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Optimal sequencing during category learning: Testing a dual-
learning systems perspective

Sharon M. Noh1, Veronica X. Yan2, Robert A. Bjork2, W. Todd Maddox1

1University of Texas, Austin

2University of California, Los Angeles

Abstract

Recent studies demonstrate that interleaving the exemplars of different categories, rather than 

blocking exemplars by category, can enhance inductive learning—the ability to categorize new 

exemplars—presumably because interleaving affords discriminative contrasts between exemplars 

from different categories. Consistent with this view, other studies have demonstrated that 

decreasing between-category similarity and increasing within-category variability can eliminate or 

even reverse the interleaving benefit. We tested another hypothesis, one based on the dual-learning 

systems framework—namely, that the optimal schedule for learning categories should depend on 

an interaction of the cognitive system that mediates learning and the structure of the particular 

category being learned. Blocking should enhance rule-based category learning, which is mediated 

by explicit, hypothesis-testing processes, whereas interleaving should enhance information-

integration category learning, which is mediated by an implicit, procedural-based learning system. 

Consistent with this view, we found a crossover interaction between schedule (blocked vs. 

interleaved) and category structure (rule-based vs. information-integration).
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When learning new categories, how should the study of category exemplars be sequenced so 

that learners can accurately classify new exemplars on a later test? When an art student, for 

example, must learn to recognize the styles of different artists so as to be able to identify the 

artist responsible for a never-before-seen painting, should he or she study examples of 

artists’ paintings one artist at a time, or should the paintings by the different artists be 

intermixed? Recent findings suggest that in this case, and in the inductive learning of other 
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naturalistic categories, such as butterflies and birds, interleaving exemplars of different 

categories yields better category learning than does blocking exemplars by category (e.g., 

Birnbaum, Kornell, Bjork, & Bjork, 2013; Kang & Pashler, 2012; Kornell & Bjork, 2008; 

Wahlheim, Dunlosky, & Jacoby, 2011). More recent work using artificial stimuli suggests, 

however, that interleaving is only superior when between-category discriminability is low, 

and that blocking is superior when between-category discriminability is high (e.g., Carvalho 

& Goldstone, 2014; Zulkiply & Burt, 2013). The important implication of these studies is 

that there may be no single “optimal” method of sequencing, but rather, the optimal method 

may depend on various factors (e.g., the nature of the to-be-learned categories).

Although category discriminability can play an important role in determining whether 

interleaved or blocked study enhances category learning, we argue that another, yet 

unexplored, factor may be important: the learning system that mediates performance. An 

extensive body of behavioral, neuropsychological, and neuroscience literature suggests that 

optimal learning of different category structures is mediated by at least two 

neurobiologically grounded and competing learning systems (Ashby, Alfonso-Reese, Turken 

& Waldron, 1998; Ashby & Maddox, 2011; Nomura & Reber, 2008; Maddox & Filoteo, 

2005). One is a frontally mediated hypothesis-testing system that relies on working memory 

and executive attention to develop and test verbalizable rules that are used to optimally solve 

rule-based (RB) categories. The second is a striatally mediated procedural-based learning 

system that does not rely on working memory and executive attention but, instead, learns 

non-verbalizable stimulus-response mappings that are used to solve information-integration 

(II) categories. These two systems compete and previous research show that there is an 

initial bias toward the hypothesis-testing system, with control being passed to the 

procedural-based learning system only when the category structure warrants (e.g., with 

information-integration categories; Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby 

& Maddox, 2011; Maddox & Ashby, 2004). Dual-learning-systems research suggests that 

learning in each system is optimized under different training conditions. For instance, rule-

based category learning is optimized when full feedback is provided (e.g., “Wrong, that was 

a B”) whereas information-integration category learning is optimized when immediate, 

minimal feedback is provided (e.g., “Wrong”; Maddox, Love, Glass, & Filoteo, 2008).

We hypothesize that the optimal schedules for category learning are also dependent on the 

underlying category structure. In the current study, we tested this hypothesis directly. With 

respect to rule-based categories, blocking exemplars by category should allow individuals to 

more easily generate, test, and adjust their working hypotheses, particularly when there is a 

relatively demanding working memory load. To introduce a working memory load, we used 

a four-category variant of the rule-based and information-integration learning structures 

(from Maddox, Filoteo, Hejl, & Ing, 2004), rather than the more typical two-category 

learning variant found in many dual-learning systems studies. An interleaved schedule, on 

the other hand, would hurt rule-based learning by introducing a more demanding working 

memory load, as individuals would have to generate and test multiple rules for each category 

simultaneously. While interleaving would allow learners to compare exemplars that do and 

do not fit into a given category, the working memory load involved in holding multiple 

dimensions in mind for multiple categories would make using rule-based hypothesis testing 

difficult. We predict that blocked study should better should facilitate rule-based category 

Noh et al. Page 2

Cognition. Author manuscript; available in PMC 2021 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



learning than interleaved study in our experiments. Following the same reasoning, we also 

hypothesize that interleaved study should be beneficial for information-integration category 

learning because it discourages the use of rule-based strategies and speeds the transition to 

the procedural based learning system.

Experiment 1

Method

Participants and design.—One hundred and thirty-two participants (mean age = 30.0, 

age range = 19 – 57, 71 females) were recruited from Amazon Mechanical Turk (MTurk) 

and paid $1.00 for their participation. Category structure (rule-based vs. information-

integration) and study schedule (blocked vs. interleaved) were manipulated in a 2×2 

between-subjects design. An a priori power analysis determined that for a medium effect 

size (f = 0.25), we would need 32 participants per condition to reach a power of 0.80.

Materials.—The four-category rule-based and information-integration category structures 

are displayed in Figure 1. Each stimulus was comprised of a line of varying length and 

orientation at a fixed distance from center (that varied in position) on the computer screen. 

The stimuli were constructed from three continuous-valued dimensions: line orientation 

(between 0–90 degrees), line length (0–200 pixels), and position (between 0–100 degree 

offset from fixation). Each dimension has eight values at equal intervals, but only line length 

and line orientation values defined category membership. Each of the eight line length 

values were paired with each of the 8 line orientation values, for a total of 64 unique lines of 

varying length and orientation. These 64 lines were randomly paired with one of 8 different 

positions, so that each unique line could be shown in one of 8 positions on the screen. In the 

rule-based condition, the stimulus space was divided into four categories using decision 

bounds that were verbalizable (e.g., “all members of category A contain a short, steep line”). 

To generate the information-integration condition, the category boundaries and stimuli from 

the rule-based condition were rotated 45 degrees so that no simple verbalizable rule could 

define category membership. This transformation allows us to both differentiate rule-based 

and information-integration category-learning strategies while keeping the category 

structures and stimulus distributions mathematically equivalent.

Procedure.—Participants were asked to learn to distinguish exemplars from four different 

categories. A cover story was provided, suggesting that these were images generated by four 

different robots and the task was to learn each robot’s way of generating images. During the 

study phase, participants observed each of the 64 images (constructed from the factorial 

combination of all 8 line lengths with all 8 line orientations) once with a randomly selected 

(but without replacement) position. Each item was presented with the appropriate category 

label (A, B, C, or D) for 3.5 seconds each. In the blocked condition, participants saw the 16 

exemplars from one category before moving on to the next, whereas in the interleaved 

condition, all 64 exemplars were presented in a randomized order. Figure 2 shows examples 

of the sequencing and stimuli used in the study phase. Following this passive study phase, 

participants moved on to the test phase, where they were shown the same 64 length-

orientation pairings. The test stimuli were randomly presented, and following each stimulus 
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presentation, participants were asked to select what they believed to be the appropriate 

category label by clicking on one of four buttons (labeled A, B, C, and D) arranged 

horizontally below each stimulus display. This final test was self-paced and without 

feedback.

Results and Discussion

Classification performance.—Average final test performance for each condition is 

presented in Figure 3. A 2×2 between-subjects ANOVA revealed a main effect of category 

structure such that accuracy was higher for information-integration category structures (M 
= .58, SD = .17), relative to rule-based structures (M = .51, SD = .19), F(1, 128) = 5.36, 

MSE = 0.03, p =.022, ηp
2 = .04. There was no significant main effect of schedule, F(1,128) 

= .30, MSE = .03, p > .20. There was, however, a significant interaction, F(1,128) = 5.34, 

MSE = .03, p = .022, ηp
2 = .04. Post-hoc t-tests revealed that for rule-based categories, 

accuracy following blocked study (M = .55, SD = .19) was marginally higher than accuracy 

following interleaved study (M = .46, SD = .19), t(66) = 1.96, p = .055, d = .47. The pattern 

was reversed, however, for information-integration categories: Accuracy following 

interleaved study (M = .61, SD = .17) was higher than accuracy following blocked study (M 
= .55, SD = .17), but this difference was not found to be significant t(62) = 1.30, p = .20, d 
= .33.

Model Fits.—The accuracy-based analyses suggest that blocking enhances RB learning, 

whereas interleaving helps II learning. We hypothesized that this effect would occur because 

blocking may facilitate hypothesis-testing and the rule-discovery process, whereas 

interleaving may discourage rule use (perhaps by introducing a working memory load). To 

examine this possibility, we fit a number of different decision bound models (e.g., Ashby & 

Gott, 1988; Maddox & Ashby, 1993) to the data from each individual participant in order to 

understand the kind of strategy each participant used to classify the stimuli. For each of the 

four experimental conditions, the relevant models were fit separately to the data from the 64-

trial test block.

The model parameters were estimated using maximum likelihood (Ashby, 1992) and the 

goodness-of-fit statistic was computed using the Bayesian information criterion (BIC; 

Schwarz 1978). The BIC is defined as BIC = r ln N - 2 ln L, where r is the number of free 

parameters, N is the sample size, and L is the likelihood of the model given the data. The 

BIC statistic penalizes models for extra free parameters. To determine the best-fitting model 

within a group of competing models, the BIC statistic is computed for each model, and the 

model with the smallest BIC value is reported as the best fitting model. Five different types 

of models were fit to each participant’s responses: models that assumed an RB strategy 

using only one of the two relevant features (unidimensional rule use based on line length or 

line orientation), models that assumed an RB strategy using both relevant dimensions 

(conjunctive rule using both line length and orientation), models that assumed an II strategy, 

and models that assumed random guessing (for a detailed description of these models, see 

Maddox, Filoteo, Hejl, & Ing, 2004). The model fitting results are shown in Table 1. In the 

rule-based category structure conditions, the best-fitting model for each participant captured, 

on average, 68.0% and 59.1% of the variance in the responses made in the blocked and 
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interleaved conditions, respectively. In the information-integration conditions, the best-

fitting model for each participant correctly accounted for, on average, 68.1% and 63.8% of 

the variance in responses made in the blocked and interleaved conditions, respectively.

Consistent with our hypothesis, we found that blocked study led to proportionally more rule-

based strategy users relative to interleaved study. This pattern held true, both when we 

compare the proportion of blocked and interleaved study condition participants who use any 

rule-based strategy (i.e., unidimensional length, unidimensional orientation, or conjunctive 

rule) and we restrict the comparison to only those who specifically used the conjunctive 

rule-based strategy. With the rule-based category structure condition, we found that 58.3% 

of participants in the blocked schedule were best fit by models assuming the conjunctive 

rule-based strategy (which is the optimal strategy for rule-based categories), relative to 

46.9% in the interleaved schedule condition.

As predicted, interleaved study led to proportionally more information-information based 

strategy use relative to blocked study. With information-integration category structures, 

82.7% of participants in the interleaved schedule condition were best fit by models assuming 

an information-integration strategy (which is the optimal strategy for these information-

integration categories), relative to 71.4% of participants in the blocked schedule condition.

Experiment 2

Experiment 1 showed that blocking facilitated conjunctive rule use and enhanced the 

learning of rule-based categories, whereas interleaving discouraged rule-based strategies and 

enhanced the learning of information-integration categories. Computational models were 

applied to gain these insights into the strategies people may be using during the 

categorization process. To facilitate computational modeling in Experiment 1, we used 

highly controlled and relatively simple stimuli. Given that most categorization problems in 

the real world involve perceptually rich stimuli with many dimensions that are irrelevant to 

category membership, in Experiment 2, we replicated the design of Experiment 1 using 

more complex stimuli. To achieve this aim, we added a second irrelevant dimension to each 

stimuli—an ellipse with fixed height and varying length.

Method

Participants and design.—One hundred and ninety-two participants (mean age = 34.44, 

age range = 18–59, 106 females) were recruited from MTurk and paid $2.50 for their 

participation. Category structure (rule-based vs. information-integration) and schedule 

(blocked vs. interleaved) were manipulated in a 2×2 between-subjects design. An a priori 
power analysis determined that for a medium effect size (f = 0.25), we would need 32 

participants per condition to reach a power of 0.80. As we might expect more noise from the 

additional irrelevant dimension and therefore, a smaller effect size, we aimed instead for 50 

participants per condition (based on f = 0.20).

Materials.—The four-category rule-based and information-integration category structures 

were very similar to that of Experiment 1, with one additional, category-irrelevant 

dimension. In addition to line length, line orientation and position, each stimulus also 
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consisted of an ellipse of varying length (from which the line extended out of; for example 

stimuli, see Figure 2). As with the other dimensions, the ellipse length dimension also had 

eight values at equal intervals.

Procedure.—The procedure in Experiment 2 was the same as that of Experiment 1, with 

the exception that the study and test stimuli all consisted of the additional, category-

irrelevant dimension, ellipse length. The stimuli were created using the same 64 length-

orientation pairings as in Experiment 1, but they were randomly paired with 64 different 

ellipse length and position pairings.

Participants studied 64 stimuli in a blocked or interleaved schedule, and following this 

passive study phase, participants were then shown the same 64 length-orientation pairings, 

but with new ellipse length and position values. Thus, the stimuli were identical to those 

presented during study with respect to the line lengths and line orientations but were new 

with respect to the ellipse lengths and positions. Figure 2 shows an example of the 

sequencing and stimuli used in Experiment 2. Following each stimulus presentation, 

participants were asked to select what they believed to be the appropriate category label. 

This final test was self-paced and without feedback.

Results and Discussion

Classification performance.—Average final test performance for each condition is 

presented in the Figure 4. A 2×2 between-subjects ANOVA revealed no main effects, either 

of category structure, F(1,188) = 1.98, MSE = .03, p = .16, or of schedule, F(1,188) = .01, 

MSE = .03, p > .20. There was, however, a significant interaction, F(1,188) = 7.03, MSE 
= .03, p = .01, ηp

2 = .04. Post-hoc t-tests revealed that for rule-based categories, accuracy 

following blocked study (M = .44, SD = .15) was significantly higher than accuracy 

following interleaved study (M = .38, SD = .13), t(81) = 2.12, p = .04, d = .43. The pattern 

was reversed, however, for information-integration categories. Accuracy following 

interleaved study (M = .47, SD = .18) was marginally higher than accuracy following 

blocked study (M = .42, SD = .16), t(107) = 1.78, p = .08, d = .38.

The same decision-bound models from Experiment 1 were applied to these data. Not 

surprisingly, given the low accuracy rates observed in this experiment, the model fits were 

poor and the best-fitting model for each participants accounted for a low percentage of 

response variability (range: 45.7% – 54.9%). Even so, the model results converged with 

those from Experiment 1.

Meta-analysis of Effects

For rule-based categories, there was a benefit of blocking study of exemplars by category 

over interleaving study of exemplars from different categories. To estimate the true effect 

size of the blocking benefit for rule-based categories across, we conducted a meta-analysis1 

1The meta-analysis was conducted using the Exploratory Software for Confidence Intervals (ESCI) package (Cumming, 2011, 2014), 
following the “New Statistics” recommendations by the Association for Psychological Science and Cumming (2012). The package 
calculates the meta-analyzed effect sizes, by weighting the sample size, group means, and standard deviations across different 
experiments.
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of the results from the two experiments, as well as additional data collected as part of a pilot 

study for a follow-up study2 The results of the meta-analysis are presented in the left panel 

of Figure 5. The meta-analysis revealed a robust effect of blocking over interleaving for rule-

based categories: The estimated effect size (i.e., mean difference, as proportion of correct 

responses) between the blocked and the interleaved study schedules is −.07, 95% CI = [−.11, 

−.03], z(2) = 3.34, p < .001. In other words, performance following blocked study is on 

average 7% higher than performance following interleaved study, and this advantage of 

blocking is significantly different from zero. Furthermore, the heterogeneity of the effect 

sizes was not statistically significant, Q(2) = .23, p = .89, I2 = 0.0%, which indicates that the 

observed effect did not differ significantly between the three samples.

For the information-integration categories, there was a benefit of interleaving study of 

exemplars from different categories over blocking study of exemplars by category. To 

estimate the true effect size of the interleaving benefit for information-integration categories 

across the two experiments, we again conducted meta-analysis using ESCI. The results are 

presented in the right panel of Figure 5. The meta-analysis revealed a robust effect of 

interleaving over blocking for information-integration categories: The estimated effect size 

(i.e., mean difference, as proportion of correct responses) between the blocked and the 

interleaved study schedules is .05, 95% CI = [0.001, .10], z(1) = 2.00, p = .045. In other 

words, performance following interleaved study is on average 5% higher than performance 

following blocked study, and this advantage of interleaving is significantly different from 

zero. Furthermore, the heterogeneity of the effect sizes was not statistically significant, Q(1) 

= .10, p = .92, I2 = 0.0%, indicating that the observed effect did not differ significantly 

between the two studies.

General Discussion

Across two studies, we tested the effects of blocked and interleaved study schedules on the 

learning of rule-based and information-integration category structures. Using relatively 

simple stimuli in Experiment 1 and more complex stimuli in Experiment 2, we found our 

predicted schedule x category structure interaction: Rule-based category learning benefited 

from blocking, whereas information-integration category learning benefited from 

interleaving, and the individual experiment findings are boosted by our meta-analysis 

results. Modeling results from both experiments suggest that this interaction is mediated by 

increased rule-based strategy use when category exemplars are blocked.

What Does Blocking Help Participants to Learn?

With the rule-based categories, blocking study led to better performance than did 

interleaving study. In our view, the benefit of blocking for rule-based learning in this 

particular task may be a result of one of two factors, or both: 1) Blocking may help learners 

identify the relevant dimensions from the irrelevant dimensions, or 2) blocking may allow 

2This pilot included the two rule-based category conditions from Experiment 2 (n = 24 in each of the schedule conditions), and 
yielded almost identical results to those of Experiment 2, with blocked condition (M = .45, SD = .14) marginally outperforming the 
interleaved condition (M = .38, SD = .13), t(46) = 1.77, p = .08, d = .52. This third replication of a blocking advantage in the rule-
based condition gives us even greater confidence in our effect.
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learners to generate and test specific hypotheses for each category more easily as they study 

the exemplars. We conducted a pilot study (first mentioned in footnote 2) as an initial step 

toward answering this question: In addition to the two conditions from Experiment 2, we 

compared learning under a third study schedule (n = 26) in which the relevant dimensions 

were interleaved, but the irrelevant ones were blocked (i.e., this schedule was blocked-by-

irrelevant-dimensions, as opposed to blocked-by-category), which was designed to draw 

learners’ attention to noticing what dimensions were relevant or irrelevant. On both the 

classification test and a test in which participants had to identify the relevant and irrelevant 

dimensions, this new blocked-by-irrelevant-dimensions condition yielded performance at a 

level comparable to the blocked condition and marginally better compared to the interleaved 

condition.

Therefore, although we initially hypothesized that participants, when studying one category 

at a time, are better able to compare exemplars from the same category and to generate and 

test their hypotheses as to the dimensions define category membership (and this may still be 

true, particularly for Experiment 1), these pilot data suggest that with the addition of 

irrelevant dimensions (as in Experiment 2), the blocking benefit is perhaps more likely 

driven by the fact that it allows participants to more easily identify and disregard the 

irrelevant dimensions. This conclusion, however, is speculative and the present studies do 

not tease apart these two possibilities.

What Does Interleaving Help Participants to Learn?

With the information-integration categories, for which there are no verbalizable rules that 

optimally distinguish between the categories, interleaving study led to better performance 

than did blocking study. As information-integration learning does not depend on generating, 

testing, updating, and maintaining explicit rules, the marginally significant interleaving 

benefit in information-integration learning may be due to the fact that an interleaved 

schedule encourages participants to more quickly abandon the use of sub-optimal rule-based 

strategies during study. When there are a manageable number of to-be-learned categories, it 

seems plausible that interleaving would enhance learning because it juxtaposes instances of 

a category with members of other categories, allowing learners to narrow down the defining 

features of one category that distinguishes it from another. With our design and stimuli, 

however, we argue that, for rule-based categories, the potential benefit of being able to 

compare and contrast successive exemplars of different categories that is provided by 

interleaving is overshadowed by working memory limitations and the costs associated with 

having to process multiple stimulus dimensions across four categories. The modeling results 

of Experiment 1 and Experiment 2 provide support for this idea, as interleaved conditions 

led to both a decrease in rule-based strategy use and increase in information-integration 

strategy use relative to blocked conditions.

Moreover, the present study is important for another reason: It demonstrates a case where 

between-category discriminability is not a moderator of the interleaving benefit. The 

existing literature (e.g., Carvalho & Goldstone, 2014; Kang & Pashler, 2012; Zulkiply & 

Burt, 2012) on moderators of the interleaving benefit in category learning has largely 

focused on the discrimination hypothesis: That is, that the interleaving benefit depends on 
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the discriminability of to-be-learned categories and emerges only when between-category 

discrimination is relatively difficult. Our data suggest, however, that the discriminability 

hypothesis may not provide a complete account of what determines optimal category-

learning schedules. Since our rule-based and information-integration categories are 

structurally equivalent, discriminability is equated, yet optimal schedules differ across 

category structures.

Possible Interactions of Discriminability and Category Structure

It is likely that discriminability and category structure will interact. It has been theorized that 

the two category learning systems are governed by different factors (e.g., rule-based learning 

is dependent on working memory, while information-integration learning is not), and thus 

manipulations of between and within category discriminability could act differently within 

each system. In other words, it would be overgeneralizing our results to claim that blocking 

always favors rule-based learning (indeed, we acknowledge that hypothesis testing can 

proceed from between-category contrasts as well as within-category comparisons, depending 

on the nature of the to-be-learned, rule-based categories) or that interleaving always favors 

information-integration learning. Additionally, when there are only one or two to-be-learned 

categories (for example, category-A and not-A) or when rules are very simple to keep in 

mind, interleaving might be useful, given the benefits of spacing on memorization (Cepeda, 

Pashler, Vul, Wixted, & Rohrer, 2006). When, however, rule-based learning is explicit and 

thus subject to working memory limitations, as presumably present in our four-dimensional, 

four-category stimuli set (given overall performance levels), blocked study leads to better 

learning than does interleaved study.

The discrimination hypothesis and our proposed dual-learning systems framework are not 

mutually exclusive and future research should explore how these two theories might interact 

and/or independently contribute to better account for the growing body of literature on 

sequencing effects in category learning.

Concluding Comment

Although most real-life categories and concepts cannot be cleanly divided into “rule-based” 

or “information-integration” categories, the present findings have important implications for 

education. That is, simply knowing that different types of learning materials may lend 

themselves more readily to one form of category learning over another may be useful from 

an educational standpoint. Knowing that a task such as learning artists’ styles is less 

verbalizable and is, therefore, likely to profit more from “information-integration” style 

learning, for example, whereas learning to classify organic chemistry compounds, or to 

classify different types of mathematics and physics problems, is likely to profit more from 

rule-based learning is useful. Knowing that prior knowledge and expertise of a learner may 

also play a part, with novices relying more on a rule-based learning system and more 

advanced learners relying more on an information-integration learning system, is potentially 

useful as well. Thus, even in our complex and imperfect world, the dual learning-systems 

framework provides a useful framework for thinking about the methods of instruction that 

can be used to optimize different types of learning.
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Figure 1. 
The category structures of the RB (left) and II (right) categories. This figure displays the two 

relevant dimensions (line length and line orientation). In Experiment 1, there was one 

irrelevant dimension (position) and in Experiment 2, there were two irrelevant dimensions 

(ellipse length and position). These irrelevant dimension values varied randomly across 

stimuli, and are not illustrated here.
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Figure 2. 
Sample stimuli and sequencing for each condition. All exemplars were presented 

sequentially, one by one. In the blocked condition, all exemplars from the one category were 

presented before moving onto exemplars of the next category. In the interleaved condition, 

exemplars from all four categories were intermixed.

Noh et al. Page 13

Cognition. Author manuscript; available in PMC 2021 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Classification accuracy results, by schedule and category structure. Error bars represent 95% 

confidence intervals.
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Figure 4. 
Classification accuracy results, by schedule and category structure. Error bars represent 95% 

confidence intervals.
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Figure 5. 
Results of the meta-analyses investigating the effect size of study schedules (mean 

difference in classification test performance between blocked and interleaved study) for rule-

based (left panel) and information-integration (right panel) category structures. The 

horizontal lines represent 95% confidence intervals for Experiments 1 and 2 (and for the left 

panel, the third line is the additional pilot data), the location of squares along the x-axis 

represents the mean differences and the size of the squares represents the weighting of each 

sample in the meta-analysis. The diamond represents the summary statistic for the mean 

difference.
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Table 1.

Number (percentage) of participants best fit by each type of model for blocked and interleaved study schedules 

in the rule-based and information-information category structure conditions in Experiment 1

Rule-based Structure Information-integration Structure

Best-fit Model Blocked Interleaved Blocked Interleaved

Information-Integration 9 (25.0%) 11 (34.4%) 25 (71.4%) 24 (82.8%)

Conjunctive Rule 21 (58.3%) 15 (46.9%) 7 (20.0%) 0 (0.0%)

Unidimensional Length 4 (11.1%) 3 (9.4%) 0 (0.0%) 2 (6.9%)

Unidimensional Orientation 1 (11.1%) 0 (9.4%) 0 (0.0%) 1 (6.9%)

Random Responder 1 (2.8%) 3 (9.4%) 3 (8.6%) 2 (6.9%)

Average Percentage of Responses Accounted for by Best-Fit Model 68.0% 59.1% 63.8% 68.1%
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Table 2.

Number (percentage) of participants best fit by each type of model for blocked and interleaved study schedules 

in the rule-based and information-information category structure conditions in Experiment 2

Rule-based Structure Information-integration Structure

Best-fit Model Blocked Interleaved Blocked Interleaved

Information-Integration 10 (23.2%) 9 (22.5%) 37 (69.8%) 43 (76.8%)

Conjunctive Rule 28 (65.1%) 22 (55.0%) 9 (17.0%) 4 (7.1%)

Unidimensional Length 2 (4.7%) 3 (7.5%) 2 (3.8%) 3 (0.0%)

Unidimensional Orientation 2 (4.7%) 2 (5.0%) 2 (3.8%) 0 (0.0%)

Random Responder 1 (2.3%) 4 (10.0%) 3 (5.7%) 6 (10.7%)

Average Percentage of Responses Accounted for by Best-Fit Model 52.3% 45.7% 53.1% 54.9%

Cognition. Author manuscript; available in PMC 2021 March 22.


	Abstract
	Experiment 1
	Method
	Participants and design.
	Materials.
	Procedure.

	Results and Discussion
	Classification performance.
	Model Fits.


	Experiment 2
	Method
	Participants and design.
	Materials.
	Procedure.

	Results and Discussion
	Classification performance.


	Meta-analysis of Effects
	General Discussion
	What Does Blocking Help Participants to Learn?
	What Does Interleaving Help Participants to Learn?
	Possible Interactions of Discriminability and Category Structure

	Concluding Comment
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.
	Table 2.



