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Erasure conversion for fault-tolerant quan-
tum computing in alkaline earth Rydberg
atom arrays

Yue Wu1, Shimon Kolkowitz 2, Shruti Puri 3 & Jeff D. Thompson4

Executing quantum algorithms on error-corrected logical qubits is a critical
step for scalable quantum computing, but the requisite numbers of qubits and
physical error rates are demanding for current experimental hardware.
Recently, the development of error correcting codes tailored to particular
physical noise models has helped relax these requirements. In this work, we
propose a qubit encoding and gate protocol for 171Yb neutral atom qubits that
converts the dominant physical errors into erasures, that is, errors in known
locations. The key idea is to encode qubits in a metastable electronic level,
such that gate errors predominantly result in transitions to disjoint subspaces
whose populations can be continuously monitored via fluorescence. We esti-
mate that 98% of errors can be converted into erasures. We quantify the
benefit of this approach via circuit-level simulations of the surface code,
finding a threshold increase from 0.937% to 4.15%. We also observe a larger
code distance near the threshold, leading to a faster decrease in the logical
error rate for the same number of physical qubits, which is important for near-
term implementations. Erasure conversion should benefit any error correcting
code, and may also be applied to design new gates and encodings in other
qubit platforms.

Scalable, universal quantum computers have the potential to outper-
form classical computers for a range of tasks1. However, the inherent
fragility of quantum states and the finite fidelity of physical qubit
operations make errors unavoidable in any quantum computation.
Quantum error correction2–4 allows multiple physical qubits to repre-
sent a single logical qubit, such that the correct logical state can be
recovered even in the presence of errors on the underlying physical
qubits and gate operations.

If the logical qubit operations are implemented in a fault-tolerant
manner that prevents the proliferation of correlated errors, the logical
error rate can be suppressed arbitrarily so long as the error probability
during each operation is below a threshold5,6. Fault-tolerant protocols
for error correction and logical qubit manipulation have recently been
experimentally demonstrated in several platforms7–10.

The threshold error rate depends on the choice of error
correcting code and the nature of the noise in the physical qubit.
While many codes have been studied in the context of the
abstract model of depolarizing noise arising from the action of
random Pauli operators on the qubit, the realistic error model for
a given qubit platform is often more complex, which presents
both opportunities and challenges. For example, qubits encoded
in cat-codes in superconducting resonators can have strongly
biased noise11, leading to significantly higher thresholds12,13 given
suitable bias-preserving gate operations for fault-tolerant syn-
drome extraction14. The realization of biased noise models and
bias-preserving gates for Rydberg atom arrays has also been
discussed15. On the other hand, many qubits also exhibit some
level of leakage outside of the computational space6,16, which
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requires extra gates in the form of leakage-reducing units,
decreasing the threshold17.

Another type of error is an erasure, or detectable leakage, which
denotes an error at a known location. Erasures are significantly easier
to correct than depolarizing errors in both classical18 and quantum3,19

settings. For example, a four-qubit quantum code is sufficient to cor-
rect a single erasure error19, and the surface code threshold under the
erasure channel approaches 50% (with perfect syndrome measure-
ments), saturating the bound imposed by the no-cloning theorem20.
Erasureerrors arise naturally inphotonic qubits: if a qubit is encoded in
the polarization, or path, of a single photon, then the absence of a
photondetection signals an erasure, allowing efficient error correction
for quantum communication21 and linear optics quantum
computing22,23. However, techniques for detecting the locations of
errors in matter-based qubits have not been extensively studied.

In this work, we present an approach to fault-tolerant quantum
computing in Rydberg atom arrays24–26 based on converting a large
fraction of naturally occurring errors into erasures. Our work has two
key components. First, we present a physical model of qubits encoded
in a particular atomic species, 171Yb27–29, that enables erasure conver-
sion without additional gates or ancilla qubits. By encoding qubits in
the hyperfine states of a metastable electronic level, the vast majority
of errors (i.e., decays from the Rydberg state that is used to implement
two-qubit gates) result in transitions out of the computational sub-
space into levels whose population can be continuously monitored
using cycling transitions that do not disturb the qubit levels (the use of
a metastable state to certify the absence of certain errors was also
recently proposed for trapped ion qubits30). As a result, the location of
these errors is revealed, converting them into erasures. We estimate a
fraction Re = 0.98 of all errors can be detected this way. Second, we
quantify the benefit of erasure conversion at the circuit level, using
simulations of the surface code. We find that the predicted level of
erasure conversion results in a significantly higher threshold, pth =
4.15%, compared to the case of pure depolarizing errors (pth = 0.937%).
Finally, we find a faster reduction in the logical error rate immediately
below the threshold.

Results
Erasure conversion in 171Yb qubits
In a neutral atom quantum computer, an array of atomic qubits are
trapped, manipulated, and detected using light projected through a
microscope objective (Fig. 1a). A variety of atomic species have been
explored, but in this work, we consider 171Yb28,29, with the qubit enco-
ded in the F = 1/2 6s6p 3P0 (Fig. 1b) level. This is commonly used as the
upper level of optical atomic clocks31, and is metastable with a lifetime
of τ ≈ 20 s. We define the qubit states as ∣1i � ∣mF = 1=2

�
and

∣0i � ∣mF =�1=2
�
. State preparation, measurement and single-qubit

rotations can be performed in a manner similar to existing neutral
atom qubits, and a detailed prescription is presented in Supplemen-
tary Note 1.

To perform two-qubit gates, the state ∣1i is coupled to a Rydberg
state ∣ri with Rabi frequency Ω. For concreteness, we consider the
6s75s 3S1 state with ∣F,mF

�
= ∣3=2, 3=2

�
32. Selective coupling of ∣1i to ∣ri

can be achieved by using a circularly polarized laser and a large mag-
netic field to detune the transition from ∣0i to the mF = 1/2 Rydberg
state28.

The resulting three level system f∣0i, ∣1i, ∣rig is analogous to
hyperfine qubits encoded in alkali atoms, for which numerous gate
protocols have been proposed and demonstrated24,25,33–37. These gates
are based on the Rydberg blockade: the van der Waals interaction
Vrr(x) =C6/x6 between a pair of Rydberg atoms separated by x prevents
their simultaneous excitation to ∣ri if Vrr(x)≫Ω. The gate duration is of
order tg ≈ 2π/Ω≫ 2π/Vrr, and during this time, the Rydberg state can
decay with probability p= Pr

� �
Γtg , where Pr

� �
≈ 1=2 is the average

population in ∣ri during the gate, and Γ is the total decay rate from ∣ri.
This is the fundamental limitation to the fidelity of Rydberg gates26. It
can be suppressed by increasingΩ (up to the limit imposed by Vrr), but
in practice,Ω is often constrainedby the available laser power.Wenote
that the Yb 3S1 series has similar interaction strength28,38 and lifetime32

to Rydberg series in alkali atoms.
The state ∣ri candecay via radiative decay to low-lying states (RD),

or via blackbody-induced transitions to nearby Rydberg states (BBR)26.
Crucially, a large fraction of RD events do not reach the metastable

Fig. 1 | Overview of a fault-tolerant neutral atom quantum computer using
erasure conversion. a Schematic of a neutral atom quantum computer, with a
plane of atoms under a microscope objective used to image fluorescence and
project trapping and control fields.bThe physical qubits are individual 171Yb atoms.
The qubit states are encoded in the metastable 6s6p 3P0F = 1/2 level (subspace Q),
and two-qubit gates are performed via the Rydberg state ∣ri, which is accessed
through a single-photon transition (λ = 302 nm) with Rabi frequency Ω. The
dominant errors during gates are decays from ∣ri with a total rate Γ = ΓB + ΓR + ΓQ.
Only a small fraction ΓQ/Γ ≈0.05 return to the qubit subspace, while the remaining
decays are either blackbody (BBR) transitions to nearbyRydberg states (ΓB/Γ ≈0.61)
or radiative decay to the ground state 6s2 1S0 (ΓR/Γ ≈0.34). At the end of a gate,
these events can be detected and converted into erasure errors by detecting

fluorescence from ground state atoms (subspace R), or ionizing any remaining
Rydberg population via autoionization, and collecting fluorescence on the Yb+

transition (subspace B). c A patch of the XZZX surface code studied in this work,
showing data qubits (open circles), ancilla qubits (filled circles) and stabilizer
operations, performed in the order indicated by the arrows. d Quantum circuit
representing a measurement of a stabilizer on data qubits D1 −D4 using ancilla A1

with interleaved erasure conversion steps. Erasure detection is applied after each
gate, and erased atoms are replaced from a reservoir as needed using a moveable
optical tweezer. It is strictly only necessary to replace the atom thatwas detected to
have left the subspace, but replacing both protects against the possibility of
undetected leakage on the second atom.
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qubit subspace Q, but instead go to the true atomic ground state 6s2
1S0 (with suitable repumping of the other metastable state, 6s6p 3P2).
For ann = 75 3S1 Rydberg state, we estimate that 61% of decays are BBR,
34% are RD to the ground state, and only 5% are RD to the qubit
subspace (see Supplementary Note 2). Therefore, a total of 95% of all
decays leave the qubit in disjoint subspaces, whose population can be
detected efficiently, converting these errors into erasures. The
remaining 5% can only cause errors in the computational space—there
is no possibility for leakage, as the Q subspace has only two sublevels.

Decays to states outside of Q can be detected using fluorescence
on closed cycling transitions that do not disturb atoms in Q. Popula-
tion in the 1S0 level can be efficiently detected using fluorescence on
the 1P1 transition at 399 nm39,40 (subspace R in Fig. 1c). This transition is
highly cyclic, with a branching ratio of ≈1 × 10−7 back into Q41. Popula-
tion remaining in Rydberg states at the end of a gate can be converted
into Yb+ ions by autoionization on the 6s→ 6p1/2 Yb+ transition at
369 nm38. The resulting slow-moving Yb+ ions can be detected using
fluorescence on the same Yb+ transition, as has been previously
demonstrated for ensembles of Sr+ ions in ultracold strontium gases42

(subspace B in Fig. 1c). As the ions can be removed after each erasure
detection round with a small electric field, this approach also elim-
inates correlated errors from leakage to long-lived Rydberg states43.
We estimate that site-resolved detection of atoms in 1S0 with a fidelity
F >0.99944, and Yb+ ions with a fidelity F >0.99, can be achieved in a
10μs imaging period (see Supplementary Note 3). We note that two

nearby ions created in the same cycle will likely not be detected
because of mutual repulsion, but this occurs with a very small prob-
ability relative to other errors, as discussed below.

We divide the total spontaneous emission probability, p, into
three classes depending on the final state of the atoms (Fig. 2a). The
first outcome is stated corresponding to detectable erasures (BQ/QB,
RQ/QR, RB/BR, and RR), with probability pe. The second is the creation
of two ions (BB), which cannot be detected, occurring with probability
pf. The third outcome is a return to the qubit subspace (QQ), with
probability pp, which results in an error on the qubits within the
computational space.

The value of p and its decomposition depends on the specific
Rydberg gate protocol. We study a particular example, the symmetric
CZ gate from ref. 35, using a combination of analytic and numerical
techniques, detailed in Supplementary Note 4 and summarized in
Fig. 2b. The probability of a detectable erasure, pe, is almost identical
to the average gate infidelity 1� F , indicating that the vast majority of
errors are of this type. We infer pp from the fidelity conditioned on not
detecting an erasure, F �e, as pp = 1� F �e, and find pp ≈ pe/50. Non-
detectable leakage (BB) is strongly suppressed by the Rydberg block-
ade, and we find pf < 10−4 × pe over the relevant parameter range. Since
decays occur preferentially from ∣1i, continuously monitoring for
erasures introduces an additional probability of gate error from non-
Hermitian no-jump evolution45, proportional to p2

e , which is insignif-
icant for pe <0.1 (see Methods).

We conclude that this approach effectively converts a fraction
Re = pe/(pe + pp) = 0.98 of all spontaneous decay errors into erasures.
This is a larger fraction than would be naïvely predicted from the
branching ratio into the qubit subspace, 1 − ΓQ/Γ =0.95, because
decays toQ in themiddle of the gate result in re-excitation to ∣riwith a
high probability, triggering an erasure detection. This value is in
agreement with an analytic estimate (Supplementary Note 4).

Surface code simulations
We now study the performance of an error correcting code with era-
sure conversion using circuit-level simulations.We consider the planar
XZZX surface code46, which has been studied in the context of biased
noise, and performs identically to the standard surface code for the
case of unbiased noise. We implement Monte Carlo simulations of
errors in a d × d array of data qubits to implement a code with distance
d, and estimate the logical failure rate after d rounds ofmeasurements.

In the simulation, each two-qubit gate experiences either a Pauli
error with probability pp = p(1− Re), or an erasure with probability
pe = pRe. The Pauli errors are drawn uniformly at random from the set
{I, X, Y, Z}⊗2\{I⊗ I}, each with probability pp/15. Following a two-qubit
gate in which an erasure error occurs, both atoms are placed in the
mixed state I/2, which ismodeled in the simulations by applying a Pauli
error chosen uniformly at random from {I, X, Y, Z}⊗247 (in the experi-
ment, the replaced atoms can be in any state, since the subsequent
stabilizermeasurements anddecoding are equivalent to adepolarizing
error). We do not consider single-qubit gate errors or ancilla initi-
alization or measurement errors at this stage.

The syndrome measurement results, together with the locations
of the erasure errors, are decoded with weighted Union Find (UF)
decoder48,49 to determine whether the error is correctable or leads to a
logical failure. TheUF decoder is optimal for pure erasure errors50, and
performs comparably to conventional matching decoders for Pauli
errors, but is considerably faster48,49.

In Fig. 3a, we present the simulation results for Re =0 and Re =
0.98. The former corresponds to pure Pauli errors, while the latter
corresponds to the level of erasure conversion anticipated in 171Yb. The
logical errors are significantly reduced in the latter case. The fault-
tolerance threshold, defined as the physical error rate where the
logical error rate decreases with increasing d, increases by a factor of
4.4, from pth = 0.937% to pth = 4.15%. In Fig. 3b, we plot the threshold as

QQ

QB BQ QR RQ

RB BR RR

BB

(a)

(b)

no error

errors

Fig. 2 | Gate errormodel and simulated performance. a Possible atomic states at
the end of a two-qubit gate. The configurations grouped in the yellow box are
detectable erasure errors; red, undetectable errors; and green, the computational
space. b Gate error as a function of the gate duration tg. The average gate infidelity
1� F (black squares) is dominated by detectable erasures with probability pe
(orange points). The infidelity conditioned on not detecting an erasure, 1� F �e

(green points) is about 50 times smaller. This reflects decays to Q with probability
pp, and a no-jump evolution contribution (green dashed line). The probability pf of
undetectable leakage (red points) is very small. The lines are analytic estimates of
each quantity, while the symbols are numerical simulations. Both assume Vrr/
Γ = 106, and Ω is varied along the horizontal axis.
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a function of Re. It reaches 5.13% when Re = 1. The smooth increase of
the threshold with Re is qualitatively consistent with previous studies
of the surface code performance with mixed erasure and Pauli
errors20,48,51.

In addition to increasing the threshold, the high fraction of era-
sure errors also results in a faster decrease in the logical error rate
below the threshold. Below the threshold, pL can be approximated by
Apν, where the exponent ν is the number of errors needed to cause a
logical failure. A larger value of ν results in a faster suppression of
logical errors below the threshold, and better code performance for a
fixed number of qubits (i.e., fixed d).

In Fig. 4a,weplot the logical error rate as a functionof thephysical
error rate for a d = 5 code for several values of Re. When normalized by
the threshold error rates (Fig. 4b), it is evident that the exponent
(slope) ν increases with Re. The fitted exponents (Fig. 4c) smoothly
increase from the expected value forpure Pauli errors, νp = (d + 1)/2 = 3,
to the expected value for pure erasure errors, νe = d = 5 (in fact, it
exceeds this value slightly in the region sampled, which is close to the
threshold). ForRe =0.98, ν = 4.35(2). Achieving this exponentwithpure
Pauli errors would require d = 7, using nearly twice as many qubits as

the d = 5 code in Fig. 4. For very small p, the exponent will eventually
return to νp, as the lowest weight failure (νp Pauli errors) will become
dominant. The onset of this behavior is barely visible for d = 5 in Fig. 3a.

Discussion
There are several points worth discussing. First, we note that the
threshold error rate for Re =0.98 corresponds to a two-qubit gate
fidelity of 95.9%, which is exceeded by the current state-of-the-art.
Recently, entangled states with fidelity F =97:4% were demonstrated
for hyperfine qubits in Rb35, and we also note that F =99:1% has been
demonstrated for ground-Rydberg qubits in 88Sr52. With reasonable
technical improvements, a reduction of the error rate by at least one
order of magnitude has been projected37, which would place neutral
atom qubits far below the threshold, into a regime of genuine fault-
tolerant operation. Arrays of hundreds of neutral atom qubits have
been demonstrated53,54, which is a sufficient number to realize a single
surface code logical qubit with d = 11, or five logical qubits with d = 5.
While we analyze the surface code in this work because of the avail-
ability of simple, accurate decoders, we expect erasure conversion to

(a)

(b)

Fig. 3 | Circuit-level error thresholds in the presence of erasure errors. a Scaling
of the logical error rate with the physical qubit error rate p in the case of pure
computational errors (Re =0, open circles, dashed lines) and in the case of a high
conversion to erasure errors, Re =0.98 (filled circles, solid lines). The error
thresholds are pth = 0.937(4)% and pth = 4.15(2)%, respectively, determined from the
crossing of d = 11 and d = 15. The error bars indicate the 95% confidence interval in
pL, estimated from the number of trials in the Monte Carlo simulation. b pth as a
function of Re (The green star highlights Re =0.98).

(a)

(b)

(c)

Fig. 4 | Logical error scaling below threshold. a pL vs p at a fixed code distance
d = 5 for various values ofRe [colors correspond to the diamondpoints in panel (c)].
In panel (b), the physical and logical error rates are rescaled by their values at the
threshold. c Logical error exponent ν, extracted from the slope of the curves in (b).
The dashed lines show the expected asymptotic exponents for pure computational
errors (νp = 3) and pure erasure errors (νe = 5). The error bars indicate the 95%
confidence interval in the exponent ν, estimated from a chi-squared analysis
of the fit.
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realize a similar benefit on any code. In combination with the flexible
connectivity of neutral atom arrays enabled by dynamic
rearrangement55–57, this opens the door to implementing a wide range
of efficient codes58.

Second, in order to compare erasure conversion to previous
proposals for achieving fault-tolerant Rydberg gates by repumping
leaked Rydberg population in a bias-preservingmanner15, we have also
simulated the XZZX surface code with biased noise and bias-
preserving gates. For noise with bias η (i.e., if the probability of X or
Y errors is η times smaller than Z errors), we find a threshold of pth =
2.27% for the XZZX surface code when η = 100, which increases to
pth = 3.69% when η→∞. For comparison, the threshold with erasure
conversion is higher than the case of infinite bias if Re ≥0.96, with the
additional benefit of not requiring bias-preserving gates.

Third, we consider the role of imperfect erasure detection, or
other sources of atom loss. Since two-qubit blockade gates have well-
defined behavior with regard to lost atoms (i.e., the lost atoms act as if
they are in ∣0i), these events can be handled fault-tolerantly with no
extra ancillas and only one extra gate per stabilizer measurement,
using the "quick circuit" for leakage reduction introduced in ref. 17. In
that work it was shown that the impact on the thresholdwas very slight
if the loss probability was small compared to other errors17, and the
same behavior can be expected in the scheme considered here. We
leave a detailed analysis to future work.

Fourth, our analysis has focused on two-qubit gate errors, since
they are dominant in neutral atom arrays, and are also the most pro-
blematic for fault-tolerant error correction59. However, with very effi-
cient erasure conversion for two-qubit gate errors, the effect of single-
qubit errors, initialization andmeasurement errors, and atom lossmay
become more significant. In Supplementary Note 6, we present addi-
tional simulations showing that the inclusion of initialization, mea-
surement, and single-qubit gate errors with reasonable values does not
significantly affect the threshold two-qubit gate error. We also note
that erasure conversion can also be effective for other types of spon-
taneous errors, including Raman scattering during single qubit gates,
the finite lifetime of the 3P0 level, and certain measurement errors.

Lastly, we highlight that erasure conversion can lead to more
resource-efficient, fault-tolerant subroutines for universal computa-
tion, such as magic-state distillation60, which uses several copies of
faulty resource states to produce fewer copies with lower error rate.
This is expected to consume large portions of the quantum
hardware59,61, but the overhead can be reduced by improving the
fidelity of the input rawmagic states. By rejecting resource states with
detected erasures, the error rate can be reduced from O(p)62–65 to
O((1− Re)p). Therefore, 98% erasure conversion can give over an order
of magnitude reduction in the infidelity of raw magic states, resulting
in a large reduction in overheads for magic state distillation.

While this work provides a novel motivation to pursue qubits
based on Yb and other alkaline earth-like atoms, these atoms
have also attracted recent interest thanks to other potential
advantages28,29,40,52,66–69. In particular, long qubit coherence times28,29,69,
narrow-line laser cooling, and rapid single-photon Rydberg excitation
from the metastable 3P0 level offer the potential for improved entan-
gling gate fidelities and a suppression of technical noise. We note that
the highest reported Rydberg entanglement fidelity was achieved
using the analogous metastable state in 88Sr52. The use of a metastable
electronic level offers other benefits, including straightforward mid-
circuitmeasurement and array reloading capabilities, as demonstrated
recently in the context of trapped ions30,70,71.

In conclusion, we have proposed an approach for efficiently
implementing fault-tolerant quantum logic operations in neutral atom
arrays using 171Yb. By leveraging the unique level structure of this
alkaline earth atom, we convert the dominant source of error for two-
qubit gates—spontaneous decay from the Rydberg state—into directly
detected erasure errors. We find a 4.4-fold increase in the circuit-level

threshold for a surface code, bringing the thresholdwithin the rangeof
current experimental gate fidelities in neutral atom arrays. Combined
with a steeper scaling of the logical error rate below the threshold, this
approach is promising for demonstrating fault-tolerant logical opera-
tions with near-term experimental hardware. We anticipate that era-
sure conversion will also be applicable to other codes and other
physical qubit platforms30.

Methods
Error correcting code simulations
In this section, we provide additional details about the simulations
used to generate the results shown in Figs. 3 and4.We assign each two-
qubit gate to have an error from the set {I, X, Y, Z}⊗2\{I⊗ I} with prob-
ability pp/15, and an erasure error with probability pe, with pe/(pp +
pe) =Re. Immediately after an erasure error on a two-qubit gate, both
qubits are re-initialized in a completely mixed state which is modeled
using an error channel (IρI + XρX + YρY + ZρZ)/4 on each qubit. We
choose this model for simplicity, but in the experiment, better per-
formance may be realized using an ancilla polarized into ∣1i, as Ryd-
berg decays only happen from this initial state. In addition, we note
that the majority of errors result in only one of the atoms leaving Q
(Supplementary Note 4), but the other atom has an error anyway and
should still be considered as part of the erasure. We assume the exis-
tence of native CZ and CNOT gates, so a stabilizer cycle can be com-
pleted without single-qubit gates. We also neglect idle errors, since
these are typically insignificant for atomic qubits.

Ancilla initialization (measurement) are handled in a similar way,
with a Pauli error following (preceding) a perfect operation, with
probability pm (pm = 0 in Figs. 3 and 4, but results for pm >0 are dis-
cussed in Supplementary Note 6).

We simulate the surface code with open boundary conditions.
Each syndrome extraction round proceeds in six steps: ancilla state
preparation, four two-qubit gates applied in the order shown in Fig. 1,
andfinally ameasurement step. For ad × d lattice,weperformd rounds
of syndrome measurements, followed by one final round of perfect
measurements. The decoder graph is constructed by connecting all
space-time points generated by errors in the circuit applied as dis-
cussed above. Each of these edges is then weighted by lnðp0Þ truncated
to the nearest integer, where p0 is the largest single error probability
that gives rise to the edge. After sampling an error, the weighted UF
decoder is applied to determine error patterns consistent with the
syndromes. We do not apply the peeling decoder but account for
logical errors by keeping track of the parity of the number of defects
crossing the logical boundaries. Our implementation of the decoder
was separately benchmarked against the results in ref. 49 and yields
same thresholds.

For the comparison to the threshold of the XZZX code when the
noise is biased, we apply errors from Q = {I, X, Y, Z}⊗2\{I⊗ I} after each
two qubit gate with probability pQ. The first (second) operator in the
tensor product is applied to the control (target) qubit. In the case of
CNOT, we assume bias-preserving gates, and thus set pZI = p, pIZ =
pZZ = p/2 with the probability of other non-pure-dephasing Pauli errors
set to p/η13. For the CZ gate we usepZI = p, pIZ = pwith the probability of
other non-pure-dephasing Pauli errors set to p/η. For the threshold
quoted in themain text no single-qubit preparation andmeasurement
noise is applied, to facilitate direct comparison to the threshold with
erasure conversion in Fig. 3. In the main text we quote threshold in
terms of the total two-qubit gate infidelity ~2p for large η, to facilitate
comparison to the threshold in Fig. 3.

Lastly, we note that the no-jump evolution discussed in Fig. 2b is
described by the Kraus operator Knj = I + ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ

p
� 1Þ∣1i 1h ∣≈I �

ðp=2Þ∣1i 1h ∣ (for small p), where p is the decay probability. The Pauli-twirl
approximation (PTA) reduces any error channel to aPauli error channel
by removing off-diagonal terms in the process matrix. Under the PTA,
the non-Hermitian operator Knj effectively applies a Pauli-Z error at a
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rate∝ p2. This errormodel is similar to the amplitudedamping channel,
and previous work has found that the performance of the surface code
with the PTA is identical to the exact amplitude damping channel72.

Data availability
The Monte Carlo simulation data of the error correcting code perfor-
mance generated in this study have been deposited in the Harvard
Dataverse database under accession code https://doi.org/10.7910/
DVN/H9LV4H.
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