom. This model is one-dimensional and therefore more efficient to use,

and furthermore has fewer fit parameters than the full 3D model. We will see below that

this allows us to model the underlying 3D circuit to very high accuracy.

The rigorous justification behind the reduction to the 1D no caps model with Ceff =

C3+C1+C2 is known as the Born-Oppenheimer approximation [57]. The Born-Oppenheimer

approximation recognizes that one or more degrees of freedom are “fast” compared to

a “slow” degree of freedom, in the sense that their characteristic resonance frequencies

are much higher. Because of this, the fast degrees of freedom should be able to respond

almost instantaneously to changes in the slow degree of freedom, meaning that as a

function of the slow degree of freedom, the fast degrees of freedom should remain close
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to their equilibrium values, i.e., the values that minimize the system’s energy given the

value of the slow degree of freedom. If this is the case, then the energy of the system

is only a function of the slow degree of freedom, i.e., the presence of the fast degrees

of freedom simply adds an effective potential to the Hamiltonian of the slow degree of

freedom, with that effective scalar potential simply being the ground state energy of

the fast degree(s) of freedom. This approximation also implies that the wavefunction of

the slow degree of freedom is separable from that of the fast degrees of freedom. The

Born-Oppenheimer approximation is commonly utilized in molecular physics and quan-

tum chemistry, where it is used to more efficiently calculate the low energy spectrum of

systems where slow nuclei evolve adiabatically with respect to the fast electrons. The

Born-Oppenheimer approximation will also be utilized in Chapter 5 in the context of two

slow qubits inductively coupled through a fast coupler [55].

We choose the fast degree of freedom in the 3D fluxmon circuit to be the fluxes across

each of the inline inductances, ϕL1 and ϕL2 . We choose to eliminate ϕL1 and ϕL2 rather

than ϕ1 and ϕ2 because there is a more substantial overlap of ϕ1 and ϕ2 with the slowest

normal mode of the linear part of the system compared to ϕL1 and ϕL2 (by linear part,

we mean when Ic1 = Ic2 = 0). We also expect the flux across these inductors to always

be small. We therefore start by re-writing the Hamiltonian (2.87) using a new set of

coordinates including ϕL1 and ϕL2 . The change of variables needs to be canonical in

order to have the usual commutation relations apply, so we identify a suitable canonical
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transformation (ϕ1, ϕ2, ϕ3, q1, q2, q3)→ (ϕ1, ϕ2, ϕ3, q1, q2, q3) with

ϕ1 = ϕ1 − ϕ3 − ϕ1x = −ϕL1

ϕ2 = ϕ2 − ϕ3 − ϕ2x = −ϕL2

ϕ3 = ϕ3

q1 = q1

q2 = q2

q3 = q3 + q1 + q2, (2.92)

where ϕjx = 2π
Φ0

Φjx = ϕt − (−1)jϕSQ/2. The change in q3 was necessary to ensure that

all of the canonical commutation relations [ϕi, qj] = iδij hold.

In terms of these new canonical variables, the Hamiltonian takes the form

H3D(ϕ1, ϕ2, ϕ3, q1, q2, q3) =8EC1

q2
1

2
+ 8EC2

q2
2

2
+ 8EC3

(q3 − q1 − q2)2

2

+ EL1

ϕ2
1

2
+ EL2

ϕ2
2

2
+ EL3

ϕ2
3

2

− EJ1 cos(ϕ1 + ϕ3 + ϕ1x)− EJ2 cos(ϕ2 + ϕ3 + ϕ2x). (2.93)

We now perform the Born-Oppenheimer approximation by eliminating ϕ1 and ϕ2;

i.e., we must minimize H3D(ϕ1, ϕ2, ϕ3, q1, q2, q3) with respect to ϕ1, ϕ2, q1, q2. Minimizing

over the charge terms q1 and q2 as a function of q3 means solving ∂H3D

∂q1
= ∂H3D

∂q2
= 0,
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yielding the solutions

qequilib.
1 (q3) =

EC2EC3

EC1EC2 + EC1EC3 + EC2EC3

q3,

qequilib.
2 (q3) =

EC1EC3

EC1EC2 + EC1EC3 + EC2EC3

.q3 (2.94)

Plugging in these solutions yields 8ECeff
q2

3 for the charging part of the Hamiltonian, where

ECeff
= e2

2Ceff
is obtained from the effective capacitance

Ceff = C3 + C1 + C2. (2.95)

This constitutes the justification for lumping the inline capacitances together with the

CPW capacitance as claimed by the diagram for the 1D no caps model in Fig. 2.17.

Next, to minimize over the flux terms ϕ1 and ϕ2, we must solve ∂H3D

∂ϕ1
= ∂H3D

∂ϕ2
= 0,

leading to the transcendental equations

ϕi + βi sin(ϕi + ϕ3 + ϕix) = 0, (2.96)

where

βi ≡ EJi/ELi . (2.97)

For now we simply state that the solution to this transcendental equation is

min
ϕ

(
ϕ2

2
+ β cos(ϕ+ x)

)
≡ β cosβ(x), (2.98)

where as shown in Ref. [55]

cosβ(ϕ) = 1 +
∑
ν≥1

2Jν(νβ)

βν2
(cos(νϕ)− 1). (2.99)

Alternatively, one can easily solve the transcendental equation numerically. The meaning
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of the cosβ function and its related derivative sinβ(x) will be discussed in more intuitive

detail in Chapter 5 in the context of coupled qubits. For now we note that since the inline

inductances are small, β1 and β2 are much less than 1, meaning that the cosβ(x) function

will be fairly close to the function cos(x) that would occur in the complete absence of

the inline inductors.

Now that ϕ3 and q3 form the only degree of freedom after the minimization is per-

formed, we can refer to them simply as ϕ and q. Putting the charge and flux terms

together we then obtain the one-dimensional Born-Oppenheimer Hamiltonian,

HB.O. = 8ECeff

q2

2
+EL3

(ϕ− ϕt)2

2
−EJ1 cosβ1(ϕ+ϕSQ/2)−EJ2 cosβ2(ϕ−ϕSQ/2), (2.100)

where we have shifted the flux by ϕt to put it in a more familiar form to compare to

H1D of Eq. (2.32).

We compare the result of diagonalizing HB.O. vs. diagonalizing the full 3D model

in Fig. 2.18(a) after direct substitution of the circuit parameters (i.e., no fitting of any

parameters). As can be seen, the 1D no caps model does much better than the 1D simple

model without fitting, meaning that the Born-Oppenheimer approximation yields a much

more physically accurate 1D model. In Fig. 2.18(b), we plot the result of the best-fit 1D

no caps model. That is, the parameters L3, Ceff , Imax
c and β1 = β2 were allowed to vary

to minimize the RMS error in f10, and notably there is no ad hoc δΦSQ flux offset. The

best-fit RMS error is extremely small, only 0.5 MHz. Notably, this fitting is also able

to predict the matrix element ϕ10 very accurately, to one part in 1000. In addition we
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RMS error 0.5 MHz RMS error 0.0004

1D no caps fit prediction
3D generated

1D no caps fit
3D generated

a)

b)

1D no caps fit prediction
3D generated

RMS error 3.8 MHz

Figure 2.18: a) Comparison of full 3D and 1D no caps model upon direct substitution of 3D
circuit parameters (plot is at zero tilt bias). We see that even before fitting, the effective
1D no caps model does much better than the 1D simple model. (b) Result of best-fit 1D no
caps parameters using the same generated 3D data as in Fig. 2.16. Best-fit parameters are
L3 = 625.05 pH, Ceff = 119.9 fF, βmax = 2.38, L1 = L2 = 20.0 pH.
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have plotted the prediction for f21, which is predicted to within 3.8 MHz of RMS error.

This is much improved over the 1D simple fit, where even when allowing for a fitted flux

offset δΦSQ the RMS error in predicted f21 was ∼ 30 MHz (not shown in the figure).

Furthermore, the fitted values for L3, L1, L2, and Ceff are very close to what would be

expected based on the parameters of the full 3D circuit used to generate the 3D model

data, again showing that this is a very physically realistic model.

We conclude this section by noting that the Born-Oppenheimer approximation we

used was a classical Born-Oppenheimer approximation, i.e., one that minimized the clas-

sical ground state energy of the fast degrees of freedom. A more accurate match in Fig.

2.18(a) could be achieved by accounting for the zero-point energy of the fast degrees of

freedom in addition to the classical minimum. The techniques for accounting for the

zero-point energy in the Born-Oppenheimer approximation are discussed in Chapter 5 in

the context of coupled qubits. However there is no need to account for these effects in

the simple 1D no caps model since with the classical Born-Oppenheimer approximation

we have more that enough accuracy to fit experimental data and predict matrix elements

to within desired accuracy.
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Chapter 3

The fluxmon qubit: implementation,

measurement, and operation

In this chapter, we describe the physical design and implementation of the fluxmon

qubit, and describe in detail how it can be measured and operated both theoretically and

experimentally. In particular, we will outline some of the basic procedures for calibrating

single-fluxmon devices, and explore the ability of our circuit models to effectively model

the observed fluxmon energy spectrum and extract physical device parameters. We will

also look at the physics of single-qubit annealing as a case study.

86



3.1 Qubit design and fabrication

The fluxmon qubit is physically implemented by a segment of coplanar waveguide (CPW)1

shunted with a DC SQUID comprised of two AlOx Josephson junctions. All active metal

on the device is superconducting aluminum,2 which has for example the advantage of low

kinetic inductance and insensitivity to normal state resistivity, but disadvantage of lower

superconducting gap and higher sensitivity to vortex-inducing stray magnetic fields (see

Chapter 4). The metal layers are deposited on a low-loss crystalline dielectric substrate,

either sapphire (early devices) or silicon (current and future devices3). A 100 nm thick

base layer of Al defines the CPW, ground planes, and control lines. This base layer is

deposited on a solvent-cleaned substrate in a high-vacuum electron beam evaporation

system, and the CPW and control lines are dry etched after photolithography via an in-

ductively coupled plasma with a BCl2/Cl3 chemistry. Later on the Josephson junctions

are connected to the CPW via lift-off after electron beam lithography. All junctions

are made with a Dolan bridge double-angle evaporation process, similar to the method

described in Ref. [58]. This step involves an Ar ion milling step to remove the native

aluminum oxide of the base layer in order to make galvanic superconducting contact

1Although, as we will see in chapter 6, newer fluxmon devices based on a more scalable flip-chip
architecture can have most of their return current flow in a different plane above the qubit on a different
chip, quasi-similar to a microstrip geometry, and so cannot be considered a pure coplanar waveguide.

2Actually, there is also a Ti/Au layer that is deposited using an optical lithography step for the sole
purpose of later use as an alignment layer for e-beam lithography. None of the gold features are in galvanic
contact with the aluminum layers. Also, in the flip-chip architecture devices later on, superconducting
TiN pads and inter-chip superconducting In bumps are used as well.

3All else equal, silicon is preferable for several reasons. For one, there is already an enormous
amount of knowledge and experience with silicon in the integrated circuit industry over the past decades.
Silicon more readily allows for some potentially useful substrate-modifying techniques, such as substrate
trenching, wafer-thinning, and through-substrate vias.
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between the layers. However, this milling process turns out to induce dielectric loss via

substrate surface amorphization [59, 60] (see section 4.2.2.4). This mill-induced damage

is much more severe on silicon than on sapphire, so for all fluxmon samples on silicon

the galvanic contact between CPW and junction metal is made in a separate, subsequent

“bandage” step that protects the substrate from the ion mill, as detailed in Ref. [60].

The fluxmon junctions themselves are similar in size to Xmon junctions (slightly larger

in area, but substantially smaller than 1µm2 in order to minimize two-level state defects

within the junction [61]), but with a critical current density that is 10− 20 times larger.

The reason for this larger critical current density is that in order to obtain the double-well

potential energy characteristic of a flux qubit, the Josephson inductance needs to be on

the order of the geometric inductance, which is set by the CPW geometry. Because of

this, the DC SQUID normal state resistance is of order a couple hundred Ω compared to

∼ 5 kΩ typical of Xmon transmon qubits.

Besides its low dielectric loss, the CPW-based design was chosen to allow a long loop

of distributed inductance and appreciable persistent current, so that strong coupling to

many qubits at once (as in Fig. 1.4) is possible for quantum annealing applications.

This is in contrast to a conventional flux qubit [47] or a high-coherence capacitively-

shunted flux qubit [62], where the inductance-like term is provided by two or more

large lumped-element Josephson junctions in addition to a smaller junction, and the

double-well potential is formed within a two-dimensional phase space [47, 63]. In this

conventional design, it is possible to achieve longer qubit coherence times, but it is quite
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  tilt bias
+ μwave

dc SQUID (barrier) bias

readout
resonator

100 μm

Figure 3.1: Example micrographs of single-fluxmon device on sapphire substrate with flux bias
lines. Beige color is aluminum metal, dark regions are sapphire substrate where the Al is
etched away. Current flow for tilt and SQUID flux bias lines illustrated with green and purple
respectively. The main qubit loop and bias utilize a gradiometric CPW current. Qubit is
inductively coupled to a CPW readout resonator with fr ∼ 7− 8 GHz.

difficult to couple multiple flux qubits together without galvanically connecting them,

let alone controllably couple to multiple qubits at once.4 In contrast, for the fluxmon,

the potential is inherently one-dimensional (within the lumped-element approximation

for the CPW), and more importantly the inductance is spread over a macroscopically

long physical distance to accommodate strong coupling to many other qubits at once.

This is one feature in common with D-Wave’s qubits, where the inductance is similarly

distributed over a transmission line, but with a microstrip geometry that necessitates the

use of performance-degrading lossy dielectrics within the qubit.

As shown in Fig. 3.1, the fluxmon’s CPW is shorted on one end and shunted with

a DC SQUID on the other. The CPW has inductance and capacitance per unit length

4The capacitively shunted flux qubit has just begun to achieve appreciable coupling strengths between
two qubits [64] (but with degraded coherence relative to a single qubit), although it is unclear how to
extend this to multiple simultaneous qubits except possibly through a proposed complicated network of
nested coupler circuits.
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L and C (accurately derivable from standard CPW formulae based on conformal map-

ping [65]), with length ` such that at frequencies below its λ/4 resonance, it acts as

a lumped-element parallel L = L` ≈ 600 pH and C = C`/3 ≈ 100 fF, as shown in

Chapter 2. The high-quality CPW capacitance dominates over the junction capacitance

(∼ 5 fF), minimizing dielectric loss, a shared feature with the C-shunted flux qubit [62].

The linear CPW inductance replaces the need for additional large junctions, and makes

the potential intrinsically one-dimensional. Shunting the CPW with a DC SQUID adds

a tunable nonlinear term, allowing the potential to be varied from a harmonic single

well to a conventional flux qubit double-well [47]. The potential’s “tilt” is tuned by

an external flux bias Φx
t threading the CPW mode of current flow (color-coded green

in the figure), while the barrier height is tuned via the DC SQUID external flux Φx
SQ

(color-coded purple in the figure), yielding a tunable Josephson term parameterized by

β = (2π/Φ0)2EJL = βmax cos(πΦx
SQ/Φ0), where βmax is typically designed to be ∼ 2.5.

Grounds are connected throughout the circuit with Al airbridges5 to control linear induc-

tive crosstalk and coupling to spurious modes. All qubits measured in this thesis have

fLC ≈ 20 GHz, unless otherwise specified.

The precise geometry and placement of the flux bias lines and airbridges are crucial for

obtaining the desired mutual inductances to the qubit loops and low geometric crosstalk

(we will see this is even more true for coupled fluxmon devices where there are many bias

5On all devices with sapphire substrates in this thesis, the airbridges are fabricated via a resist reflow
technique as detailed in Ref. [66], while on all silicon samples, the airbridges are formed by a more
robust SiO2 scaffold and HF vapor release technique as developed in Ref. [67] (however, the geometry
of the latter style of airbridge requires that the release is done as the very last step of the fab). In later,
coupled-qubit devices, these airbridges play a crucial role by forming part of the qubit itself as galvanic
hopping crossovers (see Chapter 6).
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(a) Tilt bias (b) SQUID bias

Figure 3.2: Design and Sonnet simulation results for typical single-fluxmon bias line mutual
inductances. (a) Tilt bias line, showing current divider scheme in inset. (b) SQUID bias line.
The gap controls the primary coupling to the SQUID while the length is used to null the net
coupling to the CPW mode. The height allows for tolerance in the dimensions of the gap and
length. The plotted simulation results are for a height equals gap equals 10µm.

lines and loops that come into close proximity with each other). There are various ways

one might go about designing these bias lines. For the tilt bias line, we chose a symmetric

current divider design, schematically shown in Fig. 3.2(a). This was done to enable very

low (a fraction of a pH) mutual inductances to the qubit tilt loop in order to preserve

coherence (see Chapter 4 for quantitative descriptions of dissipation and dephasing in

the qubit induced by the presence of the flux bias lines). Furthermore, as can be seen

from the simulation results, the resulting Mt is not overly sensitive to the dimensions of

the current divider. Typically, we must have Mt . 0.4 pH to avoid any effects on T1 or

steady-state stray population. This forms a trade-off with control, as it is in general easier

to calibrate the qubit and easier to reduce the effects of crosstalk if one were to more

strongly couple each flux bias line to its intended loop. We can be more lenient in the

SQUID bias and allow for larger MSQ, as the fluxmon’s flux sensitivity to SQUID bias is

91



smaller (except at the special point of zero tilt) and, unlike the tilt bias line, the SQUID

line is filtered at microwave frequencies (details in section 3.3.1). Accordingly we will

typically design the SQUID mutual inductances to be MSQ ≈ 1 pH. However, we must be

careful not to couple the SQUID bias line to the tilt loop (i.e., the CPW mode of current

flow), as this can introduce significant crosstalk (i.e., non-orthogonality between controls)

and in addition couple excess noise into the tilt loop. To control this crosstalk mutual

inductance MSQ→t (often referred to simply as M ′), we need to eliminate any asymmetry

in the bias line return current geometry so as not to induce CPW-mode flux. One way to

do so is as shown in the right inset of Fig. 3.1, where a more weakly coupled secondary

loop can adjust its dimensions so as to cancel out any CPW-mode flux induced by the

primary SQUID bias current above, using Sonnet simulation software to guide the design.

In practice, this strategy has allowed us to consistently obtain M ′ . 0.1 pH, consistent

with the Sonnet predictions. As µ0 ∼ 1 pH/µm, this means that careful layout and

simulation on the 1µm length scale were needed to engineer these coupling structures.

3.2 Qubit measurement: theory

At the end of quantum annealing, all qubit potentials will be in their double-well limit,

and the result of the annealing is determined by whether the qubit ended up occupying

either its left or right well. It is therefore natural to design a readout scheme that

distinguishes the left and right well ground states |L〉 and |R〉. However, it is also

desirable to be able to faithfully read out the |0〉 and |1〉 states of the qubit when the
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potential is not in the double-well regime. In this section, we describe a way to do this

that involves faithfully transferring the ground and first excited states of the system to

the left and right well ground states of a double-well potential and performing the same

type of readout after this projection process is complete.

Since the states |L〉 and |R〉 are clearly distinguishable by their expected fluxes, one

might consider using a SQUID to read out the qubit by detecting the magnetic flux

induced in the SQUID by the qubit. The conventional switching current SQUID method

is indeed a very common readout method, where a nearby SQUID is biased to detect the

current at which it switches to its voltage state. A potential issue with this readout is that

when a readout SQUID switches to its normal voltage state, it will generate quasiparticles

on the chip which can detrimentally affect the qubit during subsequent operation unless

one waits a very substantial amount of time (up to of order 1 ms) for the quasiparticles

to diffuse and decay via recombination [68]. In addition, using additional SQUIDs makes

the fabrication process more complex.

To address all of the above, we implement a variation of microwave-based dispersive

readout inspired by phase qubits [69, 70, 71]. In dispersive readout, a harmonic oscillator

(here, a CPW electromagnetic resonator with typical ωr/(2π) ∼ 8 GHz, referred to as a

readout resonator) is weakly coupled to the qubit, and the frequency of that oscillator

depends on the state of the qubit [72, 73]. The readout resonator protects the qubit from

the dissipative readout line entering the chip from a 50 Ω environment, and furthermore

multiple readout resonators can be coupled to a single transmission line, allowing for
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frequency-multiplexed readout of multiple qubits using a single input/output line. It

also reduces on-chip dissipation because the resonator energy dissipates off-chip in the

50 Ω environment.6

It might seem at first that microwave-based readout couldn’t possibly distinguish the

left from the right well of a double-well potential, because there is complete symmetry

between left and right. This would indeed be true for a symmetric potential (i.e., zero

tilt). In order to distinguish the two wells we must add a tilt bias to the potential so

that the two minima have different curvature. In that case the oscillations associated

with the left and right wells will have different frequencies, shifting the readout resonator

differently. In the following two sections, we will first describe the projection process

that transfers the qubit energy states |0〉 and |1〉 into the left and right wells, and then

describe the dispersive readout used to distinguish the two wells |L〉 and |R〉.

3.2.1 Double-well projection process

As mentioned above, for device characterization we require a method to transfer the

|0〉 and |1〉 energy eigenstates to the left and right wells of a double-well potential, so

that the states can be read out using the same method that will be used to read out

|L〉 and |R〉 at the end of quantum annealing. A graphical depiction of a scheme to do

this is shown in Fig. 3.3(a)/(b). After performing any qubit state manipulations with

microwave pulses to prepare a state within the {|0〉 , |1〉} qubit subspace, we first apply

a pre-determined amount of tilt to the potential. The amount of pre-tilt is determined

6This isn’t always strictly true, since the resonator will also have intrinsic microwave dissipation.
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Figure 3.3: Projection process: state preparation, measurement, and dispersive readout.

by the requirement that upon raising the barrier, the |1〉 and |0〉 energy eigenstates

are adiabatically transferred to the localized left and right well ground states with high

fidelity according to the adiabatic theorem. If the pre-tilt is too large, the well with lower

energy will be so deep that both the ground and first excited states of the system reside

in the same well. For typical fluxmon parameters this would happen at a critical pre-tilt

of Φcrit
t /Φ0 ≈ .004 (this pre-tilt depends on ZLC). On the other hand if the pre-tilt is

too small, the barrier must be raised very slowly in order to remain adiabatic, putting a

constraint on the speed and increasing errors due to energy relaxation and thermalization

with the environment during the raising of the barrier. In practice, using a pre-tilt of

∼ Φcrit
t /2 works well, giving a minimum gaps (both f10 and f21) of a few GHz for the
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whole projection process as can be seen in Fig. 3.3. This allows for fast, nanosecond-scale

flux pulses to still be adiabatic all the way through the raising of the barrier, for both

the ground and first excited states. One can think of this process as a special case of

quantum annealing with a single qubit, but for both the ground and first excited states.

Once the barrier is raised and the tunneling between wells is essentially turned off, we

need to apply a larger post-tilt to the potential so that the two wells have distinguishable

curvatures for dispersive microwave readout (described in detail below). The post-tilt

pulse is nonadiabatic (since the ground state in one well will cross the energy levels of

the weakly tunnel-coupled states within the other well), which is what’s desired to keep

the left/right well ground states in the ground state of the left/right well, and so can

also be performed fast (nanosecond timescales). Since the ground states of both wells

are quasi-stable (the tunneling times can be made much longer than the time needed

for the readout resonator probe pulse, as detailed in the next section), the readout pulse

can be made very long (easily a microsecond or more), enabling high fidelity readout

without requiring the use of quantum-limited paramps that are currently necessary for

the readout of transmon qubits for surface code quantum computing [74, 75].

The observant reader might notice that when this projection process is used to read

out the |1〉 state, the qubit’s frequency f10 will cross the frequency fr ∼ 8 GHz of the

readout resonator, which could lead to loss of population from the qubit to the res-

onator and therefore an error in the readout scheme. However, the design parameters

of the system (described in a later section) are such that the system will undergo a full

96



nonadiabatic transition through the qubit-resonator avoided crossing. The probability of

making a Landau-Zener transition [76, 77] through the avoided level crossing is given by

[78]

PLZ = e−[2π(∆Emin)2/4~ν], (3.1)

where ∆Emin is the minimum gap between the qubit and resonator energy levels and

ν = |d(E1 − E2)/dt| is the “level velocity” of the uncoupled energies. For fast enough

pulses then, the qubit should not lose population to the resonator. For a realistically fast

8 ns barrier raising pulse at a pre-tilt bias of Φcrit
t /2, the minimum gap is ∼ 1 MHz, so

that Eq. (3.1) gives a prediction of a loss of less than 1× 10−5 of the qubit population.7

3.2.2 Dispersive Readout

There are two complementary ways to understand dispersive readout. One is a full quan-

tum description that shows how the two different well states will entangle with different

coherent pointer states of the resonator that can be distinguished by a classical apparatus.

The other simply views the two wells as classical (approximately) harmonic oscillators

which each shift the readout resonator’s resonance frequency by different amounts due to

the different effective inductances they present to the resonator. These two approaches

agree in practically relevant limits, as we will discuss. In the following, we will consider

both descriptions in order to arrive at a more holistic understanding.

7Note that this minimum gap is much less than the gqr = 100 MHz discussed in the next section,
which would have been the minimum gap if the qubit crossed the resonator at zero tilt, in which case
the qubit would lose about 20% of its excited state population. Instead, the qubit energy crosses the
resonator away from zero tilt, where in the fluxmon’s energy basis the interaction with the resonator is
no longer transverse but mostly longitudinal.
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Figure 3.4: (a) Circuit diagram of dispersive readout using a readout resonator inductively
coupled to the qubit and capacitively coupled to a transmission line. (b) Illustration of two
different curves in the transmitted phase due to scattering from a resonator with two distinct
qubit-induced frequencies.

3.2.2.1 Quantum description of dispersive readout

It is natural to inductively couple the readout resonator to the fluxmon qubit, as rep-

resented by the mutual inductance Mqr in the lumped-element circuit diagram of Fig.

3.4(a). The interaction Hamiltonian is, for small coupling strengths,8

Ĥint = MqrÎq Îr ≈Mqr
Φ̂q

Lq

Φ̂r

Lr
, (3.2)

where Φ̂ = Φzp(â
† + â) for each of qubit and resonator as in (2.40). We can then

expand the system Hamiltonian Ĥ = Ĥq + Ĥr + Ĥint using the basis of uncoupled qubit

eigenstates,

Ĥ = ~
∑
i

ωi |i〉 〈i|+ ~ωrâ†â+ ~
∑
i,j

gi,j |i〉 〈j| (â+ â†), (3.3)

8In chapter 5 we will discuss the exact form of the Hamiltonian for arbitrary coupling strengths. In
our system, Mqr/Lr ≈ 0.01, and we can use the simple form written here.
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where |i〉 denotes the ith qubit energy eigenstate of energy ~ωi and â/â† act on the

resonator, and we have defined the coupling matrix elements

~gi,j =
Mqr

LqLr
Φzp,r〈i|Φ̂q|j〉. (3.4)

The Hamiltonian (3.3) can be greatly simplified by examining the nature of the coupling

matrix elements. Firstly, since during readout, the states in the left and right wells have

exponentially small overlap (except for states above the barrier, which have a negligible

effect on the low-lying states anyway), we can consider the eigenstates in each of the two

wells separately; i.e., we ignore all inter-well matrix elements and consider separately

the intra-well matrix elements for the left and right wells. Secondly, we note that since

the eigenstates within one well are nearly those of a harmonic oscillator when the wells

are deep (as they are during readout), the matrix elements coupling non-adjacent states

within a well should vanish. We can therefore reduce (3.3) to the following generalized

Jaynes-Cummings Hamiltonian [44],

Ĥ ≈ ~
∑
i

ωi |i〉 〈i|+ ~
∑
j

ωj |j〉 〈j|+ ~ωrâ†â

+

(
~
∑
i

gi,i+1 |i〉 〈i+ 1| â+ H.c.

)
+

(
~
∑
j

gj,j+1 |j〉 〈j + 1| â+ H.c.

)
, (3.5)

where we have explicitly broken up the sum into a sum over the index variable i to denote

states within the left well and the index variable j for states of the right well.

Dispersive readout is performed when the resonator’s frequency ωj is far detuned

from any of the qubit frequencies ωi,i+1 = ωi+1 − ωi relative to the coupling matrix
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elements. This is the so-called dispersive regime. With the generalized Jaynes-Cummings

Hamiltonian (3.5) in hand, it is also typical to make a rotating wave approximation

(RWA) to make the calculations easier to perform and interpret. The calculation goes as

follows. First, we make it a proper Jaynes-Cummings Hamiltonian by making the rotating

wave approximation, which ignores terms such as σ̂−â and σ̂+â
†. This approximation is

based on the fact that in a rotating frame these terms have a rapid oscillatory time

dependence that should average out to zero compared to the dynamics of the excitation-

preserving terms. Such an approximation is safe when the couplings g are not too large,

when the detunings ∆i = ωi,i+1 − ωr are not larger than the ωi,i+1 themselves, and for

a small mean photon occupation of the resonator, and no accidental resonances between

higher non-RWA-coupled states (we will have more to say about this later) [72, 79].

Next, we assume that ∆i � gi,i+1, where ∆i = ωi,i+1 − ωr is the detuning between the

ith sequential qubit frequency and the resonator’s frequency, but not so large that the

rotating wave approximation breaks down. One can then perform a change of basis that

eliminates the interaction term to second order in gi,i+1/∆i. This can be done using the

canonical transformation Ĥ ′ = D̂ĤD̂† with D̂ = exp[Ŝ − Ŝ†] and generating operator

Ŝ =
∑

i
gi,i+1

∆i
â |i+ 1〉 〈i| [44]. After applying the Baker-Campbell-Hausdorff relation one
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obtains, up to order g2
i,i+1/∆

2
i , the “dispersive” Hamiltonian [44]

Ĥdisp. ≈
∑
i

~ωi |i〉 〈i|+
∑
j

~ωj |j〉 〈j|+ ~ωrâ†â

+
∑
i

~χi,i+1 |i+ 1〉 〈i+ 1|+
∑
j

~χj,j+1 |j + 1〉 〈j + 1|

− ~χ01,Lâ
†â |0L〉 〈0L|+

∞∑
i=1

~(χi−1,i − χi,i+1)â†â |i〉 〈i|

− ~χ01,Râ
†â |0R〉 〈0R|+

∞∑
j=1

~(χj−1,j − χj,j+1)â†â |j〉 〈j| , (3.6)

with

χi,i+1 =
g2
i,i+1

ωi,i+1 − ωr
(3.7)

[we have dropped negligible two-photon transition terms from (3.6)]. Although the

dispersive Hamiltonian (3.6) might look complicated at first, there is a very simple way

to interpret it for the purposes of dispersive readout. The first line is simply the bare

(uncoupled) Hamiltonians of the qubit and resonator, where again we use the indices i/j

to denote states in the left/right well. The second line describes an effective “dispersive

shift” in the qubit energy levels by the amount ~χi,i+1, which can be interpreted as a

vacuum fluctuation-induced Lamb shift of the qubit spectrum. This term does not have

any important effects for the purposes of readout. The last two lines contain terms

proportional to â†â times a qubit state projection operator. Since the bare resonator

Hamiltonian is proportional to â†â, these terms can be interpreted as a qubit state-

dependent dispersive shift in the resonator’s resonance frequency ωr. In particular, at
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the end of the double-well projection process (or at the end of annealing), the qubit

will be occupying either the left or right well ground states |0L〉 or |0R〉, meaning we

only need to consider the first term on each of the two last lines. Therefore, depending

on which well the qubit ended up populating, the readout resonator’s frequency will be

dispersively shifted by either the amount −χ01,L or −χ01,R. For short, we will refer to the

magnitudes of the left and right dispersive shifts simply as χL = g2
L/∆L and χL = g2

L/∆L,

where gL/gR are the 0, 1 coupling matrix elements for the left and right wells respectively

and ∆L/∆R are the detunings between the resonator’s frequency and the left/right well

resonance frequencies (technically their 0 → 1 transition frequencies) respectively. It

follows that the difference in the readout resonator’s frequency between the qubit being

the left and right wells is9

χ ≡ ωr,R − ωr,L

=
g2
L

∆L

− g2
R

∆R

≈
( g

∆

)2

δωw, (3.8)

where in the second line we have approximated gL ≈ gR ≡ g and ∆L ≈ ∆R ≡ ∆ and

defined

δωw ≡ ωR − ωL (3.9)

as the difference between right and left well frequencies. Later in this section we will

9Note that this definition of χ differs by a factor of 2 from the usual definition in dispersive readout
literature [44], where in the case of a transmon the qubit ground and excited state shift the natural
frequency of the resonator equally up and down by ±χ, in which case ωr,|0〉 − ωr,|1〉 = 2χ.
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discuss the requirements of how large g and δωw need to be to obtain a large enough

dispersive shift χ in the readout resonator. Later we will find it useful to have a formula

for g between two oscillators in the harmonic limit,

gharm. =
1

~
1

2

(
Φ0

2π

)2
M

L1L2

√
Z1Z2

RK/8π

=
1

2

√(
M

L1

)(
M

L2

)
ω1ω2, (3.10)

obtained by combining (3.4) and (2.43).

To complete our quantum description of the dispersive measurement process, we

consider what happens when the system is probed with a coherent state, which is what

naturally builds up in the resonator when it is probed with a CW microwave tone.10

To compute the dynamics, we first consider the time-evolution of uncoupled basis states

|0L〉 |n〉 and |0R〉 |n〉 under the dispersive interaction Hamiltonian, where |n〉 is the nth

Fock state of the resonator:

|0L〉 |n〉 → e−iH
disp.
int. t/~ |0L〉 |n〉 = e−iχLnt |0L〉 |n〉 ,

|0R〉 |n〉 → e−iH
disp.
int. t/~ |0R〉 |n〉 = e−iχRnt |0R〉 |n〉 , (3.11)

meaning each basis state gets its own phase shift proportional to the photon number

with a sign dependent on the qubit state. Using this, we next consider what happens for

10It can be shown that a classical sinusoidal drive “implements” a displacement operator of the vacuum
state, yielding a coherent state to high accuracy. Technically the readout resonator inherits a small
amount of nonlinearity from the qubit so this reasoning is approximate, but holds very well for small
enough mean photon number in the resonator.
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a coherent state |α〉 = e−
|α|2

2

∑∞
n=0

αn√
n!
|n〉 in the resonator instead of a single Fock state:

|0L〉 |α〉 → e−iH
disp.
int. t/~ |0L〉 |α〉 = e−

|α|2
2

∞∑
n=0

e−iχLnt
αn√
n!
|0L〉 |n〉 = |0L〉

∣∣e−iχLtα〉 ,
|0R〉 |α〉 → e−iH

disp.
int. t/~ |0R〉 |α〉 = e−

|α|2
2

∞∑
n=0

e−iχRnt
αn√
n!
|0R〉 |n〉 = |0R〉

∣∣e−iχRtα〉 . (3.12)

We can then see that the two different well ground states will become entangled with two

coherent states with distinct phases. As is well-known, coherent states are eigenstates of

dissipation (i.e., of â) and therefore act as dynamically stable pointer states even when

inevitably coupled to an environmental bath. When the entanglement “collapses” to one

classically observable coherent state or the other due to decoherence, the macroscopically

distinguishable measurement result will therefore correspond to the qubit being in either

the left or right well ground state as desired. However, in practice, the fluxmon itself

fully decoheres (due to dephasing between wells on the order of nanoseconds) before the

measurement is complete. Similarly, dissipation may also act on a timescale faster than

the time taken by a readout probe tone, so that dissipation will also tend to localize

the qubit in one well or the other. Therefore, when we probe the readout resonator we

actually have a mixed state of qubit-resonator
∣∣0L/R〉 ∣∣αL/R〉 product states instead of

a coherent entangled state, so in a sense the “measurement” actually occurs while the

barrier is raised, before the readout probe pulse. However, the fact that this occurs

does not affect the fidelity of the measurement if we only need to measure occupation

probabilities and not phases, since these are in the above sense classical states.
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We note that the above analysis relied on making the rotating wave approximation

in addition to the dispersive limit approximation, i.e., it required that

g � ∆� ωL/R + ωr. (3.13)

The second inequality is there so that the effect of the counter-rotating terms in the

original Rabi Hamiltonian have a negligible effect compared to that of the RWA terms.

However, for reasons discussed below, for typical fluxmon device biased at its readout

point, we have g/(2π) ≈ 100 MHz, ωL/(2π) ≈ ωR/(2π) ≈ 20 GHz and ωr ≈ 8 GHz.

While the first inequality of (3.13) clearly holds, the second one does not hold very

well. Fortunately, it is still possible to perform the same dispersive readout to a good

approximation, but with a modified magnitude for the dispersive shift χ. As detailed

in Ref. [80], we consider adding back in the two counter-rotating coupling terms to the

Hamiltonian for a two-level system coupled to a resonator,

Hnon-RWA = H0 + ~g(σ−a
† + σ+a+ σ+a

† + σ−a). (3.14)

Using a modified unitary transformation D = eλ(σ−a†−σ+a)+λ(σ+a†−σ−a), where λ =

g/(ωq − ωr) and λ = g/(ωq + ωr), we obtain a modified dispersive Hamiltonian [80]

Hnon-RWA
disp. = −1

2
~ωqσz + ~ωra†a+

1

2
~g2

(
1

∆
+

1

ωq + ωr

)
σz(a

† + a)2, (3.15)

valid to second order in λ and λ. In contrast to the RWA case, the coupling is now

proportional to (a†+a)2 as opposed to simply a†a, and the coupling coefficient is modified

by an amount proportional to λ. Nonetheless, we can still interpret (3.15) as a qubit

state-dependent frequency shift in the classical limit: since the term (a† + a) ∝ x2 for

105



Figure 3.5: Circuit for two inductively coupled classical LC oscillators.

the harmonic oscillator with position coordinate x and mass m, when the qubit is the

ground state this amounts to a well-defined shift in the “spring constant” k and therefore

frequency of the harmonic oscillator according to

ωr →
√
k

m
= ωr

√
1− 2g2

ωr

(
1

∆
+

1

ωq + ωr

)
≈ ωr − g2

(
1

∆
+

1

ωq + ωr

)
. (3.16)

Including the counter-rotating terms modifies the fluxmon-induced dispersive shift by up

to ∼ 50%.

3.2.2.2 Classical oscillator description of the dispersive shift

There are two ways to classically understand the qubit-induced dispersive shift. The

first can be seen by considering the classical normal modes of two coupled LC harmonic

oscillators corresponding to “qubit” and resonator, as shown in Fig. 3.5. The dispersive

shift then corresponds to a slight hybridization of the otherwise uncoupled qubit and

resonator modes. This assumes the qubit wells are harmonic, which is a reasonably good
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assumption for the deep wells used for readout. Kirchoff’s rules determine the coupled

equations of motion of the system,

Q1

Cq
+ Lq

dI1

dt
+Mqr

dI2

dt
= 0,

Q2

Cr
+ Lr

dI2

dt
+Mqr

dI1

dt
= 0, (3.17)

which upon the substitutions I1 = dQ1

dt
, I2 = dQ2

dt
yields

Q̈1 + α1Q̈2 + ω2
qQ1 = 0,

Q̈2 + α2Q̈1 + ω2
rQ2 = 0, (3.18)

where

α1 ≡
Mqr

Lq
, α2 ≡

Mqr

Lr
(3.19)

and ωq ≡ 1/
√
LqCq and ωr ≡ 1/

√
LrCr as usual. Seeking eigenmode solutions of the

form Q1 = Aeiωt, Q2 = Beiωt yields the determinant equation for the eigenfrequencies ω,∣∣∣∣ω2
q − ω2 −α1ω

2

−α2ω
2 ω2

r − ω2

∣∣∣∣ = 0. (3.20)

We can simplify the solution if we assume that ωq is not too far detuned from ωr, similar

to the second RWA assumption in the previous section. This allows us to make the

linearized substitution ωq/r − ω2 = (ωq/r + ω)(ωq/r − ω) ≈ 2ωq/r(ωq/r − ω). Applying

this substitution and dividing through by ω2 ≈ ω2
q/r yields the simplified determinant
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qubit resonator

(a)

(b)

Figure 3.6: (a) Circuit for calculating the classical inductance shift induced in the readout
resonator by the qubit’s changing Josephson inductance. (b) Generally useful auxiliary circuit
for calculating the impedance seen through a mutual inductance.

equation ∣∣∣∣∣2(ωq−ω)

ωq
−α1

−α2
2(ωr−ω)

ωr

∣∣∣∣∣ = 0, (3.21)

which has solutions

ω± =
ωq + ωr

2
± 1

2

√
ω2
q − (2− α1α2)ωqωr + ω2

r . (3.22)

In the dispersive limit ∆ � g, where g = 1
2
(1 − α1α2)−1√α1α2ωqωr ≈ 1

2

√
α1α2ωqωr in

the harmonic limit, we can expand (3.22) in the limit of large qubit frequency to obtain

ω− ≈ ωr −
1

4

α1α2ωqωr
ωq − ωr

= ωr −
g2

∆
. (3.23)

Under these approximations then, the classical treatment reproduces the quantum result

for the ground state-induced dispersive shift in the rotating-wave approximation.

A second way to approximately understand dispersive readout classically is by treating
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the dispersive shift as the result of an effective shift in the inductance presented to the

readout resonator, in which case the resonator essentially acts as a classical AC probe of

the curvature of the qubit’s potential [70]. To do this, for simplicity we treat the qubit’s

Josephson junction as a classical, linear inductor whose inductance LJ is a function of

equilibrium phase bias, LJ(ϕ) [given by Eq. (2.4)], as illustrated in Fig. 3.6(a). If the

qubit’s plasma frequency is sufficiently larger than the resonator probe frequency, the

effect of the qubit is to present a ϕ-dependent inductance to the readout resonator. To

see this, consider the input impedance Zin seen by a circuit coupled through a mutual

inductance to an arbitrary impedance as depicted in Fig. 3.6(b). Basic circuit analysis

shows that

Zin(ω) = iωL1 +
ω2M2

iωL2 + Z
. (3.24)

We can apply this rule to the coupled qubit-resonator circuit of Fig. 3.6(a) by asking

what the input impedance is looking into the qubit from the resonator’s inductor. The

answer is that the qubit effectively adds an impedance of

∆Z =
ω2M2

qr

iωLq + 1
1

iωLJ (ϕ)
+iωCq

(3.25)

to the impedance of the resonator’s inductance. For large qubit junction plasma fre-

quencies relative to the resonator probe frequency, we can ignore the effect of qubit

capacitance, so that ∆Z reduces to a shift in the resonator’s inductance given by

∆Lr = −
M2

qr

Lq + LJ(ϕ)
. (3.26)
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To lowest order then, the resonator’s resonance frequency will shift as

ωr → ω′r =
1√

(Lr + ∆Lr)Cr
≈ ωr

(
1− ∆L

2Lr

)
≈ ωr −

2g2

ωq
≈ ωr −

2g2

∆
(3.27)

in the limit of large qubit frequency. This result is asymptotically the same as the

quantum dispersive shift (3.16) accounting for the counter-rotating terms, as required in

the limit we have assumed. Depending on whether the qubit is classically localized in

its left or right well, the Josephson inductance and hence ∆L will depend on the qubit

state, leading to a qubit-state-dependent frequency shift in the resonator. Of course,

this analysis ignored details such as the nonlinearity of the Josephson inductance and

the modified expressions for the well frequencies as opposed to the bare harmonic qubit

frequency (although they are fairly close for the fluxmon at the readout point), but it

illustrates the essential points.

3.2.2.3 Measuring the dispersive shift: microwave scattering

Now that we’ve established that the readout resonator undergoes a shift in frequency χ

that serves as a pointer to the qubit state, we must consider how to actually measure

this frequency shift in the lab and how to optimize the measurement signal given certain

practical design constraints. At this point, we can treat the readout resonator classically,

and look at how to probe frequency shifts in a classical LC resonator. The technique we

will use is to weakly capacitively couple11 the readout resonator to a 50 Ω transmission

11One reason we choose capacitive as opposed to inductive coupling between resonator and transmis-
sion line is so that the resonator can be made a λ/4 CPW resonator as opposed to a λ/2 resonator,
which saves space on the chip for a given resonator frequency (capacitive coupling to a transmission line
resonator is strongest at an open end, while inductive coupling is strongest at a shorted end).

110



a)

b)

Figure 3.7: (a) Microwave scattering circuit for detection of the dispersive shift. The dashed
box in the middle represents where the off-chip transmission line meets the on-chip transmission
line, with the possibility of a small impedance defect where they meet as described in the text.
(b) Two-port network representation of the circuit, with possible impedance mismatches ∆Z1

and ∆Z2 on either side of the resonator added. Source and load impedances are implicitly
assumed to be Z0.

line, and measure the scattering of a probe tone through the transmission line. This

scheme has the advantage of allowing multiple qubits to be read out using a single input-

output line on the chip [70, 75], and can in fact be multiplexed in frequency space (we will

see this feature in action when we discuss two-qubit annealing experiments in Chapter

6).

Accordingly, we consider the microwave scattering problem drawn in Fig. 3.7(a),

where we have lumped the readout resonator into the lumped element impedance Zr of

an LC resonator. Experimentally, it is convenient to measure transmission, so we want

to compute the expected forward scattering coefficient S21 as a function of frequency. For

a two-port microwave circuit, given a matched source and load impedance ZS = ZL =
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Z0 = 50 Ω, the forward scattering coefficient S21 is given by12

S21 = 2
Vout

Vgen

∣∣∣∣
ZS=ZL=Z0

(3.28)

To compute S21 in a convenient way, we can use some standard machinery from mi-

crowave circuit analysis called the ABCD matrix.13 We first express the circuit as in

Fig. 3.7(b), where Ỹr = 1/Z̃r = 1/(ZCκ + Zr) is the admittance of the coupling capaci-

tance in series with the resonator (sometimes called the “loaded” resonator admittance),

and we have added ∆Z1 and ∆Z2 to allow for small inline impedance mismatches on

either side of the resonator that can occur in a real system [39]. For example, bad mi-

crowave design of the sample mount, sloppy wirebonding, or a photolithographic defect

can lead to an impedance mismatch at the interface between the chip and the coax cable

going to the sample box. We compute the ABCD transmission matrix parameters14

since they have the nice property that they multiply in a cascade of two-port networks

[41]. From Pozar [41], for the circuit in Fig. 3.7 we have(
A B
C D

)
=

(
1 + Z1Ỹr Z1 + Z2 + Z1Z2Ỹr

Ỹr 1 + Z2Ỹr

)
, (3.29)

12This is a standard definition, with the factor of 2 intuitively there so that S21 = 1 (equal voltage
drop over source and load) when transferring directly from the source to a matched load. In this case,
transmission is unity in the sense that there are no microwave reflections and maximum available power
is transferred).

13The alternative is to directly compute 2Vout/Vgen using Kirchoff’s rules, but we will find the ABCD
matrix method easier for predicting the effect of standing waves due to possible impedance mismatches
between the on-chip and off-chip transmission lines.

14For a two-port network, the ABCD transmission matrix is defined according to V1 = AV2 + BI2,
I1 = CV2 +DI2 [41], and therefore multiplies in series when cascading two two-port networks together.
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from which we can compute S21 according to [41]

S21 =
2

A+B/Z0 + CZ0 +D

≈ 2

2 + |Z|eiφỸr
, (3.30)

where

Z ≡ (1/(2Z1) + 1/(2Z2))−1 = |Z|eiφ (3.31)

with Z1 = Z0 + ∆Z1 and Z2 = Z0 + ∆Z2, and for simplicity we have normalized S21 to

be unity off resonance.

Following Ref. [81], we consider Z̃r near resonance. The resonance frequency ω0 of the

combined series capacitor and resonator differs from the bare λ/4 resonance frequency

by ω0 − ωλ/4 ≈ −ωλ/4
√

2
πQc

. Here,

Qc = π/(2Z2
0C

2
κω

2
λ/4) (3.32)

is the coupling quality factor characterizing the rate of energy loss through the coupling

capacitor assuming an ideal Z0 = 50 Ω environment. Allowing the readout resonator

to have an internal quality factor Qi (classically this means allowing for a large parallel

resistance Rp within the LC resonator to make it an RLC circuit, with Qi = ω0RpC),

we have that the series impedance of the coupling capacitor and readout resonator is

Z̃r ≈ Qc
2Qi

Z0(1+2iQiδx), where δx = (ω−ω0)/ω0 is a fractional detuning. With Ỹr = 1/Z̃r

in hand, using (3.30) we obtain

S21 =

(
1 +

Qi

Q∗c
eiφ

1

1 + i2Qiδx

)−1

, (3.33)
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where Q∗c = Z0

|Z|Qc is a re-scaled coupling quality factor15 due to the impedance mis-

matches, agreeing with Ref. [39]. In the IQ plane, the resonance traces out a circle

starting at 1 below resonance and returning to 1 above resonance, with a possible phase

rotation about 1 induced by any impedance mismatches. The full expression 3.33 is

useful for fitting experimental resonator data, which often contains a small phase mis-

match angle φ. For example, Fig. 3.8 shows the measured S21 of a readout resonator

using a vector network analyzer (VNA), along with a fit to Eq. (3.33), with extracted

f0 = 7.87578 GHz, Qi = 270, 000, Q∗c = 55, 000, and φ = −11◦. The designed cou-

pling capacitance Cκ to the feedline was 2.05 fF (according to finite element simulation

of the chip) for a designed κ of ∼ 1/(1µs) (the reason for this design is discussed below),

which when plugged into (3.32) is consistent to within 5 percent, meaning we can predict

coupling capacitance during the design stage very well.

For choosing design parameters it will be useful to gain some intuition behind Eq.

(3.33). For simplicity, we ignore the impedance mismatches so that the phase offset φ is

zero, in which case we can rewrite (3.33) in the form [81]

S21 =
Smin

21 + 2iQlδx

1 + 2iQlδx
,

=
Smin

21 + 4Q2
l (δx)2

1 + 4Q2
l (δx)2

+ 2i(1− Smin
21 )

Qlδx

1 + 4Q2
l (δx)2

(3.34)

where 1/Ql = 1/Qi + 1/Qc is the total loaded quality factor and Smin
21 = Qc/(Qi + Qc).

15This interpretation assumes that ∆Z1 and ∆Z2 do not vary over the bandwidth of the resonator,
which is a reasonable assumption unless there is another resonator of the same frequency coupled to the
same transmission line, which would of course be a bad design choice.
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Figure 3.8: VNA measurement of S21 for a readout resonator at 7.876 GHz on a typical flux-
mon device. The qubit is far detuned in its deep single-well regime (β < −1) during this
measurement. Probe power corresponds to a mean photon number of nphoton ∼ 100 in the
resonator.

Therefore, the points δx = ±1/2Ql are on diametrically opposite sides of the S21 circle,

where the imaginary part has maximum magnitude. This means that if we have the

equality χ = κ (dispersive shift equals the resonator decay rate), where

κ =
ωr
Ql

, (3.35)

then the readout signal will be maximal for such a frequency shift. This means that

for a given resonator linewidth κ, it is not necessary to have χ > κ since that will not

increase the optimal visibility anymore. In the next section we will use these properties

to come up with a set of design parameters for qubit readout.

One subtlety to be aware of is that as the on-chip transmission line gets longer (neces-

sary for larger devices that multiplex many readout resonators at once), sloppy wirebond-

ing with too few or too long wirebonds to the chip becomes more of an issue by causing
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Qc to vary strongly with position along the feedline due to the generation of standing

waves, as detailed below. This might explain some previous anomalous Qc dependence on

position not due to stray coupling capacitance seen at one time in our group. Luckily the

solution is to use low-impedance wirebonding, which requires minimal extra effort with

modern automatic wirebonders, assuming that the chip mount is designed reasonably.

To see the effect of feedline position dependence, we generalize the above treatment so

that in addition to the lumped-element wirebond impedances ∆Z1 and ∆Z2, we allow for

a length of on-chip transmission line segment between the wirebonds and the resonator,

with length `1 to the left and `2 to the right. Using the ABCD matrix for a transmission

line segment [41] (
A B
C D

)
=

(
cos β` iZ0 sin β`

i 1
Z0

sin β` cos β`

)
, (3.36)

where β = 2π/λ at the frequency in question, performing a similar (but messier) analysis

yields S21 of the same form as (3.33) but with

Q∗c =

∣∣∣∣ Z1Z2

(Z1 + Z2)Z0

(Z1 + Z2)Z0 cos[β(`1 + `2)] + i[Z1Z2 + Z2
0 ] sin[β(`1 + `2)]

(Z1 cos β`1 + iZ0 sin β`1)(Z2 cos β`2 + iZ0 sin β`2)

∣∣∣∣Qc (3.37)

As a concrete example, consider that a typical wirebond has a self-inductance of roughly

1 nH/mm and a length of ∼ 1 mm for an inductance of ∼ 1 nH, which could have a

significant effect at 8 GHz (these numbers are based on a wire in free space and may be

different in the proximity of a ground plane). A realistic length for a meandering on-chip

feedline in our devices is ` = `1 + `2 ≈ 18 mm, which is roughly equal to 1.1λ at 8 GHz.

116



Figure 3.9: Plot showing how, for a long on-chip feedline length, the resonator’s coupling
quality factor Qc can be strongly modified by standing waves due to a high-impedance wirebond
connections at the chip edges, leading to variation in effective Qc along the feedline. This plot
assumes an inductance of 1 nH per wirebond. Our devices typically use 4 or 5 wirebonds in
parallel for the connections to the chip pads.

In Fig. 3.9, we plot the correction factor to Qc for such a system as a function of the

position of the readout resonator along the feedline. We show predictions for 1, 2, 3, and

4 parallel wirebonds at the chip connections. As can be seen, using multiple wirebonds for

low impedance chip connections is (among other microwave engineering considerations)

crucial to have a controllable Qc in a large system. As we will see in the next section,

Qc determines our ability to measure the qubit and affects how the resonator acts as a

filter between the qubit and the 50 Ω environment, so this is an important consideration.

We used 4 or 5 wirebonds for all devices measured in this thesis work, for example the

bonds shown in Fig. 3.13.
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3.2.2.4 Design parameters for dispersive readout

There are various practical constraints on the design parameters g, ∆, κ, δωw. Here we

find a suitable set of design parameters that obey these constraints while yielding a good

readout signal that distinguishes the two qubit well states. Of course, for a good signal to

noise ratio we need the qubit-induced dispersive shift to be comparable to or larger than

the linewidth of the resonator itself, meaning χ ≥ κ. According to our discussion in the

previous section, if we probe the resonator at ω = (ωr,L +ωr,R)/2, for a given resonator κ

it is sufficient to achieve the equality χ = κ to optimally distinguish the two resonances.

κ needs to be large enough so that the measurement takes a reasonable amount of time:

no matter how strong the dispersive shift is, κ determines the amount of time necessary

to ring up the resonator (i.e., to build up a coherent state in the resonator). In other

words, we need to measure for longer than the inverse linewidth of the resonator in order

to resolve the frequency shift. A measurement time of order 1 µs is convenient for the

electronics in our lab and won’t appreciably limit the repetition rate of experiments,

so we will assume κ = 1/(1µs) and see if this allows for an acceptable readout signal

within the rest of our constraints. We will assume fLC = 20 GHz and ZLC ∼ 100 Ω for

the fluxmon. We will also assume the highest readout resonator frequency that is easily

measurable with our electronics, which is ∼ 8 GHz. These two numbers determine the

detuning ∆ ≈ 15 GHz in the calculation of the dispersive shift.

Next we need to consider how to achieve χ =
(
g
∆

)2
δωw = 1/(1µs). There are two

practical constraints on how big we allow g to be. One is that g determines the physical

118



length of the mutual inductive coupling segment between the qubit and resonator. We

want to minimize this footprint so that as much of the fluxmon’s CPW can be used for

coupling to other fluxmons as possible. Let’s say that the maximum allowed inductive

coupling length is 5% of the fluxmon’s CPW length, meaning roughly 100µm. This

corresponds to a mutual inductance of Mqr ≈ 10 pH. We must also be aware of another

possible limit on g, which is the induced dissipation and dephasing in the qubit due to its

coupling to the resonator. Specifically, we consider induced dissipation when the qubit

is biased in the operating regime ∆/h . 6 GHz. This dissipation through the resonator

is usually called the “Purcell effect” [82, 44, 83], though it can also been understood

classically as a filter of the 50 Ω environment [83, 84, 85]. In the dispersive limit, the

Purcell damping is given by16

1

TPurcell
1

≈
( g

∆

)2

κ. (3.38)

We would like to ensure that TPurcell
1 > 100µs at f10 = 6 GHz. Given the κ and ∆ above,

this means g/2π . 100 MHz at 6 GHz, which translates to Mqr . 10 pH. Conveniently,

this happens to be the same constraint on Mqr as our physical length constraint above.

We also in principle need to consider dephasing between qubit energy eigenstates

induced by coupling to the resonator. In particular, fluctuation in photon number (‘shot

noise’) in the resonator could dephase the qubit due to a fluctuating ac Stark shift in the

qubit’s energy level spacing [72]. As studied in Refs. [86, 87], for a thermal state in the

resonator, photon shot noise will dephase the qubit with roughly a white17 noise spectrum,

16Intuitively, the Purcell decay rate induced in the qubit is the resonator’s decay rate times the fraction
of the first excited eigenstate of the joint system that “lives” in the qubit.

17Really, it is a Lorentzian noise spectrum with cutoff frequency determined by the resonator’s decay
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leading to an roughly exponential decay of the off-diagonal terms in the density matrix

over time. For an effective temperature Teff in the resonator, the induced dephasing rate

between qubit eigenstates is predicted to be [87]

1

T th
ϕ1

≈ κ

2
Re

√(1 +
2iχ

κ

)2

+

(
8iχneff

th

κ

)
− 1

 , (3.39)

where nth = 1/(exp [~ωr/kBTeff ]−1) is the stray thermal photon number in the resonator.

Effective resonator temperatures of up to 60 mK are often observed,18 which at zero tilt

would lead to a dephasing time of ∼ 200µs in the qubit, vastly longer than the limit of

∼ 100 ns due to intrinsic flux noise in the qubit.19

Assuming the acceptable g/2π ≈ 100 MHz, we now need to see how large β and

δωw (i.e., the post-tilt in the readout sequence of Fig. 3.3) need to be to obtain a large

enough dispersive shift χ. There is a limit on how large the post-tilt can be (and thus

how large δωw can be) because the shallow well will eventually become so shallow that

its metastable ground state will tunnel out of it and into the deeper well. As a rule of

thumb, we require that this tunneling time should be no faster than ∼ 1 ms (∼ 1000x

rate [88], which looks white at low frequencies.
18This number comes from indirect measurements of the steady state resonator population using sim-

ilarly fabricated Xmon qubit devices that use dispersive readout. Similarly “hot” resonators are also
seen in state of the art devices from other groups [62]. The reasons for these temperatures, which are
substantially higher than the dilution refrigerator mix plate temperatures, are not completely under-
stood, and may involve bad thermalization of dissipative components and/or radiation from the output
lines of the chip.

19It is not completely fair to compare these two dephasing times, since one is a true dephasing rate
whereas the other is a Gaussian instead of exponential decay of the coherence with time. In reality, we
should compare the noise spectral density of the two noise sources over all frequencies. Even when we do
this, photon shot noise is negligible compared to the 1/f flux noise at all frequencies (including all the
way up to the resonator decay bandwidth of ∼ 1 MHz). In other types of qubits, such as the C-shunted
flux qubit with a non-tunable gap [62], photon shot noise can actually become a limit on dephasing at
zero tilt at the level of ∼ 100µs dephasing times, though this is unlikely to be of practical importance
for quantum annealing.
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Figure 3.10: (a) Tunneling times out of the shallow and deep wells according to a numerical
generalization of the WKB result (2.55), as a function of β and tilt flux bias, for a fluxmon
with fLC = 20 GHz and ZLC = 100 Ω. (b) Difference in left and right well frequencies, δωw as
a function of β and tilt flux bias.

longer than the measurement time), so that a negligible amount of population is lost

from the shallow to the deep well during the readout pulse. In Fig. 3.10(a) we plot

the predicted WKB tunneling times20 out of the left and right wells as a function of ϕx,

for different values of β. In order to have χ = κ with the given values of g and ∆, we

would like δωw/2π ≈ 3 GHz. Looking at Fig. 3.10(b), we see that this is possible while

also having the tunneling time out of the shallow well be longer than 1 ms if we have

|ϕx| ≈ 0.15 with β & 1.8. Note that the tunneling times will depend exponentially on

ZLC in addition to β, so that the actual optimal readout parameters will highly depend

on the actual parameters of the system.

20The actual tunneling times are likely to be much longer since a real system has dissipation, which can
strongly suppress the tunneling rate by keeping the wavefunction (more precisely, the density matrix)
localized in one well [89, 90, 91]. In fact, even if the ground state of the upper well is resonant with
an excited state within the lower well, the resonant tunneling rate will be largely suppressed because
the tunneling will be incoherent [92] (we will study this effect in chapter 4). Nevertheless, to have a
conservative design we compute and plot predicting tunneling rate out of left and right well based on a
naive WKB calculation.
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Note that in our discussion, we did not consider the possibility of transitions out of

the shallow well induced by the off-resonant photons of the resonator drive itself. Such

effects are difficult to predict and model, but in the next section we will see empirically

that while these effects are certainly present at large enough tilts, we can find a suitable

range of resonator drive powers and post-tilt biases that allow faithful readout without

these effects.

3.3 Qubit measurement: experiment

In this section we summarize some of the basic procedures involved in bringing up single-

qubit measurement and calibration. In particular we will see data illustrating the double-

well projection measurement described in section 3.2.1 and the qubit state-dependent

dispersive shfit described in section 3.2.2, as well as the calibration of qubit frequency

vs. flux biases and calibration of nonlinear crosstalk due to junction asymmetry. We will

also look at single-qubit annealing, (which we use as a calibration tool for multi-qubit

devices in Chapter 6) in detail as a case study.

3.3.1 Experimental setup

A schematic diagram of the wiring used for qubit measurements is summarized in Fig.

3.11, and physical photographs of the setup inside the fridge (a Janis model JDry-500-

QPro 3He - 4He cryogen-free dilution refrigerator) are shown in Fig. 3.12. Each qubit has

two coaxial bias lines entering the aluminum sample box, each of which is wirebonded to

122



-wK

SYdB 58NwGHzqYdB HIR -dB

SYdB qYdB HIR

RC LIR

qYwmK

ReadoutSYdB 58NwGHzqYdB HIR SYdB

HEMT HIR58NwGHz

Radiallwmicrowavewswitch
foptionalZwforwmore
thanwonewsample)

DACwZ

FastBias

DAC

ADC

RC LIRFastBias

Y8-
GHz

qYdB

fVqYwΩZ
SYwnF)

-YYwK

DACwXY

qYwdBDACwZ -dB

-dB

-dB

Miteq
AFS-FYYqYqSYYF
SSFqYPFP

wwwwLNFF
LNCP_VC

MiniFCircuits
VLFXFSS4

Qubit
wwtilt

wQubit
SQUID

wwBiaswTee
fNwμHZw4YwΩ)

Marki
FLPFY5NY

Circulators

Figure 3.11: Wiring diagram for single-qubit measurement, illustrating the number of coaxial
lines per qubit in the fridge and attenuation/filtering components in each of the lines as de-
scribed in the text. A single readout line is used to multiplex measurement of many qubits in
one microwave line. LIR and HIR stand for high- and low-frequency infrared filters [93]. The
tilt bias line has microwave signals coupled into it at room temperature.
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Figure 3.12: (a) All cables between room temperature and sample are coaxially shielded. On
the microwave and fast flux bias lines, we use SC-086/50-CN-CN from Coax Co. between
300 K and 4 K, and SC-086/50-NbTi-CN (niobium-titanium inner conductor, copper-nickel
outer) between 4 K and the mix plate. On the DC lines, we use braided brass coaxial cables
between 300 K and 4 K. (b) Picture showing various components mounted on the mix plate.
(c) Aluminum sample box mounted on hanging plate at 10 mK visible in center. Two-piece
Amumetal 4K “mu-metal” shield encloses qubit box (only half of shield is shown in image).
Nonmagnetic SMA connectors are used inside this shield.
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Figure 3.13: 1 × 1 cm2 die wirebonded into an aluminum box with recessed cavity above and
below (lid not shown). Copper traces on a PCB strip enter the box through tunnels, and are
wirebonded to the on-chip bond pads using several wirebonds in parallel (here, four or five).
Ground planes of the chip are wirebonded to the box ground around the edge of the chip in
between the bond pads as uniformly as possible to provide a good microwave path to ground,
and to help reduce crosstalk and spurious chip modes [94].

a CPW line on the chip for applying SQUID and tilt flux bias currents through the on-

chip mutual inductances depicted in Fig. 3.1. Each of these lines receives the combined

signal of a DC bias current and a higher bandwidth bias current through a bias tee at

the mix plate of the fridge. The signal for the DC bias lines is provided by a low noise

DC voltage bias source, which is converted to a current source by a circuit board RC

filter at 4 K. For these DC lines, at the mix plate there is a microwave- and infrared-

absorbing ECCOSORB® filter (with a cutoff of a few hundred MHz) [93] to protect

from inline IR radiation coming from 4K and above [95]. The DC bias lines then go

through the inductive port of a bias tee where they combine with their corresponding

higher bandwidth line before entering the qubit sample box. The higher bandwidth line
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on the SQUID bias has a bandwidth of ∼ 100 MHz, and is controlled by a GHz DAC

waveform generator [96] that is low-pass filtered to ∼ 100 MHz. For the tilt bias line, the

high bandwidth line is even wider (∼ 10 GHz bandwidth) so that microwave pulses can

be applied to drive qubit transitions. The envelopes for these microwave pulses are also

controlled by a GHz DAC waveform generator, via IQ mixing [96, 97]. The microwave

drive is coupled into this line at room temperature via a directional coupler, where is is

combined with the signal from another GHz DAC that is low-pass filtered to ∼ 100 MHz.

On both SQUID and tilt lines, the higher bandwidth lines also have an IR filter, but

with a much higher cutoff frequency (& 20 GHz, to avoid loss at the signal frequencies).

The amount of attenuation and filtering on each of the coaxial lines within the fridge is

chosen according to various tradeoffs between having enough range in the electronics to

flux bias and drive the qubits, and having low enough noise entering the qubit chip (we

will go through calculations of this noise in Chapter 4).

3.3.2 Single-qubit bringup

When a sample is cooled down, we do not know a priori the dc transfer function between

applied bias currents and received fluxes in the qubit’s SQUID and tilt loops. In order to

calibrate the on-chip mutual inductances and any flux offsets due to ambient magnetic

fields during the cooldown, we can probe the response of the readout resonator vs. the

applied qubit bias currents. An example of this data is shown in Fig. 3.14(b) (which we

colloquially call a “fireball scan”), where we probe the readout resonator at 1.5 MHz below
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Theory: single-fluxmon spectrum
             periodic in

Experiment: readout resonator response
                    periodic in

Figure 3.14: (a) Theoretical plot showing periodicity of fluxmon spectrum with respect to its
flux biases, which is to be mapped to experimental data. (b) Experimental data from a “fireball
scan” used to obtain the intra-qubit mutual inductance matrix and flux offsets. The qubit’s
readout resonator is probed at a fixed frequency (corresponding to roughly 1 MHz below fr
at zero qubit flux bias, where the qubit’s f10 is largest). In this device there was substantial
geometric crosstalk from squid bias to qubit tilt loop. Extracted parameters were Mt = 0.42 pH,
MSQ = 0.92 pH, M ′ = −0.24 pH, M ′′ = 0.0005 pH.

its frequency at nominally zero flux bias. The shift in resonance frequency corresponds

to the “Lamb shift” part of the dispersive shift with the qubit in its ground state. As we

saw in Fig. 2.7, the qubit spectrum is periodic in its flux biases, meaning that so will be

the response of the readout resonator.21 By mapping the periodicity and offsets of these

features in the data to theory using an affine linear transformation, we can extract the

qubit bias mutual inductances MSQ and Mt, as well as any flux offsets ∆ΦSQ and ∆Φt.

Explicitly, we have(
Φqsq

Φqt

)
=

(
Mbqsq→qsq Mbqt→qsq

Mbqsq→qt Mbqt→qt

)(
Ibqsq

Ibqt

)
+

(
Φoffset

qsq

Φoffset
qt

)
(3.40)

21The faint, upward-pointing “McDonald’s arch”-like features are a hysteretic effect that occurs in the
bistable regime when the qubit’s potential is tilted so far that it dumps the qubit population from one
metastable well to the other. The point in the opposite direction when the scan vs. tilt bias is taken in
the opposite direction.
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where when talking about a single qubit we will often use the shorthand terminology

Mt ≡ Mbqt→qt, MSQ ≡ Mbqsq→qsq, M ′ ≡ Mbqsq→qt and M ′′ ≡ Mbqt→qsq. The particular

data shown here is for a qubit within our first iteration of a coupled qubit device, and so

has a relatively high M ′ of −0.24 pH. Ideally we would like to have M ′ . 0.1 pH, which

is about the best we can predict using finite element simulations of the chip design. This

number has since been improved to M ′ . 0.1 pH (data not shown) within a two-qubit

device.

We would like to dc bias the qubit at zero tilt (for optimal dephasing) somewhere in the

range of ∆ = 4−6 GHz, as this is an ideal frequency range for applying microwave pulses

for qubit characterization. This range of biases will be inside one of the “fireballs,” where

f10 is below the readout resonator frequency fr ≈ 8 GHz. Once a dc bias point is chosen,

it will be fixed for the duration of all experiments, and the faster, 100 MHz bandwidth

“z” lines are used to change the qubit bias from its dc point during experiments. In

order to find a proper DC bias point, we must first bring up the qubit readout. To do

this, we need to calibrate the dispersive shift of the resonator when the qubit is in the

left and right wells in the double-well regime. One way to do this is as follows. First, we

estimate where β ≈ 2 at zero tilt (which occurs outside the fireball, in the direction in

which the fireball “points”22). We then prepare the qubit in either the left or right well

and probe the readout resonator transmission vs. frequency, obtaining the two resonance

curves shown in Fig 3.15. To prepare one well or the other, we start by initializing in the

22The reason it points towards the bistable regime is because the qubit frequency becomes a narrower
and narrower hyperbola vs. tilt bias as β increases.
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single-well regime, followed by a pulse on the qubit’s tilt bias line to tilt in one direction

or the other, after which we raise the barrier and allow for dissipation to localize the

qubit at the ground state of the corresponding well. For this particular data we used a

readout probe power of ∼ −120 dBm at the chip feedline, corresponding to an average

number of 〈nphoton〉 ∼ 100 photons in the resonator.23 This data is for the same resonator

that was measured by VNA in the previous section (Fig. 3.8).

The particular measurement in this figure was performed with β = 1.9±0.1 at a post-

tilt bias of Φt ≈ 0.3 Φ0. With these parameters, numerics predict that g/(2π) = 62 MHz

here, with δωw/(2π) ≈ 4.1 GHz and ∆/(2π) ≈ 14 GHz, so according to eq. (3.8) we should

expect χ/(2π) ≈ 0.08 MHz. Experimentally, we observe χ/(2π) = 0.12 MHz, within a

factor of two of the prediction. This number depends strongly on β, so this is within the

range of experimental uncertainty. We note that the observed χ = 2π× 0.12 MHz is also

fairly close to the desired design value of χ = κ ≈ 1/(1µs) as per the discussion in the

previous section, meaning that a near-optimal readout signal should be possible.

Next, we need to fix the resonator probe frequency and vary the post-tilt bias in order

to maximize the difference in signals between left and right wells, ultimately allowing for

single-shot readout of the qubit state. An example of such data, which we refer to as

“readout branch” data, is shown in Fig. 3.16. In this experiment, we again prepare the

23This number is an estimate determined as follows, using the estimated attenuation of the coaxial lines
in the fridge. If the Z0 = 50 Ω feedline is probed with microwave power Pprobe, then it can be shown that

the steady state power of the traveling wave within the λ/4 resonator is given by Pinternal/Pprobe ≈ 2
π
Q2
l

Qc

[98], meaning the rms standing wave voltage at the resonator’s voltage antinode is Vr = 2
√
Z0Pinternal

so that the total energy in the resonator is 1
2CrV

2
r `r. Dividing this energy by ~ωr defines the mean

photon number 〈n〉 in the resonator. This same estimate is used for the resonator measurements in Refs.
[39, 99, 59] by our group. Note that quantum-mechanically, for a coherent state |α〉 in the resonator, we
will have 〈n〉 = |α|2 with a quantum uncertainty of ∆n =

√
〈n〉 consistent with Poisson statistics.
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a) b)

Figure 3.15: Readout resonator resonance curves with qubit prepared in left and right wells
(β ≈ 1.9, Φt ≈ 0.3 Φ0). Readout pulse length was 5µs with an on-chip power of −120 dBm
(∼ 100 steady-state intra-resonator photons).

qubit in either its left or right well in the double-well regime, but now probe the readout

resonator at a fixed frequency. The figures show all the single-shot datapoints, without

any averaging over experimental runs. We can see that there is a range of post-tilt biases

for which there is perfect separation between the distributions of measured amplitude

or phase corresponding to the two qubit states. This indicates both very high fidelity

in preparing the left/right well states and very high fidelity in distinguishing these two

states. This can be seen explicitly in Fig. 3.18(a), where we plot the raw statistics of

the readout in the IQ plane for preparing the left vs. right well. To calibrate single-

shot measurement, we draw a line dividing the plane midway between the midpoints of

these two clouds, calling the result either |L〉 or |R〉. Both the |L〉/|R〉 state preparation

fidelities and separation fidelity (the probability of correctly identifying a given prepared

state) of the Gaussian clouds in the IQ plane are very high (can be made 99.9 or even

higher with modest effort). Note in particular that this shows we are able to faithfully
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a) b)

Figure 3.16: Experimental data for the readout branch experiment of resonator response vs.
prepared well, showing individual stats without averaging over experiments (300 stats for each
of |L〉 and |R〉). β ≈ 1.9,Φt ≈ 0.3 Φ0. At large post-tilts, errors due to tunneling from the
higher, metastable well to the lower well are increasingly present. At even larger post-tilts,
both states end up in the same well. (a) Looking at transmitted amplitude while probing
readout resonator midway between its two resonances, i.e. at

(
fr,|L〉 + fr,|R〉

)
/2. (b) Looking

at transmitted phase while probing readout resonator at fr,|R〉.

prepare, in of order one microsecond or less, the classical Ising states that usually occur at

the end of standard quantum annealing. This means that our system should be capable of

running annealing in reverse for quantum parallel tempering, as was discussed in Chapter

1.

Now that we know what barrier and post-tilt bias to use for distinguishing the left

and right well states, we can try and implement the double-well projection scheme for

reading out the |0〉 and |1〉 eigenstates at the dc bias point (which is in the single-well

regime). There are a few more prerequisite steps before we can do measurements like

Rabi oscillations between these two states. The first is to perform what we call an “S

curve” measurement with the qubit nominally prepared in its ground state. Namely,

we perform the double-well projection sequence of Fig. 3.3 starting in the |0〉 state, as
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a function of pre-tilt bias, measuring the probability of ending up in the left or right

well. This yields a typical dataset shown by the blue S-shaped curve in Fig. 3.17. At

zero tilt, the probability of ending up in the left or right well is 1
2
. Far from zero tilt,

there is a very high probability of ending up in that respective well. The width of the

S-curve is set by a combination of ramp rate (dictating both nonadiabatic effects and

thermalization along the trajectory) and flux noise (broadening), as discussed later in

section 3.4 in the context of single-qubit annealing. Note that in the data one can see a

region within ∼ 0.003 Φ0 of zero tilt in which the probability of ending up the desired well

differs from unity by a percent or more, leading to a ‘step’ in the S-curve.24 We attribute

this step to imperfect ground state preparation due to a finite steady-state stray qubit

population; i.e., we actually started out with some population of |1〉. We will study the

steady-state qubit population and its relation to thermal occupation and nonequilibrium

noise in Chapter 4.

Within the stray population step, the |0〉 and |1〉 states end up in different wells.

But when the tilt is large enough, both states end up in the same well. This can be

seen more explicitly by looking at what happens when we prepare the |1〉 state with

a pi pulse before performing the readout sequence. A pi pulse is simply a microwave

24Accounting for the precise position of this step is subtle. Using the design parameters of the system
(the fluxmon’s fLC and ZLC , which are verified to reasonable accuracy through the measured qubit
spectrum below 10 GHz), using the 1D model (2.32) one would predict that the edge of this step should
occur at Φt = 0.0038 Φ0, rather than the (consistently) observed 0.0030 Φ0. This discrepancy is not
accounted for by including the inline SQUID inductances in the 1D model (in fact, this shifts things
in the wrong direction). Interestingly, using the fluxmon’s quarterwave CPW L and C instead of the
“fluxmon” L and C (closer to the effective L and C one would obtain from the full transmission line
fluxmon model at high frequencies [Fig. 2.13]), one would predict the boundary at 0.0029 Φ0, much
closer to the observed value. Unfortunately, we don’t yet have a way to deal with the full transmission
line model in the double-well regime, so this cannot be theoretically verified as of yet. We also note that
the location of this tipping point is fairly independent of fLC and mostly depends on ZLC .
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i. initialize state
with variable
pre-tilt bias

ii. raise barrier

Figure 3.17: S curve data without and with pi pulse (i.e., preparing |0〉 and |1〉) to calibrate
the pre-tilt part of the double-well projection process. Ramp time for barrier raising pulse was
10 ns, and pi pulse length was 10 ns. f10 at the dc bias point used for state preparation was
6 GHz. Steady-state stray population is ∼ 1.3 %.

pulse applied to the qubit, resonant with the qubit’s |0〉 → |1〉 transition frequency f10,

with an amplitude and length such that the qubit ends up in the excited state at the

end of the pulse.25 The result of performing the S-curve experiment immediately after

a pi pulse is the red curve of Fig. 3.17. By choosing a pre-tilt in the middle of this

step, we can faithfully distinguish between the |0〉 and |1〉 states using the double-well

projection sequence.26 With the optimal pre-tilt chosen, we can look at the fidelity of the

readout process for both states. Fig. 3.18(b) shows the raw IQ statistics for preparing

and measuring both states. We can see that there are some red dots in the blue cloud and

25This is called a “pi pulse” because it rotates the qubit’s zenith angle θ by π in the Bloch sphere
representation of the qubit state, |ψ〉 = cos

(
θ
2

)
+ eiφ sin

(
θ
2

)
. It can be calibrated by looking at Rabi

oscillations of the qubit population vs. pulse frequency and amplitude [100, 97].
26Unfortunately, simultaneously distinguishing the |2〉 state as well (which would be useful for some

experiments) is not feasible with this method, since the |2〉 state will end up in the same well as the
|0〉 state when the barrier is raised and will be indistinguishable from the ground state (the intra-well
dispersive shift is not large enough to distinguish the intra-well states, and even if it was, dissipation
would very quickly collapse all intra-well states into its respective well ground state).
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vice versa. We attribute this to state preparation error. There is a ∼ 1−2 % steady state

stray population error leading to error in preparing |0〉. There is an even larger infidelity

in preparing the |1〉 state, which we attribute to two sources: dephasing on the timescale

of the pi pulse length,27 and energy relaxation during the first stages of the double well

projection trajectory, each of which are estimated to contribute of order a few percent of

error. As mentioned earlier, we do not expect any appreciable nonadiabatic error during

the projection sequence once a near-optimal pre-tilt is chosen.

After calibrating the readout process, we can begin to look at the functional form of

the qubit’s spectrum vs. flux bias. Such spectroscopic measurements provide information

about the qubit’s excited state(s) and are crucial for device calibration in the region where

f10 and f21 are in the range of ∼ 0.5 − 10 GHz at degeneracy (we will sometimes refer

to this region as the “microwave regime”). An example dataset showing spectroscopy

vs. tilt flux bias is shown in Fig. 3.19, for two different values of SQUID flux bias

corresponding to ∆/h = 5 GHz and ∆/h = 1 GHz. For spectroscopy experiments, a

microwave tone is applied to the qubit as a function of frequency and flux bias, followed

27The ensemble-averaged pi-pulse infidelity arising from gaussian frequency noise is calculated as
follows. For a driving Hamiltonian of the form H/~ =

ωq
2 Z + g cos(ωdt)X in the lab frame (which is

appropriate for an inductive drive), by looking at the rotating frame of the qubit
∣∣∣ψ̃(t)

〉
= eiωtZ/2 |ψ(t)〉

one can show that the time evolution operator for
∣∣∣ψ̃(t)

〉
in this frame is U(t) = e

i
[
ωq−ωd

2 Z+2πfRX
]
t

[100],

where fR is the on-resonance Rabi frequency. In particular, for a perfectly resonant drive, a pulse length
of τ = 1/4fr would form a perfect pi pulse, meaning if we started in |0〉 we would end up in |1〉 with
probability 1. If we calibrate our pi pulse to have the correct length for a nominally perfect on-resonance
pi pulse, and the qubit then drifts in frequency by the amount δω, then the probability of ending up in

|1〉 when applying the nominal pi pulse after the drift will be P|1〉(δω) =
16π2f2

r sin2
[√

16π2f2
r+δω2/8fr

]
16π2f2

r+δω2 . If

the qubit frequency drift follows a Gaussian distribution with standard deviation σ, then the ensemble-

averaged probability of the qubit ending up in the |1〉 state is
∫
d(δω) 1√

2πσ2
e−

(δω)2

2σ2 P|1〉(δω). For a pi pulse

length of 8 ns and σ/2π ≈ 10 MHz (obtained from CW spectroscopy, or equivalently from Tϕ2 ≈ 30 ns,
at the zero tilt dc bias point) we would expect an ensemble-averaged pi pulse infidelity of 2 - 3 percent.
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Figure 3.18: Raw single-shot IQ demodulations (“readout cloud” data) showing 2000 stats each
of preparing each state. (a) Preparing the left and right well states |L〉 and |R〉 directly in the
double-well regime using flux pulses. (b) Preparing the |0〉/|1〉 states at the single-well dc bias
point without/with a pi pulse and performing the projection sequence. Measurement infidelity
is due to state initialization errors. For this dataset, the total |0〉 state fidelity was 98.5 %, while
the total |1〉 state fidelity was 95.5 %, both limited by state preparation.

by the readout sequence. The result is that there will be peaks in qubit population where

the system is able to absorb energy from the spectroscopy tone, corresponding (usually)

to the qubit’s f10 transition frequency. In the data of Fig. 3.19, we see the characteristic

hyperbola shape, corresponding to the theory curves plotted earlier in 2.10.

During device operation, we often need to be able to remain at zero tilt bias (or

constant tilt flux bias) as one changes the DC SQUID bias. This is equivalent to the

calibration of the total intra-qubit crosstalk from SQUID to tilt (a combination of linear

and nonlinear crosstalk). For example, as described in the next chapter, it is useful to

measure T1 (the qubit’s |1〉 → |0〉 energy relaxation time) at zero tilt as a function of

∆(ΦSQ). In addition and more generally, such a calibration needs to be done in order
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Figure 3.19: Qubit spectroscopy vs. tilt bias for two different values of ∆(ΦSQ). A microwave
probe of varying frequency is applied to the qubit’s driveline and the qubit’s tilt bias is stepped.

to be able to perform quantum annealing with quasi-orthogonal controls. The most

immediately obvious way to calibrate zero tilt is to measure spectroscopy vs. tilt bias just

like we did in Fig. 3.19. The applied tilt flux that gives us the minimum f10 can be then

identified with zero tilt, and we can repeat this measurement for many different values of

ΦSQ. The problem with doing the zero-tilt calibration this way is that it is very costly – it

is a three-dimensional scan since we need to scan versus frequency versus tilt bias versus

SQUID bias, and we would therefore like a more scalable measurement. A second way

to do this calibration reduces the dimensionality of the scan by one dimension: instead

of scanning the spectroscopy tone’s frequency, we can keep a fixed probe frequency as we

step the tilt bias. The result should be that we obtain a signal when the qubit’s frequency
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is resonant with the probe frequency. As a function of tilt bias, this means we should

expect two spectroscopy peaks on either side of zero tilt. Assuming that the crosstalk

from the qubit’s tilt bias to the SQUID is negligible (as we always observe to be the case,

thanks to the high symmetry of the bias line and smallness/remoteness of the SQUID

loop), the location of zero tilt is then simply the midpoint of these two peaks. Performing

this fixed-frequency probe scan vs. SQUID and tilt biases should then ideally give us

zero tilt vs. SQUID bias. This method works fairly well, but only for ∆/h & 500 MHz.

For smaller gaps, it becomes quite hard to drive the qubit when it is away from zero tilt

due to the rotation of the energy basis relative to the axis of the inductive drive. One

can extend the measurement down to ∆/h ∼ 100 MHz (the lowest frequency one can go

without incurring nonadiabatic error as one crosses zero tilt) using a different piece of

data: the steady-state population of the qubit in the absence of a spectroscopic drive

will be significantly above zero when f10 . kBT/h. This stray population peak at small

∆ lets us infer where the lowest frequency is from where the highest stray population is,

and therefore where zero tilt is. To obtain zero tilt vs. SQUID bias at even lower ∆,

one has to use other calibration techniques. For example, once β is large enough to be

in the bistable double-well regime, one can perform the readout branch experiment (Fig.

3.16) vs. SQUID bias. The point where the readout resonator gives an equal response

for both |L〉 and |R〉 will be at zero tilt (for such a calibration we would take the average

response rather than look at all the individual stats like in Fig. 3.16).

An example of zero-tilt calibration data in the microwave regime (100 MHz < ∆/h <
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8 GHz) is shown in Fig. 3.20. In this scan, the SQUID flux bias is stepped on the

horizontal axis, and the tilt flux bias is scanned along the vertical axis. For a given value

of SQUID bias, a microwave tone of fixed frequency is applied to the qubit’s drive line.

Ideally, this probe frequency is fixed for all SQUID biases, leading to a spectroscopic

signal corresponding to a contour of constant f10 that should be symmetric about zero

tilt. A slight complication arises in practice where the probe frequency usually needs to

change for different SQUID biases. There are two considerations in choosing the probe

frequency. For a given ∆, the probe frequency needs to be larger than ∆/h, because

the minimum qubit f10 vs. tilt bias is equal to ∆. On the other hand, when ∆ is small

and the probe frequency is significantly larger than ∆/h, it becomes hard to drive the

qubit. Furthermore, for large ∆, the range over which the tilt must be scanned to reach

a spectroscopy peak grows to be quite large, since the characteristic hyperbola of f10

vs. tilt widens with larger ∆. To deal with all of these factors, we usually choose the

probe frequency via the following heuristic. First, we do a spectroscopy vs. SQUID bias

scan, with the tilt bias chosen to be roughly at zero tilt. For each SQUID bias, we then

obtain a qubit frequency which we know must be greater than or equal to ∆ for that

SQUID bias. We then choose the probe frequency to be on the order of 100 MHz higher

than this, so that the tilt scan range doesn’t need to be too large. This works well for

∆ & 1 GHz. However, for small ∆, the spectroscopy peaks begin to disappear, as seen

on the left hand side of the data, but as mentioned above, a stray population peak starts

to appear at zero tilt, which we can use to find zero tilt for the smallest ∆’s.
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Figure 3.20: Microwave regime zero-tilt calibration scans taken at base temperature. Horizontal
axis is SQUID bias in raw experimental DAC units (called dacamps) relative to the DC operating
point (plotted range corresponds to ∼ 0.04 Φ0 in SQUID flux [0.3 in β]). Vertical axis is raw
tilt bias in dacamps (plotted range corresponds to ∼ 0.015 Φ0 in tilt flux). Left side of plot
corresponds to ∆/h ≈ 100 MHz, right hand to ∆/h ≈ 7 GHz. In this scan the spectroscopic
probe frequency was chosen to vary between 3 and 7 GHz from left to right. The dashed white
line is the result of a fit of zero tilt vs. SQUID bias [Eq. (2.58)]. ∆ is increasing from left to
right for this dataset. On the right hand side of the plot, the midpoint of the two spectroscopic
peaks is used to infer zero tilt. On the very left side of the plot (∆/h . 1 GHz), the two
spectroscopic peaks lose signal strength, and the stray population peak is used instead to infer
zero tilt. To calibrate zero tilt at even lower ∆/h . 100 MHz, another method such as readout
branch must be used.

With zero tilt calibrated in the microwave regime, we can then do scans such as

spectroscopy vs. SQUID bias at zero tilt, adding an appropriate compensation bias on the

tilt as the SQUID bias is varied to keep the qubit at zero tilt. Usually we check that the

zero-tilt calibration actually worked properly by doing variable-frequency spectroscopy

vs. tilt (like in Fig. 3.19) at one or two values of ∆ around the nominal zero tilt point.

These short check scans do not take much extra time.

Given the various complications of this scan, one might imagine that an easier way
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to calibrate zero tilt in the microwave regime is to simply look at the readout resonator

response vs. qubit flux bias. This would indeed be much simpler and take less time, but

unfortunately the response of the resonator to qubit bias is quite broad in the microwave

regime such that there is not enough sensitivity to find zero tilt to within sufficient

accuracy (typically this method would give a tilt error such that there is a ∼ 100 MHz

deviation in f10 from its true zero-tilt value at ∆/h ∼ 1 GHz). It may be possible to

change the design parameters of the readout to make such a scan possible with sufficient

accuracy, but as of yet this has not been investigated in detail. However, in Chapter 6

we will find that looking at the readout resonator response vs. qubit biases is in fact

extremely useful (and accurate enough) to distinguish linear geometric crosstalk in the

system from intrinsic nonlinear “crosstalk” (nonlinear qubit-coupler interactions).

If the junction asymmetry is small (∼ 1 percent), this nonlinear crosstalk can often

be approximated as linear within a finite region of SQUID bias space, and then can be

lumped in with the geometric crosstalk correction. Unfortunately, this is not always

possible, even with a small range of bias. D-Wave circumvented the problem of junc-

tion asymmetry by making what they call a “compound-compound Josephson junction”

(CCJJ) [16], which they claim was necessary to be able to operate devices with more

than a few qubits. This structure replaces each junction of the DC SQUID with a DC

SQUID, so that the two effective junctions of the main loop can be flux-tuned to be

equal, eliminating the junction asymmetry. This of course comes at the expense of extra

control knobs. The other advantage of such a structure is that not just β but βmax can
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be made uniform between qubits, which aids D-Wave in the operation of multiqubit de-

vices without individual time-dependent control lines for all qubit knobs. It is not clear

yet whether or not the fluxmon architecture will require a similar type of compound-

compound structure, since we plan to keep individual qubit control, but this needs to be

considered as part of an overall systems optimization at the level of many qubits.

3.3.3 Modeling the measured fluxmon spectrum

An important part of device modeling and calibration is the ability to predict the qubit’s

spectrum as a function of its flux biases. To test our ability to do this, we can take

spectroscopy data versus SQUID and tilt biases, and try to fit the resulting spectrum

to a model. We require that the model and resulting fit parameters are physical, so

that the model not only predicts the measured data but also can predict the spectrum

reasonably well outside of the range of measurement, in addition to predicting with

reasonable accuracy the flux and charge matrix elements that come into play later on for

qubit-qubit coupling.

In Fig. 3.21, we show data where a few “cuts” through the two-dimensional flux

bias space are taken. These include both horizontal and vertical cuts (constant tilt and

constant SQUID biases), along with the special curvilinear cut at zero tilt (this requires

that the zero-tilt calibration of Fig. 3.20 be performed beforehand). For this data, the

intra-qubit geometric mutual inductance matrix was already precisely calibrated and the

geometric crosstalk was already compensated, so we fix these numbers and do not include
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them as free fit parameters. In particular this means that all crosstalk from SQUID to

tilt remaining in the data is due purely to junction asymmetry. However, the remaining

parameters (qubit inductances, capacitance, junction critical currents, and absolute flux

offsets) are not measurable and are treated as fit parameters. We perform fits to two

one-dimensional models (a fit to a three-dimensional model is not practical or necessary):

the “1D simple” model described by eq. (2.56), and the Born-Oppenheimer “1D no caps”

model described by eq. (2.100) which takes into account finite geometric inductance in

the DC SQUID. Note that the 1D simple Hamiltonian is a special case of the 1D no caps

Hamiltonian but with the inline betas β1 and β2 set to zero, and with a renormalized

capacitance modulo the junction capacitances, as discussed in section 2.2.3.2. For the

1D no caps model for simplicity we assumed equal inline SQUID inductances L1 = L2

(β1 = β2).

The quality of the fits and the fitted parameters for both models are summarized in

the Fig. 3.21 and the accompanying table 3.1. With the 1D simple model, we are able to

fit the spectrum (which encompasses a wide range of frequencies and flux biases) to within

∼ 30 MHz RMS error, while with the 1D no caps model we can fit the data to within

∼ 20 MHz RMS error, which is actually roughly the average experimental uncertainty

in the data.28 More importantly, we find that the extracted qubit parameters for the

1D no caps model are more physically realistic, in that they much more closely match

28The linewidth of the qubit itself is ∼ 100 MHz away from zero tilt due to flux-noise limited dephasing
(see next chapter for explicit extraction of linewidth), so this adds significant experimental uncertainty
itself. The quality of the data is also not as good away from zero tilt due to it being harder to get a
signal, so the resulting RMS error of our fit is actually quite good all things considered.
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Expected 1D simple fit 1D no caps (BO) fit
L (L3) 685 pH 626 pH 680 pH
C (Ceff) 108 fF 141 fF 118 fF

Isum
c = Ic1 + Ic2 1.3µA 1.63µA 1.32µA

χ = Ic1−Ic2
Ic1+Ic2

±0.05 −0.02 −0.03

L1, L2 ∼ 20 pH N/A 27 pH

Table 3.1: Expected (based on Sonnet simulations and room-temperature junction resistance
measurements) and fitted parameters for the to two models to the spectroscopy data. The 1D
no caps model yields more physically realistic parameters. The physically expected capacitance
in this table does not include junction capacitance, which we estimate should contribute 5 - 10
fF, making the match to the 1D no caps fit even more remarkably close.

the expected physical inductance, capacitance, and critical currents of the device based

on Sonnet simulations29 and room temperature junction resistance measurements (which

give the junction critical current through the Ambegaokar-Baratoff relation [34, 101]).

The resulting best-fit parameters for both models are displayed in table 3.1. One can

see that the fitted parameters for the 1D no caps model are remarkably close to the

physically expected parameters.

As a further check, in Fig. 3.22 we plot the subset of data from Fig. 3.21(b) at

zero tilt as a function of zsq, along with an extra piece of experimental data, f21. f21 is

measured by probing the system with a higher power spectroscopy tone at the second-

order two-photon transition |0〉 → |2〉, i.e. at f = f20/2, and then inferring f21 from

the f20/2 and f10 data.30 We can then plot the prediction (not a fit) for f21 vs. zsq

29The small inline SQUID inductances are difficult to simulate accurately, but we expect very roughly
around 10 - 20 pH for each branch (a reasonable rule of thumb for inductive wires is 1 pH per micron of
wire, more or less depending on proximity of ground planes and weakly dependent on wire thickness).

30Earlier, we mentioned it is not possible to distinguish the |2〉 and |0〉 states when using the double-
well projection readout scheme. This is true, but we can rely on decay of the |2〉 state to the |1〉 state
before performing the readout, which provides a good enough signal to perform spectroscopy of the |2〉
state.
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Figure 3.21: Fitting of experimental single-qubit spectroscopy data to two different 1D models:
the “1D simple” model described by eq. (2.56), and the Born-Oppenheimer “1D no caps”
model described by eq. (2.100) which takes into account finite geometric inductance in the DC
SQUID.
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Figure 3.22: Spectroscopy of f10 and f21 at zero tilt (black and green), with 1D no caps fit for
f10 from Fig. 3.21(b) (red) and resulting prediction (not a fit) for f21 (blue). The f10 data is a
subset of the data from Fig. 3.21.

based on the fitting of the f10 data. The result is shown in Fig. 3.22. Our ability to

fairly closely predict f21 after fitting only for f10 is a nice sanity check and more evidence

that our model and fitting are physically realistic. More sophisticated fitting that also

incorporates f21 may lead to better model, but this needs to be studied some more. Also,

we note that the qubit measured in this study was not an isolated qubit, but a qubit

within a coupled-qubit device with the coupler and other qubit biased away such that

they shouldn’t influence the qubit in question.
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3.4 Understanding the S-curve: Single-qubit anneal-

ing

The S curve experiment of Fig. 3.17 (without pi pulse) is interesting because it is the

simplest possible case of quantum annealing, using a single qubit with a local field but

no inter-qubit couplings. Furthermore, we will find that the S curve experiment is an

extremely useful tool for calibrating flux crosstalk in a multiqubit system (Chapter 6), and

also for measuring low-frequency flux noise intrinsic to the qubit (Chapter 4). Therefore,

it would be worthwhile to try and understand what determines the width and shape of

the S curve.

For an ∼ 8 ns linear ramp speed of the SQUID bias (i.e., the speed at which we raise

the barrier in the schematic pulse sequence in Fig. 3.17), we typically observe a full

width (defined as the interval between 5 and 95 percent probability to end up in the

right well) of ∼ 600− 700µΦ0, as can be seen in Fig. 3.23. In the next chapter, we will

see that low-frequency flux noise contributes a Gaussian broadening over experimental

runs with σ ≈ 40− 50µΦ0, meaning that the noise would smear out31 a perfectly sharp

step function to a full width of ∼ 3σ ≈ 120− 150µΦ0. Therefore, broadening from low-

frequency noise is not enough to explain the majority of the S curve width. Furthermore,

when we increase the ramp time to 40 ns, the width of the S curve actually decreases,

as can be seen in Fig. 3.23. To understand this, we need to look at the dynamics of the

S curve trajectory, which we will find involves nonadiabatic physics. What’s even more

31The convolution of a Gaussian with a step function is erf
(

x√
2σ

)
, which has a width of ∼ 3σ.
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Figure 3.23: S curve measured for several different SQUID (barrier) bias ramp times: 8 ns,
40 ns, 400 ns, 4000 ns, and 12000 ns. We observe a non-monotonic dependence of the width of
the transition region on ramp rate. The 40 ns ramp leads to a narrower curve than the 8 ns
ramp due to a reduction in nonadiabatic error, but the 4000 and 12000 ns ramps lead to a much
broader curve due to thermalization errors.

puzzling (at first) is that there is a non-monotonic dependence of the width on ramp

time, as can be seen in Fig. 3.23: for very long ramp times, the width of the S curve

actually starts to increase drastically.

Fig. 3.24 illustrates how the S curve experiment can be viewed as a single-qubit

annealing experiment. The system is prepared in its ground state in the single-well

regime (left hand side of plot) with a variable amount of pre-tilt bias Φt. Then, the

barrier is raised by ramping the DC SQUID flux bias (towards the right hand side of

the plot), with the qubit ending up in one of the two classical states of a double-well

potential. We plot the predicted energy gap of the system along this annealing trajectory,

for several different values of tilt bias Φt. For small tilt biases, the minimum energy gap

147



time

Figure 3.24: Numerically predicted energy gap of the system along the single-qubit annealing
trajectory, for several different values of tilt bias Φt. Time goes from left to right. The presence
of noise or dissipation at high frequencies can drive transitions Γ↑/↓ out of and back into the
ground state throughout the annealing.

along the annealing trajectory becomes arbitrarily small, and for increasing tilt biases

monotonically increases. In the absence of noise then, we can guess the following: for very

fast ramps, the system will undergo a Landau-Zener transition at larger gaps, leading to

broadening of the S curve. Conversely, for very slow ramps, the system should always

be adiabatic, leading to an arbitrarily narrow S curve in the absence of an environment.

However, thermalization to the environment may explain the broadening at very long

ramp times.

To test these hypotheses quantitatively, we first simulated the time-dependent Schrödinger

dynamics of the system in the absence of an environment according to the two-level
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Hamiltonian

H(t) = −1

2
∆(t)σx −

1

2
ε(t)σz, (3.41)

with ε(t) computed as 2Ip(t)Φt, with the system prepared in the ground state of H(0)

at t = 0. We used a linear ramp for the SQUID flux bias. The results are shown

by the dashed lines in Fig. 3.25 for various ramp rates. We note that the results of

these two-level simulations were within a few parts in 1000 of the result of the much

more expensive simulation of the full discretized flux wave function dynamics under the

continuous lab-frame Hamiltonian

H(t) = EL
(ϕ̂− ϕt(t))2

2
− 4EC

∂2

∂ϕ̂2
+ β(ΦSQ(t))EL cos (ϕ̂) . (3.42)

We see that the simulation predicts the experimental widths of the 8 ns ramp and 40

ns ramps fairly well, meaning that this picture is likely correct. However, note that

the simulation drastically fails to predict the experimental data for the longest ramp

times, as the simulation predicts an almost perfectly sharp transition as expected from

adiabaticity.

A possible reason for broadening at very long ramp times is thermalization to the

environment, which can induce upwards and downwards transition rates Γ↑(t) and Γ↓(t)

between energy eigenstates, as illustrated in Fig. 3.24. These transition rates to not

necessarily have to obey detailed balance if the environment is not in thermal equilibrium

(see next chapter), and can be computed according to Fermi’s golden rule [equation

(4.80)] if the environmental noise spectral density at the transition frequency is known

(this will be explained in more detail in the next chapter). It turns out that we are able
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Figure 3.25: Numerical simulation of single-qubit annealing with (solid lines) and without
(dashed lines) thermalization to the environment. Annealing fast avoids thermalization. When
the environment was included, the up/down transition rates Γ↑/↓(t) were calculated along the
annealing trajectory according to Eq. (3.43) based on a phenomenological fit to the measured
environmental noise spectrum [Fig. 4.23(c)]. The simulations consider only the lowest two
levels of the qubit. Note that the simulations come reasonably close to predicting the actual
widths and shapes of the measured S curves. The 40 ns ramp yields a narrower S curve than
the 10 ns ramp, but the 4000 ns ramp with environment yields a much wider transition than
the extremely sharp one that would occur in the absence of thermalization.

Figure 3.26: Comparison of extracted S curve widths (defined as the inverse of the fitted slope
near zero tilt) between the experimental data versus the simulations of Fig. 3.25. For the
simulations, we also show the effect of adding 1/f broadening (convolution with a Gaussian
with σ = 0.05 mΦ0.)
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to measure the two-sided environmental noise spectrum SΦ(f) between ∼ 500 MHz and

∼ 6 GHz (see Chapter 4), allowing us to come up with a phenomenological model for the

noise versus frequency as in Fig. 4.23(c). This noise model has an effective temperature

of ∼ 30 mK for f . 3 GHz. We can then plug this noise model into our single-qubit

annealing trajectory to compute the up and down transition rates as a function of time

according to Fermi’s golden rule,

Γ↓/↑(t) =
1

~2

1

L2
|〈0|Φ̂|1〉(t)|2SΦ(±f10(t)). (3.43)

We incorporate the environmentally induced transitions into our simulation by gen-

eralizing it to a Lindblad master equation [102, 103] for the qubit’s density matrix,

ρ̇ =
1

i~
[H, ρ] +

∑
k

(
LkρL

†
k −

1

2
{ρ, L†kLk}

)
. (3.44)

This is a standard approach for weakly coupled Markovian environments, where the

Lindblad superoperators Lk are introduced to represent stochastic transitions between

energy levels.32 It is valid to use this approach under the same conditions we will dis-

cuss in the context of Fermi’s golden rule in the next chapter. This will be the case

everywhere except possibly right near zero tilt, where the minimum gap becomes smaller

than the linewidth of the qubit. We note that this same master equation model was

also successfully used to quantitatively predict Landau-Zener transition probabilities in

a superconducting qubit system with dissipation [104]. We use two collapse operators

32Physically, this type of equation is derived from the unitary evolution of the joint system + envi-
ronment and subsequently tracing over the environment’s degrees of freedom.
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corresponding to qubit excitation and decay,

L↑(t) =
√

Γ↑(t)σ+, L↓(t) =
√

Γ↓(t)σ−. (3.45)

In the beginning of the actual experiment, the system is not initialized entirely into its

ground state, but rather has a small percentage occupation of the first excited state given

by a stray population pstray typically around 1 %. Accordingly, we initialize our master

equation simulation with the qubit in the mixed state ρi = (1−pstray) |0〉 〈0|+pstray |1〉 〈1|

to mimic the actual experiment. This is the reason why the S curve does not go all the way

to zero/one for large negative/positive pretilts. We also note that the full machinery of

the Lindblad master equation is not actually necessary when the dynamics are adiabatic

(which is almost everywhere for long ramp times), because then the final populations at

the end of the anneal are simply determined by integrating the transition rates Γ↑/↓(t)

over time (in other words there is a rate equation for two probabilities without any

off-diagonal terms in the density matrix).

As a technical note, to actually numerically solve the master equation (3.44), we need

to work in the instantaneous energy basis, because this is the basis in which the transitions

happen for a weakly coupled environment. However, the resulting Hamiltonian then

becomes H(t) = −1
2
hf10(t)σz (where f10 is the instantaneous gap), which when integrated

gives bogus results. The reason is that when we use the instantaneous energy basis, we

have taken a frame of reference “rotating” with the system. In reality, the actual equation

of motion obeyed by the qubit in this time-dependent basis is given by an effective
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Hamiltonian that picks up an extra nonadiabatic geometric correction term [105],

Heff(t) = −1

2
hf10(t)σz − ~g(t)σy, (3.46)

where

g(t) ≡ 〈1(t)|∂t|0(t)〉, (3.47)

with the derivative taken in the lab frame. We use this effective Hamiltonian for our

master equation simulation (we verified that this effective Hamiltonian gives the same

results as (3.41) in the absence of the environment).

The results of the simulations with environment are shown by the solid lines in Fig.

3.25. For the 8 and 40 ns ramps, including the environment barely makes a visible

difference to the width. However, for the 4000 ns and longer ramps, there is an enormous

difference due to thermalization to the environment, causing the S curve to be greatly

widened.

In summary, we have seen that we can view the single-qubit annealing process as

a tradeoff between nonadiabaticity and thermalization, and have used this insight to

understand the experimental S curve data for different ramp rates. Going much faster

than the thermalization timescale (in particular, faster than the fastest anneal time of

5µs available on current D-Wave hardware) can substantially change the success rate of

the single-qubit annealing.
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Chapter 4

Noise, dissipation, and observing the

classical-quantum crossover

Superconducting flux qubits in a quantum annealer cannot be treated as a quantum sys-

tem isolated from its environment. For the same reasons that superconducting qubits

can be easily coupled together (as we’ll study in Chapters 5 and 6), they can also unin-

tentionally couple to baths of microscopic defects, or to a poorly engineered microwave

electromagnetic background. In particular, the fluxmon is unfortunately very sensitive

to flux noise, even more so than other types of superconducting qubits (or in a more

positive light, it enables the use of the fluxmon as a sensitive tool to study flux noise and

perhaps figure out how to reduce it). For readers familiar with flux-tunable transmon

qubits, we note that even at zero tilt the fluxmon’s flux sensitivity is 100× larger than

typical transmon qubits, and away from degeneracy it can be another factor of 10 larger!
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In quantum annealing, fundamentally different behavior can occur in the presence of

environmental noise and dissipation; this is the reason that existing real-world devices

are called “quantum annealers” as opposed to “adiabatic quantum computers.” For ex-

ample, dissipation can suppress quantum tunneling rates, which is one motivation for the

construction of a quantum annealing device without the use of dissipative dielectric mate-

rials. Low frequency flux noise, whose precise microscopic origin is still largely unknown,

leads to dephasing, which, for small enough tunneling matrix elements, reduces other-

wise coherent quantum tunneling into incoherent quantum tunneling with a quadratically

suppressed tunneling rate, potentially undoing an otherwise present quantum speedup.

In addition, low-frequency flux noise can lead to parameter drift translating to program-

ming errors in any quantum annealer if the drifts cannot be continually re-calibrated on

the timescale of the noise.

In this chapter, we will quantify how the fluxmon qubit is coupled to its environment.

In particular, we look at noise and dissipation induced by flux noise and dielectric loss, and

their effects on quantum tunneling between flux qubit wells. In most cases, the effects of

noise and dissipation can be described by a properly defined spectral density that captures

the statistics of the environmental degrees of freedom. This description is valid when the

noise source is Gaussian, which in most (but not all) cases we expect to be true as long

as the environment consists of a large collection of individual fluctuators (think central

limit theorem). We will study noise, dissipation, and spectral densities in depth both

theoretically and experimentally. Using various experimental techniques we will extract

155



the fluxmon’s environmental flux noise spectrum over a wide range of frequencies. In

particular, by extracting the flux noise spectrum over a range of frequencies near the

energy scale set by the device temperature (∼ 1 GHz), we are able to observe for the first

time the crossover between the classical and quantum regimes of flux noise. The fact

that the noise follows a 1/fα spectrum all the way to such a high frequency restricts the

possible mechanisms responsible for the noise. Finally, we will see how these independent

noise measurements can be used to approximately predict the performance of quantum

tunneling between flux qubit wells.

4.1 Dephasing and low-frequency 1/f noise

The fluxmon qubit forms a continuous dc loop from one side of its dc SQUID to the other

through the ground plane, making it insensitive to charge noise at low frequencies. On

the other hand, it will still be sensitive to any low-frequency noise in magnetic flux. For

several decades, low-frequency magnetic flux noise has been observed in superconducting

circuits, including SQUIDs and superconducting qubits [106, 107, 108, 109, 110, 111,

112, 113]. This flux noise is observed to have an approximately 1/f spectrum at low

frequencies, meaning a frequency-dependent power spectral density of the form SΦ(f) ∝

1/fα(f) with α close to 1 at low temperatures [110, 114, 115, 116, 117, 118, 119, 62,

71]. Given the ubiquity and importance of this noise, it is perhaps surprising that its

microscopic origin has yet to be determined.

A commonly accepted view is that the 1/f noise probably arises from a bath of
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telegraph-like magnetic fluctuators, with a wide and properly distributed range of relax-

ation times (we will explain what this means momentarily), which couple random fluxes

to the qubit loops. These fluctuators might be spatially localized, weakly interacting

single spins or spin clusters in the vicinity of the qubit, or collective, spatially distributed

dissipative modes associated with the diffusion of magnetic moments around the qubit.

One of the experimental results of this chapter is that the latter phenomenon, known as

“spin diffusion,” is unlikely to be the source of the 1/f flux noise, at least not over the

entire frequency range over which we observe it.

We can briefly give a generic argument for what it means for 1/f noise to originate

from an ensemble of fluctuators, and why this type of origin may in fact be expected.

A telegraph fluctuator is any physical quantity that fluctuates between two states with

a constant probability per unit time for transitioning from one state to the other (i.e.,

a Poissonian process). Physically, this fluctuator may be a subsystem with two stable

configurations separated by a potential energy barrier, where transitions between the two

configurations are possible when enough energy is supplied. As shown in Ref. [120], by

analyzing the resulting differential equation dictating transitions between the two states,

the autocorrelation function is exponential in time with time constant τ , leading to a

Lorentzian spectral density1 of noise for a single fluctuator,

S(ω) ∝ τ

ω2τ 2/4 + 1
. (4.1)

1Right now we use ‘proportional to’ symbols for spectral density, but in a later section we will carefully
define the single- and double-sided noise power spectral densities of a random process. In fact, to be
sure that all factors of 2 and 2π are correct, we will actually derive the Wiener-Khinchin theorem later
in this chapter.
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Following Dutta and Horn [121], if we have a collection of independent fluctuators with

a distribution of characteristic times D(τ), the sum of the noise from all fluctuators will

then take the form

S(ω) ∝
∫

dτD(τ)
τ

ω2τ 2/4 + 1
. (4.2)

If the two stable states of each fluctuator are separated by a potential energy barrier of

height ∆E, then if the fluctuation is thermally activated we would expect the transition

rate to roughly be

1

τ
∝ 1

τ0

exp(−∆E/kBT ), (4.3)

where T is the temperature. If the fluctuations are instead driven by quantum tunneling

between configurations (“quantum fluctuations”), there would (nominally) no longer be

a temperature dependence, but we would still obtain an exponential dependence of τ

on ∆E consistent with the WKB approximation (2.54). It is physically reasonable to

expect a more or less uniform distribution of activation energies ∆E, at least over a

limited range, which translates to a distribution D(τ) ∝ 1/τ over a very wide range of

τ . Suppose this range is defined by τ1 � τ � τ2. Then, for 1
τ2
� ω � 1

τ1
, we can take

the limits of integration for τ in (4.2) to be 0 and ∞, yielding

S(ω) ∝ 1

ω
. (4.4)

Using this argument, one may convince oneself that 1/f noise should actually be ex-

pected to be fairly ubiquitous. Note that we have not specified the expected temperature

dependence of the noise, as this depends on other assumptions, a point to which we will
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come back later. In this section, we describe simple experiments to measure the total

noise power of the low frequency noise, followed by more involved experiments to extract

frequency-resolved information about the noise spectrum.

4.1.1 Integrated effect of noise: T2, broadening, and program-

ming errors

The effect of low-frequency flux noise on the fluxmon depends very strongly on where

the qubit is being biased during an experiment. For example, at the special bias of zero

tilt, which gives a symmetric potential, the first-order sensitivity of f10 to tilt flux bias

vanishes (intuitively, at this special point the states are insensitive to dephasing from flux

noise because the energy eigenstates all have the same expected value of flux), and the

dephasing due to noise in the SQUID flux bias will dominate. However, away from zero

tilt the sensitivity to tilt flux bias very quickly becomes dominant. This effect is most

drastic in the regime of large persistent current, say ∆/h . 1 GHz, where the sensitivity

can be of order 1000 GHz/Φ0, around 1000 more sensitive than tunable transmon qubits

used for gate-based quantum computing [40]. These points are illustrated quantitatively

in Fig. 4.1, where we plot the sensitivities to each flux bias as a function of flux biases.

During quantum annealing, however, the flux bias of the qubit will not be fixed, and will

in general deviate from zero tilt, making sensitivity to tilt flux noise a primary concern.

An easily observable effect of 1/f noise is the loss of phase coherence between energy

eigenstates, which is equivalent to a decay in time of the off-diagonal phase elements
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Figure 4.1: Sensitivity of qubit transition frequency f10 to SQUID and tilt flux biases, in units
of GHz/Φ0, with contours of constant f10 drawn in at f10 = 3, 5, and 8 GHz for reference.
Note that away from degeneracy (zero tilt), the sensitivity to tilt flux can be much higher than
the sensitivity to SQUID flux. These numbers can be compared with a typical Xmon transmon
flux sensitivity of ∼ 1 GHz/Φ0). The sudden jump in tilt bias sensitivity at Φt ≈ .004 Φ0

corresponds to when the first two eigenstates stop being in different wells and occupy the same
well.

in the ensemble-averaged qubit density matrix. The characteristic time it takes for the

phase to decay gives information about the integrated noise power (modulo some filter

function unique to the pulse sequence), and the precise functional form of the decay

of the phase coherence vs. time gives some information about the shape of the noise

spectral density vs. frequency. Similarly, in frequency space, the noise will lead to a

broadening of the qubit’s energy transition in spectroscopy, and the precise shape of the

spectroscopic peak will give some information about the functional form of the noise

power vs. frequency.

The simplest time-resolved experiment to measure phase decay is the Ramsey pulse

sequence [122], illustrated in Fig. 4.2(a). A simplified explanation of this experiment is as
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Figure 4.2: (a) Illustration of pulse sequence and Bloch sphere trajectory of a simple time-
resolved Ramsey phase coherence experiment. (b) Typical Ramsey decay envelope measured
for a fluxmon qubit at zero tilt and f10 ≈ 5 GHz. For this dataset, we extract Tϕ2 ≈ 40 ns and
Tϕ1 ≈ 300 ns. (c) Extracted Tϕ2 vs. tilt bias at a gap of ∆/h = 1 GHz. The functional form
of the degradation away from zero tilt is consistent with two relatively uncorrelated 1/f flux
noise sources in the fluxmon’s SQUID and tilt loops.
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follows. After initializing the qubit in its ground state |0〉, a π/2 pulse2 is applied to bring

the qubit to the superposition state 1√
2
(|0〉+ |1〉) on the equator of the Bloch sphere, in a

frame rotating with the resonant drive. We then wait for a variable delay time t. In the

rotating frame of the qubit, the relative phase of the |0〉 and |1〉 state components should

not change, so that when a second π/2 pulse is applied, the qubit should end up at the

north (or south, depending on the sign of the pulse) pole of the Bloch sphere. If there

is any drift in qubit frequency during the delay time, this will lead to the accumulation

of an azimuthal phase δϕ on the equator, meaning the probability of ending the correct

state at the end is reduced. For an ensemble average of random phase drifts, this will act

to shrink the magnitude of the resulting Bloch vector, corresponding to dephasing. A

fully dephased qubit will end up at the center of the Bloch sphere (although in the very

long time limit [compared to T1 energy decay] it will also move vertically on the Bloch

sphere end up in the ground state).

In practice, the drive frequency is chosen to be slightly detuned from the true qubit

frequency, so that oscillatory “fringes” at the detuning frequency can be observed, making

it easier to distinguish true phase decay from an unintentional small fringe frequency. In

addition, we typically measure the decay of the envelope function deduced from two-axis

tomography with both X±π/2 and Y±π/2 pulses (which rotate the basis of measurement)

in order to make the measurement more robust, defining the Ramsey envelope visibility

2A π/2 pulse is similar to the π pulse we used in the previous chapter, but with nominally half the
duration (or amplitude).
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as

V =
1

2

√
(〈σx〉 − 〈−σx〉)2 + (〈σy〉 − 〈−σy〉)2, (4.5)

where the expectation values are taken when the Bloch vector is on the equatorial plane,

before the second π/2 pulse.

It can be shown that for phase fluctuations that are Gaussian distributed, the ensemble-

averaged Ramsey envelope visibility is only a function of 〈δϕ2(t)〉 given by V (t) =

exp
[
−1

2
〈δϕ2(t)〉

]
[123]. In a real experiment, we have

V (t) = A exp

[
−1

2
〈δϕ2(t)〉 − t

2T1

]
+B, (4.6)

where A ≈ 1 accounts for readout and state preparation error, B ≈ 0 accounts for

nonzero steady state stray population, and T1 accounts for exponential energy decay

from |1〉 to |0〉. For the fluxmon though, T1 is much longer than the dephasing time Tϕ2

at the operating points at which we perform Ramsey, so we can ignore this contribution

for most purposes. Note that the Ramsey decay time (without spin echo) is often called

T ∗2 in the literature.

Fig. 4.2(b) shows a measured Ramsey envelope vs. delay time for a typical fluxmon

qubit on a sapphire substrate, biased at zero tilt and f10 = ∆/h ≈ 5 GHz. Fitting the

accumulated phase error in (4.6) to the form

1

2
〈δϕ2(t)〉 =

t

Tϕ1

+

(
t

Tϕ2

)2

, (4.7)

we typically extract Tϕ1 � Tϕ2, meaning that the Ramsey envelope is nearly Gaussian.

As shown in Ref. [123], this is consistent with predominantly 1/f noise in the frequency
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range relevant to the Ramsey experiment. Explicitly, assuming a 1/f flux noise spectrum

SΦ(f) =
S∗Φ
f

, one can compute a resulting Tϕ2 of [115]

1

Tϕ2

≈ 2π√
2

df10

dΦ

√
S∗Φ

√
ln

(
0.4

flt

)
≈ 3.5 · 2πdf10

dΦ

√
S∗Φ, (4.8)

where fl is a low-frequency cutoff is given by the total experimental data acquisition time

(i.e., including all repetitions of an ensemble average), typically of order 1 minute, and

t is of order Tϕ2 itself. This means that given a Tϕ2 and flux sensitivity, we can extract

an equivalent 1/f flux noise amplitude, specified by its value at 1 Hz. For example, for

the zero-tilt data shown in Fig. 4.2, the qubit had a Tϕ2 of 40 ns and a sensitivity to

SQUID flux of ∼ 200 GHz/Φ0, implying an equivalent flux noise amplitude of 6µΦ0/
√

Hz

in the DC SQUID loop. The quantitative utility of this metric however is unclear, since

the slope α in the 1/fα noise power law could easily deviate from 1, and the actual

noise power in the DC SQUID loop at 1 Hz is actually measured to be less, more like

2µΦ0/
√

Hz.

From the flux sensitivity landscape of Fig. 4.1 (or more intuitively from the hyperbolic

form of f10 vs. tilt seen in Fig. 2.10(a)), we should expect that the dephasing time should

get worse as we move away from zero tilt bias, assuming that the flux noise in the tilt

loop is at least as bad as the noise in the DC SQUID loop. In Fig. 4.2(c), we plot the

extracted Tϕ2 vs. tilt bias at ∆/h = 4 GHz, which shows that this is indeed the case.

Away from zero tilt, the Tϕ2 roughly saturates to a constant value determined by the

slope of the f10 hyperbola away from zero tilt. For ∆/h = 4 GHz, this worst-case Tϕ2 is

typically around ∼ 9 ns, with some samples a bit lower down to ∼ 6 ns, and occurs at a
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flux sensitivity of ∼ 450 GHz/Φ0. Using the known sensitivies to SQUID and tilt flux,

we can fit the curve to a model with uncorrelated 1/f noise in the SQUID and tilt loops,

which fits the data fairly well. The fitted flux noise power in the tilt loop is typically 3 -

5 times larger than that in the SQUID loop, which makes rough qualitative sense given

the geometries of the loops (specifically, the effective length over wire thickness, which

for independent spin fluctuators should scale linearly with the noise power [111]).

As can be seen in Fig. 4.1(a), the tilt flux sensitivity in the small-gap, double-well

regime can be substantially higher, up to a few thousand GHz/Φ0. Unfortunately, this is

such a large flux sensitivity that Tϕ2 is expected to be only ∼ 1−3 ns, too small to reliably

measure (primarily because we can’t perform the π/2 pulses that fast). However, it is

still possible to do a measurement of dephasing here, but in the frequency domain instead

of the time domain, by looking at the spectroscopic linewidth of the qubit. An example

dataset of linewidth extraction vs. tilt bias for ∆/h = 1 GHz is shown in Fig. 4.3(a)

(raw data) and (b) (extracted linewidth). One can see that the linewidth (half width at

half maximum) starts fairly narrow, around 10 MHz, and then very quickly saturates to

∼ 100 MHz away from zero tilt, consistent with a Tϕ2 of 1 - 2 ns as expected. We note

that D-Wave infers this noise through the linewidth of macrosopic resonant quantum

tunneling between flux qubit wells (an experiment which we will discuss later in section

4.3). We note that the method used here is more direct than the MRT linewidth method,

as it directly gives the broadness of the qubit transition in units of energy, rather than

having to convert from a flux linewidth to an equivalent energy linewidth.
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Figure 4.3: (a) Raw spectroscopy vs. tilt data. Note that the linewidth at zero tilt (reddish
color on green background) is much narrower than the linewidth away from zero tilt (greenish
color on blue background). The colors differ because the background thermal population is a
function of frequency, whereas the linewidths differ because of the variation in flux sensitivity
vs. frequency. (b) Example of Gaussian fit to lineshape used to extract qubit linewidth at
f10 = 2.75 GHz. (c) Extracted linewidth versus frequency (tilt bias).

The broadening of the linewidth due to tilt flux noise can be related to programming

errors in an implementation of quantum annealing. Namely, each time an annealing

experiment is run, one has to specify the values of h and J in the notation of the Ising

Hamiltonian Eq. 1.5 (remember, in the double-well limit, from Eq. (2.50) we have

h = ε/2 = IpΦt). Flux noise that is slower than the repetition rate of the experiment can

be treated as a DC offset to the value of h and J that is different for each experimental

run, potentially changing the answer that the annealer gives at the end. The exact lower

cutoff for the programming noise integral is expected to roughly be the frequency at

which one can re-calibrate the device parameters. A linewidth of 100 MHz will then

correspond to roughly of order 100 MHz uncertainty in programming h, which on a full
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scale of 3 GHz would correspond to a few percent. When considering quantum annealing

applications, one should keep in mind that even a small change in h and J can completely

change the ground state when the system is large, since the energy levels will come closer

and closer together for large systems.

A common family of techniques, primarily developed in the field of nuclear magnetic

resonance (NMR) [124, 125, 126] and more recently applied to superconducting qubits,

are “spin echo” techniques in which a sequence of pulses (usually mostly pi pulses) are

inserted into the algorithm in order to “cancel out” low frequency noise, by periodically

reversing the sign of unwanted phase accumulation. These techniques work well for gate-

based implementations where all qubit operations are performed relative to a fixed flux

bias point, but it is not clear how one would extend these techniques to flux qubits in

quantum annealing where the qubit bias constantly changes over an enormously compli-

cated energy landscape with couplings to many other qubits. Furthermore, in the later

stages of annealing, tunneling is very slow making it unclear how to even apply something

analogous to echoing. However, this and other potential forms of error correction would

be an area worth further study.

4.1.1.1 Geometry dependence of qubit linewidth

It is reasonable to expect that the physical geometry of the fluxmon may have an effect

on the level of flux noise. For example, a simple geometric argument can roughly explain

the often (but not universally) observed scaling of flux noise in SQUIDs with SQUID

geometry [110, 113]. Imagine that we want to calculate the flux noise through a circular
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loop of skinny metallic wire, and that the source of the noise is a collection of microscopic

spin-1
2

magnetic dipole fluctuators uniformly distributed on the wire’s surface. We will

refer to this loop of wire as the qubit loop. Let us further assume that the fluctuators are

independent from one another. Call the thickness (cross-sectional radius) of the qubit

wire r, and the radius of the qubit loop R. The flux threaded through the qubit loop by

one of the spins at first seems like it would be a complicated calculation, but it can be

easily solved using reciprocity. To see what this means intuitively, we can pretend as if

the microscopic spin is a tiny current loop with an area As and current Is, yielding its

magnetic moment ~µs = I ~As. If a current Iq flows in the qubit loop, the flux it threads

through the imaginary spin loop is Φs = Mq→sIq. Conversely, if a current Is flows in

the tiny spin loop, it induces a flux in the qubit loop Φq = Ms→qIs. Reciprocity is the

statement that Ms→q = Mq→s ≡ M . Identifying Φs with AsB(~r), where B(~r) is the

magnetic field generated by a test current Iq in the big loop, minimal algebra then shows

that the flux induced in the big metallic loop is

Φq = µs
B(~r)

Iq
. (4.9)

For the ideal toroidal wire geometry, the magnetic field at the surface of the wire gen-

erated by a test current I is ∝ I
r

(via Ampere’s law and symmetry), meaning the flux

threaded from spin to qubit is ∝ 1
r
. If there is a uniform density of independently fluctu-

ating spins, when integrated over the surface area of the wire their flux will then add inco-

herently to yield a flux noise power proportional to 〈Φ2〉 ∝ R
r
. Using instead the thin-film

geometry more appropriate for a qubit wire fabricated with thin-film deposition would
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Figure 4.4: Width variation sample. Subset of four fluxmon qubits on the same chip with
differing CPW geometries. The geometries were chosen so that all qubits all have fLC ≈ 20 GHz
and ZLC ≈ 75 Ω. Note that the CPW characteristic impedance for the “double arm” geometry
is different, but the lumped element impedance for both CPW arms in parallel ends up being
the same as the single-arm qubits.

yield a slightly modified result by a logarithmic factor, 〈Φ2〉 ∝ R
W

[
ln(2bW/λ2)

2π
+ 0.27

]
,

where here W is the width of the thin-film wire [110]. The CPW geometry of the flux-

mon is more complicated than this, but numerical COMSOL simulations of the CPW

current flow show that for a uniform independent spin model we should still expect a

noise power proportional to `/W , where here ` is the length of the CPW, and this fact

does not materially depend on the superconductor penetration depth, at least for the

dimensions considered.

As an initial test of geometry dependence of the fluxmon’s coherence, we fabricated

a sample with several qubits of different CPW widths on the same chip and measured

these qubits during the same cooldown. Four of these qubits are shown in Fig. 4.4.
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Qubit ZLC (Ω) w (µm) g (µm) Saturation linewidth Equivalent tilt flux noise
HWHM (MHz) (µΦ0)

1 74 8 2 110± 8 54
2 74 16 4 100± 6 50
3 74 32 8 80± 8 40
5 108 20 20 80± 7 46
6 108 10 10 80± 6 46
7 150 4 12 90± 7 63
9 74 4 12 90± 8 43

Table 4.1: Table of measured saturation linewidths vs. qubit geometry. There is at most a very
weak trend, if any, with overall qubit CPW width.

Qubits 1 through 3 are standard fluxmon qubits with equal fLC and equal ZLC , but with

different overall scales for the CPW width and gap (keeping their ratios constant). The

other qubit shown is a “double-arm” variant that has the same lumped-element fLC and

ZLC as the others but a different CPW gap to width ratio (the math works out because

the two arms of the qubit are in parallel). There were also three more single-arm qubits

not shown in the picture.

In table 4.1, we display the measured saturation linewidths [as defined in Fig. 4.3(c)].

We observe only a very weak improvement, if any, in the linewidth as the overall CPW

width increases. Note that, assuming all the noise comes from independent fluctuators on

the CPW wiring, we would have expected a 50 % reduction in the linewidth between Q1

and Q3, but instead observe a ∼ 25 % reduction. We would also expect a
√

2 difference

between Q5 and Q6 but we observe no measurable difference. We note that various sanity

checks were performed to make sure the broadening is intrinsic to the qubit and not from

bias line noise (an explicit frequency-resolved plot of bias line noise vs. measured flux
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noise will be shown in a later section), so this does not explain the lack of scaling. Another

possible explanation is that much of the low-frequency flux noise in the qubit’s tilt loop

actually comes from spin fluctuators located on the skinny DC SQUID wiring, since this

wiring shares a boundary with both the CPW (tilt) and SQUID loops (see inset of of

device picture in Fig. 3.1). However, later data shows devices in which the SQUID flux

noise was improved while the tilt flux noise was not, making this explanation unlikely.

A second possible explanation of the weak scaling with size is that the fluxmon is in

a regime where independent spin fluctuators are less dominant than interacting fluctua-

tors, which would invalidate the simple scaling argument we gave earlier. For example,

according to a recent theoretical study, if there is an inhomogeneous density of spins

on the qubit surface undergoing spin diffusion [127], this inhomogeneous distribution of

spins can yield an exponent of α < 1 in the frequency dependence and a corresponding

weaker than linear dependence of of the noise on overall width of the CPW geometry.

However, as we will see in the next section, the slope α of the tilt flux noise is observed to

be fairly close to 1, so this description would not completely capture the observed noise.

It is also possible that the level of flux noise in fluxmon devices is low enough that

it is no longer dominated by surface spin defects, but perhaps spins in the bulk of the

substrate. This is also consistent with the fact that when we try various materials surface

treatments, the noise has only gotten worse, not better. However, it is still possible

(and very much hoped) that more careful surface treatments and an improved vaccuum

environment can reduce the noise further if it indeed originates from chemisorbed or
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physisorbed surface spins [128]. In the following section we will see more conclusive

results when looking at the frequency-resolved flux noise on a different sample varying

the CPW length instead of the width, where we will see a more clear-cut linear scaling

(although those results do not distinguish between surface and bulk fluctuators).

4.1.2 Method for frequency-resolved measurement of quasistatic

noise

A single dephasing number is not extremely useful for modeling the performance of

qubits. This point is understood quite well for gate-based quantum computation, where

noise on the timescale of gates has a qualitatively different effect than lower-frequency

noise which can be “echoed” away. Furthermore, noise at the frequency of the qubit has

yet another qualitatively different effect which is related to dissipation. In this section,

we describe how to measure the frequency resolved noise power spectral density in the

low frequency range f . 10 KHz. In a later section, we will study very high frequency

(f ∼ 1 GHz) noise and its effects on qubit coherence, and at the end of this chapter we

will look at the effect of both these types of noise on quantum tunneling.

Frequency-resolved measurements of flux noise in SQUIDs have been around for a

while [106, 107, 111]. Frequency-resolved measurements of flux noise in SQUID-based

superconducting qubits have seen several developments in the past decade. Bialczak et al.

measured flux noise at very low frequencies by directly measuring the fluctuating resonant

response of a phase qubit in the frequency domain. The MIT/Lincoln Labs group has
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pioneered various measurements to probe flux noise at higher frequencies [114, 116, 118].

For the fluxmon, since the noise in the main qubit loop in general dominates the qubit

decoherence, we will focus specifically on the measurement of tilt flux noise. We refer

to noise slower than the experimental repetition rate as quasistatic. To measure the

quasistatic flux noise in Φx
t (i.e., noise in ε), we use a pulse sequence similar to that used

in Ref. [112] combined with the signal processing techniques used in Refs. [115, 116].

This allows us to obtain data both well below and well above 1 Hz, the latter being

achieved by directly processing a binary sequence of single-shot measurements.

The measurement works as follows. We treat each experimental repetition as if it

had a static flux offset, and repeatedly measure a function f(Φx
t (t)) that is sensitive to

fluctuations in Φt but not to fluctuations in ΦSQ. We do this by performing the pulse

sequence illustrated in Fig. 4.5(a). We initialize the qubit in its ground state (by energy

relaxation) in the single-well regime at zero tilt. We then symmetrically raise the barrier

(this is equivalent to single-qubit annealing) so that in the absence of noise in Φx
t there

would be probability 0.5 to end up in the left or right well, completely uncorrelated with

any previous or future measurement. Deviations from P = 0.5 correspond to deviations

away from zero tilt in Φx
t . We calibrate this experiment by measuring P|R〉 (the probability

of ending up in the right well) as a function of applied tilt bias Φx
t , as shown in Fig. 4.5(b).

This is precisely the S-curve experiment (single-qubit annealing) described in section

3.4. Since we accurately know the applied flux, this curve gives a direct calibration

P|R〉(Φ
x
t ) between physical flux and probability, which (as detailed below) can be used
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to convert between probability noise and flux noise as long as the flux excursions are

small enough that they remain on the linear part of the curve (close to P|R〉 = 0.5). The

exact functional form of this curve depends on the ramp rate due to factors including

non-adiabatic transitions, the integrated low-frequency flux noise, and thermalization,

but it is possible to choose a ramp rate such that the flux fluctuations remain within the

linear part of the curve. We do this by choosing a ramp rate that is fast enough to give

enough broadening from nonadiabatic transition such that flux noise contributes a small

but still measurable contribution to the width of the curve. We can verify this by looking

at the raw measurement statistics of the noise measurement when nominally parked at

P|R〉 = 0.5. For example, Fig. 4.5(c) gives a histogram of probabilities obtained by

averaging every 100 consecutive single-shot samples, along with a Gaussian fit. We also

checked experimentally that the quasistatic sensitivity to the barrier bias, dP|R〉/dΦx
SQ,

was less than 1
100
· dP|R〉/dΦx

t , which is certainly negligible upon taking the square when

comparing the relative contributions of incoherent flux noise.

For flux noise data below ∼ 0.1 Hz, we measure a time series of P|R〉 (each value being

the average of a few hundred consecutive stats) over a total period of ∼ 24 hours and

use the same signal processing techniques as in Ref. [115] to obtain S+
Φxt

(f). For the data

above ∼ 0.1 Hz, we instead obtain S+
Φxt

(f) by processing time series of N ≈ 1 million

single-shot measurements taken with a regularly spaced sampling interval δt (ranging

from 10−100µs) and use a variant of the signal processing techniques used in Ref. [116].

We refer to this method as a “1-bit detector measurement” because it involves keeping
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Figure 4.5: (a) Illustration of pulse sequence for the quasistatic flux noise measurement. (b)
Calibration curve giving probability to end up in the right well as a function of external tilt
flux bias. Note that this is simply the S-curve described in Fig. 3.17 without a pi-pulse. (c)
Semi-log histogram of probabilities (obtained by averaging every 100 consecutive single-shot
measurements) showing a Gaussian distribution with a standard deviation small enough to be
within the linear part of the flux-probability curve.

all single-shot measurement results without explicitly computing probabilities. Given an

underlying sequence of flux fluctuations {δΦn} in the qubit, we obtain a finite proba-

bilistic binary sequence {xn} of length N , with xn ∈ {−1,+1} corresponding to each

single-shot measurement, where −1/+1 are assigned to the outcomes |L〉/|R〉 respec-

tively. The probability Pxn of obtaining −1 or +1 is related to the underlying sequence

{δΦn} according to

Pxn(x) = δ(x− 1)

[
1

2
+

dP

dΦx
t

δΦn

]
+ δ(x+ 1)

[
1

2
− dP

dΦx
t

δΦn

]
, (4.10)
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where for short we now use P to denote P|R〉 and we have assumed a linear probability-flux

curve. Defining the DFT coefficients as

x̃k ≡
N−1∑
n=0

xne
−i2πnk/N , (4.11)

then the expected value for the periodogram (PSD estimate) of {xn} can be related to

the underlying power spectral density of {δΦn} according to

〈|x̃k|2〉 =
N−1∑
n,m=0

〈xnxm〉e−i2π(n−m)k/N

=
N−1∑
n,m=0

[
4

(
dP

dΦx
t

)2

δΦnδΦm + δn,m

]
e−i2π(n−m) k

N

= 4

(
dP

dΦx
t

)2
∣∣∣∣∣
N−1∑
n=0

δΦne
−i2πnk/N

∣∣∣∣∣
2

+N

= 4

(
dP

dΦx
t

)2 ∣∣∣δ̃Φk

∣∣∣2 +N, (4.12)

where in the second line we have used the relation for the correlation

〈xnxm〉 =


4
(
dP
dΦxt

)2

δΦnδΦm n 6= m

1 n = m

computed from (4.10). We can then convert to a physical single-sided flux noise PSD
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after assigning a sampling interval time δt to the sequence according to

S+
Φ (f) =

2T

N2

∣∣∣δ̃Φk=fT

∣∣∣2
=

2δt

N

1

4
(
dP
dΦxt

)2 〈|x̃k=fT |2〉 − 2
1

4
(
dP
dΦxt

)2 δt . (4.13)

where T = Nδt is the total acquisition time for the dataset of N samples. The nor-

malization convention for S+
Φ is chosen so that the total power in the signal is obtained

by integrating over positive frequencies only. It is normalized such that the determin-

istic signal Φ(t) = A sin(2πft), with f in the baseband of the sampled DFT, has total

power A2/2 as physically expected. The ability to correctly extract the underlying S+
Φ (f)

with these formulas was verified by numerically feeding in an artificially generated noise

source into a numerical simulation of our measurement, which was in turn fed into the

data analysis software.

Equation (4.13) tells us that the PSD of our measurement sequence S+
x (f) will be

a combination of the underlying S+
Φ (f) plus a white noise floor. This noise floor makes

sense because if there were no flux noise at all, we would expect shot noise from a perfectly

uncorrelated probability of 0.5 for each measurement result. This white noise floor can

be substantial: for typical parameters of δt = 10− 100µs and dP/dΦx
t ≈ 2000/Φ0, it has

an equivalent flux noise amplitude of order 1µΦ0/
√

Hz. Since this is the typical strength

expected for the intrinsic 1/f flux noise of the device, this means the white noise floor

will dominate the signal above ∼ 1 Hz.

Fortunately, there is a way to process the data that allows one to drastically reduce
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the shot noise floor and infer S+
Φ (f) from the measurement of S+

x (f) without noticeably

distorting the underlying flux noise signal [116]. The idea is inspired by the technique

of using two separate detectors to sample a signal and computing the cross spectrum to

throw away the detectors’ contribution to the noise. By breaking {xn} into two inter-

leaved series and taking the cross-spectral density (CSD) of the two sub-series, in the

limit of infinite statistics this would completely eliminate the white noise floor, as shown

below. The intuition behind this is that the interleaving removes the zero-delay autocor-

relation term because the point δΦn never “sees itself” in the sum. However, the actual

datasets are finite, so as discussed below this cancellation will not be perfect. Regarding

the underlying 1/f signal itself, at least at low enough frequencies, the two interleaved

flux noise signals should be approximately equal because the noise is highly correlated,

and so the spectrum should not become distorted. This will be shown numerically below.

Mathematically, we define the two subsequences

x′n = x2n, x
′′
n = x2n+1 (4.14)

n = 0, 1, 2, ...,M − 1, where M = N/2. We define a CSD for these interleaved sequences

multiplied by a particular frequency-dependent phase factor:

〈
x̃′k (x̃′′k)

∗〉
ei2πk/N (4.15)

=
M−1∑
n,m=0

〈x′nx′′m〉ei2π(n−m)k/Mei2πk/2M

= 4

(
dP

dΦx
t

)2 M−1∑
n,m=0

δΦ2nδΦ2m+1e
−i2π(n−m− 1

2
)k/M , (4.16)
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where the extra phase factor in line (4.15) corrects for the phase shift arising from the

time domain offset between the two interleaved sequences. This phase offset ensures that

the interleaved CSD of a deterministic sinusoidal signal with integer wave index q is itself

real.

Equation (4.16) says that if we perform the interleave and take the CSD in the absence

of underlying flux noise, we would observe absolutely no noise (since δΦn is identically

zero). Of course, the only reason the noise cancellation is exact is due to the use of the

expectation value operator, 〈·〉, which means an average over an ensemble of infinitely

many realizations of {xn} generated by a given {δΦn}. In reality, we deal with finite

sequences (N ≈ 106), and instead of (4.15), we can only compute the CSD coefficients

x̃′k (x̃′′k)
∗ ei2πk/N for a finite number of finite sequences. The simplest way to understand

the effect of interleaving on the white noise floor in the actual experiment, then, is to

think about a random walk of phasors in the complex plane. First, let us consider how we

can reduce the noise floor within a single dataset, and then we will consider averaging over

multiple datasets. When {δΦn} is identically zero (no flux noise), each CSD coefficient

of the 1-bit detector measurement will itself a Gaussian distributed complex random

variable, with uniformly distributed phase and some distribution of magnitude that is

peaked close to δt/(dP/dΦx
t )

2. Thus, the white noise floor will not actually be reduced

unless we perform some sort of averaging, either across frequency bins or across datasets.

Since it is informative to plot flux noise on a log-log scale, it is natural to use a logarithmic

averaging scheme where the number of neighboring frequency bins whose CSD coefficients
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are averaged together is proportional to frequency. In other words, the number of bins per

decade of frequency used in the averaging is constant, as we will do for the experimental

quasistatic flux noise data in the next section. Since the number of points N averaged in

a frequency bin is chosen to scale as f , and sum of N random phasors scales in magnitude

as
√
N , then upon taking the average over each frequency bin we would expect the white

noise floor power to decrease as 1/
√
N , meaning as 1/

√
f . Thus, the act of interleaving

and taking a coherent logarithmic frequency average within a given dataset amounts to

a 1/
√
f filter for the white noise floor. This can be seen from the slope of the observed

filtered white noise floor in the numerical simulation of Fig. 4.6.

However, we find that the filtered suppression of the white noise floor from averaging

over frequency bins within a single dataset alone is not enough to bring the white noise

floor below the qubit flux noise signal at high frequencies. Because of this, we further

average the CSD coherently over K datasets, with K a few hundred, before taking the

real part. This gives a factor of
√
K ≈ 10 further reduction in the filtered white noise

floor power without distorting the underlying (presumably) correlated flux noise signal,

according to the numerical simulation of the measurement shown in Fig. 4.6. This

simulation uses artificially generated 1/fα noise signals with α = 1 and α = 0.9 and

magnitude at 1 Hz equal to 5µΦ0/
√

Hz, the value extracted from experiment. We note

that the discretely generated artificial 1/f noise extends an order of magnitude higher

in frequency than the sampling frequency of the simulated 1-bit detector measurement.

This was done purposefully to make sure there is no influence from aliasing. We find that
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RawLPSDL.periodogram9LofLsimulatedL1-bitLdetectorLmeasurement
TheoreticalLPSDLunderlyingLnumericallyLgeneratedL1/fLnoise
Log-averagedLinterleavedLCSDLofLsimulatedL1/fL1-bitLdetectorLmeasurementL.KL=L4009

FilteredLwhiteLnoiseLfloorLofLsimulatedL1-bitLdetectorLmeasurementL.KL=L4009

TheoreticalLshotLnoiseLfloorLofLrawL1-bitLdetectorLmeasurement

TheoreticalLPSDLunderlyingLnumericallyLgeneratedL1/f0.9Lnoise
Log-averagedLinterleavedLCSDLofLsimulatedL1/f0.9L1-bitLdetectorLmeasurementL.KL=L4009

Figure 4.6: Numerical simulation of the 1-bit detector flux noise measurement for artificially
generated 1/f and 1/f0.9 noise. The red line shows the expected white noise level for the raw
1-bit detector measurement without interleaving. Green shows the raw PSD of the simulated
1-bit detector measurement for a single realization of the numerically generated 1/f noise.
The dashed magenta line shows the theoretical PSD used to generate the artificial 1/f noise.
Magenta circles show the result of the simulated 1-bit detector measurement using the same
processing that was used on the experimental data (interleaved + log-averaged over frequency,
averaged over K = 400 realizations of the numerically generated 1/f noise). Orange: same but
for numerically generated 1/f0.9 noise. Blue circles show the white noise floor of the simulated
measurement after interleaving and averaging, with the blue line its theoretically expected level.
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the interleaving technique greatly reduces the effects of aliasing that would otherwise be

present from the substantial amount of 1/f noise that is likely present above the Nyquist

frequency of the measurement. From the simulation, we see that the 1-bit detector

measurement after interleaving and coherently averaging over datasets would faithfully

reproduce the 1/f power spectrum without any significant distortions except for the

highest half-decade of frequency. The filtered white noise is well below the simulated

1/f noise (below the highest half-decade of frequency), which means it is even further

below the experimentally measured flux noise (because of the significant “bump” observed

starting at 10 − 100 Hz in the experimental data).3 As an extra consistency check, we

note that the extracted flux noise data in the experiment was not materially changed

(apart from the highest factor of 2 in frequency) whether we coherently averaged over

250 or 500 datasets.

4.1.3 Experimental flux noise spectrum: geometry dependence

In Fig. 4.7, we show the experimental results of measuring the quasistatic flux noise on

two samples: the width variation sample described in an earlier section (Fig. 4.4), and

also a length variation sample, shown in Fig. 4.8. Consistent with the linewidths in table

4.1, in Fig. 4.7(a) we are unable to extract a trend of flux noise power vs. qubit CPW

width. However, in Fig. 4.7(b), we see a clear trend with CPW length, roughly (but

not exactly) a factor of two increase in flux noise power for each factor of two increase

3We note that the “bump” in noise around 100 Hz in the experimental data is unchanged when the
pulse tube compressor of the dry dilution refrigerator is turned off.
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Width variation Length variation

Figure 4.7: Experimentally measured frequency-resolved flux noise for two sets of fluxmon
qubits. This particular data was taken using 800,000 points at a sampling interval of 100µs
and coherently averaging over K ≈ 250 datasets as per the analysis procedure described in the
previous section. (a) Width variation sample (constant length of 1750µm, see Fig. 4.4). (b)
Length variation sample (dimensions shown in Fig. 4.8).

in CPW length. This rough scaling with CPW length is consistent with most of the tilt

flux noise originating in the CPW (this scaling doesn’t depend on whether or not the

noise comes from the surface or bulk, since the CPW is uniform in the dimension of its

length). However, there is caveat in making this conclusion, because the DC SQUID

design is also different between the qubits; namely, in order to ensure good readout for

each qubit, βmax was designed to be constant, meaning that an increase in qubit length

implies a proportional decrease in qubit junction width, and hence a skinnier vertical

SQUID wire (this segment is just 5µm long). If the noise was dominated by the skinny

vertical SQUID wire, this could also explain the data. However, as mentioned before, we

think that this explanation is unlikely (see the discussion of silicon fluxmons later on). It

might be possible to directly test this by designing a length variation sample where the

DC SQUID resistance (and therefore the DC SQUID geometry) remains constant. This

183



Q1
ℓ = 2ℓ

2

Q2
ℓ = ℓ

2
= 1750 µm

Q3
ℓ = ℓ

2
/2

200 µm
200 µm

200 µm

Figure 4.8: Length variation sample. Optical micrographs of the three qubits of different lengths
measured on the same chip during the same cooldown. Q1, Q2 and Q3 have fLC ≈ 10, 20,
and 40 GHz respectively. All qubit CPWs had cross-sectional dimensions w, g = 8, 2µm, and
ZLC = 75 Ω.

would necessitate a significant change in the readout parameters if it is possible at all.

For the width variation sample, the noise power at 1 Hz is roughly 2.1 ± 0.3 ×

10−11 Φ2
0/Hz, or equivalently 4.6± 0.2µΦ0/

√
Hz, for all qubits. For the length variation

sample, the noise powers for qubits 1, 2, and 3 were 9.0 × 10−11 Φ2
0/Hz (9.5µΦ0/

√
Hz),

3.9×10−11 Φ2
0/Hz (6.3µΦ0/

√
Hz), and 2.5×10−11 Φ2

0/Hz (5.0µΦ0/
√

Hz) respectively. We

see that the difference in noise power between the shortest qubit (Q3) and middle qubit

(Q2) is not quite a factor of two, which is either the result of experimental variation or a

reflection of the fact that as the noise originating on the CPW metal decreases, the noise

contributions from elsewhere (such as the DC SQUID wire) become more noticeable.

However, quoting a number at 1 Hz is not very useful, as the effect of the noise depends

on its power integrated over many orders of magnitude in frequency, and is therefore also

strongly dependent on the slope α in the 1/fα power law. We typically extract an α

between 0.9 and 1.0 below ∼ 10 Hz and α ≈ 0.65− 0.7 above 10 Hz (up to the artificial

data processing roll-off at ∼ 1 KHz).

We emphasize that the width dependence data was taken with all qubits a single chip
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during the same cooldown, as was the length dependence data. This is important unless

we are able to have statistics over many fab runs/cooldowns, because the noise power can

vary as much as a factor of ∼ 2 between fab runs for nominally the same qubit design,

and can vary on order of 10 - 30% on a given qubit between cooldowns.

4.2 Dissipation and high-frequency noise

Low frequency noise is by no means the only way the environment can couple to the

fluxmon qubit. Noise at a frequency that matches a transition frequency between two

energy levels of the system can drive unwanted incoherent transitions between them. A

well-known consequence of this in superconducting qubits is T1 decay and leakage into

non-computational states, two of the primary limits on performance in transmon qubits

for gate-based quantum computing [129, 130]. Furthermore, dissipation not only at GHz

frequencies but also at much lower frequencies can be strongly relevant to slower processes

like quantum tunneling, as first studied in the 1980’s in Josephson junction and SQUID

devices [21, 131, 22], which is relevant for quantum annealing applications. Intuitively,

dissipation keeps quantum systems trapped at the bottom of potential energy wells by

damping the oscillation associated with that well, or more rigorously by reducing the

zero-point variance of the flux and localizing the density matrix [91]. One might at first

think that this is what one actually wants for quantum annealing, since the ground state

of the system is the goal anyway. However, this way of thinking is misleading, as this will

trap the system as a whole in a local, not global ground state. Technically if one waits
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long enough, the energy relaxation could in fact pull the system to its global ground

state, but this can take an exponentially long time and therefore cannot be used for

solving hard computational problems in practice. High frequency noise can also excite

the system out of the ground state, although in quantum annealing this could be a

good or bad thing depending on the potential landscape and when the transition occurs

during the anneal. Dissipation can also help bring the system back to its ground state

if it is excited by a Landau-Zener transition during the annealing process, or conversely

if the system was excited before the Landau-Zener transition, it will end up back in

the ground state afterwards. In other words, excitation could perhaps sometimes help in

quantum annealing. This is obvious in the case of thermally assisted tunneling, especially

for wide barriers where quantum tunneling is bad and thermal activation will actually

be faster [132, 23]. However, if low-frequency dissipation is too substantial, it imposes

extra barriers that suppress quantum tunneling, a serious concern for building quantum

annealers.

Physically, high-frequency noise is intimately related to dissipation, which can some-

times lead to potentially confusing language. There is however a rigorous definition of

both classical and quantum noise and their relation to dissipation, a concept on which

we will elaborate in this section. For a system in thermal equilibrium, there is a simple

relationship between noise and dissipation, namely the fluctuation-dissipation theorem

which covers both classical and quantum noise. We will discuss what this theorem means

as well in this section. However, as we will see later on when we measure dissipation in
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the fluxmon, things can become less clear when the environment is not in equilibrium

(or when its consists of several environments with their own quasi-equilibria).

4.2.1 Dissipation in quantum circuits

Accounting for dissipation in linear, classical circuits is relatively straightforward. There,

dissipation can be represented by a set of (possibly frequency-dependent) resistors. Any

classical linear circuit element is characterized by an impedance, which can always be

written as the series combination of a lossless reactance and one lumped element resistor,

i.e. Z = R+ iX. It is also possible to instead express dissipation as one lumped parallel

resistor, a duality that is analogous to the Thévenin-Norton equivalence for voltage and

current sources [133], as illustrated in Fig. 4.9(a). In the small-dissipation limit, it is

easily derived that the equivalent Rp is

Rp = |Z|2/Rs (4.17)

by computing the impedance of the circuit on the left and taking the small-dissipation

limit Rs � |Z|. A handy way to remember this is that both representations should give

the same loss tangent [97],

Rs

|Z|
=
|Z|
Rp

, (4.18)

where low dissipation corresponds to either a low series or high parallel resistance. In

the following we will choose to represent dissipation in parallel, because admittances

add in parallel and are therefore easier to incorporate into our circuit diagrams. This

representation also often arises naturally. We can then treat the damping of a classical
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(b)(a) (c)

Figure 4.9: (a) “Thévenin-Norton” equivalent representations of dissipation in classical lin-
ear circuits as series or parallel resistance. (b) Classical parallel RLC circuit. A linear LC
oscillator (once rung up) will have its energy exponentially damped vs. time according to
E ∝ exp (−t/RC), where R is assumed to be in parallel. (c) Nonlinear qubit circuit with
lumped parallel dissipation.

linear oscillator, such as the LC circuit in Fig. 4.9(b), by adding a parallel admittance.

As commonly studied in classical circuits, if such an oscillator is rung up and oscillating

at its resonance frequency, its energy will decay over time with a time constant τ = RC.

It is not immediately obvious how to extend this “resistor” representation of dissipa-

tion to quantum circuits, for two reasons. One is that circuits with Josephson junctions

are nonlinear, unlike the linear LC circuit considered in Fig. 4.9(b). Second (and perhaps

more fundamental), the Hamiltonian formalism that we use for quantum circuits leads to

inherently reversible dynamics, making dissipation at first seem unnatural. It will turn

out that the first concern is not difficult to deal with once we figure out how to deal

with the second concern, because even if the qubit itself is not linear, the environment

that represents dissipation usually is. To address the second concern, the resolution is to

add more degrees of freedom the system corresponding to the “environment,” such that

when looking at the qubit, these extra degrees of freedom are traced over. The dynamics

of the joint system can still be unitary, but the effective dynamics of the qubit density

matrix become irreversible.
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In the following, we will explain the Caldeira-Leggett model for quantum dissipation,

where a dense bath of lossless elements can effectively lead to irreversibility. This model

replaces an arbitrary dissipative environment with a dense collection of bosonic modes

(in the context of circuits, LC oscillators). It turns out that using bosonic modes is

very generic, even if the actual microscopic nature of the environment does not consist

of bosons, under the assumption that the bath is in the regime of linear response (it is

only ever slightly perturbed so as not to undergo any type of saturation) and that its

fluctuations are Gaussian [134]. For example, even if the qubit is coupled to a fermionic

bath (or a bath of two-level systems within its dielectric materials, which we will dis-

cuss in section 4.2.2), in the unsaturated regime we can still apply a bosonic model like

Caldeira-Leggett to describe the resulting dissipation. If we further assume the environ-

ment is in thermal equilibrium, we will see how to use the Caldeira-Leggett model to

derive an important result called quantum fluctuation-dissipation theorem. Finally, we

will use Fermi’s golden rule to relate noise and dissipation, which will be important in

understanding the experimental measurements of dissipation and noise in the fluxmon

qubit, and to predict the dissipation induced by various known dissipation sources such

as bias lines.

4.2.1.1 A classical intuition: infinite transmission line as a resistor

We have in fact already dealt with a well-known example where a real admittance can

arise from an infinite collection of infinitesimal lossless elements, namely an infinitely

long transmission line with uniform characteristic impedance
√
L/C. Mathematically,
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Figure 4.10: (a) Ladder model for a transmission line, equivalent to a resistor in the continuum
and infinite length limits. (b) Recursive trick to obtain the input impedance of the ladder
network in the limit of infinite rungs.

one can arrive at the input impedance of the network in a non-rigorous way if one notes

that adding one more rung of L = Lδx and C = Cδx should not change the result [see Fig.

4.10(b)], leading to the recursive relation Zin = ZL + (ZC ||Zin) which is easily solved.

Physically, the “continuum limit” occurs when the wavelength of wave propagation is

much longer than the spacing δx between ladder elements. In this limit, we obtain the

simple result Zin =
√
L/C.

However, mathematically it is puzzling how the result could be a real number, if for

any finite number of rungs on the ladder the impedance is purely imaginary. Physically,

this result appears to make sense since any energy carried by an incident wave at any

frequency on such an ideal transmission line will suffer no reflections and continue to

propagate to infinity, meaning its energy is irreversibly lost from the point of view of the

source, which is indistinguishable from a load resistor matched to the source impedance.

Mathematically however, there is still something to be desired in this explanation. As
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we will see shortly, the resolution is that the concept of impedance assumes an infinite

time limit, and this needs to be properly incorporated into the infinite transmission line,

a process which involves a second limit, namely the limit of infinite modes. As we will

see, this is essentially achieved by switching the order of the two limits, which can be

visualized by adding finite damping to each rung before taking the limit of a lossless

transmission line.

In the following, we will extend this idea to model dissipation in quantum circuits.

The idea will be that irreversibility comes in the limit of infinitely many modes in the

system. All lossless Hamiltonian systems will have a Poincaré recurrence time associated

with them [54]. What we are doing here is taking a limit when this recurrence time

is infinity, or at least larger than any physically relevant timescale. In the language of

quantum theory, this corresponds to having energy levels become arbitrarily close to-

gether, meaning any periodicities associated with these transitions tends to infinity. This

is not a new idea, and in fact analogous models have been around for a very long time

to explain the exponential decay of a two-level atom into the continuum of electromag-

netic vacuum modes. In quantum optics, the Weisskopf-Wigner theory of spontaneous

emission assumes that the atom interacts via a Jaynes-Cummings Hamiltonian with each

mode of the electromagnetic field [135, 136]. In the vacuum limit, these modes form a

continuum, and so the coherent “swapping” of photons between the atom and each mode

interfere in such a way as to induce exponential leakage of the photon to the contin-

uum (within a Markov approximation). Another example using a similar concept was
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introduced by Feynman and Vernon [137]. In a similar spirit to these earlier models, the

Caldeira-Leggett model discussed below extends this idea to linear dissipative systems

in a way that is easily applicable to quantum circuits, by mapping the electromagnetic

environment to a dense bath of weakly coupled LC oscillators.

4.2.1.2 Resistors in quantum circuits: Caldeira-Leggett model

The problem at hand is the following: how can we write down a Hamiltonian for an

arbitrary environmental admittance Y (ω) (with an ideal resistor Y = 1/R being a spe-

cial case)? This is the essence of the Caldeira-Leggett sum-of-oscillators model, which

originates in Ref. [89] (which studied the effect of dissipation on quantum tunneling)

and was applied to the circuit model in Ref. [138]. This model is illustrated by the

indistinguishability of the two circuits of Fig. 4.11. Once we have a Hamiltonian for the

“resistor” part of the circuit in terms of harmonic oscillators, we will be able to straight-

forwardly compute useful quantities such as the quantum thermal distribution of noise

generated by such an environment and how a qubit coupled to that environment will be

damped or excited. We will outline a derivation that was first introduced by Devoret et

al. [138], but will try to introduce some of the relevant mathematical tools (such as the

concept of impedance at complex frequencies) in a more physically intuitive way as well

as correct a few minor errors along the way.

Suppose we have an environmental admittance Y (ω) as illustrated on the left hand

side of Fig. 4.11, which we want to map to the collection of oscillators depicted in the

middle circuit of Fig. 4.11 (it is convenient to assume that the oscillators are parallel
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Figure 4.11: Illustration of the Caldeira-Leggett model for an arbitrary admittance Y (ω) as an
infinite collection of lossless oscillators. The node at the bottom of the circuit is ground.

combinations of series LC oscillators). The task is the find the distribution of Lm, Cm

that will yield an input admittance Y (ω) across the terminals in the continuum limit.

However, each oscillator contributes a purely imaginary admittance to the system,

Ym(ω) =

[
iωLm +

1

iωCm

]−1

, (4.19)

the same problem we had in our earlier discussion of the transmission line. The reso-

lution is to realize that something degenerate happens exactly on resonance, where the

admittance diverges, i.e. at ω = ωm = 1/
√
LmCm. Properly accounting for this pole

will allow us to proceed. Devoret et al. addresses this problem by generalizing the def-

inition of impedance to complex frequencies and taking the limit as the imaginary part

of the frequency goes to zero, i.e., Y [ω] = limη→0+

∫ +∞
−∞ dt Ỹ (t) exp[i(ω + iη)t], where the

time-domain linear response function Ỹ (t) is defined by the response of the current to

an applied voltage, I(t) =
∫∞
−∞ dt

′ Ỹ (t′)V (t − t′) (this is what we mean when we say

impedance is defined in the infinite time limit). A more physical way to arrive at the

same result is to add a finite amount of damping to each of the modes, represented by

the resistors Rm in the circuit on the right hand side of Fig. 4.11, and then later taking
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the limit of zero mode damping. One way to understand this is that Rm gives a finite

response time to each oscillator, allowing us to first take the limit of infinite oscillators

before taking the limit of infinite time at the end of the calculation. Within the finite

mode damping model, the expression (4.19) is modified to

Ym(ω) =

[
iωLm +

1

iωCm
+Rm

]−1

. (4.20)

Defining the oscillator admittance ym =
√
Cm/Lm and quality factor Qm = 1/(ymRm),

then to leading order in ω − ωm this becomes

Ym(ω) ≈ −iym
2

1
ω−ωm
ωm
− i

2Qm

. (4.21)

Next, we can take the limit of zero mode damping by taking Qm →∞. When we take

this limit, Ym becomes proportional to 1/(ω − ωm), but since there is an i in front of

the expression, it still looks like the impedance will be imaginary in this limit as well;

however, this is not the case. When taking the Qm → ∞ limit, we must apply the

following well-known formula from the theory of distributions [139],

lim
ε→0

1

(x− x0)± iε
= p.v.

(
1

x− x0

)
∓ iπδ(x− x0). (4.22)

where p.v is the Cauchy principal value.4 Note that this picks up a factor of i in the

second term. Applying this with ε ∝ 1/Qm to one of our environmental oscillators near

resonance yields

Ym(ω) = −iym
2

[
p.v.

(
ωm

ω − ωm

)
+ p.v.

(
ωm

ω + ωm

)]
+
π

2
ymωm [δ(ω − ωm) + δ(ω + ωm)] ,

(4.23)

4The Cauchy principal value distribution is defined on a smooth test function f(x) according to[
p.v.

(
1
x

)]
(f) ≡ limε→0+

∫
|x|≥ε

f(x)
x dx.
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and in particular we now have the real contribution

Re[Ym(ω)] =
π

2
ymωm [δ(ω − ωm) + δ(ω + ωm)] . (4.24)

Note that we added a delta function not only at ωm but also at −ωm, which is required

for Ỹ (t) to be a causal function in the time domain (this arises because mathemetically

there are really two resonance frequencies, leading to another expansion of the form (4.21)

about −ωm). This will turn out to be important when we do a quantum calculation of

the noise and dissipation induced by Y (ω).

We can now use this result to create any impedance Y (ω) via a dense comb of delta

functions according to the construction

ωm 6=0 = m∆ω (4.25)

ym 6=0 =
2

πm
Re[Y (m∆ω)] (4.26)

(from which Lm and Cm can be deduced), with

Y (ω) ≈
∑
m

Re[Y (ωm)]. (4.27)

When the delta function comb is dense enough, the real part of Ym(ω) will dominate

the imaginary contributions from the other oscillators at ω = ωm (since it is a delta

function), meaning the admittance will be purely real, as was sought from the start.

The Caldeira-Leggett sum-of-oscillators model does not necessarily capture the micro-

scopic internal workings of the dissipative environment Y (ω), but since its linear response

is indistinguishable, for the sake of calculation we can assume that it indeed represents
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the environment. In particular, we can now write down the Hamiltonian for the Y (ω)

part of the circuit, by reading it off the Caldeira-Leggett circuit diagram,

Ĥenv =
∑
m

[
Q̂2
m

2Cm
+

(Φ̂m − Φ)2

2Lm

]
, (4.28)

where the node fluxes φm = (2π/Φ0)Φm are defined in Fig. 4.11 and qm = 1/(2e)Qm is

the corresponding conjugate charge on Cm.

In an upcoming section, we will apply this Hamiltonian model to calculate the decay of

the fluxmon to an arbitrary dissipative environment via a Fermi’s golden rule calculation.

To do this within the Hamiltonian formalism, ultimately we need to write down an

interaction Hamiltonian between the qubit and the reservoir of oscillators, assume some

initial state for the qubit, and then compute resulting expected dynamics under some

assumption about the distribution of occupied oscillator states in the bath (usually but

not always this will be the assumption of thermal equilibrium). Below, we compute the

expected double-sided “quantum” spectral density of current and voltage fluctuations

across the leads of Y (ω) in thermal equilibrium, and will then show how this can be

used to derive the resulting dissipation (both relaxation and excitation) of the qubit via

Fermi’s golden rule. In the next section we assume thermal equilibrium, but we will see

in the following section that the Fermi’s golden rule part of the calculation does not rely

on any such assumption.
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4.2.1.3 Fluctuation-dissipation theorem

The aim of this section is the compute the spectral density of current or charge fluctua-

tions induced across the leads of the dissipative environment Y (ω) in thermal equilibrium,

which will turn out to be intimately related to the dissipation induced by the environment

on whatever it is coupled to. We do this by pretending the environment is described by

an equivalent collection of Caldeira-Leggett oscillators with Hamiltonian (4.28) as de-

rived above. We first consider current fluctuations induced across the leads when they

are short-circuited. In this case, φ is fixed at a constant value of zero (the phase at the

ground node), and the parallel oscillators are then all independent, so we can consider

one oscillator at a time,

Ĥm =
Q̂2
m

2Cm
+

Φ̂2
m

2Lm
(4.29)

= ~ωm
(
â†mâm +

1

2

)
=

1

2
~ωm

(
â†mâm + âmâ

†
m

)
, (4.30)

which has the usual creation and annihilation operators defined by Φ̂m = Φm,zp(â†m+ âm)

and Q̂m = iQm,zp(â†m−âm). We will compute the thermal spectrum by first calculating the

time correlation function of the charge (since charges add in parallel) and then invoking

the Wiener-Khinchin theorem, which states that the spectral density is just the Fourier

transform of the time correlation function (stay tuned for a derivation of this theorem

in a later section). Because there is a fundamental and important difference between

taking the spectral density of an operator as opposed to a scalar function of time, we will
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explicitly keep writing hats on all operators in this section.

To compute the time correlation function of charge fluctuations, we use the fact that

the time dependence of any observable operator in the Heisenberg picture is given by

Â(t) = ei
Ĥ
~ tÂ(0)e−i

Ĥ
~ t. (4.31)

Next, we need to compute the expected time-correlation function over a thermal ensemble

for the LC oscillators. For any operator, the thermal expectation value is given by

〈Â〉 =
1

Z
tr
[
Âe−βĤ

]
, (4.32)

where β = 1/(kBT ) and Z = tr
[
e−βĤ

]
is the partition function. Using the identity

(4.31), we can simply use linearity to compute

〈Q̂m(t)Q̂m(0)〉 = Q2
m,zp

(
〈â†mâm〉e+iωmt + 〈âmâ†m〉e−iωmt

)
. (4.33)

Next, taking the thermal average (4.32) of the operators

〈â†mâm〉 = n̄(ωm) =
1

eβ~ωm − 1
=

1

2

[
coth

(
~ωm
2kBT

)
− 1

]
(4.34)

〈âmâ†m〉 = n̄(ωm) + 1 =
1

2

[
coth

(
~ωm
2kBT

)
+ 1

]
(4.35)

(simply the Planck distribution for the mode in question), we compute the net charge
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correlation function as a sum over all the independent oscillators,

〈Q̂(t)Q̂(0)〉 =
∑
m

〈Q̂m(t)Q̂m(0)〉

=
∑
m

~
2zm

∫ ∞
−∞

dω [n̄(ωm)δ(ω + ωm) + (n̄(ωm) + 1)δ(ω − ωm)] e−iωt

=
∑
m

∫ ∞
−∞

dω
~
πω

(n̄(ω) + 1)Re[Ym(ω)]e−iωt

=

∫ ∞
−∞

dω

2π
~

Re[Y (ω)]

ω

[
coth

(
~ω

2kBT

)
+ 1

]
e−iωt, (4.36)

where we used qm,zp =
√

~/2zm with zm = y−1
m , and in the second to last line we used

the identity −n̄(−ω) = n̄(ω) + 1. Since the double-sided spectral density is the Fourier

transform of the time correlation function,5 from this integral we can immediately read

off the spectral density of charge fluctuations,

SQQ(ω) = ~
Re[Y (ω)]

ω

[
coth

(
~ω

2kBT

)
+ 1

]
. (4.37)

Since charge and current are related by a time derivative, we can also read off the

equivalent spectral density of current fluctuations,

SII = ~ωRe[Y (ω)]

[
coth

(
~ω

2kBT

)
+ 1

]
. (4.38)

This result is an example of the quantum fluctuation-dissipation theorem. It is a

circuit version of the more general theorem for any system with a linear response, made

famous by Kubo et al. [140]. It is called this because it is relating the noise S(ω) to

5Explicitly, Sxx(ω) =
∫∞
−∞ dτ eiωτ 〈x(τ)x(0)〉, known as the Wiener-Khinchin theorem, a fact which

we will derive later in section 4.4. For now we simply accept this statement to be true.
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the dissipative part of the system’s response, Y (ω). More generally, the fluctuation-

dissipation theorem states that the equilibrium fluctuations of a system are related to

the dissipative force driving it back to equilibrium in response to a non-equilibrium

perturbation.

We derived (4.37) and (4.38) carefully to be valid for both positive and negative ω.

We observe that S(ω) does not need to be the same at positive and negative frequencies,

but at this point it is not clear what this means exactly. We can see that the origin

of this asymmetry comes from the fact that we are taking the correlation of operators,

which could fail to commute unlike regular numbers. In the next section, we will see

using Fermi’s golden rule that the noise at positive and negative frequencies correspond

to the environment absorbing and emitting photons respectively. But before we delve

into that calculation, we can get an idea of why this might be by looking at the various

limits of (4.38),

SII(ω) =


0, ~ω � −kBT
2kBTRe[Y (ω)], |~ω| � kBT

2~ωRe[Y (ω)], ~ω � kBT

(4.39)

In the high temperature limit, we obtain the usual Johnson noise spectral density for

the current noise of a resistor [there is a factor of 2 difference from the usual expression

4kBT/R because we have defined a double-sided spectral density, whereas with classical

circuits one usually just consders a single-sided spectrum, equivalent to S+(ω) ≡ S(ω) +

S(−ω)]. In this classical regime, SII is the noise that would be felt by a perfect ammeter

hooked up across the resistor. Conversely, in the low-temperature limit, there is noise

at positive frequencies but not negative frequencies. The noise at positive frequencies
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is proportional to the zero-point fluctuation energy 1
2
~ω. We can then guess that the

ω < 0 part has to do with photon emission by the admittance while ω > 0 corresponds

to absorption of energy by the admittance. We will see shortly that this intuition is

correct even when the environment is not in thermal equilibrium.

4.2.1.4 Dissipation as quantum noise: Fermi’s golden rule

In the previous section we derived the spectral density of current or charge fluctuations

induced by Y (ω). In particular, we kept the current and voltage as operators, leading to a

spectral density that can be different at positive and negative frequencies. In this section,

we will show why we performed such a calculation and assign physical meanings to the

noise spectrum at positive and negative frequencies, namely the generation of relaxation

and excitation of the qubit. We will tie together the two languages by interpreting the

fluctuation-dissipation theorem simply as a statement about the system obeying detailed

balance.

To do this, we will perform an analysis using perturbation theory similar to Refs.

[141, 142] to derive Fermi’s golden rule in a form that is useful for us. We start with

an uncoupled qubit Hamiltonian HQ = −1
2
~ω10σz and environment Hamiltonian HE,

which could have a very large number of degrees of freedom, such as a Caldeira-Leggett

environment. We suppose quite generally that the environment is coupled to the qubit

via a σx term (where σz is the energy eigenbasis) according to the interaction Hamiltonian

Hint = ~gF̂ (t)⊗ σx. (4.40)
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This linear form for the coupling is justified in the weak-coupling limit. In particular

the system should only weakly disturb the environment and vice-versa. Choosing σx as

opposed to σy makes no real difference, and usually we will have one or the other and we

can perform a change of basis to make it equivalent to σx. We do not consider coupling

σz since it commutes with HQ and does not drive transitions.

For a classical noise source, F will be just a scalar number, but in general for a

quantum environment it will be an operator acting on the environment E. By moving

to a rotating frame defined by the time-evolution operator of the uncoupled system,

U(t) = UE(t)⊗ UQ(t) = exp

[
− i
~
HEt

]
⊗ exp

[
− i
~
HQt

]
, (4.41)

HQ and HE vanish and the interaction term becomes

H̃int = U †(t)HintU(t) = ~gF̂ (t)⊗
(
eiω10tσ+ + e−iω10tσ−

)
. (4.42)

First we consider what happens if the system starts in a pure product state, with the

environment in some specific state |mE〉 and the qubit in the ground state,

|Ψ(0)〉 = |mE〉 ⊗ |g〉 . (4.43)

We treat the interaction Hamiltonian as a perturbation, and write down the Schrödinger

evolution for the whole system to first order in this perturbation,

|Ψ(t)〉 = |Ψ(0)〉 − i

~

∫ t

0

dt′ H̃int(t
′) |Ψ(0)〉 . (4.44)

If the environment starts in a specific state, the probability of populating the qubit

excited state |e〉 as a function of time will then be

∑
n

|〈nE|〈e|Ψ(t)〉|2 =
∑
n

g2

∣∣∣∣∫ t

0

dt′ 〈nE|F̂ (t′) |mE〉 eiω10t′
∣∣∣∣2 . (4.45)
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In reality, the initial state of the environment will be described by a density matrix

over some ensemble (which could be thermal but doesn’t have to be),

ρE =
∑
m

ρmm |m〉 〈m| , (4.46)

so the probability for the qubit to become excited over the ensemble is given by summing

the above expression over all possible initial states of the environment,

p|1〉(t) = g2
∑
m

ρmm
∑
n

∣∣∣∣∫ t

0

dt′ 〈nE|F̂ (t′) |mE〉 eiω10t′
∣∣∣∣2

= g2
∑
m

∑
n

ρmm

∫ t

0

∫ t

0

dt′dt′′ 〈nE|F̂ (t′) |mE〉 〈mE|F̂ (t′′) |nE〉 eiω10(t′−t′′)

= g2
∑
m

ρmm

∫ t

0

∫ t

0

dt′dt′′ 〈mE|F̂ (t′′)F̂ (t′) |mE〉 eiω10(t′−t′′)

= g2

∫ t

0

∫ t

0

dt′dt′′ 〈F̂ (t′′)F̂ (t′)〉eiω10(t′−t′′)

= g2

∫ t

0

∫ t+t′

t′
dt′dτ 〈F̂ (t′ + τ)F̂ (t′)〉e−iω10τ (4.47)

where in the last line we changed variables to τ = t′′ − t′. Assuming the autocorrelation

time is much shorter than the timescale of the experiment (i.e., a “memoryless” environ-

ment, also known as a Markovian approximation, in which the spectral density doesn’t

vary strongly with frequency), we can extend the limits of integration for τ to positive

and negative infinity without materially changing the answer, leading to

p|1〉(t) =
(g
~

)2
∫ t

0

SFF (−ω10), (4.48)
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where

SFF (ω) ≡
∫ ∞
−∞

dt 〈F̂ (t)F̂ (0)〉eiωt (4.49)

is the exact same double-sided spectral density we considered when we analyzed the

current and charge fluctuations Caldeira-Leggett model. Therefore, in the short-time

limit, we arrive at the following transition rate out of the qubit ground state,

Γ↑ = g2SFF (−ω10). (4.50)

Performing the same analysis but with the qubit starting in the excited state similarly

yields a downwards transition rate,

Γ↓ = g2SFF (+ω10). (4.51)

This shows the physical meaning behind the spectral density at positive and negative

frequencies: at positive/negative frequencies it corresponds to the environment absorb-

ing/emitting energy from/to the qubit. In the case of a classical noise source, where

S(ω) = S(−ω), one can think of the noise simply as an incoherent drive of the qubit, i.e.,

an incoherent sum of Rabi driving terms, leading over an ensemble average to a diffusive

walk away from the initial state towards the center of the Bloch sphere [123].

These formulas are simply a statement of Fermi’s golden rule (FGR). In fact, another

way to write them is

Γ↓,↑ =
2π

~
∑
nm

ρenv
nn |〈n, 1|Ĥint|m, 0〉|2δ(En − Em ± E10), (4.52)

which looks the same as how Fermi’s golden rule is usually presented in terms of an ef-

fective density of states. In this interpretation, Re[Y (ω)] determines the effective density
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of Caldeira-Leggett oscillator modes.

If we apply these FGR equations to the special case of an environment in thermal

equilibrium through Eq. (4.38), we can gain some intuition behind the fluctuation-

dissipation theorem. Intuitively, at low temperatures the environmental oscillators on

resonance with the qubit are in their ground state, and so can only absorb energy, whereas

at high temperatures they will both emit and absorb energy. The up and down transition

rates are related through

Γthermal
↑

Γthermal
↓

= exp(−~ω10/kBT ), (4.53)

which is precisely the condition of detailed balance required for thermal equilibrium to

hold.

4.2.1.5 Qubit decay in the presence of a resistor

We now have the tools to compute the effect of a resistor on a qubit. First, we can look at

the effect of a resistor in the quantum version of an LCR resonator (Fig. 4.9(b)) as a con-

sistency check, by applying the Caldeira-Leggett model. Here, the resistor is not shorted,

but has its leads placed across the oscillator. Here, we treat the LC part of the oscillator

is the “qubit’ and R is the environment. The interaction part of the system Hamiltonian

(4.28) with Φ̂ being the qubit degree of freedom is
(∑

m
Φ̂m
Lm

)
Φ̂ =

(∑
m Îm

)
Φ̂ and so

when tracing over the environmental oscillators’ thermal state we simply get an effective

current noise in the qubit, with the same value as in Eq. (4.38) (assuming the qubit

doesn’t perturb the environment too much). The current noise from the resistor couples
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to the qubit’s σx degree of freedom with a coupling coefficient 〈0|(dĤ/dI)|1〉 = 〈0|Φ̂|1〉,

which for a harmonic LC oscillator is given by (2.43),
√

~
√
L/C/2. Using Eqs. (4.51)

and (4.38) in the low-temperature (quantum) limit, the decay rate of a linear quantum

LC oscillator6 is then Γ↓ = 1/RC, which matches the expected decay time constant from

classical circuits.

However, in general, the “qubit” part of the circuit will of course also have a Josephson

junction in parallel, leading to the circuit illustrated in Fig. 4.9(c). This won’t change the

noise source or the form of the interaction Hamiltonian in the previous paragraph, but

will change how the interaction Hamiltonian is able to drive transitions by changing the

matrix element g = |〈1|Φ̂|0〉| in Eq. 4.51. Namely, the flux matrix element will not be the

harmonic value and the decay rate of the fluxmon (or any other type of superconducting

qubit) will be given by

Γ↓ =
1

~2
|〈0|Φ̂|1〉|2SII(ω10) (4.54)

=
2ω10

~
|〈0|Φ̂|1〉|2Re[Y (ω10)] (4.55)

≈ Re[Y (ω10)]

C
, (4.56)

where the last line holds only when the matrix element is close to its harmonic limit

value. We note that this result, in which the quantum transition rate is proportional to

Re[Y (ω)], was derived rigorously by Esteve et al. in Ref. [90] through a related method.

6Technically, we are computing the |1〉 → |0〉 Fock state decay rate, but this turns out to be the same
as the decay rate of the average photon number of a coherent state under reasonable assumptions [143].
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In upcoming sections we will use this equation to predict the contribution from known

sources of dissipation, such as the flux bias lines, to the fluxmon’s T1.

4.2.1.6 Flux vs. charge noise: a quantum Thévenin-Norton equivalence

The observant reader may have made the following observation: if dissipation can be

equivalently viewed as a series (Thévenin) or parallel (Norton) resistance [at least for

the lumped-element picture of Fig. 4.9(a)], then since the qubit capacitor is linear we

could equally view dissipation as a “Thévenin” series resistor across the qubit capacitor

with the small series resistance Rs = (1/ωC)2/Rp, and the environmental oscillators will

couple to the qubit’s charge degree of fredom, producing an effective voltage noise

Γ↓ =
1

~2
|〈0|Q̂|1〉|2SV V (ω10)

=
2ω10

~
|〈1|Q̂|0〉|2Re[Z(ω10)] (4.57)

with R = Rs. Since the two representations of dissipation are the same, this must be

equal to the decay rate (4.55) with R = Rp. This is quite interesting, because when

we equate these two expressions it seems to imply there must be a simple relationship

between the flux and charge matrix elements of the fluxmon, namely that |〈0|Φ̂|1〉|2 =

1/(ω10C)2|〈0|Q|1〉|2. We can in fact derive this independently from the qubit Hamiltonian

with a quantum-mechanical calculation. The fluxmon qubit, or more generally any type

of superconducting qubit, has a qubit Hamiltonian

H =
Q2

2C
+ V (Φ), (4.58)

207



where V is a nonlinear potential formed by some combination of biased inductors and

Josephson junctions. Using the identity

[H,Φ] =
1

2C
[Q2,Φ] = −i~Q

C
, (4.59)

we have the relation

〈0|[H,Φ]|1〉 = 〈0|(HΦ− ΦH)|1〉

= −~ω10〈0|Φ|1〉

= i~〈0|Q|1〉/C, (4.60)

from which we deduce

|〈0|Φ̂|1〉|2 = 1/(ω10C)2|〈0|Q|1〉|2 (4.61)

as sought. Similarly to how the Thévenin-Norton equivalence relies on the linearity of the

capacitor in the classical circuit argument, we needed to have a quadratic contribution

of the capacitance to the Hamiltonian (∝ Q2) in order for the commutation relations

to work out. The result is that the effect of flux (or current) noise is indistinguishable

from the effect of charge (or voltage) noise that has a power spectrum differing by two

powers in ω. We should keep this in mind when modeling dissipation vs. frequency for a

given qubit. If one does not have any other physical information about the source of the

dissipation, it is equivalent to model the dissipation as either flux noise or charge noise

with an appropriate noise spectrum.
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4.2.2 Known sources of dissipation and high-frequency noise

In this section we discuss known sources of dissipation and high-frequency noise in the

fluxmon qubit. These sources include ohmic dissipation from the bias line, Purcell decay

through the readout resonator, and dielectric loss. We also discuss stray transitions

driven by classical noise from room temperature. Afterwards, we will show measurements

of dissipation in the fluxmon qubit, which we find to be dominated by a previously

unmeasured dissipation source that we attribute to flux noise.

4.2.2.1 Damping from flux bias lines

The tilt flux bias line is a high-bandwidth line that presents an impedance of 50 Ω behind

the mutual inductance Mt of the bias line for all qubit frequencies up to ∼ 10 GHz

(depending on the exact cutoff frequency of the filtering in the line). This is illustrated

by the circuit in Fig. 4.12(a). Using the usual expression for the impedance seen across

the qubit’s inductor leads in the presence of mutual inductance [equation (3.24) for the

general circuit of Fig. 3.6(b)] in the limit of small bias line inductance Lb yields an

effective resistance Rs = (ωMt)
2/R in series with the qubit inductor. Using Eq. (4.18)

with Z = iωLq, we can convert this to an equivalent parallel resistance as in Fig. 4.12

with

Rp =

(
Lq
Mt

)2

R. (4.62)

Therefore, the effect of the bias line is to present a transformed resistance Rp much larger

than 50 Ω in parallel with the qubit. We can then apply Eq. (4.55) with Re[Y (ω)] = 1/Rp
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(a) (b)

Figure 4.12: Illustration of qubit damping through a mutual inductance to a resistive environ-
ment. (a) Actual dissipative bias line circuit. (b) Equivalent parallel resistance to the qubit.

to obtain the T1 limit imposed by the bias line.

In Fig. 4.13, we plot the resulting T1 limit vs. qubit frequency at zero tilt for two

different values of Mt. To get a sense of scale, we note that the transformed parallel

resistance Rp is typically a couple hundred MΩ. If the fluxmon were harmonic at every

frequency, we would expect the T1 limit to be independent of frequency. However, at

low frequencies, the flux matrix element deviates from the harmonic value [as was shown

earlier in Fig. 2.8(c)], leading at low frequencies to a larger T1 limit than would be

predicted in the harmonic limit. For typical fluxmon design parameters this deviation

starts to become significant below ∼ 2 GHz. Also note that away from zero tilt (not

shown), the flux matrix element strictly decreases, so the T1 limit will strictly improve

away from zero tilt. In order to avoid excess dissipation beyond the intrinsic fluxmon

dissipation (which is measured in the next section), we need to restrict Mt . 0.5 pH,

assuming a 50 Ω environment.

We tested the prediction of eqs. (4.62) and (4.55) by designing one fluxmon qubit that

was very strongly coupled to its flux bias line. For a qubit with a measured Mt = 2.6 pH,

we observed a T1 of 210 ns at zero tilt at f10 = 5.9 GHz. Theoretically, we would expect
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Figure 4.13: Predicted fluxmon T1 limit from tilt bias line damping, for two different values of
Mt. Note that the damping rate depends quadratically on Mt. The right hand side of the plot
corresponds to the harmonic limit β = 0, where the T1 limit is independent of f10.

a T1 limit of 275 ns from the flux bias line with the measured Mt and a 50 Ω microwave

environment. However the expected intrinsic T1 (from other sources of dissipation) is

around 1.5µs as measured on other devices with very weak coupling to the bias line,

and when this expected contribution is subtracted out we are left with a contribution of

230 ns from the bias line, within ∼ 10% of what was actually measured.

We can also consider the SQUID bias line with mutual inductance MSQ as a source of

dissipation. Typically we have attenuators between the qubit SQUID and the 100 MHz

low-pass filter on the SQUID line, meaning the qubit will see an approximately 50 Ω

environment behind MSQ at microwave frequencies. However, at zero tilt, the SQUID

bias tunes σz in the energy basis (which is the parity basis), so it will not drive transitions,

similar to the case for a transmon qubit with a SQUID bias line.7 But away from zero

7This is not strictly true if there is junction asymmetry, where noise/dissipation in the SQUID bias
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tilt, the energy basis starts to rotate towards the flux basis, and the SQUID line can

start to drive transitions. We can compute the expected decay rate through the SQUID

line as a function of flux bias using Fermi’s golden rule,

ΓSQ
↓ =

1

~2

∣∣∣∣∣
〈

0

∣∣∣∣∣ ∂Ĥ∂ΦSQ

∣∣∣∣∣ 1
〉∣∣∣∣∣

2

SΦSQ
(ω10)

=
1

~2

(
∂β(ΦSQ)

∂ΦSQ

)2

E2
L|〈0| cos ϕ̂|1〉|2M2

SQ

2~ω10

R
, (4.63)

where R ≈ 50 Ω. Note that for the SQUID bias line, the relevant matrix element is not

ϕ10 but (cosϕ)10, which by symmetry vanishes at zero tilt, consistent with our qualitative

discussion above. In Fig. 4.14 we plot the T1 limit from the SQUID bias line vs. both

SQUID and tilt flux biases. Since to first order the T1 limit diverges to infinity at zero

tilt, we have artificially truncated the color scale at T1 = 100µs.

4.2.2.2 Damping from readout circuit (Purcell effect)

As mentioned in section 3.2.2, the qubit can be damped through its coupling to the

readout resonator, which mediates a second-order coupling between the qubit and a

50 Ω transmission line environment (in addition, the resonator could have an additional

intrinsic dissipation source as well). This decay mechanism has been well-studied in

superconducting qubits coupled to resonators that are in turn coupled to transmission

lines [72, 144, 83] (the name historically comes from a study by Purcell of how the

can partially transfer to effective noise/dissipation in the tilt bias via the differential transfer function
4.109

212



Figure 4.14: T1 limit induced by DC SQUID bias line for MSQ = 1 pH. Contours of constant
frequency f10 = 1, 3, 5, and 7 GHz are drawn for reference. Because the T1 limit diverges at
zero tilt, we truncate the color scale at T1 = 100µs for the sake of illustration.

spontaneous decay rate of an atom is altered in a cavity vs. vacuum [82]). For transverse

coupling to a single-mode resonator with coupling strength

gqr =
Mqr

LqLr
Φzp,r〈0|Φ̂q|1〉, (4.64)

in the dispersive regime |∆| ≡ |ωr − ωq| � g, the Purcell decay rate is given by Eq.

(3.38), where κ = ωr/Qr is the total decay rate of the resonator. However, this expression

will break down when the qubit is very close to the resonator ∆ ∼ g. We can slightly

generalize it to allow a weak violation of the dispersive assumption as follows. By looking

at the exact Jaynes-Cummings hybridized eigenstates between the qubit and resonator

mode [72], one can compute what fraction of the qubit-like excited state population “lives
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Figure 4.15: Predicted Purcell decay rate (4.65) vs. qubit frequency at zero tilt for stan-
dard readout design parameters (ωr/(2π) = 8 GHz, gqr/(2π) ≈ 100 MHz (this is a function of
frequency), 1/κr = 1µs). Exactly on resonance, half of the qubit population “lives in” the
resonator, leading to an effective decay rate of κr/2, but this is not a very useful quantity
since very close to resonance, the qubit population will undergo semi-coherent swapping with
the resonator rather than a pure exponential decay. In other words a photon that is emitted
from the qubit can be re-absorbed, so we would not be in the regime where Fermi’s golden rule
applies.

in” the resonator, leading to the more accurate expression

1

TPurcell
1

= sin2

[
1

2
arctan

(
2g

∆

)]
κr, (4.65)

which reduces to (3.38) in the dispersive limit. Alternatively, since the resonator

and transmission line environment are linear, we can just use linear circuit theory on

their combined admittance as seen from the qubit in order to compute T1 through Eq.

(4.55)/(4.56). This approach has the advantage that it can easily capture the higher

modes of the CPW readout resonator [83], and is also more useful for understanding and

designing more complicated readout circuit designs relevant for transmon qubits, such as

“Purcell filters” [84, 85].
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In Fig. 4.15 we plot the predicted Purcell decay rate vs. qubit frequency at zero tilt

for standard readout design parameters (ωr/(2π) = 8 GHz, gqr/(2π) ≈ 100 MHz [this is a

function of frequency], 1/κr = 1µs). We conclude that Purcell decay is negligible unless

the qubit is biased very close (a few hundred MHz) to the resonator. In practice, this will

not happen, except for when the qubit bias is swept through the resonator frequency, in

which case the dominant source of population loss will usually be Landau-Zener swapping

[Eq. (3.1)] rather than Purcell decay.

4.2.2.3 Distributed CPW loss in the fluxmon qubit

It is reasonable to expect that the CPW portion of the fluxmon qubit could contribute

intrinsic dissipation that is distributed evenly throughout its length. For example, it

is well-known that superconducting CPW resonators suffer from dielectric loss due to

charged tunneling defects distributed within thin lossy interfacial dielectric layers [61,

145, 59]. In the case of dielectric loss, the typical distribution of tunneling defects over

frequency are such that one observes an approximately constant quality factor Q = ωT1.

This constant-Q behavior is also roughly observed in smaller lumped element qubits

like the phase qubit and transmon [61, 40]. Typically, we look at the performance of

distributed CPW resonators to predict loss in qubits fabricated with similar materials

and geometries. For example, in the Xmon transmon qubit [40], whose capacitor is

essentially a very short (lumped-element) segment of CPW transmission line (and whose

matrix elements are very nearly those of a harmonic oscillator), we expect that the T1 of

the qubit should be limited to at most the same Q as CPW resonators fabricated with
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Figure 4.16: Infinitesimal ladder model for transmission line with two types of distributed
dissipation, and lumped element approximation for a finite segment of transmission line.

the same geometry. However, in the fluxmon there is also the possibility of inductive in

addition to capacitive losses in the CPW.

To understand the effect of CPW dissipation in general on the fluxmon beyond just

dielectric loss, we need to find the effective Re[Y (ω10)] presented by the CPW segment.

To do this, we need to include distributed dissipation in our circuit analysis. We will

compare this to the effect of CPW dissipation in λ/4 resonators and Xmon qubits. One

of the conclusions will turn out to be that at a given frequency the fluxmon has the

same sensitivity to dielectric loss as its λ/4 resonator counterpart, but a much higher

sensitivity to dissipation from a series resistance such as magnetic loss, due to an effective

impedance transform of the distributed dissipation.

To model distributed linear dissipation, we must revisit our ladder model for the

fluxmon’s transmission line segment in Fig. 2.2(c). Linear dissipation in a uniform

transmission line can be modeled by adding a series resistance per unit length R or

parallel admittance G to each ladder rung,8 as shown in Fig. 4.16. R is a resistance per

unit length that could represent conductor loss from quasiparticles or a lossy permeability

8This circuit is not to be confused with our earlier model of a resistor as a transmission line in Fig.
4.10. There, we had a physical resistor and an abstract transmission line. Here, we now have a physical
transmission line with abstract resistors.
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(magnetic dissipation) associated with a.c. current flowing in the inductors. G is a

conductance per unit length that could represent stray electrical conduction between

center trace and ground plane, or a lossy a.c. permittivity (dielectric loss) from dipole

relaxation associated with a.c. voltage across the capacitor dielectric. In general, both R

and G can be frequency-dependent. For example, dielectric loss within the standard TLS

model corresponds to G(ω) = ωC tan δ ∝ ω (constant Q). Also note that the distributed

dissipation will also in general create a small amount of dispersion in the transmission

line, which we can ignore given that the fluxmon is so short.

We need to find the input impedance of the CPW as seen from the fluxmon’s Joseph-

son junction. We can generalize the input impedance formula (2.28) by using the general-

ized telegraph equations with dissipation [41], leading to a complex propagation constant

γ =
√

(R(ω) + iωL)(G(ω) + iωC) (4.66)

and a generalized complex characteristic impedance

Z̃0 =

√
R(ω) + iωL
G(ω) + iωC

. (4.67)

Using the fact that the fluxmon CPW is terminated with a short at x = `, the input

admittance is then

Y CPW
in (ω) =

1

Z̃0

eγ` + e−γ`

eγ` − e−γ`

≈ iω
C`
3

+
1

iωL`
+

1

3
G(ω)`+

R(ω)`

`2L2ω2
, (4.68)

where in the second line we have taken the limits of a short transmission line and small
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dissipation,

G
C
,
R
L
� ω � 1

`
√
LC

. (4.69)

The first two terms of (4.68) are imaginary and correspond precisely to the effective

lumped-element fluxmon capacitance and inductance that we found in Eq. (2.30), while

the second two terms are real and will cause dissipation.

At this point we make several observations. Because the CPW capacitance C` and

G` are both rescaled by a factor of 1
3
, we expect dissipation from dielectric loss to be

the same in the fluxmon as in a λ/4 resonator. Intuitively, this is because the voltage

profile along the CPW affects the electric participation of the lossless and lossy parts of

the capacitance in the same way. More explicitly, we can compute the resulting fluxmon

T1 using Eq. (4.56) with C = 1
3
C`, and then do a similar analysis to compute the T1 that

would occur in a λ/4 CPW resonator of the same frequency, and in an Xmon qubit of

the same frequency (the Xmon has an open boundary condition at x = `. The resonator

has only one possible frequency ω = ωλ/4 at a given CPW length, whereas the Xmon and

fluxmon can have varying ω10 with the same CPW by varying its Josephson inductance).

The results are summarized in table 4.2. We can see that the contribution to T1 from

G (such as dielectric loss) is the same across all types of circuits at a given frequency.

However, the contribution to T1 from R differs drastically between the three circuits. For

instance, the Xmon qubit has no first-order contribution from R, intuitively because the

CPW acts as a purely lumped-element capacitor. For the fluxmon qubit, the contribution

from R is drastically re-scaled at low frequencies from the T1 that a λ/4 resonator of
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CCPW
eff Re

[
Y CPW(ω10)

]
1
T1

Assumptions

λ/4 Resonator 1
2
C` 1

2
G`+ 1

2
R`
Z2

0

G
C + R

L ω10 = ωλ/4 = π
2

1
`
√
LC

Xmon (single-arm) C` G` G
C

G
C ,
R
L � ω10 � 1

`
√
LC

Fluxmon 1
3
C` 1

3
G`+ 1

3
R`
Z2

0

(
ωLC
ω10

)2
G
C + R

L

(
ωLC
ω10

)2
G
C ,
R
L � ω10 � 1

`
√
LC

Table 4.2: Summary of the effect of distributed transmission line dissipation on three types of
CPW-based quantum circuits: a λ/4 resonator, an Xmon qubit, and the fluxmon qubit. The
dissipation R(ω10) and G(ω10) are in general functions of frequency. Note the drastic frequency
dependence of the decay rate from R unique to the fluxmon qubit.

the same frequency would have.9 One way to understand this frequency dependence

is to view it as a series-parallel impedance transformation analogous to a generalized

Thévenin-Norton representation of dissipation from Eq. (4.17), where the impedance of

the inductors (which dominates over the series resistor impedance) |ZL|2 ∝ ω2 determines

the effective real part of the parallel circuit admittance via a factor of 1/ω2.

If there is series dissipation R physically present in the system, the
(
ωLC
ω10

)2

frequency-

dependence would explain why the fluxmon’s T1 is observed to be so much lower than

the T1 of λ/4 resonators and Xmon qubits in the frequency range of 3− 6 GHz, despite

the fact that the CPWs of all these circuits are made with the same materials and cross-

sectional geometries (and hence the same R and G). Since we operate the fluxmon at 5 <

ωLC/ω10 < 20, the fluxmon’s T1 could be 10 to 100 times shorter than an equivalent λ/4

resonator. One possible source of distributed series resistance is a non-zero quasiparticle

9Note that the 1/ω2
10 dependence of 1/T1 won’t actually hold all the way down to ω10 = 0, since this

would violate the first inequality in (4.69) that we assumed to get the second line of (4.68). Rather,
in the true zero-frequency limit, the contribution from R will saturate to the intuitive result 1/(R`).
However, for physically realistic levels of dissipation, this limit is irrelevant.
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contribution to the current, which produce a surface impedance Zs = Rs + iXs with

a dissipative part Rs that limits resonator Q to 1
Q

= α
π

√
2∆
~ω xqp [146, 147, 95], where

α ≈ 0.05 is the kinetic inductance fraction, ∆ is the superconducting gap and xqp is the

fractional density of (presumably non-equilibrium) quasiparticles, or in the language of

Fig. 4.16,

Rqp(ω) ≈ αL
π
ω

√
2∆

~ω
xqp. (4.70)

As argued later on in section 4.4, we expect xqp . 1× 10−7, and even for a conservative

estimate of xqp = 1 × 10−6, using table 4.2 this implies a fluxmon T1 of over 20µs at

f10 = 5 GHz, making quasiparticle current in the CPW an unlikely explanation for the

low T1 (in section 4.4 we also perform an experimental check by introducing magnetic

vortices to reduce quasiparticle occupation). Furthermore, we would expect to see a

linear scaling with kinetic inductance fraction, which we do not see when varying the

overall CPW cross-sectional width [see Fig. 4.22(a)]. We conclude that there must be

some other source of R that we hypothesize to be intrinsic to the geometric inductance

of the transmission line, to which the fluxmon at low frequencies will be much more

sensitive than resonators.

4.2.2.4 Dielectric loss

Dielectric loss is a source of dissipation in superconducting circuits that has been well

studied over the past decade. This type of dissipation is believed to originate from

charged dipole moments within any amorphous dielectrics present in the system, which
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then couple to the qubit’s electric field and absorb its energy. These dipoles likely arise

from microscopic configurational defects, which can be modeled as two-level systems

(TLSs) with two quasi-stable states separated by a barrier in a double-well potential

[148]. In the limit of many defects weakly coupled to the electric field, this leads to

a finite loss tangent for the dielectric constant, tan δ = Im[ε]
Re[ε]

, that is roughly constant

over frequency. This will in turn damp resonators and qubits to a roughly frequency-

independent Q [61]. This TLS-induced loss tangent is generally dependent on power and

temperature, increasing to a saturating value at low power and temperature (the regime

relevant for qubits) as the TLS’s become unsaturated,10 leading to much more loss than

would otherwise be expected [61].

When we design and fabricate superconducting circuits, we must keep dielectric loss

in mind. The bulk crystalline substrate (usually sapphire or silicon) generally has a neg-

ligible loss tangent, and because we know about dielectric loss in amorphous dielectrics,

we do not purposefully grow or deposit any dielectric films during the qubit fabrication

process (besides the Josephson junctions themselves). We note that this constraint makes

the fabrication of superconducting quantum integrated circuits even more challenging, in

terms of scaling up to complicated large-scale systems. In fact, D-Wave systems chose

to keep standard lossy dielectrics in their fabrication process in order to facilitate quick

scalability [16], at the expense of substantial dielectric dissipation. According to a great

many experiments over the past decade, these standard amorphous dielectrics have loss

10Another way to think of this is that at high powers, the linear response of the TLS becomes power-
broadened and therefore has a weaker effect [149].
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tangents on the order of 1 × 10−3 or more at qubit operating conditions [150], meaning

that D-Wave’s qubits likely have a T1 ∼ 20 ns at 5 GHz.11 This is in addition to the

numerous strongly coupled defects that are likely to be present due to the strong electric

fields permeating any dielectrics near the Josephson junction. It will be interesting to

see if and how a quantum annealer without lossy dielectrics, and hence greatly reduced

background high-frequency dissipation and substantially fewer strongly coupled defects,

will perform differently than the existing D-Wave devices. In particular, we expect that

dielectric loss will strongly affect the “thermalization stage” of quantum annealing [19]

(see also the section on fast two-qubit annealing in Chapter 6).

It turns out that just because we don’t purposefully use amorphous dielectrics, it

doesn’t mean we are completely insensitive to dielectric loss. Once other sources of

dissipation are mitigated (such as magnetic vortices and quasiparticles), superconduct-

ing CPW resonators are typically limited to a quality factor of 100,000 - 1,000,000 and

show a power dependence in their quality factors consistent with dielectric loss [151, 39].

They also show a temperature-dependent frequency shift in accordance with TLS the-

ory [152, 153]. Based on the scaling of the electric participation ratio with resonator

cross-sectional geometry, there is very strong evidence that there is unwanted residual

lossy dielectric located at the thin (∼ 1 nm thick) interfaces between the device sub-

strate, metal, and vacuum [145]. Furthermore, it has been shown that careful in-situ

surface cleaning before metal deposition can improve the quality factors of the resulting

11This number is an educated guess, as D-Wave does not report measurements of T1, since their
standard experimental setup does not allow microwave control.
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resonators [39]. Assuming a reasonable dielectric permittivity εr ∼ 10 for the inter-

facial layers, the substrate-vacuum and substrate-metal interfaces participate roughly

equally and much more than the metal-vacuum interfaces [145, 59], and a loss tangent

of ∼ 1× 10−3 is the right order of magnitude for a ∼ 1 nm thick interface to explain the

observed loss. For any physical capacitance, the effect of dielectric loss is determined by

the electric participation of its lossy interfaces,

tan δ =
∑
i

pi tan δi, (4.71)

where the energetic participation ratio (sometimes called filling factor) of each interfacial

layer is [153, 145]

pi =

∫
Vi
εi| ~E(~r)|2d~r∫

V
ε(~r)| ~E(~r)|2d~r

. (4.72)

The participation of the different interfaces of various capacitor geometries for εi = 10

is well understood through the COMSOL simulations of Wenner et al. [145]. In Fig. 4.17

we plot the result of similar simulations but as a function of εi. We find that the relative

participation of the three types of CPW interfaces depends strongly on the interfacial

εr, consistent with the theory in [145]. This means that resist residue, which can have ε

significantly smaller than 10,12 is particularly dangerous at the substrate-metal interface.

This could explain why conventional transmon qubits, whose capacitor electrodes were

fabricated with electron-beam lithography (EBL) and lift-off at the same time as their

12For example, in Ref. [59], we measure the dielectric constant of PMMA to be ∼ 2.5 at ∼ 5 GHz at
millikelvin temperatures, by looking at the frequency shifts of CPW resonators spin-coated in a known
thickness of resist.
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Figure 4.17: Markers: COMSOL simulations of T1 = Q/ω limit at 6 GHz due to loss at the
different types of CPW interfaces (considering separately “corners” where the interface types
intersect [145]) as a function of εr of the interface, assuming a w, g = 15, 10µm untrenched
CPW resonator with 3 nm thick interfaces of tan δ = 2 × 10−3, with εsubstrate

r = 10. Lines are
fits to a simple model [145]. Figure adapted from Ref. [59].

Josephson junctions, had significantly lower T1 than Xmon qubits, whose capacitors are

formed with a subtractive etch process following a clean metal deposition.

To test this hypothesis and look for physical signatures of these interfacial layers, we

performed a controlled study comparing the internal quality factorsQi of CPW resonators

fabricated with conventional-transmon-style lift-off versus a pure etch, both on the same

chip, as follows (full details of the fabrication process can be found in the supplement

of Ref. [59]). Photolithography and a dry etch are used to define λ/2 CPW resonators

coupled to a feedline [Fig. 4.18(a)] in an Al film that was e-beam-deposited on a solvent-

cleaned sapphire substrate. During the etch, the entire CPW structure is defined for

purely etched control resonators, whereas the full ground plane slot of width w + 2g is

etched away for “lift-off resonators”; the center traces of these resonators are defined
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Figure 4.18: Etch versus lift-off, and descum versus no descum: low-power Qi is degraded using
lift-off without descum. (a) Optical micrograph of a “hanging” λ/2 CPW resonator capacitively
coupled to a feedline (left). (b) Schematic of lift-off resonator cross section. (c/d) SEM image of
center trace edge of etched/lift-off resonator. (e) Plot of Qi versus mean photon population for
resonators made with lift-off with and without a pre-deposition descum, as well as for etched
control resonators. Different marker types are distinct resonators. Solid lines are guides to
the eye. (f/g) Edge-on cross-sectional HRTEM image of S-M interface that saw processing
similar to that of the lift-off resonators without/with descum. Elemental peaks in C and O
from qualitative EELS scans across the interfaces are indicated. Figure adapted from Ref. [59].

later using PMMA-based EBL and lift-off [Fig. 4.18(b)], mimicking traditional transmon

fabrication. After e-beam resist development, the wafer is optionally treated with a

downstream oxygen ash descum before center trace deposition, during which the heated

substrate sees purely chemical cleaning, but not ions or plasma. The wafer is then

transferred to the same high-vacuum evaporator that provided the initial ground plane,

and the lift-off resonator center traces deposited and excess metal lifted off in N-Methyl-

2-pyrrolidone (NMP) at 80 ◦C (3 hrs.) and cleaned in IPA.

The resonator chip is wirebonded into an aluminum sample box, which is mounted

on the 50 mK stage of an adiabatic demagnetization refrigerator equipped with sufficient

filtering and shielding so that radiation and magnetic vortex losses are negligible [95, 39].

All resonators had w, g = 15, 10µm with frequencies near 6 GHz. Using a feedline [39]
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allows us to reproducibly extract Qi (as described in section 3.2.2) for multiple lift-off

and etched resonators on the same chip. The resulting internal resonator quality factors

are shown in Fig. 4.18(e). The decrease and saturation of Qi at low powers for all

resonators is the signature of TLS-dominated loss for both the control (fully etched) and

degraded (lift-off) resonators. A clear difference (factor of 3) is observed in low-power

Qi between the etched resonators and the lift-off resonators without descum. As seen in

Fig. 1(e), the descum increases the low-power Qi back to or slightly below that of the

control resonators. These measurements suggest that the edge profile of the resonators

[Fig. 1(c/d)] had a negligible effect on loss at this level of dissipation. It is also apparent

that roughness of the S-M interface had a minimal effect on loss: the substrate under

the center trace of the lift-off resonators was previously etched,13 and is three times

rougher than that under the center trace of the control resonators [0.3 versus 0.1 nm

RMS roughness as measured by atomic force microscopy (AFM)].

To help understand the increased loss in the lift-off resonators, which we attribute to

a contaminated S-M interface, we use cross-sectional high-resolution transmission elec-

tron microscopy (HRTEM) to examine the S-M interfaces of samples that saw similar14

processing to the center traces of the lift-off resonators without/with the descum [Fig.

4.18(f/g)]. With no descum, we observe two sublayers at the S-M interface. Directly

13The BCl3/Cl2 ICP dry aluminum etch used to define the resonators etches ∼ 4 nm into the sapphire
substrate.

14Minor differences arise due to fabricating multiple interfaces on a single TEM sample. The non-
ashed S-M interface in the TEM sample saw processing temperatures up to 160 ◦C, whereas the ashed
S-M interface in the TEM sample and in the resonators only saw processing temperatures up to 115 ◦C.
As such, it is not certain if the upper AlOx sublayer was present in the non-ashed lift-off resonators.
In addition, the ashed S-M interface in the TEM sample saw an initial coating of e-beam resist and
subsequent strip before a second coating for e-beam lithography.
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above the substrate is a film of average thickness 1.6 nm, presumably residual resist

polymer, which shows a peak in carbon content when probed with electron energy loss

spectroscopy (EELS). Above this, a ∼ 2 nm layer with similar phase contrast to alu-

minum oxide is observed, accompanied by a peak in oxygen content when probed with

EELS. This layer is likely formed by a reaction of the unpassivated Al with resist and/or

solvent residue either as the metal is evaporated onto the substrate, or during a later

processing step when the wafer is heated. As such, it may contain contaminants such

as hydrogen that may increase dielectric loss through the introduction of GHz-frequency

TLS defects [61, 154, 155, 156]. Oxide contamination from residue may be relevant to

previous experiments finding that thermally oxidized submicron Josephson junctions are

made significantly more stable by cleaning the substrate with oxygen plasma before metal

deposition [157, 158].

The S-M interface of the descummed substrate on the other hand shows a decreased

average thickness15 of carbon-containing residue and no observed peak in oxygen content.

We note that our data is not sufficient to determine whether or not the decrease in carbon

residue is in direct proportion to the decrease in resonator loss.

In situ descum techniques such as ion beam cleaning may perform similarly to the

downstream ash explored here. However, as this involves physical bombardment, a clean-

ing which if too aggressive might damage the substrate quality at the interface. To test

15AFM scans of the substrate after e-beam resist exposure and development also reveal residual resist
granules with widths of ∼ 10 − 100 nm and heights ∼ 2 − 20 nm, even significantly above the e-beam
clearing dose exposure, consistent with literature on PMMA [159]. However, we expect these granules
to be negligible sources of dielectric loss compared with residual films, as the space they fill is negligible
(areal fraction ∼ 0.5 % and equivalent uniform thickness . 0.1 nm). Downstream ashing or UV-Ozone
cleaning mostly removes these granules.
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Figure 4.19: Comparison of weak and strong ion beam treatment, the latter inducing resonator
degradation. (a) Qi of etched CPW resonators whose bare substrates saw weak or strong in
situ ion milling before base metal deposition (five resonators of each). (b/c) Cross-sectional
HRTEM of S-M interface for weak/strong ion mill, showing thicker disordered interfacial layer
for strong mill. Figure adapted from Ref. [59].

this hypothesis independently from questions of resist residue contamination, we fabri-

cate etched superconducting λ/4 resonators whose substrates saw different strengths of

in situ argon ion beam cleaning prior to the base aluminum deposition: a weak clean

(beam energy 200 eV, dose ∼ 5×1015 cm−2) and a stronger mill (beam energy 400 eV and

dose ∼ 5× 1017 cm−2). The stronger parameters are identical to those used to etch away

native AlOx in the fabrication of Xmon and fluxmon qubits [40, 71] and similar to those

used for substrate preparation in previous planar superconducting resonator experiments

[160]. The resulting resonator quality factors are shown in Fig. 4.19(a), and display a

power dependence consistent with TLS-dominated loss at low powers. We observe a clear

difference (factor of 2) between the low-power internal quality factors, with the stronger

ion beam yielding a lower Qi.

Fig. 4.19(b/c) shows cross-sectional HRTEM images of the S-M interface for the
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weak/strong ion beam treatments. The strong mill creates a ∼ 1.2 nm interfacial layer,

significantly thicker than the weakly-treated interface of unresolvable thickness. EELS

reveals no measurable elemental peaks at either interface, including Ar, C, and O. We

do not believe the uniform interface is an artifact of surface roughness, as AFM scans

reveal no change in roughness between a bare and a strongly milled wafer,16 consistent

with literature on sapphire [161]. We therefore attribute the excess loss to TLS induced

by sapphire amorphization. Using finite-element COMSOL simulations [145], assuming

a relative permittivity εr = 10 for this layer we extract17 an effective TLS loss tangent

δ0
TLS ∼ 1 × 10−2. We note that recent work by Dunsworth et al. shows that this same

ion mill on a silicon substrate can induce a significantly thicker damaged layer of similar

or worse loss tangent [60], one of numerous reasons that fabrication of high quality

superconducting qubits on silicon had been challenging for quite some time.

To our knowledge, our study of interfacial dielectric loss is the first systematic exper-

iment that was able to both “see” with microscopy the cross-sectional interface getting

worse and correlate that with degrading Q, showing that these thin lossy layers really do

exist (although in the case of Fig. 4.18 we weren’t able to tell whether the residue itself

or the resulting under-oxide layer dominated the loss). In any case, a take-away message

from our study of dielectric loss in resonators is that choice of fabrication methods can

affect qubit coherence. We hope that this is also true for flux noise if the dominant

16In addition, the electron-transparent TEM sample was 50 − 100 nm thick, and no height variation
of 1 nm was observed over this length scale with AFM. The interfacial layer was also uniform over a
micron of TEM imaging.

17We only attribute participation to this layer at the S-M interface and not the partially etched S-V
interface.
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fluctuators reside on the qubit’s surfaces – there is some evidence that surface treatment

and/or vacuum conditions may be able to reduce or at least influence the functional

form of intrinsic low-frequency flux noise [128]. However, to our knowledge no surface

treatment has yet made the lowest noise samples have lower noise, only samples that

had relatively high noise to begin with. This is on contrast with the case of dielectric

loss, where it was shown that you can improve the Q of the best resonators by carefully

chosen in situ surface treatments and growth conditions [39]. However, even for the best

devices, the power-dependence of Qi indicates that dielectric loss is still a (if not the)

dominant source of loss in resonators.

We conclude this section by noting that our study of dielectric loss in CPW resonators

allows us to isolate the contribution of dielectric loss (associated with G in table 4.2) to

the fluxmon’s T1, since the fluxmon’s capacitance is dominated by its CPW segment.

For a w, g = 15, 10µm CPW, we therefore expect a fluxmon Q of ∼ 800k, while for a

smaller dimension w, g = 10, 2 that we have been using for more recent fluxmon devices

(favored for allowing denser circuits and also stronger inductive couplings given other

device optimizations), we expect a fluxmon Q of ∼ 300k. Note that this is for the

average “background” dielectric dissipation in the loss tangent limit of many defects. In

a later section we will re-examine this assumption to see whether or not we also expect

any individually resolvable strongly-coupled TLS defects to be present in the specific

circuit of the fluxmon qubit.
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4.2.2.5 Induced transitions from room temperature noise

There is always unwanted noise generated by our control electronics. Even if we heavily

attenuate the output of the electronics at room temperature, there will still be room

temperature Johnson noise entering the fridge. Typically we will attenuate all lines by

20 dB between room temperature and 3K (via lumped resistive attenuators at the 3K

stage) since this temperature drop corresponds to a factor of 100 in classical Johnson

noise power, and then below that stage we attenuate the remaining noise as much as

practically possible (determined by factors such as resistor heating and range of the flux

bias electronics), typically an extra 16 dB at the mix plate. For our flux bias lines, we

need a large signal amplitude, and this noise cannot necessarily be ignored.

Noise entering the fridge from room temperature will act as an incoherent classi-

cal noise source on the qubit at the qubit’s frequency [remember this means S(ω10) =

S(−ω10)], leading to equal up and down transition rates Γnoise
↑ = Γnoise

↓ ≡ Γnoise
↑↓ . If the

qubit is initialized in the ground state, it will increase its population initially at a rate

of 2Γnoise
↑↓ until it reaches a steady-state stray population of 1

2
. In, reality, the qubit will

have some intrinsic source of dissipation, so the actual steady-state stray population is

determined by a combination of the noise and the intrinsic dissipation,

pstray =
Γnoise
↑↓ + Γintrinsic

↑

2Γnoise
↑↓ + Γintrinsic

↑ + Γintrinsic
↓

. (4.73)

To compute Γ↑↓, suppose we have a noise source at room temperature entering the

fridge. Because we attenuate the microwave line heavily before it enters the fridge, we can
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assume that the noise is simply Johnson noise from a room temperature 50 Ω resistor,18

which has an open-circuit single-sided white spectral density of

S+
V V = 4kBTR ≈ 1

(nV)2

Hz
. (4.74)

This noise is then attenuated by matched attenuators in the fridge, and converts into

a current noise at the qubit flux bias port (because the qubit bias line has a small [few

pH] inductance and negligible dissipation, we can treat the bias line termination as a

short). Because the attenuators are matched to 50 Ω, the Johnson noise from the room

temperature resistor will be attenuated by the same amount and so the single-sided

current noise flowing across the bias line’s short will be

S+
II =

S+
V V

(50 Ω)2
A, (4.75)

where the power attenuation factor is

A = 10−
attenuation in dB

10 . (4.76)

Note that this is different by a factor of 4 from the current noise that would occur across

the load if the load were a matched 50 Ω instead of a short.

To compute Γ↑↓ of the qubit, we simply apply the Fermi golden rule result (4.50)/(4.51)

with F = I. It remains to find the form of the driving Hamiltonian associated with the

flux bias current in order to extract g of the interaction Hamiltonian ~gF (t)σx/y as in

(4.40). This is simple – classically, the energy stored in the mutual inductance between

18It is empirically justified to ignore any GHz frequency room temperature electronics noise because we
tested that changing the attenuation between the electronics and the fridge does not change the observed
stray population in the qubit, at least for a sample with Mt = 0.2 pH. Typically this attenuation is large,
around ∼ 20 dB between the electronics and fridge.
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Figure 4.20: (a) Predicted bias line transition rate 1/(2Γ↑↓) vs. qubit frequency at zero tilt, for
room temperature Johnson noise and 36 dB of in-fridge attenuators, for three different values
of tilt bias drive mutual inductance Md. (b) Predicted contribution of room temperature noise
to stray population [Eq. (4.73)] based on the measured intrinsic T1 of the qubit (which mostly
decreases with decreasing frequency).

the drive line and qubit is −MdIqId, where Id is the drive line current, which upon

quantizing the qubit leads to

Hd = −Md
Φ̂

L
Id(t) (4.77)

= −
(
Md

L

)
〈0|Φ̂|1〉Id(t)σx. (4.78)

Reading off g then allows us to compute

2Γ↑↓ =

[
1

~

(
Md

L

)
|〈0|ϕ|1〉|Φ0

2π

]2
S+
V V

(50 Ω)2
A, (4.79)

where the factor of two is due to the fact that we have specified the Johnson noise with

a single-sided spectrum.

In Fig. 4.20, we plot the expected stray population (which includes an extra frequency-

dependent cable attenuation [around ∼ 5 dB] in addition to the lumped element attenu-
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ators shown in the wiring diagram of Fig. 3.11). We conclude that the predicted stray

population is almost negligible, but will quickly become significant if the tilt bias line

mutual inductance Md is too large. To compromise between microwave noise and tilt flux

bias range, we typically design devices to have Md ≈ 0.3 pH, which should give us at most

∼ 1% stray population. An interesting observation is that for the previously mentioned

sample that was purposely over-coupled at Md = 2.6 pH, the observed stray popula-

tion at f10 = 5.9 GHz was 0.24, corresponding to an effective temperature of ∼ 200 mK.

Based on this number and the measured T1 of 210 ns, we predict that room temperature

noise should only have contributed . 0.05 to this number, meaning that the majority

of the stray population must have originated from somewhere inside the fridge outside

of the qubit box, perhaps due to hot attenuators. Note that we don’t need to consider

stray population from noise in the SQUID line, because this line is low-pass filtered to

∼ 100 MHz at the lowest stage of the fridge and so is only relevant for lower frequency

noise.19

4.2.3 Measurement of dissipation in the fluxmon qubit

To experimentally measure T1 and pstray in the fluxmon qubit, we use the method of “swap

spectroscopy” [162], whose pulse sequence is shown in Fig. 4.21(a). First, a π-pulse is

calibrated at the qubit’s d.c. operating point (typically f10 ≈ 5 GHz [β ≈ 1], at zero tilt).

To perform a swap spectroscopy experiment, the qubit is first excited using a π-pulse,

19Although, it is possible that this filter does not work above the spec of 20 GHz, in which case some
high frequency noise might be entering the chip and exciting high frequency modes. At frequencies well
above 20 GHz though the HIR filters should be dissipating any such noise.

234



barrier pulse

zero tilt compensation

-pulseπ measure

T
1 p

stray

Figure 4.21: (a) Pulse sequence for measuring T1 at a flux bias point different from the DC
operating point via detuning pulses (this type of sequence is often called “swap spectroscopy”
[162]). Typically, the tilt bias pulse is chosen to put the qubit at zero tilt bias, where flux noise
is purely transverse to the energy eigenbasis. (b) Example dataset showing the exponential
decay of P|1〉 vs. time to a steady state stray population. T1 and pstray are extracted through
a fit to a single exponential plus a constant offset.

and then a SQUID (barrier) pulse immediately detunes f10 to a different frequency. This

detuning pulse is adiabatic yet much shorter than T1. During the barrier pulse, in the

presence of crosstalk we can optionally add a compensating tilt bias pulse to keep the

qubit at zero tilt, where flux and charge noise are both purely transverse to the qubit’s

energy basis. We wait for a variable amount of time t at the detuned bias point, before

tuning back to the original bias and then performing readout. After measuring p|1〉(t),

we extract T1 and pstray by fitting to p|1〉(t) = p0 exp(−t/T1) + pstray. An example time

trace and fit is shown in Fig. 4.21(b).

4.2.3.1 Geometry dependence of T1

In Fig. 4.22, we show experimental data of T1 measured for fluxmon qubits of varying

geometries. In Fig. 4.22(a), we show the results for three fluxmons on the same chip20

20It is important to compare qubits on the same chip because if the dissipation is due to material
defects, it can and does vary somewhat from fabrication run to fabrication run.
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Width variation Length variation

Figure 4.22: Measured T1 vs. f10 at zero tilt via swap spectroscopy for three different fluxmon
qubits on the same chip, for two different sapphire chips. (a) Width variation sample: fluxmons
have different overall CPW cross-sectional scales (see device images in Fig. 4.4), but all qubits
still had the same net L and C. (b) Length variation sample (Fig. 4.8): The length of the
fluxmon CPW was varied while keeping the cross-sectional width constant at w, g = 8, 2µm.
Therefore, the different qubits have different fLC but the same ZLC . All datasets were taken
with a uniform frequency step size of 20 MHz.

with varying CPW widths, with a factor of two from one qubit width to the next (device

image in Fig. 4.4). All qubits had the same length of CPW and the same L and C, and in

addition the same Josephson junction critical currents, so from a lumped circuit perspec-

tive they are all equivalent except for their overall cross-sectional CPW dimension. We

observe that over most of the frequency range 0.5− 7 GHz, there is no measurable trend

in T1 vs. CPW width. At high frequencies we see a slight width dependence, with narrow

qubits having somewhat lower T1. If the fluxmon were entirely limited by dielectric loss,

we would expect a factor of 4 difference between Q1 and Q3 according to the interfacial

energy participation ratio argument discussed in section 4.2.2, which is not observed.

The prediction for dielectric loss (based on CPW resonator measurements) is shown with
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color-coded dashed lines, and as can be seen the expected T1 limit for the widest qubit

is more than ten times higher than the observed T1. The slight suppression in T1 for

the narrower qubits could be explained by dielectric loss, but this by no means explains

the bulk of the dissipation at high frequencies, and certainly not at low frequencies. We

also plot the expected bias line damping in color-coded dotted lines. Similarly, no other

known source of loss explains the data, especially at low frequencies (see supplemental

section 4.4 for an experimental check of quasiparticle dissipation and loss from magnetic

vortices).

In Fig. 4.22(b), we show T1 data for a sample containing three fluxmons of different

length, with a factor of two difference from one qubit length to the next (device image

in Fig. 4.8). In particular this means that fLC varies by a factor of two from one

qubit to the next, with the longer qubit having fLC = 10 GHz, the middle qubit having

fLC ≈ 20 GHz, and the shorter qubit having fLC ≈ 40 GHz. According to table 4.2,

since the per-unit-length nature of the CPW is the same for all qubits, if the loss were

dominated by capacitive dissipation represented by G(ω) (such as dielectric loss), at a

given frequency we would expect no difference in T1 between these three qubits. On the

other hand, if the dissipation originated in inductive loss represented by R(ω), at a given

frequency we should expect a factor of 4 difference in T1 from one qubit to the next21

(note again that this is in contrast with the case of λ/4 resonators, where we would

not expect a change in T1 with varying length, because f10 is always set to equal fλ/4).

21Really it is more like a factor of 3.5, because we derived those formulas in the harmonic limit, which
doesn’t precisely hold at low frequencies, where “low” is relative to fLC .
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Experimentally, we observe a factor of ∼ 3, which suggests we are dominated by some

sort of inductive loss (there is a small contribution expected from dielectric loss and bias

line damping). In a different language of dissipation as noise, one can arrive at the same

conclusion by noting that the longer qubits should have twice as much flux noise power

contributed by the CPW, which upon using Eq. (4.80) leads to the same result as table

4.2. This is a hint that we might learn something by interpreting the loss as due to high

frequency flux noise, which is precisely what we’ll do in the next section.

However, as already mentioned when we discussed the length dependence of the low

frequency flux noise, there is a caveat in this interpretation, because in the length vari-

ation sample the Josephson junction critical currents were also varied by a factor of 2

from qubit to qubit to keep the same βmax for all qubits for readout purposes. The longer

qubits had narrower junctions, and so it is possible that the increased dissipation came

from the narrowing of the very short electrodes within the DC SQUID (think in terms

of the R/W expression for flux noise power discussed in section 4.1.1). However, we do

not think this explains it because we have measured qubits with different junction sizes

and the same fLC (albeit on different fab runs) and have not seen a systematic effect.

A length variation test where the junction electrode dimensions are constant would help

definitively answer this question. In either case, flux noise is still a consistent explana-

tion of the observed dissipation. However, if the noise is really coming from the CPW,

a mystery that still remains is why there is no width dependence to the T1 as would

be expected due decreasing magnetic participation of interfaces, analogous to how we
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see a width dependence with dielectric loss due to decreasing electric participation of

interfaces. As in our earlier discussion of low frequency noise, it is possible that we are

in a regime where surface magnetic defects are not the dominant source of flux noise, in

which case it might be hard to reduce the level of noise. This is an important question

that needs to be studied further.

In both samples, there are various “defects” in the spectrum where T1 drops signifi-

cantly below the background over a narrow bandwidth. Many of these defects are narrow

(∼ 10 MHz is the narrowest we can observe due to the dephasing-limited qubit linewidth)

and occur at random frequencies. One such feature is significantly wider (∼ 100 MHz)

and always occurs at 1.4 GHz for all qubits. The likely source of these features are dielec-

tric TLS defects in the qubit’s relatively large junction area and weakly bound hydrogen

atoms on the bulk of the qubit surface, respectively. Both of these will be discussed in

detail soon.

4.2.3.2 Interpretation of dissipation as high-frequency flux noise: classical-

quantum crossover

In the past decade, superconducting qubits have extended the measurement of flux

noise to increasingly wider frequency ranges, showing a 1/fα(f) power spectrum from

f ≈ 10−5 Hz to f ≈ 1 GHz with α close to 1 at low temperatures [110, 114, 115, 116,

117, 118, 119, 62], and a big question that remains is, what is the high frequency cut-

off of this noise? Although previous frequency-resolved measurements of the 1/f noise

have used a variety of experimental methods, they have extracted only a single quantity,
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the symmetrized spectrum S+
Φ (f), to describe the noise. However, as is well known, a

quantum environment can generate different noise spectra at positive and negative fre-

quencies, SΦ(−f) 6= SΦ(f), with S+
Φ (f) ≡ SΦ(f) + SΦ(−f). The asymmetric quantum

part S−Φ (f) ≡ SΦ(f) − SΦ(−f) is a measure of the environmental density of states. In

thermal equilibrium, the two spectra are related through the fluctuation-dissipation the-

orem, S+
Φ (f) = coth(hf/2kBT )S−Φ (f) [138]. In the classical regime f � 2kBT/h, S+

Φ

dominates and S−Φ is negligible unless one is sensitive to weak dissipation. Conversely,

in the quantum limit of high frequencies one has S+
Φ ≈ S−Φ , meaning a single spectrum

suffices unless one is sensitive to small levels of thermal noise. But when f ∼ kBT/h or if

there is non-equilibrium noise, a single spectrum no longer characterizes the environment.

Solid-state qubits are uniquely well-suited to measure environmental quantum noise due

to their strong environmental coupling and faithful individual qubit readout [163, 164].

There is evidence that 1/f noise in superconducting qubits contributes to relaxation in

the quantum regime [114, 62], but there has been no frequency-resolved experimental

distinction between S+
Φ and S−Φ or between equilibrium and non-equilibrium noise. Fur-

thermore, the transition from classical to quantum flux noise has yet to be observed or

understood.

Experimentally, obtaining S−Φ (f) in the classical or crossover regime is challenging,

requiring high fidelity readout of the qubit population over a range of qubit frequency

f10 . 2kBT/h, outside typical qubit operating conditions. However, as we’ve seen, the

fluxmon qubit’s measurement scheme allows us to measure dissipation in this regime.
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In this section, we use T1 and stray population data to extract the full two-sided noise

spectrum over a range of f containing 2kBT/h ∼ 1 GHz. We observe a classical-quantum

crossover, which we find to coincide with a transition from 1/f to quasi-ohmic dissi-

pation. Remarkably, we find that S+
Φ (f) ∝ 1/f at 1 GHz, with a magnitude close to

that extrapolated from the 1/f noise below 1 Hz. The level of 1/f noise at high and

low frequencies changes similarly between samples (see section 4.4), providing evidence

they may originate from the same physical source. Below the crossover we find that the

environment is close to thermal equilibrium. We measure the T -dependence of S±Φ (f),

and discover a paramagnetic 1/T scaling in S−Φ . Finally, we show that the small S−Φ

in the classical regime has an important effect by predicting the reorganization energy

during incoherent tunneling between flux qubit wells [20], a crucial quantity for modeling

quantum annealers.

To better quantify dissipation in the fluxmon qubit and interpret it as equilibrium

and/or non-equilibrium flux noise, we need to measure both the |1〉 → |0〉 and |0〉 → |1〉

transition rates as a function of f10. It will be illustrative to convert these transition

rates into an effective double-sided flux noise spectrum as follows. At zero tilt bias, the

potential energy function is symmetric, meaning the energy eigenstates |0〉 and |1〉 have

even and odd parity. Using this parity basis in the two-level approximation, the qubit

Hamiltonian can be written as Ĥ = −1
2
[∆(Φx

SQ)σz + ε(Φx
t )σx], where the gap ∆/h is f10

at zero tilt, and ε = 2IpΦ
x
t . Here, Ip ≡ 1

L
|〈0|Φ̂|1〉|(∼ 0.1− 0.5µA for ∆/h between 1 and

7 GHz) is the persistent current. At zero tilt, flux noise in the main qubit loop (i.e., in ε)
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at f10 induces incoherent transitions between energy eigenstates according to the Fermi

golden rule relations (4.50)/(4.51),

Γ↓/↑ =
1

~2

1

L2
|〈0|Φ̂|1〉|2SΦ(±f10). (4.80)

This implies a two-rate equation(
ṗ|0〉
ṗ|1〉

)
=

(
−Γ↑ Γ↓
Γ↑ −Γ↓

)(
p|0〉
p|1〉

)
. (4.81)

As can be seen from the eigenvalues of this linear system of differential equations, if

prepared in either of its energy states the qubit will relax to a steady state population

pstray = Γ↑/(Γ↓ + Γ↑) at a rate 1/T1 = Γ↓ + Γ↑. From T1 and pstray we can then extract

both S+
Φ (f) and S−Φ at the qubit frequency,

S+
Φ (f10) =

~2L2

T1|〈0|Φ̂|1〉|2
, (4.82)

S−Φ (f10) = [1− 2pstray(f10)]S+
Φ (f10). (4.83)

We measure T1 and pstray vs. f10 at zero tilt bias by varying the DC SQUID (barrier)

bias, and use the data to extract S±Φ (f) after numerically computing 〈0|Φ̂|1〉. This ability

to tune ∆ is crucial, as it allows us to vary f10 while remaining at zero tilt so as to be

sensitive only to transverse noise in ε. It also allows measurement over a wide frequency

range within a valid two-level approximation. A typical dataset for T1 and pstray vs. ∆/h

is shown in Fig. 4.23 (a) and (b).

A typical dataset converted to spectral densities [Eqs. (4.82) and (4.83)] is shown

in Fig. 4.23(c). In addition, the extracted effective temperature Teff is plotted in Fig.
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(b)
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mix plate temp.

phenom.
model

Figure 4.23: (a) T1 versus f10 at zero tilt measured with swap spectroscopy, on a linear scale.
(b) pstray versus f10 at zero tilt on a linear scale. (c) S±Φ (f) extracted from (a) and (b) and

numerical evaluation of 〈0|Φ̂|1〉, on a log-log scale. (d) Effective temperature Teff of the data in
(b). (e) Low-frequency quasistatic flux noise together with S+

Φ (f) from (c) on the same axes,
on a log-log scale. Also shown is predicted noise entering through the qubit’s tilt bias line (from
known sources of thermal noise and room temperature electronics noise). Figure adapted from
Ref. [71].

4.23(d), where exp(−hf10/kBTeff) ≡ Γ↑/Γ↓. We observe several interesting features.

First, below ∼ 1 GHz, S+
Φ (f) follows a 1/fα law, with α ≈ 1. Remarkably, in Fig.

4.23(e) we find that extrapolating this power law to frequencies below 1 Hz predicts the

magnitude of the quasistatic 1/f noise surprisingly closely. In thermal equilibrium, S−Φ (f)

should scale as f 1−α at low frequencies, meaning a constant S−Φ (f) for 1/f noise, which

is roughly what we observe. This is strong experimental evidence that 1/f noise extends

all the way up to ∼ 1 GHz. This suggests, but does not show, that a single physical

source is generating the noise over 10 orders of magnitude. At frequencies below the

classical-quantum crossover, the noise appears to be described by a single Teff ≈ 30 mK,

suggesting thermal equilibrium of the low-frequency environment, but with T > Tfridge

[Fig. 4.23(d)]. We believe the peak in dissipation at 1.4 GHz may be due to coupling to
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the hyperfine transition of weakly bound hydrogen atoms on the qubit surface [165], as

discussed in the next section.

Secondly, we find that the classical-quantum crossover is accompanied by a transition

from 1/fα to super-ohmic dissipation, meaning noise for which S+
Φ (f) ≈ S−Φ (f) ∝ fγ with

γ ≥ 1. If we fit to the phenomenological thermodynamic model SΦ(ω) = Aω/|ω|α[1 +

coth (~ω/[2kBTA])] +Bω|ω|γ−1[1 + coth (~ω/[2kBTB])], then α = 1.05 and γ between 2.5

and 3 fits our data best. Purcell decay is negligible over the measured frequency range.

We note that γ = 3 gives a frequency dependence for T1 that is indistinguishable from

ohmic charge noise (S−Q ∝ ω), the high-frequency model used in Ref. [62]. Dielectric loss

[61] would give γ = 2, but based on similarly fabricated Xmon qubits and airbridges we

estimate a limit of T1 ∼ 20µs at 5 GHz. Allowing for a finite high-frequency cutoff for the

1/fα noise could yield a different best-fit γ ≈ 1.5 (see section 4.4). If we instead simply

ignore the 1/f part and only fit the data above ∼ 3.5 GHz, an ohmic flux noise model

with γ ≈ 1 describes the data reasonably well, with the net dissipation represented by

a frequency-independent parallel resistance R ≈ 20 MΩ. Dissipation from the tilt flux

bias line would similarly have γ = 1, but with T1 ≈ 40µs. Since the observed level

of dissipation is not seen in the Xmon transmon qubit [40], which is comprised of a

similar capacitance and Josephson inductance (albeit with a critical current density 10

times smaller) but negligible geometric inductance, we hypothesize that the quasi-ohmic

noise is magnetic in nature. The presence of unexplained ohmic dissipation (γ = 1)

was seen in microstrip-based flux qubits [166], but with a much stronger magnitude
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Figure 4.24: Temperature dependence of S±Φ . S−Φ (f = 500 MHz) shows a 1/(Teff + T0) depen-
dence, as explicitly plotted in the inset. Figure adapted from Ref. [71].

(R ≈ 20 kΩ). Given that the extracted γ depends on whether the 1/f noise is included

in the model, it could be that this earlier result was the combined effect of 1/f and

super-ohmic dissipation. We note that at high frequencies, Teff ranges from 50− 80 mK,

meaning a higher T for the quasi-ohmic bath and/or the presence of non-equilibrium

noise, making it difficult to model.

4.2.3.3 Temperature dependence of the 1/f noise: paramagnetism

We investigate the nature of the 1/f noise further by looking at its temperature depen-

dence. The temperature-independence of the classical low-frequency noise at millikelvin

temperatures and the 1/T dependence of the static susceptibility in SQUIDs are evidence

of a paramagnetic origin [111] for the noise. Here, we uncover dynamical evidence for

this conclusion. As shown in Fig. 4.24, we find that S−Φ displays an approximately 1/T

dependence below the classical-quantum crossover point, which through the fluctuation-

dissipation theorem implies that χ′′(ω), the imaginary (absorptive) part of the environ-
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Figure 4.25: Quasistatic flux noise measurement is not noticeably changed between fridge
temperatures 10 mK and 100 mK.

ment’s dynamic susceptibility χ(ω) = χ′(ω)+ iχ′′(ω), has a paramagnetic 1/T scaling, as

discussed below. In comparison, S+
Φ displays only a very slight temperature dependence,

consistent with the fact that we see no measurable temperature dependence in the qua-

sistatic flux noise (f < 10 kHz), as shown explicitly in Fig. 4.25. In the inset to Fig.

4.24 we explicitly plot 1/S−(500 MHz) versus Teff , implying that χ′′(ω, T ) ∝ 1/(T + T0),

with T0 ≈ 10 mK. This functional form might be taken as evidence for paramagnetic

spins that would behave antiferromagnetically at lower temperatures. We also note that

a model with a temperature-dependent high-frequency cutoff of a few kBTeff/h (consis-

tent with spin-phonon or spin-spin interactions) fits the crossover region vs. f and T

somewhat better than one with a fixed or infinite cutoff (see 4.4).

As shown in Fig. 4.25, we do not see any systematic temperature dependence of the

quasistatic noise at low frequencies or of the Ramsey decay time Tϕ2, consistent with a

picture of a paramagnetic environment with temperature-independent relaxation times.
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In what follows, we give a simple, generic argument for how the two-sided spectrum

S±Φ (ω) is related to the dynamic susceptibility χ(ω) = χ′(ω) + iχ′′(ω) of the magnetic

environment, in order to clarify the discussion above. In particular, we outline how S−Φ (ω)

may be related to the absorptive part of the environment’s linear response, and that its

1/T dependence is consistent with a paramagnetic environmental susceptibility.

The most common assumption in models for 1/f noise is that the noise comes from

a collection of dynamical fluctuators, each characterized by an exponential decay with a

single relaxation time. The 1/f scaling then arises from an exponentially broad distribu-

tion of these relaxation times. The fluctuators could be represented by weakly interacting

spin clusters of various sizes on the qubit surface, where the relaxation time is exponen-

tially dependent on cluster size. An alternative model invokes a spin diffusion mechanism

where collective diffusion modes play the role of individual fluctuators, and the broad

distribution of relaxation times arises from the highly non-uniform distribution of the

magnetic field around the superconducting metal of the flux qubit loop.

Whatever the microscopic source of these fluctuators may be, each fluctuator will have

an effective magnetic moment operator Mn that will couple flux into the qubit according
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to ∆Φ = gnMn. The two-sided flux noise spectrum in the qubit can then be written as

SΦ(ω) =

∫ ∞
−∞

dτeiωτ 〈Φ̂(τ)Φ̂(0)〉 (4.84)

=

∫ ∞
−∞

dτeiωτ

〈∑
n,m

gnMn(τ)gmMm(0)

〉

≈
∑
n

|gn|2SMn(ω),

where SMn is the full two-sided spectral density of magnetization noise, and in the last

line we have assumed negligible correlations between fluctuators (spin clusters/diffusion

modes). We now use the fluctuation-dissipation theorem [140], which states that the

equilibrium fluctuations of each moment are related to the dissipative part of its response

to a non-equilibrium perturbation according to

SMn(ω, T ) = ~(1 + coth [~ω/2kBT ])χ′′n(ω, T ), (4.85)

where χ(ω, T ) = χ′(ω, T ) + iχ′′(ω, T ) is the frequency-domain linear response function

(dynamical susceptibility) to a magnetic field. Inserting this relation above yields

SΦ(ω, T ) =
∑
n

~|gn|2
[
1 + coth

(
~ω

2kBT

)]
χ′′n(ω, T ). (4.86)

Since χ′′(ω, T ) is an odd function of ω, looking at the antisymmetric part shows that

the experimental 1/T dependence of S−Φ (f) below the classical-quantum crossover is

consistent with a dynamical susceptibility χ′′n that scales as 1/T for all fluctuators. This is

consistent with previous measurements of the 1/T dependence of the static susceptibility

in SQUIDs [111], assuming a temperature-independent distribution of relaxation times.
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4.2.3.4 Defects in the spectrum

We saw in the swap spectroscopy data (Fig. 4.22) that there were several “defects” in

the qubit’s T1 spectrum that are random from qubit to qubit. Here, we argue that the

majority of these defects are likely from TLS defects on the surface of the thin electrodes

leading to the Josephson junctions. These are the same type of TLSs we discussed

earlier in the context of dielectric loss, but we are now considering the effect of individual

defects rather than just the average background loss tangent that arises in the continuum

limit. It is known that TLS defects can reside in the thin oxide of the qubit’s Josephson

junction; for example, in phase qubits, individual junction defects could be observed and

quantified [61]. These defects have been well-studied and the standard model is that in

the AlOx, TLS’s have a per-volume distribution over dipole moment and frequency of

[61]

d2n

dωdp
=
ρ0

2π

√
1− p2/p2

max

p
, (4.87)

with pmax ≈ 6 debye and ρ0 × (2 nm) ≈ 0.5/µm2/GHz, where we have plugged in 2 nm

as a typical AlOx thickness. Each TLS couples to the qubit through the qubit’s electric

field through a dipole interaction Hamiltonian Hint = ~p · ~E ≈ ~gqd(a†b+ ab†). Assuming

Markovian decoherence for both qubit and defect, in the incoherent defect limit Γq � Γd,

Γd > 4g, where Γq and Γd are the intrinsic qubit and defect decoherence rates, the defect

will induce exponential relaxation of the qubit according to [40]

Γ↓(ω10) =
2g2Γd

Γ2
d + (ω10 − ωd)2

, (4.88)
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where ω10 is the qubit frequency.

We note that we can obtain the continuum limit by integrating this equation over

all defects with the distribution (4.87), which yields a T1 that is equivalent to having a

frequency-independent loss tangent within the TLS-hosting volume,22

tan δ =
ρ0

h

p2
max

6ε
. (4.89)

We will shortly use this result later as a sanity check when we perform a more realistic

Monte Carlo simulations with discrete collections of defects.

However, for small sub-micron junctions, like those of the Xmon and fluxmon qubits,

it is believed that junction defects are for the most part statistically avoided [150], and

defects on the electrodes near the junctions are a more likely culprit. Results from our

group over the past few years with sub-micron junctions in Xmon, gmon, and fluxmon

qubits suggest that junction areas greater than ∼ 0.2µm2 have significantly more strong

defects per bandwidth, but it is not known for sure whether these defects reside on

the thin electrodes leading up to the junction (which generally have the same width as

the junctions) or within the junctions themselves. However, the former may be more

likely, since if a defect were located in the junction itself, it would feel electric fields

on the order of a few thousand V/m, which for a dipole moment of 6 debye means a

coupling of ∼ 100 MHz, meaning they would almost all strongly violate the incoherent

defect limit assumption and exhibit coherent swapping with the qubit, unless there was

some preference for junction defects to be aligned parallel with the plane of the junction.

22Note interestingly that in this continuum limit, the resulting loss tangent is actually independent of
the distribution of Γd, thanks to the Lorentzian integrand.
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Of course it is also possible that the defects in these junctions simply have smaller

dipole moments than expected. We observe that most defects do not show any coherent

swapping, although once in a while (roughly once per two samples) we do see a coherent

defect (usually on samples with relatively large junctions) that could indeed be coming

from inside the junctions. The fluxmon qubits measured in this work have relatively

large junctions compared to standard Xmon junction designs, around 0.15µm2 or more

in measured area,23 leading to more defects with T1 below ∼ 1µs than in the best Xmon

qubits.24

Of course, the other possibility is that the defects reside in the CPW interfaces that

we considered in the resonator experiments of section 4.2.2. However, because there is

roughly an equal number of defects with roughly equal strength for both narrow and wide

qubits, we believe that this is unlikely to be the case: an on-resonance defect will damp

the qubit beyond the background damping at an excess rate proportional to the electric

field squared [see Eq. (4.88)], which between qubits 1 and 3 of the length variation sample

should be over a factor of 10 change, but the defects are observed to be similar between

them.

As an extra sanity check to further confirm this conclusion, we perform a Monte Carlo

simulation of defects in the CPW interfaces, making some reasonable assumptions about

the TLS distribution. If we assume the same TLS distribution as AlOx and “calibrate”

23We can reduce this in the future. This was a consequence of having different qubit designs on the
same chip for testing. When the qubits are uniform, we can choose a single small junction size and
adjust the oxidation accordingly. Note however that there is a conflict between having small junction
size and small junction asymmetry, a tradeoff that we will need to work on.

24Xmon qubits have a similar lumped element capacitance ∼ 100 fF, so this a fair comparison to make.
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          3 nm
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        (ɛr = 10)

30
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Figure 4.26: Simulation of vacuum-interface TLS defects in the fluxmon qubit, assuming a 3 nm
thick interfaces with the same dielectric constant and TLS distribution as AlOx. (a) COMSOL
simulation of quasi-static electric field strength along as cross-section of the fluxmon’s CPW
near the SQUID end. Over 100, 000 defects in the simulation. Dipole defect cartoons are just
for show and not to scale. Sub-angstrom meshing was used near the metal corners, although we
found that putting a 3 nm rounding on the corners (more realistic) didn’t make any observable
difference in the simulation results compared to a perfectly sharp corner. (b) Result of Monte
Carlo simulation of defects using experimentally motivated parameters for the distribution of
TLS dipole moments and linewidths as discussed in the main text. The black data is the
expected T1 with a 1 MHz spacing in frequency. The red data is the same but with a 10 MHz
Gaussian smoothing to mimic the effect of the qubit’s dephasing-limited linewidth. The blue
curve is the expected T1 based on the many-defect loss tangent formula (4.89) and the simulated
participation ratio (4.72), showing good agreement.
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the thickness of the substrate-vacuum interface to ∼ 3 nm, we find that the simulation

reproduces both the experimentally measured CPW resonator Q and the typical varia-

tion in Q across different λ/4 CPW resonators.25 With this justification, we show the

result of the analogous simulation for the fluxmon qubit CPW, summarized in Fig. 4.26.

The simulation uses the electric field at the interface as simulated by COMSOL (the

same technique used in Ref. [145]), and places defects throughout the interfacial volume

according to the distribution (4.87). Since we are not in the continuum limit, the in-

trinsic linewidths of the defects matter for the simulation. We use the experimentally

measured range of 30 - 150 ns for Γd [167, 40]. The simulation results are shown for a

w, g = 10, 2µm CPW fluxmon. The result in red shows that we would not expect any

defects below 1 µs, but of course this depends on several assumptions such as maximum

TLS dipole moment and TLS coherence time. Nevertheless, for larger CPW dimensions,

the excess loss from worst-case defects should be much better, which it isn’t. We also

note that the simulation shows that for a relatively narrow w, g = 10, 2µm fluxmon we

may expect roughly one to two defects over a 4 GHz bandwidth to be slightly coherent

4g & Γd, which could possibly explain the occasionally observed coherent defect.

A third possibility is that the defects are on the underside of the airbridge crossovers

of the qubit CPW; however, a simple parallel-plate capacitor calculation shows that

the electric field at these defects would be only ∼ 0.1 V/m, not large enough to have

a noticeable effect. We therefore conclude that the TLSs likely reside in the junction

25The resonator simulations were for a w, g = 24, 24µm CPW and had over 1 million defects, yielding
a mean Q of 1.5 million and ∼ 25 percent expected variation of Q over frequency.
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area. Unfortunately it is very hard to simulate the electric field at these junction-area

electrodes, as it would require a very fine mesh on a large 3D simulation, but qualitatively

we can see why this might be, as these electrodes will have strong electric fields over a

larger area, meaning a given defect is more likely to find itself in a large field of order

10 V/m.

So far we have only considered dielectric defects. But there is in principle the possi-

bility of magnetic defects as well. In the following section, we amazingly find one such

defect coming from a known physical source, the ground state hyperfine transition of an

ensemble of physisorbed atomic hydrogen.

4.2.4 Adsorbed hydrogen as a dissipation source: silicon vs.

sapphire

The mysterious feature at 1.4 GHz in the swap spectroscopy data, where there is a peak in

dissipation, is present at the same frequency and similar strength in all sapphire-substrate

qubits of all geometries. There is reason to believe that this feature is something phys-

ically intrinsic to the materials of the qubit, because it persists even when significantly

changing the filtering and attenuation on all the coaxial lines going to the qubit box

(including the addition of attenuation on the output of the readout line), and is further-

more independent of chip size and box size, and so is unlikely to be due to coupling to

an environmental electromagnetic mode.

Recently, using on-chip ESR techniques, de Graaf et al. [165] uncovered compelling

254



Figure 4.27: Cross section of center trace of fluxmon CPW (treated as a thin film) and definition
of coordinates. Fluxmon current flows into the page (x direction), generating a magnetic field
in the z direction. W ≈ 10µm is the width of the CPW center trace.

evidence for coupling of superconducting resonators to the ground state hyperfine tran-

sition of surface hydrogen, whose presence is claimed to be due to physical adsorption

as a by-product of water dissociation [165, 168, 169]. It so happens that the ground

state hyperfine transition frequency of hydrogen is 1.42 GHz, the frequency of the feature

observed in our fluxmon qubits. Below, we provide a rough calculation showing what

surface density of weakly bound hydrogen atoms would be needed to explain the peak in

dissipation observed in the fluxmon.

We suppose that there is a distribution of hydrogen atoms weakly bound to the surface

of the fluxmon’s CPW segment, so that the ground state hyperfine levels are roughly those

of an isolated H atom. We will later consider instead what happens if there defects are

located on the substrate-air interface rather than any of the metal interfaces. First, we

write down the interaction Hamiltonian between the fluxmon and a single such atom

(electron plus proton) at a lateral position z (−W/2 ≤ z ≤ W/2) on the surface of the
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CPW center trace (Fig. 4.27),

Ĥint = −µe ·B(z)− µp ·B(z) (4.90)

= −µBB̂z(z)σze −
gpe

2mp

~
2
B̂z(z)σzp,

where we have assumed the magnetic field generated by the qubit at the atom is in the

z direction (see Fig. 4.27). The magnetic field generated by the qubit on the surface of

the metal at position z is related to the qubit current operator according to

B̂z(z) =
µ0Î

πW

1√
(1− 2z

W
)(1 + 2z

W
)

(4.91)

This equation is valid as long as z is further than ∼ λ2/2t ≈ 50 nm from the edge of

the CPW strip [170]. Note that it is normalized so that effectively half the current flows

on the bottom and half flows on the top side of the CPW. Since the CPW center trace

dominates the surface magnetic participation, we have ignored the CPW ground planes.

We claim that the qubit’s magnetic field (which is uniform over the hydrogen atom)

will couple to the transition between the singlet hyperfine ground state |S〉 and the m = 0

triplet state |T0〉 1.4 GHz above. We will want to do a Fermi’s golden rule calculation to

calculate the induced |e〉 → |g〉 transition rate in the qubit. This requires computing the

matrix element between initial and final states, |i〉 = |e〉 |S〉 and |f〉 = |g〉 |T0〉, where |S〉

and |T0〉 are the singlet and m = 0 triplet states
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|S〉 =
1√
2

(|↑e〉 |↓p〉 − |↓e〉 |↑p〉), (4.92)

|T0〉 =
1√
2

(|↑e〉 |↓p〉+ |↓e〉 |↑p〉),

where e and p stand for electron and proton. We compute for a H atom at position z

〈f |Ĥint|i〉(z) = 〈g|Î|e〉µB
µ0

πW

1√
(1− 2z

W
)(1 + 2z

W
)
, (4.93)

where we have dropped a second term due to the proton because it is much smaller (by

a factor of ∼ me
mp

). We recognize 〈g|Î|e〉 = 1
L
〈g|Φ̂|e〉 as the qubit persistent current Ip,

which at 1.4 GHz is approximately 0.3µA.

Now we are ready to use Fermi’s golden rule to compute the decay rate induced in

the qubit by a large collection of hydrogen atoms. We need to know the density of states

of hyperfine splittings. Since the peak in qubit dissipation at 1.4 GHz has a linewidth of

150 MHz, significantly wider than the dephasing-limited qubit linewidth of ∼ 20 MHz,

we assume the hyperfine splittings are spread out over ∼ 100 MHz, presumably due to

an inhomogeneous weak interaction with the AlOx surface.26 This gives us the density

26A naive interpretation Ref. [171] suggests that this spread might be possible if the hydrogen is
weakly bound to O atoms with a mean distance of ∼ 4.5 Bohr radii with an inhomogeneous spread of
∼ 0.2 Bohr radii. Further theoretical study of the surface physics is needed to determined whether or
not this spread is physically realistic.
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of states ρ(E10) to use in Fermi’s golden rule,

Γ|e〉→|g〉 =
2π

~

∫ W/2−50 nm

−W/2+50 nm

dz |〈f |Ĥint|i〉(z)|2ρ(E10), (4.94)

where for simplicity we use a length cutoff of 50 nm ≈ λ from the CPW edge in order to

have a convergent integral. Using the true current distribution that correctly treats the

edge is not expected to significantly change the answer. Using the fact that the fluxmon

has a length of 2 mm (i.e., the dimension going into the page in Fig. 4.27), we back out

that to get the experimentally observed excess dissipation Γ|e〉→|g〉 ≈ 1/(200 ns), we must

have an areal density of ∼ 1 × 1016/m2, or about 1 H atom per 10 nm, on the AlOx

surface. We note that this number is reasonably consistent with the spin defect densities

of ∼ 1 − 5 × 1017/m2 typically inferred from low-frequency flux noise measurements

in SQUIDs [172, 111]. This is remarkable and perhaps a coincidence, given that these

two numbers are based on measurements at frequencies separated by about 10 orders of

magnitude.

Remarkably, in experiment, we only see a dip in T1 at 1.4 GHz on sapphire samples,

not on silicon samples. For example, Fig. 4.28 shows a typical swap spectroscopy dataset

on a silicon fluxmon. This clear difference tells us that the substrate plays an important

role and that the hydrogen is likely located there. This means one of two things –

the hydrogen only forms on the bottom side of the metal (i.e., at the substrate-metal

interface), or in the CPW gaps on the substrate-vacuum interface. If the former is true,

this simply increases the necessary spin density by a factor of 2, and if the latter is true

it would increase by roughly a factor of 5, so is still physically feasible. However, we
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Figure 4.28: Typical swap spectroscopy T1 data on silicon, showing an absence of any hydrogen
feature at 1.4 GHz.

believe that the latter is more likely to be true given he theoretical studies in Ref. [169]

and the recent experimental data from de Graaf et al. [165]. We note that it’s possible

that the surface hydrogen is still there on silicon, but is interacting more strongly with

the silicon than it did sapphire, which could smear out the dissipation over a wider range

of frequencies, possibly explaining the slightly suppressed T1 between 1.5 and 3 GHz in

Fig. 4.28. We also note that the background level of dissipation and the low-frequency

quasistatic tilt flux noise did not change systematically between sapphire and silicon. In

fact, within the margin of error and sample-to-sample variation of the measurement, the

low frequency tilt flux noise had the same magnitude (with silicon being perhaps slightly

better) and exponent α between sapphire and silicon, as can be seen in the data shown

in Fig. 4.29, although we need a larger sample size to make a firmer conclusion.
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Figure 4.29: Comparison of low-frequency flux noise for fluxmon qubits of similar geometries
on different samples, with two qubits on sapphire and two qubits on silicon. Given the sample-
to-sample variation and small sample size, we cannot definitively conclude whether the noise is
any better on silicon. All of these qubits were isolated qubits meaning they are not coupled to
any other qubits through a coupler circuit.

4.3 Macroscopic resonant quantum tunneling

As described in Chapter 1, quantum tunneling is an important computational resource for

a quantum annealer. Here, we study incoherent quantum tunneling between the two wells

of the flux qubit potential to simulate what will happen in a quantum annealer solving a

problem with a small energy gap, and in particular study how the tunneling rates depend

on noise and dissipation. Using the independent T1 and flux noise measurements from the

previous sections, we will show that we can roughly predict the performance of quantum

tunneling, in particular the linewidth of resonant quantum tunneling and the associated

environmental “reorganization energy” penalty. We will find that the measured tunneling

rates are consistent with the measured S−Φ of Fig. 4.23 extending deep into the classical

regime, further justifying the interpretation of dissipation as flux noise.
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We look at the effect of dissipation on incoherent macroscopic resonant tunneling

(MRT) between the lowest states of the left and right flux qubit wells, which is illustrated

in the inset of Fig. 4.30(b). In the regime of large β, the tunnel coupling ∆/h is much

smaller than the linewidth of the energy levels, meaning that quantum tunneling will be

incoherent, that is, described by a rate rather than by coherent swapping of population

between the wells. For the level of damping and dephasing in our system, at temperatures

below Tcr ≈ 200 mK the escape rate from one well to the other near resonance should

be dominated by quantum tunneling [173, 22, 91, 92]. Rewriting the result of [92], the

tunneling rate as a function of tilt bias energy ε is predicted to be27

ΓL→R(ε) =
∆2

4~2

∫ ∞
0

dt eIA(t) cos[εt/~− IB(t)], (4.95)

where

IA(t) =

∫ fh

fl

df
(2Ip)

2

(hf)2
S+

Φ (f) cos(2πft),

IB(t) =

∫ fh

fl

df
(2Ip)

2

(hf)2
S−Φ (f) sin(2πft), (4.96)

and fl and fh are appropriate low and high frequency cutoffs. Assuming the integrated

noise is dominated by frequencies smaller than the resonant tunneling linewidth W/h,

then near its peak Eq. (4.95) can be approximated as a Gaussian,

Γ(ε) =

√
π

8

∆2

~W
exp

[
−(ε− εp)2

2W 2

]
, (4.97)

27See the supplemental section 4.4 for a derivation of the equivalence of these equations and those in
Ref. [92].
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where [92]

W 2 = 4I2
p

∫ fh

fl

df S+
Φ (f),

εp = 4I2
p

∫ fh

fl

df S−Φ (f)/(hf) (4.98)

are the linewidth and reorganization energy. Intuitively, the linewidth W is simple to

understand, as it is essentially just integrating the drift in energy level between some

frequency cutoffs determined by the details of the experiment. In addition to this noise

broadening, we see that we expect the two Gaussian peaks to offset from zero tilt in

opposite directions depending on whether the tunneling is from right to left or left to

right [20]. Physically, this offset energy εp for the maximum tunneling rate physically

corresponds to the reorganization energy of the environment that must be absorbed upon

tunneling. More intuitively, if a very low frequency environment dominates, this energy

bias offset simply corresponds to the polarization of environmental spins in response to

the qubit’s magnetic field. More generally, we can understand εp as the classical energy

absorbed by the environment during a tunneling event as follows. Using (4.38) to write

S−Φ (ω) = L2S−I (ω) = L22~ωRe[Y (ω)] and recognizing 2Ip ≈ 1
L

∆Φ, where ∆Φ is the

change in qubit flux during a tunneling event, we can rewrite (4.98) as

εp =

∫ ∞
0

dω

2π
2(∆Φ)2Y (ω), (4.99)

where for simplicity we are for now ignoring the exact low and high frequency cutoffs.

Intuitively, if we model the tunneling as an instantaneous change in flux ∆Φ and therefore
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a voltage spike V (t) = ∆Φδ(t), the single-sided power spectrum of this voltage spike is

constant over frequency with a magnitude of 2(∆Φ)2. Therefore, the integration in

(4.99) corresponds to integrating in the frequency domain the power dissipation due

to Y (ω) in response to the voltage spike. Note that Eq. (4.99) does not contain ~

and therefore represents the classical energy dissipated during a tunneling event. As a

concrete example, consider the special case of an environment consisting of a single low

frequency resonant mode represented by a series inductance Lr and capacitance Cr, with

oscillation frequency ωr = 1/
√
LrCr. Since the resonance period 1/ωr is much longer

than the tunneling voltage pulse V (t) (i.e., the characteristic tunneling time), then the

current through the environmental inductor due to the voltage pulse adds coherently

across the pulse,

ILr =
1

Lr

∫
dt V (t) =

∆Φ

Lr
, (4.100)

corresponding to an energy

Er =
1

2
I2
LrLr =

(∆Φ)2

2Lr
(4.101)

transferred to the environmental mode. This agrees with the expression (4.99) for

εp when we substitute the admittance of a single mode from Eq. (4.24), Re[Yr(ω)] =

π
2Lr

δ(ω−ωr). For an arbitrary collection of low-frequency modes, through εp it is possible

to observe the integrated effect of dissipation and therefore the integrated effect of S−Φ in

the deep classical regime.

We measure the small-time28 incoherent tunneling rate Γ(ε) using the pulse sequence

28By small-time, we mean we only consider tunneling times for which the probability of having tunneled
is less than ∼ 0.25, which is where the probability vs. time curve is linear.
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idle reset pre-tunnel tunnel post-tunnel readout

(a)

Max. rate at

(b)

Figure 4.30: (a) Pulse sequence for the MRT experiment. (b) MRT data with ∆/h ≈ 0.5 MHz,
showing a small offset in the tilt bias that maximizes tunneling, consistent with the measured
S−Φ . Figure adapted from Ref. [71].

in Fig. 4.30(a). We prepare either the left or right well ground state with a high barrier,

and as a function of tilt bias lower the barrier to β ≈ 1.5 (∆/h ≈ 1 MHz) and measure

the incoherent tunneling rate to the other well. A typical dataset is shown in Fig.

4.30(b). Fitting the tunneling peaks to Gaussians, over multiple datasets we extract

εp/(2Ip) = 7 ± 3µΦ0 and W/(2Ip) = 80 ± 20µΦ0. Above base temperature W is not

changed within the margin of error, but εp becomes too small to reliably measure.

We can compare W and εp to that expected from directly integrating S±Φ (f) according

to (4.98), interpolating a 1/f power law between the noise measured at low and high

frequencies [Fig. 4.23(e)]. Including the ohmic noise leaves the tunneling rate virtually

unaffected near the peak even when integrating (4.95) up to fh = 10 GHz, the oscillation

frequency of the inverted potential barrier, the natural high frequency cutoff [174, 175].

The natural low-frequency cutoff for W and εp is the peak tunneling rate itself, ∼ 103 Hz

(see section 4.4 for a discussion of both the low and high frequency cutoffs). However,
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there is additional broadening of W due to quasistatic noise averaged over experimental

repetitions, which amounts to extending the low frequency cutoff for W down to the

inverse total data acquisition time (see supplemental section 4.4). Using these cutoffs we

predict W/(2Ip) ≈ 50µΦ0 and εp/(2Ip) ≈ 4µΦ0, within a factor of two of the measured

values. For low-frequency noise in thermal equilibrium, one would expect [20]

T = W 2/(2kBεp). (4.102)

Plugging in our measured W and εp yields Teff ≈ 60 mK, higher than the 30 mK de-

duced in Fig. 4.23(d). However, this may be explained by the extra broadening of W

from quasistatic noise. Subtracting out our estimation of this contribution yields instead

20 mK. An alternative explanation for the inferred effective temperature being high is

that the environment did not have enough time to thermalize and fully polarize itself in

response to the qubit state being initialized in one well or the other (we used an initial-

ization time of a few microseconds, whereas D-Wave, who often reports Teff matching the

fridge temperature, uses several hundred microseconds). A more quantitative study of

the role of the environmental response time in this experiment is needed. We note that

the effect of εp on tunneling becomes stronger for for multiqubit tunneling [19], since the

net reorganization energy will grow and suppress tunneling more easily. This is again a

primary reason why we want to build an annealer with low-dissipation qubits.

To conclude this chapter, we have used the fluxmon to measure flux noise over a

range of frequencies about 2kBT/h, separately extracting the symmetric and antisym-

metric components S±Φ (f) and observing the classical-quantum crossover. We find that
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S−Φ displays a paramagnetic temperature dependence below the crossover, and that S+
Φ

follows a 1/f power law whose magnitude is consistent with that of the 1/f flux noise near

1 Hz. The fact that the noise spectrum has a 1/f shape near the crossover indicates that

the underlying magnetic fluctuators have a distribution of relaxation times that extends

to at least 1 GHz, possibly hinting towards spin clustering as opposed to spin diffusion

[176, 177] (see supplemental section 4.4), which would also be consistent with the corre-

lated low-frequency inductance fluctuations observed in SQUIDs that were postulated to

arise from fluctuations in spin cluster relaxation times [178]. Recent evidence [128] that

adsorbed molecular O2 (spin-1) may play a dominant role in flux noise could also support

this conclusion, as spin-orbit induced magnetic anisotropy could break conservation of

total spin and allow clusters to locally transfer energy and angular momentum to the

lattice. Finally, we showed that the measured noise and dissipation can approximately

predict incoherent quantum tunneling rates between flux qubit wells, which has direct

implications for quantum annealing applications.

4.4 Further details on coherence and experimental

checks

4.4.0.1 Consistent definition of S+
Φ (f) at low and high frequencies

Because the low and high frequency flux noise are measured by very different methods,

we must be careful to have consistent definitions of S+
Φ (f) at low and high frequencies.
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In other words, in Fig. 2(e) of the main text, we must be sure we are plotting the same

physical quantity at low and high frequencies, without any discrepant factors of 2 or 2π.

Such a discrepancy could for example affect the best-fit value of α in an interpolating

power law between the two frequency ranges.

To infer S+
Φ (f) at low frequencies, we measure the discrete time sequence Φn, where

Φn is a classical real number, over N discrete time steps indexed by n ∈ {0, 1, ..., N − 1}

and separated by the physical sampling interval δt (meaning total data acquisition time

T = (N − 1)δt ≈ Nδt). We then estimate the single-sided PSD by computing

S+
Φ (f) =

2T

N2
〈|Φ̃k=fT |2〉, (4.103)

where the DFT coefficients Φk are defined by

Φ̃k ≡
N−1∑
n=0

Φne
−i2πnk/N . (4.104)

and 〈·〉 denotes an ensemble average since Φ̃k is itself a random variable.

At high frequencies, we instead infer the flux noise spectral density through Fermi’s

golden rule [141] using the fact that 1/T1 = Γ↑ + Γ↓, which implies the relation

S+
Φ (f) ≡ SΦ(f) + SΦ(−f)

=
~2

T1

1

|〈0| dĤ
dΦxt
|1〉|2

=
~2L2

T1

1

|〈0|Φ̂|1〉|2
, (4.105)

where [141]

SΦ(ω) ≡
∫ ∞
−∞

dτeiωτ 〈Φ(τ)Φ(0)〉. (4.106)
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Here, Φ could be an operator, but for simplicity we can assume it’s a real number, since

it is sufficient to check whether or not the two definitions (4.103) and (4.105) for S+
Φ

coincide for a classical incoherent flux noise source acting on the qubit. Showing this

will turn out to be equivalent to deriving the Wiener-Khinchin theorem for a stationary

stochastic process.

First, we can write (4.104) in the continuum limit N → ∞, δt → 0 with T held

constant, so that Φ(t = nδt) = Φn and Φ̃k=ft → 1
δt

∫ T
0

Φ(t)e−i2πftdt. Since Φ(t) is a

random process, so is Φ̃(f), so we keep the 〈·〉 before taking the limit T → ∞. We can

obtain its expectation value by taking the limit T → ∞ after plugging the continuum

limit expression into (4.103),

S+
Φ (ω) = lim

T→∞

2

T

〈∣∣∣∣∫ T

0

Φ(t)e−iωtdt

∣∣∣∣2
〉

= lim
T→∞

2

T

∫ T

0

∫ T

0

dt dt′ eiωte−iωt
′〈Φ(t)Φ(t′)〉

= lim
T→∞

2

T

∫ T

0

∫ T

0

dt dt′ e−iω(t−t′)〈Φ(t− t′)Φ(0)〉, (4.107)

where in the last step we have assumed that Φ(t) is a stationary process. To continue,

we note that the integrand [call it f(t, t′)] inside the double integral is a function of

τ ≡ t′ − t alone, meaning that f(τ) = f(t − t′) is constant along lines of constant

τ defined by the equation t′ = t + τ within the t-t′ plane. We can therefore convert

the double integral into a one-dimensional integral in f(τ), by integrating the diagonal

“slices” formed by such lines across the two-dimensional domain of integration. The
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domain of integration is the square [0, T ] × [0, T ] in the t-t′ plane, which is covered by

diagonal strips parameterized by τ ranging from −T to T . The area of each diagonal

strip corresponding to τ with infinitesimal width dτ is
√

2(T − |τ |) dτ√
2

= (T − |τ |)dτ , so

we can convert
∫ T

0

∫ T
0
dt dt′ f(t− t′) to

∫ T
−T dτ f(τ), meaning that (4.107) becomes

S+
Φ (ω) = lim

T→∞

2

T

∫ T

−T
dτ eiωτ 〈Φ(τ)Φ(0)〉(T − |τ |)

= lim
T→∞

2

∫ T

−T
dτ eiωτ 〈Φ(−τ)Φ(0)〉

(
1− |τ |

T

)
= 2

∫ ∞
−∞

dτ eiωτ 〈Φ(τ)Φ(0)〉, (4.108)

where in the last line we have used the property that the autocorrelation function 〈x(t+

τ)x(t)〉 is an even function of τ . Comparing this to (4.106) and (4.105) shows that the

two definitions of S+
Φ are indeed equivalent.

4.4.0.2 Flux noise at high and low frequencies changes similarly between

samples

Fig. 4.31 shows low and high frequency flux noise data for nominally the same qubit

on two different chips, with the second chip seeing extra post-processing in the form

of a downstream oxygen ash clean and the application of a (nominal) monolayer of

perfluorodecyltrichlorosilane (FDTS) via molecular vapor deposition. The second sample

also sat covered in photoresist for 6 months longer than the first sample. The flux noise

power just below 1 GHz changes by a factor of 1.6, while the flux noise power around 1
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Untreated sample
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Figure 4.31: Comparison of flux noise at low and high frequencies between two different samples
at base temperature. The samples were nominally identical apart from differing fabrication
post-treatments.

Hz changes by a factor of approximately 1.5. Consistent with this we also observe that

the Ramsey decay time Tφ2 away from zero tilt was ∼ 30% lower on the FDTS sample

when measured at a point with the same sensitivity of f10 to tilt flux (this degradation

was reproducible at several bias points).

4.4.0.3 Checking for distortion of extracted S±Φxt (f) from nonlinear crosstalk

In the main text, to deduce the high frequency flux noise S±Φxt (f) in the main qubit loop

we measure T1 at zero tilt, because at degeneracy only flux noise in ε(Φx
t ) and not noise

in ∆(Φx
SQ) would induce transitions between qubit energy eigenstates. However, this is

no longer strictly true if the two junctions in the DC SQUID are not perfectly symmetric,

which is to be expected due to fabrication imperfections. It can be shown [44] that if the

junction asymmetry is d ≡ EJ1−EJ2

EJ1+EJ2
, any flux threading the DC SQUID loop will lead to

an offset in tilt flux according to the nonlinear relation of Eq. (2.58), implying that noise
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in Φx
SQ leads to noise in Φx

t according to the differential transfer function

dΦx
t

dΦx
SQ

=
d

2

1

d2 sin2(πΦx
SQ/Φ0) + cos2(πΦx

SQ/Φ0)
. (4.109)

By measuring ∆Φx
t as a function of Φx

SQ and subtracting out any contribution from

linear geometric crosstalk between barrier and tilt bias lines, we can extract this intrinsic

nonlinear transfer function experimentally. For the data in the main text, we obtain

( dΦt
dΦSQ

)2 < .005 over the range of ∆(Φx
SQ) measured, corresponding to a junction asymme-

try of ∼ 1%. This suggests that dissipation from incoherent flux noise is likely dominated

by noise in Φx
t and not Φx

SQ, since the 1/f noise in Φx
SQ should be less than or comparable

to the noise in Φx
t (using conventional Ramsey experiments [115] at zero tilt we obtain

the noise in the DC SQUID flux Φx
SQ has magnitude 1 − 2µΦ0/

√
Hz at 1 Hz, compared

to ∼ 5 µΦ0/
√

Hz for Φx
t ). However, this does not exclude the possibility of the relative

strength of noise in Φx
t and Φx

SQ changing greatly between 1 Hz and GHz, but given that

we see similar T1’s over several samples with different junction asymmetries d, this seems

not to be the case. Note that this analysis does not rule out noise from surface spins

fluctuating on the wiring of the DC SQUID, because this wire is shared by both barrier

and tilt loops; rather, it only implies that noise from such fluctuators would affect the T1

data via induced noise in Φx
t and not due to induced noise in Φx

SQ.
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4.4.0.4 Checking for dissipation from non-equilibrium quasiparticles

Quasiparticle dissipation has been observed in other superconducting qubit systems [68,

179]. The frequency dependence of the fluxmon T1 at zero tilt below ∼ 3 GHz is also

consistent with quasiparticle dissipation if one were to assume a large enough population

of non-equilibrium quasiparticles in the system. We give theoretical and experimental

arguments as to why this is unlikely to be a dominant effect in our system, including a

test of the effects of magnetic vortices.

Quasiparticles with energy near the superconducting gap ∆ can absorb energy from

the qubit when they tunnel across one of the Josephson junctions, while “hot” quasipar-

ticles with energies more than ~ω10 from the gap can excite the qubit. If the energies of

all quasiparticles influencing the qubit are sufficiently less than 2∆, then for an arbitrary

quasiparticle occupation distribution f(E), the decay and excitation rates induced on

the qubit are given by [180]

Γi→f =
∑
j=1,2

∣∣∣∣〈f | sin ϕ̂j2 |i〉
∣∣∣∣2 Sjqp(ωif ), (4.110)

where j indexes the two Josephson junctions of the fluxmon and

Sjqp(ω) =
32EJj
π~

∫ ∞
0

dx ρ((1 + x)∆)ρ((1 + x)∆ + ~ω)×

f [(1 + x)∆](1− f [(1 + x)∆ + ~ω]) (4.111)

is the double-sided quasiparticle current spectral density, with ρ(E) = E/
√
E2 −∆2 ≈

1/
√

2(E −∆)/∆ the normalized quasiparticle density of states. The formula (4.111)
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works for ω < 0 by simply swapping the arguments of f and replacing ω with −ω. In

a non-tunable gap flux qubit (i.e., a single-junction fluxmon), at zero tilt the junction

would be biased at π, meaning that quasiparticle dissipation (∝ |〈0| sin ϕ̂
2
|1〉|2) would

vanish (physically, this is due to destructive interference between electron-like and hole-

like tunneling [181]). However, for the gap-tunable fluxmon, even though the effective

dynamical phase ϕ̂ = (ϕ̂1+ϕ̂2)/2 can be biased at π at zero tilt, the phase of the individual

junctions are not. Instead, flux quantization dictates that ϕ̂1 = ϕ̂− πΦSQ/Φ0, ϕ̂2 = ϕ̂+

πΦSQ/Φ0, meaning that the matrix element can be non-zero and quasiparticle dissipation

can occur even at zero tilt.

While a thermal distribution of quasiparticles would be much too small to explain the

observed dissipation, this does not rule out the possibility of non-equilibrium quasiparti-

cles. A reasonable model for computing the distribution of non-equilibrium quasiparticles

is outlined in Refs. [147, 68, 182]. Here, quasiparticles are assumed to be injected at

some energy or range of energies well above the gap and, via electron-phonon scattering

and recombination, relax to some steady-state distribution that is essentially indepen-

dent of the injection energy as long as the injection energy is high enough. Using the

steady state equations outlined in Ref. [68], we can calculate the expected distribution

of nonequilibrium quasiparticles as a function of injection rate and phonon temperature

Tph, and then using (4.110) and (4.111) numerically calculate the resulting up and down

transition rates to obtain the quasiparticle-induced T1 and stray population. We choose

an injection rate that leads to a quasiparticle density that best matches the measured T1
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Figure 4.32: Data vs. fit to nonequilibrium quasiparticle theory. Although a quasiparticle
density can be chosen large enough to roughly match T1 vs. frequency, a simultaneous fit to
stray population is not possible within this model.

data while choosing the phonon temperature to be equal to the fridge temperature. We

assume the same injection rate for all four fridge temperatures used in the main paper.

The injection energies were between 2.1∆ and 2.2∆, though changing this energy range

does not materially affect the result. The results are summarized in Fig. 4.32, where

we plot the computed f(E), T1 and stray population/effective temperature induced on

the qubit on top of the T1 and stray population data used in Fig. 3 of the main paper.

The best fit yields a quasiparticle density nqp ≡ 2D(EF )
∫∞

∆
ρ(E)f(E) dE of 3.5/µm3,

or a fractional quasiparticle density xqp = nqp/ncp = nqp/(D(EF )∆) = 1.3× 10−6, where

D(EF ) is the density of electron states at the Fermi energy.
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We make several observations about this calculation. While the fits do match the

T1 data reasonably well below ∼ 4 GHz, the stray population is quite off and does not

have nearly a large enough dependence on temperature at low frequencies. We also see

that the quasiparticle-induced qubit effective temperature does not approach a constant

value at low frequencies like the data appears to do, and like the stray populations, the

predicted effective temperatures do not match the data well at all, especially for the low-

est three temperatures. Furthermore, there are several experimentally-based estimates

substantially below xqp = 1.3×10−6 in the superconducting qubit literature, for example

1 × 10−8, 4 × 10−8, and 3 × 10−7 in Refs. [183, 184, 185], and 2.2 × 10−7 in Ref. [186]

(where the nonequilibrium quasiparticle density explained both T1 and stray population),

so it is not unreasonable that xqp is similarly low in our system, especially given the strin-

gent level of light-tight filtering used in our setup [95]. In addition, we note that if the

non-equilibrium quasiparticle density was indeed xqp = 1.3× 10−6, the T1 limit imposed

on our standard Xmon qubits would be 7µs at 3 GHz, but Xmons consistently achieve

T1 a factor of 10 higher than this at 3 GHz, and furthermore show a defect structure

and opposite overall scaling in frequency from that predicted from quasiparticles. We

have no reason to believe the quasiparticle density would be any higher in the fluxmon

device given that the device is fabricated with identical materials and chip mount, and

the fridge wiring is essentially identical to that used for Xmon experiments. If the quasi-

particles were being introduced by the long (few µs) readout pulses used for the fluxmon,

we would expect T1 to depend on the repetition time between experiments. We do not
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see any change in T1 as we vary the repetition time from 50µs to 1000µs.

One more experimental check we can perform is to see if T1 improves after inducing

magnetic vortices into the Al film of the sample. Abrikosov vortices, which have quasi-

normal cores, form when a thin-film superconductor is cooled through Tc in the presence

of a magnetic field. It is well-known that such vortices trap quasiparticles, and have even

been shown to significantly decrease quasiparticle-induced dissipation in superconduct-

ing qubits [185]. In particular, for a thin-film Al transmon qubit vortices were shown

to significantly decrease quasiparticle-induced dissipation with a modest applied field of

∼ 10 mG [185]. To check if there is any improvement in T1 to be gained from the presence

of vortices, we added a magnetic coil to the setup directly outside the qubit box, which

we used to apply a several different magnetic fields between −30 and 30 mG to the qubit

chip as it cooled through its superconducting transition. The result of these magnetic

field cools are shown in Fig. 4.33. We see only degradation of qubit T1 with applied

magnetic field. This data suggests that quasiparticles are not playing a dominant role in

qubit dissipation in the fluxmon device.

4.4.0.5 Low and high frequency noise cutoffs for Macroscopic Resonant Tun-

neling Rates

In the main text, it was argued that the low-frequency cutoff fl in the noise integral for

the MRT tunneling linewidth W should be the inverse of the total experimental data

acquisition time, whereas the fl for the integral for the reorganization energy εp should

be the tunneling rate near maximum tunneling. The latter physically makes sense as the
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Figure 4.33: Field cool data. Inducing vortices only degrades T1.

reorganization energy should not depend on the time at which the experiment was per-

formed. In other words, only dissipation at frequencies higher than the slowest timescale

of the tunneling can affect this energy. However, different instances of the tunneling

experiment may have different quasistatic flux offsets δε = 2IpδΦ
x
t as discussed earlier

in the context of the low frequency flux noise measurement, which can give additional

broadening of the MRT tunneling peak. For simplicity, let us take the Gaussian approx-

imation to the lineshape described in the main text, Γ(ε) =
√

π
8

∆2

~W exp
[
− (ε−εp)2

2W 2

]
, so

that what is actually measured after averaging is the quantity

Γ(ε) =

∫ ∞
−∞

d(δε)Γ(ε+ δε)p(δε), (4.112)
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where p(δε) = 1√
2πσ2

e−
(δε)2

2σ2 describes the Gaussian distribution of quasistatic flux fluc-

tuations. Performing the integration yields

Γ(ε) =
π

8

∆2√
W 2

0 + σ2
e
− (ε−εp)2

2(W2
0 +σ2) , (4.113)

which shows that the original W0 (obtained from integrating down to fl equal to the

maximum tunneling rate) is broadened by the r.m.s. quasistatic flux fluctuations via

addition in quadrature. Since W 2 = 4I2
p

∫ fh
fl
df S+

Φ (f), this amounts to extending fl down

to the inverse total experimental averaging time.

For the high frequency cutoff to the tunneling rate integral, we use the oscillation

frequency of the inverted potential barrier. Previous theoretical and experimental work

in macroscopic quantum tunneling has shown this to be the physical high-frequency

cutoff [174, 131, 187, 175]. Nevertheless, we find that the tunneling rate near resonance

according to full integral in Eq. (3) of the main text is not materially affected by this

high frequency cutoff.

4.4.0.6 1/fα scaling near the crossover and high-frequency cutoff

Here we discuss the 1/fα form of the flux noise and its modifications due to a possible

high frequency cutoff for the relaxation times of the magnetic fluctuators. We argue that

while our data clearly shows that such a cutoff must be of order kBT/h or higher, a model

where the cutoff is a few times kBT fits the temperature dependence data slightly better

than one with a much higher cutoff.

To obtain a 1/fα scaling, we assume a single relaxation time τn for each fluctuator.
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The dynamic susceptibility of a single such fluctuator is given by a standard Drude

formula χn(ω, T ) = χn(0,T )
1+iωτn

, meaning χ′′n(ω, T ) = χn(0, T ) ωτn
1+ω2τ2

n
. For paramagnetic spins,

χn(0, T ) ∝ 1/T . In the limit of many fluctuators with different relaxation times, we can

convert (4.86) into an integral over τ with an effective weight for each τ :

SΦ(ω) = ~
[
1 + coth

(
~ω

2kBT

)]∫ τmax

τmin

ρ(τ)
1

T

ωτ

1 + ω2τ 2
, (4.114)

where τmin and τmax are lower and upper cutoffs for the relaxation times, and we have

included a uniform 1/T factor in the integrand under the assumption that all the fluctu-

ators are paramagnetic.29 In the classical limit,30

S+
Φ (ω � kBT/~) ∝ kB

∫ τmax

τmin

dτρ(τ)
τ

1 + ω2τ 2
, (4.115)

S−Φ (ω � kBT/~) ∝ ~
T

∫ τmax

τmin

dτρ(τ)
ωτ

1 + ω2τ 2
. (4.116)

As before, from this we can see that our experimental data below the classical-quantum

crossover is consistent with an environment of magnetic fluctuators with a paramagnetic

static susceptibility χ(0), under the assumption that ρ(τ) is independent of temperature.

If we postulate ρ(τ) ∝ 1
τ

between τ1 and τ2, then performing the integration leads to

S+
Φ (ω) ∝ 1/ω assuming 1

τ2
� ω � 1

τ1
(ωmin � ω � ωmax), which is the usual picture of

1/f noise in the classical limit. However, more precisely performing the full integration

29We have neglected a possible dependence of the static susceptibility χ(0, τ, T ) on τ because it should
be very weak. For instance, if we consider superparamagnetic clusters with different values for the
total spin S that fluctuate by tunneling through anisotropy barriers U ∝ S2, then for a given S,
χ(0) ∝ 1

3S(S + 1) while log τ ∝ U ∝ S2. Thus χ(0, τ, T ) depends on τ only logarithmically and can be
safely replaced by its average value.

30We note that in the fully classical limit ~ → 0, S−Φ will vanish while χ′′(ω) (the dissipation) does
not need to vanish.
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(4.114) without assuming anything about ω relative to T or τmin/max yields for the full

spectrum

SΦ(ω) ∝ ~
T

[
1 + coth

(
~ω

2kBT

)]
tan−1(ωτ)

∣∣τmax

τmin
(4.117)

As long as τmin and τmax don’t depend exponentially on T , the temperature dependence

of S−Φ will again be given by that of the static susceptibility. Let us assume that ωmin �

kBT/~ (justified by the presence of 1/f flux noise well below 1 GHz) and look at the shape

of the classical-quantum crossover for different ωmax. Fig. 4.34 shows that there are three

qualitative types of scaling behavior of S±Φ (f) around the crossover. If ωmax � kBT/~,

then S+
Φ (f) would approach the crossover from below as 1/f 2, inconsistent with the data.

On the other hand, if ωmax � kBT/~, then S+
Φ (f) will turn into white noise just above

the crossover. There is also an intermediate regime ωmax ≈ 3kBT/~ where S+
Φ (f) is very

close to 1/f for all frequencies except for a slight deviation at the crossover point.

In Fig. 4.35, we compare the phenomenological thermodynamic power law model

used in the main text,

Sphen.
Φ (ω) = A

ω

|ω|α
[1 + coth (~ω/[2kBTA])] (4.118)

+Bω|ω|γ−1[1 + coth (~ω/[2kBTB])], (4.119)

to the finite high-frequency cutoff model (4.117). The former implicitly assumes that

ωmax � kBT/~, so that any deviation of S+
Φ from a perfect 1/f scaling near the classical-

quantum crossover would be due to temperature alone. Although this seems to fit our

280



Figure 4.34: 1/f noise according to the finite high frequency cutoff model (4.117) for differ-
ent values of ωmax, showing the three qualitative ‘flavors’ the noise scaling near the classical-
quantum crossover. Dash-dotted lines are S−Φ while solid lines are S+

Φ . The ‘smoothest’ tran-
sition through the cutoff where S+

Φ (f) remains close to 1/f for all frequencies is achieved for
ωmax ≈ 3kBT/~.

Model 1 Model 2

Figure 4.35: Comparison of two models with the constraint that the ohmic exponent γ be
the same at all temperatures. The model with a finite, temperature-dependent ωc ≈ 3kBTeff

fits the temperature dependence data somewhat better than the phenomenological model with
α = 1.05 used in the main text at base temperature. Here, Teff is the temperature deduced
from the data below the crossover. However, there is no significant difference between the fits
just looking at 30 mK alone.
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data at base temperature, we find that incorporating a finite ωmax fits the higher tem-

perature data slightly better under the conditions of the fit (constant α and γ for all

temperatures). Namely, we use the “intermediate” type of crossover, ωmax = 3kBTeff ,

where Teff is the limiting effective temperature deduced from the stray population data

below the crossover. A high frequency cutoff that scales linearly with temperature might

have a natural physical meaning. For instance, if the inverse relaxation times τ−1
n are

determined by spin-phonon interactions, both τ−1
n and ωmax will be proportional to the

number of phonons with energy close to the typical Zeeman splittings of the fluctuators,

which scales linearly with T (since the Zeeman splittings should be � kBT even for

clusters).

4.4.0.7 Implications of high frequency cutoff for spin diffusion

We mention one more mechanism that would give a frequency-dependent α due to a finite

ωmax, but with a different functional form. Namely, we consider spin diffusion, which was

proposed by Faoro and Ioffe [176] to explain 1/f noise in SQUIDs and further explored

in the context of D-Wave flux qubits by Lanting et al. [188]. We conclude that given

the 1/f scaling of S+
Φ (f) near 1 GHz, spin diffusion is unlikely to be the source of the

1/f noise near the classical-quantum crossover unless i.) the spin diffusion constant is

several orders of magnitude higher than estimates in the literature [176, 188] or ii.) the

spin density is substantially inhomogeneous, leading to a shallower power law at high

frequencies, in which case a separate physical mechanism needs to be invoked for the 1/f

power law at lower frequencies.
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Within the spin diffusion model, the total spin is conserved and spin excitations will

diffuse around the surface of the superconducting qubit metal, generating flux noise by

coupling to a non-uniform distribution of the magnetic field. In Ref. [176], the mechanism

of diffusion was proposed to be a Ruderman-Kittel-Kasuya-Yosida(RKKY) interaction

[189] mediated through the superconductor. The diffusion equation for the coarse-grained

magnetization is

∂Mα(r, t)/∂t = D∇2Mα(r, t), (4.120)

where D is the diffusion coefficient and α = x, y, z. Eq. (4.120) can be solved using the

Laplace transform Mα(r) ∝ e−Γntϕn(r), which leads to the eigenvalue problem

∇2ϕn(r) = −Γnϕn(r), (4.121)

with periodic boundary conditions on the surface of the qubit metal. Solving for the

eigenmodes ϕn(r) allows one to express the dynamic magnetic susceptibility from the

Green’s function for Eq. (4.120):

χ′′αβ(r, r′, ω) = δαβχ(0, T )
∑
n

ϕn(r)
ωΓn

ω2 + Γ2
n

ϕn(r′). (4.122)

The flux noise then becomes a sum of Lorentzians corresponding to each diffusion mode

SΦ(ω) = ~ωχ(0, T )

[
1 + coth

(
~ω

2kBT

)]∑
n

b2
n

Γn
ω2 + Γ2

n

, (4.123)

where b2
n =

∑
α b

2
αn, bαn =

∫
drbα(r)ϕn(r), are coupling factors describing how the local

moment couples to the qubit’s magnetic field and by reciprocity the qubit loop itself.

Therefore the spin diffusion model naturally leads to a broad set of relaxation times

τn = 1/Γn with a temperature-independent distribution function ρ(τn) = b2
n given by the
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form factors. The temperature dependence of S−Φ will then arise solely from that of the

static magnetic susceptibility χ(0, T ).

In the limit of a flat wire (thin film), one would expect a 1/fα=1 power law for

ωmin � ω � ωmax, kBT/~. But allowing for a finite aspect ratio or for inhomogeneity of

the spin density on the surface, one can have an exponent α 6= 1. In particular, if the

spins are concentrated near edges we can have α < 1 [127]. An analytic approximation

for the noise summation is [127]

SΦ(ω) = A

[
1 + coth

(
~ω

2kBT

)]
~ω
kBT

∫ ∞
0

dx
x3−2αe

− x√
ωmax

ω2 + x4
. (4.124)

One would expect the high frequency cutoff ωmax for Γn to be given by ωmax ≈ D/`2,

where ` is the smallest dimension associated with the qubit geometry, which for our device

should be the metal thickness of ∼ 100 nm. The highest estimates in the literature for D

are 108−109 nm2/s [176], which would imply a physically expected cutoff of ωmax/(2π) ∼

100 kHz.31 Therefore, for spin diffusion to be relevant to the classical-quantum crossover,

we would need either a much larger D and/or α < 1. If α < 1, this would mean the

quasistatic flux noise (which shows α = 1 below 10 Hz) is not spin diffusion noise, but it

may be possible to have different physical mechanisms in different frequency ranges with

the noise power still scaling similarly between samples at high and low frequencies.

31Conversely, a low-frequency cutoff of ∼ 10 Hz would be expected, which would mean the noise below
1 Hz would need to have a different physical mechanism, unless the diffusion constant is much lower
than expected. The “bump” in flux noise observed at intermediate frequencies in the main paper could
potentially be due to spin diffusion, assuming it is not suppressed by spin relaxation.
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Chapter 5

Tunable coupling for quantum

annealing: theory and design

In this chapter we study the theory and design of tunable inductive coupling between

fluxmon qubits. We start with a simple classical linear circuits understanding of coupling,

where a “coupler” circuit containing a Josephson junction is treated as a flux transformer

loop that provides an effective tunable mutual inductance between the qubits. This

provides a simple, intuitive picture of coupling and other local field effects that is often

but not always sufficient to describe a system of inductively coupled qubits. We will then

refine our analysis to account for both nonlinearity and capacitance in the coupler circuit

using the Born-Oppenheimer approximation following the analysis of Ref. [55]. We will

see that there are nonlinear and quantum effects arising from the coupler circuit that

can become non-negligible for large coupling strengths and for non-zero characteristic
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impedance of the coupler. We will furthermore provide a semi-intuitive understanding

of when such nonlinear effects are important using an effective finite difference picture

for qubit-qubit coupling. The nonlinear treatment will allow us to model ultra-strong

coupling between qubits (a regime where the coupling strength is an appreciable fraction

of the qubit frequency itself), which could be useful for quantum annealing, and which

we will experimentally measure in the following chapter.

Tunable inductive coupling between superconducting qubits is not a new idea.1 Tun-

able inductive coupling circuits have been implemented before between flux qubits [191,

192, 193], phase qubits [194], between qubits and resonators [195], and recently between

gmon transmon qubits [196]. The essence of our approach to implementing tunable cou-

pling is quite similar to the approach taken by D-Wave [197], using an rf-SQUID coupler

as a tunable mutual inductance, but with some technical differences in physical imple-

mentation, and also differences in control. For example, we will implement arbitrary

time-dependent control of individual couplers, a feature that is not currently available

on D-Wave devices. Furthermore, we will go beyond the analysis previously used for

these couplers, ultimately using a more accurate nonlinear Born-Oppenheimer analysis

as opposed to a linear Born-Oppenheimer analysis [198]. With this we hope to be able to

operate multiple qubits in the nonlinear regime at the same time, enabling stronger cou-

pling and more accurate modelling and control of the annealing process without having

to perform an unscalable full diagonalization of the system.

1Proposals for tunable capacitive coupling also exist [190], but tunable inductive coupling is much
simpler to implement in practice, and we don’t want to deal with charge noise.
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5.1 Inductive coupling from a linear circuits perspec-

tive

In this section we will approach tunable inductive coupling from a linear circuits perspec-

tive, which provides the simplest way to understand and calibrate coupled qubit devices.

This means that we consider the coupling circuit as a tunable linear mutual inductance,

even though in reality it contains nonlinearity due to its Josephson junctions and also

has finite capacitance. We will still allow for nonlinearity within the qubits, however.

This kind of linear treatment is sufficiently accurate when the couplings are not too large

and when the nonlinearity of the coupler circuit is not too high. For now we also ignore

any capacitance within the coupler’s Josephson junction or main body of the coupler.

Later we will allow for finite capacitance and study the resulting quantum and dispersive

effects.

5.1.1 Direct coupling through a mutual inductance

Before delving into the Josephson coupler circuit, it is instructive to first consider a

system of two qubits coupled through a direct geometric mutual inductance, as illustrated

in Fig. 5.1. Intuitively, the interaction energy of this circuit is simply MI1I2 ≈M Φ1

L1

Φ2

L2
,

giving rise to the simple interaction Hamiltonian MÎ1Î2 ≈ M Φ̂1

L1

Φ̂2

L2
. We will see that

this intuition is correct in the limit of weak coupling. We’ll now perform a more rigorous

analysis to obtain the Hamiltonian in terms of canonical flux and charge variables, and see
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Figure 5.1: Circuit diagram and current conventions for two flux qubits coupled through a
direct geometric mutual inductance.

that the above Hamiltonian is only approximate up to some renormalization terms that

are negligible when M/L � 1. There will also turn out to be a similar renormalization

in the Hamiltonians of each of the individual qubits as well.

We begin by writing down the classical current and flux equations,

current conservation

{
IL1 − IC1 − Ij1 = 0

IL2 − IC2 − Ij2 = 0
, (5.1)

flux relations

{
ΦL1 = L1IL1 +MIL2

ΦL2 = L2IL2 +MIL1

, (5.2)

flux relations (inverted)

IL1 =
(

1− M2

L1L2

)−1 (ΦL1

L1
− M

L1L2
ΦL2

)
IL2 =

(
1− M2

L1L2

)−1 (ΦL2

L2
− M

L1L2
ΦL1

) , (5.3)

flux quantization

{
ΦL1 + Φj1 = Φt1

ΦL2 + Φj2 = Φt2

, (5.4)

where the last set of equations distinguishes the fluxes across the inductor and Josephson

junction of each qubit according to that qubit’s external tilt flux bias. Using the relations
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I = Q̇ and Φ =
∫
V ′dt′ along with the DC Josephson relation, we can rewrite the current

conservation equations (5.1) as

IL1 − C1Φ̈j1 − I(c)
1 sin(2πΦj1/Φ0) = 0,

IL2 − C2Φ̈j2 − I(c)
2 sin(2πΦj2/Φ0) = 0. (5.5)

Substituting the inverted flux relations (5.3) and the flux quantization conditions (5.4)

lets us write everything in terms of the fluxes Φj1 and Φj2 across the Josephson junctions

(which from now on we denote simply as Φ1 and Φ2),

(
1− M2

L1L2

)−1(
Φt1 − Φ1

L1

− M

L1L2

(Φt2 − Φ2)

)
− C1Φ̈1 − I(c)

1 sin(2πΦ1/Φ0) = 0,(
1− M2

L1L2

)−1(
Φt2 − Φ2

L2

− M

L1L2

(Φt1 − Φ1)

)
− C2Φ̈2 − I(c)

2 sin(2πΦ2/Φ0) = 0. (5.6)

Upon inspection we see that these are the Euler-Lagrange equations corresponding to

the Lagrangian

Lcoupled =
1

2
C1Φ̇2

1 +
1

2
C2Φ̇2

2 −
(

1− M2

L1L2

)−1 [
(Φ1 − Φt1)2

2L1

+
(Φ2 − Φt2)2

2L2

]
+

(
1− M2

L1L2

)−1
M

L1L2

(Φ1 − Φt1)(Φ2 − Φt2)

+
Φ0

2π
I

(c)
1 cos(2πΦ1/Φ0) +

Φ0

2π
I

(c)
2 cos(2πΦ2/Φ0). (5.7)

Using the junction fluxes Φi as our generalized coordinates, we see that the usual flux

and charge across the junction are the canonical variables; i.e., the canonical momenta
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are still the charges

pi ≡
∂L
∂Φ̇i

= CiΦ̇i = Qi. (5.8)

The Hamiltonian H =
∑

i Φ̇iQi−L of two qubits coupled through a mutual inductance

is then

Hcoupled =
Q2

1

2C1

+
Q2

2

2C2

+

(
1− M2

L1L2

)−1 [
(Φ1 − Φt1)2

2L1

+
(Φ2 − Φt2)2

2L2

]
−
(

1− M2

L1L2

)−1

M
(Φ1 − Φt1)

L1

(Φ2 − Φt2)

L2

− EJ1 cos(2πΦ1/Φ0)− EJ2 cos(2πΦ2/Φ0). (5.9)

We note that the second two lines of the Hamiltonian could have been derived less

rigorously by substitution of the inverted flux relation into the classical formula for the

energy stored in two mutually coupled inductances, U = 1
2
L1I

2
1 + 1

2
L2I

2
2−MI1I2, although

the derivation of this formula along with the change to flux variables would have required

about the same amount of work.

We can immediately read off several features of the coupled Hamiltonian (5.9). The

first and most obvious is the introduction of an interaction term between qubits, which

at zero tilt is proportional to Φ1Φ2 as expected. The coefficient in front of the inter-

action term is negative, which is just an artifact of how we chose our current and flux

conventions. Other equally valid definitions with reversed currents through one of the

inductor will yield a term of the same magnitude but opposite sign (also keep in mind
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that M can be negative, depending on the physical implementation of the coupling seg-

ment). However, the magnitude of the interaction term differs from M Φ1

L1

Φ2

L2
by a factor

of
(

1− M2

L1L2

)−1

, which is a result of the fact that Φi 6= Ii
Li

in the coupled system. In

addition to the interaction term at zero tilt, there are two “local field” effects. The first

is that the effective inductance of each qubit has been rescaled by a factor of
(

1− M2

L1L2

)
,

though this effect is second order in M . In the next section where we consider each qubit

coupled to a coupler circuit, we will see that there can actually be large positive induced

inductance shifts due to the possibility of the coupler having a negative net inductance.

Note that we can equally well write the Hamiltonian in terms of the fluxes across the

qubit inductors rather than the junctions via the canonical transformation Φi → Φi−Φti,

which gets rid of the “cross terms,”

Hcoupled =
Q2

1

2C1

+
Q2

2

2C2

+

(
1− M2

L1L2

)−1 [
Φ2

1

2L1

+
Φ2

2

2L2

]
−
(

1− M2

L1L2

)−1

M
Φ1

L1

Φ2

L2

− EJ1 cos(2π[Φ1 + Φt1]/Φ0)− EJ2 cos(2π[Φ2 + Φt2]/Φ0). (5.10)

When M2/(L1L2) � 1 (the largest coupling we will need in experiment corresponds to

Meff ≈ 30 pH between qubits, corresponding to M2
eff/(L1L2) ≈ 0.002), we can safely say

that within the linear approximation, the effect of coupling through a mutual inductance
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M is to introduce the interaction Hamiltonian

Hint ≈M
Φ̂1

L1

Φ̂2

L2

, (5.11)

or in the language of quantum annealing means a ZZ coupling (in the flux basis) strength

of

J ≈ M

L1L2

|〈0|Φ̂1|1〉||〈0|Φ̂2|1〉|

= MIp1Ip2. (5.12)

5.1.2 Josephson coupler circuit as a tunable mutual inductance

We now consider how to make a tunable mutual inductance by using an intermedi-

ate Josephson coupler loop. Physically, the coupler is actually another flux qubit, but

with smaller inductance and capacitance, and operated at a much higher characteristic

frequency so that it always remains in its ground state. This is known as the Born-

Oppenheimer (BO) approximation. For now, we will treat the coupler’s Josephson junc-

tion as a tunable linear inductance, valid in the linear limit, and ignore its capacitance

so that the coupler plays no dynamical role other than being a linear flux transformer

between qubits. Later on in the next section we will revisit the validity of these assump-

tions, and include modifications both due to coupler nonlinearity and coupler capacitance

(including the fact that the coupler might not remain in its ground state).

We consider the circuit in Fig. 5.2, showing two qubits coupled through a coupler
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a)

b)

c)

Figure 5.2: Linear circuit representation of two flux qubits coupled via a coupler, which is a flux
transformer loop containing a Josephson junction (or DC SQUID). In the linear approximation
the coupler’s junction acts as a tunable linear inductance, leading to a tunable effective mutual
inductance between qubits mediated by the coupler loop.
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circuit. We treat the coupler’s junction as a tunable linear inductor [Eq. (2.4)]

Lj(ϕcj) =
Φ0

2π

1

I
(c)
c cos(ϕcj)

, (5.13)

where ϕcj is the flux across the coupler’s junction, so that the coupler acts as a flux

transformer loop with tunable inductance. To find Lj as a function of the applied coupler

flux bias ϕcx, we need to solve for ϕcj as a function of ϕcx. To do this, we first write

down the current-flux relationships

ΦL,c = LcIc +
∑
k

MkIk (5.14)

and

ΦL,k = LkIk +MkIc, (5.15)

where Ic is the current flowing through the coupler loop and Ik are the currents flowing

through the qubit inductors. The third relation we need is flux quantization over the

coupler’s loop, which dictates that

ΦL,c + Φcj = Φcx. (5.16)

Solving for Ik in (5.15) yields

Ik =
ΦL,k

Lk
− αkIc, (5.17)

where

αk =
Mk

Lk
(5.18)

are the inductive coupling efficiencies of the qubits. Substituting this expression for the
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qubit currents back into (5.14) yields the flux through the coupler’s inductor,

ΦL,c = (Lc − αkMk)Ic +
∑
k

αkΦL,k, (5.19)

which can be rewritten as

ϕL,c = −βc
Ic

I
(c)
c

+
∑
k

αkϕk, (5.20)

where

βc ≡ −
2π

Φ0

I(c)
c

(
Lc −

∑
k

αkMk

)

≡ −2π

Φ0

I(c)
c L̃c (5.21)

is the effective nonlinearity of the coupler and L̃c is a renormalized coupler inductance

(note that in our notation, βc is positive when the Josephson inductance [and hence the

critical current] is negative). Next, the classical DC Josephson relation says that we

must simultaneously have Ic = I
(c)
c sinϕcj = I

(c)
c sin(ϕcx − ϕL,c), where we have used the

coupler’s flux quantization condition (5.16). Substituting (5.20) and dividing through by

I
(c)
c yields a transcendental equation for the coupler current as a function of ϕcx,

Ic

I
(c)
c

= sin

(
ϕcx −

∑
k

αkϕk + βc
Ic

I
(c)
c

)
. (5.22)

Equating the argument of the sine on the right hand side with ϕcj yields a transcendental

equation relating ϕcj and ϕcx,

ϕcj − βc sinϕcj = ϕx, (5.23)
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where

ϕx ≡ ϕcx − α1ϕ1 − α2ϕ2 (5.24)

is the total flux bias felt by the coupler including the influence of the qubits. We formally

solve this transcendental equation2 by introducing the function sinβ(x) such that

sinβc(ϕx) ≡ sin(ϕcj), (5.25)

which along with (5.23) implies the relations

sinβc(ϕx) = sin(ϕx + βc sinβc(ϕx)) (5.26)

and

ϕcj = ϕx + βc sinβc(ϕx). (5.27)

Physically, the motivation for this notation is that the current through the Joseph-

son junction is then given by a function of the applied bias that looks almost like the

Josephson relation,

Ic = I(c)
c sinβc(ϕx) = I(c)

c sin(ϕcj), (5.28)

and in fact reduces to the simple Josephson relation with ϕcx = ϕcj in the βc → 0 limit

of a loop with just a Josephson junction. An analytical expression for sinβ(ϕ) is derived

in Ref. [55],

sinβ(ϕ) = 2
∑
k≥1

Jk(kβ)

kβ
sin(kϕ), (5.29)

2Note that in Ref. [55] (the work on which we base our nonlinear analysis in the following sections),
some sign conventions are different, with ϕcj → ϕcj + π, ϕcx → ϕcx + π, βc → −βc. Our convention
is “physical” in that it doesn’t include a π-shift, so that at zero physical applied flux in the coupler we
have negative βc, which matches our convention used for qubits. However, note that equation (5.23) as
well as equations (5.25) and (5.27) are invariant under this change of convention. A useful identity for
convincing oneself of this is sinβ(ϕ) = − sin−β(ϕ+ π).
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Figure 5.3: Plots of the sinβ(ϕ) and cosβ(ϕ) functions for different values of β.

where Jk(x) is the Bessel function of the first kind, but usually a numerical solution

is more practical, especially in the highly nonlinear limit β ≈ 1. The sinβ function is

illustrated in Fig. 5.3(a), and its integral cosβ in Fig. 5.3(b). We note that sin′β(0) = 1
1−β ,

so the coupler will become more and more sensitive as βc → 1. However, although this

first derivative and therefore the first-order coupler susceptibility increases without bound

in this limit, as shown in the next section, going beyond first order will keep all quantities

finite, including Meff .

Next, consider what happens when a current Iq1 flows through the inductor of one

of the qubits, say qubit 1. This will induce a flux ∆Φcx = −MqcIq1 in the coupler loop.

According to Eq. (5.28), this will cause the current Ic flowing in the coupler to change

to first order by the amount

∆Ic =
∂Ic
∂Φcx

∆Φcx = −2π

Φ0

I(c)
c

cos(ϕcx + βc sinβc(ϕcx))

1− βc cos(ϕcx + βc sinβc(ϕcx))
MqcIq1, (5.30)

where we have used the identity

∂ϕcx sinβc(ϕcx) =
cos(ϕcx + βc sinβc(ϕcx))

1− βc cos(ϕcx + βc sinβc(ϕcx))
, (5.31)

297



which can be obtained by differentiating Eq. (5.26). This change in current will then be

felt by qubit 2 through its mutual inductance to the coupler according to ∆Φq2 = Mqc∆Ic.

It follows that we have an effective mutual inductance between qubits 1 and 2 of

Meff(ϕcx) =
∆Φq2

Iq1
=
M2

qc

L̃c

1

1− 1
βc cos(ϕcx+βc sinβc (ϕcx))

, (5.32)

where we have rearranged some terms and used the definition of βc. In the case where

the mutual inductances between qubit and coupler are not equal for both qubits, the

same analysis leads to

Meff(ϕcx) =
McaMcb

L̃c

1

1− 1
βc cos(ϕcx+βc sinβc (ϕcx))

≡McaMcbχc, (5.33)

where

χc = 1/(L̃c + Lj), (5.34)

is the inverse effective coupler inductance, often referred to as the coupler’s susceptibility

[197, 199]. In the language of linear circuit theory, this is equivalent to treating the

junction as a linear inductance with L = Lj(ϕcx) as illustrated in Fig. 5.2. In fact,

this is a second, equivalent way to obtain the result (5.32) without explicitly taking the

derivative ∂Ic
∂Φcx

[one can simply plug in the expression (5.27) for ϕcj(ϕcx) into the formula

(5.13) for the differential Josephson inductance Lj(ϕcj)].

We now consider two sources of “nonlinear crosstalk” (perhaps a better name is

“nonlinear biasing”) due to the influence of the coupler circuit on each of the qubits.
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b) c)

Figure 5.4: (a) Illustration of flux bias induced on qubit by the coupler’s current. (b) Plot of
coupler-induced nonlinear flux crosstalk versus coupler tilt bias, for typical design parameters
and different values of βc. (c) Plot of coupler-induced qubit inductance shift versus coupler
bias, for typical design parameters and different values of βc.

Namely, we consider two “induced local field” effects: in section 5.1.2.1 we look at the

effective flux bias induced on the qubit by the coupler, and then in section 5.1.2.2 we

look at the effective inductance shift of the qubit due to the coupler. Both of these effects

are functions of the coupler’s flux bias and must be carefully calibrated to operate a real

device, as we’ll see in the measurements of Chapter 6.
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5.1.2.1 Coupler-induced nonlinear flux bias on qubit

One consequence of having a steady state current Ic flowing in the coupler loop is that

it will impart a tilt flux bias on each of the qubits given by

∆Φqt = MqcIc = MqcI
(c)
c sinβc(ϕcx). (5.35)

This flux crosstalk, which is a nonlinear function of the coupler bias, is illustrated in

Fig. 5.4(a). A plot of this induced flux vs. coupler bias for typical design parameters is

shown in Fig. 5.4(b). This flux crosstalk is very substantial – for example, 20 mΦ0 of tilt

bias corresponds to an enormous ε/h ≈ 50 GHz for a persistent current of 0.5µA! The

need to calibrate for a nonlinear function with such a large magnitude is one reason it

maybe desirable to use a dc SQUID instead of a single junction in the coupler. With a dc

SQUID, βc can be tuned to both positive and negative values via the coupler SQUID flux

bias Φcsq, while keeping the coupler tilt bias at zero, where the induced flux on the qubit

vanishes. Such a scheme is illustrated in Fig. 5.5(a), and the associated nonlinear flux

crosstalk vs. both coupler SQUID and tilt biases are shown in Fig. 5.5(b) [the curves in

Fig. 5.4(b) correspond to the vertical cuts of matching color in the 2D plot of Fig. 5.5(b)].

By operating along the horizontal cut Φcx = 0, we can still obtain sign- and magnitude-

tunable coupling with zero induced qubit flux bias. Physically, this is because the control

current for the coupler can be localized within the coupler’s DC SQUID [purple arrows

in Fig. 5.5(a)], so unless there is any direct stray mutual inductance from the coupler’s

small dc SQUID loop to the qubits (more on this point in a real device next chapter),

there will be no coupler-induced nonlinear flux crosstalk. The other advantage of using
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b) c)

Figure 5.5: (a) Illustration of coupler-qubit nonlinear crosstalk with a DC SQUID rather than
a single junction in the coupler. (b) Coupler-induced qubit tilt bias shift ∆Φqt vs. coupler
SQUID and tilt biases. (c) Coupler-induced inductance shift ∆Lq vs. coupler SQUID and tilt
biases.

a dc SQUID for the coupler is that βc can be made arbitrarily close to 1 in situ, as

long as βmax
c is larger than 1. Compare this to a single-junction coupler, where in order

to obtain strong coupling one would have to fabricate a junction with critical current

corresponding to βc close to but not exceeding 1, which is difficult in practice.

The fact that flux in the coupler loop influences the flux in the qubit can also have

consequences if there is noise in the coupler flux. For example, 1/f noise originating in

the coupler can translate to 1/f noise in the qubit if the sensitivity of ∆Φqt to ϕcx is

high enough. To quantify this effect, in Fig. 5.6 we plot the differential flux transfer

function dΦqt/dΦcx versus βc at zero coupler tilt (ϕcx = 0), where the flux sensitivity of
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Figure 5.6: Differential flux transfer function from coupler to qubit at zero coupler tilt (maximal
transfer), vs. coupler βc.

the qubit to the coupler is largest [i.e., each point on this plot is the slope of one of the

curves in Fig. 5.4(b) at ϕcx = 0]. As can be seen, for large βc (where strongest coupling

occurs), this transfer function can be around unity, meaning that the qubit will fully feel

any flux noise in the coupler. If one qubit is to be strongly coupled to many others at

the same time, this poses some concern for coherence in a quantum annealer, especially

if the coupler’s flux noise is comparable to or greater than the qubit’s. We will have to

learn how to trade off coupling strength and robustness to noise, and how to optimize the

geometry of the couplers to reduce the flux noise intrinsic to them and therefore excess

flux noise induced in the qubits (see measurements in next chapter). For example, we

might not need to operate all of the couplers simultaneously at high βc, or maybe we will

never even need to exceed βc ∼ 0.5, since this number still allows for 2 GHz of coupling

at ∆q/h = 1 GHz, exceeding our “annealing region” rule of thumb.
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Note that this differential flux transfer function also applies at GHz frequencies, so

that any dissipative flux noise in the coupler will cause similar dissipative flux noise in

the qubit. Since at strongest coupling each qubit might feel the flux noise of up to 20

couplers (in an optimistically high-connectivity architecture), both the low frequency and

dissipative flux noise in a coupler should be roughly
√

20 ≈ 5 lower than that of a qubit.

This poses an engineering challenge both in terms of flux noise intrinsic to the coupler

and noise coming down from the coupler bias lines. Dissipation at GHz frequencies from

the coupler can be solved by adding filtering to the bias line, but this does not fix low

frequency noise.

5.1.2.2 Coupler-induced inductance shift in qubit

The coupler will also induce an effective shift in each qubit’s self-inductance, as illustrated

in Fig. 5.7. This added inductance can be calculated by considering the input impedance

as seen from qubit’s inductor [i.e., the same problem considered in Fig. 3.6(b)], leading

to

∆Lq = −
M2

qc

Lc + Lj(βc, ϕcx)

= −
M2

qc

Lc

1

1− 1
βc cos(ϕcx+βc sinβc (ϕcx))

(5.36)

Note that within our linear analysis, ∆Lq has the same magnitude but opposite sign as

Meff of Eq. (5.33) (in the symmetric Mca = Mcb = Mqc). Fig. 5.4(c) shows a plot of

∆Lq = −Meff as a function of ϕcx for different values of βc, and Fig. 5.5(c) shows a 2D
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Figure 5.7: Linear circuit description of the effective inductance shift felt by a qubit due to the
presence of a coupler.

plot of ∆Lq vs. coupler SQUID and tilt biases. Note that ∆Lq doesn’t vanish at any

particular tilt bias, since this depends on β. It does however vanish for all values of ϕcx

when βc = 0.

The coupler-induced inductance shift leads to a shift in qubit frequency that depends

on coupler bias. An example of this is shown in Fig. 5.7 as a function of βc, with the

qubit and coupler are both at zero tilt. We see that for large coupler nonlinearities, this

freuqency shift can be substantial, a few GHz at βc = 0.9 for typical design parameters.

It is possible to compensate for this frequency shift by adjusting the DC SQUID bias

of the qubit to keep ∆ constant versus coupler bias. However, while this can exactly

compensate the frequency shift, after the compensation there will be a slight dependence

of the resulting qubit Ip on coupler bias. This is because we are attempting to compensate

a shift in geometric inductance with a shift in Josephson inductance, and these are not

equivalent in the Hamiltonian. Fig. 5.7(b) shows the resulting qubit Ip vs. βc after

such a compensation for a qubit frequency of 4 GHz. This shift is fairly small, even for

large coupler nonlinearities, and so might even be able to be ignored. We note that to

address this subtlety, D-Wave actually designed “L-tuners” in their qubits, where a large
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(a) (b)

Figure 5.8: (a) Shift in qubit frequency due to coupler-induced inductance shift ∆Lq(βc), at zero
qubit and coupler tilt. (b) Resulting qubit persistent current after compensating the qubit’s
DC SQUID bias as a function of βc to negate the effect of ∆Lq and keep a constant f10 = 4 GHz
at zero tilt.

Josephson junction adds an extra tuning knob for the main linear qubit inductance. We

do not a present plan to implement this extra knob, but we will need to at least consider

it as an option when we scale up and start to apply our qubits to quantum annealing in

a large system.

Furthermore, since ∆Lq is a function of coupler flux, flux noise in the coupler can

translate to noise in the qubit inductance. Since the qubit inductance effects both ε

and ∆, this translates to noise in both ε and ∆, although away from zero tilt the flux

noise from direct flux crosstalk (i.e., Fig. 5.6) will dominate. In particular, a fluctuating

inductance shift can dephase the qubit even when the qubit is at degeneracy, although

qubit dephasing at zero tilt is not likely a dominant effect for annealing applications,

for which the qubit will not remain at zero tilt. Nevertheless, to be thorough, in Fig.

5.9 we plot the resulting qubit sensitivity to the coupler flux biases solely due to the

coupler-induced inductance shift.
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Figure 5.9: Qubit sensitivity to coupler fluxes at zero qubit tilt due to coupler-dependent
inductance shift, with uncoupled qubit ∆/h = 4 GHz. (a) Qubit frequency f10 vs. coupler βc
with the qubit kept at zero tilt. (b) Corresponding sensitivities of the qubit frequency to coupler
flux biases, for both coupler tilt (green) and SQUID (purple). Lc = 600,pH, Mqc = 80 pH
(αi = 0.1), and βmax

c = 1.5 is assumed. Dashed lines are with “inductance compensation” in
the qubit, meaning that for each coupler bias the qubit SQUID bias is compensated to keep
the qubit frequency at f10 = 4 GHz. Solid lines are without such compensation. (c) Same as
(a) but versus coupler tilt bias. In this case, the qubit is kept at zero tilt by compensating for
the nonlinear coupler-induced flux bias. (d) Same as (b) but versus coupler tilt bias.
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In summary, within a fully linear treatment of the coupler circuit without coupler

capacitance, we can model the system as two qubits coupled via an effective mutual

inductance, with coupler-induced inductance and flux shifts ∆Lqi(ϕcx) and ∆Φti(ϕcx) in

each qubit according to the Hamiltonian

H lin.
tunable =

Q2
1

2C1

+
Q2

2

2C2

+

(
1

1 + ∆L1(ϕcx)
L1

)
Φ2

1

2L1

+

(
1

1 + ∆L2(ϕcx)
L2

)
Φ2

2

2L2

−Meff(ϕcx)
Φ1

L1

Φ2

L2

− EJ1 cos(2π[Φ1 + Φt1 + ∆Φt1(ϕcx)]/Φ0)

− EJ2 cos(2π[Φ2 + Φt2 + ∆Φt2(ϕcx)]/Φ0). (5.37)

Before concluding this section, we note that there is an equivalent method of tunable

coupling that uses a galvanic connection between the qubits and coupler. Namely, it can

easily be shown that the two circuits in Fig. 5.10(a) are equivalent, and so then the two

circuits in Fig. 5.10(b) are also equivalent. The galvanic coupling therefore essentially

acts to boost αi to unity. However, this extra coupling does not come for free, since the

linear model will break down more easily and there will also be correspondingly more

crosstalk in the system. Some qubit architectures may need to use a galvanic archi-

tecture to obtain strong enough coupling for quantum annealing applications [64], but

the fluxmon architecture has more than enough coupling without needing any galvanic

connections.
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Figure 5.10: (a) Equivalent galvanic circuit replacement for a mutual inductance. (b) Equivalent
galvanic and non-galvanic coupler circuits.
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(a)

(b) (c)

Figure 5.11: Circuit model for calculating qubit damping through the coupler’s bias line into
the R = 50 Ω environment.

5.1.2.3 Qubit damping from coupler flux bias line

When designing a device, we must be aware of any excess qubit dissipation to the 50 Ω

environment through the coupler’s bias lines. This is especially important if one qubit is

to be coupled to many couplers within a high connectivity quantum annealer. To compute

the qubit damping through the coupler’s main bias line, we consider the circuit3 in Fig.

5.11. The strategy is to find an equivalent parallel resistance as seen from across the

qubit’s terminal due to the presence of the coupler and its bias line. We will use the

identity (3.24) for the transformed impedance seen through a mutual inductance twice,

once through the coupler’s bias line mutual inductance Mbct and once through Mqc.

First, we compute the impedance Z ′in seen by the coupler looking into the bias line,

3The fact that we have depicted the coupler’s inductance as divided into two equal segments is not
of any fundamental significance. We would obtain the same answers dividing it up any other way.
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Z ′in = iωLc/2 +
M2
bctω

2

iωLb+R
≈ iωLc/2 + M2

bctω
2/R. Next, we compute the impedance seen

across the qubit’s inductor looking into Mqc. Applying the same rule again yields for this

impedance Z ′′in = iωLq +
M2
qcω

2

iωLc/2+Lj+Z′in
= iωLq +M2

qc
M2
bctω

2/R−iωLc−iωLj
(Lc+Lj)2+M4

bctω
2/R2 . In the regime we

are concerned with, we will always have Lc+Lj �M2
bctω/R (the latter term will typically

be around∼ 1×10−5 pH), so we can rewrite this as Z ′′in ≈ iωLq−iω
M2
qc

Lc+Lj
+
M2
qcM

2
bctω

2

R(Lc+Lj)2 , where

we have separated out the imaginary and real parts representing a series inductance ∆Lq

and resistance Rs. It will be convenient to convert the series resistance to an equivalent

parallel resistance,

Rp ≈
(ωLq)

2

Rs

= R

(
Lq
Mqc

)2(
Lc + Lj(βc, ϕcx)

Mbct

)2

. (5.38)

Note that this equation is intuitive, with the parallel resistance felt by the qubit being

the original resistance times two voltage division factors through each of the two mutual

inductances. We can then use Eq. (4.55) to compute the qubit T1 imposed by this

parallel admittance. In Fig. 5.12 we plot the induced qubit T1 vs. βc at zero coupler

tilt (maximum coupling strength), for 1, 5, and 10 couplers, with Mbct = 1 pH and

Mqc = 80 pH.4 If this dissipation becomes an issue, in principle we can modify the

coupler bias line to be higher impedance at GHz frequencies via a filter, which would

still allow for desired coupler flux pulses with a bandwidth of ∼ 100 MHz.

4It is useful but not necessary to have the coupler’s bias mutual inductance a bit larger than the
qubit’s, so we can achieve a larger range of fluxes in order to see the nonlinear flux crosstalk, which as
described in the next chapter is very useful for calibration of a coupled qubit device.
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Figure 5.12: Plot of single-qubit T1 limit imposed by 50 Ω coupler bias lines vs. βc at zero
coupler tilt for different number of couplers coupled to a given qubit. T1 evaluated in qubit’s
harmonic limit, at zero tilt. Calculation assumes Mbct = 1 pH and Mqc = 80 pH (αi = 0.1).

5.2 Coupling in the nonlinear regime

So far, we have been using linear analysis for the coupler, which will eventually break

down due to nonlinearity in the coupler’s junction. Here, we derive the exact inter-

qubit interaction Hamiltonian that properly takes into account the full behavior of the

coupler’s junction. This full nonlinear analysis will lead to significant departures from

the linear results of the previous section for βc & 0.75 (the actual value at which linear

treatment breaks down depends on the system parameters, especially αi which are around

0.1 in our initial designs). In particular, this non-perturbative treatment will allow one

to write down the inter-qubit coupling strength all the way up to βc = 1 without any

divergences. However, in a real system, even this analysis will deviate from reality at large

βc, due to neglected capacitance in the coupler present in any physical implementation,
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a complication that we defer until later.

5.2.1 Non-perturbative nonlinear analysis of coupler circuit

The exact Hamiltonian of the coupler circuit of 5.2(a) can be found by writing down the

true current equations of motion for each of the qubits and the coupler. For the qubits,

we have the usual current conservation equations

Φ0

2π
Ckϕ̈k + Ik + I

(c)
k sin(ϕk + ϕkx) = 0. (5.39)

Inserting equation (5.17) for Ik with Eq. (5.28) substituted for Ic yields

Φ0

2π

(
Ckϕ̈k +

ϕk
Lk

)
+ I

(c)
k sin(ϕk + ϕkx)− αkI(c)

c sinβc(ϕcx − α1ϕ1 − α2ϕ2) = 0, (5.40)

which is in terms of the qubit flux variables alone. Upon inspection we see that these

current equations are the classical Euler-Lagrange equations of motion corresponding to

the Hamiltonian

Ĥnonlin.
tunable = Ĥ1 + Ĥ2 + EJc cosβc(ϕcx − α1ϕ̂1 − α2ϕ̂2) (5.41)

≡ Ĥ1 + Ĥ2 + Ec(ϕ̂x), (5.42)

where

cosβ(ϕx) ≡ 1−
∫ ϕx

0

sinβ(ϕ′)dϕ′ (5.43)

and Ĥk are the uncoupled qubit Hamiltonians. For reference, an illustration of the

cosβ(ϕ) function is plotted in Fig. 5.3(b). Since its first derivative is the sinβ function,
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its second derivative at ϕ = 0 will diverge in the limit β → 1. A somewhat more direct

but less rigorous way to arrive at the result for the interaction term in (5.41) is to simply

identify Hint with the extra energy stored in the coupler circuit, which is the sum of

its inductive and junction energies [with the inductance replaced by the “renormalized”

inductance L̃c defined in (5.21)],

Ec(ϕx) =
1

2
L̃cI

2
c + EJc cos(ϕcj)

= EL̃c

[
1

2
(βc sinβc(ϕx))

2 + βc cos(ϕx + βc sinβc(ϕx))

]
. (5.44)

Differentiating the right hand side with respect to ϕx and comparing the result to the iden-

tity (5.31) for ∂ϕx sinβc(ϕx) lets us recognize the right hand side as EL̃c
∫
−βc sinβc(ϕx) =

EL̃cβc cosβc(ϕx), leading to

Ec(ϕx) = EJc cosβc(ϕcx − α1ϕ1 − α2ϕ2). (5.45)

The interaction Hamiltonian contains both an interaction between qubits and local field

effects similar to those described in the previous section. We can compute any matrix

element of the interaction Hamiltonian within the subspace of the two lowest levels of

each uncoupled qubit according to5

~gη̄ =
1

4
tr
[
ση̄Ĥint

]
, (5.46)

5This formula for the matrix elements comes from the standard Hilbert-Schmidt inner product on
operators [100], properly normalized for a two-qubit space, since tr[σασβ ]/2 = δαβ for the single-qubit
Pauli matrices.
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Figure 5.13: Plot of qubit-qubit transverse coupling strength J = gxx for the linear and full
nonlinear theories at zero qubit and coupler tilts (ϕcx = 0, i.e., maximum negative coupling).
Both qubit uncoupled gaps are ∆i/h = 4 GHz.

where6

Ĥint = ~
∑
η̄

gη̄ση̄, (5.47)

and

ση̄ = σ(1)
η1
⊗ σ(2)

η2
. (5.48)

For example, the coupling strength between qubits (which is transverse in the qubits’

parity basis) is gxx, the coefficient of the σ
(1)
x σ

(2)
x term, usually called J in quantum

annealing literature.

We can compare the various matrix elements predicted by the full nonlinear theory to

those predicted by the linear theory, by using the linear approximation for Hint in (5.46),

6Technically the left hand side is P̂qĤintP̂q, where P̂q = P̂1 ⊗ P̂2 is the projection operator onto

the qubit subspace. Explicitly, P̂j = |0〉〈0|j + |1〉〈1|j . Then, as shown in Ref. [55], an explicit

Fourier series for any coefficient is ~gη̄ = EL̃c
∑
ν 6=0Bνe

iνϕcx
∏k
j=1 c

(j)
ηj (ναj), where Bν = Jν(βcν)

ν2

and we have defined the coefficients cI(s) = 〈0|e−isϕ̂|0〉+〈1|e−isϕ̂|1〉
2 , cx(s) = 〈0|e−isϕ̂|1〉+〈1|e−isϕ̂|0〉

2 , cy(s) =

i 〈0|e
−isϕ̂|1〉−〈1|e−isϕ̂|0〉

2 , cz(s) = 〈0|e−isϕ̂|0〉−〈1|e−isϕ̂|1〉
2 . and
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namely expanding to second order in αkϕk,

Ĥ lin.
int = E ′c(ϕcx)(α1ϕ̂1 + α2ϕ̂2) +

1

2
E ′′c (ϕcx)(α1ϕ̂1 + α2ϕ̂2)2, (5.49)

which is (to leading order) equivalent to our previous linear treatment. For example,

the coupling within this approximation is the cross-term M1M2χcÎ1Î2, where

χc =
1

L̃c

E ′′c (ϕcx)

EL̃c
, (5.50)

which is equivalent to the linear result 5.33. In Fig. 5.13 we plot J = gxx vs. βc at zero

coupler tilt bias for the nonlinear and linear theories. Both theories agree in the regime

of weak coupling. The most drastic change from using the full Hamiltonian (5.41) is that

the coupling strength no longer diverges as βc → 1, unlike in the linear theory, which

breaks down drastically above βc ∼ 0.8. This agrees with physical intuition. Even though

the second derivative of the interaction term diverges as βc → 1, taking into account the

higher derivatives of the cosβc smooths out the “effective” second derivative felt by the

qubits, leaving the interaction strength finite (a more rigorous explanation of this point

will be provided in the next section where we will discuss one interpretation of coupling

as a finite difference approximation to the second derivative). In Fig. 5.14 we plot the

various Pauli coefficients (5.46), including gxx. Of particular interest is the appearence

of a non-stoquastic7 interaction term of the form σzσz (in the parity basis) that is absent

in any linear theory. This non-stoquastic term becomes non-negligible (but is still fairly

small) above βc ∼ 0.8, where the linear theory breaks down. Non-stoquastic terms

7A non-stoquastic Hamiltonian is one that has both postive and negative off-diagonal matrix elements,
leading to the ‘sign problem’ that prevents efficient simulation of the system using stochastic integration
techniques like quantum Monte Carlo.
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are of somehwat controversial theoretical interest for adiabatic quantum computing and

quantum annealing since they may be necessary to ever observe an exponential speedup

over classical methods. For example, for certain classes of problems introducing non-

stoquastic terms can lead to exponential speedup by changing a first-order quantum

phase transition into a second-order one [200], although this example was for a very

complicated Hamiltonian with higher order qubit interactions than 2-body. It has also

been shown that in a two-local spin architecture adding such interactions is necessary to

make adiabatic quantum computing universal and QMA-complete [201, 202]. However,

physically implementing these terms in a tunable way with large magnitude in a practical

device seems difficult if at all possible, at least with the fluxmon architecture, and the

actual benefit of non-stoquastic terms in an actual quantum annealer with noise, or when

one is not expected to remain near the ground state at all times, is unclear.

5.2.2 Simple finite difference picture of nonlinearity

In the linear theory, the response of the coupler to a change in qubit flux is described

with a first order susceptibility, which is proportional to the second derivative of the

energy stored in the coupler. It would be nice to have a similarly intuitive description

of the coupling in the nonlinear regime. One way to reproduce the nonlinear theory to

reasonable accuracy is by replacing this second derivative with a finite difference of the

coupler-induced flux, which in particular will not diverge as βc → 1. In this way, we can

understand the effect of nonlinearity as an effective average of the otherwise diverging
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Figure 5.14: Two-qubit Pauli coefficients of the interaction Hamiltonian with uncoupled ∆1/h =
∆2/h = 4 GHz. Note in particular the lack of divergence in gxx, and the presence of a small
non-stoquastic coupling term gzz above βc ∼ 0.8 that is absent in a linear treatment of the
coupler.

second derivative over a finite interval of flux. This also gives us an intuitive criterion for

predicting when the linear theory breaks down and nonlinear theory becomes necessary,

namely whether or not the curvature of the coupler energy appreciably changes when

feeling a finite qubit-induced shift in flux bias.

To see what we mean by this, let us suppose that the qubits are in the double-well limit

and have a low impedance so that their wavefunctions in the flux basis are approximately

delta functions centered at the left and right well minima. This means that a change

in the flux state of one qubit will induce a well-defined change in coupler flux, which in

turn influences the second qubit. Explicitly, we assume the qubit energy wavefunctions
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at zero tilt are

〈ϕ|0〉 =

√
δ(ϕ+ ϕm) + δ(ϕ− ϕm)

2
,

〈ϕ|1〉 =

√
δ(ϕ+ ϕm)− δ(ϕ− ϕm)

2
. (5.51)

We can then compute the coupler-mediated coupling strength,

~gxx = 〈00|Ĥint|11〉

=

∫∫
dϕ1dϕ2〈0|ϕ1〉〈ϕ1|1〉〈0|ϕ2〉〈ϕ2|1〉Ec (ϕcx − α(ϕ1 + ϕ2))

=
Ec(ϕcx + 2αϕm)− 2Ec(ϕcx) + Ec(ϕcx − 2αϕm)

4
(5.52)

where for simplicity we have assumed symmetry bewteen the qubits. From basic calculus,

one can immediately recognize (5.52) as the expression of the finite difference approx-

imation to the second derivative [multiplied by (2αϕm)2], which is the same result as

one would obtain by replacing the coupler susceptibility with the average of the second

derivative of the coupler energy over the interval [ϕcx − 2αϕm, ϕcx + 2αϕm]. This finite

difference deviates from the second derivative method precisely when the second deriva-

tive changes appreciably over the interval [ϕcx− 2αϕm, ϕcx + 2αϕm], requiring the use of

an average as opposed to a derivative at one single point. Replacing the delta functions

with localized Gaussian wavefunctions will change the answer slightly, but this simple

treatment gives a somewhat intuitive picture of what happens in the nonlinear regime

under reasonable assumptions.
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5.3 Accounting for coupler capacitance degree of free-

dom

In our analysis of the coupler circuit so far, we have treated the coupler’s current/flux as

a well-defined classical variable. In reality, the coupler’s flux must also be quantized just

like the qubits’, and in particular if there is finite coupler capacitance (as is physically

inevitable) the coupler will have an associated zero-point motion. In an ideal scenario,

we wouldn’t need to worry about the dynamics of the coupler itself, and would always

be able to factor out the wavefunction of the coupler from the wavefunction of the two

qubits. That way, the coupler just provides an effective interaction between the qubits

and we wouldn’t neeed to explicitly consider the dynamical role of the coupler itself. A

sufficient condition for this to occur is that the coupler always remains in its ground state.

This is the principle behind the Born-Oppenheimer approximation, which was previously

discussed in the context of section 2.2.3.2. In this section, we will show how the Born-

Oppenheimer approximation can be used to derive an effective interaction Hamiltonian

between qubits in the presence of coupler capacitance, in the limit where the coupler’s

characteristic frequencies are much higher than that of the qubits’. We will find two

effects of coupler capacitance, a contribution from the coupler’s zero-point energy from

a finite coupler impedance, as well as a “dispersive shift” from a finite coupler frequency.

We will also explore the regime of applicability of the Born-Oppenheimer approximation.
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Born-Oppenheimer

a)

b)

slow qubit fast coupler slow qubit

Figure 5.15: Illustration of the Born-Oppenheimer approximation as applied to two qubits
coupled through a coupler with finite capacitance. The coupler is taken to be the “fast” degree
of freedom and is assumed to always be in its ground state no matter what state the “slow”
qubits are in. Therefore, the coupler’s Hamiltonian is replaced by its ground state energy,
reducing the system to from three-dimensional to an effectively two-dimensional.

5.3.1 Quantum correction to the Born-Oppenheimer approxi-

mation

We consider the circuit in Fig. 5.15(a), which is the same as that in Fig. 5.2(a) but

with capacitance in the coupler. A similar analysis of the current equations of motion

as before (this time taking into account coupler capacitance, details found in Ref. [55])
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yields full three-dimensional system Hamiltonian

Ĥ12c =
Q̂2
c

2Cc
− EJc cos(2πΦ̂c/Φ0) +

(
Φ̂c − Φcx + α1Φ̂1 + α2Φ̂2

)2

2L̃c
+ Ĥ1 + Ĥ2

≡ Ĥc + Ĥ1 + Ĥ2, (5.53)

where Φc = Φcj is the flux across the coupler’s junction and

L̃c = Lc − α1M1 − α2M2 (5.54)

is the renormalized coupler inductance just like in Eq. (5.21), and Ĥ1 and Ĥ2 are the

Hamiltonians of the uncoupled qubits in the absence of the mutual inductances M1 and

M2. This Hamiltonian for the full system and has three degrees of freedom, one for the

coupler and each of the two qubits. The Born-Oppenheimer approximation adiabatically

eliminates8 the coupler’s degree of freedom, meaning we assume the coupler is “fast”

in that it responds instantaneously to the “slow” qubit fluxes and always remains in its

instantaneous ground state, analogous to the slow nuclei evolving adiabatically relative to

the fast electrons allowing for the nuclear degree of freedom to be treated as a parameter

within the electronic Hamiltonian. What is left will then be an effective interaction

Hamiltonian between qubits taking the form of a potential energy precisely given by the

instantaneous ground state energy of the coupler. For this approximation to be valid, the

characteristic frequency ω10,c ∼ 1√
L̃cCc

√
1− βc of the coupler must be much bigger than

the qubits’ characteristic frequencies. For typical coupler designs (see next chapter) we

8Technically, “adiabatic elimination” is not exactly the same thing since we are not accounting for
virtual transitions into excited states.
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will have Lc ≈ 500− 600 pH and Cc ∼ 20− 30 fF, meaning fLC,c ≈ 40− 50 GHz, meaning

qualitatively the Born-Oppennheimer approximation should hold even for fairly large βc

(we will revisit this claim quantiatively later).

To make the Born-Oppenheimer approximation, the coupler-dependent part of the

Hamiltonian, Hc(ϕc;ϕ1, ϕ2) in (5.53), must be replaced by its ground state energyEg(ϕ1, ϕ2)

with the qubit fluxes treated as parameters, transforming 5.53 into an effective two-qubit

Hamiltonian

ĤBO
12 = Ĥ1(ϕ̂1) + Ĥ2(ϕ̂2) + Eg(ϕ̂1, ϕ̂2). (5.55)

This idea is illustrated in Fig. 5.15(b). Note that in our nonlinear analysis in section

5.2, where we referred to Eg simply as “the energy stored in the coupler” Ec in (5.41),

we were performing a version of the Born-Oppenheimer approximation in disguise, where

the coupler’s ground state energy was simply equal to the well-defined classical potential

energy stored in the coupler. This classical energy is one of essentially two contributions

to the coupler’s ground state energy, the other being its zero point energy about its

classical minimum. We must therefore generalize this treatment by including a kinetic

energy term for the coupler.

As outlined in Ref. [55], we can write the coupler-dependent part of the full Hamil-

tonian as

Ĥc ≡ Ĥ12c − Ĥ1 − Ĥ2

= EL̃c

(
4ζ2
c

q̂2
c

2
+ U(ϕ̂c;ϕx)

)
, (5.56)
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where

ζc ≡
2πe

Φ0

√
L̃c
C

= 4π
Z̃c
RK

(5.57)

is a measure of the coupler’s effective impedance, which determines the width of the

coupler ground state wavefunction and therefore the relevance of quantum corrections to

the ground state energy, and

U(ϕc;ϕx) =
(ϕc − ϕx)2

2
+ βc cos(ϕc) (5.58)

is a dimensionless coupler potential normalized to EL̃c . Note that this potential is a

function of the qubit flux biases through the parameter

ϕx ≡ ϕcx − α1ϕ1 − α2ϕ2. (5.59)

The classical contribution to the coupler’s ground state energy is simply the minimum

value of the coupler’s potential,

Umin(ϕx) = min
ϕc

U(ϕc;ϕx) ≡
(ϕ

(∗)
c − ϕx)2

2
+ βc cos(ϕ(∗)

c ), (5.60)

where ϕ
(∗)
c is the value of the coupler flux that minimizes the potential, where we have

∂ϕcU(ϕc;ϕx)|ϕc=ϕ(∗)
c

= ϕ(∗)
c − ϕx − βc sin(ϕ(∗)

c ) = 0. (5.61)

We note that performing this minimization leads to the classical current equation of

motion of the system in the limit of large coupler plasma frequency L̃cC → 0 [55]. Also

note that ϕ
(c)
c is the same as ϕcj used in the classical nonlinear analysis in the previous

section 5.2.1, where we have already solved this same transcendental equation, allowing

323



us to write

Umin(ϕx) =
(βc sinβc(ϕx))

2

2
+ βc cos(ϕx + βc sinβc(ϕx))

= βc cosβc(ϕx), (5.62)

which is the exact same energy as Ec/EL̃c as we derived from (5.44) in section 5.2.1,

where the second line follows from the same argument that led to Eq. (5.45). We also

note that at this point we have derived the identity (2.98) used in section 2.2.3.2, where

we originally introduced the cosβ function for the Born-Oppenheimer approximation in

the context of the 1D no caps fluxmon model.

Next, we need to consider the remaining quantum contribution to the ground state

energy (i.e., the “zero-point energy” contribution), formally defined as

UZPE(ϕx) = Eg/EL̃c − Umin(ϕx)

= 〈ψg,c|
(

4ζ2
c

q̂2
c

2
+ U(ϕ̂c;ϕx)− Umin(ϕx)

)
|ψg,c〉, (5.63)

where |ψg,c〉 is the coupler ground state corresponding to the qubit fluxes ϕ1 and ϕ2.

In general, this zero-point energy must be computed through numerical diagonalization.

However, if ζc is small, as is the case experimentally (our first coupled fluxmon device is

estimated to have ζc ≈ 0.05 [see next chapter]), we can obtain an approximate analytical

expression for it by expanding about the potential minimum to second-order and using

the expression for the zero-point energy of the resulting harmonic oscillator. Explicitly,
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this approximation leads to

UZPE ≈
1

2

√
4ζ2
cU
′′(ϕ

(c)
c ;ϕx), (5.64)

where

U ′′(ϕc;ϕx) ≡ ∂2
ϕcU(ϕc;ϕx). (5.65)

This constitutes the harmonic approximation for the coupler’s zero-point energy. As

shown in Ref. [55], an analytic Fourier series can be derived for UZPE in this approx-

imation. The Born-Oppenheimer approximation is now complete, with the effective

interaction Hamiltonian given by

HBO
int (ϕ1, ϕ2)/EL̃c = Umin + UZPE. (5.66)

We will plot the effect of the quantum correction along with the effect of a second type

of correction that we will now discuss.

5.3.2 Qubit-coupler hybridization: “dispersive shift” correction

The Born-Oppenheimer approximation by construction neglects any hybridization of the

qubit and coupler, which can become significant when the detuning between the coupler

frequency and qubit frequencies becomes comparable to or small relative to the coupling

gqc between qubit and coupler. This is usually understood as a “dispersive shift” in the

language of circuit QED, wherein the qubit-like first excited state of the system has a

small component that “lives in” the resonator (the coupler) it is coupled to [72]. In the

language of harmonic oscillators (β = 0 limit for qubits and coupler), the normal modes

of the system become slightly rotated, with some of the qubit current flowing through
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the coupler and vice versa.

Usually, the effect of the dispersive shift is summarized in a statement such as the

qubit frequency undergoes a shift by an amount g2/∆, where ∆ is the detuning between

the qubit and coupler (or resonator). However, the physics of the dispersive shift can

be incorporated into our Born-Oppenheimer model in a more generically useful and

accurate way. The key is to realize that the coupler flux ϕc was not the correct variable

to eliminate, because it is not truly the fastest degree of freedom in the system. In

the harmonic limit, the fastest degree of freedom would not be the coupler flux itself,

but rather the normal mode coordinate associated with the highest frequency mode of

oscillation, which is mostly the coupler flux but with a slight hybridization with the

qubit flux. In general, β 6= 0 and we will not be in the limit of harmonic normal modes,

but we can still find the “fastest” degree of freedom to eliminate as follows. Instead of

the coupler flux ϕc, we can eliminate the coupler flux relative to its classical minimum

point ϕc − ϕ∗c (which is a function of the qubit fluxes). It turns out that to first order

this is equivalent to the qubit-like degree of freedom inheriting a fraction of the coupler

capacitance according to [203]

Cq → Cq +
α2

(1− βc)2
Cc. (5.67)

We can compare the full system spectrum predicted by our BO analysis with and

without the quantum and dispersive shift corrections to a full numerical diagonalization

of the system. In Fig. 5.16, we plot the low-lying spectrum of the system for both
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Figure 5.16: Comparison of predicted qubit(-like) f10 for four different models (other qubit
biased at β = 0): full 3D diagonalization, Born-Oppenheimer, Born-Oppenheimer with quan-
tum correction, and finally Born-Oppernheimer with quantum correction and dispersive shift
correction as per the description in this section. Including the dispersive shift correction gives
a very close match to full diagonalization all the way to very high coupler nonlinearity, cor-
responding to an uncoupled coupler f10 ≈ 15 GHz. Standard fluxmon parameters were used,
with coupling parameters αi = 30 pH (αi ≈ 0.04), coupler impedance ζc ≈ 0.04 and coupler
harmonic f10(βc = 0) = 40 GHz. Adding the dispersive shift correctly predicts a shift in f10

when βc = 0, which was not previously captured (see inset, where the black and green curves
are so close together that it is hard to see).
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theories at zero coupler tilt and qubit at degeneracy, with qubit nonlinearity chosen to

be equal to βq = 1.0 for one qubit and βq = 0 for the other. We can see that the BO

treatment breaks down at high nonlinearities, and the quantum correction plus dispersive

shift is necessary to accurately model the system. Note in particular that the dispersive

shift correction correctly predicts a shift in qubit freuqency even when the coupler is the

harmonic limit βc = 0, which would not have been predicted by the simple inductance

shift model discussed in section 5.1.2.2.
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Chapter 6

Interacting fluxmons: achieving

ultra-strong tunable coupling

In this chapter, we implement a properly designed coupler circuit to realize tunable

ultra-strong coupling between two fluxmon qubits without reducing qubit coherence. The

circuit described here can in principle be used to couple one fluxmon to up to ten or more

others simultaneously, as desired for high-connectivity quantum annealing applications.

We will first describe the physical design of the coupler device, and then walk through

some of the basic aspects of device calibration, including calibration of crosstalk (both

geometric and nonlinear) and extraction of circuit model parameters from experimental

data. We then demonstrate (to our knowledge) the first spectroscopic measurement of

ultra-strong tunable coupling between two superconducting qubits. This regime of qubit-

qubit interactions is not only useful for future quantum annealing applications, but also
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enables us to study some of the interesting physics that arise in the regime of non-

perturbative coupling. Finally, we use a two-fluxmon device as a “mini-annealer,” and

demonstrate that annealing fast relative to thermalization timescales (faster than can be

done on commercial quantum annealing devices) can significantly change the nature of

the two-qubit annealing process.

6.1 Physical design and implementation of coupled

qubits

The first intuition one might have for coupling two fluxmon qubits is to achieve a mutual

inductance by routing the qubits’ CPW segments parallel and close to one another for a

certain length (with a coupler circuit in between to make the coupling tunable). However,

such a scheme is limited to a single plane and, given the constraints of the fluxmon

geometry, would likely limit circuit complexity. We would like a coupling geometry that is

compatible with high connectivity graphs such as those in Fig. 1.4; i.e., small couplers at

the “intersections” of long qubits. One possibility, given that we have airbridge crossovers

at our disposal, is to use a scheme in which qubits hop over each other perpendicularly,

enabling these types of high-connectivity graphs. If the qubit intersections are designed

with sufficient symmetry, the currents flowing down one qubit’s CPW will not couple flux

into the CPW mode of the other qubit, and there would be no direct coupling between

qubits. Coupling can then be induced via a tunable coupler circuit physically located
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Figure 6.1: (a) Optical micrograph of two-qubit coupled fluxmon device on a silicon substrate.
Qubit 1, qubit 2, and the coupler each have their own main (tilt) and DC SQUID biases. (b)
Zoom-in of the coupler at the intersection of the two qubits. The horizontal qubit jumps over
the vertical qubit via an airbridge crossover [67]. The coupler loop is a gradiometric figure-
eight loop, jumping over each qubit twice to cover two diagonally opposite quadrants of their
intersection. Ground plane pads in the middle of the coupler loop are connected to ground via
airbridges that hop over the coupler loop. (c) Illustration of current flow in the coupler’s tilt
bias line. Airbridges help direct the flow of the bias return current (green) away from the small
fraction of the qubit’s ground plane current (black) to reduce crosstalk. (d) Angled SEM image
of coupler’s DC SQUID, through which copuler connects to ground. (e) Angled SEM image of
the intersection point of the qubits and coupler, giving a better view of the airbridge hopovers.

near the intersection point of the two qubits, in one or more of the four quadrants defined

by the intersection, as was schematically indicated by the blue couplers in Fig. 1.4(a).1

We will use this scheme, as shown in the device photo in Fig. 6.1. The question that

remains is how to actually implement the coupler.

The first way one might think of implementing the coupler is as a loop in one of the

1In reality, the perfect cancellation of stray direct inductive coupling between the qubits does not
happen, but that is o.k. as long as this stray coupling is small enough, because then it can be cancelled
by the tunable coupling mediated by the coupler. On the other hand, there will always be a stray
amount of capacitive coupling between qubits, which for typical devices we simulate to be 1− 2 fF (this
capacitance is dominated by the proximity of the CPWs in the same plane, not by the capacitance
of the vacuum-gap hop-over airbridge to the hopped-over qubit). This capacitive coupling will yield a
stray Y Y coupling in the lab frame of ∼ 50 MHz that cannot be exactly cancelled by the tunable XX
coupling, although it can be approximately cancelled in the rotating wave approximation (which holds
much of the time), under which both types of couplings look like XX + Y Y .
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Figure 6.2: Sonnet simulation comparing the horizontal qubit’s return current without and with
ground plane pads plus crossovers. The latter allows a more localized return current.

quadrants, as was drawn schematically in Fig. 1.4(a). However, this design has several

disadvantages, one of which is that it is difficult to bring in bias lines for both the coupler

SQUID and tilt without there being substantial crosstalk. Instead, we have chosen to have

the loop extend over two quadrants, which need to be diagonally opposite – otherwise, the

induced qubit-qubit coupling would have opposite signs for the two quadrants, leading

to zero coupling. In order to cover two quadrants, we utilize a handful of series airbridge

crossovers, four for the coupler to jump over the qubits and itself, another two at the

tilt bias to make the biasing easier, and another one near the coupler’s SQUID, where

the coupler connects to ground. We also fill in ground plane pads within the coupler

loop, which are connected to ground through airbridges that hop over the coupler. This

reduces the available coupling strength (essentially due to reduced effective flux pickup

area), but due to alternate current paths greatly reduces control crosstalk and stray

qubit-qubit coupling. This point is illustrated in Fig. 6.2, showing how with the ground
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plane pads plus crossovers, the qubit return current can be more closely localized to the

qubit since it does not need to flow around the coupler. Note that we also chose to cut

out slots in the unused two quadrants as well. This symmetry helps to minimize stray

qubit-qubit coupling.

The equivalent circuit diagram for our coupler system is exactly what we showed in

Fig. 5.15 (or, ignoring coupler capacitance, Fig. 5.2), but with all junctions replaced by

tunable junctions in the form of DC SQUIDs.

6.2 Calibration of coupled fluxmon device

Before we can explore qubit-qubit coupling, it is necessary to calibrate the device. An

annoying but very important aspect of this is to calibrate bias line crosstalk. To compare

the importance of crosstalk calibration to other superconducting qubit platforms, we note

that the fluxmon has an almost 1000× larger loop size than the Xmon’s to pick up stray

flux, and in addition can have 1000× higher flux sensitivity df10/dΦ. Careful design can

reduce bias line crosstalk substantially, but at least with the current architecture there

will still be a moderate amount of residual crosstalk present. After calibrating the full

crosstalk matrix, we go on to characterize qubit-qubit coupling and two-qubit annealing.

The crosstalk matrix at first looks daunting – even though we only have two qubits

and one coupler, there are a lot of potential crosstalk terms. Fortunately, as we’ll see,

many of these elements are so small that they can be ignored (usually these are the

ones with a DC SQUID as the pickup loop), but some (usually the ones with qubit tilt
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as the pickup loop) must be precisely measured and calibrated. The table in Fig. 6.3

shows the full 12 × 6 inductance matrix containing both self-inductances and crosstalk

parameters, with the row representing the source and column representing the pickup

loop. The reason the matrix is not 12× 12 is because we only consider the bias lines to

be sources, not pickups. Conceptually, this matrix is easier to understand if one breaks

it up into two 6 × 6 matrices, one with bias lines as sources and qubit loops as pickups

(in this matrix, all entries are independent), and another with qubit loops as sources and

qubit loops as pickups (this is a symmetric matrix).

6.2.1 Measurement of coupler → qubit flux crosstalk

We already discussed how to measure intra-qubit crosstalk in section 3.3.2 for single-qubit

devices, so here we will talk about something new that arises due to the coupler, namely

crosstalk from the coupler bias lines to the qubit. As we saw in the previous chapter, in

addition to any linear bias line crosstalk there are also two intrinsic nonlinear but periodic

sources of crosstalk from coupler to qubit: the coupler-induced flux and coupler-induced

inductance shift. This slightly complicates the extraction of the bias line crosstalk, but

we can use the fact that the nonlinear crosstalk is a periodic function of the coupler

biases, allowing us to subtract out the linear geometric crosstalk background. This is

simple to do assuming the coupler tilt bias has a full range larger than one period (one

flux quantum).

The first way one might think of measuring the crosstalk is to measure the shift in
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Figure 6.3: Full inductance matrix between qubit loops and bias lines. There are 72 total
elements, 57 of which are independent. 15 are desired design parameters (green), 12 of which
are independent. Then there are three unwanted self-inductances for the DC SQUIDs. The
rest (black) are undesired crosstalk parameters, 30 of which represent bias line crosstalk, which
should be calibrated before the rest of the circuit parameters can be precisely extracted. Three
of the bias line crosstalk parameters (red) also have a nonlinear contribution arising from intra-
qubit/intra-coupler junction asymmetry.
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Contour of constant
readout resonator frequency
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● Center of two dips

Flux in qubit tilt loop

↕ Dip separation

1. Flux in qubit SQUID loop
2. Qubit inductance L

as a function of coupler biases

Figure 6.4: Illustration of the “double dip” experiment, which involves tracking two dips in
readout resonator transmission at a fixed probe frequency versus qubit tilt. (a) Calibration
dataset vs. intra-qubit biases, yielding contour of constant resonator frequency. (b) Summary
of the information learned by measuring a vertical cut of the plot in (a) versus coupler biases:
the center of the two dips gives the tilt flux induced in the qubit, and the separation of the
dips is a function of both the flux induced in the qubit SQUID from linear crosstalk and the
coupler-induced inductance shift.

qubit f10 as a function of coupler biases. However, this is quite complicated because

when we wiggle one of the coupler’s biases, the qubit frequency will change for four

different reasons: geometric crosstalk from coupler bias to qubit tilt loop, geometric

crosstalk from coupler bias to qubit SQUID loop, a nonlinear flux bias from the coupler’s

persistent current to the qubit tilt loop, and a coupler-induced shift in qubit inductance.

Furthermore, if there are defects in the spectrum, or when the qubit frequency goes out

of the easily measurable range of 2 − 7 GHz, the automated tracking in the data scan

may lose track of the qubit.

Here we instead use a measurement that is able to robustly handle the above concerns

and gives us the crosstalk from both of the coupler bias lines to both the tilt and SQUID

loops of one of the qubits in a single type of dataset (i.e., the four elements Mbct→q1t,

Mbct→q1s, Mbcsq→q1t, andMbcsq→q1s). The way it works is as follows. First, we assume that
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the intra-qubit crosstalk for the qubit in question is small or has already been calibrated

away. We also tune the other qubit away to β . 0 (f10 & 20 GHz). Then, for the qubit

in question, we perform the same readout resonator response scan vs. flux biases as we

did in Fig. 3.14(b), and zoom in on one of the “hot spots” where we can see a detailed

contour of constant readout resonator frequency. An example of this data is shown in

Fig. 6.4(a), which serves as a calibration dataset for the crosstalk measurement. For each

qubit SQUID bias, taking a vertical slice of this dataset reveals two dips in resonator

transmission. These dips tell us two pieces of information: the midpoint of the two dips

tells us where zero qubit tilt is, and the separation between the dips is a function of both

the flux in the qubit’s DC SQUID and the coupler-induced inductance shift ∆Lq of the

qubit. If we then pick a fixed qubit SQUID bias and take a vertical cut as a function of

the coupler tilt bias, we will obtain the data shown in Fig. 6.4(c). Here, as a function of

coupler tilt bias, both the midpoint of the two dips and the separation between the two

dips changes, each according to a periodic function superposed on top of a linear drift.

By fitting to the periodic function plus linear drift, we can then isolate the geometric

crosstalk from coupler tilt bias to both qubit loops.

To make this clear, we first look at the extracted midpoint of the two dips as a function

of coupler tilt bias, plotted in Fig. 6.5 for different values of coupler SQUID bias. By

fitting these curves to the functional form

y(x) = ax+ b+ c sinβc(2π[x− x0]/d), (6.1)

we can isolate the linear drift contribution from the slope a, giving us Mbct→qt. In Fig.

337



(a) (b)
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Figure 6.5: (a) Extracted midpoint of resonator transmission dips versus coupler tilt bias, for
different values of coupler SQUID bias. Each curve is fit to the functional form of equation
(6.1), allowing us to isolate the linear crosstalk from coupler biases to the qubit tilt loop. (b)
Extracted slope a for each curve, allowing the extraction of Mbct→qt. (c) Linear fit to the
extracted vertical offset b as a function of coupler SQUID bias, giving Mbcsq→qt.

6.5(b), we show the extracted slope versus coupler SQUID bias, each point corresponding

to one of the curves in Fig. 6.5(a). All curves give the same slope to significantly less

than one part in 1000, showing that this measurement is robust. In addition, by looking

at the extracted vertical offsets b as a function of coupler SQUID bias, we can fit a slope

to b versus coupler SQUID bias to give us Mbcsq→qt, as shown in Fig. 6.5(c). We note

that the data shown in Fig. 6.5 was from our first coupler sample, which had significant

crosstalk due to a missing airbridge, for the sake of illustration (Mbct→qt = −0.198 pH,

Mbcsq→qt = 0.175 pH). Subsequent designs with proper airbridge symmetry significantly

improved these numbers (see Fig. 6.9).

Next, from the same datasets [i.e., Fig. 6.4(c)], we instead look at the separation

of the two dips. This is plotted in Fig. 6.6 versus the same coupler tilt biases, for the
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Figure 6.6: Extracted separation of resonator transmission dips versus coupler tilt bias, for
different values of coupler SQUID bias. Each curve is fit to the functional form of equation
(6.2), allowing us to isolate the linear crosstalk from coupler biases to the qubit SQUID loop.

same various coupler SQUID biases. Since the dip separation is a linear function of qubit

SQUID flux and also of qubit inductance (for small inductance shifts), we can fit these

curves to the functional form

y(x) = ax+ b+
c

1− 1

βc cos(2π[x−x0]/d+βc sinβc (2π[x−x0]/d))

, (6.2)

representing both linear crosstalk from coupler bias to qubit SQUID loop as well as the

nonlinear periodic effect of the coupler-induced inductance shift. Note that the fits are

not perfect when the coupler induces a very large inductance shift on the qubit, because

the linear theory breaks down somewhat, but this does not matter for the purposes of this

measurement, as we are only trying to extract the linear background from the nonlinear

periodic contribution. From the linear slope a, we can extract Mbct→qs, and from the

vertical offset b versus coupler SQUID bias, we can extract Mbcsq→qs.
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6.2.2 Measurement of intra-coupler geometric crosstalk

Similarly to how each of the qubits has a 2 × 2 intra-qubit crosstalk matrix (3.40), the

coupler also has an intra-coupler crosstalk matrix(
Φcsq

Φct

)
=

(
Mbcsq→csq Mbct→csq

Mbcsq→ct Mbct→ct

)(
Ibcsq

Ibct

)
+

(
Φoffset

csq

Φoffset
ct

)
. (6.3)

Ideally, we could calibrate this matrix using the same “fireball” scan we used for the

intra-qubit crosstalk (Fig. 3.14). However, the coupler does not have its own dedicated

readout resonator. Nevertheless, it turns out it is still possible to do a fireball scan

using one of the qubits’ readout resonators. The reason for this is that there will be

a second-order coupling between the coupler and the readout resonator mediated by

the qubit, as illustrated in Fig. 6.7(a). This second-order interaction is beyond just a

direct stray geometric mutual inductance between the coupler and readout resonator,

which we can bound to be less than 0.1 pH (which as shown in Fig. 6.7(c) would not

be enough to explain the observed dispersive shift of the resonator due to the coupler).

Explicitly, if gqc is the transverse coupling strength between the qubit and coupler, and

gqr is the transverse coupling strength between the qubit and its readout resonator, then

the coupler and resonator will be coupled via the effective transverse coupling strength

[204]

geff
cr ≈

1

2
gqcgqr

(
1

ωc − ωq
+

1

ωr − ωq

)
. (6.4)

This formula can be obtained by adiabatically eliminating the two first-order interaction

terms in the system Hamiltonian, and can be interpreted as virtual photon exchange.
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Figure 6.7: (a) Illustration of “virtual” second-order interaction between coupler and readout
resonator mediated by a qubit. (b) Zoom-in on measured readout resonator response vs. coupler
biases, with dispersively shifted resonator frequency at two points indicated. (c) Theoretical
prediction for resonator dispersive shift due to the coupler as a function of coupler tilt bias, for
a coupler gap of 10 GHz. The predicted dispersive shift matches the data.

As shown in Fig. 6.7(b) and (c), this formula fairly accurately predicts the dispersive

shift of the resonator in response to the coupler. We can then use this second-order

dispersive shift to do a “fireball” scan for the coupler, as shown in Fig. 6.8. By mapping

the theoretical periodicity of the resonator response to theory, we can extract the intra-

coupler bias line crosstalk matrix (6.3). Note that during this scan, the qubit whose

readout resonator is being used should be biased very far from the resonator, usually at

β = −βmax, so that the coupler dominates the response.

That concludes the discussion of bias line crosstalk calibration. There are other types

of bias line crosstalk whose calibration data we do not bother to show. One is qubit to

qubit crosstalk, which can be measured in the same way as coupler to qubit crosstalk
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Theory: coupler spectrum
             periodic in

Experiment: readout resonator response
                    periodic in 

Figure 6.8: (a) Theoretical plot showing periodicity of coupler spectrum with respect to its
flux biases, which is to be mapped to experimental data. Note the similarity to Fig. 3.14(a),
but with generally higher frequencies for the coupler. (b) Experimental data from the coupler
fireball scan. The qubit’s readout resonator is probed at a fixed frequency (corresponding to
roughly 0.1 MHz below fr at zero qubit flux bias). Extracted parameters are Mct = 1.36 pH,
Mcsq = 0.635 pH, M ′c = −0.103 pH, M ′′c = 0.0 pH.
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Figure 6.9: Comparison of an important subset of the crosstalk matrix with/without miss-
ing bridges. Crosstalk from coupler biases is drastically improved for the device with proper
crossover symmetry. In addition, the direct stray coupling Mq1t→q2t between qubits went down
from ∼3 pH to < 0.5 pH.
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Figure 6.10: Measured bias line crosstalk matrix for the first coupled fluxmon sample. Diagonal
(desired) elements come within 0.1 pH of the Sonnet simulations during the design stage, but the
off-diagonal (unwanted) elements can sometimes be as much as 0.2 pH different from prediction.

using the double dip scan, by putting the coupler at βc . 0 and varying the flux biases

of the other qubit. The other is qubit to coupler crosstalk. For this type of crosstalk,

we can’t use an analogous double dip measurement as a function of qubit bias to obtain

the crosstalk to the coupler, because the effect of the qubit on the readout resonator is

much greater than the small effect of the coupler on on the resonator. Instead, we can do

something a little less accurate but still good enough, namely, we use the known qubit

periodicity and jump by this known periodicity (to null out any effects from nonlinear flux

crosstalk from qubit’s persistent current to the coupler), and then measure the discrete

movement of the coupler feature [such as the feature shown in Fig. 6.7(b)]. Finally, there

is also the issue of intra-coupler nonlinear crosstalk due to coupler junction asymmetry.

A way to measure this will be discussed shortly.

In Fig. 6.10 we plot the full measured bias line crosstalk matrix. For the rest of this
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chapter, we will assume that this matrix has been corrected for, i.e., from now on we will

use new coordinates such that there is no bias line crosstalk (to within the accuracy of

our calibrations). We note that the crosstalk involving the coupler bias lines was greatly

improved upon adding two airbridge crossovers that were accidentally omitted in our first

device, as illustrated in Fig. 6.9.

6.2.3 Extraction of coupler parameters

A lot can be deduced about the coupler simply by precisely measuring the nonlinear flux

bias it induces on the qubit(s). A more sensitive way to measure the coupler-induced

flux bias on a qubit is to use single-qubit annealing as a flux detection scheme. This way,

we are limited by the linewidth of the S curve rather than the relatively broad readout

resonator response. By performing the S curve experiment as a function of coupler bias,

we can detect how the degenerate point of the S curve moves. In practice, we don’t

actually need to measure over a whole range of qubit pre-tilt fluxes to trace out the

whole S curve, but rather we can perform a binary search over pre-tilt biases until we

converge at a probability of 0.5 to end up in each well. In practice, we can converge to

zero tilt to within ∼ 10µΦ0 with at most 10 queries.

An example dataset of induced qubit flux vs. coupler biases is shown in Fig. 6.11(a).

For this data, the other qubit was detuned away to β . 0. Note the striking similarity

to the theoretical prediction of Fig. 5.5(b). Taking a vertical cut corresponds to the

sinβc function describing the nonlinear flux crosstalk for a given βc. Three such cuts are
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strong FM coupling

coupling off

weak AFM coupling

(a) (b)

Figure 6.11: (a) Experimental dataset of qubit flux shift vs. coupler biases. Each datapoint
is the result of a binary search of the qubit’s S-curve for zero qubit tilt. (b) Three vertical
cuts illustrating three types of coupler susceptibilities, namely those corresponding to strong
ferromagnetic, off, and weak antiferromagnetic coupling.

shown in Fig. 6.11(b). The slope of these curves is a measure of coupler susceptibility,

since it is a measure of the current flowing in the coupler in response to the coupler’s flux

bias. At zero coupler tilt, the green curve should correspond to strong ferromagnetic (FM)

coupling between qubits. The flat magenta curve indicates that the coupling is nominally

off. Finally, the red curve should correspond to weak antiferromagnetic (AFM) coupling.

Note that this slope doesn’t actually tell us the absolute coupling between qubits, because

there may be stray direct coupling between the qubits not mediated by the coupler. We

will look at measuring the absolute qubit-qubit coupling in the next section via two

methods, spectroscopy and “sequential annealing” [197].

Upon close inspection, we observe that the three curves of Fig. 6.11(b) [and the rest

of the vertical cuts of the data in Fig. 6.11(a)] do not all intersect at exactly the same

point, which would nominally be the point (0, 0). It appears as though when we change

the coupler SQUID bias, it induces a shift in the coupler tilt bias (this is not from bias
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Figure 6.12: Measured shift in coupler tilt as a function of coupler SQUID bias, and a fit to
theory for nonlinear crosstalk due to coupler junction asymmetry.

line crosstalk, which we have already calibrated). To understand what is going on more

quantitatively, we can look at how much we must shift the coupler tilt bias for all of the

curves such that they all end up intersecting at zero tilt. The result is shown in Fig.

6.12, including a fit to equation (2.58) for junction asymmetry in the coupler, indicating

a modest junction asymmetry of χ ≈ 0.03 explains the data.

We can also use these flux shift curves to extract other coupler parameters. In Fig.

6.13 we show the result of measuring the coupler-induced flux shifts for both qubits and

fitting all the datasets at the same time with only four free parameters: Mca, Mcb, Lc, and

Extracted Designed
Mca 92 pH 88 pH
Mcb 74 pH 71 pH
Lc 577 pH 614 pH

I
(c),max
c 0.85µA 0.79µA

Table 6.1: Expected (designed and simulated) vs. extracted coupler parameters.
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Qubit 2CouplerQubit 1

Figure 6.13: Measured coupler-induced flux shifts in both qubits along with simultaneous fit to

all the data for the coupler parameters Mca, Mcb, Lc, and I
(c),max
c .

I
(c),max
c . In this figure, the lines are not connecting the dots, but are the results of this

fitting. The fitted coupler parameters are displayed in table 6.1, along with the design

parameters from Sonnet simulations and a room temperature resistance measurement.

Remarkably, the fitted parameters are quite close to the physically expected values. We

note that getting such a good match required us to have already precisely calibrated the

bias line mutual inductances and crosstalk elements. We also note that if we only fit the

data for one of the qubits instead of two, the fitting is much more likely to get stuck in

an unphysical local minimum for the coupler parameters.
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6.3 Measurement of ultra-strong tunable coupling

We are almost ready to measure qubit-qubit coupling mediated by the coupler. In the

following, we will see a few different ways of measure this coupling all the way into the

ultra-strong regime. The regime of ultra-strong coupling can be roughly defined as when

the qubit-qubit coupling strength J is a substantial fraction of the qubit frequencies

themselves, such that certain typically valid approximations, such as the rotating wave

approximation of the Jaynes-Cummings Hamiltonian, are no longer valid. As already

mentioned in the previous chapter, coupling between flux qubits is not new. There are

even some results that can claim to be ultrastrong coupling, although these results are ei-

ther not tunable or not between two qubits, or did not allow a spectroscopic measurement.

For example, Ref. [205] demonstrates moderate (12% of qubit frequency) ultra-strong

coupling between a qubit and transmission line resonator. Ref. [206] achieved ultra-

strong coupling between a resonator and qubit using a galvanically shared segment of

kinetic inductance. Very recently, semi-tunable ultrastrong coupling was achieved be-

tween a qubit and oscillator [207], again using a galvanic connection. D-Wave’s qubits

should have similar tunable coupling strengths to ours, but the coupling strength has

not been directly measured via spectroscopy. Here, we will directly observe tunable ul-

trastrong coupling between qubits, without using a galvanic connection. Furthermore,

our implementation will allow simultaneous coupling between one qubit and up to 10 or

more other qubits at once.
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Figure 6.14: Simple spectroscopy versus tilt bias for various coupler biases. Here, the magnitude
of the avoided level crossing away from zero tilt does not directly give the qubit-qubit coupling
strength J . (a) Coupling off. (b) Small coupling. (c) Moderately large coupling.

6.3.1 Spectroscopy versus tilt bias

A simple way one might think of spectroscopically measuring coupling between two flux

qubits is as follows. Assuming ∆ is large enough to measure via spectroscopy, park

one qubit (let’s say Q2) at zero tilt. Next, put the other qubit (Q1) at zero tilt with a

somewhat smaller ∆. Then, step Q1’s tilt bias while sweeping a spectroscopy tone over

frequency, until an anticrossing bewteen the two energy transitions corresponding to the

|01〉 and |10〉 states becomes visible. This experiment is implemented in Fig. 6.14.

A limitation of this method is that because the avoided level crossing in general occurs

away from zero tilt, the coupling is no longer purely transverse to the qubits’ energy bases,

and so the coupling strength J is not simply equal to half the avoided level crossing as

usual. Instead, the Hamiltonian is really (in the parity basis)

H =
1

2
(∆1ZI + ∆2IZ + ε1XI + ε2IX) + JXX, (6.5)

349



from which it can be shown, with a little algebra, that

J =
∆Emin

2

√
∆2

2

∆2
1 −

(
∆Emin

2

)2 (6.6)

≥ ∆Emin

2
,

where ∆Emin is the minimum energy gap of the avoided level crossing. This means that

unless other parameters, such as the coupler-induced inductance shift, are calibrated,

∆Emin/2 will underestimate the actual coupling strength J . For an idea of how important

this rotation of basis effect is, we note that for the third dataset of Fig. 6.14 the actual

coupling strength is roughly forty percent larger than 470 MHz (half the minimum gap).

Furthermore, this technique won’t extend well to the double-well regime, since there even

a little bit away from zero tilt the energy basis will be completely rotated into alignment

with the flux basis, meaning that the coupling is longitudinal in this basis and there

will be no avoided crossing (although there will instead by a frequency shift in one qubit

dependent on the state of the other qubit, but as we know in the double-well regime it

would be very difficult to prepare the two different states of one qubit away from zero

tilt). We would like a measurement that enables a more direct and confident extraction

of J . In the next two sections, we will consider what measurements will allow a more

clear cut extraction of J when the qubits are in the single-well or double-well regime.
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6.3.2 Spectroscopy at zero tilt: J from level splitting

The solution to indirectness of the previous method is to arrange for the avoided crossing

to happen without the ε1XI and ε2IX terms, i.e., with both qubits at zero tilt. This is

directly analogous to how the coupling between two transmons can be measured via an

avoided crossing, since transmons have a symmetric potential; i.e., they have no local X

field (in the energy basis) in the lab frame. In this case, the Hamiltonian is simply

H =
1

2
∆1ZI +

1

2
∆2IZ + JXX (6.7)

=



1
2
(∆1 + ∆2) 0 0 J

0 1
2
(∆1 −∆2) J 0

0 J 1
2
(−∆1 + ∆2) 0

J 0 0 −1
2
(∆1 + ∆2)


. (6.8)

With this Hamiltonian, if we sweep over the qubit frequencies (which now can only be

changed via ∆1/∆2), the minimum gap of the avoided level crossing will then occur when

∆1 = ∆2, and will be equal to 2J . Explicitly,

J =
∆Emin

2
. (6.9)

This is true even if we keep the counter-rotating terms of the matrix (6.8) that are

typically discarded in the rotating wave approximation.2 This approximation amounts

to removing the two entries that connect the |00〉 and |11〉 states, as they don’t conserve

2A straightforward diagonalization shows that E10 = −J +
√

∆2 + J2, E20 = J +
√

∆2 + J2 (the
counter-rotating terms shift the ground state energy level relative to the two higher levels).
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(other qubit detuned to β = 0)

Figure 6.15: Measurement and compensation of qubit frequency shift due to coupler-induced
inductance shift.

excitation number. However, as we’ll see when the coupling is very strong, in order to

predict the center of the avoided level crossing and not just the difference between the

two levels, we will need to take these counter-rotating terms into account.

Experimentally, the question becomes how to arrange for ∆1 = ∆2 at zero tilt with

the coupling turned on. If we operate the coupler at zero tilt, we can avoid any coupler-

induced flux bias in the qubits. But we can’t avoid the coupler-induced inductance

shift in the qubits. This means that every time we change the coupler bias, we must

compensate the qubits’ SQUID biases to keep ∆1 = ∆2 constant. We therefore require a

calibration dataset before we can measure the coupling, for example the dataset shown

in Fig. 6.15. Here, the green points show the measured qubit frequency as a function of

coupler SQUID bias, in accordance with the expected coupler-induced inductance shift.

During this scan, the other qubit is held far detuned at β = 0 (f10 ≈ 20 GHz) so it

does not influence the measurement of the qubit in question. Note that, as expected, the
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coupler induces a positive frequency shift for Φcsq < 0.5 (βc < 0), and a larger negative

frequency shift for Φcsq > 0.5 (βc > 0). We can then achieve the desired constant qubit

∆ of 4 GHz by compensating for the frequency shift as a function of coupler bias. This

is done by adjusting the qubit’s SQUID bias until ∆ reaches its desired value, while

also keeping the qubit at zero tilt (which requires compensating for intra-qubit nonlinear

crosstalk). We then repeat this same experiment for the other qubit, with the original

qubit detuned to β = 0.

Since each qubit is now at ∆ = 4 GHz when the other qubit is detuned to β = 0,

we can then bring the two qubits together and observe the avoided level crossing with

∆1 = ∆2 = 4 GHz and ε1 = ε2 = 0. In Fig. 6.16 we plot the measured spectroscopic

signal at this avoided level crossing, as a function of coupler SQUID bias. In other words,

for each coupler bias, a vertical slice through the data gives two peaks whose separation

is equal to 2J . On the right-hand plot of the figure, we plot the measured position of the

two peaks (blue and green points), corresponding to f10 and f20 of the coupled system.

The horizontal axis of this plot actually extends further than in the raw data plot on the

left, going all the way to βc ≈ 0.8.

We make several observations about this avoided level crossing data. The first is that

the coupling can be tuned from positive through zero to negative. Here, ‘zero’ means that

the avoided level crossing vanishes to within the linewidth of the qubit, which sets a limit

on what we can measure. We also note that the location of zero coupling does not coincide

with Φcsq = 0.5 as one would expect (the location of Φcsq = 0.5 was determined by the bias
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Figure 6.16: Measurement of avoided level crossing between qubits at zero tilt, as a function of
coupler SQUID bias. At each SQUID bias, the qubit-qubit coupling strength is equal to half
the energy gap. In the plot on the right, we compare the extracted energy levels to theory.

at which the coupler-induced flux shift vanishes in Fig. 6.11). The explanation for this is

that there is an appreciable direct stray qubit-qubit coupling via the mutual inductance

Mq1t→q2t. Ideally, this stray coupling wouldn’t be so big, but we can trace most of it back

to the missing airbridge in the device as illustrated in Fig. 6.9(a). Sonnet simulation of

the design predicted a stray mutual inductance of Mq1t→q2t = 3.4 pH, which would imply

a stray coupling of J/2π = 205 MHz when ∆1 = ∆2 = 4 GHz, remarkably close to the

observed 215 MHz, meaning that Sonnet is also useful for predicting stray coupling. New

devices with proper airbridge symmetry are predicted to have Mq1t→q2t < 0.5 pH.

We can compare the measured spectrum to theory. The red line is the prediction

from full diagonalization of the qubit + coupler + qubit system [i.e., the 3D Hamiltonian

5.53)] using only predicted parameters from Sonnet and room temperature resistance

measurements. The only experimental data used for this prediction is the calibrated

horizontal axis. Despite the fact that this is not a fit to the data, it matches remarkably
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well. We can see if we can do better by fitting to the data. Since the full Hamiltonian

would take too long to fit to (remember, each point is a binary search through bias space

for the qubit SQUID biases which give ∆i = 4 GHz), we can simply fit to linear theory,

resulting in the magenta curve. This fits the data well for small coupling strengths, but

noticeably deviates at the highest coupling strengths. This isn’t surprising since the

linear theory starts to break down at βc ≈ 0.8. Still, this gives a decent fit over much of

the coupler’s operating range.

As mentioned earlier, besides the linear approximation breaking down at large cou-

pling strengths, other approximations start to break down as well. The rotating wave

approximation (RWA) starts to break down, one symptom of which is that for large

couplings, the midpoint of the two spectroscopy peaks deviates noticeably from 4 GHz,

as expected from keeping the counter-rotating terms of (6.8). For the largest coupling

shown, the midpoint is actually 4.5 GHz. Another assumption that breaks down is that

the coupling is purely XX in (6.7). A small non-stoquastic ZZ coupling appears, as

predicted in Fig. 5.14, although we have not implemented any measurements to try

and detect this small non-stoquastic component. More significant is the breakdown of

the two-level approximation for the fluxmon qubits. In the full diagonalization theory

plot (red curves), we show not just the first two but also the third transition frequency

corresponding to |00〉 → |11〉. We can see that this level actually gets pushed down

from ∆1/h + ∆2/h = 8 GHz, and even crosses the upper single-excitation curve.3 The

3Since direct excitation of this transition is a “forbidden” transition, we do not expect to see this
intersection in spectroscopy, and expect this to be an actual level crossing rather than an avoided level
crossing. We do however see a slight broadening of the upper single-excitation spectrum close to where
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explanation is that there is an avoided level crossing between |02〉 and |11〉, where |2〉

denotes the second excited state of one of the fluxmons. We need to be careful about

accounting for these higher levels when modeling devices with large couplings.

6.3.3 Sequential annealing: coupling in the double-well regime

The measurement of Fig. 6.16 is fairly challenging to calibrate, and as discussed earlier

will not work when the qubits are in the double-well regime, so it would be nice if we

had another method to characterize the coupling strength. Here, we will instead measure

coupling by inferring the effective mutual inductance Meff mediated by the coupler. The

idea is to use a “source” qubit as a source of persistent current, and then detect the flux

induced in a “detector” qubit. This idea and the pulse sequence behind this measurement,

called “sequential annealing” [197], are shown in Fig. 6.17(a) and (b). For a given coupler

bias, we measure the difference in measured detector qubit flux between when the source

qubit is prepared in either its left or right persistent current state. Essentially, the

only piece of information we need to know to extract Meff is the source qubit’s persistent

current. This is called sequential annealing because first the source qubit is annealed into

a known persistent current state, and then the detector qubit is annealed with variable

tilt bias to zero out its received flux. In particular, no microwave pulses are needed for

this pulse sequence (except for probing the readout resonators at the end).

The resulting experimental data for the detector flux shift ∆Φd
t is plotted in Fig.

6.17(c). Note that each point in the 2D plot is the result of a binary search through the

we predict this intersection to happen, which could very well be due to crossing with this third transition.
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Figure 6.17: Sequential annealing experiment for measuring the inter-qubitMeff . (a) Illustration
of sequential annealing. The source qubit is prepared in either of its persistent current states.
The coupler is turned on and the detector qubit is annealed from single- to double-well potential,
allowing the detection of the flux induced by the source qubit’s persistent current mediated
by the inter-qubit coupling. (b) Pulse sequence of the sequential annealing experiment. (c)
Experimentally measured ∆Φd

t , the difference in detector qubit flux between the two prepared
states of the source qubit, versus coupler biases. (d) Extracted Meff vs. coupler tilt along a
vertical cut of the data from (c) at the largest βc ≈ 0.85.
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detector qubit’s S curve for probably 0.5 of ending up in each well, similar to the data

in Fig. 6.11. If we plug in the source qubit’s persistent current of Isp ≈ 0.87µA, we can

extract Meff from the data according to the relation

∆Φd
t = 2MeffI

s
p . (6.10)

We can compare the extracted Meff to theory, as shown in Fig. 6.17(d) vs. coupler tilt

for the largest coupler nonlinearity measured, βc ≈ 0.85., using the designed coupler and

qubit parameters. We plot two theory predictions, one using linear theory (section 5.1.2)

for the coupler and the other using the nonlinear theory (section 5.2.1). We see that for

this coupler nonlinearity, the nonlinear theory is much more successful at predicting the

effective mutual inductance mediated by the coupler. We emphasize that Meff = 40 pH

corresponds to an extremely large coupling, and with the fluxmon design this very large

coupling can occur between one qubit and each of many other qubits simultaneously.

For example, when the qubit ∆’s are 1 GHz, this corresponds to a coupling strength of

almost 7 GHz, more coupling than we need!

6.4 Qubit coherence vs. coupler bias

In order for the fluxmon architecture to be scalable for quantum annealing, we need

to ensure that qubit coherence doesn’t degrade between an isolated qubit and a qubit

connected to a coupler. We first look at dissipation. In Fig. 6.18, we plot the measured

T1 of an uncoupled (isolated) qubit and of a coupled qubit with the coupler off, both

on the same chip. We see no significant degradation in T1 over the range of 500 MHz
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to 7 GHz with the coupler off, meaning that the geometry change of the qubit due to

the presence of the coupler has not affected the qubit’s dissipation. We can then look at

what happens to one of the qubits when we turn the coupler on, with the other qubit

detuned away to β ≈ 0. In Fig. 6.18(b), we show the resulting T1 vs. coupler βc with the

qubit at f10 = 4 GHz. Note that because the coupler induces a βc-dependent frequency

shift in the qubit, for each βc we have compensated the qubit’s SQUID bias to maintain

a constant f10. We see that over much of the coupler’s operating range, the qubit’s T1 is

not affected, until βc & 0.6. This means we can achieve fairly large coupling strengths

before seeing excess dissipation in the qubit. We can fit the degradation in T1 to a model

in which the coupler has an intrinsic T1 that damps the qubit, analogous to the Purcell

effect for resonators. We find that assuming an intrinsic coupler T1 of 300 ns explains the

data fairly well, and roughly makes sense given that the coupler has very skinny wires

and is probably limited by both dielectric loss and flux noise to a lower T1 than the qubit.

Although the degradation in T1 is small for a single coupler, we do need to consider what

will happen in the future when we turn on the coupling of multiple couplers connected to

a single qubit, in which case the excess loss will be amplified in proportion to the number

of couplers. Improving the coupler’s intrinsic T1 in the future should help alleviate this

effect.

Next, we can look at low-frequency noise and dephasing versus coupler bias. The

primary effect of the coupler on qubit dephasing will be through noise coupled to the

qubit’s tilt loop. In Fig. 6.19, we plot the measured low frequency flux noise in the qubit
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Figure 6.18: (a) T1 at zero tilt versus frequency for an uncoupled (isolated) and coupled (with
coupling off) qubit on the same chip. (b) Measured qubit T1 versus coupler βc with qubit f10

fixed at 4 GHz.

Qubit tilt flux noise vs. coupler bias

Figure 6.19: Low frequency flux noise for different coupler susceptibilities. Flux noise is de-
graded for very strong large coupler susceptibilities.
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loop for three different coupler biases, with the other qubit detuned away to β . 0. With

the coupler turned off, the flux noise is within the typical range we see for uncoupled

qubits. We also see no change in Ramsey dephasing times at or away from zero tilt with

the coupler off. We can start to push up the coupler nonlinearity, which enhances the

susceptibility and therefore the differential flux transfer function dΦqt/dΦct from coupler

to qubit (the quantity we plotted theoretically in Fig. 5.6), and see when the qubit

starts to feel flux noise from the coupler. The green curve corresponds to a measured

dΦqt/dΦct = 0.5 (βc ≈ 0.78), for which we observe roughly a 50% increase in the qubit’s

flux noise power. We can push the sensitivity up even further in the red curve, where

dΦqt/dΦct = 0.75 (βc ≈ 0.85). The amount by which the flux noise degraded when

increasing the sensitivity grew approximately as the square of the sensitivity, as expected.

From the data and known sensitivity, we can then deduce the flux noise intrinsic to the

coupler. We extract that the flux noise power intrinsic to the coupler is approximately a

factor of two higher than than in the qubit, which again makes sense given the very high

aspect ratio of the coupler’s skinny wires. We note that these coupler susceptibilities are

significantly higher than we would need to use for coupling qubits, but as with dissipation

it may start to have an appreciable effect on qubit coherence when many couplers coupled

to a single qubit are tuned to high susceptibility at once.
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6.5 Demonstration of fast two-qubit annealing

We now put our coupler to use and perform the simplest case of quantum annealing with

quadratic terms: quantum annealing with two coupled qubits. Before we can attempt

this experiment, we need to make sure that individual qubit readout still works when the

other qubit is read out simultaneously. To test simultaneous qubit readout, we prepare

one qubit in one of its persistent current states, and the other qubit in one of its persistent

current states. We then dispersively measure what state qubit 1 is in, with or without a

simultaneous dispersive measurement of what state qubit 2 is in. As shown in Fig. 6.20,

the readout fidelity is unchanged whether or not we probe just one or both qubits. During

this experiment, the coupler is off, which is generic enough for our purposes because at

the end of the annealing all qubits will be in stable states and we can turn off the coupling

before sending the readout probes. It will be interesting to see how many qubits can be

simultaneously read out in this fashion. Since we don’t rely on a near-quantum-limited

parametric amplifier, it may be possible to read out a great many qubits this way before

we start running into problems such as induced transitions or amplifier saturation.

In Fig. 6.21, we illustrate the pulse sequence for a two-qubit annealing experiment.

Here, both qubits are initialized in (or at least nearly in) their ground states within their

monostable potentials (β ≈ 0), with the coupler turned on, and some variable amount of

tilt bias (local field) applied to each qubit. After the system settles in its ground state,

the qubit barriers are both uniformly raised to the double-well regime, after which the

coupling is turned off and the qubits are brought to their respective readout post-tilts
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Figure 6.20: Experimental check of the robustness of two-qubit readout. For the chosen readout
parameters, there is no effect on readout fidelity due to interference from simultaneous readout
of another qubit.

for simultaneous readout. This experiment can be thought of as a generalization of the

single-qubit S curve experiment, where there are now two qubits and a coupling term

between them. We note that this is not an implementation of “controlled” annealing as

defined in Ref. [208], since we are fixing the flux biases rather than the ratio of h and J as

would be desired in a computational annealer (doing “controlled” annealing would require

a calibration of Ip along the trajectory, which we have not yet implemented). Explicitly,

the time-dependent Hamiltonian over the course of the anneal is, in the two-level flux

basis,

H(t) =
1

2
∆1(t)XI +

1

2
∆2(t)IX + h1(t)ZI + h2(t)IZ + J(t)ZZ, (6.11)

where ∆1(t) and ∆2(t) monotonically decrease from ∼ fLC ≈ 20 GHz to ∼ 0 and

h1(t) = 1
2
ε1(t) = Ip1(t)Φt1, h2(t) = 1

2
ε2(t) = Ip2(t)Φt2, and J(t) = MeffIp1(t)Ip2(t).
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Two-qubit annealing pulse sequence

coupler

qubit 1

qubit 2

turn on coupler

reset qubits at β = 0,
with variable tilt bias

anneal qubits to
double-well regime

turn off coupler,
read out qubits

anneal_time

Spin 1

local field

Spin 2

Spin 1

lo
ca

l f
ie

ld
 1

Spin 2

lo
ca

l f
ie

ld
 2

anneal

coupling

Figure 6.21: Cartoon illustration and actual pulse sequence for the two-qubit annealing exper-
iment.

This “fixed” tilt bias annealing is sufficient to demonstrate the essential physics of the

annealing process we wish to study.

We first consider what happens when we perform two-qubit annealing in the trivial

case without any coupling, i.e., with the coupler biased such that Meff = 0 between qubits.

The resulting experimental data is shown in Fig. 6.22, for two different annealing ramp

times, 5000 ns in (a) and 100 ns in (b). In the plots on the left, we show the measured

probability for observing each of the four possible states {|LL〉 , |LR〉 , |RL〉 , |RR〉} at the

end of the anneal, as a function of the two qubit tilt biases (i.e., local Z fields) during the

anneal. We have also drawn in black boundaries where the state of maximum probability

switches from one state to another, corresponding to ground state degeneracies. These
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boundaries can be thought of as defining a ground state stability diagram. In the plots

on the right, we show the probability of the most likely state as a function of the qubit

tilt biases. Here, the areas of minimum probability coincide with the phase diagram

boundaries drawn in the plots on the left. The locations of the phase boundaries are

simple to understand when there is no coupling. Assuming adiabaticity, each qubit

simply follows its local field, meaning that the four quadrants of the (Φt1,Φt2) plane

correspond to the four different ground states. Because one qubit does not feel the flux

of the other, taking a horizontal/vertical cut of the data simply corresponds to an S-

curve experiment (single-qubit annealing) for Q1/Q2 (c.f. section 3.4). We can then

understand the difference between slow and fast annealing according to the same physics

we used to describe single-qubit annealing. In particular, when annealing slow relative

to thermalization times, thermalization errors are significant. Annealing faster than the

thermalization times but still slow enough not to incur much non-adiabatic transition

makes the errors significantly less for the majority of annealing paths.

Next, we consider two-qubit annealing with nonzero qubit-qubit coupling J . In Fig.

6.23, we plot the resulting experimental data for a moderately strong amount of FM

coupling, Meff ≈ −5 pH. There are several interesting aspects to this data. First, we

can try and understand the location of the phase boundaries, which is now a bit more

complicated due to an extra feature added by the FM coupling. Qualitatively, since

the coupling is ferromagnetic, it makes sense that the quadrants corresponding to the

ferromagnetic states |LL〉 and |RR〉 have grown in area, while the quadrants for the
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Two-qubit annealing:

anneal_time = 5000 ns

anneal_time = 100 ns

(a)

(b)

Figure 6.22: Experimental two-qubit annealing results for coupling turned off (Meff ≈ 0 pH)
for two different annealing rates: (a) 5000 ns and (b) 100 ns. In each of (a) and (b), the left
collection of plots shows the measured probabilities for the four classical states at the end of
the annealing, with boundaries drawn in, and the right plot shows the probability of the most
likely of the four possible states.
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Two-qubit annealing:

anneal_time = 5000 ns

anneal_time = 100 ns

(a)

(b)

Figure 6.23: Experimental two-qubit annealing results for Meff = −5 pH for two different
annealing rates: (a) 5000 ns and (b) 100 ns. In each of (a) and (b), the left collection of plots
shows the measured probabilities for the four classical states at the end of the annealing, with
boundaries drawn in, and the right plot shows the probability of the most likely of the four
possible states.
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Figure 6.24: Numerically computed ground state probability of most likely two-qubit flux state
{|LL〉 , |LR〉 , |RL〉 , |RR〉} at a fixed moment in time. This probability is plotted versus h1

and h2 with ∆/h = 100 MHz and J/h = −0.5 GHz, according to numerical diagonalization of
(6.11). The widths of the horizontal and vertical boundaries correspond single-qubit tunneling
elements and are of order ∆, while the width of the narrower diagonal boundary corresponds
to a two-qubit tunneling element, and is of order ∆2.

(slow)

(slow)

(fast)

(fast)

Figure 6.25: Diagonal cuts through the diagonal phase boundary in the experimental data of
Fig. 6.23, showing the qualitatively different crossover from |LL〉 to |RR〉 across the boundary.
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antiferromagnetic states |LR〉 and |RL〉 have shrunk in area. Since the Hamiltonian

is very nearly diagonal in the flux basis when the dynamics freezes near the end of the

annealing (i.e., an Ising Hamiltonian with vanishingly small transverse field), the location

of the phase boundaries is determined by the classical energies of the states. For each set

of flux biases, there are four such energies determined by whether each “spin” is up or

down. These energies are summarized in table 6.2. A phase boundary occurs whenever

two of these energies become degenerate and also happen to be the lowest energy, which

defines various line segments in the (h1, h2) plane. In Fig. 6.24, we compute the ground

state and plot the theoretical probability of the most likely classical state for a finite

tunneling of ∆1/h = ∆2/h = 100 MHz, which corresponds to a somewhat arbitrary point

in time during the anneal. We also plot the lines of degeneracy in the (h1, h2) plane

defined by equating every pair of the rows of table 6.2. Note that these lines define

the degeneracies for all four of the energy levels, but experimentally we only detect the

degeneracies of the lowest energy level, turning the lines into line segments. As can be

seen, the vertical and horizontal shifts of the horizontal and vertical phase boundaries,

respectively, should be equal to ±J (or ±J/Ip in units of flux) relative to the origin.

However, because this represents the ground state of the system at single moment in

time, this is an over-simplified picture that does not accurately describe the outcome of

the experiment plotted in Fig. 6.23. Instead, we need to consider the full time-dependent

trajectory of the Hamiltonian 6.11.

To better understand the data, it is convenient to think of the annealing as occurring
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σz1 σz2 Energy

+1 +1 h1 + h2 + J
+1 −1 h1 − h2 − J
−1 +1 −h1 + h2 − J
−1 −1 −h1 − h2 + J

Table 6.2: Classical energies of the two-spin Ising Hamiltonian for the four possible states.

along a path within the
(
h1

|J | ,
h2

|J |

)
plane. In Fig. 6.26, we plot the various inequalities

defining different regions of the two-qubit ground state stability diagram within this

plane. The thick solid black lines indicate the location of phase boundaries (ground state

degeneracies). The reason it is better to think within these re-scaled axes is because under

our “fixed” annealing schedule, the ratios hi
J

will be time-dependent. Because h(t) ∝ Ip

whereas J(t) ∝ I2
p , at the beginning of the annealing, the ratio

∣∣h
J

∣∣ will monotonically

increase over the anneal, meaning the annealing trajectory will move radially inward in

the
(
h1

|J | ,
h2

|J |

)
plane.

As a case study, we consider a trajectory corresponding to the particular annealing

schedule with (Φt1,Φt2) = (2 mΦ0,−1 mΦ0). This trajectory is illustrated in Fig. 6.27,

and corresponds to a point within the |RR〉-dominated region of Fig. 6.23 near the

|RR〉 / |RL〉 phase boundary. Note in particular that this trajectory crosses a phase

boundary in the
(
h1

|J | ,
h2

|J |

)
plane, as do most trajectories that start within the shaded

red regions of Fig. 6.26. This is simple to understand intuitively: at the beginning of

the anneal, J is relatively small, so spin 2 will want to align with its local field. When

J becomes larger, the coupling energy becomes significant and the system can lower its

energy by flipping spin 2 (the relative strength of hi and J over time can be seen in
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Figure 6.26: Inequalities defining various regions of the two-qubit ground state stability diagram

in the
(
h1
|J | ,

h2
|J |

)
plane with FM coupling (J < 0). Solid thick black lines indicate the location

of phase boundaries (ground state degeneracies). The shaded red regions are regions whose
ground state has been changed from the case with J = 0.

Fig. 6.27(b), along with the components of the ground state in Fig. 6.27(d), where we

can see the ground state changing from |↑↓〉 to |↑↑〉 in the middle of the anneal). This

corresponds to the system tunneling out of a local minimum into a global minimum in

the middle of the annealing, analogous to the weak-strong cluster problem of Ref. [19].

The crossing of the phase boundary can be described in two different ways. One way is

to note that the crossing of the boundary coincides with the minimum energy gap (for this

problem around 200 MHz) as illustrated in Fig. 6.27(c), meaning there is an avoided level

crossing between the ground state and first excited state. The success rate of reaching

the correct state on the other side of the avoided level crossing is then determined by the

probability of a non-adiabatic transition occurring in accordance with standard Landau-
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(a) (b)

(c) (d)

Figure 6.27: Numerical simulation of the particular annealing schedule with (Φt1,Φt2) =
(2 mΦ0,−1 mΦ0). (a) Red arrow indicates trajectory of the annealing schedule within the(
h1
|J | ,

h2
|J |

)
plane. (b) Time-dependent Hamiltonian coefficients of (6.11) throughout the fixed

two-qubit annealing schedule: ∆(t) ≡ ∆1(t) = ∆2(t), h1(t), h2(t), and J(t). (c) Energy gap of
the two-qubit system along the annealing trajectory. (d) Probability of the four classical flux
basis states within the ground state along the annealing trajectory.
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Zener physics, ignoring environmental effects. A second way to understand the crossing

is through quantum tunneling. In order for the second spin to flip, the system must

move from a false local minimum to a the true global minimum in the middle of the

anneal. This can be directly visualized by plotting the two-dimensional potential energy

landscape of the two-qubit system at different points during the annealing, as done in

Fig. 6.28. The two degrees of freedom in this potential are the phase variables for each

qubit, ϕ1 and ϕ2. As illustrated in Fig. 6.28, the original global minimum continuously

deforms into a local minimum, and the system must tunnel through a potential barrier

by flipping spin 2 to reach the global minimum at the end.

Looking back at the experimental data in Fig. 6.23, we can see that there is a large

qualitative difference in the resulting probabilities between Fig. 6.23(a) and 6.23(b). We

note in particular that 5µs is the fastest annealing rate available on D-Wave’s current

commercial quantum annealers. This slower annealing time incurs substantially more

inter- and intra-well thermalization errors and substantially broadens the single- and

two-qubit phase boundaries. In a computational annealer, these thermalization errors

would lead to a substantially reduced probability of reaching the ground state of the

problem Hamiltonian over much of the (h1, h2) space.
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Figure 6.28: Snapshots of the two-qubit potential landscape U(ϕ1, ϕ2)/EL1 throughout the
particular anneal with (Φt1,Φt2) = (2 mΦ0,−1 mΦ0). White dot indicates the location of the
global minimum of the potential, which we define as zero for the sake of illustration. Color scale
is truncated at an upper limit of 0.4 so that the features are more easily visible. The original
global minimum continuously deforms into a local minimum, and the system must tunnel by
flipping spin 2 to reach the global minimum at the end.
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6.6 Scaling up: Flip-chip architecture and future di-

rections

The planar fluxmon geometry as implemented so far is, in practice, not very scalable to a

complex many-qubit device. This is especially true with a CPW geometry with a shared

ground plane, through which nonlocal return currents can cause significant crosstalk.

When scaling up the number of qubits, it also quickly becomes unclear how to even bring

in all the bias lines for the device, let alone have low crosstalk between them. A way to

potentially solve these issues is to utilize the third dimension with some sort of via-like

structures. As we know, conventional fabrication with lossy dielectrics is not compatible

with low dissipation, so we need to be careful about how we proceed. Although we have

superconducting airbridges at our disposal, which have helped us to access the third

dimension over short distances via hop-overs, this is not enough to achieve more complex

fluxmon devices beyond a handful of qubits.

One promising path towards a multilayer architecture without lossy dielectrics is

using flip-chip bump bonding techniques. Bump bonds are thick (� 1µm) “bumps” of

soft metal that can form a connection between metallic layers on two separate chips by

squishing them in between the chips. This typically leads to a chip-to-chip separation

of order 1 - 10 microns. This is coarsely illustrated by the cartoon in Fig. 6.29(a).

One strategy would then be to have bias circuitry on one chip and qubit circuitry on

the other. The bias circuitry chip could even be a conventional multi-layer fab with
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lossy dielectrics, as long as the qubit chip is shielded from the lossy elements. Bump

bonding is fairly common in classical IC and MEMS devices, but having the bumps be

superconducting is much less common and much more difficult. We implement a version

of the superconducting indium bump bond process developed in Ref. [209], which uses

thin-film TiN as a diffusion barrier between the indium bumps and aluminum circuitry.

High-angle SEM micrographs of the first flip-chip fluxmon test device are shown in

Fig. 6.29(b). For this test device, the bias lines are connected via wirebonds to the

carrier chip, and then go through bump bonds to reach the qubit chip (but we have

also made subsequent samples for which the bias lines are completely out-of-plane of the

qubit chip, on the carrier chip). For inductive couplings between elements on the qubit

chip (such as between qubit and readout resonator, or bias line and qubit), a continuous

carrier chip ground plane reduces the mutual inductance, so we cut slots in the flip-chip

near these couplings to retain the coupling strength [an example of this can be seen for

qubit B in Fig. 6.29(c)]. The chip-to-chip separation for this device was measured to be

between 3 and 3.5µm. 3µm was the minimum acceptable gap because that is the gap at

which the impedance of the fluxmon CPW with ground plane directly above it starts to

significantly change (in general, the presence of a flip-chip ground plane will decrease the

inductance and increase the capacitance). We measured two types of isolated fluxmons

in this test device, as illustrated in Fig. 6.29(c). One qubit had no ground plane on the

flip chip directly above the qubit, and also no bump bonds in close vicinity to the qubit.

The second type did have ground plane on the carrier chip, leading to a large portion of
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Figure 6.29: (a) Cartoon illustration of the bump bond technique for the flip-chip architecture.
(b) High-angle SEM micrographs of the first flip-chip fluxmon test device. The first two pictures
show the flip-chip. The picture on the right is the intersection of two coupled qubits on the
qubit chip, with indium bump bonds on TiN pads visible. (c) Two types of isolated qubits
tested on the flip-chip test device, one without ground plane directly above the qubit or bumps
near the qubit, and the other with both. For both of these qubits, the bias lines were routed
from the carrier chip to the qubit chip through bump bonds.
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qubit plane

carrier plane

x

Figure 6.30: Simulation of fluxmon current distribution in the presence of a connected ground
plane directly above the qubit. In contrast with the single-plane CPW fluxmon, the quasi-
CPW/quasi-microstrip fluxmon has a substantial portion (∼ 60 %) of its return current in
another plane.

the fluxmon’s return current being localized above the qubit on the carrier chip rather

than on the sides of the qubit on the qubit chip as usual. The differing return current

distributions simulated in Sonnet are shown in Fig. 6.30.

There are two other main requirements that the flip chip architecture must satisfy

besides just allowing more complexity. One of these requirements is low crosstalk. In the

right-most picture of Fig. 6.29(b), we can compare the coupler design to our previous

planar design in Fig. 6.1(b). In the flip-chip device, each quadrant of the coupler structure

is a 60µm×60µm loop, compared to the of the coupler was reduced from 100µm×100µm

loops of the planar device, meaning a factor of 3 reduction in areal footprint while keeping

roughly the same Mca and Mcb. If we were to have made the same reduction in coupler

size in the planar design without flip-chip, the crosstalk would have been much higher

given that coupler bias lines would come even closer to the qubits. However, we observe

that the crosstalk from the coupler bias lines to the qubits is the same or better than in
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our best planar device. The fact that we maintained the same level of crosstalk while

making the design significantly more compact is one of many benefits of utilizing a flip-

chip. This was possible because of the alternative current paths for the return current

on the flip chip. Note also that we were able to partially shield the coupler loop with

ground plane on the flip chip to help with crosstalk, but didn’t need to fill the entire

coupler loop with a ground plane island as we did in Fig. 6.1(b), allowing us to maintain

the same qubit-coupler coupling strength as the previous device as well.

The other requirement for the flip-chip architecture is that it retains at least the

same level of coherence as the planar architecture. On the first test device we observed

a roughly 30% reduction in T1 at zero tilt relative to typical planar devices for both

qubit A and qubit B, as well as for the pair of coupled qubits. Because qubit A and

B have very different participations of the return current through the bump bonds and

carrier chip, it is unlikely that the bumps themselves played a role in this reduction.

Rather, it is possible that other systematic differences in the fabrication process led to

this change. This is likely the explanation, since in a second flip-chip sample with the

bias lines completely on the carrier chip, we see the usual T1’s consistent with single-chip

silicon devices. In addition, we see no measurable degradation in T2 or low-frequency flux

noise in this device relative to non-flip chip devices. This makes sense since, based on

surface magnetic participation ratios, we would expect a flip chip qubit with ground plane

above it to have only a 20% increase in flux noise power, small enough that it wouldn’t

be noticed in a low-frequency noise measurement with a small sample size. Given the
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maintained coupling strength and coherence, we are optimistic about moving forward

with the flip-chip architecture to build more complex medium-scale quantum annealing

devices.
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Chapter 7

Conclusion

We have demonstrated a flux qubit suitable for high-connectivity quantum annealing

without the use of lossy dielectrics. Removing amorphous dielectrics allowed for a

∼ 100× improvement in high-frequency microwave dissipation compared to commer-

cial flux qubits fabricated with lossy dielectrics. However, at lower frequencies we found

that flux noise dominates the dissipation, and in particular found that 1/f flux noise from

a paramagnetic environment can extend up to GHz frequencies. Nevertheless, compared

to flux qubits in currently available commercial quantum annealers, we find a relatively

small energy offset εp describing the environmental energy penalty for incoherent reso-

nant quantum tunneling between flux qubit wells, indicating that multi-qubit tunneling

should not be as significantly suppressed by dissipation when scaling up. However, work

still needs to be done to improve the low-frequency noise in order to increase the chances

for coherent tunneling to occur in an annealer. Other features of our hardware include
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the ability to “anneal in reverse” for quantum parallel tempering, and microwave spec-

troscopy that enables precise calibration of the qubit using a physically realistic model. In

addition to the fluxmon itself, we also developed tunable couplers enabling ultra-strong

inter-qubit coupling that can be described by a scalable nonlinear Born-Oppenheimer

theory. With the reduced coupler footprint made possible by a flip-chip architecture, the

fluxmon is in principle able to strongly couple to up to 20 other qubits at once, as desired

for a dense connectivity graph. Finally, our control system allowed us to perform one-

and two-qubit quantum annealing experiments faster than the system thermalization

time. We found that in this regime, annealing fast drastically reduces thermalization

errors, leading to improved annealing success rates for almost all one- and two-qubit

problem instances (whenever non-adiabatic effects were not dominant). With faster an-

nealing and longer thermalization times in the fluxmon architecture, it may be possible to

largely eliminate the “thermalization stage” observed in currently available commercial

quantum annealers.
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[204] S. Filipp, M. Göppl, J. M. Fink, M. Baur, R. Bianchetti, L. Steffen, and A. Wallraff.
Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit
quantum electrodynamics. Phys. Rev. A, 83:063827, Jun 2011.

[205] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J.
Garcia-Ripoll, D. Zueco, T. Hummer, E. Solano, A. Marx, and R. Gross. Circuit
quantum electrodynamics in the ultrastrong-coupling regime. Nat Phys, 6(10):772–
776, October 2010.

[206] P. Forn-Dı́az, J. Lisenfeld, D. Marcos, J. J. Garćıa-Ripoll, E. Solano, C. J.
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